Tesis Monográfica para optar al Título de
Ingeniero Eléctrico

Titulo
“Diseño y Evaluación Financiera de la Red Eléctrica en Media y Baja
Tensión de la Urbanización Lomas de Miramar Ubicada en el Municipio de
San Juan del Sur”.

Autores:
➢ Br. Cristian David Aguirre García 2010-32729
➢ Br. Rishmar José Hernández Acuña 2010-32530

Tutor:
Ing. Juan González Mena

Managua, Septiembre 2017
Abreviaturas

AT: Alta tensión.

BT: Baja tensión

CGBT: Cuadro general de baja tensión.

CT: Centro de transformación

HEPR: Etileno propileno.

ITC: Instrucción técnica complementaria.

LAT: Línea aérea de alta tensión.

MT: Media tensión.

PAT: Punto de acceso a tierra.

PE: Polietileno.

PVC: Policloruro de vinilo.

REBT: Reglamento electrotécnico de baja tensión.

RLAT: Reglamento de líneas de alta tensión

STR: Subestación transformadora y de reparto.

Z1: Poliolefina.
ÍNDICE DE CONTENIDO

I. Introducción ... 5
II. Antecedente ... 7
III. Descripción del Proyecto .. 8
IV. Justificación .. 9
V. Objetivos ..11
 5.1 Objetivo General ..11
 5.2 Objetivo Específico ...11
VI. Marco Teórico ..12
 6.1 Distribución de la energía eléctrica según la ley 272 ...12
 6.2 Redes de distribución eléctrica en Nicaragua ...13
 6.3 Clasificación de las Redes de distribución de energía eléctrica según su tensión nominal........13
 6.4 Redes de distribución urbana ..14
 6.5 Redes de distribución rural ..14
 6.6 Redes de distribución subterráneas ...15
 6.7 Redes de distribución aéreas ..16
 6.8 Redes de distribución de energía eléctrica según el tipo de usuarios finales17
 6.9 Redes aéreas de distribución eléctrica ...17
 6.10 Diseño de redes aéreas de media tensión ..18
 6.11 Teoría de obras eléctricas en baja y media tensión ...18
 6.11.1 Definición de normas eléctricas ...18
 6.11.2 Principales normas y códigos de Nicaragua ...19
 6.11.3 Consideraciones de obras en BT según el NEC ...19
 6.11.4 Normativa enlace ...28
 6.11.5 Topología de la medida ..29
 6.11.6 Normas eléctricas para redes de distribución en BT y BT. ...32
 6.11.7 Clasificación de las redes de distribución ...33
 6.11.8 Selección de los montajes en base al ángulo del conductor ..33
 6.11.9 Montajes monofásicos trifásicos y de baja tensión ...34
 6.11.10 Norma proyecto tipo estructuras básicas ..40
 6.11.11 Conversión de montajes ...43
 6.11.12 Ejecución de proyectos ...44
 6.11.13 El replanteo ..45
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11.14 Estaqueo</td>
<td>46</td>
</tr>
<tr>
<td>VII. Hipótesis y Variable</td>
<td>47</td>
</tr>
<tr>
<td>VIII. Metodología de Trabajo</td>
<td>48</td>
</tr>
<tr>
<td>IX. Diseño y evaluación financiera de la urbanización</td>
<td>50</td>
</tr>
<tr>
<td>X. Cálculos eléctricos</td>
<td>55</td>
</tr>
<tr>
<td>XI. Estudio Técnico</td>
<td>60</td>
</tr>
<tr>
<td>XII. Evaluación Financiera</td>
<td>62</td>
</tr>
<tr>
<td>XIII. Conclusiones</td>
<td>64</td>
</tr>
<tr>
<td>XIV. Bibliografía</td>
<td>65</td>
</tr>
</tbody>
</table>
I. Introducción

El desarrollo de las urbanizaciones en Nicaragua en los estratos medios y bajos de la población ha sido una de las áreas menos atendidas por los gobiernos y la empresa privada, por lo que la demanda acumulada, se ha vuelto cada vez más crítica.

La solución de esta situación pasa por una adecuada formulación y evaluación de proyectos de urbanización ya sea de interés social o privado, para que, con esta base, se puedan solicitar y tramitar financiamiento.

El presente trabajo de tesis forma parte del desarrollo de la urbanización Lomas de Miramar y contiene el diseño de la red en MT y BT, así como su evaluación financiera del proyecto de inversión de la urbanizadora.

El desafío es lograr el diseño de la red para posteriormente realizar la evaluación financiera del proyecto que permita calcular el costo por usuario, habitante de la urbanización y de esta manera llevar a cabo el proyecto.

Priorizando así la disponibilidad de energía eléctrica, elemento indispensable para aumentar el nivel de vida de la población rural y satisfacer sus necesidades de alumbrado, entretenimiento y del potencial desarrollo técnico en sus actividades. El real potencial de la electricidad es estimular el desarrollo económico. Por lo tanto, se debe tener presente que existen varias actividades en los distintos sectores que se ven fortalecidos con la instalación de electricidad.

Las aplicaciones específicas y el impacto que pueda tener la electricidad en el desarrollo de una localidad o región rural dependerán de las características de la población y del resto de inversiones de infraestructura que se emprendan.

El alcance del estudio pretende abarcar, tanto el diseño de planos eléctricos en el software AutoCAD, así como su respectiva evaluación financiera de la misma, sin obviar el cumpliendo de las normas eléctricas, ya que estas garantizan la...
estandarización de los documentos, planos y diseños de redes eléctricas, son las que determina el buen funcionamiento eléctrico en todo lo que respecta a la construcción y mantenimiento de todas las redes eléctricas.

Aunque la electrificación urbana representa un beneficio económico directo para las empresas de distribución, ya que en las urbanizaciones el usuario final asume el costo del proyecto de la red eléctrica.

El diseño consiste en llevar la energía a la urbanización del punto más cercano mediante la construcción de una línea MT a un punto existente con un voltaje primario 14.4KV/24.9,2KV (Kilo-Voltios) y Secundario de 120/240 V (Voltios) para la distribución a las viviendas.

Por lo anterior expuesto el diseño debe de cumplir con la normativa del manual de Construcción de Redes de Distribución de Media Tensión 14.4 Kv/24.9Kv de Dis Norte-Dis Sur y la norma ENEL que garanticen las condiciones mínimas de sostenibilidad de diseño.

En este marco, el estudio busca presentar, en forma simplificada, el diseño de la red y su evaluación financiera, que deben tenerse en cuenta durante la elaboración de un estudio de electrificación de cualquier urbanizadora.

El protocolo está dividido en una pequeña introducción que hace una breve síntesis del trabajo de tesis, lo que se pretende lograr, a continuación los antecedentes relacionados a los proyectos de electrificación rural implementados en Nicaragua. Así como el planteamiento del problema del porque la necesidad de desarrollarlos y los objetivos del estudio.

Para finalizar la justificación del mismo y su impacto positivo en los estudiantes de pregrado, así como en la sociedad, se presenta el marco teórico haciendo referencia a la distribución de la energía. Posteriormente se presenta la metodología de trabajo a seguir para el desarrollo del trabajo de tesis sobre dicho proyecto de electrificación
II. Antecedente

El Municipio de San Juan del Sur se encuentra en un momento coyuntural por la concentración de negocios de bienes raíces, la llegada de barcos cruceros, la consolidación como zona residencial por el mercado local e internacional y la influencia positiva del desarrollo turístico de Costa Rica más la posible construcción de la carretera costanera.

Así también coinciden a lo largo del año 2005 las voluntades de un nuevo Gobierno Municipal, de los inversionistas y los desarrolladores que están creando nuevos proyectos, junto con los deseos y necesidades de crecimiento económico de los negocios y de la población existente.

Adicionalmente aparece en el mismo año un grupo de empresarios liderados por el INCAE que de manera honoraria se comprometieron a colaborar con la Alcaldía de San Juan del Sur para mejorar el ambiente de competitividad y orientar las inversiones y desarrollo del municipio. El grupo se denomina Comisión de Desarrollo Sostenible de San Juan del Sur.

La saturación de los servicios básicos y la presión ejercida por los nuevos desarrollos residenciales sumados a la llegada creciente de turistas, terminan de crear el marco dentro del cual se plantea la necesidad de elaborar un Plan Estratégico de Desarrollo que sea práctico y que acepte la realidad y las capacidades a como se plantean y proponga acciones que traigan resultados a corto y mediano plazo en las áreas económicas, financieras y sociales.

En este contexto a finales del año 2016 se desarrolla la urbanización Lomas de Miramar, que es un complejo residencial, en el cual se pretende realizar el diseño de la
red de media tensión y baja tensión bajo cumplimiento de normas de diseño eléctrico vigente en el país y además se pretende realizar su evaluación financiera.

III. Descripción del Proyecto

El proyecto consiste en conectarse en el punto más cercano de la Red Nacional con una Línea de Media Tensión en un voltaje primario de 14.4KV/24.9,2KV (Kilo-Voltios) y Secundario de 120/240 V (Voltios) para la distribución a las residencias de la urbanización lomas de Miramar ubicada en el municipio de san juan del sur, utilizando postes de concreto (de 35 y 40 pies de altura) para el tendido de los conductores primarios y secundarios, utilización de retenidas primarias y secundarias para el anclaje de los postes, instalación de transformadores Monofásicos y además se incorporara a este proyecto las instalaciones de todas las acometidas e instalaciones internas básicas de las residencias.

1. Punto de Conexión

La red a construir se pretende conectarse desde una red existente de media tensión en 14.4KV/24.9,2KV que va sobre la carretera.
IV. Justificación

El estudio de este proyecto se debe a la búsqueda de soluciones que permitan la disponibilidad del servicio de electricidad que una vez ejecutado favorecerá a los habitantes de la comunidad de los sabogales que no tiene el servicio. La Falta de alumbrado en las diferentes calles del sector perjudica a los habitantes del sector que tienen que caminar a oscuras exponiendo su vida.

El proyecto debe contar con un diseño de las redes eléctricas que cumpla con las normas ENEL, que permite la instalación de las redes de media tensión y baja tensión cumpliendo así mismo con la normas de la distribuidora.

El diseño también contempla la instalación de medida centralizada como método de comercialización de la energía, este tipo de medida brinda mayor seguridad al operador de red, ya que no permite la manipulación de los medidores de energía y la gestión comercial es más efectiva.

El diseño de redes eléctricas propuesto en este documento asegura el cumplimiento total de las necesidades, teniendo en cuenta una proyección a futuro del municipio, una mejora en la calidad del servicio de energía y que permita a la empresa de energía ver esta recuperación como una inversión.

Es importante destacar que este proyecto impactara positivamente en los estudiantes, docentes y personas externas que desearan conocer y adentrarse en el diseño y cálculo para electrificación rural bajo las normas de construcción en media y baja tensión, ya que es importante, tanto en el área de servicio de operación y mantenimiento como en la construcción.
La metodología que se utilizará generará recomendaciones que pueden retomarse en la implementación de otros proyectos de electrificación rural en otras comunidades.
V. Objetivos

5.1 Objetivo General

Realizar el diseño y evaluación financiera de la red eléctrica en media y baja tensión de la urbanización Lomas de Miramar ubicada en el municipio de san juan del Sur.

5.2 Objetivo Específico

Planificar un estudio de campo en la zona que nos permita conocer cuál es el punto más cercano para conectarse a la red eléctrica nacional con el apoyo de GPS.

Elaborar los planos eléctricos de la red de MT y BT cumpliendo con las normas eléctricas de construcción ENEL y Dis-Norte, Dis-sur.

Proyectar el estudio de costo del proyecto de la urbanización tanto de la red de media tensión como la red interna residencial.
VI. Marco Teórico

6.1 Distribución de la energía eléctrica según la ley 272

Según el artículo #32, dice: Los distribuidores de energía eléctrica están obligados a construir, instalar, operar y mantener sus instalaciones y equipos de tal forma que no constituyan peligro para la seguridad de las personas, de la propiedad y del medio ambiente, conservando las características de diseño e instalación aprobadas por el INE.

Dichas instalaciones y equipos estarán sujetos a la inspección, revisión y pruebas que éste considere realizar.

Por otro lado el Artículo 35.- dice: Cualquier persona ubicada dentro de la zona de concesión de distribución de un Agente Económico, tiene derecho a que éste le suministre energía eléctrica, previo cumplimiento por parte del interesado de los requisitos que para tal efecto fija la presente Ley y las normativas respectivas.

Además el Artículo 36.dice - Los distribuidores son responsables de la ejecución, operación y mantenimiento de sus instalaciones eléctricas hasta el punto de conexión de sus líneas al sistema del cliente.

En este contexto el Artículo 39.Dice - Corresponde a las empresas urbanizadoras, construir por cuenta propia las instalaciones necesarias, conforme a las normas que determine la normativa respectiva, a fin de que los distribuidores puedan prestar el servicio eléctrico y de alumbrado público en sus nuevas urbanizaciones.

Las instalaciones construidas pasarán a ser parte integrante de la red de distribución y propiedad del concesionario respectivo, correspondiéndole así mismo su mantenimiento y reposición.
6.2 Redes de distribución eléctrica en Nicaragua

La distribución de energía eléctrica es la parte del sistema de suministro eléctrico en la que la energía es llevada desde las subestaciones de alta tensión hasta las subestaciones de distribución o entre dos subestaciones de distribución.

En Nicaragua el proceso de distribución, según el código de instalaciones eléctricas CIEN, lo componen "todo conjunto de aparatos y de circuitos asociados para transporte y transformación de la energía eléctrica, cuyas tensiones nominales sean iguales o superiores a 110 V y menores a 57,5 kV".

6.3 Clasificación de las Redes de distribución de energía eléctrica según su tensión nominal

- Redes de distribución de media tensión o primarias

Es el conjunto de equipos o elementos que se utilizan para transportar la energía eléctrica desde una subestación de distribución hasta un centro de transformación de media tensión, el cual puede pertenecer a una subestación de distribución de menor capacidad MT/MT o una subestación de distribución tipo poste MT/BT.

Se considera una red de distribución primaria cuando los niveles de tensión son de Media Tensión (MT), considerados superiores a 1000 V e inferior a 57,5 kV.

- Redes de distribución de baja tensión o secundarias

Es el conjunto de equipos o elementos que se utilizan para transportar la energía eléctrica a tensiones nominales menores o iguales a 1000 V. Este tipo de redes es el utilizado para llevar la energía eléctrica desde los transformadores de distribución tipo poste hasta las acometidas de los usuarios finales.
6.4 Redes de distribución urbana

Son las redes de distribución ubicadas dentro de las ciudades y/o en el sector urbano de los municipios. Las principales características de las redes de distribución urbana son las siguientes:

a) Usuarios muy concentrados.
b) Cargas monofásicas y trifásicas.
c) En general se usan postes de concreto.
d) Es necesario coordinar los trazados de la red eléctrica con las redes telefónicas, redes de acueducto, alcantarillados y otras redes, igualmente tener en cuenta los parámetros de las edificaciones.
e) Mayor densidad de clientes industriales y comerciales.
f) La separación entre apoyos de media y baja tensión es de máximo 50m.
g) En caso de mantenimientos preventivos se procura realizar trabajos en tensión para no realizar cortes del servicio.

6.5 Redes de distribución rural

Estas redes son las encargadas de llevar el servicio de energía eléctrica a zonas dispersas de los municipios. Las áreas rurales no cuentan con calles y no están organizados por manzanas. Por lo general se encuentran en zonas dedicadas a la agricultura y la ganadería. Las principales características de las redes de distribución rural son las siguientes:

a) Usuarios dispersos.
b) Principalmente cuenta con usuarios residenciales.
c) Poca demanda de energía.
d) Promedio de distancias entre apoyos es mayor a 50m.
e) Dificultad para acceder a algunos tramos de las redes.
f) Presencia de fallas en los circuitos debido al contacto de las redes con las ramas de los árboles.
6.6 Redes de distribución subterráneas

Este tipo de redes consiste en instalar los conductores eléctricos debajo de las calles, ocultos a la vista, ya sea directamente o por medio de tuberías o ductos. Los conductores utilizados son aislados de acuerdo al voltaje de operación y conformados por varias capas aislantes y cubiertas protectoras.

Este tipo de redes es utilizado principalmente en ciudades donde por razones de urbanismo, estética, o condiciones de seguridad no es aconsejable o no se puede utilizar el sistema aéreo. Adicionalmente, las redes de distribución eléctrica subterránea presentan ciertas ventajas para la labor del mantenimiento y calidad del servicio en cuanto a continuidad. Algunas de estas son:

a) La mayor parte de los daños que se presentan en redes aéreas no afectan a las redes subterráneas.
b) No interfieren con el aspecto de las ciudades, pues no están a la vista.
c) Son mucho más seguras porque no están expuestas a aves ni a humanos.
d) No están expuestas a vandalismo.
e) Se evitan realizar algunos planes de mantenimiento preventivo como poda y lavado.
f) Este tipo de redes también presenta unas desventajas en comparación con las redes aéreas. Algunas de estas son:
g) La inversión inicial es mucho mayor.
h) Se dificulta la localización de daños o causas de falla.
i) El mantenimiento es más complicado y reparaciones más demoradas.
j) Están expuestas a la humedad y a la acción de roedores si no se tienen las precauciones adecuadas en su construcción y/o mantenimiento.
6.7 Redes de distribución aéreas

En este tipo de redes el conductor va soportado sobre aisladores instalados en crucetas que a su vez se encuentran en postes. En las redes aéreas también podemos encontrar el uso de torres o torrecillas que no llevan crucetas. Los conductores usados en su mayoría son desnudos y los materiales de la estructura van de acuerdo al nivel y tipo de contaminación de la zona.

Estas redes son las que encontramos normalmente en los sistemas de distribución del país. La principal razón para el uso de este tipo de redes es el costo inicial de su construcción, pero también cuenta con otras ventajas sobre las redes subterráneas. Algunas son:

a) Son las más comunes y por lo tanto trabaja con materiales de fácil consecución.
b) Costo inicial de construcción más bajo.
c) Tiempos de construcción más bajos.
d) Fácil mantenimiento.
e) Fácil localización de fallas.
f) Los tiempos en la reparación de daños es menor

También debemos tener en cuenta las desventajas que tiene este tipo de construcción respecto a las redes subterráneas, que en su mayoría se refieren a mantenimiento y seguridad. Algunas de estas son:

a) Se encuentran a la vista, esto le quita estética a las ciudades.
b) Ofrecen menor confiabilidad debido a las diferentes situaciones a las que están expuestas.
c) Menor seguridad (ofrece más peligro para los transeúntes).
d) Requieren de mayores planes de mantenimiento preventivo para evitar fallas y cortes de energía.
e) Están expuestas y son de fácil acceso para el vandalismo.
6.8 Redes de distribución de energía eléctrica según el tipo de usuarios finales

Aunque en la práctica una sola red de distribución de energía eléctrica puede llegar a todo tipo de usuarios, la finalidad a la cual el usuario destina la energía eléctrica genera diferencias en el comportamiento de la red. Los operadores de red intentarán separar estos sectores por circuitos para mejorar la gestión de los mismos. Una diferencia muy importante entre este tipo de redes son las horas pico o de mayor consumo.

Existen redes de distribución eléctrica para cargas:

- Residenciales
- Comerciales
- Industriales

6.9 Redes aéreas de distribución eléctrica

En Nicaragua, las redes aéreas para la distribución de energía eléctrica son las más utilizadas, esto debido, principalmente, al costo de construcción de redes subterráneas.

- **Materiales**

Todos los materiales usados en las instalaciones eléctricas de Nicaragua, incluyendo los utilizados para la construcción de redes de distribución eléctrica, deben tener una certificación que asegure el cumplimiento de las normas exigidas en el CIEN, norma ENEL para cada uno de los materiales.

Por ejemplo **ESTRUCTURAS DE APOYO Y HERRAJES EN REDES DE DISTRIBUCIÓN**:

“Las redes de distribución se soportarán sobre estructuras tales como torres, torrecillas, postes de concreto en cualquiera de sus técnicas de construcción (armado o pretensado); postes de hierro, postes de madera, acrílicos u otros materiales; siempre que cumplan con los siguientes requisitos y los establecidos en el numeral 17.15 del presente anexo, que les aplique.”
Como en la mayoría de las redes se usan como apoyos los postes, salvo en casos especiales, estos son los que se tendrán en cuenta a continuación para realizar la descripción de materiales utilizados en redes aéreas:

- Postes
- Conductores
- Crucetas
- Aisladores
- Herrajes
- Equipos de seccionamiento
- Transformadores
- Armados de media tensión
- Estructuras de media tensión

6.10 Diseño de redes aéreas de media tensión

Para el diseño de redes aéreas de media tensión es tan importante realizar tanto cálculos eléctricos como cálculos mecánicos, ya que las redes no sólo dependen de un buen conductor o un excelente aislamiento, también lo hacen de los apoyos y demás elementos presentes en las estructuras.

Es importante destacar cada uno de los puntos clave que se deben tener en cuenta al momento de diseñar unas redes aéreas de distribución de media tensión según la normativa para el diseño de redes ENEL y Dis-norte. vigente en el año 2016.

6.11 Teoría de obras eléctricas en baja y media tensión

6.11.1 Definición de normas eléctricas

Se define como Normas los principios generales que gobernaran el diseño, y operación de los sistemas de distribución eléctrica y que también aseguran los niveles de adecuación, confiabilidad, economía, eficiencia, seguridad y protección ambiental.
Garantizan la estandarización de los documentos, planos y diseños de redes eléctricas, son las que determina el buen funcionamiento eléctrico en todo lo que respecta a la construcción y mantenimiento de todas las redes eléctricas.

6.11.2 Principales normas y códigos de Nicaragua

Las principales normas y códigos que rigen el desempeño técnico de las redes eléctricas de distribución y instalaciones para interiores en nuestro país son:

- CIEN. Código de instalaciones eléctricas de Nicaragua.
- NEC. Código Eléctrico Nacional de los EE UU.
- Manual de Normas de Construcción ENEL.
- R.E.A Manual de la Rural Eléctrica Administración de los Estados Unidos (aprobado por ENEL y INE)
- CIED. Código de Instalaciones Eléctricas de Distribución.
- Proyecto Tipo.
- Normativa de ENLACE.

6.11.3 Consideraciones de obras en BT según el NEC

A. MATERIALES AISLANTE DE LOS CONDUCTORES ELECTRICOS.

Los materiales aislantes de los conductores deben tener las siguientes características:

- Alta resistencia al paso de electrones a través de ellos.
- Soportar altas tensiones mecánicas.
- Deben ser flexibles.
- A nivel comercial interesan su duración y economía.
- Deben soportar en cierto grado temperatura, agentes atmosféricos como humedad, calentamiento del sol y agentes químicos como salinidad y ácidos.
B. LOS CONDUCTORES SE DESIGNAN POR SU AISLAMIENTO Y SU MODO DE OPERACIÓN COMO:

- A: Aislamiento de Asbesto
- MI: Aislamiento Mineral
- R: Aislamiento de Hule
- T: Aislamiento Termoplástico
- X: Aislamiento de Polímero Sintético Barnizado
- H: Resistente al calor hasta 75°C
- HH: Resistente al calor hasta 90°C
- W: Resistente a la Humedad
- UF: Uso Subterráneo

C. IDENTIFICACION DE LOS CONDUCTORES:

Los conductores traen el aislamiento con una identificación escrita en letras las cuales por estándares especifican el tipo de material aislante y la temperatura que soporta.

NOTA: Salvo que se especifique lo contrario los aislantes comerciales pueden soportar hasta 600 V.

NOTA: La especificación VW – 1 indica que el conductor pasó la prueba de no permitir la propagación de la llama en caso de incendio, como lo exige la norma.
D. Las identificaciones más comunes en instalaciones eléctricas domiciliarias son:

T Cubierta Termoplástico. Temperatura máxima de operación: 60°C. Utilizada en interiores.

TW Cubierta termoplástico resistente a la humedad. Temp. Máx.: 60°C. Utilizada en interiores y zonas húmedas.

THW Cubierta termoplástico resistente al calor y a la humedad. Temp. Máx.: 75°C. Utilizada en interiores y exteriores.

THHN / THWN Cubierta termoplástico con refuerzo de Nylon, resistente al calor y a la humedad. Temp. Máx.: 90°C. Utilizada en interiores y exteriores. Especial para instalaciones en sitios abrasivos o contaminados con aceite, grasas, gasolina y otras sustancias químicas.

E. CABLE DE NYLON THHN

1. **APLICACIONES:** Uso general en industrias, hoteles, bodegas, y en instalaciones donde se requiera, gran resistencia a los aceites y gasolina

2. **CARACTERÍSTICAS:**

Retardador de la flama.

Diámetro reducido.

Indicado especialmente en instalaciones con sobrecargas frecuentes.

Resistente a la abrasión y abuso mecánico con bajo coeficiente de fricción.

Resistente al Aceite y Gasolina y solventes ligeros.

F. SEGUN NORMA NEC-ART 310.12 (USA-CANADA)
G. CANALIZACIONES

- Están diseñadas especialmente para sostener conductores cables o alambre, en otros casos sirven para protección del conductor debido al material en que están construidos.
- Los cables eléctricos instalados en lugares visibles deben de ser protegidos por una tubería rígida llamada ducto, hay muchas clases de ductos y se recomienda consultar el código establecido en su país.

H. CONDUIT RIGIDO PVC

Canalizaciones

Art. 352 Conduit rígido de cloruro de polivinilo
Tipo PVC (Polyvinyl Chloride)

Soportes: Se debe soportar de acuerdo con la Tabla 352.30 y no requiere soporte para tramos no mayores a 450mm sin acopios:

<table>
<thead>
<tr>
<th>Conduit Size</th>
<th>Maximum Spacing Between Supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Designator</td>
<td>Trade Size</td>
</tr>
<tr>
<td>16–27</td>
<td>½–1</td>
</tr>
<tr>
<td>35–53</td>
<td>1 ¾–2</td>
</tr>
<tr>
<td>63–78</td>
<td>2 ½–3</td>
</tr>
<tr>
<td>91–129</td>
<td>3 ½–5</td>
</tr>
<tr>
<td>155</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 352.30 Support of Rigid Polyvinyl Chloride Conduit (PVC)
I. TUBERIAS METALICAS EMT

Canalizaciones

Art. 358 Tubería eléctrica metálica
Tipo EMT (Electrical Metallic Tubing)

Tubería sin rosca, de pared delgada y sección transversal circular diseñada para la protección física y enrutamiento de conductores y cables y para su uso como conductor de puesta a tierra cuando se instala usando los accesorios adecuados.

Está hecha de acero (ferroso) con revestimientos de protección o de aluminio (no ferroso).

Canalizaciones

Art. 358 Tubería eléctrica metálica
Tipo EMT (Electrical Metallic Tubing)

Usos permitidos:
A. Expuestos y ocultos
B. Protección contra la corrosión: en contacto directo con la tierra o en áreas expuestas a influencias corrosivas si están protegidos.
C. En lugares mojados con soportes, pernos, abrazaderas, etc. resistentes a la corrosión.

Tamaños: ½” a 4”
Artículo 352 - Conduit rígido de PVC (PVC), Tipo A

<table>
<thead>
<tr>
<th>Designador métrico</th>
<th>Tamaño comercial</th>
<th>Diámetro interno</th>
<th>Área total 100%</th>
<th>60%</th>
<th>1 alambre 53%</th>
<th>2 alambres 31%</th>
<th>Más de 2 alambres 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>pulgada</td>
<td>mm²</td>
<td>pulgada²</td>
<td>mm²</td>
<td>pulgada²</td>
</tr>
<tr>
<td>16</td>
<td>½</td>
<td>17.8</td>
<td>0.700</td>
<td>249</td>
<td>0.385</td>
<td>149</td>
<td>0.231</td>
</tr>
<tr>
<td>21</td>
<td>¾</td>
<td>23.1</td>
<td>0.910</td>
<td>419</td>
<td>0.650</td>
<td>251</td>
<td>0.390</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>29.8</td>
<td>1.175</td>
<td>697</td>
<td>1.084</td>
<td>418</td>
<td>0.651</td>
</tr>
<tr>
<td>35</td>
<td>1¼</td>
<td>38.1</td>
<td>1.500</td>
<td>1140</td>
<td>1.767</td>
<td>684</td>
<td>1.060</td>
</tr>
<tr>
<td>41</td>
<td>1½</td>
<td>43.7</td>
<td>1.720</td>
<td>1500</td>
<td>2.324</td>
<td>900</td>
<td>1.394</td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>54.7</td>
<td>2.155</td>
<td>2350</td>
<td>3.647</td>
<td>1410</td>
<td>2.188</td>
</tr>
<tr>
<td>63</td>
<td>2½</td>
<td>66.9</td>
<td>2.635</td>
<td>3515</td>
<td>5.453</td>
<td>2109</td>
<td>3.272</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>82.0</td>
<td>3.230</td>
<td>5281</td>
<td>8.194</td>
<td>3169</td>
<td>4.916</td>
</tr>
<tr>
<td>91</td>
<td>3½</td>
<td>93.7</td>
<td>3.690</td>
<td>6896</td>
<td>10.694</td>
<td>4137</td>
<td>6.416</td>
</tr>
<tr>
<td>129</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5875</td>
<td>9.118</td>
</tr>
<tr>
<td>155</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4. Dimensiones y área porcentual de conduit y tubería

(Áreas de conduit o tubería para las combinaciones de alambres permitidas en la Tabla 1, Capítulo 9)

Artículo 358 – Tubería eléctrica metálica (EMT)

<table>
<thead>
<tr>
<th>Designador métrico</th>
<th>Tamaño comercial</th>
<th>Diámetro interno</th>
<th>Área total 100%</th>
<th>60%</th>
<th>1 alambre 53%</th>
<th>2 alambres 31%</th>
<th>Más de 2 alambres 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>pulgada</td>
<td>mm²</td>
<td>pulgada²</td>
<td>mm²</td>
<td>pulgada²</td>
</tr>
<tr>
<td>16</td>
<td>½</td>
<td>15.8</td>
<td>0.622</td>
<td>196</td>
<td>0.304</td>
<td>118</td>
<td>0.182</td>
</tr>
<tr>
<td>21</td>
<td>¾</td>
<td>20.9</td>
<td>0.824</td>
<td>343</td>
<td>0.533</td>
<td>206</td>
<td>0.320</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>26.6</td>
<td>1.049</td>
<td>550</td>
<td>0.864</td>
<td>333</td>
<td>0.519</td>
</tr>
<tr>
<td>35</td>
<td>1½</td>
<td>35.1</td>
<td>1.380</td>
<td>968</td>
<td>1.496</td>
<td>581</td>
<td>0.897</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>40.9</td>
<td>1.610</td>
<td>1314</td>
<td>2.056</td>
<td>788</td>
<td>1.221</td>
</tr>
<tr>
<td>53</td>
<td>2½</td>
<td>52.5</td>
<td>2.067</td>
<td>2165</td>
<td>3.356</td>
<td>1299</td>
<td>2.013</td>
</tr>
<tr>
<td>63</td>
<td>3</td>
<td>69.4</td>
<td>2.731</td>
<td>3783</td>
<td>5.858</td>
<td>2270</td>
<td>3.515</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>85.2</td>
<td>3.356</td>
<td>5701</td>
<td>8.846</td>
<td>3421</td>
<td>5.307</td>
</tr>
<tr>
<td>91</td>
<td>3½</td>
<td>97.4</td>
<td>3.834</td>
<td>7451</td>
<td>11.545</td>
<td>4471</td>
<td>6.927</td>
</tr>
<tr>
<td>103</td>
<td>4</td>
<td>110.1</td>
<td>4.334</td>
<td>9521</td>
<td>14.753</td>
<td>5712</td>
<td>8.852</td>
</tr>
</tbody>
</table>

24
Canalizaciones

Art. 376 Ducto metálicos
(Metal wireway)

Usos permitidos:
1) En instalaciones expuestas

2) En espacios ocultos. Cuando el tramo atraviesa una pared, este debe ser continuo y se debe mantener el acceso a los conductores a ambos lados de la pared.

3) En lugares clasificados como peligrosos para alambrado intrínsecamente seguro.

4) En lugares mojados, cuando ducto esté listado para este propósito.

Canalizaciones

Art. 376 Ducto metálicos
(Metal wireway)

Usos no permitidos:
1) Cuando estén sometidas a daño físicos graves.

2) Cuando estén sometidas a ambientes corrosivos fuertes.
Canalizaciones

Art. 376 Ducto metálicos
(Metal wireway)

Número de conductores:
A. La suma de las áreas de la sección transversal de todos los conductores contenidos, no debe exceder el 20% del área de la sección transversal interior de la canalización.

Tamaños comerciales:
2.5” x 2.5” (64mm x 64mm)
4” x 4” (102mm x 102mm)
6” x 6” (152mm x 152mm)
8” x 8” (203mm x 203mm)
10” x 10” (254mm x 254mm)
12” x 12” (305mm x 305mm)

J. PROTECCIONES ELECTRICAS EN BT
Definiciones Art. 100

- **Interruptor Automático:** Dispositivo diseñado para que abra y cierre un circuito de manera no automática, y para que abra el circuito automáticamente cuando se produzca una sobrecorriente predeterminada sin daños para sí mismo cuando esté aplicado correctamente dentro de su alcance nominal.
 - Ajustable
 - Dispara instantáneo
 - No ajustable
 - Tiempo inverso (retardo disminuye cuando aumenta la magnitud de corriente)

- **Protección contra sobrecorriente:**
 Art. 210.20:
 Los conductores de circuitos ramales y equipos deben estar protegidos mediante dispositivos de protección contra sobrecorriente que cumpla:

 Cargas continuas y no continuas: Cuando un circuito ramal alimenta cargas continuas o cualquier combinación de cargas continuas y no

Cargas Permisibles: Art. 210.23, 210.24:
En ningún caso la carga podrá exceder la corriente nominal del circuito ramal.

<table>
<thead>
<tr>
<th>Table 210.24 Summary of Branch-Circuit Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Rating</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Conductores (min. size):</td>
</tr>
<tr>
<td>Circuit wires</td>
</tr>
<tr>
<td>Taps</td>
</tr>
<tr>
<td>Fixture wires and cords — see 240.5 Overcurrent Protection</td>
</tr>
<tr>
<td>15 A</td>
</tr>
</tbody>
</table>
6.11.4 Normativa enlace

Las instalaciones ENLACE tienen como objeto definir y regular las características técnicas a que deben ajustarse las nuevas Instalaciones que se conectaran a la red de distribución de DN-DS (DISNORTE – DISSUR).
Son propiedad de la distribuidora las instalaciones aguas arriba del punto de medida en adelante "aguas abajo" son propiedad del cliente.
La ubicación del punto de medida, según lo estipulado en la Normativa de Servicio Eléctrico Capítulo 5.3 “Localización de los equipos de medida “NSE 5.3.1.

Normativa del servicio eléctrico
6.11.5 Topología de la medida

- Existen 3 tipos de medidas, entre los que se elegirá de acuerdo a la potencia contratada por el cliente:
- Medida Directa: Corresponde a la realizada cuando los parámetros eléctricos son suficientemente bajos para conectar el medidor directamente a la red. Se empleará en aquellas peticion es de menos de 25 kW. Se exceptúa la atención de potencias de hasta 53kW desde redes de 480V.
- Medida Indirecta BT: Corresponde a la realizada cuando únicamente es necesario adecuar la intensidad a niveles aceptables para el medidor,
empleando para ello transformadores de corriente. Se empleará en aquellas peticiones entre 25 y 120kW.

- Medida Indirecta MT: Corresponde a la realizada cuando es necesario adecuar intensidad y voltaje a niveles aceptables para el medidor, empleando para ello transformadores de corriente y de potencial. Se empleará en aquellas peticiones mayores de 120kW

A. Acometidas

CIEN. CAP 1, ART 110 DEFINICIONES. Acometida (aérea o subterránea) Las partes de los conductores de una línea de servicio comprendida desde las líneas o equipo inmediato del sistema general de abastecimiento hasta los medios principales de desconexión y protección contra sobre corriente de la instalación servida.

B. criterios constructivos.

Toda acometida debe cumplir con:

El cruce de conductores sobre áreas peatonales, sin tráfico de vehículos de carga es de 4 m en vías públicas (cruce de calle) con tráfico de vehículo de carga, estacionamiento y otras áreas transitadas será de 5.5 m respectivamente (Ver Esquemas Generales Cruces de calles y acometidas).

Los conductores de la acometida no deberán tener empalmes ni juntas. En el caso de que se produzcan cortes y reconexiones, se permitirá un máximo de dos empalmes en el extremo de la acometida.

Los conductores deben entrar directamente al armario o caja que conforman el punto de medida y ser conectados a los bornes de entrada.

No se permitirá que la acometida quede oculta, sobre falsos techos ni empotrada, antes de su llegada al punto de medida.
C. Detalles de instalación de la medida

MEDIDOR UBICADO EN POSTE PARA ACOMETIDAS

- Sujección derivación individual en mufa de cliente (Mecánicamente destensada)
- Sujección de acometida en poste de acometidas con pinza de anclaje fleje y gancho "J"
- Caja de distribución de acometidas

LÍMITE DE PROPIEDAD

Instalación de poste para acometidas en el caso que el inmueble no preste las condiciones en el límite de propiedad

C. Bajante concéntrico

- Nota: En el caso que el cliente no preste las condiciones en el límite de propiedad

D. Distancia Máxima de la acometida

- 3,44 mts Cruce de Jardín
- 4 mts Cruce de Acera
- 5,5 mts Cruce de Calle
- (1,9-2,5) mts

E. Destensada

- Caja de distribución de acometidas
- Derivación individual trenzada
- Bajante concéntrico

F. Medida

- 30 mts
- 3,3 mts
- (1,9-2,5) mts

G. Límite de

- Medida de propiedades
D. Medida indirecta BT y directa MT

6.11.6 Normas eléctricas para redes de distribución en BT y BT.

NORMA ENEL.
- norma de construcción de redes de mt 7,6/13,2 kv en poste de concreto y en poste de madera.
- norma de construcción de redes de mt 14,4/24,9 kv en poste de concreto y en poste de madera.

PROYECTO TIPO.
✓ armados monofásicos y trifásicos 13,2 kv.
✓ armados monofásicos y trifásicos 24,9 kv.
✓ armados en baja tensión.
✓ centros de transformación.

6.11.7 Clasificación de las redes de distribución

✓ REDES URBANAS.
Las redes de media tensión Urbanas básicamente como su nombre lo indican se tienen en el interior de las ciudades estas se explotan generalmente de forma anillo, radial, y mixta.

✓ REDES RURALES.
Las redes de media tensión Urbanas generalmente se componen de líneas aéreas desnudas o forradas y su forma de explotación es siempre Radial en Racimos.

✓ Consideraciones generales en la selección de los armados
 • Por su configuración Monofásicos.
 • Por su configuración Bifásicos.
 • Por su configuración Trifásicos.

6.11.8 Selección de los montajes en base al ángulo del conductor

ALINEAMIENTOS. Soportan los conductores de manera lineal y son empleados para soporte en alineaciones rectas.

ANGULOS. Cambio de dirección en la línea empleada para sustentar los conductores y cables en los vértices o ángulos, que forma la línea en su trazado además en las fuerzas propias de flexión.
AMARES O ANCLAJES. Intercalados entre las alineaciones para soportar tensiones lineales, laterales, y verticales de los conductores, el conductor se ancla sobre el apoyo mediante cadenas de aisladores en horizontal conectando los conductores en ambos lados con un punto flojo de unión.

ENTRONQUE O DERIVACIONES. Para derivar nuevos ramales de la red con elementos de protección y maniobra (interruptores y fusibles).

FINES DE LÍNEA. Soportan todas las tensiones de las líneas son puntos de anclaje con mayor resistencias.

6.11.9 Montajes monofásicos trifásicos y de baja tensión

- MONTAJES MONOFASICOS ALINEAMIENTO Y ANGULO 0° a 5°
- MONTAJES MONOFASICOS ALINEAMIENTO Y ANGULO 5° a 30°
- MONTAJES MONOFASICOS LINEA CON ANGULO 30° a 60°
- MONTAJES MONOFASICOS LINEAS CON ANGULO 60° a 90°.
- MONTAJES MONOFASICOS FIN DE LINEAS.
- MONTAJES MONOFASICOS DOBLE REMATE O DOBLE TERMIAL.
- MONTAJE MONOFASICA CON DERIVACIÓN MONOFASICA.

A. MONTAJES MONOFASICOS

<table>
<thead>
<tr>
<th>Montaje Monofásico en Alineamiento y Ángulo. < 5° (MT-101/MT-601)</th>
<th>Montaje Monofásico. Ángulo. 5 a 30°(MT-102/MT-602)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Montaje Monofásico con Anclaje Ángulo. 30 a 60° (MT-103/MT-603)

Montaje Monofásico. Ángulo. 61 a 90° (MT-104/MT-604)
B. MONTAJES TRIFASICOS

- MONTAJES TRIFASICOS ALINEAMIENTO Y ANGULO 0° a 5°
- MONTAJES TRIFASICOS ALINEAMIENTO Y ANGULO 5° a 30°
- MONTAJES TRIFASICOS LINEA CON ANGULO 30° a 60°
- MONTAJES TRIFASICOS LINEAS CON ANGULO 60° a 90°.
- MONTAJES TRIFASICOS FIN DE LINEAS.
- MONTAJES TRIFASICOS DOBLE REMATE O DOBLE TERMIAL.
- MONTAJE TRIFASICA CON DERIVACIÓN MONOFASICA.

Montaje en Alineamiento, Ángulo.
< 5° Disposición horizontal (MT-301/MT-801)
Montaje en Ángulo. 5 a 30° disposición
Horizontal (MT-302/MT-802)
Montaje Fin de línea. Disposición Horizontal (MT-307/MT-807)

Montaje Ángulo. 61 a 90° disposición Horizontal (MT-305/MT-805)
C. MONTAJES DE BAJA TENSION

- MONTAJES EN ALINEAMIENTO Y ANGULO DE 0° a 5°
- MONTAJE EN ANGULO HASTA 60°
- MONTAJE CON ANCLAJE Y ANGULO 61° a 90°
- MONTAJE EN FIN DE LINEAS.
- MONTAJE CRUCE DE LINEAS CON INTERCONEXION.
- MONTAJE EN ALINEACION CON FIN DE DOS CIRCUITOS.

Montaje en Alineación. Ángulo hasta 5º (BT-101)

Montaje en Ángulo hasta 6º a 60º (BT-102)
Montaje con anclaje y Ángulo
Hasta 61º a 90º (BT-103)

Montaje en Fin de línea (BT-104)

Montaje Cruce de Línea
Con Interconexión (BT-105)

Montaje en Alineación con
Fin de dos Circuitos (BT-106)
6.11.10 Norma proyecto tipo estructuras básicas

Armado simple Monofásico en Alineamiento. Ángulo. <5°

Armado simples Monofásico. Ángulo. 5 a 30°.

Armado simple con anclaje Ángulo. 30 a 60°.

Armado simples Monofásico. Ángulo. 60 a 90°.
Armado simples Monofásica.
Fin de línea.

Armado simple en Alineamiento, Ángulo. < 5° disposición horizontal

Armado simples, Ángulo. 5 a 30° disposición horizontal.
Armado simple con anclaje Ángulo. 30 a 60° disposición horizontal.

Armado simples. Fin de línea. disposición horizontal

Armado simples. Ángulo. 60 a 90° disposición horizontal.
6.11.11 Conversión de montajes

<table>
<thead>
<tr>
<th>Descripción de la Estructura</th>
<th>REA (Postes de Fino) 7.6/13.2 KV</th>
<th>REA (Postes de Fino) 14.4/24.9 KV</th>
<th>Norma ENEL 7.6/13.2 KV</th>
<th>Norma ENEL 14.4/24.9 KV</th>
<th>Proyecto Tipo (Unión Fénix) 7.6/13.2 KV</th>
<th>Proyecto Tipo (Unión Fénix) 14.4/24.9 KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estructura primaria monoafasica con alineamiento y angulo de 0-5 gds</td>
<td>A-1</td>
<td>VA-1</td>
<td>MT-10/VC</td>
<td>MT-60/VC</td>
<td>Arm. simple circ. monof. alineam y ang. de 0-5 gds 19.2 KV</td>
<td>Arm. simple circ. monof. alineam y ang. de 0-5 gds 24.9 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica con ang de 5-30 gds</td>
<td>A-2</td>
<td>VA-2</td>
<td>MT-102/AC</td>
<td>MT-602/AC</td>
<td>Arm. simple circ. monof. ang de 5-30 gds 19.2 KV</td>
<td>Arm. simple circ. monof. ang de 5-30 gds 24.9 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica con ang de 30-60 gds</td>
<td>A-3</td>
<td>VA-3</td>
<td>MT-103/AC</td>
<td>MT-603/AC</td>
<td>Arm. simple circ. monof. ang de 30-60 gds 13.2 KV</td>
<td>Arm. simple circ. monof. ang de 30-60 gds 13.2 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica y ang de 60-90 gds</td>
<td>A-4</td>
<td>VA-4</td>
<td>MT-104/AC</td>
<td>MT-604/AC</td>
<td>Arm. simple circ. monof. ang de 60-90 gds 12.2 KV</td>
<td>Arm. simple circ. monof. ang de 60-90 gds 24.9 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica fin de linea</td>
<td>A-5</td>
<td>VA-5</td>
<td>MT-105/AC</td>
<td>MT-605/AC</td>
<td>Arm. simple circ. monof. fin de linea 13.2 KV</td>
<td>Arm. simple circ. monof. fin de linea 24.9 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica y ang de 20-60 gds</td>
<td>A-6</td>
<td>VA-6</td>
<td>MT-106/AC</td>
<td>MT-606/AC</td>
<td>Arm. simple circ. monof. ang de 20-60 gds 13.2 KV</td>
<td>Arm. simple circ. monof. ang de 20-60 gds 24.9 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica en derivación</td>
<td>A6-1</td>
<td>VA6-1</td>
<td>MT-107/AC</td>
<td>MT-607/AC</td>
<td>Arm. simple circ. monof. derivación 12.2 KV</td>
<td>Arm. simple circ. monof. derivación 24.9 KV</td>
</tr>
<tr>
<td>Estructura primaria monoafasica en derivación con cortacircuito fusible</td>
<td>A5-2</td>
<td>VA5-2</td>
<td>MT-108/AC</td>
<td>MT-608/AC</td>
<td>Circ. monof. derivación con cortacircuito fusible 12.2 KV</td>
<td>Arm. simple circ. monof. fin de línea 24.9 KV</td>
</tr>
</tbody>
</table>
6.11.12 Ejecución de proyectos

- Al entregar un proyecto a un supervisor, lo primero que deberá de disponer es de una documentación física necesaria para la ejecución del proyecto como son Planos, memoria de cálculos eléctricos, presupuesto, permisos (permisos de construcción de la alcaldía, impuesto de renta, paso de servidumbre, tala y poda, ambientales, de la diferentes autoridades municipales o departamentales, etc.). Si se detectan problemas en la documentación se deberá de informar al dueño del proyecto, para aclarar el problema.

- Debe analizar el diseño a detalle para entender y familiarizarse con el proyecto. Cualquier duda o error en el diseño que se presente debe resolverse antes de la ejecución del proyecto.

- No debe comenzarse ningún proyecto si no se disponen de toda la información necesaria. La decisión de comenzar los trabajos, cuando éstos se encuentren incompletos, sólo lo podrá en situaciones de conflicto.

- Una vez que inicio un proyecto es muy recomendable establecer conjuntamente con el Ingeniero civil de la construcción y el maestro de obra, el plan de trabajo, fijando el cronograma de actividades, y buscando siempre como minimizar el tiempo para los trabajos en ejecución de la obra.

 Un buen plan de trabajo deberá contar con un cronograma de ejecución de trabajos, desglosado en días y semanas y asta meses por lo tanto se deberán de definir y cuantificar los recursos disponibles para el proyecto como son: Mano de obra, Materiales y los equipos de trabajo.

- Si la categoría de la obra lo requiere, es muy recomendable abrir un “libro de bitácora”, donde se irán anotando, de forma ordenada, todas las acciones y actividades significativas que se vayan produciendo durante la ejecución de los trabajos esto deberá ser registrado y firmado por los encargados del proyecto.
6.11.13 El replanteo

El replanteo es la acción de realizar el planteamiento del proyecto juntamente entre el contratista y la empresa encargada de supervisor la obra DN-DS y se realizará en estricto cumplimiento con el diseño original y según alcances previstos.

Cualquier variación que genere un desvío respecto al diseño presentado y el presupuesto del diseño deberá ser justificada y se procederá a solicitar la autorización del Responsable de la Obras, si el desvío supone un incremento superior al 10%, se analizará la conveniencia de devolver el proyecto a ingeniería para que se realicen los cambios pertinentes

- **Comprobación de las condiciones durante el replanteo.**
 Mediante una inspección detallada del recorrido de la línea, acompañado del encargado de la obra DN-DS, se deberá de identificar todos aquellos puntos que sean susceptibles de generar un peligro potencial durante la ejecución de los trabajos.

- **Comprobación de los permisos disponibles.**
 Analizar, documento por documento, la validez y aplicación real en campo de cada uno de ellos, para garantizar la existencia de todos los permisos necesarios en la ejecución (paso, poda, tala, municipales, ambientales, etc.).

- **Comprobación de las distancias de seguridad.**
 Ubicar elementos que puedan afectar la dirección de la línea (carteles, árboles, viviendas, otras líneas, etc.), y comprobar el cumplimiento de las distancias de seguridad normalizadas.

- **Comprobación en el sitio de las afectaciones de otros servicios ** **ejemplo (agua, telecomunicaciones, etc.).**
 Ubicar, si las hubiera, las canalizaciones de terceros, para evitarles cualquier daño.
Comprobación de la necesidad de cimentaciones.
Analizar los tipos de terreno y los tipos de estructuras a instalar, para definir la necesidad de las cimentaciones según el proyecto.

Planificación de las distintas etapas de los trabajos.
Definición de zonas de acopio
Delimitación de obra
Ubicación de señales.
Facilidad de accesos para izados de los apoyos.
Planificación de los método de trabajo.

Fotografías del estado previo
Elaborar un documento fotográfico previo al inicio de los trabajos

6.11.14 Estaqueo

3. ESTAQUEO

En el sitio de construcción de obra, la ubicación de los postes y anclajes deberá ser señalado a través de estacas, las cuales serán enumeradas en orden formal. Las estacas deberán pintarse de colores llamativo amarillo o rojo.

La ubicación de señalamiento de postes, la estaca indicará la posición del centro de este, haciendo referencia del punto antes de remover e iniciar la excavación.

Para el señalamiento de ancla, deberá efectuarse colocando la posición de la estaca en el lugar donde debe aparece, a nivel del suelo la varilla de anclaje, por tanto la perforación del hoyo para la colocación del bloque ha de hacerse más alejado del poste que la estaca de anclaje, a una distancia que varíe dependiendo de la longitud de la varilla y siguiendo una dirección radial con respecto al sitio del poste.
VII. Hipótesis y Variable

Hipótesis
Es útil e importante realizar el diseño de red en media tensión de una urbanizadora que cumplan con las normas eléctricas tanto de la distribuidora DIS-NORTE, DIS-SUR como de la normativa ENEL para que evitar incidentes por malas practicas.

Variables
1. Pertinencia de la Información.
2. Funcionalidad de la Información.
3. Adecuación de la Información.
4. Parámetros Técnicos de Interés (Voltaje, Corriente, Normas de Construcción eléctrica.).
VIII. Metodología de Trabajo

Actualmente en Nicaragua el diseño y las evaluaciones de proyectos de urbanizadoras se rigen con la metodología desarrollada por el SNIP (Sistema nacional de inversiones públicas). Al ser esta metodología genérica para todos los posibles proyectos de electrificación urbana.

Asimismo, si bien esta metodología permite incorporar los beneficios sociales asociados a la llegada de electrificación continua, en la práctica esta evaluación se torna compleja.

Por tal razón se hace necesaria la visita al sitio o localidad para una evaluación de la demanda y análisis de los recursos energéticos, punto de conexión más cercano de la red de media tensión.

En esta metodología se hace un análisis de los pasos a realizar en el diseño de electrificación, así como los criterios que se tienen que considerar para poder ser aplicados, contemplando las normas de construcción eléctrica en media y baja tensión.

Breve descripción de cómo realizar el diseño eléctrico en una zona urbana-rural:

1. El diseño eléctrico de una red eléctrica comienza cuando el ingeniero eléctrico visita el lugar.

2. Teniendo en cuenta la ubicación de la comunidad se busca el punto más cercano de conexión, que para este caso será el municipio de san juan del sur.

3. Desde ahí se comienza a recorrer la trayectoria por donde se construirá la línea. Esto se realiza levantando con un GPS la trayectoria y anotando las observaciones geográficas del camino.
4. Se van anotando las casas ubicadas sobre la trayectoria de la línea construir.

5. Teniendo esta información digital, se comienza a trazar la red con los parámetros eléctricos obtenidos en los manuales de construcción eléctrica.

6. Se dibujan en el plano los postes de concreto de 35 pies ó de 40 pies según sea necesario. Se utilizarán retenidas en los puntos donde se forme ángulos mayores a los cinco (5) grados. Se dibuja la línea primaria (primario y neutro) o secundaria cercanas a las residencias.

7. Luego de tener la línea dibujada se comienza la descripción del estaqueo, que no es más que decir lo que se instalará en cada punto o poste.

8. Adicionalmente se realizan los cálculos de caída de tensión, transformador y retenidas.

9. Al final se realizan los presupuestos de acometidas e instalaciones eléctricas así como el presupuesto global.
IX. Diseño y evaluación financiera de la urbanización

Cálculos para el diseño de la urbanización Lomas de Miramar

En este capítulo se presentan todos los cálculos y realizados para realizar el diseño de las redes de media y baja tensión en la urbanización lomas de Miramar.

Los cálculos se realizan con la finalidad de demostrar y asegurar que el diseño cumple con las normas establecidas en la norma ENEL y Dis-norte, Dis-sur y en el Proyecto Tipo de Redes Aéreas del SIEPAC.

1 Delimitación de la zona

El presente diseño se hace para la normalización de redes en la urbanización lomas de Miramar del municipio de San juan del sur en el Departamento del Rivas. Teniendo en cuenta el lugar de desarrollo del proyecto y los gráficos establecidos en el Proyecto Tipo de ENEL se pudo establecer la zona de viento.

El proyecto consiste en conectarse en el punto más cercano de la Red Nacional con una Línea de Media Tensión en un voltaje primario de 7.6/13.2 KV (Kilo-Voltios) y Secundario de 120/240 V (Voltios) a la urbanización lomas de Miramar en san juan del sur del Departamento de Rivas.

Electrificando toda la urbanización con la utilización de postes de concreto (de 35 y 40 pies de altura) para el tendido de los conductores primarios y secundarios, utilización de retenidas primarias y secundarias para el anclaje de los postes, instalación de transformadores Monofásicos de 25KVA y 37.5 KVA, además se incorporara a este proyecto las instalaciones de todas las acometidas e instalaciones internas básicas de las viviendas.
2 Diseño del plano preliminar

Para realizar los cálculos eléctricos es necesario conocer las distancias y potencias proyectadas a transportar, entre otros parámetros, por lo que se hace necesaria la elaboración de un plano preliminar. Para la elaboración de este plano debemos realizar el levantamiento físico y/o cartográfico del área de diseño.

3 Levantamiento del diseño

El primer paso para elaboración del plano es realizar el levantamiento y/o recolección de información respecto al área de diseño, que nos debe entregar como resultado los siguientes datos:

- Descripción de la finalidad con la que se está usando la vivienda.
- Nivel de tensión y número de fases de las acometidas de los usuarios.
- Ubicación y clasificación de las redes existentes según nivel de tensión. Ubicación y distancias entre postes.
- Cantidad, ubicación y códigos de las placas de identificación de transformadores, donde se conoce como CT la placa de color blanco y MT la placa de color amarillo.
- Tipo de estructura por apoyo. Alineación AL, ángulo AG, anclaje AC, etc.
- Identificación de los apoyos que tienen luminarias de alumbrado público.
- Fotos de cada poste con sus respectivos armados (Norma ENEL o Dis-Norte) y de cualquier otro punto que se considere importante.
- Toda la información adicional que se considere relevante para el diseño. Ejemplo: arroyos, canales de aguas lluvias, etc.

Con toda esta información se procedió a la elaboración del plano existente, siguiendo las normativas establecidas por ENEL y Dis-Norte, Dis-sur.
4 Elaboración de plano

Como segundo paso se procedió a elaborar el plano del proyecto de electrificación y sus nuevas redes, donde se debe establecer la ubicación de los apoyos y las distancias entre estos,

En este plano ubicaron los transformadores, postes primarios y postes secundarios, recorrido de las redes de media y baja tensión, salida de acometidas desde cada poste, se identificaron los usuarios dependiendo del transformador al que se encuentran asociados.

El siguiente diseño eléctrico se ha realizado con las normas vigentes las cuales corresponden a: **NORMAS DE CONSTRUCCIÓN PARA POSTES REDONDO DE CONCRETO 14.4 / 24.9 KV ENEL y Dis-norte, Dis-sur.**

La simbología a utilizarse será la siguiente:

![Simbolología](image-url)
ELABORACION DEL PLANO DEL PROYECTO
X. Cálculos eléctricos

Los cálculos eléctricos para la red de media tensión nos van a permitir seleccionar los conductores de media y baja tensión que se usarán en el diseño. Para la selección del conductor se deben realizar dos cálculos fundamentales: Corriente nominal y regulación de tensión.

En el diseño de las redes de distribución de la urbanización lomas de Miramar, para realizar los cálculos realizados de Retenidas, Cálculo del Centro de Transformación, estaqueo, cálculo de caída de tensión, presupuesto, evaluación financiera,...etc. se utilizó la herramienta Excel para facilitar los cálculos. Esta herramienta realiza los cálculos eléctricos de acuerdo a las normativas establecidas para la construcción de redes eléctricas de MT y BT por Dis-norte y ENEL.
CALCULO DE RETENIDA
HOJA DE ESPECIFICACIONES TECNICAS
PROYECTO COMUNIDAD LOMAS DE MIRAMAR MUNICIPIO DE SAN JUAN DEL SUR RIVAS DEPARTAMENTO DE RIVAS

Condiciones Iniciales para estructuras en remate y en ángulos

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>Postes</th>
<th>40'</th>
<th>35'</th>
<th>30'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numero de fases</td>
<td>1</td>
<td>Monofasico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibre del conductor (fase)</td>
<td>1/0</td>
<td>ACSR</td>
<td>X (m)</td>
<td>10.2</td>
</tr>
<tr>
<td>Calibre del conductor (neutro)</td>
<td>1/0</td>
<td>ACSR</td>
<td>Y (m)</td>
<td>7.0</td>
</tr>
<tr>
<td>Calibre del secundario (Barra abierta)</td>
<td>#2</td>
<td>ACSR</td>
<td>Fact/Mult (remates)</td>
<td></td>
</tr>
<tr>
<td>Calibre del secundario</td>
<td>1/0</td>
<td>Tríplex</td>
<td>Fact/Mult (ángulos)</td>
<td>DE ACUERDO A TABLAS.</td>
</tr>
<tr>
<td>Temperatura ambiente (promedio)</td>
<td>30</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión cable retenida (Siemens Martin)</td>
<td>3160</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de ruptura Raven</td>
<td>1987</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de ruptura QUAIL</td>
<td>2004</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de ruptura PIGEON</td>
<td>3000</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de ruptura MERLIN</td>
<td>3937</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión de ruptura Sparrow</td>
<td>1293</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima 1/0 RAVEN</td>
<td>464</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima 1/0 RAVEN</td>
<td>464</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima #2 SPARROW</td>
<td>330</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima 3/0 ACSR (Tríplex)</td>
<td>830</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima 1/0 ACSR (Tríplex)</td>
<td>559</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión máxima #2 ACSR (Tríplex)</td>
<td>362</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORMULAS

Tensión máxima en la línea:

\[
T_{\text{línea}} = (N_{\text{fases}} \times T_{\text{cable primario}} + T_{\text{neutro secundario}})
\]

Retención necesaria:

\[
\text{retens (necesaria)} = \text{Fac (multiplicación)} \times T_{\text{línea}}
\]

Número de retenidas:

\[
\#_{\text{retenidas}} = \frac{\text{retens (necesaria)}}{T_{\text{cable Siemens Martin}}}
\]

Calculo de retenidas en el diseño de la red de media tensión de la urbanización Lomas de Miramar.
<table>
<thead>
<tr>
<th>PUNTO</th>
<th>POST</th>
<th>Est. Primaria</th>
<th>Est. Secund.</th>
<th>Angul Remal</th>
<th>Fc d Mult.</th>
<th>Tens(línea) (kg)</th>
<th>Retens(nesesaria) (kg)</th>
<th># Retenidas</th>
<th>Retenidas Requeridas</th>
<th>ESTRUCTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>35°</td>
<td>MT-604/C</td>
<td>12°</td>
<td>0.31</td>
<td>928</td>
<td>288</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>35°</td>
<td>MT-601/C</td>
<td>39°</td>
<td>1.03</td>
<td>928</td>
<td>956</td>
<td>0.30</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>35°</td>
<td>MT-603/C</td>
<td>27°</td>
<td>0.73</td>
<td>928</td>
<td>677</td>
<td>0.21</td>
<td>1.00</td>
<td>HA-100 b/c</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>35°</td>
<td>MT-601/C</td>
<td>18°</td>
<td>0.47</td>
<td>928</td>
<td>436</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>35°</td>
<td>MT-601/C</td>
<td>0°</td>
<td>1.50</td>
<td>928</td>
<td>1392</td>
<td>0.44</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>35°</td>
<td>MT-603/C</td>
<td>90°</td>
<td>1.50</td>
<td>928</td>
<td>1392</td>
<td>0.44</td>
<td>1.00</td>
<td>HA-100 b/c</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>35°</td>
<td>MT-601/C</td>
<td>36°</td>
<td>0.30</td>
<td>928</td>
<td>278</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>35°</td>
<td>MT-601/C</td>
<td>42°</td>
<td>1.08</td>
<td>928</td>
<td>1002</td>
<td>0.32</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>35°</td>
<td>MT-602/C</td>
<td>22°</td>
<td>0.57</td>
<td>928</td>
<td>529</td>
<td>0.17</td>
<td>1.00</td>
<td>HA-100 b/c</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>35°</td>
<td>MT-601/C</td>
<td>22°</td>
<td>0.57</td>
<td>928</td>
<td>529</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>35°</td>
<td>MT-601/C</td>
<td>21°</td>
<td>0.57</td>
<td>928</td>
<td>529</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>35°</td>
<td>MT-601/C</td>
<td>80°</td>
<td>1.50</td>
<td>928</td>
<td>1392</td>
<td>0.44</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>35°</td>
<td>MT-604/C</td>
<td>34°</td>
<td>0.88</td>
<td>928</td>
<td>817</td>
<td>0.26</td>
<td>1.00</td>
<td>HA-100 b/c</td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>35°</td>
<td>MT-601/C</td>
<td>25°</td>
<td>0.67</td>
<td>928</td>
<td>622</td>
<td>0.20</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>35°</td>
<td>MT-601/C</td>
<td>41°</td>
<td>1.08</td>
<td>928</td>
<td>1002</td>
<td>0.32</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>35°</td>
<td>MT-603/C</td>
<td>39°</td>
<td>1.03</td>
<td>928</td>
<td>956</td>
<td>0.30</td>
<td>1.00</td>
<td>HA-100 b/c</td>
<td></td>
</tr>
</tbody>
</table>
PRESUPUESTO

PROYECTO COMUNIDAD LOMAS DE MIRAMAR MUNICIPIO DE SAN JUAN DEL SUR RIVAS DEPARTAMENTO DE RIVAS

Cálculo de Caída de Tensión en Redes de Baja Tensión (120 V, 208 V, 240 V, 120/240 V)

AREA DE SELECCIÓN DE DATOS GLOBALES E INFORMACION DE PARAMETROS BASICOS PARA EL CÁLCULO

<table>
<thead>
<tr>
<th>Tipo de Red BT:</th>
<th>Rural</th>
<th>Caida Tensión Permisible (Rural)</th>
<th>Niveles de electrificación:</th>
<th>Coeficientes de Simultaneidad:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivel de Electr.:</td>
<td>Bajo</td>
<td>C.de T. máx. total: 0.05</td>
<td>Bajo</td>
<td>No. Sumin.</td>
</tr>
<tr>
<td>Factor de Potencia:</td>
<td>0.95</td>
<td>C.de T. máx. en línea: 4.2 %</td>
<td>Rural: 0.90 1.60 2.40</td>
<td>Coeficiente</td>
</tr>
<tr>
<td>Pot. Singular(Kw):</td>
<td>26</td>
<td>C.de T. máx. en acom.: 0.8 %</td>
<td>Urbana: 3.60 4.80 6.00</td>
<td></td>
</tr>
<tr>
<td>Potencia (Kw):</td>
<td>0.45</td>
<td>Caida Tensión Permisible (Urbana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C.de T. máx. total: 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demanda Máxima calculada</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AREA DE RESULTADOS

<table>
<thead>
<tr>
<th>Pto. Inicial</th>
<th>Pto. final</th>
<th>Línea o acometida</th>
<th>Fases</th>
<th>Tensión (V)</th>
<th>Clientes Existentes</th>
<th>Conductor tramo</th>
<th>Nº clientes tramo</th>
<th>Longitud tramo (m)</th>
<th>Potencia tramo (kW)</th>
<th>Intensidad tramo (A)</th>
<th>Momento (P x L) (kW x m)</th>
<th>Caida de T. tramo (%)</th>
<th>C. de T. Acumulada final (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERIVACION P7 al P9 T-1</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>P8</td>
<td>Línea</td>
<td>1F</td>
<td>240</td>
<td></td>
<td>Trip. 1/0</td>
<td>1</td>
<td>80</td>
<td>0.45</td>
<td>1.974</td>
<td>36.00</td>
<td>0.080</td>
<td>0.080</td>
</tr>
<tr>
<td>P8</td>
<td>P9</td>
<td>Línea</td>
<td>1F</td>
<td>240</td>
<td></td>
<td>Trip. 1/0</td>
<td>0</td>
<td>80</td>
<td>0.00</td>
<td>0.000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.080</td>
</tr>
<tr>
<td>DERIVACION P10 al P9 T-1</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>P9</td>
<td>Línea</td>
<td>1F</td>
<td>240</td>
<td></td>
<td>Trip. 1/0</td>
<td>3</td>
<td>80</td>
<td>1.17</td>
<td>5.132</td>
<td>93.60</td>
<td>0.207</td>
<td>0.287</td>
</tr>
</tbody>
</table>

AREA DE SELECCIÓN Y LLENADO DE DATOS
Calculo de los trasformadores a utilizar para la urbanización.

Se requiere el uso de dos transformadores: 25 KVA Y 37.5 KVA

<table>
<thead>
<tr>
<th>No.</th>
<th>Descripción</th>
<th>Potencia (Kw)</th>
<th>Potencia Total (Kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equipos varios</td>
<td>5.00</td>
<td>5</td>
</tr>
</tbody>
</table>

Fp: Factor de Potencia.
Fd: Factor de Distribución.

Fp 0.95
Fd 0.8

TOTAL (KW) 5.00 kW

Los KVA resultante es: 4.21 KVA

<table>
<thead>
<tr>
<th>No. DE VIVIENDAS</th>
<th>Fc. DE SIM ULT.</th>
<th>POTENC. (KVA)</th>
<th>TF SELEC. (KVA)</th>
<th>PUNTO DE UBICACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.5</td>
<td>141.46</td>
<td>FALSO</td>
<td>P110</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>84.88</td>
<td>FALSO</td>
<td>P124</td>
</tr>
</tbody>
</table>

TOTAL 80 226.3 kVA
XI. Estudio Técnico

A continuación se presentan el listado de materiales para la construcción de las instalaciones internas y las acometidas de las viviendas.

<table>
<thead>
<tr>
<th>Breve Descripción</th>
<th>Unidad de Medida</th>
<th>Cantidad</th>
<th>Precios Unitarios US$</th>
<th>VALOR CONTRATO</th>
<th>SUBTOTAL ACOMETIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Materiales</td>
<td>Mano de Obra</td>
</tr>
<tr>
<td>Conductor Duplex # 6 ACSR</td>
<td>mts</td>
<td>30</td>
<td>$ 0.77 $ 0.15 $ 0.11</td>
<td>$ 23.10</td>
<td>$ 4.62</td>
</tr>
<tr>
<td>Varilla de Remate Preformada para conductor # 6 ACSR</td>
<td>Unid.</td>
<td>2</td>
<td>$ 0.52 $ 0.10 $ 0.07</td>
<td>$ 1.04</td>
<td>$ 0.21</td>
</tr>
<tr>
<td>Conector Compresión tipo C con separador 2-1/0 ACSR a # 8-1/0</td>
<td>Unid.</td>
<td>2</td>
<td>$ 0.36 $ 0.07 $ 0.05</td>
<td>$ 0.72</td>
<td>$ 0.14</td>
</tr>
<tr>
<td>Aislador para Acometida (porcelana)</td>
<td>Unid.</td>
<td>1</td>
<td>$ 1.29 $ 0.26 $ 0.19</td>
<td>$ 1.29</td>
<td>$ 0.26</td>
</tr>
<tr>
<td>Panel de 2 espacios C-H o similar y accesorios, 120/240 v 70 A</td>
<td>Unid.</td>
<td>1</td>
<td>$ 7.15 $ 1.43 $ 1.03</td>
<td>$ 7.15</td>
<td>$ 1.43</td>
</tr>
<tr>
<td>Breakers de 15 Amperios 1 Polo C-H o similar</td>
<td>Unid.</td>
<td>1</td>
<td>$ 3.96 $ 0.79 $ 0.57</td>
<td>$ 3.96</td>
<td>$ 0.79</td>
</tr>
<tr>
<td>Varilla de Cobre Galvanizado de 5/8” x 4’ para varilla polo a tierra</td>
<td>Unid.</td>
<td>1</td>
<td>$ 7.81 $ 1.56 $ 1.12</td>
<td>$ 7.81</td>
<td>$ 1.56</td>
</tr>
<tr>
<td>Conector de Cobre para varilla 5/8”</td>
<td>Unid.</td>
<td>1</td>
<td>$ 2.50 $ 0.50 $ 0.36</td>
<td>$ 2.50</td>
<td>$ 0.50</td>
</tr>
<tr>
<td>Tomacorriente doble, polarizado, superficial, 120 V , 15 A</td>
<td>Unid.</td>
<td>1</td>
<td>$ 1.10 $ 0.22 $ 0.16</td>
<td>$ 1.10</td>
<td>$ 0.22</td>
</tr>
<tr>
<td>Apagador superficial sencillo (Ticino)</td>
<td>Unid.</td>
<td>1</td>
<td>$ 0.76 $ 0.15 $ 0.11</td>
<td>$ 0.76</td>
<td>$ 0.15</td>
</tr>
<tr>
<td>Cepo plástico (Ticino / Eagle)</td>
<td>Unid.</td>
<td>1</td>
<td>$ 0.81 $ 0.16 $ 0.12</td>
<td>$ 0.81</td>
<td>$ 0.16</td>
</tr>
<tr>
<td>Lampara Compacta de Alta Eficiencia 15 Watt</td>
<td>Unid.</td>
<td>1</td>
<td>$ 0.92 $ 0.18 $ 0.13</td>
<td>$ 0.92</td>
<td>$ 0.18</td>
</tr>
<tr>
<td>Grapas plásticas TSJ 3x12 y 2x12</td>
<td>Unid.</td>
<td>25</td>
<td>$ 0.08 $ 0.02 $ 0.01</td>
<td>$ 2.00</td>
<td>$ 0.40</td>
</tr>
<tr>
<td>Cable Triplex TSJ 3x12</td>
<td>Mts.</td>
<td>4</td>
<td>$ 0.90 $ 0.16 $ 0.12</td>
<td>$ 3.20</td>
<td>$ 0.64</td>
</tr>
<tr>
<td>Cable Duplex TSJ 2x12</td>
<td>Mts.</td>
<td>6</td>
<td>$ 0.61 $ 0.12 $ 0.09</td>
<td>$ 3.66</td>
<td>$ 0.73</td>
</tr>
<tr>
<td>Cable Duplex TSJ 2x8</td>
<td>Mts.</td>
<td>3</td>
<td>$ 2.41 $ 0.48 $ 0.35</td>
<td>$ 7.23</td>
<td>$ 1.45</td>
</tr>
<tr>
<td>Alambre de cobre solido forrado # 8 THHN</td>
<td>Mts.</td>
<td>3</td>
<td>$ 0.37 $ 0.07 $ 0.05</td>
<td>$ 1.11</td>
<td>$ 0.22</td>
</tr>
<tr>
<td>Conector Romex Ø 1/2”</td>
<td>Unid.</td>
<td>4</td>
<td>$ 0.48 $ 0.10 $ 0.07</td>
<td>$ 1.92</td>
<td>$ 0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 44.13</td>
<td>$ 8.83</td>
</tr>
</tbody>
</table>

SUB TOTAL INSTALACIONES INTERNAS $ 59.31

A- ACOMETIDAS DOMICILIARES

SUBTOTAL ACOMETIDAS $ 35.15

B- INSTALACIONES INTERNAS

SUB TOTAL INSTALACIONES INTERNAS $ 59.31
Listado de materiales para la construcción de las instalaciones internas y las acometidas de las viviendas con sus costos unitarios y total del proyecto.

<table>
<thead>
<tr>
<th>Breve Descripción</th>
<th>Unidad de Medida</th>
<th>Cantidad</th>
<th>Precios Unitarios C$</th>
<th>Total General C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A- ACOMETIDAS DOMICILIARES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductor Duplex # 6 ACSR</td>
<td>mts</td>
<td>5,400</td>
<td>C$ 22.72 C$ 4.54 C$ 3.27 C$ 122,661.00 C$ 24,532.20 C$ 17,663.18 C$ 164,856.38</td>
<td></td>
</tr>
<tr>
<td>Varilla de Remate Preformada para conductor # 6 ACSR</td>
<td>Unid.</td>
<td>360</td>
<td>C$ 15.34 C$ 3.07 C$ 2.11 C$ 5,520.40 C$ 1,104.48 C$ 795.23 C$ 7,422.11</td>
<td></td>
</tr>
<tr>
<td>Conector a Compresión tipo C con separador 2-1/0 ACSR a # 6-1/0</td>
<td>Unid.</td>
<td>360</td>
<td>C$ 10.62 C$ 2.12 C$ 1.53 C$ 3,823.20 C$ 764.64 C$ 550.54 C$ 5,138.38</td>
<td></td>
</tr>
<tr>
<td>AISLADOR PARA ACOMETIDA (porcelana)</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 38.06 C$ 7.61 C$ 5.48 C$ 6,849.90 C$ 1,369.98 C$ 986.39 C$ 9,206.27</td>
<td></td>
</tr>
<tr>
<td>B- INSTALACIONES INTERNAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel de 2 espacios C-H o similar y accesorios, 120/240 v 70 A</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 210.93 C$ 42.19 C$ 30.37 C$ 37,966.50 C$ 7,593.30 C$ 5,467.18 C$ 51,026.08</td>
<td></td>
</tr>
<tr>
<td>Breakers de 15 Ampereos 1 Polo C-H o similar</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 116.82 C$ 23.36 C$ 16.82 C$ 21,027.60 C$ 4,205.52 C$ 3,027.97 C$ 28,261.09</td>
<td></td>
</tr>
<tr>
<td>Varilla de Cobre Galvanizado de 5/8”x 4 para varilla de polo a tierra</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 73.75 C$ 14.75 C$ 10.62 C$ 41,471.10 C$ 8,294.22 C$ 5,971.84 C$ 55,737.16</td>
<td></td>
</tr>
<tr>
<td>Tomacorriente doble, polarizado, superficial, 120 V, 15 A</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 32.42 C$ 6.48 C$ 4.67 C$ 4,035.60 C$ 807.12 C$ 581.13 C$ 5,423.85</td>
<td></td>
</tr>
<tr>
<td>Apagador superficial sencillo (Ticino)</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 22.42 C$ 4.48 C$ 3.23 C$ 4,035.60 C$ 807.12 C$ 581.13 C$ 5,423.85</td>
<td></td>
</tr>
<tr>
<td>Cepo plástico (Ticino / Eagle)</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 23.90 C$ 4.78 C$ 3.44 C$ 4,301.10 C$ 860.22 C$ 619.36 C$ 5,780.68</td>
<td></td>
</tr>
<tr>
<td>LAMPA COMPACTA DE ALTO EFICIENCIA 15 WATT</td>
<td>Unid.</td>
<td>180</td>
<td>C$ 27.14 C$ 5.43 C$ 3.91 C$ 4,885.20 C$ 977.04 C$ 703.47 C$ 6,565.71</td>
<td></td>
</tr>
<tr>
<td>Grapas plásticas T5J 3x12 y 2x12</td>
<td>Unid.</td>
<td>4,500</td>
<td>C$ 2.36 C$ 0.47 C$ 0.34 C$ 10,620.00 C$ 2,124.00 C$ 1,529.28 C$ 14,273.28</td>
<td></td>
</tr>
<tr>
<td>Cable Triplex T5J 3x12</td>
<td>Mts</td>
<td>720</td>
<td>C$ 23.60 C$ 4.72 C$ 3.40 C$ 16,992.00 C$ 3,398.40 C$ 2,446.85 C$ 22,837.25</td>
<td></td>
</tr>
<tr>
<td>Cable Duplex T5J 2x12</td>
<td>Mts</td>
<td>1,080</td>
<td>C$ 18.00 C$ 3.60 C$ 2.59 C$ 19,434.60 C$ 3,886.92 C$ 2,798.58 C$ 26,120.10</td>
<td></td>
</tr>
<tr>
<td>Cable Duplex T5J 2x8</td>
<td>Mts</td>
<td>540</td>
<td>C$ 71.10 C$ 14.22 C$ 10.24 C$ 38,391.30 C$ 7,678.28 C$ 5,528.35 C$ 51,597.91</td>
<td></td>
</tr>
<tr>
<td>Alambre de cobre soldado torrado # 8 THHN</td>
<td>Mts</td>
<td>540</td>
<td>C$ 10.92 C$ 2.18 C$ 1.57 C$ 5,894.10 C$ 1,178.82 C$ 848.75 C$ 7,921.67</td>
<td></td>
</tr>
<tr>
<td>Conector Romex Ø 1/2”</td>
<td>Unid.</td>
<td>720</td>
<td>C$ 14.16 C$ 2.83 C$ 2.04 C$ 10,195.20 C$ 2,039.04 C$ 1,468.11 C$ 13,702.35</td>
<td></td>
</tr>
<tr>
<td>SUB TOTAL INSTALACIONES INTERNAS</td>
<td></td>
<td></td>
<td></td>
<td>314,939.92</td>
</tr>
</tbody>
</table>
Presupuesto para llevar a cabo el proyecto de electrificación de la urbanización Miramar en san juan del sur, departamento de Rivas.

XII. Evaluación Financiera

PROYECTO COMUNIDAD LOMAS DE MIRAMAR MUNICIPIO DE SAN JUAN DEL SUR RIVAS DEPARTAMENTO DE RIVAS

COSTOS DE LINEAS PRIMARIAS Y SECUNDARIAS EN POSTES DE CONCRETO 14.4/24.9 KV

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>Materiales(C$)</th>
<th>Mano Obra (C$)</th>
<th>Transporte</th>
<th>Unitarios</th>
<th>Materiales(C$)</th>
<th>Mano de Obra(C$)</th>
<th>Transporte</th>
<th>Mat + MO+Trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Línea Primaria (No. 1/0 ACSR)</td>
<td>m</td>
<td>3,201</td>
<td>C$ 21.20</td>
<td>C$ 5.94</td>
<td>C$ 4.07</td>
<td>C$ 31.21</td>
<td>C$ 67,864.96</td>
<td>C$ 19,002.19</td>
<td>C$ 13,030.07</td>
<td>C$ 99,897.23</td>
</tr>
<tr>
<td>Conductor Neutro No. 1/0 ACSR</td>
<td>m</td>
<td>3,201</td>
<td>C$ 21.20</td>
<td>C$ 5.94</td>
<td>C$ 4.07</td>
<td>C$ 31.21</td>
<td>C$ 67,864.96</td>
<td>C$ 19,002.19</td>
<td>C$ 13,030.07</td>
<td>C$ 99,897.23</td>
</tr>
<tr>
<td>Poste de concreto de 35'</td>
<td>c/u</td>
<td>29</td>
<td>C$ 5,702.12</td>
<td>C$ 1,596.59</td>
<td>C$ 1,094.81</td>
<td>C$ 8,393.52</td>
<td>C$ 165,361.44</td>
<td>C$ 46,301.20</td>
<td>C$ 31,749.40</td>
<td>C$ 243,412.03</td>
</tr>
<tr>
<td>Transformador de 25 kva, 14.4/24.9 kV, 120/240 v</td>
<td>c/u</td>
<td>1</td>
<td>C$ 35,876.13</td>
<td>C$ 10,045.32</td>
<td>C$ 5,787.02</td>
<td>C$ 44,367.17</td>
<td>C$ 30,140.74</td>
<td>C$ 8,439.41</td>
<td>C$ 5,787.02</td>
<td>C$ 44,367.17</td>
</tr>
<tr>
<td>MT-601/C</td>
<td>c/u</td>
<td>19</td>
<td>C$ 600.85</td>
<td>C$ 185.04</td>
<td>C$ 126.86</td>
<td>C$ 972.78</td>
<td>C$ 6,357.13</td>
<td>C$ 10,045.32</td>
<td>C$ 5,787.02</td>
<td>C$ 18,822.67</td>
</tr>
<tr>
<td>MT-602/C</td>
<td>c/u</td>
<td>3</td>
<td>C$ 1,136.48</td>
<td>C$ 318.22</td>
<td>C$ 218.20</td>
<td>C$ 1,672.30</td>
<td>C$ 3,039.45</td>
<td>C$ 35,157.43</td>
<td>C$ 654.61</td>
<td>C$ 3,018.71</td>
</tr>
<tr>
<td>MT-603/C</td>
<td>c/u</td>
<td>3</td>
<td>C$ 1,234.85</td>
<td>C$ 349.76</td>
<td>C$ 237.09</td>
<td>C$ 1,817.70</td>
<td>C$ 3,704.55</td>
<td>C$ 1,007.27</td>
<td>C$ 711.27</td>
<td>C$ 5,453.10</td>
</tr>
<tr>
<td>MT-604/C</td>
<td>c/u</td>
<td>4</td>
<td>C$ 1,769.90</td>
<td>C$ 495.57</td>
<td>C$ 339.82</td>
<td>C$ 2,605.29</td>
<td>C$ 7,079.59</td>
<td>C$ 1,982.28</td>
<td>C$ 1,359.28</td>
<td>C$ 10,421.15</td>
</tr>
<tr>
<td>MT-605/C</td>
<td>c/u</td>
<td>1</td>
<td>C$ 915.70</td>
<td>C$ 256.39</td>
<td>C$ 175.81</td>
<td>C$ 1,347.90</td>
<td>C$ 915.70</td>
<td>C$ 256.39</td>
<td>C$ 175.81</td>
<td>C$ 1,347.90</td>
</tr>
<tr>
<td>PR2-205/C</td>
<td>c/u</td>
<td>1</td>
<td>C$ 2,692.20</td>
<td>C$ 753.82</td>
<td>C$ 516.90</td>
<td>C$ 3,962.92</td>
<td>C$ 2,692.20</td>
<td>C$ 753.82</td>
<td>C$ 516.90</td>
<td>C$ 3,962.92</td>
</tr>
<tr>
<td>PR-101/C</td>
<td>c/u</td>
<td>10</td>
<td>C$ 319.13</td>
<td>C$ 89.36</td>
<td>C$ 61.27</td>
<td>C$ 469.76</td>
<td>C$ 3,191.30</td>
<td>C$ 893.56</td>
<td>C$ 612.73</td>
<td>C$ 4,697.59</td>
</tr>
<tr>
<td>HA-100 b/C</td>
<td>c/u</td>
<td>11</td>
<td>C$ 802.34</td>
<td>C$ 224.66</td>
<td>C$ 154.66</td>
<td>C$ 1,181.56</td>
<td>C$ 6,825.78</td>
<td>C$ 2,471.22</td>
<td>C$ 1,694.55</td>
<td>C$ 12,691.56</td>
</tr>
<tr>
<td>Instalaciones Internas</td>
<td>c/u</td>
<td>90</td>
<td>C$ 1,301.84</td>
<td>C$ 360.37</td>
<td>C$ 267.46</td>
<td>C$ 1,749.74</td>
<td>C$ 117,165.15</td>
<td>C$ 23,433.03</td>
<td>C$ 16,871.78</td>
<td>C$ 157,469.66</td>
</tr>
<tr>
<td>Acometidas Domiciliares</td>
<td>c/u</td>
<td>90</td>
<td>C$ 771.43</td>
<td>C$ 154.29</td>
<td>C$ 111.09</td>
<td>C$ 1,036.60</td>
<td>C$ 69,428.25</td>
<td>C$ 13,885.65</td>
<td>C$ 9,997.67</td>
<td>C$ 93,311.57</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td>C$ 596,076.42</td>
<td></td>
<td></td>
<td></td>
<td>C$ 151,973.92</td>
<td></td>
<td></td>
<td>C$ 105,490.19</td>
</tr>
<tr>
<td>IMPUESTOS MUNICIPALES 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C$ 8,555.41</td>
</tr>
<tr>
<td>IMPUESTOS IVA 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C$ 128,031.08</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>C$ 990,107.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Indicadores de Rentabilidad

VAN

\[VAN = \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + r)^t} \]

B_t : Beneficio del año t del proyecto
C_t : Costo del año t del proyecto
t : Año correspondiente a la vida del proyecto, que varía entre 0 y n
0 : Año inicial del proyecto, en el cual comienza la inversión
r : Tasa social de descuento.

TIR

\[0 = \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + r)^t} \]

RBC

\[B = \sum_{t=0}^{n} \frac{B_t/(1+r)^t}{C_t/(1+r)^t} \]

Para el análisis Financiero se utilizó la herramienta Excel ya que el uso de las formulas es Tedioso cuando evaluamos a varios años.

Criterio de Decisión de la VAN:

Cuando \(VAN(\text{io})^+ > 0 \) : Señala que el proyecto es conveniente.

Cuando \(VAN(\text{io}) < 0 \) : Señala que el proyecto no es atractivo.

Cuando \(VAN(\text{io}) = 0 \) : Señala que el proyecto es indiferente.

Criterio de Decisión de la TIR:

Cuando \(irr > \text{io} \) : Señala que el proyecto es conveniente.

Cuando \(irr < \text{io} \) : Señala que el proyecto no es atractivo.

Cuando \(irr = \text{io} \) : Señala que el proyecto es indiferente.

Indicadores de rentabilidad del proyecto.
El proyecto es rentable en un horizonte de evaluación de 25 años.

I. Conclusiones

Se logró planificar el estudio de campo en la zona que nos permitió conocer cuál es el punto más cercano para conectarse a la red eléctrica nacional con el apoyo de GPS.

Se Elaboraron los planos eléctricos de la red de MT y BT cumpliendo con las normas eléctricas de construcción ENEL y Dis-Norte, Dis-sur.

Igualmente se proyectó el estudio de costo del proyecto de la urbanización tanto de la red de media tensión como la red interna residencial.
II. Bibliografía

6. Transformadores de Potencia de medida y de Protección.
9. LEY 272 , Ley de la industria eléctrica de Nicaragua, La gaceta .1998