UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA QUÍMICA

EVALUACIÓN CUALITATIVA DE LOS ASPECTOS AMBIENTALES DEL LABORATORIO DE QUIMICA RUSB DE LA UNIVERSIDAD NACIONAL DE INGENIERÍA

TRABAJO DE DIPLOMA PRESENTADO POR:

Cristina Rafaela Bermúdez Pirogova

PARA OPTAR AL TITULO DE:

INGENIERO QUÍMICO

TUTOR:

Ing. Javier Enrique Ramirez Meza

Managua, Nicaragua 2018

DEDICATORIA

A Dios, al creador de todas las cosas, por su amor incondicional, por ser mi guía, mi luz y fortaleza, a él primeramente dedico todo el esfuerzo que he puesto en el desarrollo de este trabajo.

A mis padres, que han sabido formarme con buenos hábitos, sentimientos y valores, lo cual me ha ayudado a salir adelante en los momentos más difíciles. Gracias por ser como son y forjar la persona que ahora soy.

A mis amigos y profesores, por todo el apoyo incondicional y consejos que me han brindado. Gracias por siempre motivarme a cumplir mis sueños.

AGRADECIMIENTO

Un agradecimiento singular debo al Ing. Javier Enrique Ramírez Meza, que como tutor me ha orientado, apoyado y corregido durante el desarrollo de este estudio monográfico, con un interés y entrega que han sobrepasado por mucho todas las expectativas que como alumna deposite en su persona.

A los profesores y todo el personal de la Facultad de Ingeniería Química, por sus valiosos aportes a este estudio, por sus atenciones y colaboración prestada para conseguir mis objetivos trazados.

A mi familia que sin pedirlo han sido mi pilar y en todo momento me han dado el apoyo incondicional motivándome a llegar hasta el final.

A mis compañeros y amigos por su respaldo y ánimos, y a todas aquellas personas que de una manera u otra aportaron para la culminación exitosa de este estudio monográfico.

¡GRACIAS!

Managua, 17 de diciembre del 2014

OPINIÓN DEL CATEDRÁTICO GUÍA

El presente estudio monográfico titulado: **Diagnóstico ambiental del laboratorio de Química RUSB de la Universidad Nacional de Ingeniería**, realizado por la Bachiller Cristina Rafaela Bermúdez Pirogova, es un estudio de aplicación social, ya que los resultados alcanzados podrían servir para mejorar el funcionamiento ambiental de uno de los laboratorios más utilizados en el proceso de enseñanza-aprendizaje para las carreras la Universidad Nacional de Ingeniería.

Durante el desarrollo de su monografía la bachillera Bermúdez implementó conocimientos adquiridos durante sus estudios en la carrera de Ingeniería Química, así como el desarrollo investigativo que se requiere a nivel de pregrado.

Un aspecto importante que observé es que tomaron iniciativa para gestionar tanto de forma administrativa como técnica la solución de problemas. Por lo tanto, doy fe que ha cumplido con la última etapa de su preparación universitaria y presentar sus resultados públicamente. Así mismo, el documento cumple con lo establecido en el reglamento de culminación de estudio de la Universidad Nacional de Ingeniería.

Por todo lo expuesto anteriormente, aseguro que la Bachiller Bermúdez, reúne en este trabajo los requisitos para que opten al título de Ingeniero Químico.

Cordialmente,

Javier Enrique Ramírez Meza
Profesor Titular
Departamento de Operaciones Unitarias
Facultad de Ingeniería Química
Universidad Nacional de Ingeniería
jramirez@uni.edu.ni

RESUMEN

El presente estudio consistió en realizar una evaluación cualitativa de los Aspectos Ambientales del Laboratorio de Química RUSB, UNI, el cual brinda asistencia a la docencia, investigación y servicios. Dada las características de las actividades que se desarrollan en las instalaciones, las sustancias, materiales y desechos representan un riesgo para para los usuarios y el medio ambiente.

Se aplicó encuestas a una muestra representativa de usuarios del laboratorio (docentes y estudiantes) de la carrera de Ingeniería Química, para valorar la percepción desde su punto de vista sobre el manejo ambiental de esta unidad académica. La valoración obtenida por los encuestados es que el laboratorio de Química RUSB no es una unidad académica que cumpla con las legislaciones ambientales aplicables a nuestro país y que contribuya con proteger el medio ambiente, así como la salud de las personas que hacen uso y/o se encuentren alrededor de este.

Los aspectos ambientales derivados de las actividades realizadas en el laboratorio y su posible impacto ambiental se identificaron a través de la herramienta mapeo de procesos y la asistencia a las prácticas de laboratorio seleccionadas de forma aleatoria, donde se logró contrastar la realidad de las actividades contra lo que especifica una guía práctica; analizando las propiedades fisicoquímicas, características de peligrosidad, así como el tipo de almacenamiento y tratamiento de cada producto químico que resulto de las prácticas de laboratorio. Fueron identificados seis aspectos ambientales.

Para obtener una adecuada evaluación de estos aspectos ambientales se clasificaron según los parámetros del Comité Nacional de Gestión Ambiental de México (2010): tiempo de ocurrencia, responsabilidad, tipo de impacto, amplitud geográfica y situación operacional.

Con la evaluación de los aspectos ambientales identificados se encontró que el Laboratorio de Química RUSB, tiene cinco aspectos con una magnitud de riesgo ambiental mayor a quince, lo cual indica que pueden llegar a tener un impacto significativo en el medio ambiente. Esto hace necesario que la Facultad de Ingeniería Química establezca puntos de acción y de mejora que permita la minimización y control de estos aspectos a través de un sistema de gestión ambiental, generándose así un mejor desempeño del laboratorio RUSB.

TABLA DE CONTENIDO

AG	RAI	DECIMIENTOiii
RE	SUN	MEN v
ÍND	ICE	E DE FIGURAS viii
ÍND	ICE	E DE TABLASix
I.	IN	TRODUCCIÓN1
II.	OE	3JETIVOS3
2.1	(Objetivo General 3
2.2	(Objetivos Específicos3
III.	MA	ARCO TEÓRICO 4
3.1	ĺ	Descripción del Laboratorio de Química RUSB4
3	3.1.1	Historia del Laboratorio4
3	3.1.2	2 Actividades de Docencia
3.2		Normativas Ambientales 6
3	3.2.1	l Legislación Ambiental Nacional
3	3.2.2	2 Legislación Ambiental Internacional
3.3	I	Residuos16
3	3.3.1	Clasificación de los Residuos
3	3.3.2	2 Características de Peligrosidad
3.4	.	Programa de Gestión de Residuos para Laboratorios
3	3.4.1	Clasificación y Selección
3	3.4.2	2 Recolección Selectiva
3	3.4.3	Normas de Seguridad
3	3.4.4	4 Otras Consideraciones
3	3.4.5	,
3	3.4.6	
3.5		Aspectos Ambientales
	3.5.1	·
3	3.5.2	Clasificación de los Aspectos Ambientales

3	3.5.3	Evaluación de los Aspectos Ambientales	33
IV.	METC	DDOLOGÍA	37
4.1	Loc	alización del Estudio	37
4.2	2 Tipo	o de Estudio	37
4.3	8 Var	iables de Estudio	37
4.4		cepción de Estudiantes y Docentes sobre la Problemática Ambiental de oratorio de Química RUSB	
4.5	Cla	sificación de Residuos Químicos de Guías Prácticas del Laboratorio	389
4.6	6 Ider	ntificación de Aspectos Ambientales en el Laboratorio	43
4.7	' Cla	sificación y Evaluación de Aspectos Ambientales en el Laboratorio	44
4.8	B Pro	cesamiento de Datos	44
٧.	PRES	ENTACIÓN Y DISCUSIÓN DE RESULTADOS	45
5.1	Res	sultados de Encuestas a Docentes y Estudiantes	45
Ę	5.1.1	Uso y Actividades de los Usuarios en el Laboratorio	45
Ę	5.1.2	Manejo de Residuos	46
Ę	5.1.3	Percepción sobre la Peligrosidad de las Áreas del Laboratorio	48
Ę	5.1.4	Alteraciones Percibidas por Usuarios	49
ţ	5.1.5	Percepción sobre el Estado Actual del Laboratorio	51
5.2	2 Aná	ilisis de Guías Prácticas del Laboratorio	52
Ę	5.2.1	Clasificación de Residuos Químicos de Guías Prácticas del Laboratorio	ა 53
Ę	5.2.2	Volumen de Residuo Generado	66
Ę	5.2.3	Acidez y Basicidad de los Residuos	68
Ę	5.2.4	Tipo de Almacenamiento	69
Ę	5.2.5	Posibles Tratamientos	71
5.3	B Asp	ectos Ambientales en el Laboratorio de Química RUSB	84
ţ	5.3.1	Identificación de Aspectos Ambientales	84
Ę	5.3.2	Clasificación y Evaluación de Aspectos Ambientales	91
VI.	CONC	CLUSIONES	96
VII.	RECC	MENDACIONES	98
VIII	.REFE	RENCIAS BIBLIOGRÁFICAS	100
۸۸	IEYOS		104

ÍNDICE DE FIGURAS

Diagrama para la Minimización de Residuos	27
Diagrama Aspectos Ambientales	30
Mapeo de Procesos	31
Mapeo de Procesos para análisis de Aspectos Ambientales	43
Actividades Desarrolladas en las Instalaciones del Laboratorio de Química RUSB	46
Disposición Final de los Desechos Producidos en el Laboratorio	47
Alteraciones del Laboratorio de Química RUSB	50
Percepción sobre el Estado Actual del Laboratorio	51
Residuos Químicos Generados en el Laboratorio por Grupo de Clasificación	63
Subdivisiones de Residuos Químicos de las Guías Prácticas de Laboratorio	65
Características de Peligrosidad de los Residuos Obtenidos de las Guías Prácticas del Laboratorio Analizadas	66
Valores de pH de los Residuos Obtenidos de la Guía Práctica de Inorgánica "Compuestos de Cromo y Manganeso"	69
Mapeo de Procesos para el Área de Trabajo	85
Solución Acuosa de Sulfato de Cromo (III), Yodo y Sulfato de Potasio con pH 1.1, residuo químico originado de la reacción inorgánica de Dicromato de Potasio, Ácido Sulfúrico y Yoduro de Potasio	86
Campana Extractora en Mal Estado Ubicado en el Laboratorio de Química RUSB	87
Mapeo de Procesos para el área de Bodega de reactivos	88
	Diagrama Aspectos Ambientales Mapeo de Procesos Mapeo de Procesos para análisis de Aspectos Ambientales Actividades Desarrolladas en las Instalaciones del Laboratorio de Química RUSB Disposición Final de los Desechos Producidos en el Laboratorio Alteraciones del Laboratorio de Química RUSB Percepción sobre el Estado Actual del Laboratorio Residuos Químicos Generados en el Laboratorio por Grupo de Clasificación Subdivisiones de Residuos Químicos de las Guías Prácticas de Laboratorio Características de Peligrosidad de los Residuos Obtenidos de las Guías Prácticas del Laboratorio Analizadas Valores de pH de los Residuos Obtenidos de la Guía Práctica de Inorgánica "Compuestos de Cromo y Manganeso" Mapeo de Procesos para el Área de Trabajo Solución Acuosa de Sulfato de Cromo (III), Yodo y Sulfato de Potasio con pH 1.1, residuo químico originado de la reacción inorgánica de Dicromato de Potasio, Ácido Sulfúrico y Yoduro de Potasio Campana Extractora en Mal Estado Ubicado en el Laboratorio de Química RUSB

ÍNDICE DE TABLAS

Tabla 3.1	Laboratorios impartidos en Ingenieria Química y otras Carreras.	5
Tabla 3.2 Arto.19- Parámetros Fisicoquímicos y Límites Máximos para las		
	Descargas en Redes de Alcantarillado.	
Tabla 3.3	Características de Peligrosidad para Residuos Peligrosos.	17
Tabla 3.4	Clasificación Disolventes Halogenados	20
Tabla 3.5	Clasificación Disolventes no Halogenados	21
Tabla 3.6	Disposición y/o Tratamiento para la Reducción de Residuos	29
Tabla 3.7	Criterios para la Clasificación de los Aspectos Ambientales	32
Tabla 3.8	Criterios Utilizados en la Evaluación del Riesgo Asociado a un Aspecto Ambiental Identificado	33
Tabla 4.1	Población y Muestra de Estudiantes y Docentes de la FIQ	38
Tabla 4.2	Laboratorios Impartidos en el Segundo Semestre del 2012	40
Tabla 4.3	Instrumento de Colecta de Datos	42
Tabla 5.1	Población y Muestra de la Facultad de Ingeniería Química	45
Tabla 5.2	Peligrosidad Identificadas por Usuarios en las Áreas del Laboratorio	48
Tabla 5.3	Reacciones Químicas de Guías Prácticas Analizadas en el Laboratorio de Química RUSB	53
Tabla 5.4	Residuos Químicos Generados en el Laboratorio por Grupo de Clasificación	63
Tabla 5.5	Subdivisiones de Residuos Químicos	64
Tabla 5.6	Volumen de Desechos Generados, a través de las Guías Prácticas de Laboratorio	67
Tabla 5.7	Propuesta de Envases de Almacenamiento para los Residuos Químicos	70
Tabla 5.8	Tratamientos Propuestos para Residuos Generados de las Guías Prácticas Analizadas	71
Tabla 5.9	Aspectos Ambientales e Impactos Ambientales Identificados en el Laboratorio de Química RUSB	90
Tabla5.10	Clasificación y Evaluación de Aspectos Ambientales Identificados en el Laboratorio de Química RUSB	95
Tabla A.1	Parámetros, Rangos y Valores Máximos Permisibles para los Vertidos Proveniente de Laboratorio de Ensayos	105
Tabla B.1	Sustancias Tóxicas que Confieren Peligrosidad a un Residuo	106
Tabla C.1	Recomendaciones Referentes al Uso de Envases de Polietileno para Almacenar Residuos	106
Tabla D.1	Pictogramas de Peligro	107
Tabla E.1	Colores Designados a los Grupos	108
Tabla F.1	Incompatibilidades entre Sustancias	109

Evaluación Cualitativa de los Aspectos Ambientales del Laboratorio de Química RUSB de la Universidad Nacional de Ingeniería		
Tabla H.1	Sustancias o Compuestos que pueden Eliminarse a través del Vertido a la red de Saneamiento tras el Tratamiento Previo	111
Tabla H.2	Sustancias o Compuestos que pueden Eliminarse a través de	112
	Incineración tras el Tratamiento Previo	
Tabla H.3	Sustancias o Compuestos Recuperables	112
Tabla J.1	Instrumento para la Evaluación de Aspectos Ambientales	119

GLOSARIO DE TÉRMINOS

Abreviatura Significado

A Ácidos

AAS Aspecto Ambiental Significativo

AC Aceites

CETEAL Centro Tecnológico de Agroindustria-Alimentos

Cr Cromo

DH Disolventes Halogenados
DNH Disolventes no Halogenados
DQO Demanda Química de Oxigeno

ES Especiales

FIQ Facultad de Ingeniería Química IES Instituto de Estudios Superiores

ISO International Organization for Standardization
NTON Norma Técnica Obligatoria Nicaragüense
OSAI Otras soluciones Acuosas inorgánicas

PNUMA Programa de las Naciones Unidas para el Medio Ambiente

RDA República Democrática Alemana RFA República Federal Alemana

RUPAP Recinto Universitario Pedro Arauz Palacios

RUSB Recinto Universitario Simón Bolívar

SAB Soluciones Acuosas Básicas SAC Soluciones Acuosas de Cromo

SAMP Soluciones Acuosas Metales Pesados

SAO Soluciones Acuosas Orgánicas SGA Sistema de Gestión Ambiental

SI Sólido Inorgánico SO Sólido Orgánico

UCA Universidad Centroamericana
UNI Universidad Nacional de Ingeniería

USAID United States Agency for International Development USEPA Agencia de Protección Ambiental de Estados Unidos

I. INTRODUCCIÓN

La Universidad Nacional de Ingeniería (UNI) comprometida con el desarrollo de profesionales de alta calidad incluye en los planes de estudios de las diversas carreras las prácticas de laboratorio de química, lo cual demanda el uso de sustancias químicas; estas una vez utilizadas se transforman en residuos considerados como peligrosos, que una vez emitidos afectan de manera directa al ambiente.

La Facultad de Ingeniería Química en sinergia con el compromiso de la Universidad cuenta con el Laboratorio de Química ubicado en el Recinto Simón Bolívar, donde se brinda asistencia a la docencia, investigación y servicios desde 1988. En este se imparten las prácticas de laboratorio de Química General a las carreras de: Ingeniería Eléctrica y Electrónica, Ingeniería Civil, Ingeniería Industrial del Instituto de Estudios Superiores (IES-UNI) y sesenta y cinco prácticas de laboratorio para las asignaturas de la carrera de Ingeniería Química; igualmente se realizan los laboratorios de Química General por estudiantes de la Academia Militar y Colegio Calasanz.¹

Aunque el laboratorio es exclusivo para la docencia, con una frecuencia menor se realizan servicios de trabajos externos, generalmente en los análisis fisicoquímicos a empresas contactadas a través del Centro Tecnológico de Agroindustrias Alimentos (CETEAL²), también se brinda servicio a los estudiantes de la carrera de Ingeniería Química para que realicen los análisis y/o desarrollen proyectos que presentan en las ferias tecnológicas organizadas por la Universidad, así como los experimentos para sus trabajos monográficos.

Estas actividades conllevan a la generación de residuos peligrosos (líquidos, sólidos y gaseosos), los cuales no reciben un proceso de almacenamiento y tratamiento antes de su disposición final; tal es el caso de las guías prácticas que durante su desarrollo se generan residuos los cuales son una fuente de impacto ambiental: emisiones de vapores de gases (solventes orgánicos, entre otros), provocando olores desagradables que son percibidos en los alrededores del laboratorio y el vertido de líquidos o residuos no controlados y sin caracterización.

Estos residuos representan un potencial riesgo para quienes están involucrados directamente en las actividades que se desarrollan en el laboratorio (comunidad estudiantil, docente y personal de trabajo), así como personal ubicado en zonas aledañas y el ambiente.

² http://www.fiq.uni.edu.ni/serfiq/ (Visitado el 30 de agosto del 2015, a las 7:30 pm)

¹ D. Escorcia, entrevista personal, 23 de Marzo del 2011

Si bien el volumen de residuos que se genera en este tipo de actividades es relativamente bajo en relación con el proveniente del sector industrial y doméstico, no por ello debe considerarse como un problema menor (López, 2004).

Se han realizado estudios de las condiciones del laboratorio, según el informe de autoevaluación realizado en la Facultad de Ingeniería Química (FIQ) en el 2005, donde se presentaron deficiencias en las condiciones de los laboratorios y las medidas de accidentes. Por otro lado, Guardado & Pineda (2009) realizaron un estudio sobre un plan de intervención en materia de higiene y seguridad del trabajo en los laboratorios de la FIQ, donde se identificaron los riesgos presentes en los laboratorios y se exponen medidas a seguir para que los docentes y estudiantes trabajen en un ambiente seguro. Sin embargo, en ninguno de los dos estudios realizados se encontró información relacionada a los aspectos ambientales y al manejo adecuado de los desechos generados en el laboratorio.

Dada esta circunstancia, en este estudio se presenta la evaluación cualitativa de los aspectos ambientales que se generan de las actividades realizadas en el laboratorio, donde se propone una herramienta que permite la identificación, clasificación y evaluación de estos aspectos, con el fin de contribuir a la seguridad del personal, a la mejora de las condiciones de operación y la disminución del aporte de contaminantes al ambiente.

II. OBJETIVOS

2.1 Objetivo General

Evaluar cualitativamente los Aspectos Ambientales que se derivan de las actividades académicas y/o servicios realizados en el Laboratorio de Química RUSB, a través de los criterios de evaluación del riesgo declarados por el Comité Nacional de Gestión Ambiental de México (2010), para contribuir a la toma de decisiones que permita a la Facultad de Ingeniería Química la mejora de los procesos en esta unidad académica en coherencia con la misión de la facultad.

2.2 Objetivos Específicos

Valorar la percepción de estudiantes y docentes como usuarios activos del Laboratorio de Química RUSB, mediante la opinión expresada en encuestas sobre la problemática ambiental de esta unidad académica.

Clasificar los residuos químicos generados del 32% de las guías prácticas impartidas en el segundo semestre académico, según sus características y propiedades generales, para proponer un posible almacenamiento y tratamiento a efectuarse, previo a su disposición final.

Identificar los Aspectos Ambientales provenientes de las actividades realizadas en el laboratorio de Química RUSB, mediante el mapeo de procesos descrito en USAID (2010).

Clasificar y evaluar los Aspectos Ambientales derivados de las actividades realizas en el área de trabajo y bodega de Laboratorio de Química RUSB mediante la Matriz de Evaluación del Riesgo declarado por el Comité Nacional de Gestión Ambiental de México (2010).

III. MARCO TEÓRICO

En este acápite se abarcan los fundamentos teóricos que fueron considerados necesarios para la realización de la evaluación de los aspectos ambientales en el Laboratorio de Química RUSB e incluye también una breve descripción del Laboratorio.

3.1 Descripción del Laboratorio de Química RUSB

3.1.1 Historia del Laboratorio

El Laboratorio de Química RUSB de la Facultad de Ingeniería Química, ubicado en la Universidad Nacional de Ingeniería, inició sus operaciones poco después de su construcción a finales del año 1988 como Laboratorio de Fisicoquímica, el cual era administrado por el departamento del mismo nombre, perteneciente para ese entonces a la Escuela de Ingeniería Química.

La instalación partió de la necesidad del departamento de Fisicoquímica, de contar con un laboratorio donde se realizarán las prácticas de los laboratorios propios de este departamento y prescindir de la utilización de los laboratorios de la Universidad Centroamericana (UCA).

Con la iniciativa del personal docente del departamento, se acondicionó un local formado por dos salas de clase en la planta baja del pabellón de la Escuela de Ingeniería Química y fue provisto preliminarmente con cristalería, mobiliario y equipos que eran parte de una donación proveniente de la antigua República Democrática Alemana (RDA).

El laboratorio se completó a inicios de los años noventa, mediante la cooperación de la Universidad de Kassel, República Federal Alemana (RFA), la cual proveyó cristalería, equipos adicionales y una unidad de elaboración de dispositivos de vidrio. Fue en 1990 que la Escuela se convirtió en la Facultad de Ingeniería Química y se anexó el departamento de Química de Ciencias Básicas del RUPAP.

A mediados de los años '90, el laboratorio dejó de ser exclusivo para el Departamento de Fisicoquímica debido a que las asignaturas propias de la carrera de Ingeniería Química dejaron de utilizar los laboratorios de la UCA e iniciaron a desarrollar sus prácticas en este laboratorio, que era el único disponible para fines docentes en la Facultad.

Debido a una posterior restructuración interna en la Facultad, el Departamento de Fisicoquímica desapareció y el laboratorio pasó a ser administrado por el Departamento de Química, cambiando así su nombre a Laboratorio de Química

RUSB. En la actualidad el laboratorio fundamentalmente se dedica a la docencia impartiéndose prácticas de química general, orgánica, inorgánica, analítica entre otras.³

3.1.2 Actividades de Docencia

Las actividades docentes desarrolladas en el laboratorio son en su mayoría la realización de prácticas de laboratorio, de las asignaturas impartidas a la carrera de Ingeniería Química y para química general de servicio a otras carreras. En la Tabla 3.1 se desglosa la cantidad de prácticas de laboratorio por asignatura, siendo estas un total de 93.

Tabla 3.1 Laboratorios Impartidos en Ingeniería Química y Otras Carreras.

Asignatura	Cantidad de laboratorios		
<u>Ingeniería Química/UNI</u>			
Química General I	8		
Química General II	8		
Química Inorgánica	7		
Química Analítica	8		
Fisicoquímica I	3		
Fisicoquímica II	4		
Química Orgánica I	8		
Química Orgánica II	8		
Análisis Instrumental	6		
Fundamentos de los	5		
procesos biológicos	3		
<u>Ingeniería Eléctrica y</u>	Ingeniería Eléctrica y Electrónica /UNI		
Química General	14		
Ingeniería Industrial y Civil/UNI-IES			
Química General	14		
Total	93		

³ Información brindada por el docente Rafael Gamero, mediante entrevista personal realizada el 15 de Marzo del 2011

3.2 Normativas Ambientales

Durante la administración de un laboratorio es de vital importancia que éste cumpla con las normas nacionales e internacionales ambientales. A continuación, se presentan las normas nacionales e internacionales con las que el laboratorio de Química RUSB debería de cumplir y regir sus actividades.

3.2.1 Legislación Ambiental Nacional

A continuación, se presentan los distintos instrumentos legales del marco jurídico de Nicaragua que el Laboratorio de Química RUSB, está obligado a observar y cumplir en materia ambiental, social, laboral entre otros, para su desarrollo.

<u>Instrumentos del Ordenamiento Jurídico</u>

- 1. Constitución Política de Nicaragua y sus reformas.
- **2.** Código Penal de Nicaragua (Ley No. 641 Publicada en La Gaceta No. 232 del 03 de Diciembre del 2007).
- 3. Ley General del Medio Ambiente y los Recursos Naturales (Ley 217 y su Reglamento Decreto 9-96, vigentes desde Junio de 1996. Publicada en La Gaceta No. 105 del 6 de Junio 1996).
- 4. Ley General de Higiene y Seguridad del Trabajo (Ley No. 618, aprobada el 19 de abril del 2007 y Publicado en La Gaceta No. 133 del 13 de Julio del 2007).
- 5. Ley 274 Reglamento de La Ley No. 274, Ley Básica para la Regulación y Control de Plaguicidas, Sustancias Toxicas, Peligrosas y Otras Similares. (Publicado en la Gaceta No. 142, 30 de Julio 1998).
- **6.** Ley General de Aguas Nacionales (Ley No. 620, publicado en La Gaceta Diario Oficial No. 169 del 04 de Septiembre del 2007).
- 7. Decreto No. 33-95. Disposición para el Control de la Contaminación Proveniente de las Descargas de Aguas Residuales Domésticas, Industriales y Agropecuarias (Publicado en La Gaceta Diario Oficial No. 118 del 26 de Junio de 1995).
- 8. Política para la Gestión Integral de Residuos Sólidos (Decreto No. 47-2005, Aprobado el 21 de Julio del 2005, publicado en La Gaceta No. 163 del 23 de Agosto del 2005).

- Política Nacional para la Gestión Integral de Sustancias y Residuos Peligrosos (Decreto No. 91-2005, publicado en La Gaceta No. 230 del 28 de noviembre del 2005).
- Norma Técnica Para el Manejo y Eliminación de Residuos Sólidos Peligrosos (NTON 05 015-02, publicado en La Gaceta No. 210 del 05 de Noviembre del 2002).
- **11.** Norma Técnica Para el Manejo, Tratamiento y Disposición Final de los Desechos Sólidos No Peligrosos (No. 015-014-01, publicado en La Gaceta No. 96 del 24 de Mayo del 2002).
- **12.** Norma Técnica Ambiental para la Clasificación Eco-toxicológica y Etiquetado de Plaguicidas, Sustancias Tóxicas, Peligrosas y Otras Similares (NTON 02 010-02, publicada en las Gacetas 212,213 y 214 los días 7,8 y 11 de Noviembre del 2002).
- **13.** Resolución Ministerial No. 009-99: Estrategia para la Prevención y Control de la Contaminación. (Publicado en La Gaceta No. 142 del 27 de Julio de 1999).

Leyes Nacionales de Orden Ambiental

1. Constitución Política de Nicaragua

Carta Fundamental o Carta Magna de la República de Nicaragua, define los principios y establece los derechos y obligaciones de los Nicaragüenses, fuente de derecho y punto de partida del marco legal y ordenamiento jurídico del país. En su Arto. 60, establece que: "todos los nicaragüenses tienen derecho a un ambiente sano y que es obligación del Estado la preservación y rescate del medio ambiente y los recursos naturales".

De igual manera, el marco legal sobre el manejo de los recursos naturales se encuentra fundamentado en el Arto. 102 Constitucional, que establece que "los recursos naturales son patrimonio nacional e impone en el Estado la potestad legal de regular y controlar su uso y aprovechamiento y de otorgar concesiones cuando el interés nacional lo requiera"; imponiendo la obligación de proteger el medio ambiente, de la misma manera que establece el derecho a "un ambiente saludable" como un derecho de todos los nicaragüenses.

2. Ley 641 Código Penal de Nicaragua

Este código sustituye la ley de delitos contra el medio y los recursos naturales, así mismo establece un capítulo de faltas y sobresalen entre otros los siguientes tipos de delitos:

Arto. 322. Inobservancia a las Reglas de Seguridad

Quien en la fabricación, manipulación, transporte, tenencia o comercialización de explosivos, sustancias inflamables o corrosivas, tóxicas, asfixiantes, materiales nucleares, elementos radiactivos u organismos, o cualesquiera otra materia, aparatos o artificios que puedan causar estragos, contraviniere las normas de seguridad establecidas, poniendo en concreto peligro la vida, la integridad física o la salud de las personas, o el medio ambiente, será castigado con la pena de seis meses a dos años de prisión e inhabilitación especial de uno a tres años para ejercer profesión, industria, comercio o derecho relacionado con la actividad delictiva.

Arto. 365. Contaminación del Suelo y Subsuelo

Quien, directa o indirectamente, sin la debida autorización de la autoridad competente, y en contravención de las normas técnicas respectivas, descargue, deposite o infiltre o permita el descargue, depósito o infiltración de aguas residuales, líquidos o materiales químicos o bioquímicos, desechos o contaminantes tóxicos en los suelos o subsuelos, con peligro o daño para la salud, los recursos naturales, la biodiversidad, la calidad del agua o de los ecosistemas en general, será sancionado con pena de dos a cinco años de prisión y de cien a mil días multa.

Las penas establecidas en este artículo se reducirán en un tercio en sus extremos mínimo y máximo, cuando el delito se realice por imprudencia temeraria.

Arto. 366 Contaminación de Aguas

Quien, directa o indirectamente, sin la debida autorización de la autoridad competente y en contravención de las normas técnicas respectivas, descargue, deposite o infiltre o permita el descargue, depósito o infiltración de aguas residuales, líquidos o materiales químicos o bioquímicos, desechos o contaminantes tóxicos en aguas marinas, ríos, cuencas y demás depósitos o corrientes de agua con peligro o daño para la salud, los recursos naturales, la biodiversidad, la calidad del agua o de los ecosistemas en general, será sancionado con pena de dos a cinco años de prisión y de cien a mil días multa. Se impondrá la pena de cuatro a siete años de prisión, cuando con el objeto de ocultar la contaminación del agua, se utilicen volúmenes de agua mayores que los que generan las descargas de aguas residuales, contraviniendo así las normas

técnicas que en materia ambiental establecen las condiciones particulares de los vertidos.

3. Ley 217 "Ley General del Medio Ambiente y los Recursos Naturales"

Esta ley constituye el marco legal del que parte el sistema jurídico en relación al medio ambiente y los recursos naturales, la ley obedece y reglamenta los preceptos constitucionales señalados en los artículos 60 y 102, contiene las normas generales para regular la conservación, protección, mejoramiento y restauración del medio ambiente y los recursos naturales y asegurar el uso racional y sostenible de los mismos y tiene por objeto establecer las normas para la conservación, protección, mejoramiento y restauración del medio ambiente y los recursos naturales, sus disposiciones son de orden público; es decir: de obligatorio cumplimiento.

Arto. 102.-Las infracciones administrativas atendiendo a la gravedad del caso se clasificarán en: a) Leves; b) Graves c) Muy Graves

Arto. 104.- Para la exploración y aprovechamiento de los recursos naturales no renovables, además de respetar las medidas restrictivas de protección de los recursos minerales o del subsuelo en general, la autoridad competente deberá obligatoriamente:

- 1) Asegurar el aprovechamiento racional de las materias primas y la explotación racional de los yacimientos.
- 2) Exigir el tratamiento y disposición segura de materiales de desecho.
- 3) Promover el uso eficiente de energía.
- 4) Impedir la alteración, directa o indirecta, de los elementos de los ecosistemas, especialmente los depósitos de desmontes, relaces y escorias de las minas.
- 5) Asegurar la protección de las áreas protegidas y de los ecosistemas frágiles y la restauración de los ambientes que se vean degradados por las actividades de aprovechamiento de los recursos no renovables.
- **Arto. 109.-** Todos los habitantes tienen derecho a disfrutar de un ambiente sano de los paisajes naturales y el deber de contribuir a su preservación. El Estado tiene el deber de garantizar la prevención de los factores ambientales adversos que afecten la salud y la calidad de vida de la población, estableciendo las medidas o normas correspondientes.
- **Arto. 112.-** "Serán objeto de normación y control por las autoridades competente, todos los procesos, maquinarias y equipos, insumos, productos y desechos, cuya importación, exportación, uso o manejo pueda deteriorar el ambiente o los recursos naturales o afectar la salud humana".
- **Arto.** 113.- Se prohíbe el vertimiento directo de sustancias o desechos contaminantes en suelos, ríos, lagos, lagunas y cualquier otro curso de agua.

El Ministerio de Salud en coordinación con el Ministerio del Ambiente y los Recursos Naturales, dictará las normas para la disposición, desecho o eliminación de las sustancias, materiales y productos o sus recipientes, que por su naturaleza tóxica puedan contaminar el suelo, el subsuelo, los acuíferos o las aguas superficiales.

Arto. 121.- Las actividades que afecten a la salud por su olor, ruido o falta de higiene serán normados y regulados por el Ministerio de Salud.

4. Ley 618 "Ley General de Higiene y Seguridad del Trabajo"

La presente ley es de orden público, tiene por objeto establecer el conjunto de disposiciones mínimas que, en materia de higiene y seguridad del trabajo, el Estado, los empleadores y los trabajadores deberán desarrollar en los centros de trabajo, mediante la promoción, intervención, vigilancia y establecimiento de acciones para proteger a los trabajadores en el desempeño de sus labores; su Reglamento y las Normativas son de aplicación obligatoria a todas las personas naturales o jurídicas, nacionales y extranjeras que se encuentran establecidas o se establezcan en Nicaragua, en las que se realicen labores industriales, agrícolas, comerciales, de construcción, de servicio público y privado o de cualquier otra naturaleza. Sin perjuicio de las facultades y obligaciones que otras Leyes otorguen a otras instituciones públicas dentro de sus respectivas competencias.

Artículo 38.- Los fabricantes, importadores, suministradores y usuarios deben de remitir al Ministerio del Trabajo ficha de seguridad de los productos que debe contener los siguientes datos:

- a) Información científico técnica, traducido oficialmente al idioma español y lenguas de las Regiones Autónomas de la Costa Atlántica;
- b) Identidad de la sustancia o producto. Etiqueta de tóxico, simbología internacional:
- c) Propiedades físicas y químicas;
- d) Aspectos relacionados con su uso y aplicación; y
- e) Indicaciones y contraindicaciones del producto.

Artículo 39.- Se debe suministrar la información necesaria para utilizar correctamente los productos químicos e indicar las medidas preventivas adicionales que deberán adoptarse en casos especiales y del uso de los equipos de protección a utilizar para cada caso.

Artículo 244.- El personal que manipula sustancias químicas, deberá estar debidamente autorizado e instruido de los riesgos a que están expuestos.

5. Ley 274 "Ley Básica para la Regulación y Control de Plaguicidas, Sustancias Toxicas, Peligrosas y Otras Similares"

Establece las normas de carácter general para definir los procedimientos y requisitos atingentes a la regulación y control de plaguicidas, sustancias tóxicas, peligrosas y otras similares, de conformidad a lo dispuesto en la Ley N° 274.

Arto. 23.- Las sustancias químicas, agentes biológicos y productos formulados llevarán una etiqueta y un panfleto en español y deberán cumplir con la normativa que para estos fines determine la Autoridad de Aplicación.

Arto. 24.- El envase que contenga sustancias químicas, agentes biológicos y productos formulados deberá cumplir con la normativa de envasado que determine la Autoridad de Aplicación, en coordinación con la Autoridad Competente.

Arto. 50.- Las sustancias químicas, agentes biológicos y productos formulados que no cumplan con las especificaciones del etiquetado, panfleto y envasado, serán retenidas, y sancionadas de acuerdo con lo dispuesto en la Ley y el Reglamento.

6. Ley 620 "Ley General de Aguas Nacionales"

La Ley 620 establece el marco para la gestión, conservación y preservación de los recursos hídrico. En el Arto. 13 de la Ley, se describen los Principios Rectores de los Recursos hídricos y en el inciso c) sobre Preservación y Defensa establece que "el agua es un recurso vital, limitado, vulnerable y finito cuya preservación y sustentabilidad es tarea fundamental e indeclinable del Estado y de la sociedad en su conjunto…"

Arto. 104.- "Las personas naturales y jurídicas, públicas o privadas que efectúen vertidos de aguas residuales a los cuerpos receptores a que se refiere la presente Ley, deberán de tratar las aguas residuales previamente a su vertido a los cuerpos receptores".

Decretos y Reglamentos

1. Reglamento para los Vertidos de Aguas Residuales a Cuerpos Receptores y Alcantarillados Sanitarios (Decreto 33-95).

El decreto 33-95 regula las descargas de agua residual de todas aquellas actividades domésticas e industriales que viertan a los cuerpos receptores y alcantarillado sanitario mediante el establecimiento de valores permisibles o rangos de vertidos.

- **Arto. 4.-** Las personas naturales o jurídicas, públicas o privadas que realicen actividades de las cuales se deriven efluentes líquidos, deberán cumplir con las condiciones exigidas en las siguientes disposiciones.
- **Arto. 5.-** En general, se requerirá de un tratamiento correctivo a las aguas residuales previo a su descargue a la red pública de alcantarillado sanitario, cuando la calidad del flujo pueda causar:
- a) Corrosión de las tuberías o daños a las junturas.
- b) Fuego o explosión en las tuberías con el consecuente peligro para el personal que labora en la operación y mantenimiento de las alcantarillas.
- c) Inhibición parcial o total de los procesos de tratamiento.
- d) Alteración de la capacidad hidráulica de las tuberías.
- **Arto. 6.-** Se prohíbe la descarga de aguas residuales a las redes de alcantarillado sanitario cuando estas contengan los siguientes contaminantes:
- Hidrocarburo
- BPC (bifenil policlorados)
- Plaguicidas
- Compuestos tóxicos

- Desechos radioactivos
- Desechos químicos peligrosos
- Desechos industriales peligrosos
- Desechos patológicos peligrosos

Arto.19- Los parámetros de calidad de vertidos líquidos que sean descargados en las redes de alcantarillado sanitario del país, provenientes de vertidos domésticos y actividades industriales y agropecuarias autorizadas deberán cumplir los rangos y límites máximos permisibles siguientes:

Tabla 3.2 Arto.19 -Parámetros Fisicoquímicos y Límites Máximos para las Descargas en Redes de Alcantarillado.

PARAMETROS FISICOS	LIMITES MAXIMOS O
QUIMICOS	RANGOS
Temperatura ° C	50
PH	6.10
Conductividad Eléctrica	5,000
(micromhos/cm)	
Aceites y Grasas totales (mg/l)	150
Aceites y grasas Minerales (mg/l)	20
Demanda Bioquímica de Oxigeno (mg/l)	400
Demanda Química de Oxígeno (DQO) (MG/L)	900
Fósforo Total (mg/l)	
Parámetros Físicos-Químicos Límites	Máximos o Rangos
Notrógeno total (mg/l)	
Sólidos Flotantes	Ausentes
Sólidos Suspendidos (mg/l)	400
Sólidos Totales (mg/l)	1,500
Mercurio (mg/l)	0.02
Arsénico (mg/i)	1.0
Cadmio (mg/l)	1.0
Cromo Hexavalante (mg/l)	0.5
Cromo Trivalante (mg/i)	3
Cianuro (mg/l)	2
Cobre (mg/l)	3
Plomo (mg/l)	1
Fenoles (mg/l)	1
Níquel (mg/l)	3
Zinc (mg/l)	3
Plata (mg/l)	5
Selenio (mg/l)	5
Sulfuros (mg/l)	5
Sustancias Tensoactivas que	10
reaccionan con el azul de mitileno	
(mg/l)	
Hierro (mg/l)	50
Cloruro (mg/l)	1500
Sulfatos (mg/l)	1500
Floruros (mg/l)	50

Fuente: Decreto 33-95 (1995)

Actualmente el Decreto 33-95 se encuentra en revisión, en esta nueva propuesta se incluye un artículo específico para laboratorios de ensayo y los parámetros máximos para descarga en redes de alcantarillado. (Decreto No. 21-2017, publicado en la Gaceta Diario Oficial No. 229 del 30 de Noviembre de 2017).

Política para la Gestión Integral de Residuos Sólidos (Decreto No. 47-2005)

Arto. 1.- Objeto. El presente Decreto tiene por objeto establecer la Política Nacional sobre la Gestión Integral de los Residuos Sólidos Peligrosos y No Peligrosos 2005-2023, así como los principios y lineamientos que la integran, definiciones, planes, acciones y estrategias para su implementación en el territorio nacional.

Arto. 2.- Objetivos Generales de la Política. La Política Nacional sobre la Gestión Integral de Residuos Sólidos tiene como objetivo general lograr el manejo integral de los residuos sólidos, no peligrosos y peligrosos incorporando los aspectos técnicos, administrativos, económicos, ambientales y sociales dirigidos a evitar y minimizar la generación de los mismos, fomentando su valorización y reduciendo la cantidad de residuos destinados a disposición final, a fin de prevenir y reducir sus riesgos para la salud y el ambiente, disminuir las presiones que se ejercen sobre los recursos naturales y elevar la competitividad de los sectores productivos, en un contexto de desarrollo sustentable y de responsabilidad compartida.

La Política Nacional en su Arto. 2, establece como objetivo general lograr el manejo integral de los residuos sólidos, no peligrosos y peligrosos incorporando todos los aspectos dirigidos a evitar y minimizar la generación de los mismos, a fin de prevenir y reducir sus riesgos para la salud y el ambiente, disminuir las presiones que se ejercen sobre los recursos naturales y elevar la competitividad de los sectores productivos, en un contexto de desarrollo sustentable y de responsabilidad compartida.

La política define entre otros, el Plan de Manejo Integral de los Residuos Sólidos como instrumento de la gestión integral de los mismos a lo que se suma el Plan de Educación Ambiental y la Participación Ciudadana como lineamientos y principios de esta política.

3. Política Nacional para la Gestión Integral de Sustancias y Residuos Peligrosos (Decreto 91-2005)

Arto. 1.- "El presente Decreto tiene por objeto establecer la Política Nacional para la Gestión Integral de Sustancias y Residuos Peligrosos, su marco de referencia, los principios y lineamientos que orientarán los planes, programas, estrategias y acciones de la administración pública, de la sociedad civil de la población nicaragüense en general, así como constituir el sistema para lograr una gestión eficiente de las sustancias y residuos peligrosos, durante las diferentes etapas de su ciclo de vida, con el fin de proteger la salud humana y el ambiente, mejorar la calidad de vida y proporcionar la oportunidad de un desarrollo sustentable".

Normas Técnicas Obligatorias Nicaragüenses (NTON) y Resoluciones Ministeriales

1. Norma Técnica No. 05 015-02, Para el Manejo y Eliminación de Residuos Sólidos Peligrosos

Esta norma tiene por objeto establecer los requisitos técnicos ambientales para el almacenamiento, recolección, transporte, tratamiento y disposición final de los residuos sólidos peligrosos que se generen en actividades industriales establecimientos que presten atención médica, tales como clínicas y hospitales, laboratorios clínicos, laboratorios de producción de agentes biológicos, de enseñanza y de investigación, tanto humanos como veterinarios y centros antirrábicos. En su Arto 5, Inciso 5, que para los efectos de esta norma será considerado peligroso, todo residuo sólido que pueda causar daño, directa o indirectamente, a seres vivos o contaminar el suelo, el agua, la atmósfera.

Acápite 6. Criterios para el almacenamiento temporal de Residuos sólidos peligrosos en el sitio de generación.

Acápite 7. Disposiciones para la recolección y transporte de Residuos Peligrosos.

2. Norma Técnica No. 015-014-01 Para el Manejo, Tratamiento y Disposición Final de los Desechos Sólidos No Peligrosos

Esta norma tiene por objeto establecer los criterios técnicos y ambientales que deben cumplirse en la ejecución de actividades de manejo, tratamiento y disposición final de los desechos sólidos no peligrosos, a fin de proteger el medio ambiente, siendo su ámbito de aplicación todo el territorio nacional y de cumplimiento obligatorio para todas las personas naturales y jurídicas que realicen el manejo, tratamiento y disposición final de desechos sólidos no peligrosos.

3. Norma Técnica Ambiental No. 02 010-02 para la Clasificación Ecotoxicológica y Etiquetado de Plaguicidas, Sustancias Tóxicas, Peligrosas y Otras Similares

Esta normativa técnica corresponde a la protección ambiental, es decir, protege el ambiente de los efectos adversos producidos por el uso y manejo de los plaguicidas, sustancias tóxicas, peligrosas y otras similares.

1. Objeto

La presente norma tiene por objeto:

1.1 Establecer los criterios generales para la clasificación ecotoxicológica, así como para la selección de las indicaciones y símbolos de peligro y frases de riesgo que deberán figurar en la etiqueta de los plaguicidas, sustancias tóxicas, peligrosas y otras similares que se comercialicen en el país, con la finalidad de

identificar todas las propiedades de peligrosidad de los plaguicidas, sustancias tóxicas, peligrosas y otras similares, que constituyan un riesgo, para el ambiente, para que una vez identificadas todas estas propiedades se proceda a etiquetarse, señalando en que consiste el riesgo.

1.2 El propósito de señalar los riesgos ambientales en la etiqueta es para informar a los usuarios y al público en general sobre los mismos y sobre las medidas de precaución que se deben tomar al emplear y manipular estas sustancias y productos.

4. Resolución Ministerial No. 009-99: Estrategia para la Prevención y Control de la Contaminación

Arto. 3.- "Solicitar a todas las instituciones, pequeños, medianos, grandes empresarios, organizaciones no gubernamentales, y población en general apoyar la aplicación de la estrategia para la prevención y el control de la contaminación, por cuanto contribuirá al desarrollo sostenible y mejorará la calidad de vida de la población".

3.2.2 Legislación Ambiental Internacional

NTP- ISO 14001 es una norma aceptada internacionalmente que establece cómo implantar un Sistema de Gestión Ambiental (SGA) eficaz. La norma se ha concebido para gestionar el delicado equilibrio entre el mantenimiento de la rentabilidad y la reducción del impacto ambiental.

Su implementación se basa en el Sistema de Administración de Negocios, el compromiso de la institución, es un proceso sistemático para identificar "Aspectos Ambientales", procesos para manejar (monitorear y controlar) los "Aspectos Ambientales Significativos", un mecanismo para impulsar la mejora continua (los objetivos ambientales y metas detalladas), procesos sistemáticos de verificación de la implementación, y un rol preponderante de los responsables para asegurar la eficacia del sistema (USAID, 2010).

3.3 Residuos

Según la Agencia de Protección Ambiental de Estados Unidos (USEPA), residuo es todo material (sólido, semi-sólido, líquido o contenedor de gases) descartado, es decir, que ha sido abandonado, es reciclado o considerado inherentemente residual. Los residuos de laboratorio son usualmente mezclas, soluciones contaminadas y sustancias, e inusuales agentes químicos.

3.3.1 Clasificación de los Residuos

Los residuos de laboratorio se pueden clasificar según Fernández (2008) de manera general considerando sus características, de la siguiente forma:

Residuos no Peligrosos: son todos aquellos desechos o combinación de desechos que no representan un peligro inmediato o potencial para la salud humana o para otros organismos vivos. Dentro de los desechos no peligrosos están: Desechos domiciliares, comerciales, institucionales, de mercados y barrido de calles (Ortiz & Sosa, 2010).

Residuos Peligrosos: son aquellos residuos que por su naturaleza son inherentemente peligrosos, pudiendo generar efectos adversos para la salud o el ambiente. Dentro de estos tenemos: Residuos químicos, farmacéuticos, radioactivos, detergentes (Martínez, 2005).

De forma genérica según la Ley General del Medio Ambiente y los Recursos Naturales de Nicaragua (Ley 217), se entiende por residuos peligrosos aquellos que, en cualquier estado físico, contengan cantidades significativas de sustancias que pueden presentar peligro para la vida o salud de los organismos vivos cuando se liberan al ambiente o si se manipulan incorrectamente debido a su magnitud o modalidad de sus características corrosivas, tóxicas, venenosas, reactivas, explosivas, inflamables, biológicamente perniciosas, infecciosas, irritantes o de cualquier otra característica que representen un peligro para la salud humana, la calidad de la vida, los recursos ambientales o el equilibrio ecológico.

3.3.2 Características de Peligrosidad

En la Tabla 3.3 se detallan las características de peligrosidad establecidas para todo residuo denominado peligroso:

Características de peligrosidad	Descripción
0	Un residuo es corrosivo si presenta cualquiera de las siguientes propiedades: - Ser acuoso y presentar un pH menor o igual a 2 o mayor o igual
Corrosividad	 a 12.52; Ser líquido y corroer el acero a una tasa mayor que 6.35 mm al año a una temperatura de 55 °C, de acuerdo con el método NACE (National Association Corrosion Engineers), Standard TM-01-693, o equivalente.
Reactividad	Un residuo es reactivo si muestra una de las siguientes propiedades:

Tabla 3.3 Características de Peligrosidad para Residuos Peligrosos.

inmediata sin detonar.

Ser normalmente inestable y reaccionar de forma violenta e

Características de	Descripción
peligrosidad	Descripcion
	 Reaccionar violentamente con agua. Generar gases, vapores y humos tóxicos en cantidades suficientes para provocar daños a la salud o al ambiente cuando es mezclado con agua. Poseer, entre sus componentes, cianuros o sulfuros que, por reacción, libere gases, vapores o humos tóxicos en cantidades suficientes para poner en riesgo a la salud humana o al ambiente. Ser capaz de producir una reacción explosiva o detonante bajo la acción de un fuerte estímulo inicial o de calor en ambientes confinados.
Explosividad	 Un residuo es explosivo si presenta una de las siguientes propiedades: Formar mezclas potencialmente explosivas con el agua. Ser capaz de producir fácilmente una reacción o descomposición detonante o explosiva a 25 °C y 1 atm. Ser una sustancia fabricada con el objetivo de producir una explosión o efecto pirotécnico. La Agencia de Protección Ambiental de los Estados Unidos (USEPA), considera a los residuos explosivos como un sub-grupo de los residuos reactivos. En este documento cada característica ha sido definida independientemente.
Toxicidad	Un residuo es tóxico si tiene el potencial de causar la muerte, lesiones graves, efectos perjudiciales para la salud del ser humano si se ingiere, inhala o entra en contacto con la piel. Para este efecto se consideran tóxicos los residuos que contienen los siguientes constituyentes según PNUMA (1989), Ver Anexo B
Inflamabilidad	 Un residuo es inflamable si presenta cualquiera de las siguientes propiedades: Ser líquido y tener un punto de inflamación inferior a 60 °C, conforme el método del ASTM-D93-79 o el método ASTM-D-3278-78 (de la American Society for Testing and Materials), con excepción de las soluciones acuosas con menos de 24% de alcohol en volumen. No ser líquido y ser capaz de, bajo condiciones de temperatura y presión de 25 °C y 1 atm, producir fuego por fricción, absorción de humedad o alteraciones químicas espontáneas y, cuando se inflama, quemar vigorosa y persistentemente, dificultando la extinción del fuego. Ser un oxidante que puede liberar oxígeno y, como resultado, estimular la combustión y aumentar la intensidad del fuego en otro material.

Fuente: USEPA, 1980

3.4 Programa de Gestión de Residuos para Laboratorios

Se debe tener en cuenta que el diseño de un sistema de gestión de residuos y en particular el de residuos peligrosos será complejo en atención a la diversidad de actores que intervienen y la amplia variedad de tipos de residuos que lo componen.

Históricamente la política de gestión de residuos se centraba en la búsqueda disposición final segura, en un modelo de gestión de "fin de tubería". Esta visión, parcializada del problema, ha evolucionado hacia un enfoque estratégico integral que cubre todo el ciclo de vida de los productos y residuos. Es así que la disposición final, si bien sigue siendo necesaria, es un elemento más en la gestión de residuos, dejando de ser el centro de atención a la hora de implementar mejoras (Martínez, 2005).

Según Fernández (2008) y Díaz, (2000), el sistema de gestión de residuos considera todas aquellas actividades que briden a estos un destino final más adecuado, de acuerdo con sus características; y tiene que establecer procedimientos de trabajo que incluyan los siguientes puntos:

- Clasificación y Selección de los residuos según tipología, propiedades fisicoquímicas, las posibles reacciones de incompatibilidad y el tratamiento final.
- Recolección Selectiva (tipo de envases, etiquetado, transporte y almacenamiento)
- Normas de Seguridad para la manipulación, transporte y almacenamiento.

3.4.1 Clasificación y Selección

La implementación del programa de gestión de residuos implica el desarrollo de un plan que consiste básicamente en agrupar y clasificar los residuos de acuerdo con sus características y propiedades (Fernández, 2008).

Esta etapa conlleva a evitar riesgos debidos a la manipulación, transporte o almacenamiento inseguros de los residuos. Asimismo, facilita el tratamiento que debe de efectuarse para su eliminación (Fernández, 2008). Primeramente, todo residuo producido en el área del laboratorio debe clasificarse como peligroso o no peligroso.

Los residuos peligrosos provenientes del laboratorio teniendo en cuenta las propiedades fisicoquímicas de los mismos, las posibles reacciones de incompatibilidad en caso de mezcla y el tratamiento final de los mismos; estos se pueden clasificar en siete grupos, según Fernández (2008).

Grupo I. Disolventes Halogenados

Comprenden este grupo los líquidos orgánicos que contienen más de 2% de algún halógeno. Son productos muy tóxicos e irritantes y en algunos casos cancerígenos.

Se incluyen dentro de este grupo los productos que resultan de la mezcla de disolventes halogenados y no halogenados siempre que el porcentaje de halógenos sea de 2%. Ejemplo, Cloroformo, Bromoformo, etc.

Tabla 3.4 Clasificación Disolventes Halogenados.

Familia Disolventes	Disolventes Específicos
Hidrocarburos Alifáticos	Cloroformo, cloruro de metileno, tricloroetileno, tetracloruro de carbono, triclorotrifluoretano, bromometano, iodometano
Hidrocarburos Aromáticos	Clorobenceno, diclorobenceno, diclorofeno, bromotolueno, bromobutano, bromotolueno, clorotolueno, hexafluorobenceno, iodobenceno
Alcoholes Halogenados	Bromoanilina, clorobencilamina, iodoanilina, dicloroanilina, tricloroanilina
Esteres Halogenados	Bromoacetatos, cloroacetatos, cloroporpionatos, cloroformiatos
Amidas halogenadas	Bromoacetanilida, cloroacetamida, Ac. ortoiodohipúrico

Fuente: Fernández, 2008.

Grupo II. Disolventes no Halogenados

Este grupo comprende los líquidos orgánicos inflamables que contengan menos de un 2% en halógenos. Son productos inflamables y tóxicos y, entre ellos, se pueden citar los alcoholes, aldehídos, amidas, cetonas, ésteres, glicoles, hidrocarburos alifáticos, hidrocarburos aromáticos y nitrilos.

Es importante señalar que, dentro de este grupo, se debe evitar mezclas de disolventes que sean inmiscibles, ya que la aparición de fases diferentes dificulta el tratamiento posterior.

Grupo III. Disoluciones Acuosas

Según Fernández (2008) este grupo corresponde a las soluciones acuosas de productos orgánicos e inorgánicos. Se trata de un grupo muy amplio y por eso es necesario establecer subdivisiones, tal como se indica a continuación. Estas subdivisiones son necesarias, ya sea para evitar reacciones de incompatibilidad o por requerimiento de su tratamiento posterior:

Soluciones acuosas inorgánicas:

- Soluciones acuosas básicas: Hidróxido sódico, hidróxido potásico.
- Soluciones acuosas de metales pesados: Níquel, plata, cadmio, selenio.
- Soluciones acuosas de cromo VI.
- Otras soluciones acuosas inorgánicas: sulfatos, fosfatos, cloruros.

Soluciones acuosas orgánicas o de alta DQO:

- Soluciones acuosas de colorantes.
- Soluciones de fijadores orgánicos: Formol, fenol, glutaraldehído.
- Mezclas agua/disolvente: Eluyentes de cromatografía, metanol/agua.

Tabla 3.5 Clasificación Disolventes no Halogenados.

Familia Disolventes	Disolventes Específicos
Hidrocarburos cíclicos	Ciclohexano, metilciclohexano
Derivados de hidrocarburos Alifáticos	Pentano, hexano, decano, dimetilformamida (DMF), acetonitrilo
Hidrocarburos aromáticos	Benceno, tolueno, xileno, estireno, cumeno,
Alcoholes	Metanol, etanol, isopropanol (IPA), butanol, alcohol amílico, alcohol alílico, etilenglicoles, polialcoholes
_	Acetona, metilbutilcetona, propanona,
Cetonas	ciclohexilbutilcetona, cetonas aromáticas
Esteres	Acetato de metilo, acetato de etilo, acetato de butilo, acetato de amilo, lauratos, succinatos, glutaratos, acrilatos
Aminas alifáticas	Butilamina, metilamina, trietilamina
Aminas aromáticas	Anilina, toluidina, fenilendiamina, nitroanilina, clorroanilina, metilanilina, fenilpiperacina
Hidrocarburos aromáticos Policíclicos	Antraceno, bifenilo, naftaleno, fluoreno, indeno, pireno
Compuestos sulfurados	Tiofenol, etilmercaptano (etanotiol), sulfuro de dialilo, sulfuro de dimetilo, difenilodisulfuro
Otros	Dimetilsulfóxido (DMSO), sulfuro de carbono, dioxano, tetrahidrofurano (THF), sulfato de metilo, sulfato de etilo

Fuente: Fernández, 2008.

Grupo IV: Ácidos

Corresponden a este grupo los ácidos inorgánicos y sus soluciones acuosas concentradas (más del 10% en volumen). Debe tenerse en cuenta que su mezcla, en función de la composición y la concentración, puede producir alguna reacción química peligrosa con desprendimiento de gases tóxicos e incremento de temperatura. Para evitar este riesgo, antes de hacer mezclas de ácidos concentrados en un mismo envase, debe realizarse una prueba con pequeñas cantidades y, si no se observa reacción alguna, llevar a cabo la mezcla. Caso contrario, los ácidos se recogerán por separado (Fernández, 2008).

Grupo V: Aceites

Este grupo corresponde a los aceites minerales derivados de muestras analizadas, operaciones de mantenimiento, etc. En caso de existir la sospecha de que los aceites estén contaminados con compuestos bifenilospoliclicíclicos (PCB's) se recomienda, recogerlos separadamente, para facilitar su eliminación.

Grupo VI: Sólidos

Se clasifican en este grupo los productos químicos en estado sólido de naturaleza orgánica e inorgánica y el material desechable contaminado con productos químicos. No pertenecen a este grupo los reactivos puros obsoletos en estado sólido (grupo VII). Fernández (2008), establece los siguientes subgrupos de clasificación dentro del grupo de Sólidos:

Sólidos orgánicos: a este grupo pertenecen los productos químicos de naturaleza orgánica o contaminada con productos químicos orgánicos como, por ejemplo, carbón activo o gel de sílice impregnados con disolventes orgánicos.

Sólidos inorgánicos: productos químicos de naturaleza inorgánica. Por ejemplo, sales de metales pesados.

Material desechable contaminado: material contaminado con productos químicos. En este grupo se pueden establecer subgrupos de clasificación, por la naturaleza del material y la naturaleza del contaminante.

Grupo VII: Especiales

A este grupo pertenecen los productos químicos, sólidos o líquidos, que, por su elevada peligrosidad, no deben ser incluidos en ninguno de los otros grupos, así como los reactivos puros obsoletos o caducados. Estos productos no deben mezclarse entre sí ni con residuos de los otros grupos. Ejemplo:

- Comburentes (peróxidos)
- Compuestos pirofóricos (magnesio metálico en polvo)
- Compuestos muy reactivos [ácidos fumantes, cloruros de ácido (cloruro de acetilo), metales alcalinos (sodio, potasio), hidruros (borohidrurosódico, hidruro de litio), compuestos con halógenos activos (bromuro de benzilo), compuestos polimerizables (isocianatos, epóxidos), compuestos peroxidables (éteres), restos de reacción, productos no etiquetados]
- Compuestos muy tóxicos (tetraóxido de osmio, mezcla crómica, cianuros, sulfuros, etc.)
- Compuestos no identificados

3.4.2 Recolección Selectiva

Envases o Contenedores

Fernández (2008) afirma que: deberán aportarse los recipientes adecuados para cada tipo de residuo considerando su estado físico, sus propiedades y el destino final del mismo. Cuando se trate de residuos no peligrosos no reciclables, el envasado se realiza en bolsas de basura soportadas en papeleras, que una vez llenas se depositan en los contenedores municipales de basura. En caso de residuos no peligrosos reciclables (como el papel y el vidrio), se recoge cada uno de ellos en contenedores específicos por separado y se depositan en los contenedores municipales destinados al efecto, también por separado.

El envasado y correspondiente separación de los residuos químicos peligrosos es algo más complejo. Para ello, se emplean distintos tipos de recipientes, dependiendo del tipo de residuo y de la cantidad producida. Para los residuos del grupo I al VII es recomendable emplear envases homologados para el transporte de materias peligrosas.

La elección del tipo de envase también depende de cuestiones logísticas como la capacidad de almacenaje del laboratorio. Algunos tipos de posibles envases a utilizar son los siguientes:

- Contenedores (garrafas) de polietileno de cinco o treinta litros de capacidad.
 Se trata de polietileno de alta densidad resistente a la mayoría de productos químicos.
- Bidones de polietileno de sesenta y noventa litros de capacidad y boca ancha, destinados al material desechable contaminado.
- Cajas estancas de polietileno con un fondo de producto absorbente, preparadas para el almacenamiento y transporte de reactivos obsoletos y otros productos especiales.

- Envases de seguridad, provistos de cortafuegos y compensación de presión, idóneos para productos muy inflamables (muy volátiles) o que desprendan malos olores.
- Envases de 1 ó 2 litros, para agujas, objetos punzantes o cortantes, puntas de pipeta. Una vez llenos se introducen en los envases para material desechable contaminado.

En la elección del tipo de envase debe tenerse en cuenta la posible incompatibilidad entre el envase y el residuo (Anexo C)

Identificación y Etiquetado

Todos los residuos y sus recipientes deberán estar identificados (indicación del productor) y correctamente etiquetados (indicación del contenido) de acuerdo con las disposiciones legales del país sobre clasificación, envasado y etiquetado del tipo de residuo. Debe tenerse en cuenta que un residuo es frecuentemente una sustancia o un preparado peligroso, y tiene que estar claramente advertido para que su manipulación pueda efectuarse en las condiciones de seguridad apropiadas (Fernández, 2008).

La identificación de los residuos químicos peligrosos debe incluir los datos de la unidad productora, el nombre del responsable del residuo y las fechas de inicio y final de llenado del envase. La función del etiquetado es permitir una rápida identificación del residuo, así como informar del riesgo asociado al mismo, tanto al usuario como al gestor, por lo que la etiqueta identificativa, además de los datos anteriores, debería incluir (Fernández, 2008):

- Pictogramas e indicaciones de peligro, de acuerdo con lo dispuesto en la legislación vigente (Anexo D)
- Etiqueta de color correspondiente al grupo que pertenece (Anexo E)
- Los riesgos específicos y consejos de prudencia que correspondan.
- Un espacio en blanco donde el productor hará constar el principal componente tóxico o peligroso del residuo (p.e., metanol, metales pesados, cromo, plomo, etc.).

Transporte y Almacenamiento

En función del sitio en el que se realiza la actividad y según la extensión temporal del almacenamiento, existen dos situaciones posibles:

Almacenamiento en el Laboratorio

La permanencia de los envases con residuos químicos en el laboratorio debe ser lo más corta posible y en cualquier caso nunca superior a los dos meses. El laboratorio debe disponer de un espacio adecuado para colocar los recipientes destinados a la recolección selectiva de residuos (ITM, COC, EAI, 2007).

El sector de almacenamiento debe estar claramente señalizado, provisto de carteles de advertencia, separado de eventuales fuentes de ignición, provisto de barreras físicas que impidan el contacto con otros recipientes y que permitan la contención de fugas o derrames.

Cada recipiente debe exhibir de manera clara y visible el rótulo que identifiquen el grupo al que pertenece su contenido y debe tenerse en cuenta las incompatibilidades en el almacenamiento (Llamas & Mercante, 2009).

Almacenamiento Común

Corresponde a los sectores que reúnen mayores cantidades de residuos por períodos temporales prolongados, requieren iluminación y ventilación adecuadas al tipo de materiales almacenados, limitación del ingreso al personal habilitado, registro de identificación de la fecha, procedencia, capacidad y contenido de los recipientes admitidos para el ingreso.

Se debe contar con un plan de contingencias para situaciones extraordinarias, equipamiento y elementos necesarios para la intervención inmediata, resguardo de las distancias de seguridad (Llamas & Mercante, 2009). El período máximo de almacenamiento no debe ser superior a un año (Fernández, 2008). Algunas posibles incompatibilidades pueden verse en el Anexo F.

3.4.3 Normas de Seguridad

El programa de gestión debe de incluir todas las informaciones relativas a la peligrosidad de los productos, a las condiciones de manipulación, tipos de envase, incompatibilidades y actuación en caso de derrames o vertidos y emergencias. En el Anexo G se enumeran una serie de medidas preventivas básicas sobre seguridad y salud.

3.4.4 Otras Consideraciones

Al mismo tiempo Fernández (2008), expresa que el programa de gestión de residuos debería incluir los siguientes actores y actividades:

Responsable o Responsables: debe nombrarse un responsable o responsables que supervisen y comprueben la correcta aplicación y ejecución del programa e informen a la Dirección.

Nivel de Recursos Necesarios: debe conocerse y evaluarse el costo del programa considerando todas las operaciones antes mencionadas.

Inventario: debe confeccionarse una relación de los residuos generados y mantenerla actualizada.

Identificación: todos los productos considerados como residuos deben estar clasificados e identificados en función de su peligrosidad y/o destino final.

Minimización/Reducción: deben estudiarse y valorarse las posibilidades de reutilización, recuperación, tratamiento en el propio laboratorio o racionalización de compras al objeto de reducir en lo posible la generación de residuos por vencimiento.

Almacén: debe disponerse de un espacio separado del laboratorio para almacén de residuos, provisto de los elementos de seguridad necesarios.

Recogida y Transporte: se deben facilitar los recipientes y etiquetas adecuados para la adecuada identificación, recogida y el transporte de los residuos.

Medidas de Seguridad: deben establecerse las medidas de seguridad necesarias indicando las garantías de protección a utilizarse, cuando se manipulen los mismos.

Actuación en caso de Accidentes/Incidentes: se deben dar las instrucciones de actuación en caso de vertidos o derrames, o de cualquier incidente que pueda producirse. Asimismo, deben indicarse las pautas de actuación en caso de una emergencia.

Formación e Información: todo el personal debe conocer el programa de gestión de residuos adoptado, su ejecución y la responsabilidad de cada uno en el mismo. Todas las informaciones sobre el programa deben proporcionarse por escrito.

3.4.5 Procedimientos Generales de Actuación (Minimización)

La minimización de residuos consiste en reducir el volumen y la peligrosidad de residuos generados, basándose en dos aspectos fundamentales:

Reducción en la Fuente y Reciclado

La reducción en la fuente y el reciclado consisten en una serie de procedimientos, los cuales se presentan en forma esquemática en la Figura 3.1 entre estas dos alternativas siempre debe preferirse la reducción en la fuente (Martínez, 2005).

Figura 3.1 Diagrama para la Minimización de Residuos.

Reducción de la Fuente

Según Fernández (2008) reducción de la fuente, se define como toda aquella actividad que reduce o elimina la generación de un residuo químico peligroso en un proceso. Ésta debe ser la opción preferida siempre que sea posible. Algunos métodos de reducción son los siguientes:

Cambio de reactivos

La generación de residuos peligrosos en el laboratorio se puede reducir sustituyendo ciertos reactivos tóxicos que se utilizan en los análisis o en las actividades relacionadas a los mismos, por otros cuya toxicidad sea menor o incluso que no sean tóxicos en absoluto.

Disminución de los volúmenes de reactivos químicos

Se pueden disminuir los volúmenes de reactivos químicos usados en los análisis realizando los análisis 'a escala' analizando menor volumen de muestra o aumentando el uso de instrumentación analítica. Los análisis con instrumentos requieren menores volúmenes de reactivos y generan menor cantidad de residuos. En todos los casos, es necesario validar los métodos de ensayo para demostrar que no afecta a la calidad de los resultados analíticos (Fernández, 2008).

Cambios de Procedimientos y Operación

La aplicación de unas buenas prácticas de laboratorio es muy importante en la reducción de los residuos, por ello es necesario incentivar a los responsables y

colaboradores del laboratorio a realizar control de inventarios y sobre todo desarrollar la conciencia de la necesidad de minimizar residuos.

Algunas actuaciones que pueden ayudar al control de la generación de residuos en los laboratorios es la siguiente (Fernández, 2008):

- Adquirir material no tóxico o el menos tóxico para el uso.
- Comprar sólo lo necesario. Un stock elevado, significa un mayor número de residuos generados por acumulación de reactivos no utilizados, o por caducidad de los mismos antes incluso de ser utilizados.
- Tratar de adquirir materiales y envases del tamaño y la cantidad necesitada.
- Promover el uso en conjunto de reactivos o el intercambio de los mismos entre usuarios comunes
- Mantener un inventario dinámico para los materiales en stock

Reciclado

Se tiene que promover la reutilización de productos químicos utilizados en el laboratorio, siempre que sea posible, así como el reciclaje de los mismos. Existe una serie de procesos que pueden realizarse sobre los residuos químicos peligrosos de modo que puedan volver a ser utilizados para el mismo u otro fin (Fernández, 2008).

Los más importantes pueden ser:

- Recuperación de disolventes a través de la destilación, para poder ser utilizados de nuevo, ya sea en la realización de nuevos análisis o bien en operaciones de homogeneización y limpieza.
- Recuperación de metales de los residuos mediante precipitación.

En algunos casos, el reciclado puede tener lugar fuera del laboratorio, ya que el producto recuperado (igual o diferente del contaminante originalmente considerado) puede ser útil para otras actividades distintas de las del laboratorio.

3.4.6 Eliminación de Residuos Generados en el Laboratorio

Los residuos generados en los laboratorios pueden tener características muy diferentes y producirse en cantidades variables, aspectos que inciden directamente en la elección del procedimiento para su eliminación (Gadea & Guardino, 1991).

Algunos aspectos importantes que considerar son los siguientes: Volumen de residuos generados, Periodicidad de generación, Facilidad de neutralización, Posibilidad de recuperación, reciclado o reutilización, Costo de tratamiento y de otras alternativas, y la Valoración del tiempo disponible.

Las eliminaciones de los residuos son diversas, y el que se apliquen unos u otros dependerá de los factores citados anteriormente, según Gadea & Guardino (1991) se utilizan generalmente los tratamientos presentados en la Tabla 3.6.

Tabla 3.6 Disposición y/o Tratamiento para la Reducción de Residuos.

Disposición y/o Tratamiento	Descripción y Aplicación
Vertido	Se recomienda para residuos peligrosos y no peligrosos, una vez reducida esta mediante neutralización o tratamiento adecuado, el vertido se puede disponer directamente a las aguas residuales o bien a un vertedero.
Incineración	Lo residuos son quemados en un horno y reducidos a cenizas. Es un método muy utilizado para eliminar residuos de tipo orgánico y material biológico. Debe controlarse la temperatura y la posible toxicidad de los humos producidos. La instalación de un incinerador solo está justificada por un volumen importante de residuos a incinerar o por una especial peligrosidad de los mismos.
Recuperación	Este procedimiento consiste en efectuar un tratamiento al residuo que permita recuperar algún o algunos elementos o sus compuestos que su elevado valor o toxicidad hace aconsejable no eliminar. Es un procedimiento especialmente indicado para los metales pesados y sus compuestos. Una vez recuperado un compuesto, la solución ideal es su reutilización o reciclado, ya que la acumulación de productos químicos sin uso previsible en el laboratorio no es recomendable.

Fuente: Gadea & Guardino, 1991.

En el Anexo H se muestra procedimientos de tratamiento previo a la eliminación o reciclaje de los residuos químicos peligrosos.

3.5 Aspectos Ambientales

Cada institución debe de contar con un diagnóstico ambiental que considere todos los aspectos ambientales de cada una de las actividades que se desarrollan, como base para establecer un sistema de gestión ambiental. Según la norma ISO 14001 (2004), los aspectos ambientales son elementos de las actividades, productos o servicios de una institución que pueden interactuar con el ambiente; o que tienen o pueden tener un impacto sobre él.

Los aspectos ambientales se identifican de las actividades y operaciones que se desarrollan, examinando las materias primas e insumos (reactivos), energía y agua. Una herramienta útil para realizar este análisis es el "mapeo de procesos",

el cual consiste en analizar las entradas y salidas de una actividad o proceso (USAID, 2009).

Es de gran importancia que se identifique y cuantifiquen los impactos ambientales de los aspectos ambientales reales identificados en el laboratorio, como las emisiones de gases, vertido de residuos líquidos a las alcantarillas, residuos sólidos, consumo de agua y energía. El diagrama de la Figura 3.2 muestra el origen, la causa y efecto de los aspectos y la ruta a seguir para la identificación de los aspectos ambientales significativos.

Figura 3.2 Diagrama para Identificar Aspectos Ambientales.

A continuación, se describen las actividades requeridas para la identificación caracterización y clasificación de los aspectos ambientales en un proceso (p.e. laboratorio).

3.5.1 Identificación de Aspectos Ambientales

La norma ISO 14001 (2004), tiene diferentes referencias a los "aspectos ambientales". Probablemente la más importante es la referencia al alcance del Sistema de Gestión Ambiental. Se debe identificar los aspectos ambientales que puede controlar y sobre los que (razonablemente) se pueda esperar tenga influencia, requiriendo para esto que se haga el esfuerzo de identificar sus aspectos ambientales de una manera sistemática para asegurar que no se ha dejado algo fuera de control.

Por lo general, hay dos categorías de aspectos ambientales: los que son regulados directamente por la legislación o reglamentos ambientales, y los que no son regulados (USAID, 2010):

Aspectos Ambientales Regulados: estos se identifican fácilmente en relación con las actividades y operaciones del laboratorio en conjunto con la legislación y reglamentación ambiental del país, estos aspectos regulados típicamente son las sustancias químicas, emisiones al aire y ruido, efluentes y descargas, y residuos peligrosos y no peligrosos (USAID, 2010).

Aspectos No Regulados: incluyen el uso de materiales (en ciertos casos el uso de materiales tóxicos es regulado), consumo de agua y energía, emisiones de CO₂, generación de residuos de cartón y papel de oficina (USAID, 2010).

Aspectos Ambientales de los "Servicios": se refiere a los aspectos ambientales en el proceso de preparación, elaboración y prestación de servicios al cliente (USAID, 2010).

"Servicios" también se refiere a los servicios auxiliares para el caso de laboratorios, tales como compresores de aire, almacenes de materiales, y otras operaciones auxiliares a las actividades del laboratorio.

Herramientas para Identificar los Aspectos Ambientales

El mapeo de procesos es una herramienta eficaz para asegurar que la identificación de los aspectos ambientales se realice de manera sistemática. El mapeo empieza con un diagrama de hasta cinco (5) etapas principales de la institución (USAID, 2010).

Figura 3.3 Mapeo de Procesos.

En el caso del laboratorio se identificaron las actividades principales que se desarrollan, las entradas y salidas de cada una de ellas con el mapeo de procesos.

3.5.2 Clasificación de los Aspectos Ambientales

Según el Comité Nacional de Gestión Ambiental de México (2010), los aspectos ambientales pueden clasificarse según su tiempo de ocurrencia, responsabilidad, tipo de impacto, amplitud geográfica y situación operacional, como se muestra en la Tabla 3.7, lo cual permitirá una mejor evaluación cuantitativa de los aspectos ambientales.

Tabla 3.7 Criterios para la Clasificación de los Aspectos Ambientales.

Criterios	Descripción					
	Pasado: actividades efectuadas anteriormente y que pueden o tienen consecuencias ambientales actuales.					
Tiempo de Ocurrencia	Presente: impactos ocasionados por actividades, productos y servicios actualmente realizadas por el laboratorio.					
	Futuro: impactos Ambientales derivados de futuras actividades, productos y servicios del laboratorio.					
Responsabilidad	Directa: actividad, producto o servicio que es directamente controlado por el laboratorio.					
	Indirecta: actividad, producto o servicio que solo puede ser influenciada o recomendada por el laboratorio					
Tipo de Impacto	Benéfico: mejora la condición del medio ambiente					
Tipo de impacto	Adverso: daña al medio ambiente					
Amplitud	Puntual: afecta solamente al recinto o área de estudio sin alterar a los vecinos					
Geográfica	Local: afecta al recinto y además a sus vecinos					
	Regional: afecta a una región determinada más allá del ámbito local.					
	Normal: actividades propias del proceso, que ha sido planificadas y son frecuentes.					
Situación Operacional	Anormal: situación que ha sido prevista y que es una desviación típica del proceso, como por ejemplo: roturas de arranque, UD, redes o colectores, activación de By-pass, operación de generadores, desviación en las dosificaciones, y otros propios de cada proceso.					

Criterios	Descripción
	Emergencias: situación que exige la interrupción inmediata de las actividades de los procesos, derivadas de situaciones como: derrames de productos químicos, fugas de gas, explosiones o incendios, inundaciones, derrames de aguas servidas en la vía pública, y otros propios de cada proceso.

Fuente: Comité Nacional de Gestión Ambiental de México, 2010.

Según el Comité Nacional de Gestión Ambiental de México (2010), para determinar el nivel de severidad, se evalúa si el aspecto ambiental cumple con los requisitos especificados en cada categoría. Se requiere que se cumpla con dos requisitos para establecer la severidad, y al cumplirse sólo uno de ellos, la severidad corresponderá a la categoría inmediatamente inferior.

3.5.3 Evaluación de los Aspectos Ambientales

Según la NTP-ISO 14001 (2004) las "entradas" y "salidas" identificadas en el mapeo de procesos son los "aspectos ambientales". Para poder evaluar su significancia, es importante cuantificar (cuando sea posible) el impacto ambiental de cada uno. Se deben agrupar todos los aspectos ambientales semejantes para facilitar la cuantificación.

El proceso de evaluación se realiza para poder discernir entre todos los aspectos ambientales identificados, cuáles de ellos son significativos y requieren establecer objetivos, metas y un programa para lograr mejoras permanentes en un sistema de gestión ambiental, controles operacionales y planes de emergencias.

A excepción del criterio de cumplimiento de la legislación, que por el sólo hecho de no cumplir con la legislación ambiental vigente, le asigna al aspecto la calificación de AAS (Aspecto Ambiental Significativo). En la Tabla 3.8 se presentan los criterios de evaluación con su descripción y valores respectivos.

Tabla 3.8 Criterios Utilizados en la Evaluación del Riesgo Asociado a un Aspecto Ambiental Identificado.

CRITERIO	DESCRIPCIÓN	VALOR
	Frecuente: existen antecedentes que un caso similar ocurrió a lo menos una vez en el último mes en el Laboratorio.	9
Probabilidad	Moderado: existen antecedentes que un caso similar ocurrió a lo menos una vez en los últimos 6 meses en el laboratorio.	7
(P)	Ocasional: existen antecedentes que un caso similar ocurrió a lo menos una vez en el último año en el laboratorio	5

CRITERIO	DESCRIPCIÓN	VALOR				
	Remoto: existen antecedentes que un caso similar ocurrió a lo menos una vez desde la operación de las instalaciones como Laboratorio.	3				
	Improbable: no se tienen antecedentes de que un caso similar haya ocurrido en otros laboratorios.	1				
	Muy Grave					
	Cumplimiento de la legislación: no cumple con la legislación ambiental vigente y/o no cumple con la Política Ambiental del Laboratorio.					
	Magnitud del efecto: puede causar daño a la salud de las personas y/o puede causar la muerte de flora o fauna.					
	Escala del efecto: el daño es muy importante o tiene un efecto regional.	7				
	Reversibilidad del efecto: no es reversible.					
	Preocupación de terceras partes interesadas: existe obligación legal de informar a la autoridad en forma sistemática y hay sanciones por no cumplimiento.					
Severidad	Impacto sobre la opinión pública: aparecer, por efectos negativos al medio ambiente, en la televisión de cobertura nacional por más de 1 semana, en la prensa escrita de circulación nacional durante más de 1 semana y/o en las radios por más de un mes.					
(S)	Grave					
	Cumplimiento de la legislación: existe legislación aplicable, pero no hay evidencia de su cumplimiento.					
	Magnitud del efecto: no hay daño a la salud de las personas, pero puede causar daño en los demás medios receptores.					
	Escala del efecto: el daño es importante o tiene un efecto local.					
	Reversibilidad del Impacto: tiene una reversibilidad después de 3 años.	5				
	Preocupación de terceras partes interesadas: existe obligación legal de informar a la autoridad en forma sistemática, sin probabilidad de sanciones.					
	Impacto sobre la opinión pública: aparecer, por efectos negativos al medio ambiente, en la televisión de cobertura nacional durante 1 a 5 días, en la prensa escrita de circulación nacional durante 3 a 5 días y/o en la radio durante 3 semanas.					

CRITERIO	DESCRIPCIÓN	VALOR
	Media	
	Cumplimiento de la legislación: existe legislación aplicable y se cumple.	
	Magnitud del efecto: se ocasiona sólo molestia al personal cercano al Laboratorio puede haber daño menor a los demás medios receptores.	
	Escala del efecto: el daño tiene una importancia media o tiene un efecto sólo sobre los vecinos inmediatos.	3
	Reversibilidad del Impacto: es reversible entre 1 y 3 años.	
	Preocupación de terceras partes interesadas: se recomienda informar a la autoridad.	
Severidad	Impacto sobre la opinión pública: aparecer, por efectos negativos al medio ambiente, en la televisión regional por 1 día o más, en la prensa escrita de circulación regional por 1 día o más y/o en la radio por 5 días o más.	
(S)	Insignificante	
	Cumplimiento de la legislación: no existe legislación aplicable.	
	Magnitud del efecto: el efecto no es perceptible por las personas, ni causa daños a los otros medios receptores.	
	Escala del efecto: el daño es insignificante y/o tiene un efecto sólo al interior de las instalaciones del Laboratorio.	
	Reversibilidad del Impacto: el daño es reversible en forma inmediata cuando se suspende la actividad.	1
	Preocupación de terceras partes interesadas: no es necesario informar a la autoridad.	
	Impacto sobre la opinión pública: aparecer, por efectos negativos al medio ambiente, en comentarios radiales locales y/o recibir reclamos orales y/o escritos del personal que interactúa o se encuentra en los alrededores del Laboratorio.	

CRITERIO	DESCRIPCIÓN										
		Muy Grave (7)	G rave (5)	Media (3)	Insignificante (1)						
	Frecuente (9)	Α	В	С	D						
	Moderado (7)	В	C	D	E						
	Ocasional (5)	c	D	E	F						
	R emoto (3)	D	E	F	G						
	Improbable (1)	E	F	G	Н						
Índice	Dónde: A: Crítico, se reducir el riesgo		ementar n	nedidas in	mediatas para						
Evaluación de Riesgo	B: muy Alto, se deben realizar controles u otras medidas periódicas para disminuir el riesgo										
-	C: alto, es recomendable implementar medidas de protección adicionales										
	D: medio, e periódicamente	•									
	E: moderado, se requiere seguimiento para ver si se mantienen los controles										
	F: bajo, con recomendaciones										
l	G: bajo, sin recomendaciones										
	H: sin Consecuencia										
	No controlado		biental, co	n situacion	es fuera de	-					
	Control, sin pro					5					
	Parcialmente d				ntrolado	•					
	parcialmente, e					3					
Control	Control, sin pro	cedimientos	asociados.								
(2)	Controlado: as	specto ambie	ntal contro	lado, sin ar	ntecedentes	4					
(C)	propios o exterr					1					
	procedimientos, y buen sistema de mantenimiento.										

Fuente: Comité Nacional de Gestión Ambiental de México, 2010.

La magnitud del riesgo ambiental (I) se determina por medio de la ecuación 3.1, si esta es igual o mayor a 15, el aspecto es calificado como significativo.

$$I = (P + S + C)$$
 (3.1)

IV. METODOLOGÍA

En este capítulo se describe la metodología empleada que permitió cumplir los objetivos propuestos del presente trabajo investigativo, el cual consistió en una evaluación cualitativa de los aspectos ambientales que se originan producto de las actividades y/o servicios que se desarrollan en el Laboratorio de Química RUSB, que generan como consecuencia un impacto sobre el ambiente.

4.1 Localización del Estudio

El sitio donde se realizó el estudio es la Facultad de Ingeniería Química ubicada en el recinto Simón Bolívar de la Universidad Nacional de Ingeniería, siendo el objeto de estudio el Laboratorio de Química RUSB, ubicado contiguo al Laboratorio de Ingeniería de Procesos, y es administrado por el Departamento de Química.

4.2 Tipo de Estudio

Según el nivel de profundidad, la investigación es descriptiva; principalmente porque se fundamentó en la observación, descripción y medición de características seleccionadas que permitieron un estudio más eficiente del fenómeno a tratar. Pero en ningún momento se pretendió establecer la forma de relación entre estas características.

Por otro lado, según el período de tiempo en que se desarrolla, es de corte transversal debido a que se desarrolló en un momento y tiempo definido, siendo estos el segundo semestre del 2012 y 2015.

4.3 Variables de Estudio

Las variables de estudio se basaron en el objetivo general de la misma, siendo estas los ejes principales de trabajo en los que se desarrolló el estudio. Las variables de estudio son: aspectos ambientales identificados en el laboratorio de Química RUSB.

4.4 Percepción de Estudiantes y Docentes sobre la Problemática Ambiental del Laboratorio de Química RUSB

Con el fin de conocer la percepción de los usuarios del Laboratorio de Química se diseñó un formato de encuesta, cuyo objetivo es obtener información cuantitativa. La encuesta fue dirigida a docentes y estudiantes de la Facultad de Ingeniería Química, detallada en el Anexo I. La información incluida en la encuesta se organizó así:

- El uso y las actividades que los usuarios llevan a cabo en el laboratorio.

- La forma en que los usuarios manipulan los residuos generados de estas actividades.
- La peligrosidad que los usuarios estiman que tienen las diferentes áreas del laboratorio (bodega de reactivos, área de trabajo, estantes de soluciones preparadas, etc.).
- Las alteraciones que observan durante el desarrollo de las actividades en esta unidad académica.
- Percepción de los usuarios del estado actual del laboratorio, en cuanto a ser una unidad académica que cumpla con las legislaciones y reglamentaciones de manejo de desechos del país.

La muestra para la implementación de las encuestas a estudiantes y docentes fue calculada con un nivel de confianza del 95% y un error del 10% de una población total de 559 personas, distribuidos en 519 estudiantes y 34 docentes en el primer semestre del año 2012, en la Tabla 4.1 se detalla la muestra obtenida, la cual es de 81 estudiantes y 25 docentes.

Tabla 4.1 Población y Muestra de Usuarios del Laboratorio.

Usuarios del	Usuarios del laboratorio				
ESTUDIANTES	Población	519			
ESTUDIANTES	Muestra	81			
DOCENTES	Población	34			
DOCENTES	Muestra	25			

Calculo Tamaño de la Muestra

$$n = \frac{k^{2}p*q*N}{(e^{2}(N-1))+k^{2}p*q}$$
(4.1)

- N: es el tamaño de la población o universo (número total de posibles encuestados).
- k: es una constante que depende del nivel de confianza que asignemos.
- e: es el error muestral deseado.
- p: es la proporción de individuos que poseen en la población la característica de estudio.
- q: es la proporción de individuos que no poseen esa característica, es decir, es 1-p.

k	1.15	1.28	1.44	1.65	1.96	2.00	2.58
Nivel de confianza	75%	80%	85%	90%	95%	95.5%	99%

$$n = \frac{1.96^2 * 0.5 * 0.5 * 519}{[10\%^2 * (519 - 1)] + 1.96^2 * 0.5 * 0.5} = 81 \text{ estudiantes}$$
(4.2)

$$n = \frac{1.96^2 * 0.5 * 0.5 * 34}{[10\%^2 * (34 - 1)] + 1.96^2 * 0.5 * 0.5} = 25 docentes$$
(4.3)

4.5 Clasificación de Residuos Químicos de Guías Prácticas del Laboratorio

Durante el segundo semestre del 2012 y 2015 las asignaturas que requirieron del uso del Laboratorio de Química RUSB demandaron impartir un total de 50 guías prácticas.

Con el fin de clasificar los residuos que se generan durante el desarrollo de las guías prácticas se seleccionó una muestra del 58% de las guías prácticas impartidas en el segundo semestre del 2012 y 2015

$$n = \frac{1.65^2 * 0.5 * 0.5 * 50}{[10\%^2 * (50 - 1)] + 1.65^2 * 0.5 * 0.5} = 29 \text{ guías prácticas}$$
(4.4)

4.5.1 Instrumento Colecta de Datos

Para proceder con el estudio de las guías prácticas seleccionadas, se desarrolló un instrumento para recopilar información in situ de las variables que permitieron definir la correcta clasificación, manipulación y disposición final de los desechos generados.

Mediciones In Situ

Las guías prácticas seleccionadas fueron presenciadas cuando los estudiantes las estaban desarrollando; es importante mencionar que la selección de estas guías prácticas fue sujeta a disponibilidad de estas mismas durante el segundo semestre académico.

En la Tabla 4.2 se muestran las asignaturas y la cantidad de prácticas de laboratorios que se seleccionaron para ser estudiadas, las cuales representan el 32% del total de guías prácticas de segundo semestre académico.

Tabla 4.2 Laboratorios programados en el Segundo Semestre Académico.

Asignatura	Laboratorios planificados	Prácticas de laboratorios analizadas
Química General I	8	2
Química General II	8	2
Química Analítica	8	1
Fisicoquímica I	3	0
Fisicoquímica II	4	2
Química Inorgánica	7	1
Química Orgánica I	8	3
Química Orgánica II	8	5
Total	50	16

Una vez que el responsable del laboratorio confirmaba las guías prácticas a ser impartidas durante la semana, se procedía con el análisis de estas, donde se identificaba para los reactivos sus nombres y fórmulas químicas, así como las reacciones químicas de cada ensayo y los productos con sus nombres y formulas químicas.

Una vez presente en el desarrollo de la guía práctica, se contabilizó la cantidad de estudiantes, los grupos de trabajo que se formaban y se procedió a realizar las respectivas mediciones:

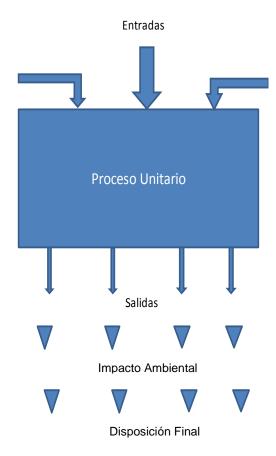
- Reactivos: a cada reactivo se le identificó el estado físico y volumen o masa; así mismo se consideró el volumen o masa de reactivos preparados que quedaron en exceso al no ser consumidos en su total en la actividad.
- Productos: a los residuos generados de los ensayos se les midió el volumen para el caso de los líquidos y la masa para los sólidos, así como el pH, se identificó el estado físico, apariencia y color.

4.5.2 Clasificación de Residuos

Una vez identificados los residuos generados durante las prácticas se realizó la clasificación de los residuos químicos, siguiendo lo establecido por Fernández (2008), así como las características de peligrosidad según la USEPA (1980), ambas se describen en los acápites 3.4.1 y 3.3.2 respectivamente. Todos estos datos se registraron en la Tabla 4.3 para su posterior análisis.

4.5.3 Manipulación de Residuos

Tomando en cuenta la clasificación de los residuos, las características de peligrosidad y las posibles reacciones de incompatibilidad en caso de mezcla de cada residuo, se propuso un tipo de almacenamiento, tomando como referencia lo propuesto por Fernández (2008) en el Anexo C, que permita evitar riesgos debido a una inadecuada manipulación, transporte o almacenamiento inseguro, así mismo se propuso un posible tratamiento que dependerá de las condiciones del laboratorio para llevarse a cabo.


Tabla 4.3 Instrumento de Colecta de Datos.

Asignatura:	
Nombre de la Practica:	
Grupo de clase:	
Año académico:	
No de estudiantes:	
Cantidad de grupos que la realizan:	

Γ		RE	ACTIVOS							PR	ODUCTOS								MANIPULACIÓN	DE RESIDUO
#	Nombre/ Fórmula	Estado Físico	Volumen	Volumen/ masa restante	REACCIÓN QUÍMICA	Nombre/ Fórmula	Volumen/ masa	С	aracterísti	cas Gener	ales	Clasif	ficad	ción de (gru	resid upos)		uími cos	Caracterísitcas	Tipo de	Posible
*	Química		/ masa	(reactivos preparados)		Química		рН	Estado	Aparienc ia	Color	1	II	Ш	IV	٧	VI VI	de peligrosidad	almacenamiento	tratamiento
1																				
2																				
(1)																				

4.6 Identificación de Aspectos Ambientales en el Laboratorio

Los aspectos ambientales se identificaron a través de la herramienta conocida como <u>mapeo de procesos</u> descrita por la USAID (2010), la cual permite analizar las entradas de materiales, insumos, así como las salidas de estos en cada actividad que se desarrolla en el laboratorio de Química RUSB, el impacto que generan en el medio ambiente y su disposición final (Figura 4.1).

Figura 4.1 Mapeo de Procesos para Análisis de Aspectos Ambientales.

La implementación del mapeo de procesos se llevó a cabo en dos áreas del laboratorio:

Área de Trabajo: donde se encuentran los instrumentos, reactivos a ser utilizados y donde se desarrollan las guías prácticas.

Área de Bodega: donde son almacenados los reactivos y soluciones preparadas.

Una vez identificados los aspectos ambientales, su impacto en el ambiente y disposición final, se procedió a identificar si éstos cumplían con normas y leyes nacionales con las cuales el laboratorio debe de regir el desarrollo de todas las actividades en esta unidad académica.

4.7 Clasificación y Evaluación de Aspectos Ambientales en el Laboratorio

Los aspectos ambientales identificados se clasificaron y evaluaron tomando en cuenta los criterios establecidos por el Comité Nacional de Gestión Ambiental de México (2010). Por tanto, se desarrolló un instrumento mostrado en el Anexo J (Tabla J.1) que permitió clasificar y evaluar los aspectos.

Los criterios utilizados para la clasificación cualitativa de los aspectos ambientales son; tiempo de ocurrencia, responsabilidad, tipo de impacto, amplitud geográfica y situación operacional. Estos criterios se detallan en la Tabla 3.7.

Por otro lado, la evaluación se realizó a través de los criterios de; probabilidad, severidad, índice de evaluación de riesgo, y control mostrados en la Tabla 3.8, siendo esta una valoración que permite detectar los aspectos ambientales significativos.

Mediante la ecuación 4.1 se determinó la magnitud del riesgo ambiental (I), el cual se utiliza para determinar qué aspectos ambientales son "Significativos", por medio del criterio siguiente; Si I es mayor a 15 entonces se considera significativo, los aspectos con magnitud del riesgo ambiental mayor a 15, pueden generar un impacto significativo en el ambiente, por lo que requieren prontas acciones correctivas.

$$I = P + S + C \tag{4.5}$$

Dónde: I: es la magnitud del riesgo ambiental, P: es la probabilidad, S: es la severidad, y C: es el control, sobre el aspecto ambiental respectivamente.

4.8 Procesamiento de Datos

El procesamiento de los datos obtenidos del muestreo se realizó mediante los principales programas del Paquete de Windows Office 2007, específicamente el programa de plantillas de cálculo, Excel 2007. Con el fin de facilitar la comprensión y análisis de los resultados, se hizo uso de tablas y de ilustraciones a través de gráficos.

V. PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS

5.1 Resultados de Encuestas a Docentes y Estudiantes

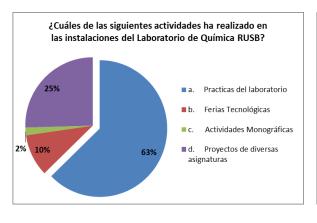
A través de encuestas previamente diseñadas, docentes y estudiantes de la carrera de Ingeniería Química, como usuarios activos expresaron sus opiniones sobre la situación actual del laboratorio de Química RUSB.

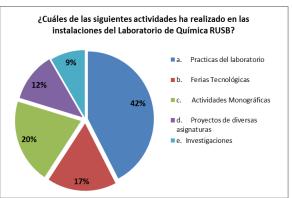
Según los resultados obtenidos de la encuesta de una población total de 553, incluyendo estudiantes (activos y egresados) y docentes, se extrajo una muestra total de 106, de la cual el 76.4% es representada por estudiantes y el 23.6% por docentes. Las muestras fueron calculadas con un nivel de confianza de 95% y un error del 10%. En la tabla 5.1 se refleja la distribución de la muestra.

Tabla 5.1 Participación de Usuarios en la Encuesta.

Usuarios	Población	Muestra	Participación (%)
Estudiantes	519	81	76.4%
Docentes	34	25	23.6%
Total	553	106	100%

A continuación, se destacan los resultados por cada tema y/o pregunta reflejada en la encuesta, así mismo en el Anexo K, se puede apreciar la información detalladamente:


5.1.1 Uso y Actividades de los Usuarios en el Laboratorio


De 81 estudiantes encuestados, el 86% indica hacer uso frecuente de las instalaciones del laboratorio, el resto, 14% no hacen uso de esta unidad académica. Las actividades que desarrollan no se limitan a las prácticas de laboratorio de las asignaturas las cuales representan el 63% de la actividad, sino que se llevan a cabo otras actividades promovidas por la universidad, tales como: proyectos de diversas asignaturas representa un 25%, las ferias tecnológicas representan un 10% y actividades monográficas un 2% (Figura 5.1 (a)).

La Figura 5.1 (b) ilustra los resultados de las actividades que realizan los docentes en el laboratorio, prevaleciendo en el siguiente orden: prácticas de laboratorios en un 42%, actividades monográficas en un 20%, ferias tecnológicas propias de la universidad en un 17%, proyectos de asignaturas en un 12% y solo un 9% hace uso para el desarrollo de investigaciones.

Estos resultados indican que los residuos generados en el laboratorio provienen tanto de las prácticas del laboratorio, como de las actividades mencionadas

anteriormente, las cuales también podrían contribuir negativamente a la contaminación del ambiente.

(a) Estudiantes

(b) Docentes

Figura 5.1 Actividades Desarrolladas en las Instalaciones del Laboratorio de Química RUSB.

5.1.2 Manejo de Residuos

Del 86% de los estudiantes que hacen uso del laboratorio, el 56%, es decir, 39 estudiantes, expresaron no tener conocimiento sobre como son manipulados los residuos generados de las actividades del laboratorio; un 44%, es decir, 31 estudiantes, indicaron tener conocimiento de este proceso.

En la Figura 5.2 (a) se refleja que del 44% de los estudiantes que tiene conocimientos sobre la manipulación de los residuos, el 81% indican que el procedimiento que se les ha orientado a realizar es el vertido de éstos a la cañería, 13% indican que el procedimiento orientado es someterlos a tratamiento y luego desecharlos y un 6% expresan que es el almacenamiento de estos.

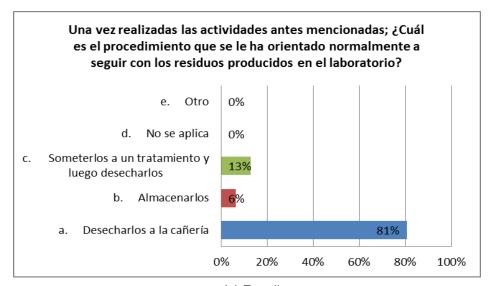
El 100% de los estudiantes que hacen uso del laboratorio de Química RUSB, indicaron que el laboratorio debe disponer de un procedimiento para tratar y almacenar los residuos originados según la naturaleza de cada uno. Así mismo, expresaron que esto permitirá:

Mejora de las condiciones propias del laboratorio

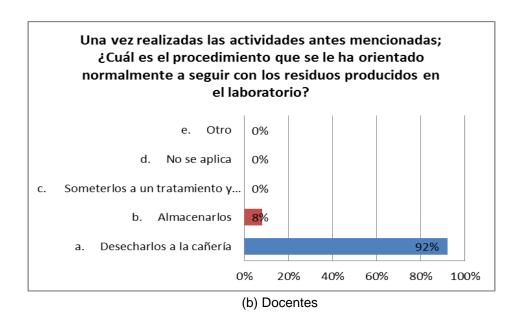
Evitar la continua contaminación del medio ambiente

Reutilización y aprovechamiento de ciertos residuos

De los docentes encuestados, el 92%, es decir, veinte y tres docentes, expresaron tener conocimiento de cómo se manipulan y tratan los residuos producto de las


actividades del laboratorio, un 8%, es decir, dos docentes, alegan desconocer cualquier procedimiento realizado con los residuos generados.

El 92% de los docentes indican que el procedimiento a seguir una vez finalizadas las actividades en el laboratorio, es desechar los residuos a la cañería; un 8% de los docentes señalan que es el almacenamiento de estos (Figura 5.2 (b)).


Debido a lo antes mencionado, veinte y tres docentes indicaron la necesidad de que el laboratorio de química desarrolle un procedimiento para tratar y almacenar los residuos químicos. Dentro de los argumentos más destacados, se fundamentó: que ningún residuo químico debe ser desechado directamente sin previo tratamiento ya que puede representar un futuro peligro cuando esté en contacto con otros compuestos y/o sustancias que estén en el cuerpo receptor, así mismo la Facultad de Ingeniería Química debe de ser coherente entre lo que realiza y lo que representa su misión.

No obstante, el resto de los docentes dicen no estar de acuerdo, debido a que no se manipulan reactivos peligrosos y que las concentraciones de estos son relativamente bajas.

Tomando de referencia la opinión de los usuarios sobre el manejo de residuos en el laboratorio, es evidente que un porcentaje de estudiantes y docentes no tienen el conocimiento de cómo se manipulan los residuos, así mismo se determinó que estos comúnmente son descargados a la cañería sin tomar en cuenta si son orgánicos, inorgánicos o peligrosos (tóxicos, corrosivos, nocivos para los cuerpos receptores o desagüe de la universidad), por tanto docentes y estudiantes expresan la necesidad que el laboratorio cuente con un procedimiento para tratar y almacenar los residuos generados.

(a) Estudiantes

Figura 5.2 Disposición Final de los Residuos Producidos en el Laboratorio.

5.1.3 Percepción sobre la Peligrosidad de las Áreas del Laboratorio

Existen otras áreas en el laboratorio que al no tener un control adecuado sobre ellas podrían ser potencialmente peligrosas. En la Tabla 5.2 se reflejan los resultados por área.

Tabla 5.2 Peligrosidad Identificadas por Usuarios en las Áreas del Laboratorio.

	<u>Área de</u> <u>Almacenamiento de</u> <u>Reactivos</u>			Área de Estante de oluciones Preparadas		<u>Área de Instrumentos de Laboratorio</u>			
Encuestados	M.P.*	P.*	B. P.*	M.P.	P.	B. P.	M.P.	P.	B. P.
Estudiantes	37%	42%	21%	11%	62%	27%	6%	17%	77%
Docentes	25%	50%	25%	33%	59%	8%	8%	25%	67%

^{*} M.P.: Muy Peligroso, P: Peligroso, B. P: Baja Peligrosidad

Área de Almacenamiento de Reactivos

En la Tabla 5.2 se muestra que el 42% de los estudiantes, consideran el área de almacenamiento de reactivos como un área "Peligrosa", seguido el 37% catalogaron el área como "Muy Peligroso", mientras que el 21% indicó "Baja

Peligrosidad". El 50% de los docentes clasificó esta área como "Peligrosa", el 25% como "Muy Peligrosa" y el otro 25% como de "Baja Peligrosidad".

Es evidente que la mayoría de los usuarios encuestados consideran esta área como peligrosa debido a los siguientes factores:

- Limitado espacio y pocas vías de acceso
- Escasa iluminación
- Los reactivos no se encuentran ubicados según sus criterios de incompatibilidad con otros

Área de Estantes de Soluciones Preparadas

El 62% de los estudiantes catalogaron el área de estantes de soluciones preparadas como un área "Peligrosa", el 11% "Muy Peligrosa" y el 27% de "Baja Peligrosidad". El 59% de los docentes indican que esta área es "Peligrosa", el 33% "Muy Peligrosa" y el 8% "Baja Peligrosidad" (Tabla 5.2).

Los resultados revelan que esta área es descrita como "Peligrosa" según expresan estudiantes de la carrera y docentes que tienen pleno conocimiento del contenido, concentración y ubicación de las soluciones preparadas.

Área de Instrumentos de Laboratorio

El área donde se encuentran los instrumentos de laboratorio fue descrita por el 77% de los estudiantes como un área de "Baja Peligrosidad", el 17% como "Peligroso" y el 6% "Muy Peligroso" (Tabla 5.2). Mientras que el 67% de los docentes considera que esta área es de "Baja Peligrosidad", sin embargo, un 25% la consideró como "Peligrosa" y un 8% como "Muy Peligrosa".

Según los resultados el área de instrumentos de laboratorio, es cataloga como "Baja Peligrosidad", sin embargo, requiere de orden y limpieza, un área propia para los instrumentos sin compartir espacio con reactivos o soluciones preparadas, para evitar accidentes al realizar un mal manejo de los mismos. Es importante considerar, que los equipos se encuentren en buen estado y con su respectiva calibración para evitar las alteraciones y/o datos no confiables.

5.1.4 Alteraciones Percibidas por Usuarios

En la Figura 5.3 se muestra las alteraciones percibidas del laboratorio por docentes y estudiantes.

53 estudiantes indicaron percibir malos olores en los alrededores del laboratorio, 9 estudiantes alegaron percibir ruidos y 12 estudiantes revelaron que no percibían ninguna de las dos anteriores.

11 de los docentes encuestados afirman que una de las alteraciones más comunes es la presencia de malos olores en las áreas aledañas al laboratorio, 2 docentes informan que existen otros tipos de alteraciones al medio como derrames líquidos.

Los resultados reflejan que tanto los estudiantes como los docentes concuerdan que una de las mayores alteraciones durante el desarrollo de las actividades en el laboratorio, es la presencia de olores; lo cual no solo afecta a usuarios del laboratorio si no de la misma forma al personal universitario que se encuentra aledaño a esta unidad académica.

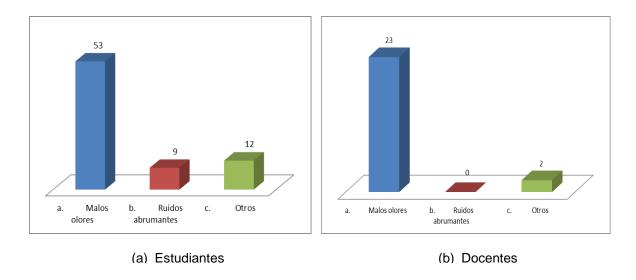


Figura 5.3 Alteraciones del Laboratorio de Química RUSB.

La consulta a los usuarios de; si el laboratorio cuenta con equipos que reduzcan la emisión de gases que causan los malos olores, los resultados fueron los siguientes:

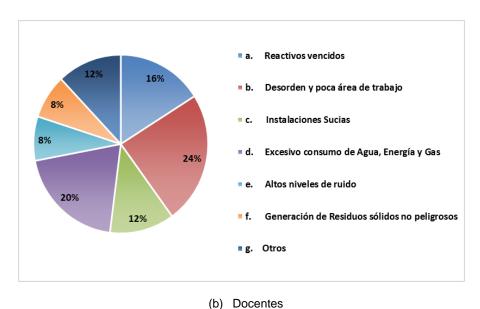
Treinta y ocho estudiantes indican que el laboratorio cuenta con un equipo que reduce las emisiones gaseosas, treinta y dos estudiantes alegan que el laboratorio no cuenta con dicho equipo. Sin embargo, es importante recalcar que de los treinta y ocho estudiantes que afirman la existencia de un equipo para extraer gases; veinte y siete revelan que esta unidad no está en buenas condiciones, nueve que se encuentra en buenas condiciones, y dos señalan no tener conocimiento del estado del equipo.

Por otra parte, diecinueve docentes expresaron que el laboratorio cuenta con equipo que disminuyen la emanación de los gases que provocan los malos olores, de estos mismos nueve docentes desconocen el estado actual del equipo, y cinco afirman que está en buen estado, mientras que cinco indica que no lo está. Los

seis docentes restantes indicaron que el laboratorio no cuenta con el equipo especializado para la extracción de los gases.

5.1.5 Percepción sobre el Estado Actual del Laboratorio

Finalmente, la consulta a los usuarios sobre la percepción actual que tiene del laboratorio de Química RUSB, brindó los resultados siguientes:


En la Figura 5.4(a) se observa que el 36% de los estudiantes consideran que una de las situaciones actuales del laboratorio es el desorden y poca área de trabajo, seguido con un 20% argumentan encontrar las instalaciones sucias, un 13% opina que existe un excesivo consumo de agua y energía eléctrica, un 12% considera que existen reactivos vencidos, un 11% manifiestan que se generan altos niveles de ruido y un 8% opinan que se generan residuos sólidos no peligrosos.

Desde el punto de vista de los docentes, en la Figura 5.4(b) se observa que un 25% manifiestan que el laboratorio presenta desorden y poca área de trabajo, el 21% manifestó excesivo consumo de agua, luz, 18% reactivos vencidos, 12% instalaciones sucias y otros, 6% generación de residuos sólidos no peligrosos y altos niveles de ruido.

Tanto los estudiantes como docentes concuerdan que una situación actual que es perceptible son; el desorden y poca área de trabajo, los cuales son factores que no permiten el desarrollo apto de las actividades dentro de las instalaciones de un laboratorio.

Adicional el 100% de los docentes aseguran que el cumplimiento de las reglamentaciones ambientales en el laboratorio, que el laboratorio de Química RUSB, no cumple con las legislaciones y reglamentaciones ambientales de nuestro país; por lo cual manifiestan la necesidad de disponer de un sistema de gestión de residuo que mejore el funcionamiento de este mismo.

(1)

Figura 5.4 Percepción sobre el Estado Actual del Laboratorio.

A consecuencia de lo anterior, el 100 % de los docentes y el 70% de los estudiantes alegaron que el laboratorio de Química RUSB no es una unidad académica que contribuya a proteger el medio ambiente y sus alrededores.

5.2 Análisis de Guías Prácticas del Laboratorio

A través del instrumento de colecta de datos se obtuvo información cualitativa y cuantitativa que permitió la clasificación de los residuos generados en las prácticas de laboratorio seleccionadas. Se analizaron de forma presencial dieciséis guías prácticas del segundo semestre académico.

5.2.1 Clasificación de Residuos Químicos de Guías Prácticas del Laboratorio.

Los grupos estudiantiles que realizaron las prácticas en su mayoría estaba compuestos por 4 a 5 personas; esto se debe principalmente a las limitantes de reactivos disponibles, cristalería y espacio de trabajo en las instalaciones.

En la Tabla 5.3, se muestra un resumen de las guías prácticas analizadas y las reacciones químicas que se llevaron a cabo en cada una de estas, a través de la cuales se identificaron los productos de cada ensayo, permitiendo así su correcta clasificación.

Tabla 5.3 Reacciones Químicas de Guías Prácticas Analizadas en el Laboratorio de Química RUSB.

<u>Asignatura</u>	Guía Práctica	<u>Reactivos</u>	Reacciones	<u>Productos</u>
		Hidróxido de Sodio/NaOH	0.00 011 11 00 0 (01)	Sulfato de Sodio/Na ₂ SO ₄ ,
	Técnicas de	Sulfato de Cobre/CuSO ₄	$CuSO4(ac) + 2NaOH(ac) \rightarrow Na2SO4(ac) + Cu(OH)2(s)$	Hidróxido de Cobre/Cu(OH) ₂
	Medición y	Cloruro de Sodio/NaCl		Solución acuosa de Cloruro
	Separación de Volumen	Agua/H ₂ O (Destilada)	$NaCl_{(s)} + H_2O_{(l)} \rightarrow Na^+_{(ac)} + Cl^{(ac)}$	de Sodio/Na+, Cl
		Agua/H ₂ O (Destilada)	H-O Appite Vegetal (No hay receión)	Agua/H-O Agaita Vagatal
<u> </u>		Aceite Vegetal	H ₂ O _(l) + Aceite Vegetal (No hay reacción)	Agua/H₂O, Aceite Vegetal
ner	Tipo de Reacciones	Agua/H ₂ O (Destilada)	$2Na_{(s)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(ac)} + H_{2(g)}$	Solución Acuosa de
99		Sodio/Na	ZINa(s) + ZI I2O(i) - 7 ZINaOI I(ac) + I I2(g)	Hidróxido de Sodio/Na(OH)
nica		Clorato de Potasio/KClO ₃	$2KCIO_{3(s)} \to 2KCI_{(s)} + 3O_{2(g)}$	Cloruro de Potasio KCI, Oxigeno/O ₂ , Clorato de
uín	Tipo de	Calor		Potasio/KCIO ₃
G	Reacciones Químicas y	Ácido Clorhídrico/HCl		Cloruro de Magnesio/MgCl ₂ ,
	Obtención de	Magnesio/Mg	$Mg_{(s)} + 2HCI_{(ac)} \rightarrow MgCI_{2(ac)} + H_{2(g)}$	Hidrogeno/H ₂ , Ácido Clorhídrico/HCl
	CO ₂	Cloruro de Bario/ BaCl ₂		
		Sulfato de Sodio/Na ₂ SO ₄	$BaCl2(ac) + Na2SO4(ac) \rightarrow BaSO4(s) + 2NaCl(ac)$	Sulfato de Bario/BaSO ₄ , Cloruro de Sodio/NaCl

<u>Asignatura</u>	Guía Práctica	Reactivos	Reacciones	<u>Productos</u>	
Química General I	Tipo de Reacciones Químicas y Obtención de CO ₂	Carbonato de Sodio/Na₂CO₃ Ácido Clorhídrico/HCI	$Na_2CO_{3(s)} + 2HCI_{(ac)} \to 2NaCI_{(ac)} + CO_{2(g)} + H_2O_{(I)}$	Cloruro de Sodio/NaCl, Agua/H ₂ O, Dióxido de Carbono/CO _{2,} Ácido Clorhídrico/ HCl	
		Cromato de	K ₂ CrO _{4(ac)} + KOH _(ac) (No reacciona)		
		Potasio/K ₂ CrO4 Hidróxido de Potasio/KOH Ácido Clorhídrico/HCl	$2K_2CrO_{4(ac)} + 2HCI_{(ac)} \rightarrow K_2Cr_2O_{7(ac)} + 2KCI_{(ac)} + H_2O_{(I)}$	Dicromato de Potasio/K ₂ Cr ₂ O ₇ , Cloruro de Potasio/KCl, Agua/H ₂ O	
			$HCI_{(ac)} + KOH_{(ac)} \rightarrow KCI_{(ac)} + H_2O_{(l)}$	-	
		Dicromato de Potasio/K ₂ Cr ₂ O ₇	$K_2Cr_2O_{7(ac)} + 2KOH_{(ac)} \rightarrow 2K_2CrO_{4(ac)} + H_2O_{(I)}$	Cromato de Potasio/K ₂ CrO ₄ , Cloruro de Potasio/KCl,	
_	Factores que	•	$K_2Cr_2O_{7(ac)} + 14HCI_{(ac)} \rightarrow 3CI_{2(g)} + 2CrCI_{3(ac)} + 7H_2O + 2KCI_{(ac)}$	Cloruro de Cromo (III)/CrCl Cloro/Cl ₂ , Agua/H ₂ O	
Química General II	Afectan el Equilibrio Químico	Cloruro de Cobalto (II) en solución alcohólica/ CoCl4	$CoCl_{4 (ac)} + 6 H_2O_{(I)} \rightarrow Co(H_2O)_{6(ac)} + 4Cl_{(ac)}$	Iones Hexaacuo-cobalto (II) /Co(H ₂ O) ₆ ,	
G G		Agua destilada/H₂O			
ica		Ácido Clorhídrico/HCl		Cloruro de Plata/AgCl,	
Quím		Nitrato de Plata/AgNO₃	$CI_{(ac)} + AgNO_{3(ac)} \rightarrow AgCI_{(s)} + (NO_3)_{(ac)}$	Iones Nitrato/NO₃	
		Cloruro de Cobalto (II) en solución alcohólica/ CoCl4	$CoCl_{4^{-2}(ac)} + 6 H_2O_{(1)} \rightarrow Co(H_2O)_{6^{+2}(ac)} + 4Cl_{(ac)}$	Hexaacuo-cobalto (II) /Co(H ₂ O) _{6,} Iones Cloro/Cl	
		Agua destilada/H ₂ O	COC14 (ac) + 0 112O(i) / CO(112O)6 (ac) + 4O1 (ac)		
		Ácido Sulfúrico/H2SO4		Sulfato de Hierro	
	Reacciones de	Permanganato de	$10\text{FeSO}_{4(\text{ac})} + 2\text{KMnO}_{4(\text{ac})} + 8\text{H}_2\text{SO}_{4(\text{ac})} \rightarrow$	III/Fe ₂ (SO ₄) ₃ , Sulfato de	
	Oxidación Reducción	Potasio/KMnO ₄ Sulfato de Hierro (II)/FeSO ₄	$5Fe_2(SO4)_{3(ac)} + 2MnSO_{4(ac)} + 8H_2O_{(l)} + K_2SO_{4(ac)}$	Manganeso/MnSO ₄ , Sulfato de Potasio/K ₂ SO ₄ , Agua/H ₂ O	

<u>Asignatura</u>	Guía Práctica	Reactivos	Reacciones	<u>Productos</u>
neral II	Reacciones de Oxidación Reducción	Cloruro de Antimonio (III)/SbCl ₃ Grapas/ Fe	$SbCl_{3(ac)} + 3Fe_{(s)} \to 3FeCl_{2(ac)} + 2Sb_{(s)}$	Cloruro de Hierro (II)/FeCl ₂ , Antimonio/Sb
Química Ger		Ácido Sulfúrico/H ₂ SO ₄ Dicromato de Potasio/K ₂ Cr ₂ O ₇ Yoduro de Potasio/KI	$K_2Cr_2O_{7(ac)} + 6KI_{(ac)} + 7H_2So_{4(ac)} \rightarrow Cr_2(SO_4)_{3(ac)} + 4K_2SO_{4(ac)} + 3I_{2(ac)} + 7H_2O_{(I)}$	Yodo/I ₂ , Sulfato de Cromo III/Cr ₂ (SO ₄) ₃ , Sulfato de Potasio/K ₂ SO ₄ Agua/H ₂ O
		Agua del Grifo/H ₂ O	$Cl_{(ac)} + AgNO_{3(ac)} \rightarrow AgCl_{(s)} + NO_{3(ac)}$	Cloruro de Plata/AgCl,
œ	Onimica Analitica Determinación de Cloruros por el Método de Mohr	Cromato de Potasio/K ₂ CrO ₄ Nitrato de Plata/ AgNO ₃	$2AgNO_{3(ac)} + K_2CrO_{4(ac)} \to Ag_2CrO_{4(s)} + 2KNO_{3(ac)}$	Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Nitrato de Plata/AgNO ₃
iţi		Agua del Grifo/H ₂ O	$CI^{-}_{(ac)} + AgNO_{3(ac)} \rightarrow AgCI_{(s)} + NO^{-}_{3(ac)}$	Cloruro de Plata/AgCl,
ı Anal		Cromato de Potasio/K ₂ CrO ₄	2AgNO _{3(ac)} + K ₂ CrO _{4(ac)} → Ag ₂ CrO _{4(s)} + 2KNO _{3(ac)}	Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Nitrato de Plata/AgNO ₃
nics		Nitrato de Plata/ AgNO ₃		
Quír		Carbonato de Calcio/CaCO₃		Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Carbonato de Calcio/CaCO ₃ , Nitrato de Plata/AgNO ₃
		Cromato de Potasio/K₂CrO₄		
		Nitrato de Plata/ AgNO₃		Titlato de Flata/rigitos
ca I		Acetato de Sodio Anhidro/CH₃COONa	$CH3COONa(s) + NaOH(s) + CaO(s) \rightarrow CH4(g) + CaO(s) + Na2CO3(s)$	Metano/CH ₄ , Carbonato de Calcio/ Na ₂ CO ₃ , Oxido de
gáni	Obtención y	Cal Sodada/NaOH + CaO	1 1 (42 2 3 (5)	Calcio/CaO
Química Orgánica I	Propiedades del Metano	Metano/CH ₄		Permanganato de potasio/KMnO ₄ , Metano/CH ₄
Quín		Permanganato de Potasio/KMnO ₄	CH _{4(g)} + KMnO _{4(ac)} (No hay reacción)	

<u>Asignatura</u>	Guía Práctica	<u>Reactivos</u>	Reacciones	<u>Productos</u>
Química Orgánica I	Obtención y Propiedades del Metano	Metano/CH ₄ Solución de Bromo en Tetracloruro de Carbono/Br ₂ -CCl ₄	$CH_{4(g)} + Br_2/CCI_{4(sin)} \rightarrow CH_3Br/CCI_{4(sin)} + HBr_{(g)}$	Bromuro de Hidrogeno/HBr, Bromuro de Metilo en solución de Tetracloruro de Carbono/CH ₃ Br/CCl ₄
		Etanol/CH ₃ CH ₂ OH	$CH_3CH_2OH_{(ac)} \rightarrow CH_2=CH_{2(ac)}+H_2O_{(l)}$	Eteno/ CH2=CH2, Ácido
		Ácido Sulfúrico/H ₂ SO ₄		Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O
		Etanol/CH ₃ CH ₂ OH		Á dia o kúda II oo
		Ácido Sulfúrico/H ₂ SO ₄		Ácido Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O, 1,2 dibromoetano en solución de Tetracloruro de carbobo (CH ₂ Br- CH ₂ Br)/CCI ₄
=	Tetraclor	Solución de Bromo en Tetracloruro de Carbono/Br ₂ -CCl ₄	$CH_2 = CH_{2(ac)} + Br_2/CCI_{4(sln)} \rightarrow (BrCH_2 - CH_2Br)/CCI_{4(sln)}$	
nica		Etanol/CH₃CH₂OH		Ácido Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O Glicol/CH ₂ (OH)-CH ₂ (OH), Hidróxido de potasio/KOH, Óxido de Manganeso/MnO ₂
Orgá	Síntesis y Propiedades de	Ácido Sulfúrico/H ₂ SO ₄	$CH_3CH_2OH_{(ac)} \rightarrow CH_2=CH_{2(ac)}+H_2O_{(l)}$	
Química Orgánica I	los Alquenos	Permanganato de Potasio/KMnO4	$4H_2O_{(I)} + 2KMnO_{4(ac)} + 3CH_2 = CH_{2(ac)} \rightarrow 2MnO_{2(ac)} + 2KOH_{(ac)} + 3CH_2(OH) - CH_2(OH)_{(ac)}$	
ਰੱ		Agua/H₂O		
		2, Buetn 1,4 diol/ C ₄ H ₈ O ₂	3CH ₂ (OH)-CH=CH-(OH)CH _{2(ac)} + 4H ₂ O ₍₁₎ +	1,2,3,4- Butanotetraol/(OH)CH ₂ (OH)
		Permanganato de Potasio/KMnO4	$2KMnO_{4(ac)} \longrightarrow 3CH_2(OH)\text{-}CH(OH)\text{-}CH\text{-}(OH)\text{-}$ $CH_2(OH)_{(ac)} + 2MnO_{2(ac)} + 2KOH_{(ac)}$	CH-CH(OH)CH ₂ (OH), Hidróxido de potasio/KOH, Óxido de Manganeso/MnO ₂
		2, Buetn 1,4 diol/ C ₄ H ₈ O ₂		1,4 diol-2,3
		Solución de Bromo en Tetracloruro de Carbono/Br ₂ -CCl ₄	$CH_2(OH)\text{-}CH=CH\text{-}(OH)CH_{2(ac)} + Br_2\text{-}CCI_{4(ac)} \rightarrow (OH)CH_2\text{-}CH(Br)\text{-}CH\text{-}(Br)CH_2(OH)_{(ac)} + CCI_{4(sln)}$	dibromobutano/(OH)CH ₂ (Br) CH-CH(Br)CH ₂ (OH), Tetracloruro de carbono/CCl ₄

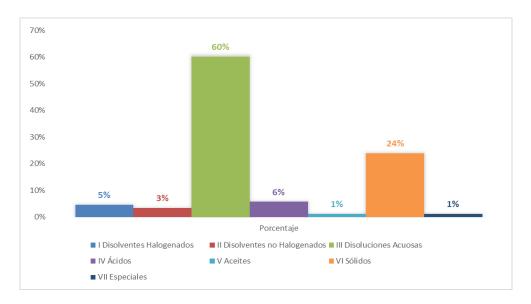
<u>Asignatura</u>	Guía Práctica	Reactivos	<u>Reacciones</u>	<u>Productos</u>
nica Iica I	Orgánica Nitración del Benceno	Ácido Nítrico/HNO ₃ Ácido Sulfúrico/H ₂ SO ₄	$C_6H_{6(l)} + HNO_{3(ac)} + H_2SO_{4(ac)} \rightarrow C_6H_5NO_{2(ac)} +$	Nitrobenceno/C ₆ H ₅ NO ₂ ,
Quín Orgár		Benceno/C ₆ H ₆	$C_6\Pi_6(I) + \Pi_1NO_3(ac) + \Pi_2SO_4(ac) \rightarrow C_6\Pi_5INO_2(ac) + \Pi_2SO_4(ac) + H_2O_{(I)}$	Agua/H ₂ O, Ácido Sulfúrico/ H ₂ sO ₄
		Glucosa/C ₆ H ₁₂ O ₆	011 0 1100 100 7110 00 100	Óxido de Azufre (VI)/SO _{3,}
		Ácido Sulfúrico/H ₂ SO ₄	$C_6H_{12}O_{6(S)}+H_2SO_{4(I)} \rightarrow 6C_{(S)}+7H_2O_{(g)}+SO_{3(g)}+ CALOR$	Carbono/C, Agua/H₂O
		Glucosa/C ₆ H ₁₂ O ₆	CH ₂ OH(CHOH) ₄ CHO _(ac) + 2[Ag(NH ₃) ₂]OH _(ac) \rightarrow CH ₂ OH(CHOH) ₄ COONH _{4(ac)} + 2Ag _(s) + 3NH _{3(g)} +	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH ₄ ,
= 8	Dotorminoción	R. Tollens/[Ag(NH ₃) ₂]OH	$H_2O_{(1)}$	Amoníaco/NH₃, Agua/H₂O, Plata/Ag
ánic	Determinación de las	Glucosa/C ₆ H ₁₂ O ₆	C ₆ H ₁₂ O _{6(ac)} +KMnO _{4(ac)} (No reacciona)	Glucosa/C ₆ H ₁₂ O _{6,}
Química Orgánica II	Propiedades y de los Grupos	Permanganato de Potasio/KMnO ₄		Permanganato de Potasio/KMnO ₄
ازو	Funcionales de	Glucosa/C ₆ H ₁₂ O ₆	$C_6H_{12}O_{6(ac)}+1/2 O_{2(g)} \rightarrow C_6H_{12}O_{7(ac)}$	Gluconato de
Quín	la Glucosa.	Hidróxido de Sodio NaOH 3M	$C_6H_{12}O_{7(ac)}+NaOH_{(ac)} \rightarrow NaC_6H_{11}O_{7(ac)}+H_2O_{(I)}$	Sodio/NaC ₆ H ₁₁ O ₇ , Agua/H ₂ O
		Glucosa/C ₆ H ₁₂ O ₆	$ \begin{array}{c} 3C_6H_{12}O_{6(ac)} + \ NaOH_{(ac)} \longrightarrow C_6H_{12}O_{6(ac)} + \ C_6H_{12}O_{6(ac)} + \\ C_6H_{12}O_{6(ac)} + \ Na_{(ac)} + H_2O_{(I)} \end{array} $	Glucosa/C ₆ H ₁₂ O ₆ , Fructosa/C ₆ H ₁₂ O ₆ ,
		Hidróxido de Sodio/NaOH 5%	Glucosa (69%) + Fructosa (20%) + Manosa (1%)	Manosa/C ₆ H ₁₂ O ₆ , Sodio/Na, Agua/H ₂ O
		Ácido Salicílico/C ₇ H ₆ O ₃		Aspirina/C ₆ H ₄ (OCOH ₃)COO
= a		Anhidro	$C_7H_6O_{3(s)}+ (CH_3-CO)_2O(I)_{(sln)} + HCI_{(ac)} \rightarrow CH_3COOH_{(ac)} +$	H, Ácido Acético/CH ₃ COOH,
nic		Acético/(CH ₃ CO) ₂ O Ácido Clorhídrico/HCl	$C_6H_4(OCOH_3)COOH_{(s)} + HCI_{(ac)}$	Ácido Clorhídrico/HCl
Química Orgánica II	Síntesis de la Aspirina	Aspirina Obtenida/C ₆ H ₄ (OCOH ₃)C OOH	$C_6H_4(OCOH_3)COOH_{(s)} + FeCI_{3(sIn)} \rightarrow (C_6H_4O-$	Completo de Hierro y Fenol/(C ₆ H ₄ O-COOH) ₃ Fe,
Quín		Cloruro de Hierro (III)/FeCl ₃	COOH) ₃ Fe _(s) + 3CH ₃ -COCl _(ac)	Cloruro de Etanoilo/CH₃COCI

<u>Asignatura</u>	Guía Práctica	Reactivos	<u>Reacciones</u>	<u>Productos</u>
_		Aceite Comercial	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Orgánica Orgánica II Saponifica		Etanol/CH3CH2OH		Glicerina/C ₃ H ₈ O ₃ , Jabón/R- COONa,
	Saponificación	Hidróxido de Sodio/NaOH	R ₃ - COO - CH ₂₍₀ HO - CH _{2(ac)}	
O. O.		Cloruro de Sodio/NaCl	$+NaCl_{(ac)} + CH_3CH_2OH_{(sin)}$	Cloruro de Sodio/NaCl, Etanol/CH₃CH₂OH
		Agua/H₂O	6 11 0 1110 12611 0	Glucosa/C ₆ H ₁₂ O ₆
		Maltosa/C ₁₂ H ₂₂ O ₁₁	$C_{12}H_{22}O_{11(s)}+H_2O_{(l)} \rightarrow 2 C_6H_{12}O_{6(ac)}$	G10COSa/C61112O6
		Agua/H₂O	C ₆ H ₁₂ O _{6(s)} +H ₂ O _(l) (No hay reacción)	Galactosa/C ₆ H ₁₂ O ₆ ,
		Galactosa/C ₆ H ₁₂ O ₆	On H2O(s)+H2O(i) (NO Hay reaction)	Agua/H₂O
	-	Agua/H₂O	C ₆ H ₁₂ O _{6(s)} +H ₂ O _(l) (No hay reacción)	Glucosa/C ₆ H ₁₂ O ₆ , Agua/H ₂ O
		Glucosa/C ₆ H ₁₂ O ₆	30111230(3)11123(i) (110 110 110 10 10 10 10 11)	
=		Agua/H₂O	C ₁₂ H ₂₂ O _{11(ac)} + H ₂ O _(I) (No hay reacción)	Sacarosa/C ₁₂ H ₂₂ O _{11,}
g	Comprobación	Sacarosa/C ₁₂ H ₂₂ O ₁₁		Agua/H₂O
gán	Experimental de	Agua/H₂O	$(C_6H_{10}O_5)_{n(s)} + nH_2O_{(l)} \rightarrow n(C_6H_{12}O_6)$	Almidón (C ₆ H ₁₂ O ₆) _n ,
ő	algunas Propiedades de	Almidón/(C ₆ H ₁₀ O ₅) _n		Agua/H₂O
ica	los	R.Tollens/[Ag(NH3)2]OH	$C_{12}H_{22}O_{11(ac)} + 2[Ag(NH_3)_2]OH_{(ac)} \rightarrow C_{12}H_{21}O_{12}NH_{4(ac)} + 3NH_{3(g)} + H_2O_{(l)} + 2Ag_{(s)}$	4-o-Hexopiranosilhexonato de Amonio/ C ₁₂ H ₂₁ O ₁₂ NH ₄ .
Química Orgánica II	Carbohidratos R.	Solución de Maltosa/C ₁₂ H ₂₂ O ₁₁		Amoníaco/NH ₃ , Plata/Ag, Agua/H ₂ O
		R.Tollens/[Ag(NH ₃) ₂]OH	CH ₂ OH(CHOH) ₄ CHO _(ac) + 2[Ag(NH ₃) ₂]OH _(ac) \rightarrow	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH ₄ ,
		Solución de Galactosa/C ₆ H ₁₂ O ₆	$CH_2OH(CHOH)_4COONH_{4(ac)} + 2Ag_{(s)} + 3NH_{3(g)}$	Amoníaco/NH₃, Agua/H₂O, Plata/Ag
		R.Tollens/[Ag(NH ₃) ₂]OH	CH ₂ OH(CHOH) ₄ CHO _(ac) + 2[Ag(NH ₃) ₂]OH _(ac) \rightarrow	Gluconato de Amonio/C₀H₁₁O ₇ NH₄,
		Solución de Glucosa/C ₆ H ₁₂ O ₆		Amoníaco/NH₃, Agua/H₂O, Plata/Ag

<u>Asignatura</u>	Guía Práctica	<u>Reactivos</u>	<u>Reacciones</u>	<u>Productos</u>
g =	Comprobación	R.Tollens/[Ag(NH ₃) ₂]OH	$C_{12}H_{22}O_{11(ac)}+[Ag(NH_3)_2]OH_{(ac)} \rightarrow No reacciona$	Sacarosa/C ₁₂ H ₂₂ O _{11,} Reactivo de
mica	Experimental de algunas	Sacarosa/C ₁₂ H ₂₂ O ₁₁		Tollens/Ag(NH ₃) ₂ OH
Quír rgár	Comprobacion Experimental de algunas Propiedades de los Carbohidratos	R.Tollens/[Ag(NH ₃) ₂]OH		Almidón/(C ₆ H ₁₀ O ₅) _n , Reactivo
ō		Solución de Almidón/(C ₆ H ₁₀ O ₅) _n	$(C_6H_{12}O_5)_{n(ac)}$ + [Ag(NH ₃) ₂]OH _(ac) \longrightarrow No reacciona	de Tollens/Ag(NH ₃) ₂ OH
		Fehling A (CuSO _{4.} 5H ₂ O)		4-0-
		Fehling B (KNaC ₄ H ₄ O ₆ .4H ₂ O)	$C_{12}H_{22}O_{11(ac)} + 2Cu^{+2}{}_{(ac)} + 5OH^{-}{}_{(ac)} \longrightarrow C_{12}H_{21}O_{12}^{-}{}_{(ac)} + Cu_2O_{(s)} + 3H_2O_{(l)}$	Hexopiranosilhexonato/C ₁₂ H ₂₁ O ₁₂ -, Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O
	Comprobación Experimental de	Solución de Maltosa/C ₁₂ H ₂₂ O ₁₁		
		Fehling A (CuSO _{4.} 5H ₂ O)		Ion Gluconato /C ₆ H ₁₁ O ₇ -, Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O
=		Fehling B (KNaC ₄ H ₄ O ₆ .4H ₂ O)	$CH_{2}OH(CHOH)_{4}CHO_{(ac)} + 2Cu^{+2}_{(ac)} + 5OH^{-}_{(ac)} \ \Box \\ CH_{2}OH(CHOH)_{4}COO^{-}_{(ac)} + Cu_{2}O_{(s)} + 3H_{2}O_{(l)}$	
Química Orgánica II		Solución de Galactosa/C ₆ H₁₂O ₆		
o o	algunas Propiedades de	Fehling A (CuSO _{4.5} H ₂ O)		Ion Gluconato /C ₆ H ₁₁ O ₇ -, Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O
nica	los	Fehling B (KNaC ₄ H ₄ O ₆ .4H ₂ O)	CH ₂ OH(CHOH) ₄ CHO _(ac) + 2Cu ⁺² _(ac) +5OH ⁻ _(ac) \rightarrow CH ₂ OH(CHOH) ₄ COO ⁻ _(ac) + Cu ₂ O _(s) + 3H ₂ O _(l)	
Quír	Carbohidratos	Solución de Glucosa/C ₆ H ₁₂ O ₆		
		Fehling A (CuSO _{4.} 5H ₂ O)		
		Fehling B (KNaC₄H₄O ₆ .4H₂O)	$C_{12}H_{22}O_{11(ac)}$ + $2Cu^{+2}_{(ac)}$ + $5OH^{-}_{(ac)}$ \rightarrow No reacciona	Fehling A/KNaC ₄ H ₄ O ₆ .4H ₂ O, Felihling B/CuSO ₄ .5H ₂ O + HCl, Sacarosa/C ₁₂ H ₂₂ O ₁₁
		Solución de Sacarosa/C ₁₂ H ₂₂ O ₁₁		1101, 04041034/0121122011

<u>Asignatura</u>	Guía Práctica	Reactivos	Reacciones	<u>Productos</u>
Química Orgánica II	Comprobación Experimental de	Fehling A (CuSO _{4.} 5H ₂ O) Fehling B (KNaC ₄ H ₄ O _{6.} 4H ₂ O) Solución de Almidón/(C ₆ H ₁₀ O ₅) _n	$(C_6H_{12}O_5)_{n(ac)}$ + $2Cu^{+2}_{(ac)}$ +5 $OH^{-}_{(ac)}$ \rightarrow No reacciona	Fehling A/KNaC ₄ H ₄ O ₆ .4H ₂ O, Felihling B/CuSO4.5H2O + HCl, Almidón/(C ₆ H ₁₂ O ₅) _n
ímica Oı	algunas Propiedades de los Carbohidratos	Solución de Sacarosa/C ₁₂ H ₂₂ O ₁₁ Ácido Clorhídrico/HCl	$C_{12}H_{22}O_{11(ac)}+HCI_{(ac)} \rightarrow C_6H_{12}O_{6(ac)}+C_6H_{12}O_{6(ac)}$	Frutuosa C ₆ H ₁₂ O ₆ , Ion
ő		Fehling A (CuSO _{4.} 5H ₂ O)		Gluconato /C ₆ H ₁₁ O ₇ , Óxido de Cobre (I)/Cu ₂ O,
		Fehling B (KNaC ₄ H ₄ O ₆ .4H ₂ O)	CH ₂ OH(CHOH) ₄ CHO _(ac) + 2Cu ⁺² (ac) +5OH ⁻ (ac) \rightarrow CH ₂ OH(CHOH) ₄ COO ⁻ (ac) + Cu ₂ O _(s) + 3H ₂ O _(l)	Agua/H ₂ O
Química Orgánica II	Propiedades Químicas de los Ácidos Mono	Ácido Acético Glacial/CH₃COOH	$Zn_{(s)} + 2CH_3COOH_{(ac)} \rightarrow Zn(CH_3COO)_{2(ac)} + H_{2(g)}$	Acetato de Zinc/ Zn(CH ₃ COO) ₂ , Hidrogeno/H ₂ ,
ími ánic		Zinc en polvo/Zn		Zinc/Zn
Org	carboxílicos	Ácido Benzoico/C7H6O2 Zinc en polvo/Zn	$Zn_{(s)} + 2C_7H_5COOH_{(ac)} \rightarrow Zn(C_7H_5COO)_{2(ac)} + H_{2(g)}$	Benzoato de Zinc/Zn(C ₆ H₅COO)₂, Hidrogeno/H₂, Zinc/Zn
		Sulfato de cobre/CuSO ₄ Zinc en polvo/ Zn	$Zn_{(s)}+CuSO_{4(ac)} \rightarrow ZnSO_{4(ac)}+Cu_{(s)}$	Sulfato de Zinc/ZnSO ₄ , Cobre/Cu
ica II	Reacciones	Nitrato de plomo II/Pb (NO ₃) ₂ Zinc en polvo / Zn	$Zn_{(s)}+Pb(NO_3)_{2(ac)} \rightarrow Zn(NO_3)_{2(ac)}+Pb_{(s)}$	Nitrato de Zinc/Zn(NO ₃) _{2,} Plomo/Pb
Fisicoquímica II	Redox y Montaje	Cloruro de hierro III /FeCl ₃		Cloruro do Zino/ZnCl-
	de Celdas Electroquímicas	Zn en polvo	$3Zn_{(s)}+2FeCl_{3 (ac)} \rightarrow 3ZnCl_{2(ac)}+2Fe_{(s)}$	Cloruro de Zinc/ZnCl _{2,} Hierro/Fe
		Nitrato de plomo II/Pb (NO ₃) ₂	$CuSO_{4(ac)} + Pb(NO_3)_{2(ac)} \rightarrow PbSO_{4(ac)} + Cu(NO_3)_{2(ac)}$	Sulfato de Plomo (II)/PbSO ₄ , Nitrato de Cobre
		Sulfato de cobre/CuSO ₄		(II)/Cu(NO ₃) ₂

<u>Asignatura</u>	Guía Práctica	Reactivos	<u>Reacciones</u>	<u>Productos</u>
=		Nitrato de Potasio/ KNO ₃ Ácido Nítrico/ HNO ₃ Lamina de Cobre Lamina de Hierro	$Cu_{(s)} \rightarrow Cu^{2+}_{(ac)} + 2e^{-}$	Solución acuosa de Cobre/Cu ²⁺ , Cu, Ácido Nítrico/HNO ₃ , Nitrato de Potasio/KNO ₃
Fisicoquímica II	Electroposición de Metales en Celdas	Cloruro de Potasio/KCl (Electrólisis)	$2H_2O_{(I)} + 2CI_{(ac)} + 2K_{(ac)} \rightarrow 2KOH_{(ac)} + H_{2(g)} + CI_{2(ac)}$	Hidrógeno/H ₂ , Cloro/Cl ₂ , Hidróxido de Potasio/KOH
Fisic	Electrolíticas	Bromuro de Potasio/KBr (Electrólisis)	$2H_2O_{(I)} + 2Br_{(ac)} + 2K^+_{(ac)} \rightarrow 2KOH_{(ac)} + H_{2(g)} + Br_{2(ac)}$	Hidrógeno/H ₂ , Bromo/Br ₂ , Hidróxido de Potasio/KOH
		Yoduro de Potasio/KI (Electrólisis)	$2H_2O_{(I)} + 2I^{-}_{(ac)} + 2K^{+}_{(ac)} \longrightarrow 2KOH_{(ac)} + H_{2(g)} + I_{2(ac)}$	Hidrógeno/H ₂ , Yodo/I ₂ , Hidróxido de Potasio/KOH
	Compuestos de	Cromato de Potasio/K₂CrO₄	$2K_2CrO_{4(ac)} + H_2SO_{4(ac)} \rightarrow K_2Cr_2O_{7(ac)} + K_2SO_{4(ac)} + H_2O_{(I)}$	Dicromato de Potasio/ K ₂ Cr ₂ O ₇ , Cromato de
		Ácido Sulfúrico/H ₂ SO ₄	$K_2Cr_2O_{7(ac)} + 2NaOH_{(ac)} \leftrightarrow K_2CrO_{4(ac)} + Na_2CrO_{4(ac)} + H_2O_{(l)}$	Potasio/K ₂ CrO ₄ , Sulfato de Sodio/Na ₂ SO ₄ ,Cromato de
		Hidróxido de Sodio/NaOH	$H_2SO_{4(ac)} + NaOH_{(ac)} \rightarrow Na_2SO_{4(ac)} + H_2O_{(I)}$	Sodio/Na ₂ CrO ₄
Química Inorgánica		Cloruro de Bario/BaC ₁₂ Cromato de Potasio/K ₂ CrO ₄	$K_2CrO_{4(ac)} + BaCl_{2(ac)} \rightarrow BaCrO_{4(s)} + 2KCl_{(ac)}$	Ácido Acético/CH₃COOH, Cromato de Bario/BaCrO₄, Cloruro de Potasio/KCl,
<u> </u>	Cromo y	Ácido Acético/CH₃COOH	BaCrO _{4(s)} + CH ₃ COOH _(ac) (No hay reacción)	Ácido Acético/CH₃COOH
<u>c</u>	Manganeso	Cloruro de Bario/BaC ₁₂		
Quím		Dicromato de Potasio/K ₂ Cr ₂ O ₇	$K_2Cr_2O_{7(ac)} + BaCl_{2(ac)} \rightarrow BaCr_2O_{7(s)} + 2KCl_{(ac)}$	Ácido Acético/CH ₃ COOH, Dicromato de Bario/BaCr ₂ O ₇ , Cloruro de Potasio/KCI
		Ácido Acético/CH₃COOH	BaCr ₂ O _{7(s)} + CH ₃ COOH _(ac) (No hay reacción)	
		Nitrato de Plata/AgNO ₃ Dicromato de Potasio/K ₂ Cr ₂ O ₄	$2AgNO_{3(ac)} + K_2CrO_{4(ac)} + CH_3COOH_{(ac)} \longrightarrow Ag_2CrO_{4(s)} \\ + 2KNO_{3(ac)} + CH_3COOH_{(ac)}$	Ácido Acético/CH ₃ COOH, Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃


		Ácido Acético/CH₃COOH		
Asignatura	Guía Práctica	Reactivos	<u>Reacciones</u>	<u>Productos</u>
		Nitrato de Plata/AgNO ₃ Cromato de Potasio/K ₂ CrO ₄ Ácido Acético/CH ₃ COOH	$2 \text{AgNO}_{3(\text{ac})} + \text{K}_2 \text{Cr}_2 \text{O}_{7(\text{ac})} + \text{CH}_3 \text{COOH}_{(\text{ac})} \longrightarrow \\ \text{Ag}_2 \text{Cr}_2 \text{O}_{7(\text{s})} + 2 \text{KNO}_{3(\text{ac})} + \text{CH}_3 \text{COOH}_{(\text{ac})}$	Ácido Acético/CH ₃ COOH, Dicromato de Plata/Ag ₂ Cr ₂ O ₇ , Nitrato de Potasio/KNO ₃
		Dicromato de Potasio/K ₂ Cr ₂ O ₄ Ácido Sulfúrico/H ₂ SO ₄	$K_2Cr_2O_{7(ac)} + 7H_2SO_{4(ac)} + 6KI_{(ac)} \rightarrow 4K_2SO_{4(ac)} + 3I_{2(ac)} + Cr_2(SO_4)_{3(ac)} + 7H_2O_{(I)}$	Yodo/l ₂ ,Sulfato de Cromo (III)/Cr ₂ (SO ₄) ₃ , Sulfato de Potasio/K ₂ SO ₄ , Agua/H ₂ O
		Yoduro de Potasio/KI		
nica	Compuestos de Cromo y Manganeso	Permanganato de Potasio/KMnO ₄ Yoduro de Potasio/KI Ácido Sulfúrico/H ₂ SO ₄	$ 2KMnO_{4(s)} + 8H_2SO_{4(ac)} + 10KI_{(s)} \rightarrow 2MnSO_{4(ac)} + \\ 5I_{2(ac)} + 6K_2SO_{4(ac)} + 8H_2O_{(l)} $	Sulfato de Manganeso/MnSO ₄ , Yodo/I ₂ , Sulfato de Potasio/K ₂ SO ₄ , Agua/H ₂ O
Química Inorgánica		Permanganato de Potasio/KMnO ₄ Yoduro de Potasio/KI	$2KMnO_{4(s)} + 6KI_{(s)} + 4H_2O_{(l)} \rightarrow 2MnO_{2(ac)} + 8KOH_{(ac)} + 3I_{2(ac)}$	Solución Acuosa de MnO ₂ , I ₂ , KOH
Químic		Agua Destilada/ H ₂ O Permanganato de Potasio/KMnO ₄ Yoduro de Potasio/KI	$6KMnO4(s) + KI(s) + 6KOH(ac) \rightarrow 6 K2MnO4(ac) + KIO3(ac) + 3H2O(l)$	Manganato de Potasio/K ₂ MnO ₄ , Yodato de Sodio/NaIO ₃ , Agua/H ₂ O
		Hidróxido de Potasio/KOH		3, Agua/1120
		Permanganato de Potasio/KMnO ₄	FeSO _{4(ac)} + 2 KMnO _{4(ac)} (No hay reacción)	Sulfato Ferroso/FeSO ₄ , Permanganato de Potasio/KMnO ₄
		Sulfato de Hierro Ferroso/FeSO ₄	1 e304(ac) + 2 Nivillo4(ac) (No hay reaccion)	
		Permanganato de Potasio/KMnO ₄		Sulfato de Potasio/K ₂ SO ₄ ,
		Ácido Sulfúrico/H ₂ SO ₄ Peróxido de Hidrogeno/H ₂ O ₂	$ \begin{array}{c} 2KMnO_{4(ac)} + 3H_2SO_{4(ac)} + 5H_2O_{2(ac)} \longrightarrow 2MnSO_{4(ac)} + \\ 8H_2O_{(l)} + 5O_{2(g)} + K_2SO_{4(ac)} \end{array} $	Sulfato de Manganeso/MnSO _{4,} Oxigeno/O _{2,} Agua/H ₂ O

En las dieciséis prácticas estudiadas se identificó que se generan un total de 88 diferentes tipos de residuos químicos, de los cuales; el 60% pertenecen al grupo III "Disoluciones Acuosas", 24% al grupo VI "Sólidos", 6% al grupo IV "Ácidos", 5% al grupo I "Disolventes Halogenados", 3% al grupo II "Disolventes no Halogenados" y 1% corresponde a los grupos: V "Aceites" y VII "Especiales", Tabla 5.4 y Figura 5.5.

Los resultados reflejan que la mayor parte de los residuos analizados corresponden al grupo III, el cual es un grupo amplio al cual pertenecen compuestos orgánicos e inorgánicos, donde el nivel de impacto en el ambiente varía según la naturaleza del compuesto; para lo cual se hizo necesario subdividirlos e identificarlos de una mejor manera para evitar reacciones de incompatibilidad y proponer un almacenamiento y tratamiento adecuado.

Tabla 5.4 Residuos Químicos Generado por Grupo de Clasificación.

	Grupo	Residuos
Ι	Disolventes Halogenados	4
П	Disolventes no Halogenados	3
Ш	Disoluciones Acuosas	53
IV	Ácidos	5
٧	Aceites	1
VI	Sólidos	21
VII	Especiales	1
	TOTAL	88

Figura 5.5 Residuos Químicos Generados por Grupo de Clasificación.

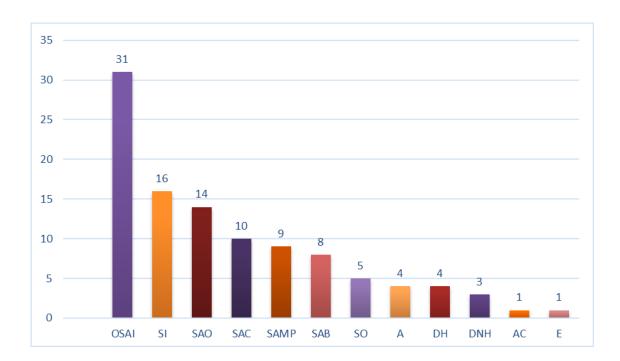

Existe una gran variedad de subdivisiones dependiendo del grupo al que pertenezca el residuo químico. En la 5.5 se muestra las subdivisiones por grupo, las cuales se utilizaron para clasificar los residuos una vez que habían sido ubicados en el grupo correspondiente.

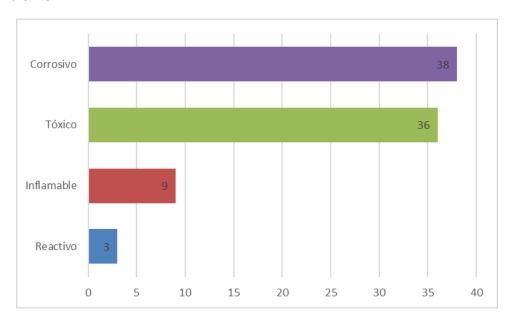
Tabla 5.5 Subdivisiones de Residuos Químicos.

Grupo	Subdivisiones
Grupo I "Disolventes Halogenados"	DH: Disolventes Halogenados
Grupo II "Disolventes no Halogenados"	DNH: Disolventes no Halogenados
	SAB: Soluciones Acuosas Básicas
	SAC: Soluciones Acuosas de Cromo
Grupo III "Soluciones Acuosas"	SAMP: Soluciones Acuosas Metales Pesados
	SAO: Soluciones Acuosas Orgánicas
	OSAI: Otras soluciones Acuosas inorgánicas
Grupo IV "Ácidos"	A: Ácidos
Grupo V "Aceites"	AC: Aceites
	SI: Sólido Inorgánico
Grupo VI "Sólidos"	SO: Sólido Orgánico
Grupo VII "Especiales"	E: Especiales

La Figura 5.6 muestra la cantidad de residuos que pertenecen a las diferentes subdivisiones antes mencionadas, es de gran importancia destacar que treinta y un residuos que representan el 29% del total analizados corresponden a Soluciones Acuosas Inorgánicas, las cuales en su gran mayoría son toxicas y nocivas tanto, para la salud del ser humano, como para los cuerpos receptores de estos residuos; 16 residuos fueron clasificados como sólidos inorgánicos, catorce como soluciones acuosas orgánicas, diez clasificados como soluciones acuosas de Cromo, siendo este uno de los metales pesados más tóxicos debido especialmente a los derivados hexavalentes ya que son más solubles y treinta veces más tóxicos que los trivalentes. Como la presencia de Cr (VI) deteriora el ambiente acuático, su concentración debe ser minimizada.

Así mismo se identificaron nueve residuos como Soluciones Acuosas de Metales Pesados, ocho residuos como Solución Acuosa Básica, cinco residuos como Sólidos Inorgánicos, cuatro residuos en las subdivisiones de Ácidos y Disolventes Halogenados, tres residuos como Disolvente no Halogenado y un residuo para las subdivisiones de Aceite y Especiales. Estos al igual que los antes mencionados deben de ser tratados y almacenados según sus propiedades.

Figura 5.6 Subdivisiones de Residuos Químicos de las Guías Prácticas de Laboratorio.


El riesgo que estos residuos generan al ambiente tomando en consideración sus propiedades y sus características de peligrosidad se muestran en la Figura 5.7.

De los ochenta y ocho residuos, se identificaron que treinta y ocho de ellos son corrosivos, con rangos de pH que oscilan entre 0 y 2, el cual los clasifica como ácidos fuertes y, bases fuertes para valores mayores o igual que 12.5. Estos niveles de pH son capaces de deteriorar o destruir tejidos vivos, así como degradar otros materiales, en este caso, el deterioro del sistema de drenaje de la Universidad Nacional de Ingeniería.

Por otro lado, treinta y seis residuos fueron identificados como tóxicos para la salud de los seres humanos y el medio ambiente, debido al contenido de metales pesados como el cobre, yodo, cromo y demás, pero, sobre todo, por ser irritante y dañino al contacto con la piel y los ojos. Nueve residuos se identificaron como inflamables (nitrobenceno, metano gaseoso, eteno, etilenglicol etc.), es decir un residuo que con facilidad puede combustionar al momento de estar en contacto con otras sustancias, este tipo de residuos es muy común en los laboratorios de orgánica,

Finalmente, tres residuos fueron catalogados como reactivos, residuos sumamente peligrosos debido a que son inestables y propensos a reaccionar con

la mínima variedad del entorno, estos requieren una manipulación especial, pero que al igual que los anteriores son depositados directamente a la cañería, con la justificación que son volúmenes sumamente pequeños que no dañan el medio ambiente.

Figura 5.7 Características de Peligrosidad de los Residuos Obtenidos de las Guías Prácticas del Laboratorio Analizadas.

5.2.2 Volumen de Residuo Generado

El volumen de residuo generado medido al final de cada práctica de laboratorio arrojó los resultados siguientes:

- Se identificó que la cantidad de residuo generado depende de la práctica de laboratorio a realizar, la cantidad de estudiantes y de reactivos a utilizar; es decir, no hay un criterio fijo, así como pueden generarse volúmenes pequeños (Tabla 5.6) como es el caso de la práctica "Obtención y propiedades del Metano" con un volumen total de 8.4 mL, así también existen volúmenes altos como es el caso de "Saponificación" con un volumen total de 1020 mL.
- El propósito de no hacer una réplica de los laboratorios, fue estar presentes en la realización de ellos para obtener datos reales; en la Tabla 5.6 se observa la diferencia que existe entre el volumen generado real y el que teóricamente según la práctica de laboratorio debe generarse. Esta situación tiene su origen en varios factores:

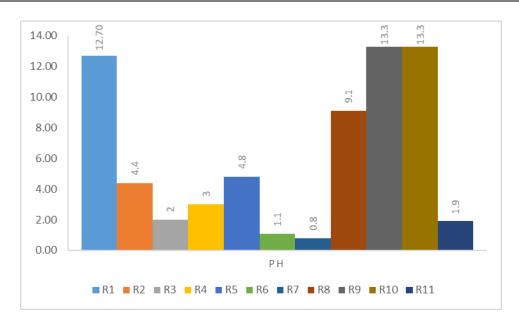
- Falta de preparación previa por parte de los estudiantes en la lectura de las instrucciones de las guías prácticas.
- Uso inadecuado de los instrumentos, conllevando a una medición poca confiable.
- Falta de interés y cuido al momento de las mediciones.
- Guías prácticas desactualizadas, lo que genera la preparación de reactivos que en la práctica no serán utilizados.

Otro factor a tomar en cuenta es que la guía práctica de laboratorio no está redactada de tal manera que permita la reducción de desechos, en varias guía se encuentran frases como "no más grande que la mitad de un borrador de lápiz" "...un pequeño trozo de..." "no más grande que un grano de arroz" "hasta llenar el borde del recipiente" "vierta el líquido hasta que el producto torne de color violeta" estas instrucciones redactadas en las guías no son cuantitativas y permiten que el estudiante utilice la cantidad de reactivo según su propia percepción.

Posiblemente estas redacciones fueron incluidas para ahorrar el tiempo de pesar o medir cantidades pequeñas, pero lo que permiten es una generación más grande de residuos por práctica de laboratorio.

Tabla 5.6 Volumen de Desechos Generados, a través de las Guías Prácticas de Laboratorio.

Guía Práctica	<u>Volumen</u> <u>Real</u>	<u>Volumen</u> <u>Teórico</u>	<u>Diferencia</u>
Técnicas de Medición y Separación de Volumen	565 mL	510 mL	55 mL
Tipo de Reacciones Químicas y Obtención de CO ₂	261 mL	180 mL	81 mL
Factores que Afectan el Equilibrio Químico	164 mL	47 mL	117 mL
Reacciones de Oxidación Reducción	29.8 mL	26.4 mL	3.4 mL
Determinación de Cloruros por el Método de Mohr	650 mL	546 mL	104 mL
Obtención y Propiedades del Metano	8.4 mL	2.05 mL	6.35 mL


Síntesis y Propiedades de los Alquenos	45.1 mL	38.5 mL	6.6 mL
Nitración del Benceno	90 mL	82 mL	8 mL
Determinación de las Propiedades y de los Grupos Funcionales de la Glucosa.	62.5 mL	52.85 mL	9.65 mL
Síntesis de la Aspirina	180 mL	56 mL	124 mL
Saponificación	1020 mL	960 mL	60 mL
Comprobación Experimental de algunas Propiedades de los Carbohidratos	202 mL	195 mL	7 mL
Propiedades Químicas de los Ácidos Monocarboxílicos	17.6 mL	12 mL	5.6 mL
Reacciones Redox y Montaje de Celdas Electroquímicas	335.8 mL	145 mL	190.8 mL
Electroposición de Metales en Celdas Electrolíticas	759 mL	703 mL	56 mL
Compuestos de Cromo y Manganeso	192 mL	171.75 mL	20.25 mL

5.2.3 Acidez y Basicidad de los Residuos

El pH es también un parámetro importante a la hora de decidir el tratamiento que recibirá el compuesto residual.

Como resultado del análisis de las guías prácticas, se determinó que en una práctica de laboratorio se puede producir distintos tipos de residuos con una gran variedad de pH, en su mayoría ácidos.

En el caso del laboratorio de Química Inorgánica "Compuestos de Cromo y Manganeso" se produjeron 11 tipos de residuos diferentes y cada uno de ellos con un valor de pH diferente. Como se observa en la Figura 5.8, 7 de los 11 residuos tiene un valor de pH ácido (menores a 5), el resto posee un valor mayor a 7 volviéndolo básico.

Figura 5.8 Valores de pH de los Residuos Obtenidos de la Guía Práctica de Inorgánica "Compuestos de Cromo y Manganeso".

Es importante destacar que, el 48% de los residuos que se produjeron son de carácter ácido, lo cual no solo daña el sistema de la cañería por ser corrosivo, sino que una vez que es vertido a los cuerpos receptores puede reaccionar químicamente con otro compuesto y poner en riesgo la vida de los seres vivos, por tal razón, la Facultad de Ingeniería Química debe de comprometerse en el tratamiento de los residuos que serán descargados en la cañería.

5.2.4 Tipo de Almacenamiento

Durante el análisis de los residuos obtenidos en las prácticas de laboratorio, se procedió a investigar el tipo de almacenamiento adecuado, considerando las posibles incompatibilidades del residuo con el envase. De los 88 residuos analizados, 1 residuo (solución acuosa de nitrobenceno) debido a sus características y propiedades no puede ser almacenado en envase de polietileno cuando se encuentre a temperaturas mayores de 40°C, se aconseja envasarlo en recipientes de acero al carbón o polietileno de alta densidad. Para mayor detalle ver Anexo L.

El material más apropiado dependerá del tipo de residuo a envasar. En la Tabla 5.7 se presentan los tipos de envase a usar, según la característica de peligrosidad de los residuos identificados durante la evaluación de las prácticas de laboratorios.

Tabla 5.7 Propuesta de Envases de Almacenamiento para los Residuos Químicos.

Residuo Químico	Tipo de Envase
Líquidos Inflamables (ejemplo: metano)	Acero al carbón galvanizado
Líquidos combustibles	Acero al carbón galvanizado
Residuos Peligrosos (ejemplo: yoduro de cobre (I), Yoduro de Magnesio)	Acero inoxidable y Polietileno
Residuos Tóxicos_(ejemplo: Permanganato de potasio, 1,2-dibromoetano)	Polietileno
Residuos Corrosivos (ejemplo: sulfato de potasio, Cromato de bario, Ácido Sulfúrico)	Polietileno de alta densidad
Líquidos inflamables corrosivos (ejemplo: Nitrobenceno)	Polietileno de alta densidad

Fuente: Ortiz & Sosa, 2010.

5.2.5 Posibles Tratamientos

Para los 88 residuos analizados, se propone un tratamiento tomando en cuenta sus propiedades y las sustancias que contienen. Existen casos de residuos que contienen diversos tipos de sustancias, por tanto, el tratamiento orientado se realizó en base a la sustancia que se encontraba en mayor concentración o porcentaje en el residuo. Cabe destacar que los tratamientos propuestos para cada tipo de residuos son tratamientos aplicables en las instalaciones propias del laboratorio. Los resultados se presentan en la tabla 5.8.

Tabla 5.8. Tratamientos Propuestos para Residuos Generados de las Guías Prácticas Analizadas.

<u>Asignatura</u>	Guía Práctica	Productos	Clasificación	<u>Tratamiento</u>
General I	Técnicas de Medición y	Sulfato de Sodio/Na ₂ SO ₄ , Hidróxido de Cobre/Cu(OH) ₂	Grupo III- Soluciones Acuosas Básicas y Soluciones Acuosas Inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCI (6M). Verter a la Cañería.
Química (Separación de Volumen	Solución acuosa de Sodio/Na ⁺ , Solución acuosa de Cloro/Cl ⁻	Grupo III- Soluciones Acuosas Inorgánicas	N/A
Quír		Agua/H ₂ O, Aceite Vegetal	Grupo V- Aceites	N/A
	Tipo de Reacciones Químicas y Obtención de CO₂	Solución Acuosa de Na(OH)	Grupo III- Soluciones Acuosas Básicas	Neutralizar con ácido. Verter a la Cañería.
- I		Cloruro de Potasio KCI, Oxigeno/O ₂ , Clorato de Potasio/KCIO ₃	Grupo VI- Sólidos Inorgánicos	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCl (6M). Verter a la Cañería.
a Gener		Cloruro de Magnesio/MgCl ₂ , Hidrogeno/H ₂ , Ácido Clorhídrico/HCl	Grupo IV- Ácidos	Diluir con agua hasta una relación 1:100 agua. Neutralizar con NaOH al 10%. Verter a la Cañería
Química General		Sulfato de Bario/BaSO ₄ , Cloruro de Sodio/NaCl	Grupo III- Soluciones Acuosas Inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCl (6M). Verter a la Cañería.
		Cloruro de Sodio/NaCl, Agua/H ₂ O, Dióxido de Carbono/CO ₂ , Ácido Clorhídrico/ HCl	Grupo III- Soluciones Acuosas Inorgánicas Grupo IV- Ácidos	Neutralizar con base. Verter a la Cañería.

<u>Asignatura</u>	Guía Práctica	Productos	Clasificación	<u>Tratamiento</u>
		Dicromato de Potasio/K ₂ Cr ₂ O ₇ , Cloruro de Potasio/KCl, Agua/H ₂ O Cromato de Potasio/K ₂ CrO ₄ , Cloruro de Potasio/KCl, Cloruro de Cromo (III)/CrCl ₃ , Cloro/Cl ₂ , Agua/H ₂ O	Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas de Cromo	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar HCl (6M). Verter a la cañería.
Química General II	Factores que Afectan el Equilibrio Químico Iones Hexaacuo-cobalto (II)/Co(H ₂ O) ₆ , Cloruro de Plata/AgCl, Iones Nitrato/NO ₃ Hexaacuo-cobalto (II)/Co(H ₂ O) ₆ , Iones Cloro/Cl	(II)/Co(H ₂ O) ₆ , Cloruro de	Grupo III- Soluciones Acuosas Inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCI (6M). Para el Cloruro de Plata, Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.
3		y Soluciones Acuosas de Metales Pesados	Opción 1: Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCl (6M). Verter a la cañería. Opción 2: Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.	
Química General II	Reacciones de Oxidación Reducción	Sulfato de Hierro III/Fe ₂ (SO ₄) ₃ Sulfato de Manganeso/MnSO ₄ , Sulfato de Potasio/K ₂ SO ₄ , Agua/H ₂ O	Grupo III- Soluciones Acuosas Inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCl (6M). Verter a la cañería.

	<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	<u>Clasificación</u>	<u>Tratamiento</u>
	Química Analítica	Reacciones de Oxidación Reducción Reacciones de Oxidación Reducción Reducción	Cloruro de Hierro (II)/FeCl _{2,} Antimonio/Sb	Grupo III- Soluciones Acuosas Inorgánicas Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas de Cromo	Filtrar los sólidos en suspensión y disolver con HCl. Diluir hasta la aparición de un precipitado blanco. Añadir HCl (6M) hasta redisolución. Saturar con sulfhídrico. Filtrar, lavar y secar, residuo recuperable. Para la solución restante de Cloruro de Hierro se disuelve en ácido clorhídrico 3M, luego la solución se diluye y satura con unos 5 ml de ácido sulfúrico grado reactivo en una campana de laboratorio. El precipitado de sulfuro se lava y se coloca en una bandeja plástica y se deja secar al sol, el sólido seco, después se funde dentro de un cuadro de concreto.
			Yodo/I ₂ , Sulfato de Cromo III/Cr ₂ (SO ₄) ₃ , Sulfato de Potasio/K ₂ SO ₄ Agua/H ₂ O		Opción 1: Añadir un exceso de Na2CO3 y agua. Dejar en reposo (24h). Neutralizar HCI (6M). Verter a la cañería. Opción 2: Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.
			Cloruro de Plata/AgCl, Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Nitrato de Plata/AgNO ₃		Separar la fase sólida de la solución. Fase sólida, se disuelve 10mL de HCl por cada 40g de residuo, esta operación se debe hacer con equipo para recuperar el H2 que se desprende en
			Cloruro de Plata/AgCl, Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Nitrato de Plata/AgNO ₃		equipo para recuperar el H2 que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua.

<u>Asignatura</u>	Guía Práctica	Productos	Clasificación	<u>Tratamiento</u>
Química Analítica	Determinación de Cloruros por el Método de Mohr	Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Carbonato de Calcio/CaCO ₃ , Nitrato de Plata/AgNO ₃	Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas de Cromo	Por presencia del Cr6+, a las sales generadas junto con la solución, se les añade FeSO4 para reducir el Cr6+ a Cr3+. Añadir un exceso de Ca(OH)2 y agua para precipitar el Cr3+. Dejar en reposo (24h). Neutralizar HCI (6M). Verter a la cañería.
	Obtención y Propiedades del Metano Síntesis y Propiedades de los Alquenos	Metano/CH ₄ , Carbonato de Calcio/ Na ₂ CO ₃ , Oxido de Calcio/CaO	Grupo VI- Sólidos Inorgánicos	Reutilizar los residuos: Los residuos de Na ₂ CO ₃ , pueden ser utilizados para el tratamiento de sales inorgánicas como el cloruro de amonio. Los residuos de CaO (sal viva) pueden ser utilizados para la neutralización de cloruros.
ica –		Permanganato de potasio/KMnO ₄ , Metano/CH ₄	Grupo III- Soluciones Acuosas Inorgánicas	Tratar con una sustancia reductora (disolución concentrada). Neutralizar. Verter a la Cañería
Química Orgánica I		Bromuro de Hidrogeno/HBr, Bromuro de Metilo en solución de Tetracloruro de Carbono/CH ₃ Br/CCl ₄	Grupo I - Disolvente Halogenado	Absorber sobre vermiculita, arena o bicarbonato. Incinerar.
ηÖ		Eteno/ CH ₂ =CH ₂ , Ácido Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O	Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas Orgánicas	Mezclar con un disolvente inflamable. Incinerar
		Ácido Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O, 1,2 dibromoetano en solución de Tetracloruro de carbono (CH ₂ Br- CH ₂ Br)/CCl ₄	Grupo I- Disolvente Halogenado Grupo III- Soluciones Acuosas Inorgánicas	Absorber sobre vermiculita, arena o bicarbonato. Incinerar

<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	<u>Clasificación</u>	<u>Tratamiento</u>
_	Síntesis y Propiedades de los Alquenos	Ácido Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O licol/CH ₂ (OH)-CH ₂ (OH), Hidróxido de potasio/KOH, Óxido de Manganeso/MnO ₂	Grupo II- Disolvente No Halogenado Grupo III- Soluciones Acuosas Inorgánicas	Mezclar con un disolvente inflamable. Incinerar
Química Orgánica I		1,2,3,4- Butanotetraol/(OH)CH ₂ (OH)CH- CH(OH)CH ₂ (OH), Hidróxido de potasio/KOH, Óxido de Manganeso/MnO ₂	Grupo II- Disolvente No Halogenado Grupo III- Soluciones Acuosas Inorgánicas	Mezclar con un disolvente inflamable. Incinerar
Quím		1,4 diol-2,3 dibromobutano/(OH)CH ₂ (Br)CH- CH(Br)CH ₂ (OH), Tetracloruro de carbono/CCl ₄	Grupo I- Disolvente Halogenado	Absorber sobre vermiculita, arena o bicarbonato. Incinerar
	Nitración del Benceno	Nitrobenceno/C ₆ H ₅ NO ₂ , Agua/H ₂ O, Ácido Sulfúrico/ H ₂ sO ₄	Grupo I- Disolvente Halogenado Grupo IV- Ácidos	Verter sobre NaHCO ₃ . Mezclar con un disolvente inflamable. Incinerar
		Óxido de Azufre (VI)/SO _{3,} Carbono/C, Agua/H ₂ O	Grupo VI- Sólidos Orgánicos	Se pulveriza el residuo y se mezcla con arena, se le agrega un poco de líquido de Disolvente Orgánicos no halogenado y se incinera en el horno incinerador.
Química Orgánica II	Determinación de las Propiedades y de los Grupos Funcionales de la Glucosa.	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH₄, Amoníaco/NH₃, Agua/H₂O, Plata/Ag	Grupo III- Soluciones Acuosas Orgánicas Grupo VI- Sólidos Inorgánicos	Ajustar el pH a 7 con HCl. Verter a la cañería. Para la residuo de Plata sólido si no se puede recuperar, transformarlo en sal insoluble disolviendo en unos 10 mL ácido clorhídrico grado reactivo por cada 40 g de residuo, esta operación se debe hacer con equipo para recuperar el H ₂ que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y las sales de cloruro formadas se tratan como soluciones acuosas de metales pesados.
		Glucosa/C ₆ H ₁₂ O ₆ , Permanganato de Potasio/KMnO ₄	Grupo III- Soluciones Acuosas Orgánicas Grupo VII- Especiales	Tratar con una sustancia reductora (Tiosulfato de Sodio/ Na ₂ S ₂ O ₃). Neutralizar. Verter a la cañería

<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	Clasificación	<u>Tratamiento</u>
	Determinación de las Propiedades y	Gluconato de Sodio/NaC ₆ H ₁₁ O ₇ , Agua/H ₂ O	Grupo III- Soluciones Acuosas Orgánicas	Ajustar el pH a 7 con HCl. Verter a la cañería
	de los Grupos Funcionales de la Glucosa.	Glucosa/C ₆ H ₁₂ O ₆ , Fructosa/C ₆ H ₁₂ O ₆ , Manosa/C ₆ H ₁₂ O ₆ , Sodio/Na, Agua/H ₂ O	Grupo III- Soluciones Acuosas Orgánicas	Ajustar el pH a 7 con HCl. Verter a la cañería
	Síntesis de la Aspirina	Aspirina/C ₆ H ₄ (OCOH ₃)COOH, Ácido Acético/CH ₃ COOH, Ácido Clorhídrico/HCl	Grupo IV- Ácidos Grupo VI- Sólidos	Filtrar el precipitado, se pulveriza el residuo y se mezcla con arena, se le agrega un poco de Disolvente orgánico no halogenado y se incinera en el horno incinerador. A la solución restante neutralizar con NaOH y verter a la cañería.
= = = = = = = = = = = = = = = = = = =		Completo de Hierro y Fenol/(C ₆ H ₄ O-COOH) ₃ Fe, Cloruro de Etanoilo/CH ₃ COCI	Orgánicos	Neutralizar con NaOH y verter a la cañería.
Química Orgánica II	Saponificación	Glicerina/C₃H ₈ O₃, Jabón/R- COONa, Cloruro de Sodio/NaCl, Etanol/CH₃CH ₂ OH	Grupo II- Disolvente No Halogenado Grupo VI- Sólidos Orgánicos	Separar el sólido a través de filtración, la fase sólida obtenida se mezcla con arena, se le agrega un poco de Disolvente orgánico no halogenado. La solución y el sólido se vierte en una bandeja metálica con arena, luego debe incinerarse en el horno incinerador.
ď		Glucosa/C ₆ H ₁₂ O ₆		
		Galactosa/C ₆ H ₁₂ O ₆ , Agua/H ₂ O	Grupo III- Soluciones	Ajustar el pH a 7 con HCl. Verter a la cañería
		Glucosa/C ₆ H ₁₂ O ₆ , Agua/H ₂ O	Acuosas Orgánicas	(C ₆ H ₁₂ O ₅)n: residuo químico no peligroso y que,
	Comprobación Experimental de	Sacarosa/C ₁₂ H ₂₂ O ₁₁ , Agua/H ₂ O	Grupo VI- Sólidos Orgánicos	por lo tanto, puede eliminarse mediante entierro en una fosa con desechos comunes.
	algunas Propiedades de	Almidón (C ₆ H ₁₂ O ₆) _n , Agua/H ₂ O	Organicos	en una losa con desechos comunes.
	los Carbohidratos	4-o-Hexopiranosilhexonato de Amonio/ C ₁₂ H ₂₁ O ₁₂ NH _{4,} Amoníaco/NH ₃ , Plata/Ag, Agua/H ₂ O	Grupo III- Soluciones Acuosas Orgánicas Grupo VI- Sólidos Inorgánicos	Ajustar el pH a 7 con HCl. Verter a la cañería. Para la plata sólida puede recuperarse para ser reutilizada.

<u>Asignatura</u>	Guía Práctica	Productos	Clasificación	<u>Tratamiento</u>			
	Comprobación Experimental de	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH₄, Amoníaco/NH₃, Agua/H ₂ O, Plata/Ag	Grupo III- Soluciones Acuosas Orgánicas	Ajustar el pH a 7 con HCl. Verter a la cañería Para la plata sólida puede recuperarse para se reutilizada.			
gánica II		Gluconato de Amonio/C ₆ H₁₁OァNH₄, Amoníaco/NH₃, Agua/H₂O, Plata/Ag	Grupo VI- Sólidos Inorgánicos				
		Sacarosa/C ₁₂ H ₂₂ O ₁₁ , Reactivo de Tollens/Ag(NH ₃) ₂ OH	Grupo III- Soluciones Acuosas Orgánicas y Soluciones Acuosas de Metales Pesados	El reactivo de Tollens se desecha neutralizándolo en HNO ₃ diluido. La Sacarosa es un residuo químico no peligroso que puede ser vertido a la cañería.			
		Almidón/(C ₆ H₁₀O₅)ո, Reactivo de Tollens/Ag(NH₃)₂OH	Grupo III- Soluciones Acuosas Orgánicas y Soluciones Acuosas de Metales Pesados	El reactivo de Tollens se desecha neutralizándolo en HNO_3 diluido. $(C_6H_{12}O_5)n$: es un residuo químico no peligroso que puede ser vertido a la cañería.			
Química Orgánica II	algunas Propiedades de los Carbohidratos	4-o- Hexopiranosilhexonato/C ₁₂ H ₂₁ O ₁₂ - , Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O	Grupo III- Soluciones Acuosas Orgánicas Grupo VI- Sólidos Inorgánicos	Para el óxido de Cobre. Separar por filtración el residuo sólido de la solución. Agregar 10 ml ácido Clorhídrico grado reactivo por cada 40 g de residuo, esta operación se debe hacer con equipo para recuperar el H2 que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y la sal de Cloruro de Cobre (II) formada será tratada como solución acuosa de metal pesado, la cual deberá disolverse en Ácido Clorhídrico 3M. Luego la solución se diluye y satura con Ácido Sulfúrico en una campana de laboratorio. El precipitado se lava y se coloca en una bandeja plástica y se deja secar al sol, el sólido seco, después se incinera. El resto de la solución, neutralizar y desechar a la cañería.			

Asignatura	Guía Práctica	<u>Productos</u>	Clasificación	<u>Tratamiento</u>
		Ion Gluconato /C ₆ H ₁₁ O ₇ -, Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O		Para el óxido de Cobre. Separar por filtración el residuo sólido de la solución. Agregar 10 ml ácido Clorhídrico grado reactivo por cada 40 g de residuo, esta operación se debe hacer con equipo para recuperar el H ₂ que se desprende en
Química Orgánica II	Comprobación Experimental de algunas Propiedades de los Carbohidratos	Ion Gluconato /C ₆ H ₁₁ O ₇ -, Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O	Grupo III- Soluciones Acuosas Orgánicas Grupo VI- Sólidos Inorgánicos	agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y la sal de Cloruro de Cobre (II) formada será tratada como solución acuosa de metal pesado, la cual deberá disolverse en Ácido Clorhídrico 3M. Luego la solución se diluye y satura con Ácido Sulfúrico en una campana de laboratorio. El precipitado se lava y se coloca en una bandeja plástica y se deja secar al sol, el sólido seco, después se incinera. El resto de la solución, neutralizar y desechar a la cañería.
Química		Fehling A/KNaC ₄ H ₄ O ₆ .4H ₂ O, Felihling B/CuSO ₄ .5H ₂ O + HCl, Sacarosa/C ₁₂ H ₂₂ O ₁₁	Grupo III- Soluciones Acuosas Orgánicas y Soluciones Acuosas	Para el reactivo de Fehling: Si la concentración de soluto y la cantidad a eliminar son elevadas, tratar de acuerdo con la identidad del soluto. Si ambas son bajas diluir como mínimo a 1:20 con agua y eliminar en la cañería. La Sacarosa es un residuo químico no peligroso y que, por lo tanto, puede eliminarse vertiendo a la cañería.
		Fehling A/KNaC4H4O6.4H2O, Felihling B/CuSO4.5H2O + HCI, Almidón/(C6H12O5)n	de Metales Pesados	Para el reactivo de Fehling: Si la concentración de soluto y la cantidad a eliminar son elevadas, tratar de acuerdo con la identidad del soluto. Si ambas son bajas diluir como mínimo a 1:20 con agua y eliminar en la cañería. El Almidón es un residuo químico no peligroso y que, por lo tanto, puede eliminarse vertiendo a la cañería.

<u>Asignatura</u>	Guía Práctica	Productos	Clasificación	<u>Tratamiento</u>
Química Orgánica II	Comprobación Experimental de algunas Propiedades de los Carbohidratos	Frutuosa C ₆ H ₁₂ O ₆ , Ion Gluconato /C ₆ H ₁₁ O ₇ , Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O	Grupo III- Soluciones Acuosas Orgánicas Grupo VI- Sólidos Inorgánicos	Para el óxido de Cobre. Separar por filtración el residuo sólido de la solución. Agregar 10 ml ácido Clorhídrico grado reactivo por cada 40 g de residuo, esta operación se debe hacer con equipo para recuperar el H2 que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y la sal de Cloruro de Cobre (II) formada será tratada como solución acuosa de metal pesado, la cual deberá disolverse en Ácido Clorhídrico 3M. Luego la solución se diluye y satura con Ácido Sulfúrico en una campana de laboratorio. El precipitado se lava y se coloca en una bandeja plástica y se deja secar al sol, el sólido seco, después se incinera. El resto de la solución, neutralizar y desechar a la cañería.
Quí	Propiedades Químicas de los Ácidos Monocarboxílicos	Acetato de Zinc/ Zn(CH3COO)2, Hidrogeno/H2, Zinc/Zn	Grupo III- Soluciones Acuosas de Metales Pesados Grupo VI- Sólidos Inorgánicos	Filtrar el precipitado el cual puede ser recuperado. Para solución Acetato de Zinc, se pueden utilizar dos opciones: Opción 1 Añadir un exceso de Na2CO3 y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería. Opción 2 Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.

<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	Clasificación	<u>Tratamiento</u>
Química Orgánica II	Propiedades Químicas de los Ácidos Monocarboxílicos	Benzoato de Zinc/Zn(C ₆ H ₅ COO) ₂ , Hidrogeno/H ₂ , Zinc/Zn	Grupo III- Soluciones Acuosas de Metales Pesados Grupo VI- Sólidos Inorgánicos	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCI (6M). Verter a la cañería.
Fisicoquímica II	Reacciones Redox y Montaje de Celdas Electroquímicas	Sulfato de Zinc/ZnSO ₄ , Cobre/Cu	Grupo III- Soluciones Acuosas Inorgánicas Grupo VI- Sólidos Inorgánicos	Filtrar el precipitado. El Cobre sólido reutilizarlo. Para solución Sulfato de Zinc, añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañería. En caso de no poder reutilizar el Cobre, transformarlo en sal insoluble disolviendo en unos 10 mL ácido clorhídrico grado reactivo por cada 40 g de residuo, esta operación se debe hacer con equipo para recuperar el H ₂ que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y las sales de cloruro formadas se tratan como soluciones acuosas de metales pesados.
<u>π</u>		Nitrato de Zinc/Zn(NO₃)₂, Plomo/Pb		Filtrar el precipitado. Para solución Nitrato de Zinc, añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería. Al precipitado de Plomo añadir HNO ₃ (Se producen nitratos). Evaporar, añadir agua y saturar con H ₂ S. Filtrar y secar.
		Cloruro de Zinc/ZnCl ₂ , Hierro/Fe		Filtrar el precipitado. El Hierro sólido reutilizarlo. Para solución Cloruro de Zinc, añadir un exceso de Na₂CO₃ y agua.

<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	Clasificación	<u>Tratamiento</u>				
_	Reacciones Redox y Montaje	Cloruro de Zinc/ZnCl2, Hierro/Fe	Grupo III- Soluciones Acuosas Inorgánicas Grupo VI- Sólidos Inorgánicos	Dejar en reposo (24h). Neutralizar (HCI 6M Verter a la cañería. En caso de no poder reutilizar el Hierro transformarlo en sal insoluble disolviendo e unos 10 mL ácido clorhídrico grado reactivo po cada 40 g de residuo, esta operación se deb hacer con equipo para recuperar el H2 que s desprende en agua, para que no se disperse e el medio ambiente. Luego diluir la solución con una cantida moderada de agua y las sales de clorur formadas se tratan como soluciones acuosas di metales pesados.				
Fisicoquímica II	de Celdas Electroquímicas	Sulfato de Plomo (II)/PbSO _{4,} Nitrato de Cobre (II)/Cu(NO ₃) ₂	Grupo III- Soluciones Acuosas Inorgánicas	Opción 1 Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería. Opción 2 Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.				
	Electroposición de Metales en Celdas Electrolíticas	Solución acuosa de Cobre/Cu²+, Cu, Ácido Nítrico/HNO₃, Nitrato de Potasio/KNO₃	Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas de Metales Pesados	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.				

<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	<u>Clasificación</u>	<u>Tratamiento</u>				
ca II	Electroposición	Hidrógeno/H ₂ , Cloro/Cl ₂ , Hidróxido de Potasio/KOH	Grupo III- Soluciones Acuosas Básicas	Neutralizar con ácido. Verter a la cañería.				
Fisicoquímica II	de Metales en Celdas	Hidrógeno/H ₂ , Bromo/Br ₂ , Hidróxido de Potasio/KOH	Grupo III- Soluciones Acuosas Básicas	Neutralizar con ácido. Verter a la cañería.				
Fisio	Electrolíticas	Hidrógeno/H ₂ , Yodo/I ₂ , Hidróxido de Potasio/KOH	Grupo III- Soluciones Acuosas Básicas	Neutralizar con ácido. Verter a la cañería.				
		Cromato de Potasio/K ₂ CrO ₄ , Sulfato de Sodio/Na ₂ SO ₄ ,	Grupo III- Soluciones Acuosas Básicas	Para los compuestos que contienen Cromo Hexavalente. Ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para				
	Compuestos de Cromo y Manganeso	Cromato de Sodio/Na ₂ CrO ₄		precipitar el Cr³+. Dejar en reposo (24h) y luego neutralizar con HCl (6M). Verter a la cañería.				
Química Inorgánica		CH₃COOH, Cromato de Bario/BaCrO₄, Cloruro de Potasio/KCI, Ácido Acético/CH₃COOH		Para los compuestos que contienen Cromo Hexavalente. Ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h) y luego neutralizar con HCI (6M). Verter a la cañería.				
Química		Ácido Acético/CH₃COOH, Dicromato de Bario/BaCr₂O ₇ , Cloruro de Potasio/KCl	Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas de Cromo	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañería.				
		Ácido Acético/CH₃COOH, Cromato de Plata/Ag₂CrO₄, Nitrato de Potasio/KNO₃		Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañería.				

<u>Asignatura</u>	Guía Práctica	<u>Productos</u>	Clasificación	<u>Tratamiento</u>		
		Ácido Acético/CH ₃ COOH, Dicromato de Plata/Ag ₂ Cr ₂ O ₇ Nitrato de Potasio/KNO ₃	Grupo III- Soluciones Acuosas Inorgánicas y Soluciones Acuosas	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañería.		
	Compuestos de Cromo y Manganeso	Yodo/l ₂ , Sulfato de Cromo (III)/Cr ₂ (SO ₄) ₃ Sulfato de Potasio/K ₂ SO ₄ Agua/H ₂ O	de Cromo	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar con HCI (6M).		
gánica		Sulfato de Manganeso/MnSO ₄ , Yodo/I ₂ , Sulfato de Potasio/K ₂ SO ₄ , Agua/H ₂ O	Grupo III- Soluciones Acuosas Inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar con HCl (6M).		
Química Inorgánica		Solución acuosa de Oxido de Manganeso (IV)/MnO ₂ , Yodo/ I ₂ , Hidróxido de Potasio/KOH	Grupo III- Soluciones Acuosas Básicas	Neutralizar con ácido. Verter a la cañería.		
Quím		Manganato de Potasio/K ₂ MnO _{4,} Yodato de Sodio/NalO _{3,} Agua/H ₂ O	Grupo III- Soluciones Acuosas Básicas	Como la mayor presencia es de NaOH; Neutralizar con ácido y verter a la cañería.		
		Sulfato Ferroso/FeSO ₄ , Permanganato de Potasio/KMnO ₄				
		Sulfato de Potasio/K ₂ SO ₄ , Sulfato de Manganeso/MnSO ₄ , Oxigeno/O ₂ , Agua/H ₂ O	Grupo III- Soluciones Acuosas Inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar HCl (6M).		

5.3 Aspectos Ambientales en el Laboratorio de Química RUSB

Los aspectos ambientales que fueron identificados a través del "Mapeo de Procesos" durante las actividades realizadas en el laboratorio de Química RUSB, se determinaron siguiendo el procedimiento detallado en el acápite 3.5.1 de la metodología, y los resultados se presentan a continuación:

5.3.1 Identificación de Aspectos Ambientales

El laboratorio está dividido en dos áreas: el área de trabajo donde se realizan todas las actividades académicas, y el área de bodega de reactivos, en ella se almacenan todos los reactivos tanto líquidos como sólidos.

Área de Trabajo del laboratorio RUSB

El área de trabajo de laboratorio de Química ocupa la mayor parte del laboratorio, en esta se realizan todas las actividades de docencia, investigación, proyectos y demás; así mismo se encuentran reactivos, soluciones preparadas, equipos y cristalería. La Figura 5.9 muestra el mapeo implementado al área de trabajo del laboratorio, obteniéndose los siguientes resultados:

- Contaminación de Utensilios de Limpieza del Laboratorio

El laboratorio de Química RUSB tiene a disposición de los usuarios paños de tela para la limpieza del área de trabajo, los cuales una vez utilizados no son desechados ni lavados constantemente, lo cual representa un riesgo a la salud y seguridad del usuario que se encuentran en contacto con estos utensilios; así mismo una vez que se procede a disponer de estos son arrojados al basurero sin ningún tratamiento o limpieza previa.

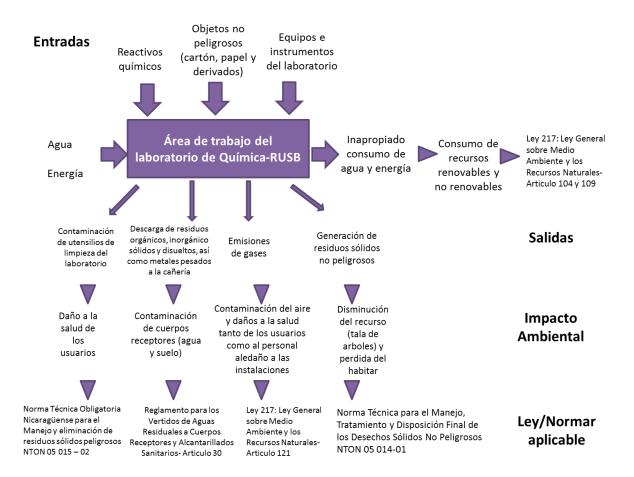


Figura 5.9 Mapeo de Procesos para el Área de Trabajo.

Descarga de Residuos Orgánicos, Inorgánicos, Sólidos y Disuelto, así como Metales Pesados a la Cañería

Dada las diferentes actividades que se realizan en el laboratorio se generan residuos químicos, los cuales son desechados directamente a la cañería, originando riesgos potenciales a los cuerpos receptores (agua y suelo). Estos residuos son vertidos sin ningún control ya que no existe un programa de recolección y de registro.

Como se mostró en el acápite 5.2.3 el 48% de los residuos analizados en el laboratorio son de carácter ácido, si éstos son depositados sin ningún control al sistema de alcantarillado público debido a su composición compleja se pueden volver tóxicos, por la presencia de metales pesados y otros altamente reactivos e inflamables (Figura 5.10).

Por otro lado, si éstos fuesen neutralizados o reutilizados antes de verterlos se reduciría el impacto ambiental a los cuerpos receptores.

Figura 5.10 Solución Acuosa de Sulfato de Cromo (III), Yodo y Sulfato de Potasio con pH 1.1, residuo químico originado de la reacción inorgánica de Dicromato de Potasio, Ácido Sulfúrico y Yoduro de Potasio.

Emisiones de Gases

El laboratorio de Química RUSB cuenta con una campana de gases, la cual se encuentra en mal estado, debido a esto todos los usuarios del laboratorio se encuentran expuestos de forma directa a sustancias volátiles (peligrosas y/o toxicas), las cuales generan humos, vapores o polvos, así como derrames durante la ejecución de las prácticas; también los usuarios aledaños a las instalaciones del laboratorio son afectados de forma directa por las emisiones de vapores las cuales no son controladas a través de un sistema de extracción; desarrollándose así un ambiente de trabajo que no es seguro.

Durante la práctica de Química Orgánica (I) Nitración del Benceno, donde se hace reaccionar Acido nítrico15.8N, Ácido Sulfúrico 36N y Benceno; a una temperatura entre los 50°C- 60°C, se desprende vapores de ácido nítrico y nitrobenceno (compuesto toxico), el cual no pudo ser extraído y se dispersó en toda el área del laboratorio en contacto directo con cada uno de los usuarios, siendo perjudicial para la salud de cada uno de ellos.

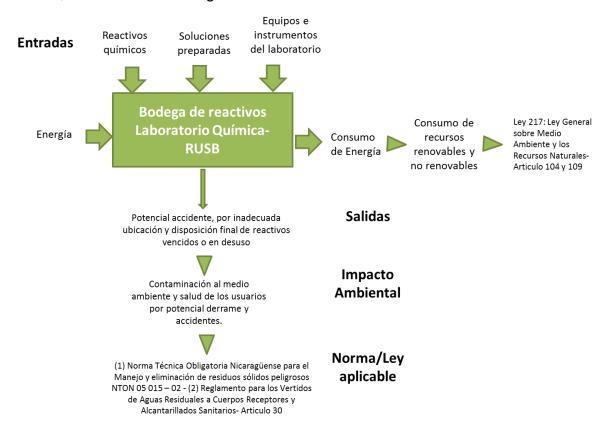
Figura 5.11 Campana Extractora en Mal Estado Ubicado en el Laboratorio de Química RUSB.

Generación de Residuos Sólidos No Peligrosos

Durante las prácticas de laboratorio no solo se generan residuos químicos peligrosos, sino residuos sólidos no peligrosos. Actualmente estos son colocados en envases plásticos que no poseen ninguna etiqueta de separación, ni se ha capacitado a los usuarios sobre algún tipo de destino específico para los residuos sólidos que se generan. Es debido a esto que los residuos sólidos son depositados por igual en cualquier recipiente, sin tener consideración de su estado de contaminación (con químicos) o de su capacidad de rehúso o de reciclaje.

En base a lo observado durante la realización de las prácticas de los laboratorios, la forma inadecuada de desechar los residuos sólidos sin tomar en cuenta su estado y/o su capacidad de rehúso y reciclaje provocan la disminución de los recursos renovables y no renovables, así como la contaminación de los cuerpos receptores.

Los residuos encontrados durante la realización de las prácticas de laboratorio son: papel toalla y papel de aluminio


Uso Inadecuado de los Recursos de Agua y Energía

Se pretendió analizar el consumo de los recursos del agua y energía. Sin embargo, debido a que el laboratorio no posee instrumentos para la medición, el análisis se realizó de forma cualitativa.

Durante el desarrollo de las prácticas de laboratorio, se observó hábitos de malas prácticas en el uso del vital recurso agua y de la energía tales como: dejar los grifos abiertos durante mucho tiempo o sin estar usándolos y las puertas del laboratorio mal cerradas, disminuyendo el confort del área de trabajo. Estos hábitos conllevan a grandes pérdidas económicas y aportes negativos al ambiente. Por lo tanto, es apropiado realizar un plan de concientización en el uso de estos recursos dirigido a todo el personal estudiantil y docente.

Área de Bodega de Reactivos del Laboratorio RUSB

El área de bodega de laboratorio de Química destinado para el almacenamiento de los reactivos (sólidos y líquidos), se encuentra aledaña al área de trabajo del laboratorio. La Figura 5.12, muestra el mapeo implementado al área de bodega del laboratorio, obteniéndose los siguientes resultados:

Figura 5.12 Mapeo de Procesos, Bodega de Reactivos.

- Soluciones Preparadas y Almacenamiento de Reactivos Químicos.

En la bodega del laboratorio de Química RUSB, se encuentra una gran cantidad de soluciones preparadas las cuales se clasificaron en:

- Soluciones preparadas para prácticas de laboratorio específicas y no se utilizaron en su totalidad.
- 2. Soluciones sobrantes de las prácticas para ser reutilizadas.

Estas soluciones preparadas son almacenadas en la bodega de reactivos y no cuentan con un área específica para ser ubicadas debidamente.

Adicional, el laboratorio cuenta con un inventario que enlista la cantidad de reactivos sólidos y líquidos que se encuentran en la bodega donde se describe el nombre del reactivo, formula química y cantidad disponible, <u>sin embargo</u>, <u>ésta no refleja fechas de ingreso y de vencimiento de los reactivos</u>, lo cual no permite llevar un control actualizado del estatus de los reactivos.

El inventario de reactivos del laboratorio registra 402 reactivos químicos, mientras que en las guías prácticas del laboratorio solo se registran 125 reactivos en uso activo, de los cuales 6 de ellos: Ácido Acético, Ácido Clorhídrico, Ácido Sulfúrico, Cloruro de Sodio, Hidróxido de Sodio y Permanganato de Potasio son los de mayor frecuencia de uso. Es decir, que existe un total de 277 reactivos que se encuentran almacenados en la bodega, con una frecuencia de uso baja o nula, muchos de estos reactivos pueden llegar a su fecha de vencimiento, sin embargo, el laboratorio de Química no cuenta con un procedimiento para la depuración de reactivos vencidos.

La inadecuada ubicación de las soluciones preparadas y disposición final de los reactivos vencidos o en desuso puede conllevar a la contaminación del medio ambiente y riesgos en la salud de los usuarios por potencial derrame y accidente.

La Tabla 5.9 muestra un resumen de los aspectos ambientales identificados tanto para las actividades como para los servicios y el impacto ambiental que estos mismos tienen en los usuarios y en el medio ambiente.

Tabla 5.9 Aspectos Ambientales e Impactos Ambientales Identificados en el Laboratorio de Química RUSB.

Área	Actividad	Aspecto Ambiental	Impacto Ambiental	Ley/Norma Aplicable			
		Contaminación de Utensilios de Limpieza del Laboratorio.	Daños a la salud de los usuarios	Norma Técnica Obligatoria Nicaragüense para el Manejo y eliminación de residuos sólidos peligrosos NTON 05 015 – 02			
	 Prácticas de laboratorio Ferias Tecnológicas 	Descarga de Residuos Orgánicos e Inorgánicos; Sólidos y Disueltos, así como Metales Pesados a la Cañería	Contaminación de cuerpos receptores (agua y suelo)	Reglamento para los Vertidos de Aguas Residuales a Cuerpos Receptores y Alcantarillados Sanitarios- Arto. 30			
Área de Trabajo	 3. Actividades Monográficas 4. Proyectos de curso de asignaturas 5. Investigaciones 	Emisiones de Gases	Contaminación del aire y daños a la salud tanto de los usuarios del laboratorio como al personal aledaño a las instalaciones.	Ley 217: Ley General sobre Medio Ambiente y los Recursos Naturales- Arto. 121			
	5. Investigaciones	Generación de Residuos Sólidos No Peligrosos	Disminución del recurso (tala de árboles) y pérdida de hábitat	Norma Técnica para el Manejo, Tratamiento y Disposición final de los desechos sólidos no peligrosos NTON 05 014-01			
		Uso Inadecuado de los Recursos de Agua y Energía	Consumo de recursos renovables y no renovables.	Ley 217: Ley General sobre Medio Ambiente y los Recursos Naturales- Arto. 104 y 109			
Área de Bodega	Potencial		Contaminación al medio ambiente y salud de los usuarios por potencial derrame y accidentes.	1 Norma Técnica Obligatoria Nicaragüense para el Manejo y eliminación de residuos sólidos peligrosos NTON 05 015 – 02 - (2) 2 Reglamento para los Vertidos de Aguas Residuales a Cuerpos Receptores y Alcantarillados Sanitarios- Arto. 30			

5.3.2 Clasificación y Evaluación de Aspectos Ambientales

Clasificación de Aspectos Ambientales

Para lograr la evaluación de los aspectos ambientales, se emplearon los criterios descritos en la Tabla 3.7 obteniéndose así primero la clasificación de los aspectos identificados como se presenta a continuación:

Contaminación de Utensilios de Limpieza del Laboratorio: este aspecto tiene un *tiempo de ocurrencia* presente, ya que es una actividad que actualmente se desarrolla durante las actividades en el laboratorio. El *tipo de impacto* es adverso debido a que puede llegar a generar un impacto negativo en los usuarios, por otro lado, la *situación operacional* es normal porque la contaminación de utensilios de limpieza es una actividad propia del desarrollo de las actividades (guías prácticas, docencia, investigaciones, proyectos etc.).

Este aspecto ambiental puede llegar a tener una *amplitud geográfica* puntual ya que afecta solamente a los usuarios presentes en el área de estudio. La *responsabilidad* de este aspecto ambiental es clasificada como directa porque es directamente controlado por la administración del Laboratorio de Química RUSB.

Descarga de Residuos Orgánicos, Inorgánicos Sólidos y Disueltos, así como Metales Pesados en la Cañería: en este aspecto se encontró un tiempo de ocurrencia presente, ya que es una actividad que actualmente se lleva a cabo en las instalaciones de laboratorio. El tipo de impacto es adverso debido a que puede llegar generar un impacto negativo en los usuarios y el medio ambiente, la situación operacional es normal porque es una actividad propia que se genera de las actividades del laboratorio. La amplitud geográfica de este aspecto ambiental es regional debido a que puede llegar a causar afectaciones a la flora y fauna. La responsabilidad de este aspecto ambiental es clasificada como directa porque es un producto que es directamente controlado por la administración del Laboratorio de Química RUSB.

Emisión de Gases: es clasificado con un tiempo de ocurrencia presente, por ser una actividad que actualmente se lleva a cabo en las instalaciones de laboratorio. El tipo de impacto es adverso debido a que puede llegar generar un impacto negativo en los usuarios y el medio ambiente, la situación operacional en que se desarrolla la emisión de gases, es normal porque es una actividad propia que se genera de las actividades. La amplitud geográfica es local, ya que puede llegar a causar daños a los usuarios presentes en el área del laboratorio y medios receptores aledaños al área de las instalaciones. La responsabilidad es clasificada directa

porque es un producto de las actividades controlado por la administración del Laboratorio de Química RUSB.

Generación de Residuos Sólidos No Peligrosos: el tiempo de ocurrencia de este aspecto es clasificado como presente, por ser una actividad actual en el área del laboratorio. El tipo de impacto es adverso debido a que puede llegar generar un impacto negativo en el medio ambiente, la situación operacional es normal porque es una actividad usual que se genera de las actividades del laboratorio. La amplitud geográfica es regional por posible disminución de los recursos naturales y el hábitat. La responsabilidad es clasificada directa porque es controlado por la administración del Laboratorio de Química RUSB.

Uso Inadecuado de Consumo de Agua y Energía: es clasificado con un tiempo de ocurrencia presente, por ser un aspecto actual en las instalaciones de laboratorio. El tipo de impacto es adverso debido a posible daño al medio ambiente, la situación operacional es normal porque es un aspecto que se genera de las actividades del laboratorio. La amplitud geográfica es regional ya que puede llegar a crear un perjuicio a los recursos renovables y no renovables, la responsabilidad es clasificada directa porque es un aspecto ambiental controlado por la administración del Laboratorio de Química RUSB.

Potencial Accidente, por Inadecuada Ubicación y Disposición Final de Reactivos Vencidos o en Desuso: este aspecto es clasificado con un tiempo de ocurrencia futuro, ya que el impacto ambiental se deriva de un potencial accidente en el laboratorio. El tipo de impacto es adverso debido a posible daño al medio ambiente y usuarios, la situación operacional es de emergencia porque la situación exige la interrupción inmediata de todas las actividades del laboratorio. La amplitud geográfica es local ya que puede llegar a crear daños a la salud de los usuarios y recintos aledaños al área afectada, la responsabilidad es directa porque es un aspecto ambiental controlado por la administración del Laboratorio de Química RUSB.

Evaluación de Aspectos Ambientales

Los aspectos ambientales identificados y cuantificados se evaluaron considerando los criterios de evaluación descritos en la Tabla 3., con el fin de determinar aquellos que tienen o pueden llegar a tener efectos significativos (riesgos potenciales) sobre el entorno. Los resultados se muestran en la Tabla 5.10:

De 6 aspectos ambientales identificados, 5 de ellos son considerados como significativos ya que su magnitud de riesgo ambiental obtenido es mayor a 15, lo

cual indica que son aspectos ambientales que tienen o pueden llegar a tener un impacto ambiental significativo, a continuación, se presentan:

Contaminación de Utensilios de Limpieza del Laboratorio, tiene una magnitud de riesgo ambiental de 19, ya que la probabilidad de que suceda es de al menos 1 vez al mes y es un aspecto ambiental no controlado ya que no existe ningún procedimiento o mantenimiento. Esto genera una severidad grave debido a que no hay evidencia del cumplimiento de la norma NTON 05 015 – 02, por tanto, este aspecto obtuvo un índice de evaluación al riesgo B, lo que implica que es necesario desarrollar controles o medidas periódicas para disminuir el riesgo que podría causar a la salud de los usuarios.

Descarga de Residuos Orgánicos, Inorgánicos Sólidos y Disueltos así como Metales Pesados en la Cañería, tiene una magnitud de riesgo ambiental 21, ya que esta actividad ocurre frecuentemente (al menos 1 vez al mes) en las instalaciones del laboratorio y es un aspecto ambiental no controlado ya que no se ha desarrollado un procedimiento que regule la descarga de residuos en la cañería, adicional esto genera una severidad muy grave debido a que no hay evidencias del cumplimiento del Artículo 30, contemplado en el Reglamento para los Vertidos de Aguas Residuales a Cuerpos Receptores y Alcantarillados Sanitarios, por tanto, este aspecto ambiental obtuvo un índice de evaluación al riesgo A. Lo que sugiere implementar medidas inmediatas para reducir el riesgo.

Emisión de Gases, alcanzó una magnitud de riesgo ambiental de 19. Esta actividad se desarrolla de forma frecuente en las instalaciones del laboratorio (al menos 1 vez al mes) y es un aspecto ambiental no controlado por la falta de procedimientos que permitan regularlo, adicional no existe evidencia de cumplimiento del artículo 121 contemplado en la Ley 217: Ley General sobre Medio Ambiente y los Recursos Naturales. Tiene un índice de evaluación al riesgo B, por lo cual se deben implementar controles o medidas periódicas para disminuir el riesgo que podría causar a la salud de los usuarios.

Generación de Residuos Sólidos No Peligrosos, tiene una magnitud de riesgo ambiental de 19, debido a que este aspecto ambiental ocurre frecuentemente durante la implementación de las actividades en el laboratorio y es parcialmente controlado, pero sin procedimientos asociados, así mismo no se encontró evidencia de cumplimiento de la norma NTON 05 014-01. El índice de evaluación al riesgo es A, lo que sugiere implementar medidas inmediatas para reducir el riesgo.

Uso inadecuado de los Recursos de Agua y Energía que se desarrolla en las actividades del laboratorio, genera un consumo sin control de ambos recursos frecuentemente y es parcialmente controlado sin procedimientos asociados que permitan el control de estos recursos, así mismo no existe evidencia de cumplimiento de los artículos 104 y 109 de la Ley 217: Ley General sobre Medio Ambiente y los Recursos Naturales, por lo cual la magnitud de riesgo ambiental es 19 y el índice de evaluación al riesgo es A, lo cual sugiere implementar medidas inmediatas para reducir el riesgo.

En base a estos aspectos ambientales que fueron identificados como significativos la Facultad de Ingeniería Química debe establecer los puntos de actuación y las medidas de mejora que permitan la elaboración de un Sistema de Gestión Ambiental; donde se refleje el compromiso para mejorar el desempeño ambiental del laboratorio de Química RUSB.

El aspecto ambiental potencial accidente, por inadecuada ubicación y disposición final de reactivos vencidos o en desuso, fue catalogado como no significativo debido a que alcanzó una magnitud de riesgo ambiental de 11. Esta actividad puede llegarse a desarrollar de forma remota en la bodega del laboratorio y es parcialmente controlada debido a que no existe ningún procedimiento asociado, así mismo no existe evidencia de cumplimiento del artículo 30 contemplado en el Reglamento para los vertidos de aguas residuales a cuerpos receptores y alcantarillado sanitario y de igual forma no existe evidencia de cumplimiento de la norma NTON 05 015 – 02. Este aspecto ambiental tiene un índice ambiental G, lo que indica que el riesgo es bajo para el medio ambiente y los usuarios.

Es importante destacar que el aspecto ambiental que no fue catalogado como significativo, no sea despreciado en el desarrollo e implementación de un Sistema de Gestión Ambiental, pues ello no significa que no represente riesgo, sino que su magnitud de afectación es baja.

Tabla 5.10 Clasificación y Evaluación de Aspectos Ambientales identificados en el Laboratorio de Química RUSB.

						CLASIFICACIÓN				EVALUACIÓN						
Área	Actividad	Aspecto Ambiental	Impacto Ambiental	Ley/Norma Aplicable	Posible incumplimiento	Tiempo de ocurrencia	Responsabilidad	Tipo de impacto	Amplitud Geografica	Situación Operacional	Probabilidad	Severidad	Índice de Evaluación de Riesgo*	Control	Magnitud del Riesgo	Significanci a
		Contaminación de Utensilios de Limpieza del Laboratorio.	Daños a la salud de los usuarios	Norma Técnica Obligatoria Nicaragüense para el Manejo y eliminación de residuos sólidos peligrosos NTON 05 015 – 02	si	Presente	Directa	Adverso	Puntual	Normal	9	5	В	5	19	SI
	Prácticas de laboratorio Ferias Tecnológicas	Descarga de Residuos Orgánicos e Inorgánicos; Sólidos y Disueltos, así como Metales Pesados a la Cañería	Contaminación de cuerpos receptores (agua y suelo)	Reglamento para los Vertidos de Aguas Residuales a Cuerpos Receptores y Alcantarillados Sanitarios- Articulo 30	si	Presente	Directa	Adverso	Regional	Normal	9	7	А	5	21	SI
Area de Trabajo	 Actividades Monográficas 	Emisiones de Gases	Contaminación del aire y daños a la salud tanto de los usuarios del laboratorio como al personal aledaño a las instalaciones.	Ley 217: Ley General sobre Medio Ambiente y los Recursos Naturales- Articulo 121	si	Presente	Directa	Adverso	Local	Normal	9	5	В	5	19	SI
	3. Investigaciones	Generación de Residuos Sólidos No Peligrosos	Disminución del recurso (tala de árboles) y pérdida de hábitat	Norma Técnica para el Manejo, Tratamiento y Disposición Final de los Desechos Sólidos No Peligrosos NTON 05 014- 01	si	Presente	Directa	Adverso	Regional	Normal	9	7	А	3	19	SI
		Uso Inadecuado de los Recursos de Agua y Energía	Consumo de recursos renovables y no renovables.	Ley 217: Ley General sobre Medio Ambiente y los Recursos Naturales- Articulo 104 y 109	si	Presente	Directa	Adverso	Regional	Normal	9	7	А	3	19	SI
Area de Bodega	Soluciones Preparadas y Almacenamiento de Reactivos Químicos	Potencial Accidente, por Inadecuada Ubicación y Disposición Final de Reactivos Vencidos o en Desuso	Contaminación al medio ambiente y salud de los usuarios por potencial derrame y accidentes.	(1) Norma Técnica Obligatoria Nicaragüense para el Manejo y eliminación de residuos sólidos peligrosos NTON 05 015 – 02 - (2) Reglamento para los Vertidos de Aguas Residuales a Cuerpos Receptores y Alcantarillados Sanitarios- Articulo 30	si	Futuro	Directa	Adverso	Local	Emergencia	3	5	G	3	11	NO

^{*} Indice evaluación de riesgo

A: Crítico, se deben implementar medidas inmediatas para reducir el riesgo

B: Muy Alto, se deben realizar controles u otras medidas periódicas para disminuir el riesgo

C: Alto, es recomendable implementar medidas de protección adicionales

D: Medio, en condiciones actuales debe evaluarse periódicamente

E: Moderado, se requiere seguimiento para ver si se mantienen los controles

F: Bajo, con recomendaciones

G: Bajo, sin recomendaciones

H: Sin Consecuencia

VI. CONCLUSIONES

Los docentes y estudiantes encuestados de la Facultad de Ingeniería Química, manifestaron que el laboratorio de Química RUSB, no brinda las condiciones para el manejo y uso de los residuos, lo cual repercute sobre el medio ambiente y la salud de las personas que hacen uso y/o se encuentran alrededor de este; es por tal razón que los docentes consideran la necesidad de contar con un Sistema de Gestión de Residuos que mejore el funcionamiento del laboratorio.

Todos los docentes encuestados aseguraron que el laboratorio no cumple con las legislaciones y reglamentos ambientales de nuestro país, y que como institución académica debe velar por la seguridad y bienestar del medio ambiente, por tanto, se debe de cumplir con las leyes y normas vigentes nacionales.

Se obtuvo un total de ochenta y ocho residuos químicos a través de una muestra representativa de dieciséis prácticas de laboratorio del segundo semestre académico. La identificación y caracterización a través del instrumento recolecta de datos determinó que: el 60% de los residuos fueron Disoluciones Acuosas, 24% Sólidos, 6% Ácidos, 5% Disolventes Halogenados, 3% Disolventes No Halogenados, 1% Aceites y Especiales. Los posibles tratamientos más propuestos tomando en cuenta sus propiedades y sustancias que contienen son: Neutralización, Mezclar con disolventes inflamables y proceder a incinerar y el tratamiento con bases fuertes para precipitar Metales Pesados.

El diagnóstico ambiental realizado a las actividades que se desarrollan en las áreas de trabajo y de bodega el laboratorio de Química RUSB a través de la herramienta mapeo de procesos, permitió identificar un total de seis aspectos ambientales: para las áreas de trabajo (5) y de bodega (1), los cuales representan un potencial riesgo al medio ambiente; siendo estos los siguientes:

- Contaminación de utensilios de limpieza del laboratorio
- Descarga de residuos orgánicos e inorgánicos, sólidos y disueltos, así como metales pesados a la cañería
- Emisiones de gases
- Generación de residuos sólidos no peligrosos
- Uso inadecuado de los recursos de agua y energía
- Potencial accidente por inadecuada disposición final de reactivos vencidos o en desuso

De los seis aspectos ambientales que se identificaron y clasificaron, cinco obtuvieron una magnitud de riesgo ambiental superior a 15, lo cual los ubica como

aspectos ambientales significativos, que pueden llegar a tener un impacto ambiental significativo.

La Facultad de Ingeniera Química requiere establecer puntos de acción y de mejora que permita la reducción de estos aspectos ambientales significativos a través un Sistema de Gestión Ambiental y se genere un mejor desempeño del laboratorio. Parte de estas acciones a tomar es la implementación del instrumento datos guías prácticas de colecta de las para laboratorio/investigaciones/proyectos/actividades monográficas permita que buscar posibles tratamientos a los desechos que se generan de estas actividades, contribuyendo así a un mejor desempeño de la unidad académica.

VII. RECOMENDACIONES

La Facultad de Ingeniería Química de la Universidad Nacional de Ingeniería (UNI), como entidad académica a través de la alta directiva y dirección administrativa de los laboratorios, debe promover un Sistema de Gestión Ambiental que incluya:

- a) El compromiso de cumplimiento de la legislación y reglamentación ambiental aplicable, medidas de prevención de la contaminación y la mejora continua.
- b) La elaboración de una Política Ambiental
- c) Prevención de la contaminación que incluya las siguientes acciones:
 - La revisión de las prácticas o guía de laboratorio, con el fin de estandarizarlas y utilizar medidas específicas para aspectos como el peso y volumen para cada reactivo y solución, con el objetivo de reducir el exceso de residuos durante las prácticas de laboratorio.
 - Como parte del procedimiento de las guías prácticas, estas deben de contener el tratamiento y disposición final de cada residuo que se genere durante la implementación de estas con el objetivo de crear conciencia en los estudiantes sobre la responsabilidad de la correcta disposición de los residuos que se generan.
 - Identificar los productos del resto de guías prácticas que imparte los docentes en el Laboratorio de Química RUSB, haciendo uso del instrumento de colecta de datos propuesto en esta tesis, con el objetivo de clasificar y determinar el almacenamiento y/o disposición final adecuada.
 - Debe de realizarse propuestas alternas de reactivos menos nocivos y en menor volumen, en las prácticas de laboratorio para sustituir reactivos de alto riesgo para los humanos y el medio ambiente.
 - Se debe de llevar un control adecuado de los reactivos en bodega que permita tener inventarios actualizados de forma trimestral, donde se describa: nombre del reactivo, formula química y fecha de caducidad. Así mismo el almacenamiento de los reactivos se debe de realizar en un área específica, ordenada y considerando las compatibilidades entre reactivos. Debe de existir un procedimiento para depuración de

reactivos vencidos tomando en cuenta sus propiedades fisicoquímicas y su posible impacto en el medio ambiente.

- Se debe contar un Sistema de Gestión de Residuos que permita la correcta segregación de los residuos, almacenamiento y disposición final, con el fin de recuperar reactivos, reusarlos o disponer de ellos de manera adecuada.
- El laboratorio debe de contar con normas y equipos de seguridad para los usuarios, así como evitar la contaminación de utensilios de limpieza que pongan en riesgo la salud. Al mismo tiempo, debe de contar con un sistema de extracción que permita a los usuarios llevar a cabo las prácticas de laboratorio que contemplen reacciones con sustancias volátiles, de forma segura tanto para los usuarios dentro y aledaños a las instalaciones del laboratorio.
- Implementar el buen uso de los recursos del agua y energía, tanto por los usuarios (estudiantes, docente) como aquellas actividades extracurriculares que se realizan en el Laboratorio de Química RUSB.

VIII. REFERENCIAS BIBLIOGRÁFICAS

- Asamblea Nacional. (2008). Ley No. 620. Ley General de Aguas Nacionales. Publicado en *La Gaceta Diario Oficial* No. 169 del 04 de Septiembre del 2007
- Asamblea Nacional. (2008). Ley No.641. Código Penal. Publicada en *La Gaceta Diario Oficial* No. 83, 84, 85, 86, y 87 del 5, 6, 7, 8 y 9 de Mayo de 2008. Nicaragua.
- Asamblea Nacional. (2007). Constitución 23 legislatura. Constitución Política de Nicaragua. Publicada en *La Gaceta Diario Oficial* No. 94 del 30 de abril de 1987. Nicaragua.
- Asamblea Nacional. (2007). Ley No. 618. Ley General de Higiene y Seguridad del Trabajo. Publicado en La *Gaceta Diario Oficial* No. 133 del 13 de Julio del 2007. Nicaragua
- Asamblea Nacional. (2000). Norma Técnica Ambiental Para La Clasificación Ecotoxicológica Y Etiquetado De Plaguicidas, Sustancias Tóxicas Peligrosas Y Otras Similares. Publicada en *Las Gacetas Diario Oficial* 212,213 y 214 los días 7,8 y 11 de Noviembre del 2002
- Carretero, A. (2007). Norma ISO: Aspectos Ambientales, Identificación y evaluación. España: AENOR (Asociación Española de Normalización y Certificación).
- Comisión de Autoevaluación Carrera de Ingeniería Química. (2005). Informe de autoevaluación de la Facultad de Ingeniería Química. Universidad Nacional de Ingeniería. Managua, Nicaragua.
- Decreto No. 33-95. Disposición para el control de la contaminación proveniente de las descargas de aguas residuales domésticas, industriales y agropecuarias. Publicado en La *Gaceta Diario Oficial* No. 118 del 26 de Junio de 1995. Nicaragua.
- Díaz, N. (2000). Manual de Gestión de los Residuos Especiales de la Universidad de Barcelona. Editorial Publicaciones de la Universidad de Barcelona. ISBN: 84-475-2487-6.
- Environmental Protection Agency. (1980). Hazardous Waste Management System, Part III, Identification and Listing of Hazardous Waste, Federal Register, 45 (98): 40 CFR Part. 261.

- Fernández, M. (2008). Manual de Gestión de Residuos y Seguridad en Laboratorios Ambientales. Centro de Desarrollo Tecnológico. Álava, España.
- Gadea, E. & Guardino X. (1991). NTP 276: Eliminación de residuos en el Laboratorio: Procedimientos. Instituto Nacional de Seguridad e Higiene del Trabajo. España.
- Guardado, O. & Pineda Y. (2009). Diseño de un Plan de Inversión en Materia de Higiene y Seguridad de Trabajo en los Laboratorios de Alimento, Ambiente y Proceso de la Universidad Nacional de Ingeniería. Facultad de Ingeniería Química. Universidad Nacional de Ingeniería. Managua, Nicaragua.
- ITM, COC, EAI. (2007). Manual de Gestión de Residuos Peligrosos. Universidad Complutense de Madrid. Madrid.
- Llamas, S. & Mercante, I. (2009). Metodología para la Gestión de Residuos de Laboratorios. Instituto de Medio Ambiente. Facultad de Ingeniería. Universidad Nacional de Cuyo. Mendoza, Argentina.
- López, J. (2004). Guía Práctica para Tratamiento de desechos de los Análisis de DQO. Universidad del Valle. Santiago Chile.
- Martínez, J. (2005). Guía para la Gestión Integral de Residuos Peligrosos Fundamentos Tomo I. Editorial Red de Centros. Montevideo, Uruguay.
- Ministerio del Ambiente y Recursos Naturales. (1996). Ley No. 217. Ley General del Medio Ambiente y los Recursos Naturales. Publicada en *La Gaceta Diario Oficial* No. 105 del 06 de Junio de 1996. Nicaragua
- Ministerio del Ambiente y Recursos Naturales. (1998). Ley 274. Ley Básica para la Regulación y Control de Plaguicidas, Sustancias Toxicas, Peligrosas y Otras Similares. Publicado en La *Gaceta Diario Oficial* No. 142, del 30 de julio 1998
- Norma ISO 14001 (2004). Sistemas de Gestión Ambiental- Requisitos con Orientación para su Uso.
- NTON 015 015-01. Norma Técnica Ambiental para el Manejo, tratamiento y disposición final de los Desechos Sólidos Peligrosos. Publicada en *La Gaceta Diario Oficial* No. 210 del 5 de noviembre del 2002. Nicaragua.

- NTON 015 014-02. Norma Técnica Ambiental para el Manejo, tratamiento y disposición final de los desechos sólidos no peligrosos. Publicada en *La Gaceta Diario Oficial* No. 96 del 24 de mayo del 2002. Nicaragua.
- Resolución Ministerial No. 009-99. Estrategia para la Prevención y Control de la Contaminación. *Publicado en La Gaceta Diario Oficial* No. 142 del 27 de Julio de 1999. Nicaragua.
- Ortiz, T. & Sosa T. (2010). Propuesta de Tratamiento y Disposición Final de los Residuos Sólidos y Químicos de los Laboratorios de Química del Departamento de Ciencias Básicas de la Facultad de Ciencia, Tecnología y Ambiente de la Universidad Centroamericana. Facultad de Ciencia, Tecnología y Ambiente. Universidad Centroamericana. Managua, Nicaragua.
- Programa de Naciones Unidas para el Medio Ambiente. (1989). Convenio de Basilea Sobre el Control de los Movimientos Transfronterizos de los Desechos Peligrosos y su Eliminación, Acta Final. Programa de las Naciones Unidas para el Medio Ambiente.
- Programa de USAID de Excelencia Ambiental y Laboral para Cafta-DR. (2009).

 Desarrollo de Capacidades para Uso y Evaluación de Sistemas de Gestión Ambiental. Managua, Nicaragua.
- Quesada, H. & Salas, J.C. (2004). Propuesta de Manejo de los Desechos Peligrosos en los Laboratorios del TEC. Instituto Tecnológico de Costa Rica. Cartago, Costa Rica.

Entrevistas

- R. Gamero. (comunicación personal, 15 de Marzo del 2011)
- D. Escorcia. (comunicación personal, 23 de Marzo del 2011)

Sitios Web Visitados

- Alonso, J. (s.f). Facultad de Ingeniería Química Universidad Nacional de Ingeniería. Recuperado de: http://www.fiq.uni.edu.ni/serfiq/
- Comité Nacional de Gestión Ambiental. (2010). Procedimiento del Sistema de Gestión Ambiental para la Identificación y Evaluación de Aspectos

Ambientales. Secretaria de Educación Pública, Institutos Tecnológicos. México. Recuperado de:

http://www.tscch.edu.mx/docs/sistemagestionambiental/formatos1/Aspectos_ Ambientales/SNEST-AM-PO-

001%20Ident%20y%20Evaluacion%20Aspectos%20Ambientales.pdf

Ministerio del Ambiente y Recursos Naturales. (2004). *Política Nacional sobre la Gestión Integral de los Residuos Sólidos.* Recuperado de http://www.mific.gob.ni/Portals/0/Portal%20Empresarial/LEYES/politica_gestion_residuos_solidos.pdf

IX. ANEXOS

A. Decreto No. 33-95. Disposición para el Control de la Contaminación Proveniente de las Descargas de Aguas Residuales Domésticas, Industriales y Agropecuarias (Documento en revisión, 2017).

Arto. 5 Los vertidos domésticos, industriales, agroindustriales, comerciales y de servicios, no podrán introducir al cuerpo receptor efluentes que modifiquen y alteren las características de calidad de agua para los diferentes usos a que se destinen.

Arto. 15 Queda prohibido verter directa o indirectamente a las redes de alcantarillado sanitario:

- Desechos sólidos, líquidos o gaseosos, que, en razón de su naturaleza, propiedades y cantidad, causen o puedan causar por sí solos, o por interacción con otros desechos, peligros, deterioro y colapso en las instalaciones de saneamiento, sin perjuicio que éstos se consideren una lista taxativa
- Sustancias sólidas o viscosas en cantidades y tamaños tales que, por sí solos o por integración con otros, sean capaces de producir obstrucciones o sedimentos que impidan el correcto funcionamiento de la red de saneamiento o dificulten los trabajos de conservación o mantenimiento de las mismas. Los materiales prohibidos incluyen, en relación no exhaustiva: vísceras, tejidos animales, huesos, pelos, pieles, carnaza, plumas, cenizas, escorias, arenas, piedras, cascotes, escombros, yeso, mortero producto de obras de construcción, hormigón, cal gastada, trozos de metal, vidrio, paja, virutas, recortes de césped, retazos de tela, granos de productos básicos, lúpulo, desechos de papel, maderas, plásticos, alquitrán, residuos asfálticos, residuos del procesado de combustibles o aceites lubricantes y, en general, sólidos de tamaño superior a 1,5 cm.
- Sólidos procedentes de trituradoras de residuos, tanto domésticos como industriales.
 - b) Gasolina, nafta, petróleo, gasóleos, fuel-oil, aceites volátiles y productos intermedios de destilación; benceno, white-spirit, trementina, tolueno, xileno, tricloroetileno, percloroetileno y cualquier disolvente, diluyente o líquido orgánico inmiscible en agua, combustible, inflamable o explosivo.
 - c) Aceites usados y grasas flotantes.
 - d) Sustancias sólidas potencialmente peligrosas: carburo cálcico, bromatos, clorato, hidruros, percloratos, peróxidos, amianto, etc.

- e) Disolventes orgánicos y clorados, pinturas, colorantes, barnices, lacas, tintes y detergentes no biodegradables en cualquier proporción y cantidad.
- f) Compuestos orgánicos halogenados, excluyendo materiales polímeros inertes y sustancias conexas.
- g) Biocidas, biológicos y químicos y sustancias fitofarmacéuticas. Compuestos procedentes de laboratorios químicos, bien sean identificables, bien sean de nueva síntesis, cuyos efectos sobre el medio ambiente no sean conocidos.
- h) Aguas residuales con un valor de pH inferior a 5,5 o superior a 9,5 que tengan alguna propiedad corrosiva capaz de causar daño a las instalaciones de saneamiento o al personal encargado de la limpieza y conservación.
- i) Cualquier líquido o vapor a temperatura mayor de 40° C.
- j) Aguas de disolución
- k) Residuos industriales o comerciales tóxicos o peligrosos.

Art. 28 Los vertidos provenientes de los sistemas de tratamiento de Laboratorios de Ensayos, de Producción y de Investigación que sean descargados a los cuerpos receptores, según la caracterización de sus afluentes, deberán cumplir los rangos y valores máximos permisibles siguientes:

Tabla A.1 Parámetros, Rangos y Valores Máximos Permisibles para los Vertidos Proveniente de Laboratorio de Ensayos.

Parámetro	Rangos y Valores Máximos Permisibles		
рН	6 – 9		
Sólidos Suspendidos Totales (mg/l)	100		
Sólidos Sedimentables (ml/l)	10		
DBO ₅ (mg/l)	60		
DQO (mg/l)	120		
Aceites y Grasas Totales (mg/l)	10		
Arsénico (mg/l)	0.5		
Cadmio (mg/l)	0.5		
Fenoles (mg/l)	0.5		
Cromo hexavalente (mg/l)	0.3		
Plomo (mg/l)	1		
Mercurio (mg/l)	0.20		
Plata (mg/l)	2		
Manganeso (mg/l	1		
Zinc (mg/l)	3		
Cianuro (mg/l)	1		
Cobre (mg/l)	2		

Cloroformo	0.03
Cloruros (mg/l)	500
Sulfatos (mg/l)	20
Niquel (mg/l)	0.5
Selenio(mg/l)	0.1

Fuente: Decreto 33-95, 1995.

B. Toxicidad

Tabla B.1 Sustancias Tóxicas que Confieren Peligrosidad a un Residuo.

Compuestos				
- Metales carbonilos - Berilio y sus compuestos - Cromo hexavalente y sus compuestos - Compuestos de cobre - Compuestos de zinc - Arsénico y sus compuestos - Selenio y sus compuestos - Cadmio y sus compuestos - Antimonio y sus compuestos - Telurio y sus compuestos - Mercurio y sus compuestos - Talio y sus compuestos - Talio y sus compuestos - Plomo y sus compuestos - Compuestos inorgánicos del flúor, con exclusión del fluoruro cálcico	 Cianuros inorgánicos Asbesto (polvo y fibras) Compuestos orgánicos del fósforo Cianuros orgánicos Fenoles, compuestos fenólicos, incluyendo clorofenoles Éteres Solventes orgánicos halogenados y no halogenados Cualquier sustancia del grupo de los dibenzofuranos policlorados Cualquier sustancia del grupo de las dibenzoparadioxinas policloradas Otras sustancias organohalogenadas 			

Fuente: PNUMA, 1989.

C. Incompatibilidad entre el envase polietileno y el residuo

Tabla C.1 Recomendaciones Referentes al Uso de Envases de Polietileno para Almacenar Residuos.

Producto	Recomendación
Bromuro y Sulfuro de Carbono	No utilizar
Acido butírico, Acido benzoico, Bromo y	No utilizar en periodos de almacenamiento
Bromobenceno	superior a un mes
Cloruro de amilio, cresoles, dietiléter, éter, haluros de ácido, nitrobenceno, percloroetileno, tricloroetileno y tricloroetano	No utilizar con el producto a temperaturas superiores a 40°C
Diclorobencenos	No utilizar en periodos de almacenaje superiores a un mes

Fuente: Fernández, 2008.

D. Pictogramas e Indicadores de Peligro para las Etiquetas

Tabla D.1 Pictogramas de Peligro

I abia D	.1 Pictogramas de Peligro	
Símbolo de peligro	Características de los residuos peligrosos	
T Tóxico T+ Muy Tóxico	Las sustancias y preparados que, por inhalación, ingestión o penetración cutánea en pequeñas cantidades puedan provocar efectos agudos o crónicos e incluso la muerte. Las sustancias y preparados que, por inhalación, ingestión o penetración cutánea en muy pequeña cantidad puedan provocar efectos agudos o crónicos e incluso la muerte.	
C Corrosivo	Las sustancias y preparados que, en contacto con tejidos vivos puedan ejercer una acción destructiva de los mismos.	
F Facilmente Inflamable F+ Extremadamente Inflamable	Las sustancias y preparados que: 1. Que puedan calentarse e inflamarse en el aire a temperatura ambiente sin aporte de energía, o 2. Los sólidos que puedan inflamarse fácilmente tras un breve contacto con una fuente de inflamación y que sigan quemándose o consumiéndose una vez retirada dicha fuente, o 3. Los líquidos cuyo punto de ignición sea muy bajo, o que, en contacto con el agua o con el aire húmedo, desprendan gases extremadamente inflamables en cantidades peligrosas. Las sustancias y preparados líquidos que tengan un punto de ignición extremadamente bajo y un punto de ebullición bajo, y las sustancias y preparados gaseosos que, a temperatura y presión normales, sean inflamables en contacto con el aire.	
N Peligroso para el medio ambiente	Las sustancias y preparados que presenten o puedan presentar un peligro inmediato o futuro para uno o más componentes del medio ambiente.	

E	Explosivo	Las sustancias y preparados sólidos, líquidos, pastosos, o gelatinosos que, incluso en ausencia de oxígeno atmosférico, puedan, reaccionar de forma exotérmica con rápida formación de gases y que, en determinadas condiciones de ensayo, detonan, deflagran rápidamente o bajo el efecto del calor, en caso de confinamiento parcial, explosionan.
•	Comburente	Las sustancias y preparados que, en contacto con otras sustancias, en especial con sustancias inflamables, produzcan una reacción fuertemente exotérmica.
Xn	Nocivo	Penetración cutánea puedan provocar efectos agudos o crónicos e incluso la muerte.
Xi	Irritante	Las sustancias y preparados no corrosivos que, en contacto breve, prolongado o repetido con la piel o las mucosas puedan provocar una reacción inflamatoria.
		Riesgo Biológico. (Virus, Bacterias, etc.)

Fuente: ITM, COC, EAI, 2007.

E. Colores de Etiqueta por Grupo

Tabla E.1 Colores Designados a los Grupos.

Grupo I	Disolventes orgánicos halogenados	
Grupo II	Disolventes orgánicos no halogenados	
Grupo III	Disoluciones Acuosas	
Grupo IV	Ácidos	
Grupo V	Aceites	
Grupo VI	Sólidos	
Grupo VII	Especiales	

Fuente: Llamas, 2009.

F. Incompatibilidades entre Sustancias en el Almacenamiento

Algunas posibles incompatibilidades a tener en cuenta en el almacenamiento de residuos, se resumen a continuación:

Tabla F.1 Incompatibilidades entre Sustancias

Sustancias Incompatibles

Ácidos con bases: ácido sulfúrico con hidróxido sódico

Ácidos fuertes con ácidos débiles que desprenden gases tóxicos: Ejemplo: Ácido

clorhídrico con cianuros o sulfuros

Oxidantes con reductores: Ácido nítrico con compuestos orgánico

Agua con compuestos varios: Boranos, anhídridos, carburos, triclorosilanos, hidruros, metales alcalinos.

Sustancias incompatibles de elevada afinidad

Oxidantes con nitratos, halogenatos, óxidos, peróxidos, flúor

Reductores con materias inflamables, carburos, nitruros, hidruros, sulfuros, alquimetales, aluminio, magnesio y zirconio en polvo

Ácidos fuertes con bases fuertes

Agua con compuestos varios: Boranos, anhídridos, carburos, triclorosilanos, hidruros, metales alcalinos.

Ácido sulfúrico con azúcar, celulosa, ácido perclórico, permanganato potásico, cloratos sulfocianuros.

Fuente: Fernández, 2008.

G. Normas de Seguridad Básicas

A continuación, se enumeran una serie de medidas preventivas básicas sobre seguridad y salud, para que el transporte, manipulación y almacenamiento de residuos peligrosos se realice sin perjuicio para la salud humana y el medio ambiente (Fernández, 2008). Dichas medidas son las siguientes:

- Deben considerarse las disposiciones legales vigentes, tanto a nivel general, como local.
- Al manipular los envases de residuos, hay que informarse de las indicaciones de peligro y condiciones de manejo de las sustancias.
- En caso de desconocer exactamente las propiedades y características del producto a trasladar, se aplicará el máximo nivel de protección. Si se tienen dudas acerca de la naturaleza del producto o la utilización de los equipos de protección individual, se consultará al Responsable de Laboratorio que corresponda.
- En ningún caso se manipularán envases de residuos en los laboratorios sin la supervisión del correspondiente Responsable de Laboratorio.
- El transporte de los envases de residuos se realizará siempre que sea posible mediante medios mecánicos de carga, que en el caso de ser motorizados la energía utilizada será eléctrica, y la zona dispuesta para el transporte de los envases se encontrará completamente ventilada y aislada de cualquier de foco de ignición

- Queda totalmente prohibido fumar y/ o comer durante la manipulación y transporte de residuos.
- Para residuos líquidos se evitará el empleo de envases mayores de 30 litros, para facilitar su manipulación y evitar riesgos innecesarios.
- Los envases que contengan los residuos deben cerrarse herméticamente.
- Nunca se ha de manipular los residuos en solitario.
- Los residuos generales de laboratorio no deben mezclarse con los desechos y productos químicos. No se deben tirar al recipiente de basuras habitual (papeleras,
- etc.), trapos, papeles de filtro u otras materias impregnables o impregnadas.
- El vertido de los residuos a los envases correspondientes se ha de efectuar de una forma lenta y controlada. Esta operación será interrumpida si se observa cualquier fenómeno anormal, como la producción de gases o el incremento excesivo de temperatura. Para trasvasar líquidos en grandes cantidades, se empleará una bomba preferentemente de accionamiento manual; en el caso de utilizar una bomba eléctrica, esta debe ser antideflagrante, en todos los casos se comprobará la idoneidad del material de la bomba con el residuo trasvasado.
- Los envases no se han de llenar más del 90% de su capacidad con la finalidad de evitar salpicaduras, derrames y sobrepresiones.
- Siempre que sea posible, los envases se depositarán en el suelo, sobre cubetos confinados, para prevenir posibles caídas y derrames accidentales. En cualquier caso, no se almacenarán a más de 170 cm de altura.
- Se evitará el contacto directo con los productos químicos. En cualquier caso, durante todo el proceso de transporte y manipulación de residuos, deberán utilizarse equipos de protección individual como, guantes, gafas y calzado de seguridad.

H. Procedimientos de Tratamiento Previo a la Eliminación o Reciclaje de los Residuos Químicos Peligrosos

Seguidamente se describen los procedimientos generales para el tratamiento de sustancias y compuestos que por su volumen o por la facilidad del tratamiento pueden ser efectuados en el laboratorio. Estas operaciones deben realizarse antes de la eliminación o reciclaje de los mismos.

Tabla H.1 Sustancias o Compuestos que Pueden Eliminarse a través del Vertido a la Red de Saneamiento tras el Tratamiento Previo

Grupo Analítico	Tratamiento	
Haluros de ácidos orgánicos	Añadir NaHCO₃ y agua.	
Clorhidrinas y nitroparafinas	Añadir Na ₂ CO ₃ . Neutralizar	
Ácidos orgánicos sustituidos	Añadir NaHCO₃ y agua	
Aminas alifáticas (*)	Añadir NaHCO₃ y pulverizar agua. Neutralizar.	
Sales inorgánicas	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M).	
Oxidantes	Tratar con un reductor (disolución concentrada). Neutralizar	
Reductores	Na₂CO₃ y agua (hasta suspensión). Dejar en reposo (2h). Neutralizar.	
Cianuros	Tratar con (CIO) ₂ Ca (disolución alcalina). Dejar en reposo (24h).	
Nitrilos	Tratar con una disolución alcohólica de NaOH (conversión en cianato soluble), evaporar el alcohol y añadir hipoclorito cálcico. Dejar en reposo (24h).	
Hidracinas (*)	Diluir hasta un 40% y neutralizar con H₂SO₄	
Alcalis cáusticos y amoníaco	Neutralizar con ácido	
Hidruros	Mezclar con arena seca, pulverizar con alcohol butílico y añadir agua (hasta destrucción del hidruro). Neutralizar (HCI6M) y decantar. Verter al desagüe. Residuo de arena: enterrarlo.	
Amidas inorgánicas	Verter sobre agua y agitar. Neutralizar (HCl 3M ó NH₄OH 6M).	
Compuestos internometálicos (cloruro de sulfúrilo, tricloruro de fósforo, etc.)	Vorter sehre NaHCO3 Mezclar con un diselvente inflamable	
Peróxidos inorgánicos	Diluir.	
Sulfuros inorgánicos	Añadir una disolución de FeCl3 con agitación. Neutralizar (Na ₂ CO ₃).	
Carburos	Adicionar sobre agua en un recipiente grande, quemar el hidrocarburo que se desprende. Dejar en reposo (24h). Verter el líquido por el desagüe. Precipitado sólido: tirarlo a un vertedero	

(*) Estas sustancias o sus residuos también pueden eliminarse por incineración

Fuente: Fernández, 2008.

Tabla H.2 Sustancias o Compuestos que pueden Eliminarse a través de Incineración tras el Tratamiento Previo.

Grupo Analítico	Tratamiento	
Aldehídos	Absorber en vermiculita ó mezclar con un disolvente	
Alcalinos, alcafinotérreos, alquilos, alcóxidos	Mezclar con Na ₂ CO ₃ , cubrir con virutas.	
Clorhidrinas, nitroparafinas	Incinerar	
Compuestos orgánicos Halogenados	Absorber sobre vermiculita, arena o bicarbonato	
Ácidos orgánicos sustituidos	Absorber sobre vermiculita y añadir alcohol, o bien disolver directamente en alcohol	
Aminas aromáticas	Absorber sobre arena y Na ₂ CO ₃ . Mezclar con papel o con un disolvente inflamable	
Aminas aromáticas halogenadas, nitrocompuestos	Verter sobre NaHCO ₃ . Mezclar con un disolvente inflamable	
Aminas alifáticas	Mezclar con un disolvente inflamable	
Fosfatos orgánicos y Compuestos	Mezclar con papel, o arena y cal apagada	
Disulfuro de carbono	Absorber sobre vermiculita y cubrir con agua. Incinerar. (Quemar con virutas a distancia)	
Mercaptanos, sulfuros orgánicos	Mezclar con un disolvente inflamable	
Eteres	Mezclar con un disolvente inflamable	
Hidracinas	Mezclar con un disolvente inflamable	
Hidruros	Quemar en paila de hierro	
Hidrocarburos, alcoholes, cetonas, esteres	Mezclar con un disolvente inflamable	
Amidas orgánicas	Mezclar con un disolvente inflamable	
Ácidos orgánicos	Mezclar con un disolvente inflamable	

Fuente: Fernández, 2008.

Tabla H.3 Sustancias o Compuestos Recuperables.

Grupo Analítico	Tratamiento		
Mercurio metal	Aspirar, cubrir con polisulfuro cálcico		
Mercurio compuestos	Disolver y convertirlos en nitratos solubles. Precipitarlos como sulfuros		
Arsénico, bismuto, antimonio	Disolver en HCl y diluir hasta aparición de un precipitado blanco (SbOCl y BiOCl). Añadir HCl 6M hasta redisolución. Saturar con sulfhídrico. Filtrar, lavar y secar.		
Selenio, teluro	Disolver en HCI. Adicionar sulfito sódico para producir SO₂ (reductor). Calentar. (Se forma Se gris y Te negro). Dejar en reposo (12h). Filtrar y secar		
Plomo, cadmio	Añadir HNO₃ (Se producen nitratos). Evaporar, añadir agua y saturar con H₂S. Filtrar y secar.		
Berilio	Disolver en HCl 6M, filtrar. Neutralizar (NH4OH 6M). Filtrar y secar.		
Estroncio, bario	Disolver en HCI 6M, filtrar. Neutralizar (NH ₄ OH 6M).Precipitar (Na ₂ CO ₃). Filtrar, lavar y secar.		
Vanadio	Añadir a Na ₂ CO ₃ (capa) en una placa de evaporación. Añadir NH ₄ OH 6M (pulverizar). Añadir hielo (agitar). Reposar (12h). Filtrar (vanadato amónico) y secar.		

Fuente: Fernández, 2008.

I. Encuestas aplicadas a Docentes y Estudiantes

Encuesta aplica a Docentes

Uso y manejo del Laboratorio de Química RUSB

Estimado(a) Docente, este cuestionario pretende recoger información que solamente su experiencia, puede proveer. El propósito de la encuesta es que brinde su opinión sobre el estado actual y real de las instalaciones del laboratorio de Química RUSB, el cual nos permitirá la realización de un diagnóstico ambiental.

Estas respuestas se procesarán de manera anónima, asegurándole imparcialidad en el procesamiento de los resultados y generalizaciones afines.

Encierre en un círculo la(s) respuestas.

1.	Нż	ace usted	uso de las instala	iciones del	laboratorio	de Química	RUSB?
	a.	SI	b) NO				

Si su respuesta es SI continúe con la pregunta 2 y si es NO se le agradece por su tiempo. Aquí termina la encuesta.

2. ¿Cuáles de las siguientes actividades ha realizado en las instalaciones del Laboratorio de Química RUSB?

a) Prácticas del laboratorio	b) Ferias Tecnológicas
c) Actividades Monográficas	d) Proyectos de diversas asignaturas
Investigaciones	

3. ¿Tiene usted conocimiento de cómo se manipulan o manejan los desechos (líquidos, sólidos y gaseosos) generados de las actividades que se realizan en las instalaciones del laboratorio?

a) SI b) NO

Si su respuesta es Si responda la pregunta 4, si no pase a la 5

4. ¿Una vez realizadas las actividades antes mencionadas; cual es el procedimiento que se le ha orientado normalmente a seguir con los desechos producidos en el laboratorio?

a. Desecharlos a la cañería

c. Someterlos a un tratamiento y luego

b. Almacenarlos

desecharlos

d. Otro

5.	¿Considera usted que el laboratorio de Química RUSB debe de tener un procedimiento para tratar y almacenar los desechos (líquidos, sólidos y gaseosos)? ¡Favor argumente su respuesta!
	a. SI
	b. NO
6.	Evalué el riesgo que presentan las siguientes áreas del laboratorio:
	a. Área de almacenamientos de reactivos
	i. (Baja peligrosidad) ii. (Peligroso) iii. (Muy Peligroso)
	b. Estantes de soluciones preparadas
	i. (Baja peligrosidad) ii. (Peligroso) iii. (Muy Peligroso)
	c. Estantes de instrumentos de laboratorios
	i. (Baja peligrosidad) ii. (Peligroso) iii. (Muy Peligroso)
7.	¿Cuáles de los siguientes aspectos mencionados son una realidad en el laboratorio de Química RUSB?
	a. Reactivos vencidos
	b. Desorden y poca área de trabajo
	c. Instalaciones Suciasd. Excesivo consumo de Agua, Energía y Gas
	e. Altos niveles de ruido
	f. Generación de Residuos sólidos no peligrosos (cartón, papel de
	aluminio, papel de oficina)
	g. Otros
8.	¿Cuenta el laboratorio de Química RUSB con equipos que reduzcan la emisión de los gases producidos durante las actividades desarrolladas?
	a. SI b. NO
	Si su respuesta es SI, ¿considera usted que estos se encuentran en buen estado?

Si su respuesta es NO, que recomendaciones haría para mejorar este aspecto:
9. Cuando circula cerca de las instalaciones del laboratorio de Química RUSB, percibe alteración al medio ambiente tales como:
a. Malos olores b. Ruidos abrumantes c. Otro
10. ¿Considera usted que se cumple con las legislaciones y reglamentaciones ambientales del país en emisiones de gases, ruido, sustancias químicas residuos peligrosos y no peligrosos en el laboratorio de Química RUSB?
a. SI b. NO
Si su respuesta es NO, favor suministrar sugerencias.
 11. Considera que el Laboratorio de Química RUSB es una instalación que contribuye con proteger: el medio ambiente interno y de sus alrededores así como la salud de las personas que hacen uso y trabajan alrededor de este. a. SI b. NO
12. ¿Debe el laboratorio de Química RUSB contar con un sistema de gestión de residuos? ¿Por qué?

Muchas Gracias

Encuesta aplicada a Estudiantes

Uso y manejo del Laboratorio de Química RUSB

Estimado(a) Estudiante este cuestionario pretende recoger información que solamente su experiencia, como estudiante puede proveer. El propósito de la encuesta es conocer el estado actual y real de las instalaciones del laboratorio de Química RUSB, el cual nos permitirá la realización de un diagnóstico ambiental.

Estas respuestas se procesarán de manera anónima, asegurándole imparcialidad en el procesamiento de los resultados y generalizaciones afines.

Encierre en un círculo la(s) respuestas.

- 1. ¿Cómo estudiante de la UNI hace usted uso de las instalaciones del laboratorio de Química RUSB?
- a. SI b. NO

Si su respuesta anterior es NO se le agradece por su tiempo. Aquí termina la encuesta

- 2. ¿Cuáles de las siguientes actividades ha realizado en las instalaciones del Laboratorio de Química RUSB?
- a. Practicas del laboratorio
- b. Ferias Tecnológicas
- c. Actividades Monográficas
- d. Proyectos de diversas asignaturas
- 3. ¿Tiene usted conocimiento de cómo se manipulan los desechos (líquidos, sólidos y gaseosos) producidos de las actividades que se realizan en las instalaciones del laboratorio?
 - a. SI b. NO

Si su respuesta es sí responda la pregunta 4, si no pase a la 5

- 4. ¿Una vez realizadas las actividades antes mencionadas; cual es el procedimiento que se le ha orientado normalmente a seguir con los desechos producidos en el laboratorio?
 - a. Desecharlos a la cañería
 - b. Almacenarlos
 - c. Someterlos a un tratamiento y luego desecharlos
 - d. No se aplica
 - e. Otro

5. ¿Considera usted que el laboratorio de Química RUSB debe de tener un procedimiento para tratar y almacenar los desechos (líquidos, sólidos y gaseosos)? ¡Favor argumente su respuesta!

a.SI				
h NO	1			

- 6. Evalué el riesgo que presentan las siguientes áreas del laboratorio:
 - a. Área de almacenamientos de reactivos:
 - i. (Baja peligrosidad) ii. (Peligroso) iii. (Muy Peligroso)
 - b. Estantes de soluciones preparadas
 - i. (Baja peligrosidad) ii. (Peligroso) iii. (Muy Peligroso)
 - c. Estantes de instrumentos de laboratorios
 - i. (Baja peligrosidad) ii. (Peligroso) iii. (Muy Peligroso)
- 7. ¿Cuáles de los siguientes aspectos mencionados son una realidad en el laboratorio de Química RUSB?
 - a. Reactivos vencidos
 - b. Desorden y poca área de trabajo
 - c. Instalaciones Sucias
 - d. Excesivo consumo de Agua, Energía y Gas
 - e. Altos niveles de ruido
 - f. Generación de Residuos sólidos no peligrosos (cartón, papel de aluminio, papel de oficina)

8.	¿Cuenta el laboratorio de Química RUSB con equipos que reduzcan la emisión de los gases producidos durante las actividades desarrolladas?
a.	. SI
b.	. NO
	i su respuesta es SI, considera usted que estos se encuentran en buen stado?
	i su respuesta es NO, que recomendaciones haría para mejorar este specto:
9.	Cuando circula cerca de las instalaciones del laboratorio de Química RUSB, percibe alteración al medio ambiente tales como:
a.	. Malos olores
b.	. Ruidos abrumantes
C.	Otros
10.	Considera que el Laboratorio de Química RUSB es una instalación que contribuye con proteger: el medio ambiente interno y de sus alrededores,

así como la salud de las personas que hacen uso y trabajan alrededor de

Muchas Gracias

este.

a. SI b. NO

J. Instrumento para la Evaluación de Aspectos Ambientales

Tabla J.1 Instrumento para la Evaluación de Aspectos Ambientales

Laborat	boratorio:}															
							CLA	SIFICACIÓN					EVALUAC	IÓN		
Área	Actividad	Aspecto Ambiental	Impacto Ambiental	Ley/Norma Aplicable	Posible incumplimiento	Tiempo de ocurrencia	Responsabilidad	Tipo de impacto	Amplitud Geografica	Situación Operacional	Probabilidad	Severidad	Índice de Evaluación de Riesgo*	Control	Magnitud del Riesgo Ambiental	Significancia

^{*} Indice evaluación de riesgo

A: Crítico, se deben implementar medidas inmediatas para reducir el riesgo

B: Muy Alto, se deben realizar controles u otras medidas periódicas para disminuir el riesgo

C: Alto, es recomendable implementar medidas de protección adicionales

D: Medio, en condiciones actuales debe evaluarse periódicamente

E: Moderado, se requiere seguimiento para ver si se mantienen los controles

F: Bajo, con recomendaciones

G: Bajo, sin recomendaciones

H: Sin Consecuencia

K. Resultados Encuestas a Docentes y Estudiantes del RUSB

Procesamiento de Datos Encuesta estudiantes

Número de Encuestados: 519 estudiantes

Error: 10%

Número de Encuestas a realizar: 81

	Distribución por Turno- Segundo Semestre 2011											
	DIURNO NOCTURNO											
	Egresado	Reingreso	Egresado	Reingreso								
Número de Estudiantes	61	396	7	55								
Porcentaje	12%	76%	1%	11%								
Encuestas por Sector	9	62	1	9								

a. SI 70

b. NO 11

2.Cuáles de las siguientes actividades ha realizado en las instalaciones del Laboratorio de Química

a. Practicas del laboratorio
b. Ferias Tecnológicas
c. Actividades Monográficas
d. Proyectos de diversas asignaturas
28

3. Tiene usted conocimiento de cómo se manipulan los desechos (líquidos, sólidos y gaseosos) producidos de las actividades que se realizan en las instalaciones del laboratorio?

a. SI 31 b. NO 39

4.Una vez realizadas las actividades antes mencionadas; cual es el procedimiento que se le ha orientado normalmente a seguir con los desechos producidos en el laboratorio?

a.	Desecharlos a la cañería	25
b.	Almacenarlos	2
c.	Someterlos a un tratamiento y luego desecharlos	4
d.	No se aplica	0
e.	Otro	0

5. Considera usted que el laboratorio de Química RUSB debe de tener un procedimiento para tratar y almacenar los desechos (líquidos, sólidos y gaseosos)?

a. SI 70

b. NO 0 120

6. Evalué el riesgo que presentan las siguientes áreas del laboratorio:

Área de almacenamientos de reactivos:

i. (Baja	peligrosidad)					
	15	29	26			
	tantes de solucior					
i. (Baja	peligrosidad)			Peligroso)		
	19	43	8			
	tantes de instrum					
i. (Baja	a peligrosidad)		. (Muy Pe	eligroso)		
	54	12	4			
7.Cuále	s de los siguiente	s aspectos men	cionados	son una realidad en	el laboratorio d	de Química RUSB?
a. Rea	activos vencidos					
b. De	sorden y poca áre	ea de trabajo				
c. Ins	stalaciones Sucias	;				
d. Exc	cesivo consumo d	le Agua, Energía	y Gas			
e. Alt	os niveles de ruid	lo				
f. Ge	eneración de Resi	duos sólidos no	peligroso	os (cartón, papel de a	aluminio, papel	de oficina)
8 Cuent	ta el laboratorio d	le Ouímica RUSI	R con equ	ipos que reduzcan la	a emisión de los	gases producidos
	e las actividades d		o con equ	ipos que reduzedir le	r cimolori de 103	Bases productaos
a. SI		38				
b. NO		32				
Si su re	spuesta es SI, con	isidera usted qu	ie estos s	e encuentran en bue	n estado?	
SI		9	NO	27	NOSE	2
9.Cuano	do circula cerca de	e las instalacion	es del lab	oratorio de Química	RUSB, percibe	alteración al
medio a	ambiente tales co	mo:				
a.	Malos olores		53			
b.	Ruidos abruman	tes	9			
C.	Otros		12			
10.Con	sidera que el Labo	oratorio de Quír	nica RUSE	B es una instalación o	que contribuye	con proteger: el
	•			í como la salud de la	· ·	
	n alrededor de es		,		. ,	•
a.	SI	21				
b.	NO	49				

Procesamiento de Datos Encuesta docentes

1. Hace usted uso de las instalaciones del laboratorio de Química RUSB?

a.	SI	25		
b.	NO	9		
2.C	uáles de las siguientes activ	idades ha reali	zado e	en las instalaciones del Laboratorio de Química RUSB?
a.	Practicas del laboratorio		14	
b.	Ferias Tecnológicas		6	
c.	Actividades Monográficas		7	
d.	Proyectos de diversas asig	naturas	4	
e. I	nvestigaciones		3	
			34	
				os desechos (líquidos, sólidos y gaseosos) instalaciones del laboratorio?
a.	SI	23	1	191.67%
b.	NO	2		16.67%
				adas; cual es el procedimiento que se le ha roducidos en el laboratorio?
a.	Desecharlos a la cañería		23	
b.	Almacenarlos		2	
c.	Someterlos a un tratamien	to y luego dese	٥0	
d.	No se aplica		0	
e.	Otro		0	
	onsidera usted que el labora nacenar los desechos (líquid			SB debe de tener un procedimiento para tratar y os)?
a.	SI	23		
b.	NO	0		
a.	valué el riesgo que presenta Área de almacenamientos (Baja peligrosidad) 6			
b.	Estantes de soluciones pre	paradas		
	Baja peligrosidad)	ii. (Peligroso)	iii. (M	Nuy Peligroso)
	2	15		8
c.	Estantes de instrumentos o	le laboratorios		
		ii. (Peligroso		Peligroso)
	17	6	,	2

/.Cl	iales de los siguientes as	pectos menci	ionados son u	na realidad er	i el laboratorio d	ie Quimica ROSB?						
a.	Reactivos vencidos			4								
b.	Desorden y poca área de	trabajo		6	6							
c.	Instalaciones Sucias		3									
d.	Excesivo consumo de Ag	ua, Energía y	5									
e.	Altos niveles de ruido			2								
f.	Generación de Residu	uos sólidos	no peligroso	s (car 2								
g.	Otros			3								
	uenta el laboratorio de Q ante las actividades desa		con equipos q	ue reduzcan la	a emisión de los (gases producidos						
a. S		19										
b. N	0	6										
Sis	u respuesta es SI, conside	era usted que	estos se encu	entran en bue	n estado?							
SI		5	NO	5	NOSE	9						
	uando circula cerca de la lio ambiente tales como: Malos olores Ruidos abrumantes Otros	s instalacion 23 0 2	es del laborat	orio de Quími	ca RUSB, percibe	alteración al						
país	Considera usted que se s en emisiones de gase el laboratorio de Quím	s, ruido, su	_									
a. S	51	0										
b. N	10	25										
med	Considera que el Laborato lio ambiente interno y de pajan alrededor de este?											
a.	SI											
b.	NO	25										
12.	¿Debe el laboratorio de C	Química RUSB	s contar con ur	n sistema de g	estión de residuc	os? ¿Por qué?						
Si		25		_		•						
No		0										

L. Resultados recolección de datos durante las guías prácticas del Laboratorio

Asignatura: Química General II

Nombre de la Guía Práctica: Factores que Afectan el Equilibrio Químico

Grupo de Clase: 1TQ Año Academico: I

Número de Estudiantes: 16

Cantidad de Grupos: 4

	<u>REACTIVOS</u>			PRODUCTOS												MANIPULACIÓN DE RESIDUO					
EN	SAYO	Nombre/ Fórmula	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre / Fórmula Química Volumen / Característic		Volumen / Características Generales			Clasificación de Residuos Químicos (grupos) Caracterísitcas de					tcas de	Tipo de	Posible Tratamiento			
		Química	Físico	Masa		Nombre/ Formula Química			lasa pH Estado Apariencia Color I		I II III IV V VI VII			VII Peligros	idad	Almacenamiento	Posible Tratamiento				
		Cromato de Potasio/K₂CrO4	L	4 mL	$K_2CrO_{4[ac)} + KOH_{(ac)}$ (No reacciona)										Residuo 1	Residuo Tóxico	Envase de Polietileno etiquetado con y T	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁵⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCl			
	А	Hidroxido de Potasio/KOH	L	Gotas	$2K_2CrO_{4(ac)} + 2HCI_{(ac)} \longleftrightarrow K_2Cr_2O_{7(ac)} + 2KCI_{(ac)} + H_2O_{(I)}$	Dicromato de Potasio/K ₂ Cr ₂ O _{7,} Cloruro de Potasio/KCl, Agua/H ₂ O	23 mL	7 Líquido	Sin Turbidez A	Amarillo		OSAI ^θ y SAC ^π	· 1		por preser Crom hexaval	icia de o					
		Acido Clorhidrico/HCl	L	Gotas	$HCI_{(ac)} + KOH_{(ac)} \rightarrow KCI_{(ac)} + H_2O_{(I)}$, , ,	6M). Verter a la cañería.			
-		Dicromato de Potasio/K ₂ Cr ₂ O ₇	L	4 mL	$K_2Cr_2O_{7(ac)} + 2KOH_{(ac)} \longleftrightarrow 2K_2CrO_{4(ac)} + H_2O_{(I)}$													Para los compuestos que contienen Cromo Hexavalente,			
	В	Hidroxido de Potasio/KOH	L	Gotas		(C. O	(C. O 1411Cl N. 201 1211 O 1	V C . O	Cromato de Potasio/K ₂ CrO ₄ , Cloruro de Potasio/KCl, Croruro de Cromo (III)/CrCl ₃ ,	27 mL	7 Líquido	Sin Turbidez	Amarillo		OSAI ^θ y SAC ^π			Residuo 1 por preser Crom	icia de	Polietileno etiquetado con y T	ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCl
		Acido Clorhidrico/HCl	L	Gotas	$ \text{K}_2\text{Cr}_2\text{O}_{7(ac)} + 14\text{HCl}_{(ac)} \Rightarrow 3\text{Cl}_{2(g)} + 2\text{CrCl}_{3(ac)} + 7\text{H}_2\text{O} + 2\text{KCl}_{(ac)} $	Cloro/Cl ₂ , Agua/H ₂ O									hexaval	hexavalente	(Tóxico)	6M). Verter a la cañería.			
		Cloruro de Cobalto (II) en solución alcohólica/ CoCl4	L	8 mL												Residuo 1	Residuo Tóxico		Añadir un exceso de Na₂CO₃ y agua. Dejar en reposo		
2	А	Agua destilada/H₂O		Hasta lograr cambio de color	$CoCl_4^{-2}_{\{ac\}} + 6 H_2O_{(I)} \longleftrightarrow Co(H_2O)_6^{+2}_{\{ac\}} + 4Cl_{\{ac\}}$	Iones Hexaacuo-cobalto (II)/Co(H ₂ O) ₆ , Cloruro de	61 mL	1.1 Líquido	Sin Turbidez	Rosado		SAMP [¢]	ф		por preser	os de	de Polietileno	(24h). Neutralizar (HCl 6M). Para el Cloruro de Plata, Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana			
		Acido Clorhidrico/HCl	L	Gotas		Plata/AgCl, Iones Nitrato/NO ₃)	/ OSAI ^B			Cobalt Corrosivo	,	(Tóxico) y C	de laboratorio. Lavar el precipitado y colocar en bandeja			
		Nitrato de Plata/AgNO ₃	L	8 mL	$Cl_{(ac)}^{-} + AgNO_{3(ac)} \leftarrow \rightarrow AgCl_{(s)} + (NO_3)_{(ac)}^{-}$										bajo		(Corrosivo)	plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.			
		Cloruro de Cobalto (II) en solución alcohólica/ CoCl ₄	L	8 mL		Hexaacuo-cobalto					S	SAMP [¢]	ΛP ^Φ		Residuo 1 por preser compues	icia de	Envase de Polietileno	Opción 1: Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria. Opción 2: Disolver en Ácido Clorhídrico 3M. Diluir y saturar			
3	A	Agua destilada/H ₂ O	L	14 mL	$CoCl_4^{-2}(ac) + 6H_2O_{(i)} \longleftrightarrow Co(H_2O)_6^{-2}(ac) + 4Cl^*(ac)$	Hexaacuo-cobalto (II)/Co(H ₂ O) ₆ , lones Cloro/Cl	53 mL	14 Liquido	Solución Turbia	Marrón	y	y OSAI ⁸			Corrosivo	Cobalto y Corrosivo por su alto pH etiquetado con y T (Tóxico) y C (Corrosivo)	 Opción 2: Disolver en Acido Clorhidrico 3M. Diluir y saturar con Acido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto. 				

OSAI: Otras soluciones Acuosas Inorgánicas

^π**SAC: S**olución Acuosa de Cromo VI

[♠]SAMP: Soluciones Acuosas Metales Pesados

Volumen Final: 164 mL Volumen Teórico: 47 mL

pH Final: 7

2017

Asignatura: Química General II

Nombre de la Guía Práctica: Reacciones de Oxidación Reducción

Grupo de Clase: 1TQ Año Academico: I Número de Estudiantes: 16 Cantidad de Grupos: 4

		REACT	rivos							PRODU	ICTOS							MANIPULACIÓN DE RESIDUO
E	NSAYO	Nombre/ Fórmula	Estado	Volumen	REACCIÓN QUÍMICA	Nombre/ Fórmula	Volumen/		Cara	cterísticas Gene	rales	Cla	sificación guímico			Caracterísitcas de	Tipo de	Posible Tratamiento
		Química	Físico	/ Masa		Química	Masa	рН	Estado	Apariencia	Color	I II		IV V		VII Peligrosidad	Almacenamiento	rosiste riatamiento
		Ácido Sulfúrico/H₂SO₄	L	8 mL		Sulfato de Hierro III/Fe ₂ (SO ₄) ₃											Envase de	
	1 A	Permanganato de Potasio/KMnO ₄	L	20 gotas	$10\text{FeSO}_{4(ac)} + 2\text{KMnO}_{4(ac)} + 8\text{H}_2\text{SO}_{4(ac)} \Rightarrow$ $5\text{Fe}_7(\text{SO4})_{3(ac)} + 2\text{MnSO}_{4(ac)} + 8\text{H}_2\text{O}_{(1)} + \text{K}_7\text{SO}_{4(ac)}$	Sulfato de Manganeso/MnSO _{4,}	8 mL	1.98	Líquido	Sin turbidez	Violeta		^θ OSAI			Residuo corrosivo por bajo pH.	Polietileno etiquetado con C	Añadir un exceso de Na₂CO₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria.
		Sulfato de Hierro (II)/FeSO ₄	L	Gotas	$3 \text{ Fe}_2(304)_{3(ac)} + 21011304_{4(ac)} + 311_20_{(1)} + \kappa_2 30_{4(ac)}$	Sulfato de Potasio/K₂SO₄, Agua/H₂O										F	(Corrosivo).	readanta (rea any reac a la caneria.
		Cloruro de Antimonio (III)/SbCl ₃	L	8 mL		Cloruro de Hierro	45.		., .,	Turbia, con suspensión	Transparente con sólidos en		Α		α.	Residuo Tóxico por presencia de Antimonio.	Envase de Polietileno	Filtrar los sólidos en suspensión y disolver con HCl. Diluir hasta la aparicion de un precipitado blanco. Afadir HCl (6M) hasta redisolución. Saturar con sulfibidrico. Filtrar, lavar y secar, residuo recuperable. Para la solución restante de Cloruro de Hierro se disuelve en ácido clorhídrico 3M, luego
	2 A	Grapas/Fe	S		$SbCl_{3(ac)} + 3Fe_{(s)} \rightarrow 3FeCl_{2(ac)} + 2Sb_{(s)}$	(II)/FeCl _{2,} Antimonio/Sb	15 mL	1.12	Líquido	coloidal y restos de grapa	suspensión (blanco)		⁶ OSAI		^α SI	Corrosivo por bajo pH.	etiquetado con T(Tóxico) y C (Corrosivo).	la solución se diluye y satura con unos 5 ml de ácido sulfúrico grado reactivo en una campana de laboratorio. El precipitado de sulfuro se lava y se coloca en una bandeja plástica y se deja secar al sol, el sólido seco, después se funde dentro de un cuadro de concreto.
		Acido sulfurico/H₂SO₄	L	8 mL		Yodo/I ₂ , Sulfato de											Favora da	Opción 1: Añadir un exceso de Na2CO3 y agua. Dejar en
	3 A	Dicromato de Potasio/K ₂ Cr ₂ O ₇	L	20 gotas	$\begin{split} K_2 C r_2 O_{7(ac)} + 6 K I_{(ac)} + 7 H_2 S O_{4(ac)} & \rightarrow C r_2 (S O_4)_{3(ac)} + \\ 4 K_2 S O_{4(ac)} + 3 I_{2(ac)} + 7 H_2 O_{(I)} \end{split}$	Cromo III/ $Cr_2(SO_4)_3$, Sulfato de Potasio/ K_2SO_4	6.8 mL	1.2	Líquido	Solución turbia	Verde Musgo		⁰ OSAI			Residuo corrosivo por bajo pH.	etiquetado con C	reposo (24h). Neutralizar (HCI 6M). Verter a la cañeria. Opción 2: Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol.
		Yoduro de Potasio/KI	L	Gotas		Agua/H₂O											,	El sólido seco, fundir dentro de un cuadro de concreto.

^αSI: Sólido Inorgánico

Volumen Final: 29.8 mL

Volumen Teórico: 26.4 mL

 $^{\theta}$ OSAI: Otras soluciones Acuosas Inorgánicas

pH Final: 1.5

Asignatura: Química General I

Nombre de la Practica: Técnicas de medición y separación de volumen

Grupo de clase: 2M1-I (Telecomunicaciones -IES)

Año académico: I No de estudiantes: 35

Cantidad de grupos que la realizan: 7

		R	EACTIVOS							PRO	DUCTOS							MANIPULACIÓ	N DE RESIDUO
EN	SAYO		Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/	Volumen/ masa		Caracterís	ticas Genera	iles	Cla	asificación químicos			5	Caracterísitcas de	Tipo de Almacenamiento	Posible Tratamiento
		Formula Química	Físico	masa		Formula Química	generados	рН	Estado	Apariencia	Color	I II	Ш	ıv۱	/ VI	VII	Peligrosidad	.,	
		Hidroxido de Sodio/NaOH	L	70 mL	$CuSO_{4(ac)} + 2NaOH_{(ac)} \rightarrow Na_2SO_{4(ac)} +$	Sulfato de Sodio/Na₂SO₄,	425	0.75		2 Fases:	Transpar ente y		SAB*				Residuo toxico por la	Envase de Polietileno	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en
	L	Sulfato de Cobre/CuSO ₄	L	70 mL	Cu(OH) _{2(s)}	Hidroxido de Cobre/Cu(OH) ₂	125 mL	8.75	L	Líquido y Sólido	verde oscuro		y OSAI ^θ				presencia de compuesto de cobre	etiquetado con T (Toxico)	reposo (24h). Neutralizar (HCl 6M). Verter a la Cañeria.
	, ,	Cloruro de Sodio/NaCl	S	14 g	$NaCl_{(s)} + H_2O_{(l)} \rightarrow Na^+_{(ac)} + Cl^{(ac)}$	Solución acuosa de Sodio/Na ⁺ ,	20 mL	7.5		Turbio	Blanco		OSAI ^θ				N/A	N/A	N/A
		Agua/H₂O (Destilada)	L	105 mL	$NaCl_{(s)} + H_2O_{(l)} \rightarrow Na_{(ac)} + Cl_{(ac)}$	Solución acuosa de Cloro/Cl ⁻	201111	7.5		Turbio	Біапсо		USAI				N/A	N/A	N/A
	3 A	Agua/H ₂ O (Destilada)	L	10 mL	H ₂ O _(l) + Aceite Vegetal (No hay	Agua/H ₂ O, Aceite	175 mL	6.8	L	2 fases	Transpar ente y			A	Сβ		N/A	El aceite una vez separado puede almacenarse en envases de polietileno y	N/A
		Aceite Vegetal	L	10 mL	reacción)	Vegetal				líquidas	amarillo							volverse a utilizar en otra práctica.	
	1 A	Agua/H₂O	L	245 mL	No hay reacción	Agua/H₂O	245 mL	8.1	L	Transparen te	Trasnpar ente		N,	/A			N/A	N/A	N/A

^β**AC:** Aceites

Volumen Total : 565 mL

Volumen Teórico: 510 mL

^θ**OSAI:** Otras soluciones Acuosas Inorgánicas

pH Final: 8.4

*SAB: Solución Acuosa Básica

Asignatura: Química General I

Nombre de la Practica: Tipo de reacciones químicas y obtención de CO₂

Grupo de clase: 1M1Q Año académico: I No de estudiantes: 35

Cantidad de grupos que la realizan: 6

Г		R	EACTIVOS							PRODU	<u>ictos</u>							MANIP	ULACIÓN DE RESIDUO
EI	ISAYO	Nombre/ Formula Química	Estado Físico	Volumen/ masa	REACCIÓN QUÍMICA	Nombre/ Formula Química	Volumen/ masa generados		aracteríst Estado	Aparienc		I II	III	IV	·ngc)		Caracterísitcas de Peligrosidad	Tipo de Almacenamiento	Posible Tratamiento
	. A	Agua/H ₂ O (Destilada)	L	150 mL	$2Na_{(s)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(ac)} + H_{2(g)}$	Solución Acuosa de	160 mL	12.54	L	Turbio	Blanquec		SAB*				elevado pH y toxico por	Envase de Polietileno etiquetado con C	Neutralizar con ácido. Verter a la
		Sodio/Na	S	6 Trozos		Na(OH)					ino						ser corrosivo en piel y ojos.	(Corrosivo) y T (Toxico)	Cañeria.
2	: A	Clorato de Potasio/KClO ₃	S	6 g	$2KCIO_{3(s)} \rightarrow 2KCI_{(s)} + 3O_{2(g)}$	Cloruro de Potasio KCl, Oxigeno/O ₂ , Clorato de Potasio/KClO ₃	4.2 g		S	Sólida	Blanquec ino				SI	x	N/A	N/A	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la Cañeria.
3	A	Ácido Clorhídrico/HCl	L	18 mL	$Mg_{(s)} + 2HCI_{(ac)} \rightarrow MgCI_{2(ac)} + H_{2(g)}$	Cloruro de Magnesio/MgCl ₂ , Hidrogeno/H ₂ , Ácido	25 mL	1.03	L	Liquido- Transpar	Transpar ente			A ^ω			Residuo corrosivo por su bajo pH.	Envase de Polietileno etiquetado con C	Diluir con agua hasta una relacion 1:100 agua. Neutralizar con NaOH al
		Magnesio/Mg	S	6 Trozos		Clorhídrico/HCl				ente								(Corrosivo)	10%. Verter a la Cañeria
		Cloruro de Bario/ BaCl ₂	L	2 mL	$BaCl_{2(ac)} + Na_2SO_{4(ac)} \rightarrow BaSO_{4(s)} +$	Sulfato de Bario/BaSO ₄ ,	24 mL	6.81		2 Fases: Líquido	Blanquec		as0				N/A		Añadir un exceso de Na ₂ CO ₃ y agua.
		Sulfato de Sodio/Na₂SO₄	L	2 mL	2NaCl _(ac)	Cloruro de Sodio/NaCl	241111	0.61		y Sólido	ino		OSAI ⁰				N/A		Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la Cañeria.
		Carbonato de Sodio/Na ₂ CO ₃	S	1 g	$Na_2CO_{3(s)} + 2HCI_{(ac)} \rightarrow 2NaCI_{(ac)} +$	Cloruro de Sodio/NaCl, Agua/H₂O, Dióxido de	52 mL	1.04	ı	2 Fases: Líquido	Blanquec		OSAI ⁰	A ^ω			Residuo corrosivo por su	Enavse de Polietileno etiquetado con C	Neutralizar con base. Verter a la
		Ácido Clorhídrico/HCl	L	8 mL	$CO_{2(g)} + H_2O_{(I)}$	Carbono/CO _{2,} Ácido Clorhídrico/ HCl	JEIIIL	1.04		y Sólido	ino		USAI	A			bajo pH.	(Corrosivo)	Cañeria.

^ω**A:** Ácidos

⁰OSAI: Otras soluciones Acuosas Inorgánicas

*SAB: Solución Acuosa Básica

^αSI: Solido Inorgánico

Volumen Total : 261 mL

Volumen Teórico: 180 mL

Masa Final: 4.2 g

pH Final: 5.2

Volumen Teórico: 2.05 mL

2017

Asignatura: Química Orgánica I Nombre de la Practica: Obtención y propiedades del Metano Grupo de clase: 3NQ Año académico: III No de estudiantes: 6

Cantidad de grupos que la realizan: 1

		REACTIVOS								PF	RODUCTOS						MANIPU	JLACIÓN DE RESIDUO
EN:	SAYO	Nombre/ Formula	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/ Formula Química	Volumen/ masa		Caracterí	sticas General	les	Clasif	icación de resid (grupos		icos	Caracteristicas de Peligrosidad	Tipo de almacenamiento	Posible tratamiento
		Química	Físico	masa			generados	рН	Estado	Apariencia	Color	1	II III IV	v vi	VII	caracteristicas de l'engrosidad	ripo de dinidendinento	1 osisie addamento
		Acetato de Sodio Anhidro/CH₃COONa	S	8.2 g	CH COONs. + NsOH. +	Metano/CH ₄ , Carbonato de				Gases blancos y							El Carbonato de Sodio (Na ₂ CO ₃) y	Reutilizar los residuos: Los residuos de Na ₂ CO ₃ , pueden ser utilizados para el tratamiento de
1	Α	Cal Sodada/NaOH + CaO	S	10 g	$CH_3COONa_{(s)} + NaOH_{(s)} +$ $CaO_{(s)} \rightarrow CH_{4(g)} + Na_2CO_{3(s)} + CaO_{(s)}$	Calcio/ Na ₂ CO ₃ , Oxido de Calcio/CaO	17.5 g		Gas y Sólido	residuos sólidos	Blanco			SIα		Metano (CH ₄): Residuo Inflamable, reacciona con Oxígeno, Cloro y Fluor.	Óxido de Calcio (CaO) restante pueden almacenarse en recipientes de vidrio y volver a ser utilizados.	sales inorgánicas como el cloruro de amonio. Los residuos de CaO (sal viva) pueden ser
		Calor								blancos							de vidito y voivei a sei dillizados.	utilizados para la neutralización de cloruros.
2	Δ	Metano/CH ₄	G		$CH_{4(q)} + 2O_{2(q)} \rightarrow CO_{2(q)} + 2H_2O_{(g)}$	Vapor de Agua/H ₂ O, Dioxido de	N/A	N/A	G	Incoloro	Incoloro		N/A			N/A	N/A	N/A
_	,	Oxigeno/O ₂	G		O114(g) 1 2 3 2(g) 7 3 3 2(g) 1 2 1 12 3 (g)	Carbono/CO ₂	.,,,,	.,,,,	Ü		incoloro		.,,,,			.47.	,	14/1
		Metano/CH ₄	G													December de Detecto(VAA-O		
3	A	Permanganato de Potasio/KMnO ₄	L	2 mL	$\mathrm{CH_{4(g)}}$ + $\mathrm{KMnO_{4(ac)}}$ (No hay reacción)	Permanganato de potasio/KMnO ₄ , Metano/CH ₄	2.6 mL	9.39	GyL	Turbio	Purpura oscuro		OSAI ^θ			Permanganato de Potasio(KMnO ₄): Residuo Toxico por irritacion y daños al cuerpo humano. Metano CH ₄ : Residuo Inflamable, reacciona con Oxígeno, Cloro y Fluor.	Envase de Polietileno etiquetado con Xn (Nocivo) y T (Tóxico).	Tratar con una sustancia reductora (disolución concentrada). Neutralizar. Verter a la Cañeria
		Metano/CH ₄	G													Bromuro de Hidrogeno (HBr): Residuo peligroso, tóxico y corrosivo que al contacto	Para el residuo líquido de Bromuro	
4	А	Solución de Bromo en Tetracloruro de Carbono/Br ₂ -CCl ₄	L	gotas	$CH_{4(g)} + Br_2/CCI_{4(sin)}$ $\rightarrow CH_3Br/CCI_{4(sin)} + HBr_{(g)}$	Bromuro de Hidrogeno/HBr, Bromuro de Metilo en solución de Tetracloruro de Carbono/CH ₃ Br/CCl ₄	5.8 mL	1.9	GyL			DH ^μ				puede producir graves irritaciones y quemaduras en la piel y los ojos, con la posibilidad de daño ocular. Tetracloruro de Carbono (CH ₃ Br/CCl ₃):	de Metilo en Tretra Cloruro de Carbono (CH ₃ Br/CCl ₄): Almacenar en cilindros de acero, etiquetado con T (Tóxico), Xn (Nosivo) y N	Absorber sobre vermiculita, arena o bicarbonato.Incinerar. 团
		Luz Solar														Tóxico y Nocivo para el medio ambiente.	(Peligroso para le medio ambiente)	

^μ**DH:** Disolvente Halogenado

 $^{ heta}$ OSAI: Otras soluciones Acuosas Inorgánicas ^αSI: Sólido Inorgánico

Volumen total: 8.4 mL

Masa final: 17.5 g pH Final: 5.2

2017

Asignatura: Química Orgánica I Nombre de la Practica: Síntesis y propiedades de los alquenos Grupo de clase: 3NQ Año académico: III No de estudiantes: 6 Cantidad de grupos que la realizan: 1

	REACTIV	<u>vos</u>							PRODUC	TOS						MANIPULACIÓ	N DE RESIDUO
ENSAYO	Nombre/ Formula Química	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/ Formula Química			Característic	cas Generales		Clasifica	ion de resid	· ·		Caracterísitcas de	Tipo de	Posible Tratamiento
	Nombre/ Formula Quimica	Físico	masa		Nombre/ Formula Quimica		pН	Estado	Apariencia	Color	1 11	III	IV V	VI VII	Peligrosidad	Almacenamiento	Posible Hatailileilto
	Etanol/CH ₃ CH ₂ OH	L	5 mL	$CH_3CH_2OH_{(ac)} \xrightarrow{H^*} CH_2=CH_{2(ac)}+H_2O_{(l)}$	Eteno/ CH ₂ =CH _{2,} Ácido Sulfúrico/H ₂ SO ₄ , Agua/H ₂ O	8.2 mL	1	L y G	Transparent e	Transparent e		OSAI ^θ Y SAO [^]			Residuo Corrosivo por su bajo pH, toxico, inflamable v reactivo	Envase de Polietileno etiquetado con C (Corrosivo), F	Mezclar con un disolvente inflamable, Incinerar
	Ácido Sulfúrico/H ₂ SO ₄	L	3 mL		·								ш	_	Illianiable y reactivo	(facilmente	ililialilable. Ilicilierai
	Etanol/CH ₃ CH ₂ OH		5 mL	$CH_3CH_2OH_{(ac)} \xrightarrow{H^+} CH_2=CH_{2(ac)}+H_2O_{(l)}$	Ácido Sulfúrico,/H ₂ SO ₄ ,											Envase de Polietileno	Absorber sobre
	Ácido Sulfúrico/H ₂ SO ₄		3 mL		Agua/H ₂ O, 1,2 dibromoetano	14 mL	1.95	١.	2 fases	Amarillo-	DH ^μ				Residuo Toxico y	etiquetado con C	vermiculita, arena o
1	Solución de Bromo en Tetracloruro de Carbono/Br ₂ -CCl ₄	L	5 mL	$CH_2 = CH_{2(ac)} + Br_2/CCl_{4(sin)} \rightarrow (BrCH_2 \cdot CH_2Br)/CCl_{4(sin)}$	en solución de Tetracloruro de carbobo (CH2Br- CH2Br)/CCI4	141111	1.93	L	líquidas	Naranja	DH.				Corrosivo por su bajo pH		bicarbonato. Incinerar
	Etanol/CH ₃ CH ₂ OH		5 mL	н н.	Ácido Sulfúrico/H ₂ SO ₄ ,												
	Ácido Sulfúrico/H ₂ SO ₄	İ	3 mL	$CH_3CH_2OH_{(ac)} \xrightarrow{\hookrightarrow} CH_2=CH_{2(ac)}+H_2O_{(I)}$	Agua/H ₂ O												
	Permanganato de Potasio/KMnO4	L	5 mL	$\begin{array}{c} 4H_2O_{(ij)} + 2KMnO_{4(ac)} + 3CH_2 = CH_{2(ac)} \rightarrow 2MnO_{2(ac)} + 2KOH_{(ac)} + \\ 3CH_2(OH) - CH_2(OH)_{(ac)} \end{array}$	Glicol/CH ₂ (OH)-CH ₂ (OH), Hidroxido de potasio/KOH, Óxido de Manganeso/MnO ₂	15.5 mL	6	L	Turbio	Café	DNH,	OSAI ⁰			Residuo inflamable	Envase de Polietileno etiquetado con F (Facilmente Inflamable)	Mezclar con un disolvente inflamable. Incinerar
	Agua/H ₂ O		2 mL														
2	2, Buetn 1,4 diol/ C ₄ H ₈ O ₂	L	gotas	3CH ₂ (OH)-CH=CH-(OH)CH _{2(ac)} + 4H ₂ O _(j) + 2KMnO _{4(ac)} \rightarrow 3CH ₃ (OH)-CH(OH)-CH-(OH)-CH ₃ (OH) _{jac1} + 2MnO _{3(ac)} +	1,2,3,4- Butanotetraol/(OH)CH ₂ (OH)C H-CH(OH)CH ₂ (OH), Hidroxido	3.2 mL	8.74	L	Turbio	Café oscuro	DNH ³	OSAI [®]			Residuo altamente	Envase de Polietileno etiquetado con F	Mezclar con un disolvente
	Permanganato de Potasio/KMnO4	L	gotas	2KOH _(ac)	de potasio/KOH, Óxido de Manganeso/MnO ₂							03/11			reactivo e inflamable	(Facilmente Inflamable)	inflamable. Incinerar
	2, Buetn 1,4 diol/ C ₄ H ₈ O ₂	L	gotas		1,4 diol-2,3												
3	Solución de Bromo en Tetracloruro de Carbono/Br ₂ -CCl ₄	L		$\begin{split} CH_2(OH)\text{-}CH\text{=}CH\text{-}(OH)CH_2(ac) + Br_2\cdotCCl_{a(ac)} &\to (OH)CH_2\text{-}CH(Br)\text{-}\\ CH\text{-}(Br)CH_2(OH)_{(ac)} + CCl_{a(ac)} \end{split}$	dibromobutano/(OH)CH ₂ (Br) CH-CH(Br)CH ₂ (OH), Tetracloruro de carbono/CCl ₄	4.2 mL	1.94	L	Transparent e	Transparent e	DH ^μ				Residuo Corrosivo por su bajo pH, toxico, inflamable y reactivo	Envase de Polietileno etiquetado con C (Corrosivo), T (Toxico)	Absorber sobre vermiculita, arena o bicarbonato. Incinerar
4	2, Buetn 1,4 diol/ C ₄ H ₈ O ₂	L	gotas	$CH_2(OH)-CH=CH-(OH)CH_{2(ac)} + 5O_{2(g)} \rightarrow 4CO_{2(g)} + 4H_2O_{(g)}$	Dióxido de carbono/CO ₂ ,			G		Llama Amarilla		N/A		·	N/A	N/A	N/A
	Oxigeno/O ₂	G			Agua/H ₂ 0					Amamia							

^μ**DH:** Disolvente Halogenado

Volumen Total: 45.1 mL

 $^{\lambda}$ DNH: Disolvente no Halogenado

pH Final: 5.7

Voluem Teórico: 38.5 mL

2017

Asignatura: Química Orgánica I Nombre de la Practica: Nitración del Benceno Grupo de clase:3NQ Año académico: III No de estudiantes: 6

Cantidad de grupos que la realizan: 1

Γ		R	EACTIVOS							PRODUCTOS								MANIPULACIÓN	DE RESIDUO
E	NSAYO	Nombre/ Formula Química	Estado Físico	Volumen/	REACCIÓN QUÍMICA	Nombre/ Formula Química	Volumen/ masa		Caract	erísticas Generales					residu upos)		Caracterísitcas de Peligrosidad	Tipo de Almacenamiento	Posible Tratamiento
		Formula Quimica	FISICO	masa			generados	pН	Estado	Apariencia	Color	-1	II III	IV	V VI	VII	Peligrosidad	Aimacenamiento	Tratamiento
		Ácido																No utilizar envases de	Verter sobre
		Nítrico/HNO ₃	L	30 mL													Residuo toxico,	polietileno si el	NaHCO ₃ . Mezclar
	1 ^	Ácido			$C_6H_{6(I)} + HNO_{3(ac)} + H_2SO_{4(ac)} \rightarrow$	Nitrobenceno/C ₆ H ₅ NO ₂ ,	90 mL	1	LYG	2 fases líquidas	Amarillo-	БПή		Δω			moderadamente	producto se	con un
	1 ^	Sulfúrico/H₂SO₄	L	30 mL	$C_6H_5NO_{2(ac)} + H_2SO_{4(ac)} + H_2O_{(I)}$	Agua/H ₂ O, Ácido Sulfúrico/ H ₂ sO ₄	JOINE	-	110	2 18303 11401083	Blanca	DII		^			inflamable, Corrosivo	encuentra a	disolvente
																	por su bajo pH	temperaturas	inflamable.
		Benceno/C ₆ H ₆	L	22 mL														superiores a 40ºC.	Incinerar

^ω**A:** Ácidos

Volumen total: 90mL

Volumen Teórico: 82 mL

^μ**DH:** Disolvente Halogenado

pH Final: 1

Asignatura: Química Orgánica II

Nombre de la Guía Práctica: Determinación de las Propiedades y de los Grupos Funcionales de la Glucosa. Dete

Grupo de Clase: 3MQ Año Academico: III Número de Estudiantes: 20 Cantidad de Grupos: 4

		REA	CTIVOS							PRODUCT	ros							MANIPULACIÓN DE RESIDUO
_	ISAYO	Nombre/	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/Fórmula	Volumen/	c	aracterí	sticas Gene	rales		ificació químic		ios	Caracterísitcas de	Tipo de	
_	JATO	Nombre/ Fórmula Química	Físico	Masa	REACCION QUINICA	Química	Masa	рН	Estado	Apariencia	Color	1 11		V V	VII	Deligrasidad	Almacenamiento	Posible Tratamiento
	1 A	Glucosa/C ₆ H ₁₂ O ₆	S	20 g	$C_6H_{12}O_{6(5)}+H_2SO_{4(0)} \rightarrow 6C_{(1)}+7H_2O_{(0)}+SO_{3(0)}+CALOR$	Óxido de Azufre (VI)/SO _{3,}	45 g	N/A	Sólido	Sólido	Negro			so	Ω	N/A	Frascos pequeños de vidrio de color ámbar (1 ó 2 litros)	Se pulveriza el residuo y se mezcla con arena, se le agrega un poco de líquido de Disolvente Orgánicos no halogenado y se incinera en
		Ácido sulfurico/H₂SO₄	L	12 mL	-0 12 -0(3) 2 4(1) (3) 2 - (6) 3(6)	Carbono/C, Agua/H ₂ O	·			Fundido						·	puesto que pueden existir compuestos halogenados.	el horno incinerador.
		Glucosa/C ₆ H ₁₂ O ₆	L	10 mL	$CH_2OH(CHOH)_4CHO_{(ac)} + 2[Ag(NH_3)_2]OH_{(ac)} \rightarrow$	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH _{4,}	17 mL	12.0	Mandala	Sin			SAO^	0.1	,	Residuo corrosivo por	Envase de Polietileno	Ajustar el pH a 7 con HCI. Verter a la Cañeria. Para la residuo de Plata sólido si no se puede recuperar, transformarlo en sal insoluble disolviendo en unos 10 mL ácido clorhídrico grado reactivo por cada 40 g de residuo, esta operación
	A	R. Tollens/[Ag(NH₃)₂] OH	L	Gotas	$CH_{2}OH(CHOH)_{a}COONH_{4(ac)} + 2Ag_{(s)} + 3NH_{3(g)} + H_{2}O_{(l)}$	Amoníaco/NH₃, Agua/H₂O, Plata/Ag	17 ML	12.8	Líquido	Turbidez	Incoloro		SAU"	SI		alto pH	etiquetado con T (Tóxico) y C (Corrosivo)	se debe hacer con equipo para recuperar el H ₂ que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y las sales de cloruro formadas se tratan como soluciones acuosas de metales pesados.
	В	Glucosa/C ₆ H ₁₂ O ₆	L	10 mL	C ₆ H ₁₂ O _{6[ac]} +KMnO _{4[ac]} (No reacciona)	Glucosa/C ₆ H ₁₂ O _{6,} Permanganato de	14.5 mL	7	Líquido	Sin Turbidez	Incoloro		SAO^		E ^β	Permanganato de Potasio: residuo inflamable y tóxico	Envase de Polietileno etiquetado con T	Tratar con una sustancia reductora (Tiosulfato de Sodio/ Na ₂ S ₂ O ₃). Neutralizar. Verter a la Cañeria
	2	Permanganato de Potasio/KMnO ₄	L	Gotas		Potasio/KMnO ₄				Turbruez						por irritacion y daños al cuerpo humano.	(Tóxico) y F (Inflamable)	Neutralizar. Verter a la Calleria
	ر	Glucosa/C ₆ H ₁₂ O ₆	L	10 mL	$C_6H_{12}O_{6(ac)}+1/2 O_{2(g)} \rightarrow C_6H_{12}O_{7(ac)}$	Gluconato de Sodio/NaC ₆ H ₁₁ O ₇ ,	16 mL	14	Líquido	Sin	Incoloro		SAO^			Residuo corrosivo por	Envase de Polietileno	Ajustar el pH a 7 con HCl. Verter a la Cañeria
		Hidróxido de sodio/NaOH 3M	L	Gotas	$C_6H_{12}O_{7(ac)}$ + NaOH $_{(ac)}$ \rightarrow NaC $_6H_{11}O_{7(ac)}$ + $H_2O_{(I)}$	Agua/H ₂ O			243100	Turbidez						alto valor de pH	etiquetado con C (Corrosivo)	- y 2 y 2
	D	Glucosa/C ₆ H ₁₂ O ₆	L	10 mL	$\begin{array}{c} 3C_{6}H_{12}O_{6(ac)} + NaOH_{(ac)} C_{6}H_{12}O_{6(ac)} + C_{6}H_{12}O_{6(ac)} + C_{6}H_{12}O_{6(ac)} + \\ Na_{(ac)} + H_{2}O_{(l)} \end{array}$	Glucosa/C ₆ H ₁₂ O ₆ , Fructosa/C ₆ H ₁₂ O ₆ ,	15 mL	14	Líquido	Sin Turbidez	Incoloro		SAO^			Hidróxido de Sodio: residuo reactivo y explosivo. Corrosivo	Envase de Polietileno etiquetado con E	Ajustar el pH a 7 con HCl. Verter a la Cañeria
		Hidróxido de sodio/NaOH 5%	L	Gotas	Glucosa (69%) + Fructosa (20%) + Manosa (1%)	Manosa/C ₆ H ₁₂ O ₆ , Sodio/Na, Agua/H ₂ O				Turbidez						por su alto valor de pH.	(Explosivo) y C (Corrosivo)	

^β**E:** Especiales

Volumen Final: 62.5 mL

^SAO: Solución Acuosa Orgánica

Masa Final: 45 g pH Final: 13

^αSI: Sólido Inorgánico

^Ω**SO:** Sólido Orgánico

Volumen Teórico: 52.85 mL

Asignatura: Química Orgánica II

Nombre de la Guía Práctica #4: "Síntesis de la Aspirina

Grupo de Clase: 3MQ Año Academico: III # de Estudiantes: 20 Cantidad de Grupos: 4

		REACT	TIVOS							PRODUCTO	<u>os</u>					MANIPUL	ACIÓN DE RESIDUO
Eſ	NSAYO	Nombre/ Fórmula	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/ Fórmula	Volumen/ Masa		Caract	erísticas Gen	erales	Clasifica quíi		residuo grupos)	caracterísitcas de	Tipo de	Posible Tratamiento
		Química	Físico	Masa		Química	Generados	рН	Estado	Apariencia	Color	1 11 11	ı ıv	v vi	/II Peligrosidad	Almacenamiento	rosible tratamento
		Ácido Salicílico/C ₇ H ₆ O ₃	S	20 gr	C H O - (CH CO) O(I) - HC - NCH COOH	Aspirina/C ₆ H ₄ (OCOH ₃)COOH	157 mL	1.12			Líquido incoloro				Ácido Acético: residuo inflamable.	Polietileno etiquetado	Filtrar el precipitado, se pulveriza el residuo y se mezcla con arena, se le agrega un poco de Disolvente
1	А	Anhídro Acético/(CH₃CO)₂O	L	40 mL	$C_7H_6O_{3(s)} + (CH_3-CO)_2O(I)_{(sin)} + HCI_{(ac)} \rightarrow CH_3COOH_{(ac)} + C_6H_4(OCOH_3)COOH_{(s)} + HCI_{(ac)}$, Ácido Acético/CH₃COOH, Ácido Clorhídrico/HCl				Presencia de precipitado	con precipitado blanco		A ^ω	SO^{Ω}	Ácido Clorhidrico: residuo Corrosivo	(Tóxico) Sólido: Frascos	orgánico no halogenado y se incinera en el horno incinerador.
		Ácido Clorhídrico/HCl	L	8 mL			45.7 gr	N/A							por bajo pH y tóxico.	pequeños de vidrio de color ámbar.	A la solución restante neutralizar con NaOH y verter a la cañería.
2	A	Aspirina Obtenida/C ₆ H ₄ (OCOH ₃) COOH	S	2 gr	$C_6H_4(OCOH_3)COOH_{(s)} + FeCl_{3(sin)} \rightarrow (C_6H_4O-COOH)_3Fe_{(s)} +$	Completo de Hierro y Fenol/(C ₆ H ₄ O-COOH) ₃ Fe,	23 mL	3.4		Presencia de	Líquido amarillo con precipotado		A ^ω	so ^Ω	Residuo inflamable.	Envase de Polietileno etiquetado con F	Neutralizar con NaOH y verter
		Cloruro de Hierro (III)/FeCl ₃	L	8 mL	3CH ₃ -COCl _(ac)	Cloruro de Etanoilo/CH₃COCl			Solido	precipitado	blanco					(Inflamable).	a la cañería.

Volumen Teórico: 56 mL

^ω**A:** Ácidos

Volumen Final: 180 mL

Masa Final: 45.7 gr

^Ω**SO:** Sólido Orgánico pH Final: 1.2

2017

Asignatura: Química Orgánica II

Nombre de la Guía Práctica # 5: "Saponificació.

Grupo de Clase: 3MQ Año Academico: III # de Estudiantes: 20 Cantidad de Grupos: 4

		REAC	CTIVOS									PRO	DUCT	<u>os</u>					
E	NSAY	Nombre/	Estado	Volumen	REACCIÓN QUÍMICA	Nombre/	Volumen/ Masa		Caracter	rísticas Genera	ales		ficació Químic				Caracterísitcas de	Tipo de Almacenamient	Posible Tratamiento
	Ü	Fórmula Química	Físico	/ Masa		Fórmula Química	generados	рН	Estado	Apariencia	Color	1 11	Ш	ıv	٧	vi vi		0	rosible fratamiento
	. А	Aceite Comercial/ R ₁ = COO = CH ₂ R ₂ = COO = CH R ₃ = COO = CH ₂ Etanol/CH ₃ CH ₂ OH Hidróxido de Sodio/NaOH	L L		$h_2 = COO - CH_{2(\underline{0})} + h_3 CH_{(\underline{ac})} + h_3 CH_{(\underline{ac})} + CH_2 CH_2 CH_{(\underline{aln})} \rightarrow h_3 - h_3$	Glicerina/C ₃ H ₈ O _{3,} Jabón/R- COONa, Cloruro de Sodio/NaCl, Etanol/CH ₃ CH ₂ OH	,	14 N/A	Líquido y Sólido	Turbia con precipitado	Amarillento con precipitado blanco	DNF	lγ		SO	ο ^α	Residuo Inflamable por presencia de Etanol y	etiquetado con C (Corrosivo) y F (Inflamable) Sólido:	Separar el sólido a traves de filtración, la fase sólida obtenida se mezcla con arena, se le agrega un poco de Disolvente orgánico no halogenado. La solución y el sólido se vierte en una bandeja metálica con arena, luego debe
		Cloruro de Sodio/NaCl	L	800 mL		2141101, 61130112011	33.02 gi	14/75									and pin	de vidrio de color ámbar.	incinerarse en el horno incinerador.

Volumen Teórico: 960 mL

^à**DNH:** Disolvente no Halogenado

^Ω**SO:** Sólido Orgánico

Volumen Final: 1020 mL Masa Final: 55.62 gr

pH Final: 14

2017

Asignatura: Química Organica II

Nombre de la Guía Práctica #7 : Comprobación experimental de algunas propiedades de los carbohidratos
Grupo de Clase: 3MQ
Año Academico: III
de Estudiantes: 20

Cantidad de Grupos: 5

		REAC	CTIVOS								PRODUCTOS							M	ANIPULACIÓN DE RESIDUO
EN	SAYO	Nombre/ Fórmula Química	Estado Físico	Volumen/ Masa	REACCIÓN QUÍMICA	Nombre/Fórmula Química	Volumen/ Masa Generados	рН	Caracte	Apariencia		Clasifica	ción de re			(grupos	Caracterísitcas de Peligrosidad	Tipo de Almacenamiento	Posible Tratamiento
	А	Agua/H ₂ O Maltosa/C ₁₂ H ₂₂ O ₁₁	L S	10 mL 2.5 gr	$C_{12}H_{22}O_{11(s)}+H_2O_{(l)} \rightarrow 2 C_6H_{12}O_{6(ac)}$	Glucosa/C ₆ H ₁₂ O ₆								Ħ					
		Agua/H ₂ O	L	2.5 gr 10 mL	V														
	В	Galactosa/C ₆ H ₁₂ O ₆	S	2.5 gr	$C_6H_{12}O_{6(s)}+H_2O_{(I)}$ (No hay reacción)	Galactosa/C ₆ H ₁₂ O ₆ , Agua/H ₂ O													Ajustar el pH a 7 con HCl. Verter a la Cañeria
		Agua/H ₂ O	L	10 mL	CH Q HQ (Nahauraaaifa)	Character (C. U. O. Acros (U. O.	45 mL	5.1	Líquido y Sólido	Solución turbia con	Blanquesino		SAO [*]		sc	oα	N/A	N/A	(C ₆ H ₁₂ O ₅)n: residuo químico no peligroso y que, por lo tanto, puede eliminarse mediante entierro en una fosa con desechos
	C	Glucosa/C ₆ H ₁₂ O ₆	S	2.5 gr	$C_6H_{12}O_{6(s)}+H_2O_{(l)}$ (No hay reacción)	Glucosa/C ₆ H ₁₂ O ₆ , Agua/H ₂ O			201100	precipitado							·	·	comunes.
	D	Agua/H ₂ O Sacarosa/C ₁₂ H ₂₂ O ₁₁	L	10 mL 2.5 gr	C ₁₂ H ₂₂ O _{11(ac)} + H ₂ O _(I) (No hay reacción)	Sacarosa/C ₁₂ H ₂₂ O _{11,} Agua/H ₂ O													
	E	Agua/H ₂ O	L	10 mL	$(C_6H_{10}O_5)_{n(s)} + nH_2O_{(1)} \rightarrow n(C_6H_{12}O_6)$	Almidón (C ₆ H ₁₂ O ₆) _n , Agua/H ₂ O													
		Almidón/(C ₆ H ₁₀ O ₅) _n R.Tollens/[Ag(NH ₃) ₂)OH	S L	2.5 gr 5 mL	$C_{12}H_{22}O_{11(ac)} + 2[Ag(NH_3)_2]OH_{(ac)} \rightarrow C_{12}H_{21}O_{12}NH_{4(ac)} +$	4-o-Hexopiranosilhexonato de								H	+				
	A	Solución de Maltosa/C ₁₂ H ₂₂ O ₁₁	L	5 mL	$3NH_{3(g)} + H_2O_{(1)} + 2Ag_{(s)}$	Amonio/ C ₁₂ H ₂₁ O ₁₂ NH _{4,} Amoníaco/NH ₃ , Plata/Ag,													
		R.Tollens/[Ag(NH ₃) ₂]OH	L	5 mL													Residuos Corrosivos por su alto pH.	Envase de Polietileno etiquetado con T (Tóxico), C (Corrosivo), N (Peligroso para	
	В	Solución de Galactosa/C₀H ₁₂ O₀	L	5 mL	$\begin{array}{l} \text{CH}_2\text{OH}(\text{CHOH})_4\text{CHO}_{(ac)} + 2[\text{Ag}(\text{NH}_3)_2]\text{OH}_{(ac)} \rightarrow \\ \text{CH}_2\text{OH}(\text{CHOH})_4\text{COONH}_{4(ac)} + 2\text{Ag}_{(s)} + 3\text{NH}_{3(g)} \end{array}$	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH ₄ , Amoníaco/NH ₃ , Agua/H ₂ O, Plata/Ag	31 mL	12.8	Líquido y Sólido	Solución Turbia	Verde Oscuro		SAO		SI	lα	Inflamable por presencia de NH ₃ Se forman compuestos inestables frente al choque con óxidos de mercurio, plata y oro. El residuo NH ₃ es una base fuerte, reacciona violentamente con ácidos y es	el medio ambiente) El residuo sólido de la plata se almacena en frasco de vidrio color ambar. Los compuestos de Ag son incompatibles con ácidos oxálico y tartárico. No exponer a la luz UV durante el almacenamiento.	Ajustar el pH a 7 con HCl. Verter a la Cañeria. Para la plata sólida puede recuperarse para ser reutilizada.
		R.Tollens/[Ag(NH ₃) ₂]OH	L	5 mL	$CH_2OH(CHOH)_4CHO_{(ac)} + 2[Ag(NH_3)_2]OH_{(ac)} \rightarrow$	Gluconato de Amonio/C ₆ H ₁₁ O ₇ NH ₄											corrosiva.		
	C	Solución de Glucosa/C₀H₁2O₅	L	5 mL	$CH_2OH(CHOH)_4COONH_{4(ac)} + 2Ag_{(s)} + 3NH_{3(g)}$	Amoníaco/NH ₃ , Agua/H ₂ O, Plata/Ag													
3		R.Tollens/[Ag(NH ₃) ₂]OH	L	5 mL	$C_{12}H_{22}O_{11(ac)}+[Ag(NH_3)_2]OH_{(ac)} \rightarrow No \ reacciona$	Sacarosa/C ₁₂ H ₂₂ O _{11,} Reactivo de							SAO^y				Residuos Corrosivos por su alto pH El R.Tollens no es peligroso. Sin embargo, cuando se calienta	El reactivo de Tollens no debe almacenarse ya que se descompone con rapidez, formándose un precipitado de Nitruro de Plata el cual es explosivo.	El reactivo de Tollens se desecha neutralizándolo en HNO 3 diluido. La Sacarosa es un residuo químico no peligroso que
		Solución de Sacarosa/C ₁₂ H ₂₂ O ₁₁	L	5 mL	C12/122011(ac) · [/9[(11/3/2]0/1(ac) / 1/0/Caccond	Tollens/Ag(NH ₃) ₂ OH	23 mL	12.5	Líquido	Solución Turbia	Verde Oscuro		SAMP [¢]				hasta la descomposición puede formar dióxido y monóxido de carbono. 🏻	C ₁₂ H ₂₂ O ₁₁ : El producto no necesita ser etiquetado de acuerdo con las directivas de la Comunidad Europea ó las respectivas leyes nacionales.	puede ser vertido a la cañería.
		R.Tollens/[Ag(NH ₃) ₂]OH	L	5 mL						Turbia							Residuos Corrosivos por su alto pH El R.Tollens no es peligroso. Sin	El reactivo de Tollens no debe	El reactivo de Tollens se desecha neutralizándolo en HNO ₃
	E	Solución de Almidón/(C ₆ H ₁₀ O ₅) _n	L	5 mL	$(C_6H_{12}O_5)_{n(ac)} + [Ag(NH_3)_2]OH_{(ac)} No \ reacciona$	Almidón/(C _e H ₁₀ O ₅) _{n,} Reactivo de Tollens/Ag(NH ₃) ₂ OH							SAO [°] y SAMP [¢]				embargo, cuando se calienta hasta la descomposición puede formar dióxido y monóxido de carbono.	almacenarse ya que se descompone con rapidez, formándose un precipitado de Nitruro de Plata el cual es explosivo.	diluido. (C ₀ H ₁₂ O ₃)n: esun residuo químico no peligroso que puede ser vertido a la cañería.

Evaluación Cualitativa de los Aspectos Ambientales del Laboratorio de Química RUSB de la
Universidad Nacional de Ingeniería

Fehling A (CuSO 4,5H ₂ O)	L	5 mL														Para el óxido de Cobre. Separar por filtración el residuo sóli solución. Agregar 10 ml ácido Clorhídrico grado reactivo por
Fehling B (KNa C _e H ₄ O _c .4H ₂ O)	L	5 mL	$C_{12}H_{22}O_{11(ac)} + 2Cu^{+2}_{(ac)} + 5OH^{'}_{(ac)} \rightarrow C_{12}H_{21}O_{12}^{-2}_{(ac)} +$	4-o- Hexopiranosilhexonato/C ₁₂ H ₂₁ O ₁₂			Líquido y	Solución						Residuo corrosivo por presentar pH alto. Residuo Tóxico por presencia de	Envase de Polietileno etiquetado con T (Tóxico), Xn (Nocivo), N (Peligroso para el medio ambiente) Evitar almacenar con Bases fuertes,	g de residuo, esta operación se debe hacer con equipo recuperar el H2 que se desprende en agua, para que no se t en el medio ambiente. Luego diluir la solución con una ca moderada de agua y la sal de Cloruro de Cobre (III) formac
Solución de Maltos a/C ₁₂ H ₁₂ O ₁₁	L	5 mL	Cu ₂ O(₅) + 3H ₂ O(₀)	, Óxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O	17 mL	14	Sólido	Turbia	Marrón		SAO	SIα		compuestos del Cobre.	Ácidos fuertes, Fuentes de Ignición, Luz directa del sol.	tratada como solución acuosa de metal pesado, la cual di disolverse en Ácido Clorhidrico 3M. Luego la solución se de satura con Ácido Sulfúrico en una campana de laborator precipitado se lava y se coloca en una bandeja plástica y secar al sol, el sólido seco, después se incinera. El resto solución, neutralizar y desechar a la cañería.
Fehling A (CuSO _{4.} 5H ₂ O)	L	5 mL														
Fehling B (KNa C ₄ H ₄ O ₆ .4H ₂ O)	L	5 mL	$CH_2OH(CHOH)_4CHO_{(ac)} + 2Cu^{+2}_{(ac)} + 5OH_{(ac)}^{-} \rightarrow$	Ion Gluconato /C ₆ H ₁₁ O ₇ , Óxido de												Para el óxido de Cobre. Separar por filtración el residuo s solución. Agregar 10 ml ácido Clorhídrico grado reactivo p
Solución de Galactosa/C-HO-	L	5 mL	$CH_2OH(CHOH)_4COO^{-}_{(ac)} + Cu_2O_{(s)} + 3H_2O_{(l)}$	Cobre (I)/Cu ₂ O, Agua/H ₂ O										Residuo corrosivo por presentar pH	Envase de Polietileno etiquetado con C (Corrosivo) T (Tóxico), Xn (Nocivo), N	g de residuo, esta operación se debe hacer con equip recuperar el H ₂ que se desprende en agua, para que no s
Fehling A (CuSO ₄ 5H ₂ O)	L	5 mL			32 mL	14	Líquido y Sólido	Solución Turbia	Marrón		SAO^	SIα		alto. Residuo Tóxico por presencia de	(Peligroso para el medio ambiente) Evitar almacenar con Bases fuertes, Ácidos	en el medio ambiente. Luego diluir la solución con una moderada de agua y la sal de Cloruro de Cobre (II) form
Fehling B	L	5 mL	$CH_2OH(CHOH)_4CHO_{(ac)} + 2Cu^{+2}_{(ac)} + 5OH_{(ac)}^{-} \rightarrow$	Ion Gluconato /C ₆ H ₁₁ O ₇ Óxido de										compuestos del Cobre.	fuertes, Fuentes de Ignición, Luz directa del sol.	tratada como solución acuosa de metal pesado, la cua disolverse en Ácido Clorhídrico 3M. Luego la solución s
(KNaC ₄ H ₄ O ₆ .4H ₂ O) Solución de	L		$CH_2OH(CHOH)_4COO^{-}_{(ac)} + Cu_2O_{(s)} + 3H_2O_{(l)}$	Cobre (I)/Cu ₂ O, Agua/H ₂ O												satura con Ácido Sulfúrico en una campana de labora precipitado se lava y se coloca en una bandeja plástica
Glucosa/C ₆ H ₁₂ O ₆	L	5 mL														secar al sol, el sólido seco, después se incinera. El re solución, neutralizar y desechar a la cañería.
Fehling A (CuSO _{4.} 5H ₂ O)	L	5 mL														
Fehling B (KNa C ₄ H ₄ O ₆ .4H ₂ O)	L	5 mL	$C_{12}H_{22}O_{11(ac)} + 2Cu^{+2}_{(ac)} + 5OH_{(ac)}^{-} \Rightarrow \text{No reacciona}$	Fehling A/KNaC ₄ H ₄ O ₆ .4H ₂ O, Felihling B/CuSO ₄ .5H ₂ O + HCl, Sacarosa/C ₁ .H ₂ O ₁ ,							SAO y			Residuos Corrosivos por su alto pH. KNaC ₄ H ₄ O ₅ .4H ₂ O: Corrosivo, Provoca quemaduras graves.	Envase de Polietileno etiquetado con C (Corrosivo) T (Tóxico), Xn (Nocivo), N (Peligroso para el medio ambiente) Evitar almacenar con Bases fuertes, Ácidos	Para el reactivo de Fehling: Si la concentración de so cantidad a eliminar son elevadas, tratar de acuerdo con l del soluto. Si ambas son bajas diluir como mínimo a 1:20 eliminar en la cañeria.
Solución de Sacarosa/C ₁₂ H ₂₂ O ₁₁	L	5 mL		Jacai 03 <i>a</i> / C ₁₂ 1 1 ₂₂ 0 ₁₁	33 mL	13.5	Líquido	Solución Turbia	Marrón					quemounts graves.	fuertes, Fuentes de ignición, Luz directa del sol.	La Sacarosa es un residuo químico no peligroso y que p puede eliminarse vertiendo a la cañeria.
Fehling A (CuSO _{4.} 5H ₂ O)	L	5 mL													Envase de Polietileno etiquetado con C (Corrosivo) T (Tóxico), Xn (Nocivo), N	Para el reactivo de Fehling: Si la concentración de so cantidad a eliminar son elevadas, tratar de acuerdo con
Fehling B (KNa C ₄ H ₄ O ₅ .4H ₂ O)	L	5 mL	$(C_6H_{12}O_5)_{n(ac)}$ + $2Cu^{*2}_{(ac)}$ + $5OH_{(ac)}$ \rightarrow No reacciona	Fehling A/KNaC ₄ H ₄ O ₆ -4H ₂ O, Felihling B/CuSO ₄ -5H ₂ O + HCl, Almidón/(C ₆ H ₁₂ O ₅) _n							SAO [*] y SAMP [¢]			Residuos Corrosivos por su alto pH. $\label{eq:KNaC_4H_4O_6.4H_2O:Corrosivo,Provoca} \\ que maduras graves.$	(Peligroso para el medio ambiente) Evitar almacenar con Bases fuertes, Ácidos fuertes, Fuentes de ignición, Luz directa del	del soluto. Si ambas son bajas diluir como mínimo a 1:20 eliminar en la cañeria. El Almidón es un residuo químico no peligroso y que pr
Solución de Almidón/(C ₆ H ₁₀ O ₅) _n	L	5 mL													sol.	puede eliminarse vertiendo a la cañeria.
Solución de Sacarosa/C ₁₂ H ₂₂ O ₁₁	L	10 mL	$C_{12}H_{22}O_{11(ac)} + HCI_{(ac)} \rightarrow C_6H_{12}O_{6(ac)} + C_6H_{12}O_{6(ac)}$							T			H			Para el óxido de Cobre. Separar por filtración el residuo
Ácido Clorhídrico/HCl	L	20 mL	12.120 11(ac) 1101(ac) 26111206(ac) 66111206(ac)													solución. Agregar 10 ml ácido Clorhídrico grado reactivo g de residuo, esta operación se debe hacer con equi
Fehling A (CuSO _{4.} 5H ₂ O)	L	5 mL	-												Envase de Polietileno etiquetado con C	recuperar el H ₂ que se desprende en agua, para que no
Fehling B (KNaC ₄ H ₄ O ₆ .4H ₂ O)	L	5mL	CH ₂ OH(CHOH) ₄ CHO _(ac) + 2Cu ⁺² _(ac) +5OH ⁻ _(ac) → CH ₂ OH(CHOH) ₄ COO ⁻ _(ac) + Cu ₂ O _(s) + 3H ₂ O _(l)	Frutuosa C ₆ H ₁₂ O ₆ , Ion Gluconato /C ₆ H ₁₂ O ₇ Oxido de Cobre (I)/Cu ₂ O, Agua/H ₂ O	21 mL	5	Líquido y Sólido	Solucón Turbia	Celeste		SAO	SI ^α		Residuo Tóxico por presencia de compuestos del Cobre.	(Corrosivo) T (Tóxico), N (Peligroso para el medio ambiente)	en el medio ambiente. Luego diluir la solución con un moderada de agua y la sal de Cloruro de Cobre (II) fon tratada como solución acuosa de metal pesado, la cui disolverse en Ácido Clorhidrico 3M. Luego la solución satura con Ácido Suffúrico en una campana de labora precipitado se lava y se coloca en una bandeja plástica secar al sol, el Solido seco, después se incinera. El re- as lución, neutralizar y desechar a la cañería

[©]SAMP: Soluciones Acuosas Metales Pesados [©]SAO: Solución Acuosa Orgánica

pH Final: 13

^αSI: Sólido Inorgánico

^ΩSO: Sólido Orgánico

Asignatura: Química Orgánica II

Nombre de la Guía Práctica #8: Propiedades Químicas de los Ácidos Monocarboxílicos

Grupo de Cli 2M2 Año Academico: II # de Estudiantes: 12 Cantidad de Grupos: 2

		REACTIVO	<u>s</u>											P	RODU	CTOS		
ı	NSAYO	Nombre/ Fórmula Química	Estado Volumer		REACCIÓN QUÍMICA	Nombre/Fórmula Química	Volumen/ Masa	Caracteri		erísticas Generales		Clasificación Químico				Caracterísitcas de Peligrosidad	Tipo de Almacenamiento	Posible Tratamiento
		Formula Quimica	FISICO	IVIdSd		Quimica	Generado	pH Estado		pariencia	Color	1 11	III I	v v	VI VII	Peligrosidad		
		Ácido Acético Glacial/CH₃COOH	L	6 mL	7 2011 (20011 -) 7-(011 (2001) - 111	Acetato de Zinc/ Zn(CH ₃ COO) _{2,}	74	Líqu	ıido y	Turkin	Incoloro				C1g	Zn(CH ₃ COO) ₂ : Nocivo y	Envase de Polietileno etiquetado con, T (Tóxico) y N (Peligroso para el medio ambiente)	Filtrar el precipitado el cual puede ser recuperado. Para solución Acetato de Zinc, se pueden utilizar estas 2 opciones. Opción 1: Añadir un exceso de Na2CO3 y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria.
	1 A	Zinc en polvo/Zn	S	1 gr	$= Zn_{(s)} + 2CH_3COOH_{(ac)} \Rightarrow Zn(CH_3COO)_{2(ac)} + H_{2(g)}$	Hidrogeno/H _{2,} Zinc/Zn	7.1 mL	3 Só	ilido	Turbio	con precipitado		SAMP [¢]		SI ^α	Deligroso para el	Sólido: Frascos de vidrio de color ámbar.	Opción 2: Disolver en Ácido Clorhídrico 3M. Diluir y saturar con Ácido Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.
		Ácido Benzoico/C ₇ H ₆ O ₂	L	6 mL		Benzoato de Zinc/Zn(C ₆ H ₅ COO) ₂ ,		Líqu	ıido v		Incoloro					Residuo Tóxico por presencia de	Envase de Polietileno etiquetado con	47 II
2	2 B	Zinc en polvo/Zn	S	1 gr	$Zn_{(s)} + 2C_7H_5COOH_{(ac)} \rightarrow Zn(C_7H_5COO)_{2(ac)} + H_{2(g)}$	Hidrogeno/H _{2,} Zinc/Zn	10.5 mL	4 1 .	blido	Turbio	con precipitado		SAMP [¢]		SI ^α	Zinc	T(Tóxico) y N (Peligroso para el medio ambiente) Almacenar totalmente	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria.

♦SAMP: Soluciones Acuosas Metales Pesados

Volumen Final: 17.6 mL

Volumen Teórico: 12 mL

^αSI: Sólido Inorgánico

pH Final: 2

2017

Asignatura: Fisicoquímica II

Nombre de la Guía Práctica: Reacciones Redox y Montaje de Celdas Electroquímicas

Grupo de Clase: 3MQ Año Academico: III Número de Estudiantes: 20 Cantidad de Grupos: 5

	REACTIV	os							PRODUCTO	OS						MANIPULACIÓN DE RESIDUO			
ENSAYO		Estado	Volumen/	REACCIÓN QUÍMICA	/=/ / .	Volumen/		Car	acterísticas Genera	les	(lasificació	n de Re		Caracterísitcas de	Tipo de			
	Nombre/ Fórmula Química	Físico	Masa		Nombre/ Fórmula Química	Masa	рН	Estado	Apariencia	Color	1 1			/ VI	VII Peligrosidad	Almacenamiento	Posible Tratamiento		
	Sulfato de cobre/CuSO ₄	L	15 mL	$Zn_{(s)} + CuSO_{4(sc)} \Rightarrow ZnSO_{4(sc)} + Cu_{(s)}$	Sulfato de Zinc/ZnSO ₄			Líauido v	Solución turbia						Residuo Tóxico por presencia de	Envase de Polietileno etiquetado T	Filtrar el precipitado. El Cobre sólido reutilizarlo. Para solución Sulfato de Zinc, añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañería. En caso de no poder reutilizar el Cobre, transformarlo en sal insoluble disolviendo en unos 10 mL ácido clorhidrico grado reactivo por cada 40 g de residuo,		
1 /	Zinc en polvo/ Zn	S	Trazas		Cobre/Cu	13.5 mL	6.1	Sólido	con precipitado	Incoloro		⁰ OSAI		^e SI	compuestos del Zinc y Cobre.	(Tóxico). Para el Cobre almacener en envases de vidrio.	seta operación se debe hacer con equipo para recupera el H ₂ que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y las sales de cloruro formadas se tratan como soluciones acuosas de metales pesados.		
	Nitrato de plomo II/Pb (NO ₃) ₂	L	15 mL			14 mL									Residuo Tóxico por	Envase de	Filtrar el precipitado. Para solución Nitrato de Zinc, añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M).		
1 E	Zinc en polvo / Zn	S	Trazas	$Zn_{(s)} + Pb(NO_3)_{2(ac)} \Rightarrow Zn(NO_3)_{2(ac)} + Pb_{(s)}$	Nitrato de Zinc/Zn(NO ₃) _{2,} Plomo/Pb	14 mL	7.2	Líquido y Sólido	Solución turbia con precipitado	Gris		⁰ OSAI		^α SI	presencia de compuestos del Zinc y Plomo.	Polietileno etiquetado T (Tóxico)	Verter a la cañeria. Al precipitado de Plomo Añadir HNO 3 (Se producen nitratos). Evaporar, añadir agua y saturar con H ₂ S. Filtrar y secar.		
	Cloruro de hierro III /FeCl ₃	L	15 mL		Cloruro de Zinc/ZnCl,			Líquido y	Solución turbia			a.			Residuo Tóxico por presencia de	Envase de Polietileno	Filtrar el precipitado. El Hierro sólido reutilizarlo. Para solución Cloruro de Zinc, añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañeria. En caso de no poder reutilizar el Hierro, transformarlo en sal insoluble disolviendo en unos 10 mL ácido clorhídrico grado reactivo por cada 40 g de residuo,		
1 (Zn en polvo	S	Trazas	$32n_{(s)}*2FeCl_{3 (ac)} \Rightarrow 3ZnCl_{2(ac)}*2Fe_{(s)}$	Hierro/Fe	13.3 mL	3.5	Sólido	con precipitado	Anaranjado		[®] OSAI		^α SI	compuestos del Zinc y Hierro.	etiquetado T (Tóxico)	esta operación se debe hacer con equipo para recuperar el H ₂ que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua y las sales de cloruro formadas se tratan como soluciones acuosas de metales pesados.		
2 4	Nitrato de plomo II/Pb (NO ₃) ₂	L	50 mL	$CuSO_{4[ac]} + Pb(NO_3)_{2[ac]} \rightarrow PbSO_{4[ac]} +$	Sulfato de Plomo				Bifásico, fase superior clara y	Fase superior: azul					Residuo Tóxico por presencia de compuestos del	Envase de Polietileno	Opción 1: Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria. Opción 2: Disolver en Ácido Clorhidrico 3M. Diluir y saturar con Ácido		
2	Sulfato de cobre/CuSO ₄	L	50 mL	Cu(NO ₃) _{2(ac)}	(II)/PbSO _{4,} Nitrato de Cobre (II)/Cu(NO ₃) ₂	295 mL	2	Líquido	sin turbidez. Fase inferior turbia	claro. Fase inferior: blanco		⁰ OSAI			Plomo y Cobre. Corrosivo por su bajo pH.	etiquetado T (Tóxico)	Sulfúrico en una campana de laboratorio. Lavar el precipitado y colocar en bandeja plástica. Dejar secar al sol. El sólido seco, fundir dentro de un cuadro de concreto.		

⁶OSAI: Otras soluciones Acuosas Inorgánicas

Volumen Final: 335.8 mL

Volumen Teórico: 145 mL

^αSI: Solido Inorgánico

pH Final: 5

138

Asignatura: Fisicoquímica II

Nombre de la Practica: Electroposición de metales en celdas electrolíticas

Grupo de clase: 5NQ Año académico: V No de estudiantes: 19

Cantidad de grupos que la realizan: 3

Г		REA	CTIVOS			<u>PRODUCTOS</u>										MANIPULACIÓN DE RESIDUO			
E	NSAYO	Nombre/	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/ Formula	Volumen/	С	aracteríst	icas Gene	rales	Cla	sificacio guímico				Caracterísitcas de	Tipo de	
	NOATO	Formula Química		masa	REACCION QUIMICA	Química	masa generados	рН	Estado	Aparienc ia	Color	1 11	III		П	vi vi		Almacenamiento	Posible Tratamiento
		Nitrato de Potasio/ KNO ₃	L	300 mL		Solución acuosa de Cobre/Cu ²⁺ , Cu,					celeste-		OSAI ^θ				Residuo toxico por	Envase de	Añadir un exceso de Na ₂ CO ₃ y agua.
	1 A	Ácido Nítrico/ HNO ₃	L	3 mL	$Cu_{(s)} \rightarrow Cu^{2+}_{(ac)} + 2e^{-}$	Ácido Nítrico/HNO ₃ ,	373 mL	9.94	L	Turbio	verde ocuro		y SAMP				presencia de Compuesto de	Polietileno etiquetado T	Dejar en reposo (24h). Neutralizar
		Lamina de Cobre	S	1 unidad		Potasio/KNO₃					ocu.o		ф				Cobre	(Toxico)	(HCl 6M). Verter a
		Lamina de Hierro	S	1 unidad		Potasio/KNO ₃													la cañeria.
		Cloruro de Potasio/KCl (Electrólisis)	L	200 mL	$2H_2O_{(i)} + 2CI^{'}_{(ac)} + 2K^{+}_{(ac)} \Rightarrow 2KOH_{(ac)} + H_{2(g)} + CI_{2(ac)}$	Hidrógeno/H ₂ , Cloro/Cl ₂ , Hidroxido de Potasio/KOH	190 mL	12.7	L y G	Turbio	Café oscuro		SAB*				Residuo Corrosivo debido a su pH alto y toxico por presencia de KOH y halogenos.	Envase de Polietileno etiquetado con C (Corrosivo) y T (Toxico)	Neutralizar con ácido. Verter a la Cañeria.
	2	Bromuro de Potasio/KBr (Electrólisis)	L	100 mL	$2H_2O_{(l)} + 2Br^{-}_{(ac)} + 2K^{+}_{(ac)} \rightarrow 2KOH_{(ac)} + H_{2(g)} + Br_{2(ac)}$	Hidrógeno/H ₂ , Bromo/Br ₂ , Hidroxido de Potasio/KOH	98 mL	12.8	LyG	Turbio	amarillo- verde		SAB*				Residuo Corrosivo debido a su pH alto y toxico por presencia de KOH y halogenos.	Envase de Polietileno etiquetado con C (Corrosivo) y T (Toxico)	Neutralizar con ácido. Verter a la Cañeria.
		Yoduro de Potasio/KI (Electrólisis)	L	100 mL	$2H_2O_{(I)} + 2I_{(ac)}^- + 2K_{(ac)}^+ \rightarrow 2KOH_{(ac)} + H_{2(g)}^+ + I_{2(ac)}$	Hidrógeno/H ₂ , Yodo/I ₂ , Hidroxido de Potasio/KOH	98 mL	12.8	LyG	Turbio	rojo		SAB*				Residuo Corrosivo debido a su pH alto y toxico por presencia de KOH y halogenos.	Envase de Polietileno etiquetado con C (Corrosivo) y T (Toxico)	Neutralizar con ácido. Verter a la Cañeria.

^θ**OSAI:** Otras soluciones Acuosas Inorgánicas

Volumen Total: 759 mL

Volumen Teórico: 703 mL

*SAB: Solución Acuosa Básica

pH final: 9.9

♦SAMP: Soluciones Acuosas Metales Pesados

Volumen Teórico: 546 mL

Asignatura: Química Analítica

Nombre de la Guía Práctica: Determinación de Cloruros por el Método de Mohr

Grupo de Clase: 2M2Q Año Academico: II # de Estudiantes: 21 Cantidad de Grupos: 7

	RE	ACTIVOS																	
NSAYO	Nombre/	Estado	Volumen/	REACCIÓN QUÍMICA	Nombre/Fórmula	Volumen/	c	aracterísti	cas General	es Clasif	icación de Resid	luos Qu	ímico	(grup	oos)	Caracterísitcas de	Tipo de		
	Fórmula Química	Físico	Masa		Química	Masa Generados	pН	Estado	Apariencia	Color I	ı ııı	IV	v	VI	VII	Peligrosidad	Almacenamiento	Posible Tratamiento	
	Agua del Grifo/H₂O	L	175 mL	$Cl^{-}_{(ac)} + AgNO_{3(ac)} \rightarrow AgCl_{(s)} + NO^{-}_{3(ac)}$	Cloruro de Plata/AgCl, Cromato de											Residuo Tóxico y Corrosivo por	Líquido: envase de Polietileno etiquetado	Separar la fase sólida de la solución. Fase sólida, se disuelve 10mL de HCl por cada 40g de residuo, esta operación se debe hacer con equipo para recuperar el H ₂ que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad	
L A	Cromato de Potasio/K ₂ CrO ₄	L	7 mL		Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Nitrato de Plata/AgNO ₃		8.12	Líquido y Sólido	Turbio	Rojizo	OSAI ^θ y SAC ^π			αSI		presencia del	con C (Corrosivo) y T (Tóxico) Sólido: Frascos pequeños de vidrio de color ámbar.	moderada de agua . Por presencia del Cr ⁶⁺ , a las sales generadas junto con la solución, se les añade FeSO ₄ para	
	Nitrato de Plata/ AgNO ₃	L	Hasta darse el vire de color	$2AgNO_{3(ac)} + K_2CrO_{4(ac)} \rightarrow Ag_2CrO_{4(s)} + 2KNO_{3(ac)}$	Titta/Agrro3													reducir el Cr_{6+} a Cr_{3+} . Añadir un exceso de $Ca(OH)_2$ y agua para precipitar el Cr^{3+} . Dejar en reposo (24h). Neutralizar (HCI 6M). Verter a la cañería.	
	Agua del Grifo/H ₂ O	L	175 mL	$Cl_{(ac)}^{-}+AgNO_{3(ac)} \rightarrow AgCl_{(s)}^{-}+NO_{3(ac)}^{-}$														Separar la fase sólida de la solución. Fase sólida, se disuelve 10mL de HCI por cada 40g de residuo, esta operación se debe hacer con equipo para recuperar el H ₂	
2 B	Cromato de Potasio/K ₂ CrO ₄	L	7 mL	F	Cloruro de Plata/AgCl, Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Nitrato de Plata/AgNO ₃	313 mL	11.14	Líquido y Sólido	Turbio	Rojizo	OSAI ^θ γ SAC ^π			αSI		Residuo Tóxico y Corrosivo por presencia del Cromo hexavalente.	Líquido: envase de Polietileno etiquetado con C (Corrosivo) y T (Tóxico) Sólido: Frascos pequeños de vidrio de color ámbar.	que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua . Por presencia del Cr ⁶⁴ , a las sales generadas junto con la solución, se les añade FeSO 4 para	
	Nitrato de Plata/ AgNO ₃	L	Hasta darse el vire de color	2ngnO3(ac) * N2CO4(ac) / N52CO4(s) * 2NNO3(ac)	Tiutu/Agrica													reducir el Cr ₆₊ a Cr ₃₊ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.	
	Carbonato de Calcio/CaCO ₃	L	175 mL		Constants													Separar la fase sólida de la solución. Fase sólida, se disuelve 10mL de HCI por cada 40g de residuo, esta operación se debe hacer con equipo para recuperar el H,	
3 C	Cromato de Potasio/K ₂ CrO ₄	L	7 mL	$2AgNO_{3(ac)} + K_2CrO_{4(ac)} \rightarrow Ag_2CrO_{4(s)} + 2KNO_{3(ac)}$	Cromato de Plata/Ag ₂ CrO ₄ , Nitrato de Potasio/KNO ₃ , Carbonato de Calcio/CaCO ₃ , Nitrato de Plata/AgNO ₃	200mL	8.5	Líquido y Sólido	Turbio	Rojizo	OSAI ^θ y SAC ^π			αSI			Líquido: envase de Polietileno etiquetado con C (Corrosivo) y T (Tóxico) Sólido: Frascos pequeños	que se desprende en agua, para que no se disperse en el medio ambiente. Luego diluir la solución con una cantidad moderada de agua. Por presencia del Cr ⁶⁺ , a las sales generadas junto con la solución, se les añade FeSO ₄ para	
	Nitrato de Plata/ AgNO ₃	L	Hasta darse el vire de color															hexavalente.	de vidrio de color ámbar.

⁶OSAI: Otras soluciones Acuosas Inorgánicas

Volumen Final: 650 mL

pH Final: 9.4

^πSAC: Solución Acuosa de Cromo VI

^αSI: Solido Inorgánico

2017

Asignatura: Inorgánica Nombre de la Practica: Compuestos de Cromo y Manganeso Grupo de clase: 2NQ Año académico: II No de estudiantes: 15 Cantidad de grupos que la realizan: 3

		REA	ACTIVOS						PRO	DUCTOS								MANIPULACIÓN DE RESIDUO	
		Name to a 15 amounts	Fata da	Malaman	DEACCIÓN OLIGANICA	Name of Farmer	Volumen/m	Ca	racterís	ticas Ger	nerales	CI	asificación de r químicos (gru					.	
EN:	AYO	Nombre/Formula Química	Estado Físico	Volumen/ masa	REACCIÓN QUÍMICA	Nombre/Formula Química	asa generados	рН	Estado	Aparie ncia	Color	1 11		Ť	v vi	VII	Caracterísitcas de Peligrosidad	Tipo de Almacenamiento	Posible Tratamiento
		Cromato de Potasio/K₂CrO₄	L	6 mL	$2K_2CrO_{4(ac)} + H_2SO_{4(ac)} \rightarrow K_2Cr_2O_{7(ac)} + K_2SO_{4(ac)} + H_2O_{(I)}$	Cromato de											Residuo Corrosivo	Envase de	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido
1	А	Ácido Sulfúrico/H₂SO ₄	L	gotas		Potasio/K ₂ CrO ₄ , Sulfato de Sodio/Na ₂ SO ₄ ,Crom	12 mL	12.70	L	Transp arente	Amarillo encendido		SAB*				debido a su alto pH y tóxico por presencia	Polietileno etiquetado con C (Corrosivo) y T	con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en
		Hidróxido de Sodio/NaOH	L	gotas	$H_2SO_{4(ac)} + NaOH_{(ac)} \rightarrow Na_2SO_{4(ac)} + H_2O_{(l)}$	ato de Sodio/Na₂CrO₄											del cromo hexavalente	(Toxico)	reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.
		Cloruro de Bario/BaC ₁₂	L	9 mL															
		Cromato de Potasio/K ₂ CrO ₄	L	9 mL	$K_2CrO_{4(ac)} + BaCl_{2(ac)} \rightarrow BaCrO_{4(s)} + 2KCl_{(ac)}$	CH₃COOH, Cromato de Bario/BaCrO₄,				Turbio	Amarillo		OSAI [®] v				Compuesto tóxico por	Envase de Polietileno	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el
	A	Ácido Acético/CH₃COOH	L	9 mL	$BaCrO_{4(s)} + CH_3COOH_{(ac)}$ (No hay reacción)	Cloruro de Potasio/KCI, Ácido Acético/CH₃COOH	29 mL	4.4	L	con PP	Pastel		SAC ^π				presencia del Cromo hexavalente	etiquetado T (Toxico)	Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.
		Cloruro de Bario/BaC _{I2}	L	9 mL	V.C. O (Decl) Decl. O (200)	Ácido Acético/CH ₃ COOH,											Residuo Corrosivo debido a su	Envase de	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido
2	В	Dicromato de Potasio/K ₂ Cr ₂ O ₇	L	9 mL	$K_2Cr_2O_{7(ac)} + BaCl_{2(ac)} \rightarrow BaCr_2O_{7(s)} + 2KCl_{(ac)}$	Dicromato de Bario/BaCr ₂ O ₇ ,	25 mL	2	L	Turbio con PP	Naranja		OSAI ^θ y SAC ^π				bajo pH y toxico por	Polietileno etiquetado con C (Corrosivo) y T	con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂ y agua para precipitar el Cr ³⁺ . Dejar en
2		Ácido Acético/CH₃COOH	L	9 mL	BaCr ₂ O _{7(s)} + CH ₃ COOH _(ac) (No hay reacción)	Cloruro de Potasio/KCl											presencia del Cromo hexavalente	(Toxico)	reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.
		Nitatro de Plata/AgNO ₃	L	9 mL		Ácido Acético/CH₃COOH,											Compuesto	Envase de	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido
	С	Dicromato de Potasio/K ₂ Cr ₂ O ₄	L	9 mL	$2AgNO_{3(ac)} + K_2CrO_{4(ac)} + CH_3COOH_{(ac)} \to Ag_2CrO_{4(s)} + \\ 2KNO_{3(ac)} + CH_3COOH_{(ac)}$	Cromato de Plata/Ag ₂ CrO ₄ ,	30 mL	3	L	Turbio con PP	Café oscuro		OSAI ^θ y SAC ^π				toxico por presencia del Cromo	Polietileno etiquetado T	con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂
		Ácido Acético/CH ₃ COOH	L	9 mL		Nitrato de Potasio/KNO ₃											hexavalente	(Toxico)	y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.
		Nitatro de Plata/AgNO ₃	L	9 mL		Ácido Acético/CH₃COOH,											Compuesto	Envase de	Para los compuestos que contienen Cromo Hexavalente, ajustar a pH ácido
	D	Cromato de Potasio/K ₂ CrO ₄	L	9 mL	$2AgNO_{3(ac)} + K_2Cr_2O_{7(ac)} + CH_3COOH_{(ac)} \to Ag_2Cr_2O_{7(s)} + \\ 2KNO_{3(ac)} + CH_3COOH_{(ac)}$	Diccromato de Plata/Ag ₂ Cr ₂ O ₇ ,	30 mL	4.8	L	Turbio con PP	Café claro		OSAI ^θ y SAC ^π				toxico por presencia del Cromo	Polietileno etiquetado T	con H ₂ SO ₄ . Añadir FeSO ₄ para reducir el Cr ⁶⁺ a Cr ³⁺ . Añadir un exceso de Ca(OH) ₂
		Ácido Acético/CH ₃ COOH	L	9 mL		Plata/Ag ₂ Cr ₂ O ₇ , Nitrato de Potasio/KNO ₃											hexavalente	(Toxico)	y agua para precipitar el Cr ³⁺ . Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañería.
		Dicromato de Potasio/K ₂ Cr ₂ O ₄	L	3 mL		Yodo/I ₂ ,Sulfato de Cromo	_										Residuo Corrosivo debido a su	Envase de	
3	А	Ácido Sulfúrico/H₂SO₄	L	9 mL	$K_2Cr_2O_{7(ac)} + 7H_2SO_{4(ac)} + 6KI_{(ac)} \rightarrow 4K_2SO_{4(ac)} + 3I_{2(ac)} + $ $Cr_2(SO_4)_{3(ac)} + 7H_2O_{(I)}$	de Cromo (III)/Cr ₂ (SO ₄) ₃ , Sulfato de Potasio/K ₂ SO ₄ , Agua/H ₂ O	19 14	1.1	L	Turbio con PP	Verde Oscuro		OSAI ^θ y SAC ^π				bajo pH y toxico por	Polietileno etiquetado con C (Corrosivo) y T	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M).
		Yoduro de Potasio/KI	L	6 mL													presencia del Cromo hexavalente	(Toxico)	

	А	Permanganato de Potasio/KMnO ₄ Yoduro de Potasio/KI Ácido	S S	3 CRISTAL 9 CRISTALES 9 mL	$\begin{aligned} 2KMnO_{4(s)} + 8H_2SO_{4(ac)} + 10Kl_{(s)} &\rightarrow 2MnSO_{4(ac)} + 5I_{2(ac)} + \\ & 6K_2SO_{4(ac)} + 8H_2O_{(l)} \end{aligned}$	Sulfato de Manganeso/MnSO ₄ , Yodo/I ₂ , Sulfato de Potasio/K ₂ SO ₄ ,	11 mL	0.8	L	Turbio con PP	Plomo Oscuro	OSAI ^θ		Residuo Corrosivo debido a su bajo pH	Envase de Polietileno etiquetado con C (Corrosivo)	Añadir un exceso de Na ₂ CO ₃ y agua. Dejar en reposo (24h). Neutralizar (HCl 6M).	
		Sulfúrico/H ₂ SO ₄ Permanganato de Potasio/KMnO ₄ Yoduro de	S	3 CRISTAL	$2KMnO_{4(s)} + 6KI_{(s)} + 4H_2O_{(m)} \rightarrow 2MnO_{2(ac)} + 8KOH_{(ac)} +$	Agua/H ₂ O Solución acuosa de Óxido de Manganeso/MnO ₂				Transp	Naranja			Ligeramente	Envase de Polietileno		
4	В	Potasio/KI Agua Destilada/ H ₂ O	S L	9 CRISTALES 9 mL	31 _{2(ac)} , Hi	, Yodo/ I ₂ , Hidróxido de Potasio/KOH	10 mL	9.1	L	arente	,	SAB*		Corrosivo	etiquetado con C (Corrosivo)	Neutralizar con ácido. Verter a la cañeria.	
	С	Permanganato de Potasio/KMnO ₄ Yoduro de Potasio/KI	S S	3 CRISTAL 3 CRISTALES	$6KMnO_{4(s)} + KI_{(s)} + 6KOH_{(ac)} \rightarrow 6K_2MnO_{4(ac)} + KIO_{3(ac)} + 3H_2O_{m}$	Manganato de Potasio/K₂MnO₄, Yodato de	11 mL	13.3	L	Turbio	Verde Muzgo	SAB*		Residuo Corrosivo debido a su	Envase de Polietileno etiquetado con	Como la mayor presencia es de NaOH; Neutralizar con ácido y verter a la	
		Hidroxido de Potasio/KOH	L	9 mL	2 0)	Sodio/NaIO _{3,} Agua/H₂O								alto pH	C (Corrosivo)	cañeria.	
		Permanganato de Potasio/KMnO ₄	L	6 mL		Sulfato Ferroso/FeSO ₄ ,				Turbio	Café	4		Residuo Corrosivo	Envase de Polietileno	Añadir un exceso de Na₂CO₃ y agua.	
	A	Sulfato de Hierro Ferroso/FeSO ₄	L	gotas	FeSO _{4(ac)} + 2 KMnO _{4(ac)} (No hay reacción)	Permanganato de Potasio/KMnO ₄	8 mL	13.3	L	con PP	Oscuro	OSAI ^θ		debido a su alto pH	etiquetado con C (Corrosivo)	Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria	
5		Permanganato de Potasio/KMnO ₄	L 6mL		2/44-0 . 211-50 511-0	Sulfato de Potasio/K₂SO₄ , Sulfato de								Residuo	Envase de	Añadir un exceso de Na,CO, y agua.	
	В	Ácido Sulfúrico/H ₂ SO ₄	L	gotas	$8H_2O_{(l)} + 5O_{2(g)} + K_2SO_{4(ac)}$ Mar	Manganeso/MnSO ₄	7 mL	1.9	L	Transp arente	Purpura	OSAI ^θ		Corrosivo debido a su	Polietileno etiquetado con C (Corrosivo)	Dejar en reposo (24h). Neutralizar (HCl 6M). Verter a la cañeria	
		Peróxido de Hidrogeno/H₂O₂	L	gotas		Agua/H ₂ O	Oxigeno/O _{2,} Agua/H ₂ O							bajo pH	C (COITOSIVO)		

⁶OSAI: Otras soluciones Acuosas Inorgánicas

*SAB: Solución Acuosa Básica

^πSAC: Solución Acuosa de Cromo

Volumen Total: 192mL Volumen Teórico: 171.75 mL

pH Final: 1.5