

UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Tecnología de la Construcción

Monografía

"DISEÑO DE SISTEMA DE AGUA POTABLE (MINI ACUEDUCTO POR GRAVEDAD) PARA LA COMUNIDAD DE LA ERMITA, MUNICIPIO DE SAN RAFAEL DEL NORTE, DEPARTAMENTO DE JINOTEGA"

Para optar al título de ingeniero civil

Elaborado por

Br. Pedro Aldair Alfaro Vanegas Br. Yahaira Emperatriz Maldonado Montalván

Tutor

Msc. Ing. Henry Loaisiga

Asesor

Ing. Rodolfo Moncada

Managua, Noviembre 2019

DEDICATORIA

Dedico este proyecto primeramente a **Dios**, ya que sin él nada podemos hacer. Dios es quien nos concede el privilegio de la vida y nos ofrece lo necesario para lograr nuestras metas. Gracias por las pruebas que me hacen crecer como persona y me permiten dar lo mejor de mí.

A mis padres **Sr. José Augusto Maldonado y Sra. María Elizabeth Montalván** por haberme dado la vida, y enseñarme que las metas son alcanzables y que una caída no es una derrota si no el principio de una lucha que siempre termina en logros y éxitos. Gracias por siempre orientarme en todo lo que se y ayudarme a salir adelante a pesar de los inconvenientes.

A mis hermanos **Hna. Aura Maricelly Maldonado y Hno. Emmanuel Maldonado**, que con sus buenas voluntades me han brindado apoyo emocional para luchar en mi carrera y seguir adelante para cumplir mis propósitos.

A mi amigo y compañero de trabajo monográfico **Pedro Alfaro** por estar en armonía grupal y convivencia. Fue una gran experiencia compartir como personas deseándole éxitos y bendiciones en su vida personal y profesional.

A **mis amigos** de la universidad con los que compartí estos 5 años de estudios, gracias por la oportunidad de crear bonitas amistades y el apoyo incondicional que formábamos.

De igual forma a **nuestros maestros**, que han sido guías en el transcurso de la carrera, brindando el pan de la enseñanza y aprendizajes de buenos valores.

Br. Yahaira Emperatriz Maldonado Montalván

DEDICATORIA

En primer lugar, doy infinitamente gracias a **Dios**, por haberme dado fuerzas y valor para culminar esta etapa de mi vida.

Este logro se lo dedico a la gran familia que pertenezco orgullosamente.

A mis padres **Pedro Joaquín Alfaro Ortega (q.e.p.d)** por ser un padre ejemplar y ser quien sentó en mí las bases de responsabilidad y deseos de superación, por poner a su disposición sus virtudes y gran corazón para emprender este desafío del cual es parte fundamental, no puedo olvidar a mi madre **Cinthia María Vanegas Martínez** quien ha hecho un esfuerzo impresionante para invertirlo en nuestra educación, por depositar su confianza y brindar ese sustento emocional en el trayecto de mi vida, corrigiendo mis faltas y celebrando mis triunfos.

A mis hermanos **Joaquin Yaroslav Alfaro y Marlon Ernesto Alfaro**, por estar siempre dispuestos a aportar en mi desarrollo y motivarme para cumplir mis objetivos. A mis demás familiares que con su ayuda, cariño y comprensión han colaborado a concluir con esta etapa.

A mis **compañeros y amigos de la universidad**, con quien pude compartir 5 largos años de estudios conviviendo nuevas experiencias y conocimientos.

A **nuestros maestros** que nos transmiten sus conocimientos y experiencias para formarnos como grandes personas.

Y a todas las personas que de una u otra forma fueron participe de este logro.

AGRADECIMIENTO

En primer lugar agradecemos a Dios que nos dio la vida, la sabiduría y la inteligencia necesaria para poder culminar nuestro trabajo monográfico.

A nuestras familias, amistades y demás personas que nos aprecian, principalmente nuestros **padres**, por brindarnos el apoyo incondicional en todo momento ya que ellos nos facilitaron las condiciones necesarias para hacer cumplir nuestras metas y realización este trabajo.

Con mucho afecto a nuestros compañeros de nuestra generación 2013 – 2018 de la carrera de ingeniería civil, ya que de una u otra forma nos apoyaron incondicionalmente en todo momento durante los años estudiados.

A cada uno de los docentes que nos impartieron clase durante cinco largos años de estudios. Gracias por brindar sus conocimientos, ayuda y apoyo para que nosotros culmináramos nuestra carrera.

A nuestro tutor **Msc. Ing. Henry Eduardo** por su apoyo en asesoría y revisión de nuestro trabajo monográfico.

A nuestro asesor **ing. Rodolfo Moncada** por sus sugerencias e ideas brindadas para la realización de este documento.

A la Universidad nacional de ingeniería UNI - NORTE, que nos dio la oportunidad de formar parte de ella, gracias.

RESUMEN EJECUTIVO

La finalidad de este documento monográfico es realizar el diseño de un sistema de agua potable, que ofrezca un servicio eficiente y continuo durante su periodo de diseño de 20 años, el cual proveerá a 825 habitantes proyectados, con la intención de reestablecer una calidad de vida de los pobladores de la comunidad.

Para garantizar la finalidad de este documento, se planteó cumplir los siguientes componentes, que facilitaron la ejecución del presente trabajo:

El sistema de abastecimiento de agua potable seleccionado es un mini acueducto por gravedad (MAG), aprovechando la topografía del terreno, con una longitud de 7,861.895 mts compuesta por tubería PVC, SDR-26 y H°G°, con diámetros de 3",2", 1 ½", 1", el sistema estará compuesto por obra de captación, tanque de almacenamiento, pila rompe carga, línea de conducción, red de distribución y conexiones domiciliares.

Se realizaron encuestas casa a casa de cada familia beneficiada del proyecto, donde cada persona accedió a brindar información necesaria. Posteriormente recopilada cierta información se analizó de forma gráfica, haciendo uso del programa Microsoft Excel.

El levantamiento topográfico planimétrico y altimétrico, se realizó con estación total, para determinar las distancias y elevaciones de la superficie del terreno por donde se conducirá la tubería.

Se realizó un estudio hidrológico, en un manantial, en el cual se realizaron aforos para determinar la capacidad de agua que fluye, para satisfacer los requerimientos de la población proyectada y así mismo determinar la calidad de la misma, a través de análisis de laboratorio para realizar su respectivo tratamiento de desinfección.

La red de agua potable se diseñó utilizando el programa de EPANET, para determinar los cálculos hidráulicos, y el software de Civil3D para la elaboración de planos, cumpliendo con lo establecido según normas del (INAA).

Índice

Capi	tulo	o I. Aspectos generales1		
1.1	1	Introducción1		
1.2	2	Antecedentes	2	
1.3	3	Justificación	4	
1.4	4	Objetivos	5	
	1.4.	1 Objetivo general	5	
,	1.4.	2 Objetivos específicos	5	
Capí	tulc	o II. Descripción del área de estudio7	,	
2.1	1	Referencia y posición geográfica	7	
2.2	2	Macro localización	7	
2.3	3	Micro localización	8	
2.4	4	Clima y precipitación	8	
2.5	5	Relieve	9	
2.6	3	Suelo	9	
2.7	7	Población y su distribución en el municipio	9	
2.8	3	Demografía1	0	
2.9	9	Principales actividades económicas1	0	
2.1	10	Cuencas hidrográficas1	0	
2.1	11	Vías de acceso y transporte1	0	
Capí	tulc	o III. Marco teórico12	1	
3.1	1	Estudio socioeconómico1	2	
3.2	2	Estudio de población1	2	
3.3	3	Aforo de la fuente1	2	

3.4 Calidad de agua13
3.5 Estudio topográfico
3.5.1 Planimetría13
3.5.2 Altimetría14
3.6 Mini acueducto por gravedad (MAG)14
3.7 Fuente de abastecimiento
3.7.1 Manantiales
3.7.2 Fuentes superficiales
3.8 Obra de captación
3.8.1 Captación abierta o superficial15
3.9 Línea de conducción
3.10 Golpe de ariete
3.11 Tanque de almacenamiento
3.11.1 Tanque sobre el suelo
3.12 Pilas rompe cargas
3.13 Red de distribución
3.14 Tomas domiciliares
3.14.1 Puesto domiciliar:
3.14.2 Puesto público:
3.15 Consumo de agua
3.16 Dotación
3.17 Periodo de diseño
3.18 Presiones

Capítulo IV	/. Diseño metodológico	21
4.1 Mé	todos y materiales	21
4.2 En	cuesta socioeconómica	21
4.3 Est	tudio hidrológico	22
4.4 Est	tudio topográfico	23
4.5 Dis	seño de los componentes del sistema	24
4.5.1	Dotación	24
4.5.2	Población a servir	24
4.5.3	Periodo de diseño	24
4.5.4	Variaciones de consumo	25
4.5.5	Presiones máximas y mínimas	25
4.5.6	Velocidades permisibles en las tuberías	26
4.5.7	Línea de conducción	26
4.5.8	Golpe de ariete	28
4.5.9	Red de distribución	30
4.5.10	Capacidad del tanque de almacenamiento	31
4.5.11	Simulación del sistema	31
4.6 Pre	esupuesto	31
Capítulo V	. Cálculos y resultados	33
5.1 Est	tudio socioeconómico	33
5.1.1	Población y vivienda	33
5.1.2	Distribución de población por edad y sexo	34
5.1.3	Educación	34
5.1.4	Distribución nivel de escolaridad	34

5.1.5	Situación habitacional	35
5.1.6	Salud	36
5.1.7	Situación económica de las familias	37
5.1.8	Servicio e infraestructura	38
5.1.9	Saneamiento e higiene ambiental de la población	39
5.1.10	Situación de recursos y servicios de agua potable	40
5.1.11	Principales problemáticas encontradas	41
5.2 Dir	mensionamiento de los componentes del sistema	42
5.2.1	Levantamiento topográfico	42
5.2.2	Criterios de diseño para el sistema	43
5.2.3	Potencial y caudal explotable	47
5.2.4	Diseño de obra de captación	49
5.2.5	Diseño de tanque de almacenamiento	54
5.2.6	Análisis hidráulico	61
5.3 Pre	esupuesto	85
Capítulo V	I. Conclusiones y recomendaciones	89
6.1. Co	nclusiones	89
6.2. Re	comendaciones	91
Bibliografí	a	92

Índice de tablas

Tabla 4.1 - Períodos de diseño	24
Tabla 4.2 - Coeficiente de rugosidad (C) de Hazen - Williams para los dif	
tipos de materiales en los conductos	26
Tabla 4.3 - Relación de módulos de elasticidad del agua y del material de la	tubería
	28
Tabla 5. 1 – Distribución por edad	33
Tabla 5. 2 - Tenencia de propiedad	35
Tabla 5. 3 - Confinamiento de ambientes	36
Tabla 5. 4 - Tipo de piso	36
Tabla 5. 5 - Situación de salud en la vivienda	37
Tabla 5. 6 - Situación del servicio eléctrico	39
Tabla 5. 7 - Tarifas dispuestas a pagar	40
Tabla 5. 8 - Georreferenciación de puntos de control	43
Tabla 5. 9 - Población futura método geométrico	44
Tabla 5. 10 - Proyección población y consumo	46
Tabla 5. 11 - Valores encontrados de caudales	47
Tabla 5. 12 - Parámetros análisis de agua	48
Tabla 5. 13 - Coeficientes de momentos de la PCA	58
Tabla 5. 14 - Diseño de la línea de conducción	63
Tabla 5. 15 - Válvulas para la línea de conducción	66
Tabla 5. 16 - Cálculo de caudales nodales de la línea de distribución	70
Tabla 5, 17 - Diámetros de tuberías	73

Tabla 5. 18 - Válvulas para la red de distribución74
Tabla 5. 19 - Resultados de tuberías en la simulación de la red en Epanet 77
Tabla 5. 20 – Resultados de la simulación en nodos con consumo
Tabla 5. 21 – Resultados de la simulación en nodos sin consumo
Tabla 5. 22 - Costos administrativos e indirectos
Tabla 5. 23 -Presupuesto por etapas y sub etapas
Índice de gráficos
Gráfico 5.1 - Distribución de población por sexo
Gráfico 5. 2 - Distribución de la población por edad
Gráfico 5. 3 - Distribución de la población por nivel de escolaridad35
Gráfico 5. 4 - Situación de empleo
Índice de ilustraciones
Ilustración 1- Macro localización
Ilustración 2- Micro localización
Ilustración 3 - Localización y esquema del sistema42
Ilustración 4 - Clorinador. CTI. 849
Ilustración 5 - Muro de captación50
Ilustración 6 - Sección propuesta53
Ilustración 7 - Tanque de almacenamiento54
Ilustración 8 - Losa Superior60

Índice de anexos

Anexo N°. 1 - Jefes de Hogar9) 4
Anexo N°. 2 - Encuesta socioeconómica9	96
Anexo N°. 3 - Método de aforo10)(
Anexo N°. 4 - Resultados de calidad de agua10)1
Anexo N°. 5 - Pre dimensionamiento de muros de gravedad10)2
Anexo N°. 6 Caso 4 de la PCA (concrete rectangular tanks, revised fifth edition	•
10)3
Anexo N°. 7 Caso 10 de la pca (concrete rectangular tanks, revised fifth edition	•
10)4
Anexo N°. 8 Take off Pilas rompe presión10)5
Anexo N°. 9 - Take off Tanque de almacenamiento10)7
Anexo N°. 10 - Memoria fotográfica10	30

Capítulo I

Aspectos generales

"El agua es la fuerza motriz de toda naturaleza"

Leonardo da Vinci

Capítulo I. Aspectos generales

1.1 Introducción

El agua es uno de los recursos naturales fundamentales, y junto con el aire, la tierra y la energía constituye los cuatro recursos básicos en que se apoya el desarrollo humano.

En las últimas cuatro décadas la población de Nicaragua prácticamente se ha triplicado, lo cual han provocado la necesidad de una distribución apropiada del agua y para poder lograr esto se deben realizar diseños adecuados de sistemas de distribución.

Los programas de gobierno, ONGs y otros, son insuficientes en las comunidades rurales para poder satisfacer la demanda y el manejo de agua potable. En las zonas rurales de Nicaragua, la mayoría de los sistemas de agua son gestionados por comités de agua comunitarios (CAPS). Los CAPS adquirieron estatus legal en Nicaragua en 2010, lo que les permitió administrar sus recursos y cobrar tarifas a sus beneficiarios.

El propósito de este documento es presentar una propuesta de solución a la falta de un sistema de agua potable, que brinde un servicio de calidad y que cumpla con las demandas a futuro para la comunidad La Ermita, del municipio de San Rafael del Norte departamento de Jinotega. En él se plantearán y analizarán las características técnicas, operativas y económicas para un diseño factible, tomando en consideración, capacidad de la fuente de abastecimiento, caudal ecológico, tratamiento y distribución.

1.2 Antecedentes

En Nicaragua actualmente existen 4,754 sistemas de agua potable que abastecen un total de 5,145 comunidades para una cobertura de agua mejorada en el país de 30.84%, el municipio de San Rafael del norte es el único municipio que cuenta con cobertura total en agua y saneamiento en sus 44 comunidades, de las cuales solo el 29 % recibe un servicio de calidad regular.

La comunidad La Ermita, se encuentra ubicada a unos 15 km del municipio de San Rafael del norte, en las coordenadas geográficas latitud 13°08'2.175"norte, Longitud 86°07'16.507" oeste, cuyos límites de la comunidad corresponden: Al norte Municipio La concordia, al sur Municipio Jinotega, al este con la comunidad de San Marcos abajo, al oeste comunidad de Santa Isabel.

Fray Odorico D'Andrea en compañía de italianos y la comunidad se dieron a la tarea de construir un pequeño sistema que suministraba agua captada en dos fuentes tipo manantial, esta era transportada por gravedad, en su momento el agua era conducida sin aplicar ningún tipo de tratamiento, a entender de los beneficiarios este no era necesario.

Desde 2008 se han hecho pequeñas inversiones al sistema que inicialmente se había construido, esto en colaboración con instituciones estatales y algunas ONGs que se dedican a apoyar los CAPS en la zona norte del país. Dentro de esas inversiones se incorporó tratamiento de cloración y nuevas acometidas al sistema original, lo que ocasionó racionamientos dado que las fuentes se veían sobre explotadas.

Actualmente el sistema de agua potable sigue siendo abastecido por las dos fuentes subterráneas, las cuales se encuentran ubicadas, la primera a 3 ½ km en la propiedad de la Familia Blandón y la segunda a 5 ½km en la propiedad de Roberto Chávez, estas dos fuentes están camino hacia la comunidad de San Marcos. Debido al crecimiento de la población en los últimos 30 años, las fuentes tienen un caudal insuficiente para abastecer a la población actual. De realizarse

una revisión al diseño de las demandas de hoy día, se obliga en proceso a proyectar el crecimiento poblacional, por lo que a futuro la situación se vuelve crítica.

1.3 Justificación

Actualmente la comunidad La Ermita, del municipio de San Rafael del Norte, departamento de Jinotega, no cuenta con un sistema de agua potable sostenible que sea capaz de sustentar la demanda de la población de la comunidad, solo el 43% de la población tiene acceso al recurso, que no es de buena calidad y que es distribuida aproximadamente de 20 a 30 minutos 1 o 2 veces por semana, dentro del 57% restante hay quienes caminan 7 km hasta la comunidad de San Marcos para realizar 2 o 3 viajes en recipientes con agua.

Esta situación incide negativamente en el bienestar social de la comunidad, con la aparición de enfermedades respiratorias y gastrointestinales, el 30.47% de la población se ve afectada generalmente por tos, diarrea, resfriados, malaria entre otras afecciones, las malas prácticas culturales e higiene en los entornos familiares son otro factor que afectan la calidad de vida.

En la meta 6.1 de los objetivos de desarrollo sostenible es lograr el acceso universal y equitativo del agua potable a un precio asequible para todos, y alcanzar a disminuir el número de casos de enfermedades causadas por las situaciones antes expuestas.

Es a través de la Ley No. 620 "Ley General de Aguas Nacionales", en donde se señala que es obligación y prioridad indeclinable del Estado promover, facilitar y regular adecuadamente el agua potable en cantidad y calidad al pueblo nicaragüense, planteamos el diseño de un sistema de agua potable que se apegue a las normas NTON 09002-99 y se garantice la evaluación sanitaria de acuerdo a las normas CAPRE.

Por los elementos antes descritos, se considera de gran importancia y se justifica el diseño del sistema para el abastecimiento de agua potable de la comunidad de La Ermita, que garantice calidad y cantidad para los habitantes de esta comunidad.

1.4 Objetivos

1.4.1 Objetivo general

Diseñar un sistema de agua potable, tipo mini acueducto por gravedad (MAG)
en la comunidad la Ermita, municipio de San Rafael del Norte, departamento
de Jinotega.

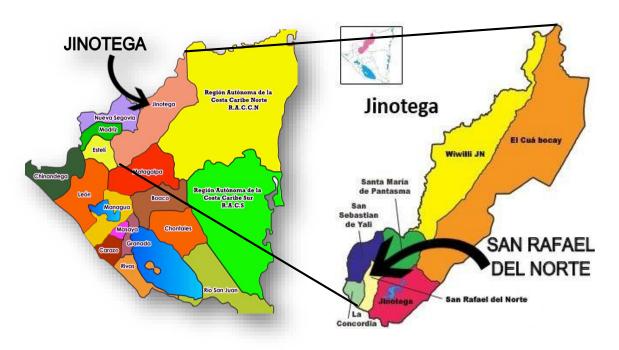
1.4.2 Objetivos específicos

- Diagnosticar a través de un estudio socioeconómico la situación actual de los habitantes de la comunidad, La Ermita.
- 2. Determinar la capacidad de la fuente de abastecimiento de agua potable mediante la realización de un aforo por el método volumétrico.
- 3. Analizar la calidad de agua de la fuente, para garantizar que el agua a suministrar sea apta para el consumo humano.
- 4. Realizar un estudio topográfico que determine los niveles existentes de campo para el diseño hidráulico de los componentes del sistema.
- Dimensionar los componentes del sistema de agua potable por gravedad basándose en las normas técnicas de abastecimiento de agua NTON 09002-99.
- Realizar presupuesto del sistema de abastecimiento de agua potable por gravedad para la comunidad.

Capítulo II

Descripción del área de estudio

"Miles de personas han sobrevivido sin amor, ninguna sin agua"

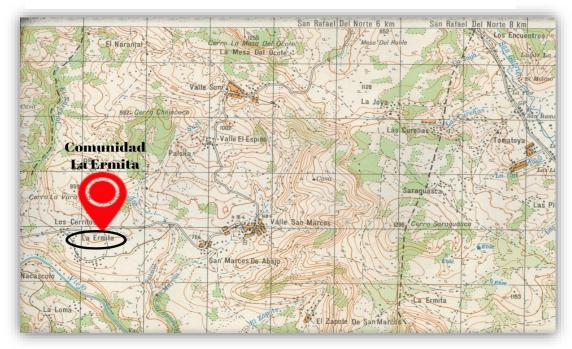

W.H Auden

Capítulo II. Descripción del área de estudio

2.1 Referencia y posición geográfica

El municipio de San Rafael del Norte, se encuentra ubicado en el departamento de Jinotega, a una distancia de 24 Km de la cabecera departamental del mismo nombre y a 185 Km de la capital (Managua). Entre las coordenadas 13°12´ de latitud norte y a 86° 06´ longitud oeste, con una extensión territorial de 239.65Kms².

2.2 Macro localización Ilustración 1- Macro localización.


Fuente: Imágenes de google

Sus límites son:

- Al Norte: Municipio San Sebastián de Yalí y Santa María de Pantasma.
- Al Sur: Estelí y Jinotega.
- Al Este: Jinotega y Santa María de Pantasma.
- Al Oeste: La Concordia y San Sebastián de Yalí.

2.3 Micro localización

Ilustración 2- Micro localización

Fuente: INETER - hoja cartográfica 2955-II-I

La comunidad La Ermita, se encuentra ubicada a unos 15 km del municipio de San Rafael del norte, en las coordenadas geográficas latitud 13°08'2.175"norte, Longitud 86°07'16.507" oeste, cuyos límites de la comunidad corresponden:

- Al norte Municipio La concordia.
- Al sur Municipio de Jinotega.
- Al este con la comunidad San Marcos abajo.
- Al oeste con la comunidad de Santa Isabel.

2.4 Clima y precipitación

San Rafael del Norte se caracteriza por tener en todo su territorio un clima frio. La temperatura promedio anual es de 21°C, y su precipitación anual es de 1,200 a 1,500mm.

2.5 Relieve

Posee un relieve irregular, el sector más elevado es Samaria, que mide 1500msnm. En el territorio se encuentran valles, pequeñas llanuras y grandes depresiones, que en su mayoría son utilizadas por los campesinos para las labores agrícolas.

2.6 Suelo

El municipio se divide en tres zonas bien definidas, las que presentan diferentes tipos de suelos.

- En la parte norte presenta un tipo de suelo con un alto contenido orgánico, composición franco-arcillosa; en esta parte del territorio, el suelo se aprovecha con mucha frecuencia para los cultivos, tales como: café, hortalizas, granos básicos y la ganadería lechera.
- En la parte central presenta suelos fértiles, del tipo franco arcilloso, con suelos de capa arable, la cual presenta condiciones óptimas para el cultivo de granos básico y cría de ganado lechero.
- En la parte sur tiene una zona bastante seca en la cual hay poca producción, por lo que se cultivan productos tradicionales. También se recomienda sembrar productos no tradicionales que sean rentables en este tipo de clima.

2.7 Población y su distribución en el municipio

La población total del municipio es de 22,852 habitantes.

Distribución según las áreas:

 Área Urbana: 6,035 Habitantes equivalentes al 26.41% del total de la población. Área Rural: 16,817 Habitantes equivalentes al 73.59% del total de la población.

2.8 Demografía

Su Población actual de la comunidad la Ermita es de 502 habitantes, existen 126 edificaciones, 123 de estas son viviendas o casas de habitación y 3 edificaciones son de uso de servicio social (1 iglesia católica, 1 puesto de salud y 1 escuela primaria).

2.9 Principales actividades económicas

La principal actividad económica de la comunidad La Ermita, es la agropecuaria, la cual presenta los siguientes rubros: granos básicos, ganadería, café y hortalizas.

2.10 Cuencas hidrográficas

La red de drenaje fluvial en la zona de San Rafael del Norte, está formada por quebradas que nacen en los cerros que rodean la ciudad. El río San Rafael es el principal curso de agua de la zona, éste es afluente del río viejo, que a su vez desemboca al Lago Xolotlán, y forma parte de la cuenca del río San Juan de Nicaragua (Cuenca 69) de la vertiente del atlántico.

2.11 Vías de acceso y transporte

Las carreteras de penetración a las comunidades de San Rafael del Norte son de macadam, a excepción de las rutas san Rafael del Norte-Jinotega y San Rafael del Norte-La Concordia, que son pavimentadas; y La Concordia-Estelí que es adoquinada. Existe además comunicación por medio de carreteras temporales, con 43 comarcas que conforman el municipio, sólo en el período de verano.

Capítulo III

Marco Teórico

"Olvidamos que el ciclo del agua y la vida son uno"

Jacques Cousteau

Capítulo III. Marco teórico

3.1 Estudio socioeconómico

La caracterización de la situación económica de la población será realizada mediante la aplicación de la encuesta socioeconómica (ver anexo 1), el principal indicador para determinar la capacidad económica será el ingreso total mensual de las familias.

3.2 Estudio de población

La determinación de las características de la población y su proyección futura, son los aspectos más importantes del análisis demográfico. El estudio de población consistirá en la caracterización del estilo de vida de los habitantes de la comunidad, que incluirá, la densidad de población por zonas y sus características generales como estructuras por edades y nivel de ingreso general, además de las características habitacionales y comerciales, y la estimación de la tasa de crecimiento poblacional para la comunidad. La información requerida se obtendrá de la aplicación de la encuesta socioeconómica y de caracterización de la condición de servicio. (Ver Anexo N° 2).

3.3 Aforo de la fuente

La aceptación de un manantial como fuente de suministro de agua potable se realiza en base a su dato o datos de aforo, que deberá corresponder al final del periodo seco de la zona y se tomará como mínimo el valor obtenido para el diseño.

El INAA establece, que el caudal crítico de la fuente deberá ser mayor o igual al consumo máximo diario de la población al final del periodo de diseño, de lo contrario se desechará su utilización, o se complementará con otra fuente disponible.

3.4 Calidad de agua

La Organización Mundial de la Salud (OMS) estima que el 80% de todas las enfermedades en el mundo están asociadas con el agua de mala calidad.

La calidad del agua en la fuente debe ser evaluada antes de la construcción del sistema de abastecimiento. El agua en la naturaleza contiene elementos, algunos nocivos para el ser humano, que pueden ser de naturaleza físico - químico o bacteriológica y varían de acuerdo al tipo de fuente, parámetros que deben encontrarse dentro de los límites permisibles para el agua de consumo humano establecidos por el INAA. (Barrios Napurí, Torrez Ruiz, Lampoglia, & Aguero Pittman, 2009, pág. 29)

3.5 Estudio topográfico

Las actividades fundamentales de la topografía son el trazo y el levantamiento:

El trazo es el procedimiento operacional que tiene como finalidad el replanteo sobre el terreno de las condiciones establecidas en el plano; el levantamiento comprende las operaciones necesarias para la obtención de datos de campo útiles para poder representar un terreno por medio de su figura semejante en un plano.

La topografía urbana que con frecuencia se da a las operaciones que se realizan para la disposición de lotes, construcción de calles, sistemas de abastecimiento de agua potable y sistemas de drenaje. (Curso básico de topografía planimetría, agrimensura y altimetría, 1994, pág. 3)

3.5.1 Planimetría

Estudia los instrumentos y métodos para proyectar sobre una superficie plana horizontal, la exacta posición de los puntos más importantes del terreno y construir de esa manera una figura similar al mismo. (Curso básico de topografía planimetría, agrimensura y altimetría, 1994, pág. 3)

3.5.2 Altimetría

Determina las alturas de los diferentes puntos del terreno con respecto a una superficie de referencia; generalmente correspondiente al nivel medio del mar. (Curso básico de topografía planimetría, agrimensura y altimetría, 1994, pág. 3)

3.6 Mini acueducto por gravedad (MAG)

Conforme a la Cartilla operación y mantenimiento de mini acueductos por gravedad que dispone el Fondo de Inversión Social de Emergencia (FISE), es un sistema donde su principal función es transportar el agua, captada desde una fuente superficial localizada a mayor altura que las viviendas hasta un tanque de almacenamiento situado también a mayor altura que las viviendas y a menor que la fuente, donde posteriormente por gravedad y por medio de tuberías el agua baja hasta llegar a las conexiones domiciliares.

3.7 Fuente de abastecimiento

Las fuentes de agua constituyen el elemento primordial en el diseño de un sistema de abastecimiento de agua potable y antes de dar cualquier paso es necesario definir su ubicación, tipo, cantidad y calidad. De acuerdo a la ubicación y naturaleza de la fuente de abastecimiento, así como la topografía del terreno, se consideran dos tipos de sistemas: los de gravedad y los de bombeo. (Roger Agüero Pittman, pág. 5)

3.7.1 Manantiales

Los manantiales son puntos localizados en la corteza terrestre por donde aflora el agua subterránea. Generalmente este tipo de fuentes, sufre variaciones en su producción, asociadas con el régimen de lluvia en la zona. En la mayoría de los casos, es de esperar que el caudal mínimo del manantial coincida con el final del periodo seco de la zona. (Instituto Nicaragüense de Acueducto y Alcantarillado, 1998)

3.7.2 Fuentes superficiales

Es aquella que se encuentran sobre la superficie del suelo generadas a partir de las precipitaciones siendo producto de escorrentías o afloramientos de aguas subterráneas que se encuentran circulando o en reposo sobre la superficie. Dentro de esta fuente se encuentran los ríos, arroyos, lagos, embalses, reservorios, pueden presentar características físico-químicas no aptas para consumo de tal forma que para este tipo de captaciones se hace la instalación de un dispositivo que permita la remoción de arenas y partículas. (Instituto Nicaragüense de Acueducto y Alcantarillado, 1998)

3.8 Obra de captación

Según la cartilla operación y mantenimiento de mini acueductos por gravedad que dispone el FISE, es la estructura construida para captar el agua desde la fuente, ubicada en la sección transversal de un rio o cualquier otra fuente superficial o subterránea. Esta puede ser un dique (bocatoma) o una caja cerrada, el agua captada es conducida mediante las tuberías de conducción hacia el reservorio de almacenamiento.

3.8.1 Captación abierta o superficial

Esta se compone de un muro o dique de toma, que se construye en la sección transversal al cauce del rio, al que se le dispone de un vertedero para garantizar la continuación del curso del agua que no es ocupada, tiene tuberías de salida al sistema y limpiezas. (Fondo de inversión social de emergencia, pág. 6)

3.9 Línea de conducción

Dentro de un sistema de abastecimiento de agua, se le llama línea de conducción, al conjunto integrado por tuberías, y dispositivos de control, que permiten el transporte del agua en condiciones adecuadas de calidad, cantidad y presión desde la fuente de abastecimiento, hasta el sitio donde será distribuida.

Según la norma rural de abastecimiento de agua potable NTON 09002-99 en el inciso 7.2.1 (pág.30) su capacidad deberá ser suficiente para transportar el gasto del día, cuando la topografía del terreno así lo exija se deberán instalar "válvulas de aire y vacío" en las cimas y "válvulas de limpieza" en los columpios.

3.10 Golpe de ariete

Se denomina golpe de ariete el efecto de choque violento o sobrepresión súbita producido sobre las paredes del conducto forzado, al modificarse de manera instantánea el movimiento del fluido, como puede ocurrir en caso del cierre repentino de una válvula. (López Cualla, 1995)

Para evitar el golpe de ariete pueden tomarse varios tipos de medidas, entre las cuales las más indicadas son las que no requieren de equipos especializados, ya que en el caso de acueductos rurales no es fácil la labor de mantenimiento de estos equipos:

- Limitación de la velocidad (0.6 m/s a 3.0 m/s)
- Cierre lento de las válvulas mediante la colocación de un volante de gran diámetro.
- Empleo de válvulas especiales contra el golpe de ariete
- Aumentar el espesor de la pared de la tubería
- Construcción de tanques de oscilación o cámaras de aire comprimido.

(López Cualla, 1995)

3.11 Tanque de almacenamiento

Conforme a la cartilla operación y mantenimiento de mini acueductos por gravedad que dispone el FISE, es una estructura que puede ser de ladrillos, bloques, piedras, plástico o concreto reforzado.

La función básica del tanque es almacenar agua en los periodos en el cual la demanda es menor que el suministro, de tal manera que en los periodos en los que la demanda sea mayor que el suministro se complete el déficit con el agua almacenada inicialmente. (López Cualla, 1995, pág. 23)

Según Cualla, el tanque de almacenamiento tiene los siguientes propósitos:

- Compensar las variaciones en el consumo de agua durante el día.
- Tener una reserva de agua para atender los casos de incendio.
- Disponer de un volumen adicional para caso de emergencias (Accidentes, reparaciones o cortes de energía)
- Dar una presión adecuada a la red de distribución en la población.

3.11.1 Tanque sobre el suelo

Se debe tomar en cuenta las condiciones del suelo (principalmente cuando el agua es para consumo), eliminando cualquier posibilidad de infiltración y construir de acuerdo a los resultados obtenidos. Actualmente se construyen tanques de gran capacidad de almacenamiento con concreto reforzado o pre comprimido con los que se han obtenido buenos resultados ya que son seguros y económicos.

Se recomienda que los tanques tengan una altura de 3.0 m con un borde libre de 0.5 m y deberán estar cubiertos con una losa de concreto. En casos especiales se construirán tanques de acero sobre el suelo. (Normas rurales de abastecimiento de agua potable, 1998, pág. 40)

3.12 Pilas rompe cargas

Según la Cartilla operación y mantenimiento de mini acueductos por gravedad que dispone el FISE, es una caja de concreto, que se construye para controlar las presiones del agua que recorren las tuberías. Está compuesta de diferentes tuberías: entrada, salida, rebose y limpieza, así como válvulas de rebose y limpieza. Debe contener una tapa de visita para facilitar la limpieza.

3.13 Red de distribución

Es el conjunto de tuberías, accesorios que conducen el agua desde el tanque de almacenamiento hasta los puntos de consumo o tomas domiciliares con el fin de garantizar el agua a los usuarios para el consumo doméstico, público y para condiciones de emergencias. La función de la red de distribución es suministrar agua a los diferentes puntos en cantidad suficiente y segura. (Fondo de inversión social de emergencia, pág. 12)

Esta se encuentra conformando la tubería principal del sistema de agua potable llamado circuitos troncales dentro de las que se encuentran conducciones primarias arterias principales y conducciones secundarias que forman anillos más pequeños para cubrir el suministro de agua a los domicilios y extinción de incendios.

3.14 Tomas domiciliares

Según la cartilla operación y mantenimiento de mini acueductos por gravedad que dispone el FISE en inciso 7 establece, son los elementos de servicios del sistema para ser utilizada por los usuarios para el consumo o suministro de agua pudiéndose clasificar como:

- **3.14.1 Puesto domiciliar:** Se ubican en cada casa ya sea en el patio o el interior de la vivienda donde es solo utilizado por los usuarios que la habitan.
- **3.14.2 Puesto público:** Se instalan en lugares públicos para que sea utilizado por cualquier persona usuaria generalmente se encuentran cercados para evitar la entrada de animales.

3.15 Consumo de agua

Se entiende por consumo a la cantidad de agua que dispone una persona para sus necesidades diarias (Aseo, higiene personal, beber, cocinar, limpieza del hogar, etc.). Generalmente se cree que el consumo está dado por el crecimiento poblacional; sin embargo, existen otros parámetros con los que este consumo puede variar, entre ellos el clima, nivel económico, densidad poblacional, costo de tuberías, etc.

3.16 Dotación

De acuerdo a la NTON-09002-99 en el inciso 3.1 está expresada como la cantidad de agua consumida por una persona en un día y depende de los siguientes factores:

- Nivel de servicio adoptado
- 2- Factores geográficos
- 3- Factores culturales
- 4- Uso del agua

La dotación es el consumo de agua utilizado por una persona por día y se expresa por lo general en litros por habitante y por día (litros /habitante-día)

3.17 Periodo de diseño

Es el periodo destinado para la duración y servicio del sistema. Según la norma rural de abastecimiento de agua potable NTON 09002-99 en el inciso 4.1 establece:

- Determinar que periodos de estos componentes del sistema, deberán satisfacer las demandas futuras de la comunidad
- Qué elementos del sistema deben diseñarse por etapas.

3.18 Presiones

Estas están dadas de acuerdo a la topografía del terreno por donde pasa el sistema, sin embargo, se deben considerar estás de acuerdo a las normas NTON-09002-99 en el inciso 4.3 para evitar daños en las tuberías y accesorios del sistema.

Capítulo IV

Diseño Metodológico

"Si hay magia en este planeta, está contenida en el agua"

Loran Eisely

Capítulo IV. Diseño metodológico

4.1 Métodos y materiales

En esta investigación se hará uso de métodos para obtener la información necesaria, dentro de los que están:

- Revisión Bibliográfica con el fin de obtener la legalidad de la información presentada en el documento de investigación.
- Encuesta socioeconómica, con el fin de identificar la problemática y necesidad de las personas en la comunidad con respecto al servicio de agua potable.
- Utilización de la metodología de referencia para el diseño del sistema basada en las Normas NTON 09003-99.

4.2 Encuesta socioeconómica

- La realización de la encuesta se implementará de forma personal dirigida, a una persona responsable por vivienda, donde se permita conocer la condición referente a cada uno de ellos.
- Elaboración de un cuestionario que despierte el interés del entrevistado incluyendo preguntas abiertas y cerradas, tomando en consideración preguntas dicotómicas y de opción múltiples que conlleven el aporte para la obtención de los datos que servirá de base importante para la investigación.
- Se determinará la necesidad de los habitantes referente al consumo de agua.
- La capacidad económica que ellos garanticen para hacer el proyecto auto sostenible en consideración a su periodo de diseño.
- Se conocerán el número de viviendas actuales y habitantes por cada hogar beneficiado para posteriormente proyectar la población destinada para el proyecto, utilizando el criterio establecido por la norma NTON 09002-99 en el inciso 2.2.

Proyección de población

Según la norma para el cálculo de las poblaciones futuras se usará el método geométrico expresado por la formula siguiente:

 $P_n = P_o + (1+r)^n$

Dónde:

P_n: Población del año "n".

Po: Población al inicio del periodo de diseño.

r: Tasa de crecimiento en el periodo de diseño expresado en notación decimal.

n: Número de años que comprende el periodo de diseño.

4.3 Estudio hidrológico

El método a utilizar para el cálculo del caudal, es llamado "Método volumétrico" consiste en encauzar el agua generando una corriente del fluído de tal manera que se pueda provocar un chorro.

a) Aforo de la fuente

Así mismo se comprobarán los caudales generados por la fuente en la zona de invierno y verano, mediante un aforo en el lugar destinado para la captación donde se dará:

- Capacidad del depósito o recipiente para la obtención del volumen.
- La obtención de tiempos que demora en llenar el depósito o recipiente.

Una vez encontrado los datos anteriores se aplicará la fórmula del método volumétrico:

$$Q = \frac{V}{t}$$

Donde:

Q: Caudal en m³/s

V: Volumen del recipiente en m³

T: Tiempo que tarda en llenarse recipiente en segundos (s)

b) Análisis de calidad de agua de la fuente de abastecimiento

Para esto se tomará muestras en recipientes adecuados y posteriormente se

llevará al laboratorio donde se determinarán algunos parámetros como:

Organoléptico: Color verdadero, sabor.

Parámetros Fisicoquímicos: Turbiedad, temperatura, concentración iones de

Hidrógenos, sulfato, magnesio, calcio, solidos totales disueltos.

Parámetros bacteriológicos: Coniforme fecales.

Todos estos parámetros serán evaluados de acuerdo a las normas CAPRE 2000

y Normas técnicas de abastecimiento NTON 09003-99.

4.4 Estudio topográfico

Se realizará mediante instrumentos topográficos para determinar los datos por

donde se hará el trazo del sistema y estará asociado a obtener niveles y longitudes

apropiados para que el sistema funcione de acuerdo a la norma.

Para el trazado del sistema se buscará que el terreno sea favorable evitando

lugares inaccesibles y que generen mal funcionamiento. De igual forma se

obtendrán coordenadas UTM mediante GPS de alta precisión para la ubicación

de dos puntos de control.

4.5 Diseño de los componentes del sistema

El diseño de los componentes del sistema estará basado a la normativa implementada por el Instituto Nicaragüense de Acueductos y Alcantarillado (INAA) principalmente con las Normas técnica rurales (NTON-09002-99).

4.5.1 Dotación

De acuerdo a la norma antes mencionada en el inciso 3.1 establece lo siguiente:

- a) Para sistemas de abastecimiento, por medio de puestos públicos, se asignará un caudal de 30 a 40 lppd.
- b) Para sistemas de abastecimiento de agua potable por medio de conexiones domiciliares de patio, se asignará un caudal de 50 a 60 lppd.

4.5.2 Población a servir

En los mini acueductos por gravedad y captaciones de manantial la población a servir está en dependencia de las características de la población objeto del estudio, el tipo y configuración de la comunidad y las características tecnológicas de las instalaciones a establecerse. (Normas rurales de abastecimiento de agua potable, 1998).

4.5.3 Periodo de diseño

Según la norma rural de abastecimiento de agua potable NTON 09002-99 en proyectos de abastecimientos de agua potable se recomienda fijar la vida útil de cada uno de los componentes de sistema.

Tabla 4.1 - Períodos de diseño

Tipos de componentes	Período de diseño
Pozos excavados	10 años
Pozos perforados	15 años

Tipos de componentes	Período de diseño
Captaciones superficiales y manantiales	20 años
Desarenador	20 años
Filtro lento	20 años
Líneas de conducción	15 años
Tanque de almacenamiento	20 años
Red de distribución	15 años

Fuente: Recuperado de Norma técnicas de abastecimiento NTON-09002-99 inciso 4.1

4.5.4 Variaciones de consumo

De acuerdo a la NTON-09002-99, establece los factores de la demanda promedio diario, para dimensionamiento de: obra de captación, línea de conducción y red de distribución.

Consumo Máximo día (CMD)=1.5CPD (Consumo Promedio Diario)

Consumo Máximo hora (CMH)=2.5CPD (Consumo Promedio Diario)

4.5.5 Presiones máximas y mínimas

De acuerdo a la norma NTON-09003-99 en el inciso 4.3 establece lo siguiente:

Para brindar presiones adecuadas en el funcionamiento del sistema de abastecimiento se recomienda que estas se cumplan dentro de un rango permisible, en los valores siguientes:

Presión mínima: 5.0 metros

Presión máxima: 50.0 metros

4.5.6 Velocidades permisibles en las tuberías

Estas estarán dadas según la norma NTON 09002-99 para tomar en cuenta el flujo en las tuberías con el fin de evitar sedimentos en la misma, los valores permisibles son los siguientes:

Velocidad Mínima; 0.4 m/s

Velocidad Máxima; 2 m/s

Tabla 4.2 - Coeficiente de rugosidad (C) de Hazen - Williams para los diferentes tipos de materiales en los conductos

Material del conducto	Coeficiente de Rugosidad (C)		
Tuvo de Hierro Galvanizado (Hº.Gº)	100		
Tuvo de Concreto	130		
Tuvo de Asbesto Cemento	140		
Tuvo de Hierro Fundido (Hº.Fº)	130		
Tuvo Plástico (PVC)	150		

Fuente: Recuperado de Norma técnicas de abastecimiento NTON-09002-99 inciso 4.4

4.5.7 Línea de conducción

De acuerdo a la norma rural de abastecimiento de agua potable NTON 09002-99 para la línea de conducción por gravedad se deberá tomar en cuenta los siguientes aspectos:

- a) Se diseñará para la condición de consumo de máximo día al final del periodo de diseño, el cual resulta al aplicar el factor de 1.5 al consumo promedio diario (CMD= 1.5 CPD)
- b) En los puntos críticos se deberá mantener una presión de 5m por lo menos.
- c) La presión estática máxima estará en función de las especificaciones técnicas de la clase de tubería a utilizarse, sin embargo se recomienda

mantener una presión estática máxima a 70mts, incorporando en la línea pilas rompe presión donde sea necesario.

El empleo de tuberías en conducciones (caso más común), permite hacer el análisis hidráulico de los conductos a presión, dependiendo de las características topográficas que se tengan. Cuando la tubería trabaje a presión, el cálculo hidráulico de la línea consistió en utilizar la energía disponible para vencer las pérdidas por fricción únicamente, ya que en este tipo de obras las pérdidas secundarias no se toman en cuenta por ser muy pequeñas. (Instituto Nicaragüense de acueductos y alcantarillados, 1989)

Para el caso del dimensionamiento de la línea de conducción se aplicará la fórmula de Hazen-Williams. (Normas rurales de abastecimiento de agua potable, 1998)

$$\frac{H}{L} = S = \frac{10.549Q^{1.85}}{C^{1.85}D^{4.87}}$$

Dónde:

H: Pérdida de carga en metros.

L: Longitud en metros.

S: Pérdida de carga en m/m.

Q: Gasto en m³/s.

D: Diámetro en metros.

C: Coeficiente de Hazen-Williams, el valor depende del tipo de tubería.

En el perfil de la conducción, se hará el trazo de la línea piezométrica que corresponde a los diámetros que satisfagan la condición de que la carga disponible sea igual a la pérdida de carga por fricción.

4.5.8 Golpe de ariete

El valor de la celeridad o velocidad de propagación de la onda se aplicará mediante la fórmula de Allievi:

$$C = \frac{9900}{\sqrt{48.3 + K\frac{D}{e}}}$$

En donde:

C: celeridad de la onda (m/s)

D: diámetro del tubo (m)

e: espesor de la pared del tubo (m)

K: relación entre el módulo de elasticidad del agua y del material de la tubería.

K: 10¹⁰/E tubería

Tabla 4.3 - Relación de módulos de elasticidad del agua y del material de la tubería

Material de la tubería	K
Acero	0.5
Hierro fundido	1
Concreto	5
Asbesto-cemento	4.4
Plástico	18

Fuente: (López Cualla, 1995) inciso 10.6

Tiempo de cierre de la válvula (cierre rápido y cierre lento)

El tiempo en que la lámina 1, contigua a la válvula, ha permanecido en estado de sobrepresión es:

$$T = \frac{2L}{c}$$

Dónde:

L: Longitud hasta el depósito (m)

C: Velocidad de propagación de la onda o celeridad (m/s)

T: Fase o período de la tubería (s)

Si la maniobra es rápida, la válvula quedará completamente cerrada antes de que la onda de depresión comience a actuar:

 $T < \frac{2L}{C}$ Sobrepresión máxima

Si el tiempo de cierre es lento, la onda de depresión llegara a la válvula antes de que se halle ésta completamente cerrada:

 $T > \frac{2L}{C}$ Maniobra lenta

En caso de una maniobra rápida (T<2L/C) la sobrepresión máxima será:

$$ha = \frac{CV}{g}$$

Siendo:

ha: sobrepresión (m de agua)

C: celeridad

V: velocidad media del agua (m/s)

g: aceleración de la gravedad (m/s²)

4.5.9 Red de distribución

De acuerdo a la norma NTON-09002-99 en el inciso 7.3 establece:

La red de distribución en el sistema de conductos cerrados, que permite distribuir

el agua bajo presión a los diversos puntos de consumo, que pueden ser

condiciones domiciliares o puestos públicos; para su diseño deberá considerarse

los aspectos siguientes:

a) Se deberá diseñar para la condición del consumo de hora máxima al final

del periodo de diseño, el cual resulta al aplicar el factor de 2.5 al consumo

promedio diario (CHM = 2.5CPD, más las pérdidas).

b) El sistema de distribución puede ser de red abierta, de malla cerrada o una

combinación de ambos.

Para el análisis de la red deben considerarse los casos de red abierta (Ramificada)

y de malla cerrada. Se realizará el análisis con la siguiente fórmula:

$$H = \left[\frac{SeQe - SfQf}{2.85(Qe - Qf)}\right]L$$

En la cual:

H: Pérdidas por fricción en metros.

Q_e: Caudal entrante en el tramo en (gpm).

Q_f: Caudal de salida al final del tramo (gpm).

S_e: Pérdidas en el tramo correspondiente Q_e en decimales.

S_f. Pérdidas en el tramo correspondiente Q_f en decimales

L: Longitud del tramo en metros.

4.5.10 Capacidad del tanque de almacenamiento

De acuerdo a la norma NTON-09002-99 en el inciso 8.2 establece:

El tanque de almacenamiento será diseñado basado a los parámetros siguientes:

- a) Volumen compensador: El volumen necesario para compensar las variaciones horarias del consumo, se estimará en 15% del consumo promedio diario.
- b) Volumen de reserva: El volumen de reserva para atender eventualidades en caso de emergencia, reparaciones en línea de conducción u obra de captación, se estimará igual al 20% del consumo promedio diario.

La capacidad total del tanque se estimará en un 35% del consumo promedio diario.

4.5.11 Simulación del sistema

La simulación se realizará en el software EPANET una vez que se tiene el perfil del terreno tomando en consideración los puntos más críticos del sistema, para conocer presiones y velocidades que estarán ligadas al funcionamiento del mismo. Esto se comparará de acuerdo a la norma de abastecimiento rural NTON 09002-99.

4.6 Presupuesto

El presupuesto será elaborado de la siguiente manera:

- Los precios de materiales serán tomados de los costos promedios que se manejan en el mercado.
- La mano de obra se determinará basándose en las normas de rendimiento horario vigente elaborado por el FISE.
- El costo total de una actividad es la sumatoria del costo de los materiales,
 la mano de obra, gastos de herramientas y equipo, más los costos indirectos y administrativos.
- Se aplicará el 15% IVA (impuesto de valor agregado), 2% de IR (Impuesto sobre renta) y 1% de impuestos municipales.

Capítulo V

Cálculos y resultados

"Nunca reconoceremos el valor del agua, hasta que el pozo este seco" **Thomas Fuller**

Capítulo V. Cálculos y resultados

5.1 Estudio socioeconómico

La información que se muestra a continuación fue recolectada a través de investigaciones de campo realizadas por el equipo de trabajo a fin determinar las condiciones socioeconómicas que prevalecen dentro de la comunidad.

Esta exploración comprendió la aplicación de una encuesta que permitió conocer los datos particulares de las familias por vivienda, condición en la que habitan, situación económica actual, saneamiento e higiene, recursos y servicios de agua.

Las encuestas fueron aplicadas una por familia y cuando la ocasión lo permitió fue contestada por el jefe de familia.

El procesamiento del material encuestado se realizó con la ayuda del programa Microsoft Excel, para lograr presentar los resultados obtenidos de la encuesta de forma gráfica, para su debido análisis.

5.1.1 Población y vivienda

Según el último censo poblacional y habitacional realizado por el equipo de trabajo en abril del 2019, la comunidad cuenta con una población de 502 habitantes, distribuidos en 126 viviendas, para un índice poblacional de 4 habitantes por vivienda.

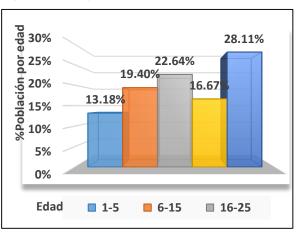
Tabla 5. 1 - Distribución por edad

	lad	<u> </u>	Rango de Edades				
No.	Comunidad	Población (Hbts.)	1-5 años	6-15 años	16-25 años	26-35 años	> 36 años
01	La Ermita	502	66	97	114	83	142
Por	centajes	100%	13.18%	19.40%	22.64%	16.67%	28.11%

Fuente: Elaboración propia

5.1.2 Distribución de población por edad y sexo

La distribución de géneros es bastante equitativa, correspondiente a un 52.74% de habitantes del sexo masculino y 47.26% del sexo femenino. Durante las visitas de campo se pudo constatar que la población se compone principalmente por adultos y jóvenes.


La distribución de la población por grupo de personas menores a 15 años, o mayores a 15 años se muestra en la siguiente gráfica.

Distribución de población por edad y sexo

Gráfico 5.1 - Distribución de población por sexo

70.00%
70.00%
47.26%
30.00%
10.00%
-10.00%

Gráfico 5. 2 - Distribución de la población por edad

Fuente: Elaboración propia

5.1.3 Educación

De acuerdo a las encuestas socioeconómicas realizad as, la comunidad La Ermita solo cuenta con una escuela pública, destinada a brindar educación primaria por lo que al terminar este nivel tienen que viajar hasta el instituto público que se encuentra ubicado en la comunidad de San Marcos municipio de Jinotega.

5.1.4 Distribución nivel de escolaridad

Con apenas una escuela primaria local y una secundaria a casi 7km de distancia que solo imparten clase los sábados, esto sin mencionar los escasos recursos económicos de los pobladores, es fácil para los niños y jóvenes olvidarse de los estudios y preferir trabajar para llevar algo de sustento al hogar.

De un total de 502 habitantes el 57.26% de la población tiene un nivel académico de primaria, que incluye personas adultas que no tuvieron opciones para continuar estudiando y niños que no quieren o no pueden continuar. El 18.44% se encuentran en nivel de secundaria o no continuaron estudiando, apenas el 2.23% están o llegaron a un nivel universitario, un 5.59% nivel pre-escolar en su mayoría niños están asistiendo y el 16.48% no fueron a un centro escolar o no han iniciado sus estudios.

■ NINGUNA ■ PRE ESCOLAR ■ PRIMARIA ■ SECUNDARIA ■ ESTUDIOS SUPERIORES 60% 57.26% %nivel de escolaridad 50% 40% 30% 18.44% 16.48% 20% 5.59% 2.23% 10% 0%

Gráfico 5. 3 - Distribución de la población por nivel de escolaridad

Fuente: Elaboración propia

5.1.5 Situación habitacional

El número de lotes que presenta la comunidad es de 126 viviendas habitadas, 1 iglesia construida por los habitantes que asisten a ella y 1 escuela de primaria construido por el estado.

La tenencia de la propiedad es de la siguiente manera:

Tabla 5. 2 - Tenencia de propiedad

Estado legal de la vivienda					
Propia	prestada	Alquilada			
123	3	0			
97.06% 2.94% 0.00%					
100%					

Fuente: Elaboración propia

El tipo de construcción es tradicional, durante la visita de campo se verifico que el 50% de las viviendas están construidas de adobe, el 28.43% a base de Ladrillo, el 10.78% construidas de madera que en su mayoría no cuentan con servicios básicos ni de infraestructura, y de poca relevancia edificaciones de bloque con un 4.90%.

Tabla 5. 3 - Confinamiento de ambientes

Confinamiento de ambientes							
Bloque	Adobe	Ladrillo	Madera	Ripios	Otros		
6	63	36	14	0	7		
4.90% 50.00% 28.43% 10.78% 0.00% 5.88%							
100%							

Fuente: Elaboración propia

En una zona de pocos recursos económicos por lo que no utilizan pisos de cerámica u otro piso de gran valor. En la visita de campo se observó que el 67.65% es de tierra, concreto el 8.82% y el ladrillo 13.73% que tiene posibilidades económicas, en un 9.80% es de otro material.

Tabla 5. 4 - Tipo de piso

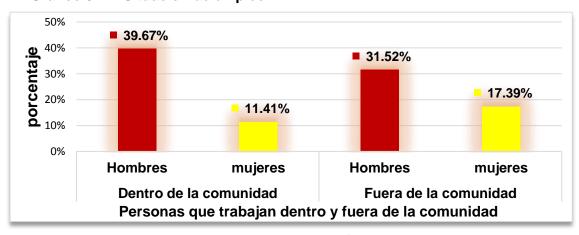
El piso es:							
Madera	Tierra	Balastro	Concreto	Ladrillo	Otros		
0	85	0	11	18	12		
0.00% 67.65% 0.00% 8.82% 13.73% 9.80%							
100%							

Fuente: Elaboración propia

5.1.6 Salud

De acuerdo a las encuestas socioeconómicas realizadas, en la comunidad existe un pequeño puesto de salud que es atendido por una licenciada en enfermería. Las enfermedades más recurrentes en la edad infantil y vejez son las de tipo respiratorio y gastrointestinales.

El 30.47% de la población se ve afectada por distintas enfermedades de las que predominan o prevalecen como la tos 12%, diarrea 7%, refriados 6% y malaria 2% entre otras más reflejadas en la siguiente tabla:


Tabla 5. 5 - Situación de salud en la vivienda

	Grupos de edad					
Enfermedades	1-5	6-15	16-25	26+	Total	Observaciones
Diarrea	7	9	6	14	36	
Tos	17	15	8	20	60	
Resfriados	7	6	7	10	30	
Malaria	1	4	2	3	10	
Dengue		1	1		2	
Parasitosis				1	1	
Infección renal	1		1	3	4	
Tifoidea						
Hepatitis						
Infecciones					1	
dérmicas (Piel)		1				
Otras	2	2	2	3	9	
Total					153	

5.1.7 Situación económica de las familias

Según los datos obtenidos en la encuesta socio-económica, el 45.77% correspondiente a 184 personas están actualmente empleadas entre ellos hombres y mujeres dentro y fuera de la comunidad.

Gráfico 5. 4 - Situación de empleo

Fuente: Elaboración propia

Del total de personas que trabajan un 71.19% son hombres y solo 28.81%, debido a que la mayoría de las mujeres son amas de casas.

El ingreso económico por cada hogar de toda la comunidad, está representado de la siguiente manera:

> 10000, 2.94% C\$ 6000 -... C\$ 1000 -4000, 45.10%

Gráfico 5. 5 - Ingreso económico

Fuente: Elaboración propia

De acuerdo a la gráfica representada (5-5), el ingreso promedio económico mensual que más predomina en esta población se encuentra en el rango de 1000 - 4000 córdobas mensuales ya que la mayoría de las personas se dedican a la agricultura y jornaleros.

5.1.8 Servicio e infraestructura

C\$ 4000-_6000, 35.29%

La comunidad la Ermita, cuenta con 5 calles de norte a sur y 4 calles transversales de este a oeste, de las cuales 3 calles poseen poca accesibilidad, debido que las calles no cuentan con los derechos de vías correspondientes.

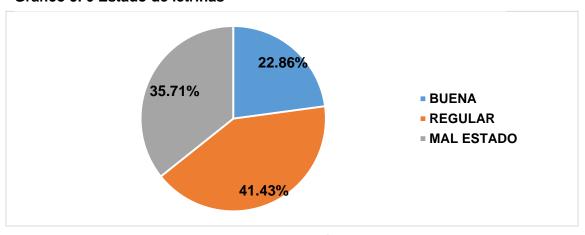
No cuenta con tendido telefónico, solo señal de servicio telefónico móvil y en cuanto al servicio de energía eléctrica, el 24.51% de 502 habitantes no cuentan con el servicio, según visita de campo pobladores manifestaron que se encuentra a futuro un proyecto de instalación del servicio eléctrico público y habitacional.

Tabla 5. 6 - Situación del servicio eléctrico

Servicio de energía eléctrica						
Energía eléctrica N° de familias % Familias						
Cuentan con el servicio	95	75.49%				
No cuentan con el servicio	31	24.51%				
Total	126	100%				

Fuente: Elaboración propia

5.1.9 Saneamiento e higiene ambiental de la población


De acuerdo a las visitas a la comunidad y las encuestas que se realizaron, del total de viviendas el 68.63% de la población cuentan con letrinas tradicionales y el 31.37% no poseen letrinas.

Se obtuvieron los siguientes datos:

El 31.37% de la población realiza sus necesidades al aire libre y el 41.43% del total de letrinas en invierno, presentan problemas de inundación, destrucción de sus paredes y techo debido a que su gran mayoría son cubiertas por plástico.

El 100% de la población no cuenta con sumidero para descargar las aguas servidas de la casa, debido a que es limitado el acceso de agua potable en esta comunidad, lo poco que recogen de esta la riegan a las plantas del patio y dentro de la casa para eliminar el polvo.

Gráfico 5. 6 Estado de letrinas

Fuente: Elaboración propia

Para eliminar la basura en su gran mayoría la queman y en algunos casos excavan fosas pocas profundas en donde la depositan sin clasificarla, sin medir el grado de contaminación que están produciendo en el ambiente que los rodea.

5.1.10 Situación de recursos y servicios de agua potable

En la actualidad el 59.80% de la población cuentan con el servicio de agua potable mediante un sistema de mini acueducto por gravedad, pero que no cuenta con las condiciones debidas, ya que es bastante racionado este vital líquido. Los que cuentan con el servicio pagan una tarifa de C\$ 25 córdobas estándar por cada vivienda. El otro 40.20% correspondiente a las 126 viviendas no cuentan con ningún servicio de agua potable, por lo que tienen que viajar hasta la comunidad de San Marcos para acarrear el agua.

Según las familias que fueron encuestadas el 27.25% considera la calidad de agua que consumen es buena, el 50% la considera regular y en 22.55% la considera mala.

Durante la aplicación de las encuestas se preguntó a los entrevistados acerca de la aceptación y disposición de pago de tener servicio de agua potable en su hogar, estando de acuerdo en 100% la población. En el siguiente cuadro se muestran los rangos de tarifas dispuestos a pagar.

Tabla 5. 7 - Tarifas dispuestas a pagar

RANGO DE TARIFAS (DISPUESTOS A PAGAR) C\$	VIVIENDAS	%
De C\$ 20 a C\$ 35	41	32.35%
De C\$ 36 a C\$ 50	49	39.22%
De C\$ 51 a más	36	28.43%
No están dispuestos a pagar	0	0.00%
Total	126	100.00%

Fuente: Elaboración propia

5.1.11 Principales problemáticas encontradas

La mayoría de los recursos naturales están en proceso de deterioro, debido a las malas prácticas ambientales por parte de los habitantes de la comunidad entre ellos la explotación de la madera, la no reforestación, la extensión de la frontera agrícola y ganadera existente.

Las actividades económico productivas de cada hogar dependen de la extensión de tierra que poseen, siendo el de menos tamaño las viviendas que solo tienen un solar, que son los que venden su fuerza de trabajo y tienen menos probabilidad de crecimiento económico.

No es una práctica cultural arraigada el establecimiento de un sanitario en la vivienda.

La falta de organización comunitaria, es uno de los principales problemas encontrados, si bien es cierto que la alcaldía está realizando esfuerzos por crear una base organizativa no han podido involucrar a toda la población a comprometerse a crear un verdadero capital social en la comunidad para mejorar las condiciones del agua potable.

Se debe concientizar a la población sobre la importancia del agua potable y la poca calidad del agua que actualmente se está consumiendo.

Darle seguimiento a las propuestas incluidas en el documento a fin de que no solo quede el aporte del sistema de agua, sino que se creen las bases para otras formas de intervención en pro del bienestar de la comunidad.

5.2 Dimensionamiento de los componentes del sistema

En la propuesta para el abastecimiento de agua potable de la comunidad la Ermita, de acuerdo a las características geográficas de los puntos de interés, se plantea un esquema fuente-tanque-red.

Ilustración 3 - Localización y esquema del sistema.

Fuente: Google earth, 2018

5.2.1 Levantamiento topográfico

Se realizó un estudio preliminar con ayuda de un mapa topográfico de INETER, tomando como referencia las curvas de nivel para definir por donde podría pasar la línea del sistema, y con apoyo de un GPS/GNSS Promark 3 obteniendo las elevaciones aproximadas de la fuente y de la población a servir, con el objetivo de definir el tipo de sistema de abastecimiento, y posibles ubicaciones para el tanque de almacenamiento.

Posteriormente se levantó la información por la línea definida en el estudio anterior, utilizando una estación total Leica modelo TCR805 power y demás accesorios topográficos, empezando desde la fuente del agua con dos puntos de control (BMS) georreferenciados.

Tabla 5. 8 - Georreferenciación de puntos de control

Puntos de control	Norte (m)	Este (m)	Cota (msnm)
BM-01	1453089.828	598308.009	860.315
BM-02	1453095.281	598325.196	860.382

Fuente: Datos levantados de campo (Sistema de coordenadas WGS84; proyección UTM; zona 16)

Finalizando hasta las conexiones domiciliares donde se determinaron los niveles, longitudes y cantidad de viviendas.

Se tomó en consideración una serie de 3 puntos aproximadamente a cada 10 metros en terreno relativamente plano y a cada 5 metros en tramos con pendientes considerables. Obteniendo así una mejor descripción del terreno.

Una vez definida la línea de conducción topográfica se decide localizar la cima cercana a la población para la propuesta del tanque de almacenamiento determinándose una cota del terreno de 818.450msnm y ubicándose a una elevación de 862.085msnm donde será la obra de captación.

La longitud total del sistema es de 7861.90 mts, con 3,499.362mts para la línea de conducción y 4362.533mts para la red de distribución, con un total de 126 viviendas. El procesamiento de datos se realizó mediante software de AutoCAD Civil 3D, delimitando el trazado de la línea propuesta y con sus conexiones domiciliares existentes reflejadas en plano.

De la topografía del terreno dependerá el funcionamiento del sistema, la determinación de velocidades y presiones en los respectivos nodos, siendo esto analizado de acuerdo a los parámetros de la norma correspondiente.

5.2.2 Criterios de diseño para el sistema

5.2.2.1 Proyección de población y consumo

Para obtener el consumo de agua potable de la comunidad La Ermita, está establecido en la metodología de la norma nicaragüense para el abastecimiento rural NTON 09002-99.

5.2.2.2 Dotación

La dotación asignada para el cálculo del consumo promedio diario se obtiene del inciso 3.1 sección b, que indica que para sistemas de agua potable por medio de conexiones domiciliares, se asignara un caudal de 50 a 60 lppd.

Tomando en cuenta los factores de los que depende la dotación de agua, se trabajó con un caudal de 60 lppd.

5.2.2.3 Población a servir

De acuerdo a los estudios de población realizados en la comunidad La Ermita, se obtuvo un total de 126 viviendas que corresponden a 502 habitantes, una escuela, un centro de salud y una iglesia, para un índice habitacional de 3.98 hab. /vivienda.

5.2.2.4 Período de diseño

Se realizó el cálculo de la población futura a través del método geométrico para un horizonte de 20 años, de acuerdo a datos censales elaborados por el Instituto Nicaragüense de Estadísticas y Censos (INEC) el crecimiento anual promedio en la población para el periodo 2005-2019 es de 0.7%, por lo que se procede a utilizar el mínimo establecido por la norma NTON 09 002-99 en el inciso 2.2. Obteniendo una población de 825 personas en la comunidad para el último año.

$$Pn = Po (1+r) n$$

Donde:

Pn = Población del año "n"

Po = Población al inicio del período de diseño

r = Tasa de crecimiento en el periodo de diseño expresado en notación decimal.

n = Número de años que comprende el período de diseño.

Tabla 5. 9 - Población futura método geométrico

		PE	RIO	DO			1	TASA DE CRECIMIENTO]]]						
POB	LACI	ÓN 2	2019		502	2.00		r 2.50 %													
AÑO	2039	2038	2037	2036	2035	2034	2033	2032	2031	2030	2029	2028	2027		2026	2026	2026 2025 2024	2026 2025 2024 2023	2026 2025 2024 2023 2023	2026 2025 2024 2023 2022 2022	2026 2025 2024 2023 2022 2021 2020
IAB.	825	805	785	766	747	729	711	694	677	660	644	628	613		598	598 583	598 583 569	598 583 569 555	598 583 569 555 541	598 583 569 555 541 528	598 583 569 555 541 528 515

5.2.2.5 Factores de máximas demandas

De acuerdo a la norma NTON 09002-99 inciso 4.2 se establecen los siguientes criterios de diseño:

Demanda Máximo día será de 150% del Consumo Promedio Diario

Demanda Máxima Hora será el 250% del Consumo Promedio Diario

Pérdidas de agua corresponden al 20% del Consumo Promedio Diario.

Para el cálculo del CMD y CMH se obtienen valores de 0.92 lps y 1.66 lps, respectivamente. **Ver tabla 5.10**

Consumo máximo diario (CMD) = 1.5 CPD

Consumo máximo diario (CMD) =
$$\left(52,965 \frac{\text{lts}}{\text{día}} * 1.5\right) = 79,447.50 \frac{\text{lts}}{\text{dia}} = 0.92 \text{ lts/s}$$

Consumo máximo hora (CMH) = (2.5 * CPD) + Pérdidas

Consumo máximo hora (**CMH**) =
$$\left(52,965 \frac{lts}{día} * 2.5\right) + 10,593 \frac{lts}{día} =$$

Consumo máximo hora (CMH) =
$$143,005.50 \frac{lts}{dia} = 1.66 \text{ lts/s}$$

Tabla 5. 10 - Proyección población y consumo

Comunidad: La Ermita, Municipio: San Rafael del Norte, Departamento: Jinotega

Año	Pf	Dotación	Consumo domiciliar (CD)	Consumo institucional (7% CD)	Consumo į	oromedio dia	rio (CPD)	Pérd	Pérdidas de agua 20% Consumo máximo diario (CMD)		Consumo máximo hora (CMH)					
	Hab	(Its/hab/dia)	(Its/día)	(Its/día)	(Its/día)	(Its/min)	(Its/s)	(Its/día)	(Its/min)	(lts/s)	(Its/día)	(Its/min)	(lts/s)	(Its/día)	(Its/min)	(Its/s)
2019	502	60	30,120.00	2,108.40	32,228.40	22.38	0.37	6,445.68	4.48	0.07	48,342.60	33.57	0.56	87,016.68	60.43	1.01
2020	515	60	30,900.00	2,163.00	33,063.00	22.96	0.38	6,612.60	4.59	0.08	49,594.50	34.44	0.57	89,270.10	61.99	1.03
2021	528	60	31,680.00	2,217.60	33,897.60	23.54	0.39	6,779.52	4.71	0.08	50,846.40	35.31	0.59	91,523.52	63.56	1.06
2022	541	60	32,460.00	2,272.20	34,732.20	24.12	0.40	6,946.44	4.82	0.08	52,098.30	36.18	0.60	93,776.94	65.12	1.09
2023	555	60	33,300.00	2,331.00	35,631.00	24.74	0.41	7,126.20	4.95	0.08	53,446.50	37.12	0.62	96,203.70	66.81	1.11
2024	569	60	34,140.00	2,389.80	36,529.80	25.37	0.42	7,305.96	5.07	0.08	54,794.70	38.05	0.63	98,630.46	68.49	1.14
2025	583	60	34,980.00	2,448.60	37,428.60	25.99	0.43	7,485.72	5.20	0.09	56,142.90	38.99	0.65	101,057.22	70.18	1.17
2026	598	60	35,880.00	2,511.60	38,391.60	26.66	0.44	7,678.32	5.33	0.09	57,587.40	39.99	0.67	103,657.32	71.98	1.20
2027	613	60	36,780.00	2,574.60	39,354.60	27.33	0.46	7,870.92	5.47	0.09	59,031.90	40.99	0.68	106,257.42	73.79	1.23
2028	628	60	37,680.00	2,637.60	40,317.60	28.00	0.47	8,063.52	5.60	0.09	60,476.40	42.00	0.70	108,857.52	75.60	1.26
2029	644	60	38,640.00	2,704.80	41,344.80	28.71	0.48	8,268.96	5.74	0.10	62,017.20	43.07	0.72	111,630.96	77.52	1.29
2030	660	60	39,600.00	2,772.00	42,372.00	29.43	0.49	8,474.40	5.89	0.10	63,558.00	44.14	0.74	114,404.40	79.45	1.32
2031	677	60	40,620.00	2,843.40	43,463.40	30.18	0.50	8,692.68	6.04	0.10	65,195.10	45.27	0.75	117,351.18	81.49	1.36
2032	694	60	41,640.00	2,914.80	44,554.80	30.94	0.52	8,910.96	6.19	0.10	66,832.20	46.41	0.77	120,297.96	83.54	1.39
2033	711	60	42,660.00	2,986.20	45,646.20	31.70	0.53	9,129.24	6.34	0.11	68,469.30	47.55	0.79	123,244.74	85.59	1.43
2034	729	60	43,740.00	3,061.80	46,801.80	32.50	0.54	9,360.36	6.50	0.11	70,202.70	48.75	0.81	126,364.86	87.75	1.46
2035	747	60	44,820.00	3,137.40	47,957.40	33.30	0.56	9,591.48	6.66	0.11	71,936.10	49.96	0.83	129,484.98	89.92	1.50
2036	766	60	45,960.00	3,217.20	49,177.20	34.15	0.57	9,835.44	6.83	0.11	73,765.80	51.23	0.85	132,778.44	92.21	1.54
2037	785	60	47,100.00	3,297.00	50,397.00	35.00	0.58	10,079.40	7.00	0.12	75,595.50	52.50	0.87	136,071.90	94.49	1.57
2038	805	60	48,300.00	3,381.00	51,681.00	35.89	0.60	10,336.20	7.18	0.12	77,521.50	53.83	0.90	139,538.70	96.90	1.62
2039	825	60	49,500.00	3,465.00	52,965.00	36.78	0.61	10,593.00	7.36	0.12	79,447.50	55.17	0.92	143,005.50	99.31	1.66

5.2.3 Potencial y caudal explotable

5.2.3.1 Selección de la fuente de abastecimiento

Se realizó mediante la visita a las fuentes que actualmente alimentan al sistema, ubicadas en las propiedades de la Familia Blandón y del señor Roberto Chávez, donde se encontró que después de su respectivo aforo, la sumatoria de caudales obtenidos en ambas fuentes no supera el consumo máximo diario de la comunidad proyectado a 20 años.

Los resultados del estudio indican que el proyecto no sería viable, debido a que el periodo de años en que se podrá explotar la fuente es muy pobre, motivo por el que se procedió a investigar en la zona una fuente con mejores resultados.

En las asambleas del CAPS de la comunidad se puso a disposición otra fuente ubicada nuevamente en la propiedad del señor Roberto Chávez. La fuente de agua es de tipo subterránea representada por un manantial de tipo ladera que aflora de forma horizontal, está ubicada en las coordenadas Este: 598333.588m N: 1453134.619m, a una altura sobre el nivel medio del mar de 862.085metros.

En el punto de retención de la fuente, mediante el método de aforo volumétrico, se obtuvo un caudal de Q = 33.03 gpm. (Caudal mínimo, ver tabla.)

Tabla 5. 11 - Valores encontrados de caudales.

Q	Q	Q		
PROMEDIO	MÁXIMO	MÍNIMO		
33.76 gpm	34.73 gpm	33.02 gpm		
0.0021 m3/s	0.0022 m3/s	0.0021 m3/s		
2.13 lts/s	2.19 lts/s	2.08 lts/s		

La demanda de la población (825 habitantes) para el año 20 es de Q = 1.66 litros por segundo, equivalente a 26.31 galones por minuto. La demanda de la población equivale al 80% de la capacidad de la fuente de abastecimiento (33.02gpm), por tanto, se conservará el caudal ecológico y en relación a cantidad, el vital líquido está garantizado para el año 20.

Podemos observar que es necesario tomar medidas de protección en la cabecera del nacimiento del manantial porque al igual que muchas otras fuentes del municipio, la frontera agrícola continúa extendiéndose dejando desprotegida la zona de recarga hidráulica de estos acuíferos.

5.2.3.2 Calidad del agua

Con el objetivo de saber si el agua de la fuente seleccionada es apta para consumo se realizó una serie de estudios en el centro para la investigación en recursos acuáticos de Nicaragua (UNAN) el 19 de marzo del 2019 por el organismo Water for People. Ver anexo N° 4.

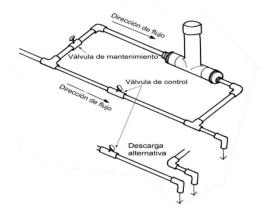
5.2.3.3 Calidad físico - químico

Los resultados obtenidos en los análisis físicos-químicos y bacteriológicos reflejaron datos satisfactorios que cumplen con los parámetros establecidos en las normas (CAPRE), por lo tanto, se estima que la fuente no requiere ningún tratamiento adicional más que desinfección preventiva de cloro.

Los valores físicos - químicos evaluados corresponde a los siguientes:

Tabla 5. 12 - Parámetros análisis de agua

Análisis de	agua				
Parámetro	Unidad de medida				
Color verdadero	UC				
Turbidez	NTU				
Temperatura	°C				
Ph	adim.				
Conductividad eléctrica	μS/cm				
Hierro total	mg/l				
Basct. Coliformes fecales	CF/100ml				


La dosificación de cloro indicada por ENACAL es de 2 mg / litro y la concentración de cloro residual que debe permanecer en los puntos más alejados de la red de distribución deberá ser de 0.2-0.5 mg / litro, por lo cual, se propone un proceso de

desinfección mediante el uso de hipoclorito de calcio a través de un clorador CTI 8.

5.2.3.4 Tratamiento químico del agua

CTI - 8 El Clorador CTI 8, es un aparato de bajo costo, que requiere mantenimiento mínimo, que puede ser reparado con materiales locales, y no requiere electricidad para su funcionamiento. Tiene la capacidad de clorar el agua erradicando micro organismos causales de enfermedades que se encuentra en la mayoría de sistemas rurales de agua potable. El CTI 8 logra desinfección cuando el agua tiene contacto con pastillas sólidas de cloro, metido en un aparato hecho de tubos de PVC.

Ilustración 4 - Clorinador, CTI, 8

5.2.4 Diseño de obra de captación

En el sitio donde se construirá la obra de captación se propone construir una represa de concreto ciclópeo.

Consideraciones generales

Deben tomarse en cuenta las propiedades físicas y mecánicas de los materiales que componen la estructura y la disposición de cargas a ser soportadas. Deberán cuantificarse propiedades tales como: densidad del agua, del concreto ciclópeo, del suelo, presión admisible del suelo y coeficiente de fricción.

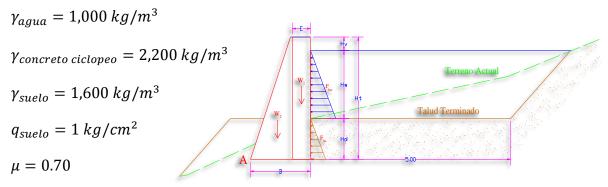


Ilustración 5 - Muro de captación.

1) Pre dimensionamiento

Previo a la revisión de las fuerzas y sus efectos en la estructura es conveniente pre dimensionar cada elemento, esto aportará a realizar menos iteraciones en el proceso de diseño.

Dimensiones propuestas

$$H_W = 1.5 \ m$$

$$H_V = 0.30 \ m$$

$$H_D = \frac{1.80 * 1/3}{2/3} = 0.90 m$$

$$H_t = 0.90 m + 1.5 m + 0.30 m = 2.70 m$$

$$E = \frac{1}{6}2.70m = 0.45 m$$
 $E_{propuesto} = 0.50 m$

Para el pre dimensionamiento de la base se utiliza tabla GT-1 (Ver Anexo N° 5).

Para cumplir con F_{sv} (Factor de seguridad contra el vuelco) se recomienda una relación:

$$\frac{B}{H_t} > 0.50$$

$$B > 2.70 m * 0.50$$

Se propone una base de 1.50 m

2) Revisión de cumplimiento de criterios

5.2.1 Revisión por volteo

Fuerzas Verticales

$$W_1 = (2,200 \ kg/m^3)(0.50 \ m)(2.70 \ m)(1.00 \ m) = 2,970 \ kg$$

$$W_2 = (2,200 \ kg/m^3)(0.5)(1.00 \ m)(2.70 \ m)(1.00 \ m) = 2,970 \ kg$$

$$W_v = 5,940 \ kg$$

Momento resistente (ref. "A")

$$M_1 = (2,970 \ kg) * \left(1.50 \ m - \frac{0.50 \ m}{2}\right) = 3,712.5 \ kg - m$$

$$M_2 = (2,970 \text{ kg}) * [1.00 \text{ m} - (1.00 \text{ m} * 1/3)] = 1,980.0 \text{ kg} - \text{m}$$

$$M_r = 5,692.5 kg - m$$

Fuerzas horizontales

$$F_{hw} = 1,000 \ kg/m^3 * \frac{1.5 \ m}{2} * (1.00 \ m * 1.5 \ m) = 1,125 \ kg$$

$$F_{hs} = 1,600 \, kg/m^3 * \frac{0.9 \, m}{2} * (1.00 \, m * 0.9 \, m) = 648 \, kg$$

$$F_h = 1,773 \ kg$$

Centros de presión (respecto a superficies correspondientes)

$$Y_{cp} = 0.75 m + \frac{\frac{1}{12} * 1.00 m * 1.5 m^{3}}{0.75 m * 1.00 m * 1.75 m} = 1.00 m$$

$$Y_{cp} = 0.45 m + \frac{\frac{1}{12} * 1.00 m * 0.9 m^{3}}{0.9 m * 1.00 m * 0.9 m} = 0.6 m$$

Momento volcante (ref. "A")

$$M_{hw} = (1.125 \, kg)[0.90 \, m + (1.5 \, m - 1.00 \, m)] = 1575 \, kg - m$$

$$M_{hs} = (648 \ kg)[(0.9 \ m - 0.6 \ m)] = 194.4 \ kg - m$$

Se deben calcular los pesos y fuerzas actuantes en estructura. tomando en cuenta efectos los que generan, luego deberán los compararse momentos actuantes У resistentes referidos а un punto 'A' cualquiera, para

nuestro caso ver

ilustración 5.

$$M_v = 1,769.4 kg - m$$

$$\frac{M_r}{M_v} = \frac{5,692.5 \ kg - m}{1,769.4 \ kg - m} = 3.22 > 2$$

La sección propuesta cumple con el criterio de volteo.

5.2.2 Revisión por deslizamiento

$$R_d = \frac{(0.7)(5,940 \, kg)}{1,773 \, kg} = 2.34 > 1.5$$

5.2.3 Revisión por tensiones en la cimentación

Momento Resultante

$$M_r = (5,692.5 \ kg - m) - (1,769.4 \ kg - m) = 3,923.10 \ kg - m$$

Localización de la resultante (excentricidad)

$$e = \frac{l}{2} - \frac{M_r}{W_v}$$

$$e = \frac{1.50m}{2} - \frac{3,923.10 \ kg - m}{5,940 kg}$$

$$e = 0.0895 m$$

La sección cumple con que la resultante de fuerza se encuentra dentro del 3/2 de la base, lo que significa que la cimentación se encuentra toda trabajando bajo compresión.

5.2.4 Comprobación del alzado como estructura de Hormigón en masa Revisión por cortante

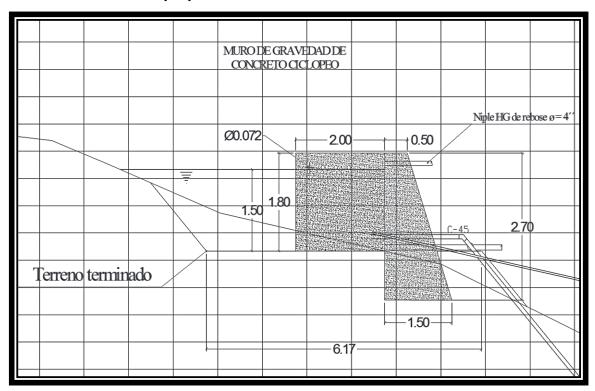
$$\frac{B}{H_t} > 0.01H_t$$

$$\frac{B}{H_t} = 0.55$$

$$0.01H_t = 0.01 * 2.7 = 0.027$$

Revisión por flexión

$$\frac{B}{H_t} > 0.14\sqrt[2]{H_t}$$


$$\frac{B}{H_t} = 0.55$$

$$0.14\sqrt[2]{H_t} = 0.14\sqrt[2]{2.7} = 0.23$$

0.55 > 0.23

LA SECCION PROPUESTA ES SATISFACTORIA

Ilustración 6 - Sección propuesta

Unidades en "m"

5.2.5 Diseño de tanque de almacenamiento

El tanque almacenamiento estará ubicado en el estacionamiento N:1452115.091m E: 595192.981m y con una elevación a nivel de terreno de 818.450 m, de acuerdo a los parámetros establecidos en la norman técnica de abastecimiento rural NTON-09002-99 capítulo 8, será proyectado con un 35% del consumo promedio diario al final del periodo de diseño, con una capacidad de 18.54 m3 se considera un tanque de concreto reforzado.

El diseño de este componente está destinado a suplir a demanda diaria de consumo de agua potable en la comunidad la Ermita.

El Diseño estructural del tanque de almacenamiento está basado en la PCA (Portland Cement Asociation), considerando criterios del Reglamento Nacional de la Construcción (RCN-07). Se utilizará una geometría cuadrada (vista en planta) y paneles rectangulares en cada lado.

Antes de proceder a calcular la estructura del tanque se proponen dimensiones que satisfacen la necesidad de albergar 19 m³ de agua.

Datos iniciales:

Ancho = 3.5 m

Largo = 3.5 m

 $h_w = 1.60 \, m$

Ilustración 7 - Tanque de almacenamiento.

 $V_{Dise\tilde{n}o} = 3.5 \, m * 3.5 \, m * 1.6 \, m = 19.60 \, m^3$

Las dimensiones propuestas sobrepasan las mínimas requeridas en cuanto a capacidad de almacenamiento y cumplen con el requisito estructural de simetría, por tanto, se trabajará con tales dimensiones.

La Normas de diseño para pequeños sistemas de acueductos rurales hace recomendación de 0.5 m de borde libre desde el nivel de agua hasta la tapa del tanque. En este caso se propone un borde libre de 0.40 m para reducir el grado de esbeltez de las paredes del tanque.

 $Borde\ Libre = 0.40\ m$

$$h_t = 2 m$$

El diseño se considera como tanque de tapa articulada y fondo empotrado.

Las dimensiones propuestas cumplen los requerimientos del Reglamento Nacional de la Construcción (RNC-07) respecto a condiciones de estabilidad y regularidad estructural según Arto 21 inciso 2 y 3.

Relación base / altura de la pared.

$$\frac{b}{h} = \frac{3.50 \ m}{2 \ m} = 1.75$$

A continuación, se definen la fluencia del acero, fatiga del concreto y cuantía mínima de acero.

$$f_y = 2800 \ kg/cm^2$$

$$F'_{c} = 210 \ kg/cm^{2}$$

$$\rho_{minima}=0.0025$$

$$I.d = 0.9d$$

Las paredes del tanque se analizarán conforme al Caso 4 de la PCA (ver Anexo N° 6). El comportamiento de la losa será empotrado en el fondo y articulada en el borde.

$$t_{min} = 4^{\circ} \cong 10 \ cm$$

$$t_{propuesto} = 18 cm$$

Cálculo paredes del tanque

$$M = Coeficiente * \frac{q * a^2}{1000}$$

a = Altura de nivel del agua

$$q = (1,000kg/m^3) * (2.00 m) = 2,000 kg/m^2$$

Según PCA Pagina 2-26

Coeficiente
$$M_X = -59$$
 Para $\frac{b}{a} = 1.75$ bot $\Lambda 0.5b$

Coeficiente
$$M_y = -36$$
 Para $\frac{b}{a} = 1.75$ 0.5a Λ End

$$M_X = \frac{-59}{1000} * 2,000 \, kg/m^2 * (2.00 \, m)^2 = -472 \, kg - m$$

$$M_y = \frac{-36}{1000} * 2,000 \, kg/m^2 * (2.00 \, m)^2 = -288 \, kg - m$$

$$M_{ux} = (472 kg - m) * (1.3 m) * (1.7 m) = 1043.12 kg - m$$

$$M_{uy} = (288 kg - m) * (1.3 m) * (1.7 m) = 636.48 kg - m$$

Se propone un peralte efectivo de 3", al centro exactamente, para facilitar el encofrado.

$$A_s = \frac{M_u}{0.9d * f_y * \phi}$$

$$A_{sx} = \frac{1043.12 \ kg - m * 100 \ cm/m}{(0.9 * 9.00 \ cm) * 2800 \ kg/cm^2 * 0.90} = 5.11 \ cm^2$$

$$A_{sy} = \frac{636.48 \ kg - m * 100 \ cm/m}{(0.9 * 9.00 \ cm) * 2800 \ kg/cm^2 * 0.90} = 3.12 \ cm^2$$

$$A_{s \ minima} = \rho_{minima} * b * t$$

$$A_{s \ minima} = 0.0025 * 100 \ cm * 15 \ cm = 3.75 \ cm^2/m$$

El acero requerido es menor que el permisible para el momento alrededor del eje Y, por tanto se usara el $A_{s\,minimo}$

Separación del Acero.

$$A_{sy} = 3.75 cm^2/m$$
 Varilla #3 $A_s = 0.71 cm^2$

$$S = \frac{A_V * b}{A_s}$$

$$S_y = \frac{0.71 \ cm^2 * 100 \ cm}{3.75 \ cm^2} = 18.9 \ cm$$

Acero en dirección Y: #3 @ 18 cm

$$S_x = \frac{0.71 \ cm^2 * 100 \ cm}{5.12 \ cm^2} = 13.8 \ cm$$

Acero en dirección X: Usar varilla #3 @ 13 cm

Para el control del agrietamiento se utilizará acero Sy = 0.15 m

Cálculo de losa de techo

La losa se diseñará de acuerdo con el caso 10 de la PCA (ver anexo N°6). Según el control de deflexiones ACI-318-95 en la tabla 9.5, el espesor mínimo para la losa es 11.66 cm, se propone 15 cm.

Carga viva

$$W_v = 100 \ kg/m^2$$

Carga muerta

Se consideran 240lts de cloro

$$W_{propio} = 2400 \ kg/m^3 * 0.15 \ m = 360 \ kg/m^2$$

$$W_{cloro} = \frac{1000 \ kg/m^3 * 0.240 \ m^3}{3.8 \ m * 3.8 \ m} = 16.62 \ kg/m^2$$

La PCA recomienda los factores de carga utilizados.

Carga última

$$W_u = 1.3[1.4(376.62 \ kg/m^2) + 1.7(100 \ kg/m^2)] = 906.45 \ kg/m^2$$

$$\frac{b}{a} = \frac{3.80 \ m}{3.80 \ m} = 1$$

Tabla 5. 13 - Coeficientes de momentos de la PCA

MX	End	0.1b	0.2b	0.3b	0.4b	0.5b
IVIA	Eliu	0.9b	0.8b	0.7b	0.6b	0.50
Тор	0	0	0	0	0	0
0.9a	0	8	13	17	19	20
0.8a	0	12	21	27	31	32
0.7a	0	14	25	33	38	39
0.6a	0	15	27	36	41	43
0.5a	0	15	28	37	42	44
0.4a	0	15	27	36	41	43
0.3a	0	14	25	33	38	39
0.2a	0	12	21	27	31	32
0.1a	0	8	13	17	19	20
Bot	0	0	0	0	0	0

MY	End	0.1b	0.2b	0.3b	0.4b	0.5b	
IVIT	EIIU	0.9b	0.8b	0.7b	0.6b	0.50	
Тор	0	0	0	0	0	0	
0.9a	0	8	12	14	15	15	
0.8a	0	13	21	25	27	28	
0.7a	0	17	27	33	36	37	
0.6a	0	19	31	38	41	42	
0.5a	0	20	32	39	43	44	
0.4a	0	19	31	38	41	42	
0.3a	0	17	27	33	36	37	
0.2a	0	13	21	25	27	28	
0.1a	0	8	12	14	15	15	
Bot	0	0	0	0	0	0	

MXY	End	0.1b	0.2b	0.3b	0.4b	0.5b	
IVIAT	Ellu	0.9b	0.8b	0.7b	0.6b	0.50	
Тор	37	34	27	19	10	0	
0.9a	34	31	25	18	9	0	
0.8a	27	25	21	15	8	0	
0.7a	19	18	15	10	5	0	
0.6a	10	9	8	5	3	0	
0.5a	0	0	0	0	0	0	
0.4a	10	9	8	5	3	0	
0.3a	19	18	15	10	5	0	
0.2a	27	25	21	15	8	0	
0.1a	34	31	25	18	9	0	
Bot	37	34	27	19	10	0	

Coeficientes para momentos positivos

MTX	End	0.1b	0.2b	0.3b	0.4b	0.5b	
IVITA	EIIU	0.9b	0.8b	0.7b	0.6b	0.50	
Тор	37	34	27	19	10	0	
0.9a	34	39	38	35	28	20	
0.8a	27	37	42	42	39	32	
0.7a	19	32	40	43	43	39	
0.6a	10	24	35	41	44	43	
0.5a	0	15	28	37	42	44	
0.4a	10	24	35	41	44	43	
0.3a	19	32	40	43	43	39	
0.2a	27	37	42	42	39	32	
0.1a	34	39	38	35	28	20	
Bot	37	34	27	19	10	0	

NATV	End	0.1b	0.2b	0.3b	0.4b	0.5b	
MTY	EIIU	0.9b	0.8b	0.7b	0.6b	0.50	
Тор	37	34	27	19	10	0	
0.9a	34	39	37	32	24	15	
0.8a	27	38	42	40	35	28	
0.7a	19	35	42	43	41	37	
0.6a	10	28	39	43	44	42	
0.5a	0	20	32	39	43	44	
0.4a	10	28	39	43	44	42	
0.3a	19	35	42	43	41	37	
0.2a	27	38	42	40	35	28	
0.1a	34	39	37	32	24	15	
Bot	37	34	27	19	10	0	

Coeficientes para momentos negativos

NATV	Food	0.1b	0.2b	0.3b	0.4b	0.5b
MTX	End	0.9b	0.8b	0.7b	0.6b	0.50
Тор	-37	-34	-27	-19	-10	0
0.9a	-34	-23	-12	-1	10	20
0.8a	-27	-13	0	12	23	32
0.7a	-19	-4	10	23	33	39
0.6a	-10	6	19	31	38	43
0.5a	0	15	28	37	42	44
0.4a	-10	6	19	31	38	43
0.3a	-19	-4	10	23	33	39
0.2a	-27	-13	0	12	23	32
0.1a	-34	-23	-12	-1	10	20
Bot	-37	-34	-27	-19	-10	0

MTY	End	0.1b	0.2b	0.3b	0.4b	0.5b
IVI I Y	Ena	0.9b	0.8b	0.7b	0.6b	0.50
Тор	-37	-34	-27	-19	-10	0
0.9a	-34	-23	-13	-4	6	15
0.8a	-27	-12	0	10	19	28
0.7a	-19	-1	12	23	31	37
0.6a	-10	10	23	33	38	42
0.5a	0	20	32	39	43	44
0.4a	-10	10	23	33	38	42
0.3a	-19	-1	12	23	31	37
0.2a	-27	-12	0	10	19	28
0.1a	-34	-23	-13	-4	6	15
Bot	-37	-34	-27	-19	-10	0

$$M = C_{TX} * \frac{q * a^2}{1000}$$

Para momentos positivos centro de la losa

 $C_{TX} Maximo = 44$

$$M_{TX} = 44 * \frac{906.45 \ kg/m^2 * (3.8 \ m)^2}{1000} = 575.922 \ kg - m$$

d = 9 cm

$$A_{sx} = \frac{575.922 \ kg - m * 100 \ cm/m}{(0.9 * 9.00 \ cm) * 2800 \ kg/cm^2 * 0.90} = 2.81 \ cm^2$$

El acero requerido es menor que el permisible para el momento alrededor del eje X. Se usará As mínimo.

$$S_{TX} = \frac{0.71 \ cm^2 * 100 \ cm}{3.75 \ cm^2} = 18.9 \ cm$$

Acero en dirección Y: Usar varilla #3 @ 18 cm

Para momentos negativos cerca de los bordes

$$C_{TX} Maximo = 37$$

$$M_{TX} = 37 * \frac{819.08 \, kg/m^2 * (3.8 \, m)^2}{1000} = 437.57 kg - m$$

$$d = 9cm$$

$$A_{sx} = \frac{437.57 \ kg - m * 100 \ cm/m}{(0.9 * 9.00 \ cm) * 2800 \ kg/cm^2 * 0.90} = 2.14 \ cm^2$$

El acero requerido es menor que el permisible para el momento alrededor del eje TX. Se usara As mínimo.

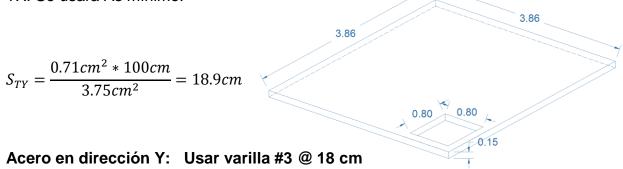


Ilustración 8 - Losa Superior.

Cortante

$$V_u = C_s * W_u * a$$
 $W_u = [1.4(328.62 \ kg/m^2) + 1.7(100 \ kg/m^2)] * 1m = 630.08 \ kg$
 $C_s = 0.34$
 $V_u = 0.34 * 630.068 \ kg * 3.80 = 814.04 \ kg$
 $\emptyset V_n = 5,904.21 \ kg$
 $\emptyset V_n > V_u$

Se colocará una varilla adicional en las proximidades del acceso, a 3.5 cm máx.

5.2.6 Análisis hidráulico

5.2.6.1 Línea de conducción

La línea de conducción propuesta para este diseño, se extenderá desde la obra de captación hasta el tanque de almacenamiento con una longitud 3,499.36 mts, para determinar el diámetro de la tubería se utilizó la fórmula de Hazen - Williams, dando resultados por debajo del diámetro mínimo establecido en la norma NTON 009 003-99 y con presiones relativamente bajas en algunos puntos de la línea, para lograr equilibrar el sistema se propone cambiar los diámetros obtenidos por un diámetro de 3" en tubería PVC cedula 26 para proporcionar la presión adecuada y así vencer los obstáculos en puntos críticos del trazado y la inclusión de una pila reguladora de presión para disminuir la carga estática en las partes más bajas del sistema.

La presión máxima es de **84.78 MCA** equivalente a 120.036 Psi se encuentra por encima de la norma, sin embargo, de acuerdo a las especificaciones técnicas de tubería PVC ASTM D 2241, la tubería cedula 26 tiene presión nominal de 160 Psi.

La presión mínima es de **8.71 MCA** en el último nodo (DEP1) de la línea de conducción.

La velocidad mínima aceptada por la Norma que aplica INAA es de 0.4 m/s para evitar sedimentación en la tubería, en este caso no se cumple con esta especificación, debido a que si se utilizan diámetros menores a los propuestos esto generaría grandes pérdidas y presiones negativas lo que significa que el agua no llegaría al depósito. Pero a fin de garantizar el suministro y la calidad adecuada del agua se dotará al sistema con los accesorios necesarios para lograrlo.

El caudal de diseño para este sistema está dado por el consumo máximo día (CMD) al final del periodo de diseño con un resultado de 0.92 lit. /seg. (Ver tabla 5.14.).

Ecuaciones generales aplicadas

Ecuación 1 - DIÁMETRO CALCULADO

$$D = \left(\frac{10.349 * Q^{1.85}}{C^{1.85} * S}\right) * 0.2053$$

Ecuación 2 - VELOCIDAD CALCULADA

$$V = \frac{Q}{A}$$

Ecuación 3 - PÉRDIDA DE CARGA

$$S = \left(\frac{10.349 * Q^{1.85}}{C^{1.85} * D^{4.87}}\right)$$

Ecuación 4 – ALTURA PIEZOMÉTRICA

ALTURA PIEZOMÉTRICA = COTA DE NIVEL INICIAL — PÉRDIDA DE CARGA (S)

Ecuación 5 - CARGA ESTÁTICA

PRESIÓN = ALTURA PIEZOMÉTRICA - COTA INICIAL

Dónde:

D: Diámetro (m)

A: Área de sección de tubería (m2)

Q: Caudal (m3/s)

V: Velocidad del fluido (m/seg)

S: Pérdida de carga (m/m)

C: Coeficiente de Hazen - Williams

Tabla 5. 14 - Diseño de la línea de conducción

DATOS DE CÁLCULO

CAUDAL MÁXIMO DIARIO:	0.92 Lit./seg	Long. Total del tramo:	3499.36 m	
COEFICIENTE C:	150			

Se realizará un análisis general de toda la línea (tramo por tramo), para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen - Williams, presentados en el siguiente cuadro:

TRA	. 1	- COTA -	LONG. DE TUBERIA	PENDIENTE	CAUDAL	DIÁMETRO CALCULADO	DIÁMETRO ADOPTADO	VELOCIDAD CALCULADA	VELOCIDAD REAL	PÉRDIDA DE CARGA	ALTURA PIEZOMÉTR. - COTA -	PRESIÓN	OBS.
Inicio	Final	(m.s.n.m.)	(m)	(m/m)	(m³/Seg.)	(mm)	(mm)	ightarrow (m/Seg.)	ightarrow (m/Seg.)	(m/m)	(m.s.n.m.)	(m) ↑	
EMB		862.09	0.00		0.001						862.09		
EMB	C2	860.01	8.83	0.236	0.001	22.87	75	2.24	0.21	0.006	862.08	2.07	
C2	C3	857.01	14.56	0.206	0.001	23.51	75	2.12	0.21	0.010	862.07	5.06	
C3	C4	845.07	34.13	0.350	0.001	21.09	75	2.63	0.21	0.024	862.04	16.97	
C4	C5	839.28	33.26	0.174	0.001	24.33	75	1.98	0.21	0.024	862.02	22.74	
C5	C6	829.56	46.77		0.001	23.46	75	2.13	0.21	0.033	829.56	32.43	CRP
C6	C7	806.66	61.75		0.001	20.83	75	2.70	0.21	0.044	829.51	22.86	
C7	C8	803.75	56.41	0.052	0.001	31.23	75	1.20	0.21	0.040	829.47	25.73	
C8	C9	808.96	38.58		0.001	25.63	75	1.78	0.21	0.028	829.45	20.49	
C9	C10	810.95	44.27	0.045	0.001	32.12	75	1.14	0.21	0.032	829.42	18.47	
C10	C11	814.27	34.99		0.001	27.57	75	1.54	0.21	0.025	829.39	15.12	
C11	C12	812.70	53.85		0.001	35.13	75	0.95	0.21	0.038	829.35	16.65	
C12	C13	811.24	21.72	0.067	0.001	29.60	75	1.34	0.21	0.016	829.34	18.09	
C13	C14	811.98	38.25		0.001	38.23	75	0.80	0.21	0.027	829.31	17.33	
C14	C15	809.01	42.89	0.069	0.001	29.40	75	1.35	0.21	0.031	829.28	20.27	
C15	C16	804.99	28.65		0.001	25.43	75	1.81	0.21	0.020	829.26	24.27	
C16	C17	798.03	24.13		0.001	21.94	75	2.43	0.21	0.017	829.24	31.22	
C17	C18	798.92	23.44		0.001	33.26	75	1.06	0.21	0.017	829.22	30.31	
C18	C19	798.29	25.14		0.001	36.30	75	0.89	0.21	0.018	829.21	30.91	
C19	C20	797.43	27.03	0.032	0.001	34.49	75	0.98	0.21	0.019	829.19	31.76	

DATOS DE CALCULO

CAUDAL MÁXIMO DIARIO:	0.92 Lit./seg	Long. Total del tramo:	3499.36 m	
COEFICIENTE C:	150			

Se realizará un análisis general de toda la línea (tramo por tramo), para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen - Williams, presentados en el siguiente cuadro:

	MO	- COTA -	LONG. DE TUBERIA	PENDIENTE	CAUDAL	DIÁMETRO CALCULADO	DIÁMETRO ADOPTADO	VELOCIDAD CALCULADA	VELOCIDAD REAL	PÉRDIDA DE CARGA	ALTURA PIEZOMÉTR. - COTA -	PRESIÓN	OBS.
Inicio	Final	(m.s.n.m.)	(m)	(m/m)	(m³/Seg.)	(mm)	(mm)	ightarrow (m/Seg.)	→ (m/Seg.)	(m/m)	(m.s.n.m.)	(m) ↑	
C20	C21	799.44	25.28	0.080	0.001	28.58	75	1.43	0.21	0.018	829.17	29.73	
C21	C22	797.64	22.78	0.079	0.001	28.61	75	1.43	0.21	0.016	829.15	31.51	
C22	C23	800.00	23.57	0.100	0.001	27.26	75	1.58	0.21	0.017	829.14	29.14	
C23	C24	802.31	20.84	0.111	0.001	26.69	75	1.64	0.21	0.015	829.12	26.81	
C24	C25	799.02	38.48	0.086	0.001	28.15	75	1.48	0.21	0.028	829.09	30.07	
C25	C26	799.72	25.12	0.028	0.001	35.41	75	0.93	0.21	0.018	829.08	29.35	
C26	C27	799.61	23.97	0.004	0.001	51.62	75	0.44	0.21	0.017	829.06	29.44	
C27	C28	797.77	32.29	0.057	0.001	30.58	75	1.25	0.21	0.023	829.03	31.27	
C28	C29	797.97	30.89	0.006	0.001	47.98	75	0.51	0.21	0.022	829.01	31.05	
C29	C30	794.18	31.10	0.122	0.001	26.19	75	1.71	0.21	0.022	828.99	34.81	
C30	C31	789.49	33.88	0.139	0.001	25.50	75	1.80	0.21	0.024	828.97	39.48	
C31	C32	791.15	27.71	0.060	0.001	30.29	75	1.28	0.21	0.020	828.95	37.80	
C32	C33	789.48	36.05	0.046	0.001	31.94	75	1.15	0.21	0.026	828.92	39.44	
C33	C34	791.15	31.90	0.052	0.001	31.14	75	1.21	0.21	0.023	828.90	37.75	
C34	C35	794.13	66.18	0.045	0.001	32.12	75	1.13	0.21	0.047	828.85	34.72	
C35	C36	793.12	48.04	0.021	0.001	37.54	75	0.83	0.21	0.034	828.82	35.70	
C36	C37	796.23	36.25	0.086	0.001	28.13	75	1.48	0.21	0.026	828.79	32.56	
C37	C38	806.92	79.19	0.135	0.001	25.64	75	1.78	0.21	0.057	828.73	21.82	
C38	C39	810.61	61.91	0.060	0.001	30.31	75	1.27	0.21	0.044	828.69	18.08	
C39	C40	809.15	38.79	0.038	0.001	33.29	75	1.06	0.21	0.028	828.66	19.52	

DATOS DE CALCULO

CAUDAL MÁXIMO DIARIO:	0.92 Lit./seg	Long. Total del tramo:	3499.36 m	
COEFICIENTE C:	150			

Se realizará un análisis general de toda la línea (tramo por tramo), para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen - Williams, presentados en el siguiente cuadro:

TRA		- COTA -	LONG. DE TUBERIA	PENDIENTE	CAUDAL	DIÁMETRO CALCULADO	DIÁMETRO ADOPTADO	VELOCIDAD CALCULADA	VELOCIDAD REAL	PÉRDIDA DE CARGA	ALTURA PIEZOMÉTR. - COTA -	PRESIÓN	OBS.
Inicio	Final	(m.s.n.m.)	(m)	(m/m)	(m³/Seg.)	(mm)	(mm)	ightarrow (m/Seg.)	\rightarrow (m/Seg.)	(m/m)	(m.s.n.m.)	(m) ↑	
C40	C41	806.20	30.36	0.097	0.001	27.44	75	1.55	0.21	0.022	828.64	22.44	
C41	C42	804.35	22.35	0.083	0.001	28.33	75	1.46	0.21	0.016	828.62	24.28	
C42	C43	802.49	47.20	0.039	0.001	33.04	75	1.07	0.21	0.034	828.59	26.10	
C43	C44	796.94	32.00	0.174	0.001	24.35	75	1.98	0.21	0.023	828.57	31.63	
C44	C45	779.95	84.60	0.201	0.001	23.63	75	2.10	0.21	0.060	828.51	48.56	
C45	C46	773.09	50.77	0.135	0.001	25.63	75	1.78	0.21	0.036	828.47	55.38	
C46	C47	773.86	42.70	0.018	0.001	38.78	75	0.78	0.21	0.031	828.44	54.58	
C47	C48	774.87	68.07	0.015	0.001	40.32	75	0.72	0.21	0.049	828.39	53.52	
C48	C49	772.96	56.22	0.034	0.001	34.04	75	1.01	0.21	0.040	828.35	55.39	
C49	C50	771.01	31.37	0.062	0.001	30.07	75	1.29	0.21	0.022	828.33	57.32	
C50	C51	767.54	63.96	0.054	0.001	30.90	75	1.23	0.21	0.046	828.28	60.75	
C51	C52	766.40	35.63	0.032	0.001	34.51	75	0.98	0.21	0.025	828.26	61.85	
C52	C53	762.21	52.36	0.080	0.001	28.54	75	1.44	0.21	0.037	828.22	66.01	
C53	C54	759.74	40.79	0.061	0.001	30.22	75	1.28	0.21	0.029	828.19	68.46	
C54	C55	756.10	43.92	0.083	0.001	28.35	75	1.46	0.21	0.031	828.16	72.06	
C55	C56	748.90	73.31	0.098	0.001	27.37	75	1.56	0.21	0.052	828.11	79.21	
C56	C57	745.69	59.87	0.054	0.001	30.99	75	1.22	0.21	0.043	828.06	82.37	
C57	C58	743.25	57.81	0.042	0.001	32.53	75	1.11	0.21	0.041	828.02	84.78	
C58	C59	752.77	65.53	0.145	0.001	25.25	75	1.84	0.21	0.047	827.98	75.20	
C59	C60	761.70	66.80	0.134	0.001	25.69	75	1.77	0.21	0.048	827.93	66.22	
C60	C61	764.00	38.06	0.060	0.001	30.25	75	1.28	0.21	0.027	827.90	63.90	
C61	C62	768.12	63.74	0.065	0.001	29.82	75	1.32	0.21	0.046	827.86	59.73	

		DAT	OS DE CALCULO	
CAUDAL MÁXIMO DIARIO:	0.92 Lit./seg	Long. Total del tramo:	3499.36 m	
COFFICIENTE C:	150			,

Se realizará un análisis general de toda la línea (tramo por tramo), para de esta forma poder verificar las presiones existentes en cada punto, de acuerdo a los criterios establecidos por Hazen - Williams, presentados en el siguiente cuadro:

TRA	MO	- COTA -	LONG. DE TUBERIA	PENDIENTE	CAUDAL	DIÁMETRO CALCULADO	DIÁMETRO ADOPTADO	VELOCIDAD CALCULADA	VELOCIDAD REAL	PÉRDIDA DE CARGA	ALTURA PIEZOMÉTR. - COTA -	PRESIÓN	OBS.
Inicio	Final	(m.s.n.m.)	(m)	(m/m)	(m³/Seg.)	(mm)	(mm)	ightarrow (m/Seg.)	→ (m/Seg.)	(m/m)	(m.s.n.m.)	(m) ↑	
C62	C63	770.64	57.33	0.044	0.001	32.29	75	1.12	0.21	0.041	827.82	57.18	
C63	C64	772.11	71.00	0.021	0.001	37.66	75	0.83	0.21	0.051	827.76	55.66	
C64	C65	773.30	64.36	0.018	0.001	38.57	75	0.79	0.21	0.046	827.72	54.42	
C65	C66	776.17	73.30	0.039	0.001	33.05	75	1.07	0.21	0.052	827.67	51.50	
C66	C67	783.44	64.38	0.113	0.001	26.59	75	1.66	0.21	0.046	827.62	44.18	
C67	C68	791.41	78.48	0.101	0.001	27.18	75	1.58	0.21	0.056	827.56	36.16	
C68	C69	797.49	65.82	0.092	0.001	27.71	75	1.52	0.21	0.047	827.52	30.03	
C69	C70	800.19	58.98	0.046	0.001	32.00	75	1.14	0.21	0.042	827.47	27.28	
C70	C71	803.80	83.17	0.043	0.001	32.36	75	1.12	0.21	0.059	827.42	23.61	
C71	C72	805.33	63.54	0.024	0.001	36.54	75	0.88	0.21	0.045	827.37	22.04	
C72	C73	804.70	78.28	0.008	0.001	45.74	75	0.56	0.21	0.056	827.31	22.62	
C73	C74	803.58	66.60	0.017	0.001	39.34	75	0.76	0.21	0.048	827.27	23.69	
C74	C75	803.01	86.58	0.007	0.001	47.70	75	0.51	0.21	0.062	827.20	24.19	
C75	DEP1	818.45	67.27	0.229	0.001	22.99	75	2.21	0.21	0.048	827.16	8.71	

Pérdida de carga en el tramo 2.50 m

Para garantizar eficiencia de trabajo en la línea de conducción se instalarán válvulas para liberación de aire de H°F° en los puntos altos de la línea y válvulas de limpieza en los puntos bajos, como se detallan a continuación.

Tabla 5. 15 - Válvulas para la línea de conducción

Válvulas de limpieza	Válvulas de aire
Cantidad	Cantidad
2	3

5.2.6.1.1 Análisis hidráulico de la línea de conducción (Presiones y Velocidades)

Fuente: Resultados simulación hidráulica EPANET

5.2.6.1.2 Golpe de ariete

Cálculo de celeridad

Considerando una línea de conducción de PVC SDR-26 de 3" (75mm), el espesor de la pared del tubo (e) 3.43mm y la relación entre el módulo de elasticidad del agua y del material de la tubería (k) siendo de plástico de acuerdo a la tabla 4.3 es de 18.

La celeridad de la onda es:

$$C = \frac{9900}{\sqrt{48.3 + k \frac{D}{e}}} = \frac{9900}{\sqrt{48.3 + 18 * \left(\frac{75 \text{ mm}}{3.43 \text{ mm}}\right)}} = 470.96 \text{ m/s}$$

Cálculo del tiempo de cierre

La fase de la tubería es:

$$T = \frac{2L}{c} = \frac{2(3,499.36m)}{467.64m/s} = 14.97 s$$

Cálculo de la sobrepresión

La sobrepresión máxima es:

$$ha = \frac{CV}{g}$$

ha =
$$\frac{467.64 \text{m/s} * 0.21 \text{m/s}}{9.81 \text{m/s}^2}$$
 = **10.01** *m*

Presión máxima

La presión máxima ejercida en las paredes de la tubería está dada por la sumatoria de la presión estática y la sobrepresión ocasionada por el golpe de ariete.

Presión $m \dot{a} x = \text{Presión estática} + \text{Sobrepresión} \rightarrow P_{m \dot{a} x} < P_{tubería}$

Presión
$$máx = (862.09m - 818.45m) + 10.01m = 53.65m < 122m → Ok$$

Considerando que la presión de servicio por la tubería PVC cédula SDR-26 es aproximadamente 112 m.c.a, se concluye que es factible el usar esta denominación de tubería en la línea de conducción.

5.2.6.2 Red distribución

Según la configuración geográfica de la localidad, el sistema de distribución se realizará por ramales abiertos con una longitud de 4,362.533 mts, se realizó la determinación de los caudales y elevaciones nodales, longitudes, diámetros y rugosidad de Hazen - Williams para las tuberías.

Con los datos obtenidos se procedió a la simulación del modelo hidráulico con apoyo del software EPANET, de tal manera que se precisen las características hidráulicas de la red en las condiciones de trabajo.

Para la modelación del sistema se encuentra compuesta 106 nodos, el alto nivel de sinuosidad de las calles y las altas pendientes en algunos sectores, hizo necesario la colocación de nodos ocasionalmente cercanos, para llevar un mejor control de las características de interés (presiones y velocidades).

Este sistema se diseñó para la condición del consumo máxima hora (CMH) al final del periodo de diseño, tal y como lo indica la norma NTON 09002-99 en el inciso 7.3, el cual para este sistema se obtuvo un resultado de **1.66 Lt /seg.**

5.2.6.2.1 Distribución de caudales nodales

El procedimiento utilizado para la determinación de los caudales nodales del sistema fue el método de la longitud unitaria.

Fórmula

$$Qi = (q.Li)$$

$$q = \left(\frac{Qmh}{Lt}\right)$$

Donde:

q= Caudal unitario por metro lineal de tubería (lps/m)

Qi= Caudal en el tramo de la tubería (lps)

Qmh= Caudal máximo horario o consumo máximo horario (l/s)

Lt= Longitud total de tuberías en el sistema (m)

Li= Longitud tributaria del tramo (m)

Los caudales en cada uno de los nudos resulto de la multiplicación del caudal unitario por la longitud que está tributando cada uno de los nudos esto corresponde a la demanda base. Fuente: Guía para el diseño de redes de distribución en sistemas rurales de abastecimiento de agua.

La siguiente tabla muestra la distribución de caudales unitarios en cada nodo:

Tabla 5. 16 - Cálculo de caudales nodales de la línea de distribución

		Cálculo de caud	dales nodales - N	létodo de longitud u	nitaria	
TRA	MO	Long tributaria	q unitario	Qi nudo	Nudo	Cota
DE	Α	(m)	(lps/ml)	(lps)	Nuuo	(m.s.n.m)
DEP1	1	2.45 m	0.0004	0.001 Lit./seg.	1	818.21
1	2	36.04 m	0.0004	0.014 Lit./seg.	2	802.87
2	3	82.94 m	0.0004	0.031 Lit./seg.	3	794.94
3	4	81.34 m	0.0004	0.031 Lit./seg.	4	787.16
4	5	59.97 m	0.0004	0.023 Lit./seg.	5	784.60
5	6	54.09 m	0.0004	0.021 Lit./seg.	6	782.38
6	7	43.52 m	0.0004	0.017 Lit./seg.	7	780.51
7	8	41.55 m	0.0004	0.016 Lit./seg.	8	778.88
8	9	69.01 m	0.0004	0.026 Lit./seg.	9	776.47
9	10	65.45 m	0.0004	0.025 Lit./seg.	10	772.48
10	11	18.80 m	0.0004	0.007 Lit./seg.	11	770.41
11	12	47.40 m	0.0004	0.018 Lit./seg.	12	764.86
12	13	10.29 m	0.0004	0.004 Lit./seg.	13	766.72
13	14	23.77 m	0.0004	0.009 Lit./seg.	14	768.22
12	15	42.22 m	0.0004	0.016 Lit./seg.	15	759.75
15	16	64.54 m	0.0004	0.024 Lit./seg.	16	755.27
16	17	8.25 m	0.0004	0.003 Lit./seg.	17	755.17
17	18	18.04 m	0.0004	0.007 Lit./seg.	18	755.73
16	19	32.35 m	0.0004	0.012 Lit./seg.	19	752.82
19	20	45.87 m	0.0004	0.017 Lit./seg.	20	750.75
20	21	18.22 m	0.0004	0.007 Lit./seg.	21	750.16
21	22	24.63 m	0.0004	0.009 Lit./seg.	22	752.49
22	23	85.51 m	0.0004	0.032 Lit./seg.	23	763.22

	Cálculo de caudales nodales - Método de longitud unitaria											
TRAI	MO	Long tributaria	q unitario	Qi nudo								
DE	Α	(m)	(lps/ml)	(lps)	Nudo	Cota (m.s.n.m)						
21	24	27.51 m	0.0004	0.010 Lit./seg.	24	749.34						
24	25	30.08 m	0.0004	0.011 Lit./seg.	25	748.79						
25	26	31.59 m	0.0004	0.012 Lit./seg.	26	748.56						
26	27	73.13 m	0.0004	0.028 Lit./seg.	27	744.52						
27	28	71.16 m	0.0004	0.027 Lit./seg.	28	740.35						
28	29	23.66 m	0.0004	0.009 Lit./seg.	29	748.87						
29	30	80.16 m	0.0004	0.030 Lit./seg.	30	743.22						
30	31	70.81 m	0.0004	0.027 Lit./seg.	31	738.51						
31	32	87.29 m	0.0004	0.033 Lit./seg.	32	732.24						
26	33	74.96 m	0.0004	0.028 Lit./seg.	33	743.60						
33	34	68.93 m	0.0004	0.026 Lit./seg.	34	737.81						
34	35	47.47 m	0.0004	0.018 Lit./seg.	35	730.85						
35	36	23.16 m	0.0004	0.009 Lit./seg.	36	726.89						
36	37	32.86 m	0.0004	0.012 Lit./seg.	37	721.38						
37	38	42.24 m	0.0004	0.016 Lit./seg.	38	714.46						
38	39	17.38 m	0.0004	0.007 Lit./seg.	39	713.13						
39	40	16.31 m	0.0004	0.006 Lit./seg.	40	711.76						
40	41	15.42 m	0.0004	0.006 Lit./seg.	41	713.54						
41	42	19.70 m	0.0004	0.007 Lit./seg.	42	714.50						
40	43	29.85 m	0.0004	0.011 Lit./seg.	43	708.51						
43	44	19.79 m	0.0004	0.008 Lit./seg.	44	705.39						
44	45	27.30 m	0.0004	0.010 Lit./seg.	45	701.84						
45	46	25.85 m	0.0004	0.010 Lit./seg.	46	699.18						
46	47	16.72 m	0.0004	0.006 Lit./seg.	47	698.32						
47	48	83.58 m	0.0004	0.032 Lit./seg.	48	695.46						
1	49	68.89 m	0.0004	0.026 Lit./seg.	49	815.07						
49	50	61.25 m	0.0004	0.023 Lit./seg.	50	811.86						
50	51	83.89 m	0.0004	0.032 Lit./seg.	51	801.81						
51	52	67.99 m	0.0004	0.026 Lit./seg.	52	795.11						
52	53	56.08 m	0.0004	0.021 Lit./seg.	53	791.62						
53	54	84.40 m	0.0004	0.032 Lit./seg.	54	790.16						
54	55	81.94 m	0.0004	0.031 Lit./seg.	55	788.10						
55	56	42.35 m	0.0004	0.016 Lit./seg.	56	787.09						
56	57	15.53 m	0.0004	0.006 Lit./seg.	57	786.62						
57	58	31.35 m	0.0004	0.012 Lit./seg.	58	786.28						
58	59	27.61 m	0.0004	0.010 Lit./seg.	59	786.40						
59	60	24.42 m	0.0004	0.009 Lit./seg.	60	786.06						
60	61	42.60 m	0.0004	0.016 Lit./seg.	61	785.82						
61	62	72.00 m	0.0004	0.027 Lit./seg.	62	779.62						
62	63	32.68 m	0.0004	0.012 Lit./seg.	63	778.32						
63	64	36.36 m	0.0004	0.014 Lit./seg.	64	776.79						
64	65	169.83 m	0.0004	0.064 Lit./seg.	65	775.44						

		Cálculo de cau	dales nodales	- Método de longitud u	ınitaria	
TR/	AMO	Long tributaria	q unitario	Qi nudo		Cota
DE	Α	(m)	(lps/ml)	(lps)	Nudo	(m.s.n.m)
61	66	19.78 m	0.0004	0.008 Lit./seg.	66	785.78
66	67	30.13 m	0.0004	0.011 Lit./seg.	67	784.86
67	68	38.22 m	0.0004	0.014 Lit./seg.	68	782.86
68	69	49.40 m	0.0004	0.019 Lit./seg.	69	782.62
69	70	24.71 m	0.0004	0.009 Lit./seg.	70	782.05
70	71	20.45 m	0.0004	0.008 Lit./seg.	71	781.45
71	72	53.75 m	0.0004	0.020 Lit./seg.	72	779.88
72	73	31.96 m	0.0004	0.012 Lit./seg.	73	778.79
72	74	36.71 m	0.0004	0.014 Lit./seg.	74	782.76
74	75	27.95 m	0.0004	0.011 Lit./seg.	75	784.85
75	76	35.99 m	0.0004	0.014 Lit./seg.	76	786.75
76	77	22.33 m	0.0004	0.008 Lit./seg.	77	787.22
55	78	15.62 m	0.0004	0.006 Lit./seg.	78	788.12
78	79	18.45 m	0.0004	0.007 Lit./seg.	79	788.05
79	80	12.74 m	0.0004	0.005 Lit./seg.	80	788.02
80	81	10.73 m	0.0004	0.004 Lit./seg.	81	787.72
81	82	12.00 m	0.0004	0.005 Lit./seg.	82	787.67
78	83	41.97 m	0.0004	0.016 Lit./seg.	83	788.21
83	84	33.05 m	0.0004	0.013 Lit./seg.	84	788.30
84	85	38.19 m	0.0004	0.014 Lit./seg.	85	788.43
85	86	52.07 m	0.0004	0.020 Lit./seg.	86	788.99
86	87	40.03 m	0.0004	0.015 Lit./seg.	87	787.09
87	88	25.57 m	0.0004	0.010 Lit./seg.	88	788.55
88	89	12.54 m	0.0004	0.005 Lit./seg.	89	788.32
89	90	12.66 m	0.0004	0.005 Lit./seg.	90	787.87
87	91	33.26 m	0.0004	0.013 Lit./seg.	91	785.58
91	92	27.27 m	0.0004	0.010 Lit./seg.	92	786.41
92	93	17.32 m	0.0004	0.007 Lit./seg.	93	786.14
91	94	94.28 m	0.0004	0.036 Lit./seg.	94	785.13
94	95	30.11 m	0.0004	0.011 Lit./seg.	95	785.52
95	96	22.80 m	0.0004	0.009 Lit./seg.	96	786.17
96	97	29.48 m	0.0004	0.011 Lit./seg.	97	786.57
97	98	73.16 m	0.0004	0.028 Lit./seg.	98	788.20
98	99	57.55 m	0.0004	0.022 Lit./seg.	99	790.30
97	100	39.94 m	0.0004	0.015 Lit./seg.	100	786.66
100	101	25.84 m	0.0004	0.010 Lit./seg.	101	786.77
101	102	43.47 m	0.0004	0.016 Lit./seg.	102	785.04
102	103	43.77 m	0.0004	0.017 Lit./seg.	103	784.26
101	104	38.83 m	0.0004	0.015 Lit./seg.	104	785.18
104	105	14.38 m	0.0004	0.005 Lit./seg.	105	782.75
105	106	21.74 m	0.0004	0.008 Lit./seg.	106	778.75
SU	MA	4,362.53 m		1.66 Lit./seg.		

Se calcularon los diámetros de la red de distribución haciendo uso de la fórmula Hazen - Williams obteniendo como resultado diámetros menores a lo establecido por la norma NTON 09 003-99 en el inciso 7.4.6, que en algunas partes del sistema generaban presiones y velocidades inadecuadas.

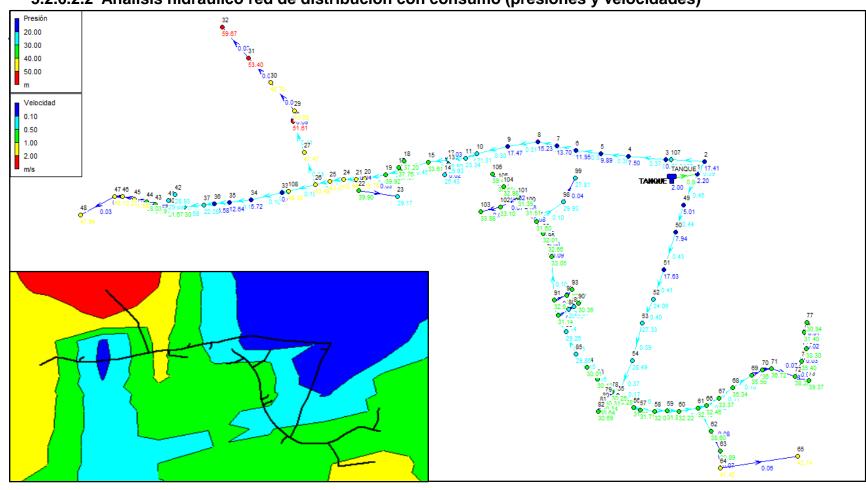
El diámetro de tubería mínimo establecido por la norma es demasiado grande considerando el ordenamiento urbanístico de la comunidad, por lo que consideramos asignar diámetros de 1" en ramales donde la afluencia de viviendas no es significativa y diámetros de 1 ½" y 2" donde puede haber un aumento de densidad en la población, estas longitudes no superan los 150mts.

Se garantizó que con estos diámetros las presiones y velocidades estén dentro el rango establecido según norma distribuido de la siguiente manera:

Tabla 5. 17 - Diámetros de tuberías

Tromo	Di	ámetros (Pulg)	Langitud (m)
Tramo	1	1 1/2	2	Longitud (m)
Ramal 1	31.96 m	236.27 m	687.77 m	956.00 m
Ramal 1.1		311.21 m		311.21 m
Ramal 1.2	123.56 m			123.56 m
Ramal 2		140.44 m	419.56 m	560.00 m
Ramal 2.1	54.62 m			54.62 m
Ramal 2.2	51.36 m			51.36 m
Ramal 2.3	45.48 m			45.48 m
Ramal 2.4	131.88 m			131.88 m
Ramal 2.5	87.65 m			87.65 m
Ramal 3		825.17 m	602.57 m	1,427.73 m
Ramal 3.1	34.29 m			34.29 m
Ramal 3.2	26.53 m			26.53 m
Ramal 3.3		110.26 m		110.26 m
Ramal 3.4		406.58 m		406.58 m
Ramal 3.5	35.38 m			35.38 m
Total	Front			4,362.53 m

Fuente: Elaboración propia

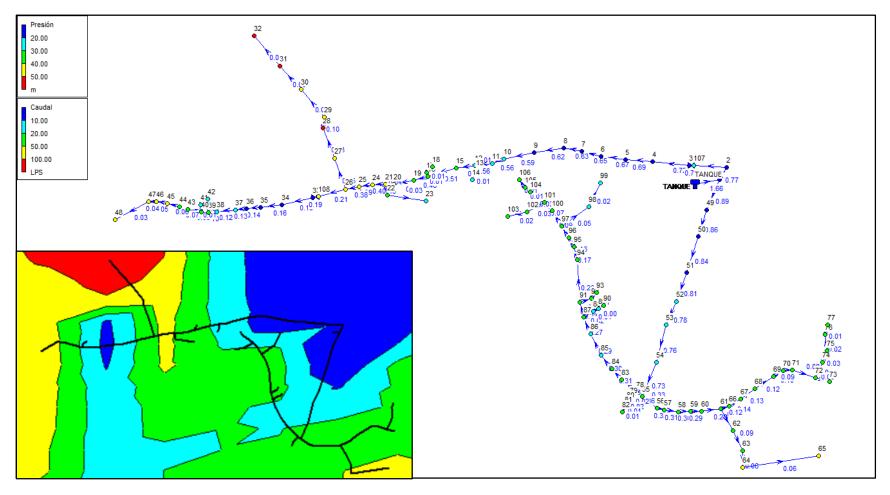

La red de distribución estará dotada de válvulas de aire, válvulas de limpieza y válvulas para sectorizar. En el caso de las válvulas de limpieza los diámetros de estas serán inferior al diámetro de la tubería donde se conectará para garantizar velocidades en el flujo de agua.

A continuación, se detallan las cantidades de válvulas y ubicación.

Tabla 5. 18 - Válvulas para la red de distribución

Ubicación	Válvi	ulas (de Limpieza	Válvulas de aire (3/4")	Válvula de sectorización	
Obicación	Diá	ámet	ros (Pulg)	Cantidad	Cantidad	
	3/4"	1"	1 1/2 "	Caritidad	Cantidad	
Ramal 1	1			1	2	
Ramal 1.1		1				
Ramal 2		1		1	1	
Ramal 3		1	1	1	2	
TOTAL	1	3	1	2	5	

Fuente: Elaboración propia



5.2.6.2.2 Análisis hidráulico red de distribución con consumo (presiones y velocidades)

Se verificó que las presiones máximas y mínimas de la red se encuentran dentro de los valores permitidos en la norma, con respecto a las velocidades encontramos que en su mayoría no están entre los valores admisibles por lo que se asignaran válvulas de limpieza en los puntos críticos de la línea para evitar la erosión interna o sedimentos en la tubería.

Fuente: Resultados simulación hidráulica EPANET

5.2.6.2.3 Análisis hidráulico red de distribución con consumo (presiones y caudales)

Fuente: Resultados simulación hidráulica EPANET

Tabla 5. 19 - Resultados de tuberías en la simulación de la red en Epanet

					Та	bla de Red -	Líneas				
Tram		ID Línea	Longitud m	Diámetro mm	Rugosidad C	Caudal (Lit./seg)	Velocidad (m/s)	Pérd. Unit. (m/km)	Factor de Fricción	Pérdida de carga (m/m)	Estado
DEP1	1	Tubería 107	2.45	50	150	1.66	0.84	15.31	0.021	0.038	Abierto
1	2	Tubería 1	36.04	50	150	0.77	0.39	3.70	0.024	0.135	Abierto
2	3	Tubería 2	82.94	50	150	0.75	0.38	3.57	0.024	0.296	Abierto
3	4	Tubería 3	81.34	50	150	0.72	0.37	3.31	0.024	0.269	Abierto
4	5	Tubería 4	59.97	50	150	0.69	0.35	3.05	0.024	0.183	Abierto
5	6	Tubería 5	54.09	50	150	0.67	0.34	2.87	0.024	0.157	Abierto
6	7	Tubería 6	43.52	50	150	0.65	0.33	2.70	0.024	0.119	Abierto
7	8	Tubería 7	41.55	50	150	0.63	0.32	2.57	0.024	0.107	Abierto
8	9	Tubería 8	69.01	50	150	0.62	0.31	2.45	0.024	0.173	Abierto
9	10	Tubería 9	65.45	50	150	0.59	0.30	2.26	0.025	0.150	Abierto
10	11	Tubería 10	18.80	50	150	0.56	0.29	2.09	0.025	0.039	Abierto
11	12	Tubería 11	47.40	50	150	0.56	0.28	2.04	0.025	0.098	Abierto
12	13	Tubería 12	10.29	25	150	0.01	0.03	0.05	0.035	0.000	Abierto
13	14	Tubería 13	23.77	25	150	0.01	0.02	0.03	0.046	0.001	Abierto
12	15	Tubería 14	42.22	38	150	0.53	0.46	6.99	0.024	0.302	Abierto
15	16	Tubería 15	64.54	38	150	0.51	0.45	6.60	0.024	0.429	Abierto
16	17	Tubería 16	8.25	25	150	0.01	0.02	0.04	0.043	0.000	Abierto
17	18	Tubería 17	18.04	25	150	0.01	0.01	0.02	0.040	0.001	Abierto
16	19	Tubería 18	32.35	38	150	0.48	0.42	5.81	0.025	0.192	Abierto
19	20	Tubería 19	45.87	38	150	0.46	0.41	5.55	0.025	0.252	Abierto
20	21	Tubería 20	18.22	38	150	0.45	0.40	5.18	0.025	0.096	Abierto
21	22	Tubería 21	24.63	38	150	0.04	0.04	0.06	0.034	0.001	Abierto
22	23	Tubería 22	85.51	38	150	0.03	0.03	0.04	0.037	0.003	Abierto
21	24	Tubería 23	27.51	38	150	0.40	0.35	4.20	0.025	0.117	Abierto

					Tabla de l	Red - Líneas				
Tramo Nudos	ID Línea	Longitud m	Diámetro mm	Rugosidad C	Caudal (Lit./seg)	Velocidad (m/s)	Pérd. Unit. (m/km)	Factor de Fricción	Pérdida de carga (m/m)	Estado
24 25	Tubería 24	30.08	38	150	0.39	0.34	4.00	0.025	0.122	Abierto
25 26	Tubería 25	31.59	38	150	0.38	0.33	3.80	0.025	0.122	Abierto
26 27	Tubería 26	73.13	38	150	0.15	0.14	0.72	0.029	0.051	Abierto
27 28	Tubería 27	71.16	38	150	0.13	0.11	0.49	0.030	0.038	Abierto
28 29	Tubería 28	23.66	38	150	0.10	0.09	0.32	0.031	0.008	Abierto
29 30	Tubería 29	80.16	38	150	0.09	0.08	0.26	0.031	0.022	Abierto
30 31	Tubería 30	70.81	38	150	0.06	0.05	0.13	0.033	0.009	Abierto
31 32	Tubería 31	87.29	38	150	0.03	0.03	0.04	0.036	0.003	Abierto
26 33	Tubería 32	74.96	38	150	0.21	0.19	1.31	0.028	0.097	Abierto
33 34	Tubería 33	68.93	38	150	0.19	0.16	1.01	0.028	0.074	Abierto
34 35	Tubería 34	47.47	38	150	0.16	0.14	0.76	0.029	0.037	Abierto
35 36	Tubería 35	23.16	38	150	0.14	0.12	0.61	0.029	0.014	Abierto
36 37	Tubería 36	32.86	38	150	0.13	0.12	0.54	0.030	0.017	Abierto
37 38	Tubería 37	42.24	38	150	0.12	0.11	0.45	0.030	0.019	Abierto
38 39	Tubería 38	17.38	38	150	0.10	0.09	0.34	0.030	0.006	Abierto
39 40	Tubería 39	16.31	38	150	0.10	0.09	0.31	0.031	0.005	Abierto
40 41	Tubería 40	15.42	25	150	0.01	0.03	0.06	0.041	0.001	Abierto
41 42	Tubería 41	19.70	25	150	0.01	0.01	0.02	0.046	0.001	Abierto
40 43	Tubería 42	29.85	38	150	0.08	0.07	0.20	0.032	0.006	Abierto
43 44	Tubería 43	19.79	38	150	0.07	0.06	0.15	0.032	0.003	Abierto
44 45	Tubería 44	27.30	38	150	0.06	0.05	0.12	0.034	0.003	Abierto
45 46	Tubería 45	25.85	38	150	0.05	0.04	0.09	0.035	0.002	Abierto
46 47	Tubería 46	16.72	38	150	0.04	0.03	0.05	0.034	0.001	Abierto
47 48	Tubería 47	83.58	38	150	0.03	0.03	0.04	0.037	0.003	Abierto
1 49	Tubería 48	68.89	50	150	0.89	0.45	4.81	0.023	0.337	Abierto

					Tabla de l	Red - Líneas				
Tramo Nudos	ID Línea	Longitud m	Diámetro mm	Rugosidad C	Caudal (Lit./seg)	Velocidad (m/s)	Pérd. Unit. (m/km)	Factor de Fricción	Pérdida de carga (m/m)	Estado
49 50	Tubería 49	61.25	50	150	0.86	0.44	4.55	0.023	0.281	Abierto
50 51	Tubería 50	83.89	50	150	0.84	0.43	4.33	0.023	0.369	Abierto
51 52	Tubería 51	67.99	50	150	0.81	0.41	4.03	0.024	0.280	Abierto
52 53	Tubería 52	56.08	50	150	0.78	0.40	3.79	0.024	0.215	Abierto
53 54	Tubería 53	84.40	50	150	0.76	0.39	3.60	0.024	0.309	Abierto
54 55	Tubería 54	81.94	50	150	0.73	0.37	3.32	0.024	0.278	Abierto
55 56	Tubería 55	42.35	50	150	0.33	0.17	0.79	0.027	0.033	Abierto
56 57	Tubería 56	15.53	50	150	0.32	0.16	0.72	0.027	0.011	Abierto
57 58	Tubería 57	31.35	50	150	0.31	0.16	0.70	0.027	0.022	Abierto
58 59	Tubería 58	27.61	50	150	0.30	0.15	0.65	0.027	0.018	Abierto
59 60	Tubería 59	24.42	50	150	0.29	0.15	0.61	0.027	0.015	Abierto
60 61	Tubería 60	42.60	50	150	0.28	0.14	0.57	0.027	0.025	Abierto
61 62	Tubería 61	72.00	38	150	0.12	0.10	0.43	0.030	0.033	Abierto
62 63	Tubería 62	32.68	38	150	0.09	0.08	0.26	0.031	0.009	Abierto
63 64	Tubería 63	36.36	38	150	0.08	0.07	0.20	0.032	0.008	Abierto
64 65	Tubería 64	169.83	38	150	0.06	0.06	0.14	0.033	0.022	Abierto
61 66	Tubería 65	19.78	38	150	0.15	0.13	0.67	0.029	0.014	Abierto
66 67	Tubería 66	30.13	38	150	0.14	0.12	0.60	0.029	0.018	Abierto
67 68	Tubería 67	38.22	38	150	0.13	0.11	0.52	0.030	0.020	Abierto
68 69	Tubería 68	49.40	38	150	0.12	0.10	0.42	0.030	0.023	Abierto
69 70	Tubería 69	24.71	38	150	0.10	0.08	0.30	0.031	0.008	Abierto
70 71	Tubería 70	20.45	38	150	0.09	0.08	0.25	0.032	0.005	Abierto
71 72	Tubería 71	53.75	38	150	0.08	0.07	0.21	0.032	0.012	Abierto
72 73	Tubería 72	31.96	25	150	0.01	0.02	0.05	0.040	0.001	Abierto

					Tabla de F	Red - Líneas				
Tramo	ID Línea	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Pérd. Unit.	Factor de Fricción	Pérdida de carga	Estado
Nudos		m	mm	С	(Lit./seg)	(m/s)	(m/km)	111001011	(m/m)	
72 74	Tubería 73	36.71	38	150	0.05	0.04	0.08	0.034	0.003	Abierto
74 75	Tubería 74	27.95	38	150	0.03	0.03	0.04	0.038	0.001	Abierto
75 76	Tubería 75	35.99	38	150	0.02	0.02	0.02	0.037	0.001	Abierto
76 77	Tubería 76	22.33	38	150	0.01	0.01	-	0.050	0.000	Abierto
55 78	Tubería 77	15.62	50	150	0.36	0.18	0.91	0.026	0.014	Abierto
78 79	Tubería 78	18.45	25	150	0.02	0.05	0.18	0.036	0.002	Abierto
79 80	Tubería 79	12.74	25	150	0.02	0.03	0.09	0.038	0.002	Abierto
80 81	Tubería 80	10.73	25	150	0.01	0.02	0.05	0.040	0.000	Abierto
81 82	Tubería 81	12.00	25	150	0.01	0.02	0.02	0.046	0.000	Abierto
78 83	Tubería 82	41.97	50	150	0.33	0.17	0.78	0.027	0.033	Abierto
83 84	Tubería 83	33.05	50	150	0.31	0.16	0.71	0.027	0.023	Abierto
84 85	Tubería 84	38.19	50	150	0.30	0.15	0.65	0.027	0.025	Abierto
85 86	Tubería 85	52.07	50	150	0.29	0.15	0.60	0.027	0.032	Abierto
86 87	Tubería 86	40.03	50	150	0.27	0.14	0.53	0.028	0.022	Abierto
87 88	Tubería 87	25.57	25	150	0.02	0.04	0.13	0.037	0.003	Abierto
88 89	Tubería 88	12.54	25	150	0.01	0.02	0.04	0.042	0.000	Abierto
89 90	Tubería 89	12.66	25	150	0.01	0.01	0.01	0.028	0.000	Abierto
87 91	Tubería 90	33.26	50	150	0.23	0.12	0.40	0.028	0.013	Abierto
91 92	Tubería 91	27.27	25	150	0.02	0.03	0.09	0.038	0.003	Abierto
92 93	Tubería 92	17.32	25	150	0.01	0.01	0.02	0.041	0.001	Abierto
91 94	Tubería 93	94.28	50	150	0.20	0.10	0.31	0.029	0.029	Abierto
94 95	Tubería 94	30.11	50	150	0.17	0.09	0.22	0.030	0.007	Abierto
95 96	Tubería 95	22.80	50	150	0.16	0.08	0.19	0.030	0.005	Abierto
96 97	Tubería 96	29.48	50	150	0.15	0.07	0.17	0.030	0.005	Abierto

					Та	bla de Red	- Líneas				
Tra	mo	ID Línea	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Pérd. Unit.	Factor de Fricción	Pérdida de carga	Estado
Nu	dos		m	mm	С	(Lit./seg)	(m/s)	(m/km)	THECION	(m/m)	
97	98	Tubería 97	73.16	25	150	0.05	0.10	0.69	0.032	0.051	Abierto
98	99	Tubería 98	57.55	25	150	0.02	0.04	0.15	0.037	0.007	Abierto
97	100	Tubería 99	39.94	38	150	0.09	0.08	0.24	0.032	0.011	Abierto
100	101	Tubería 100	25.84	38	150	0.07	0.06	0.17	0.032	0.004	Abierto
101	102	Tubería 101	43.47	25	150	0.03	0.07	0.32	0.035	0.012	Abierto
102	103	Tubería 102	43.77	25	150	0.02	0.03	0.09	0.038	0.006	Abierto
101	104	Tubería 103	38.83	38	150	0.03	0.02	0.03	0.038	0.001	Abierto
104	105	Tubería 104	14.38	38	150	0.01	0.01	0.01	0.059	0.000	Abierto
105	106	Tubería 105	21.74	38	150	0.01	0.01	0.00	0.051	0.000	Abierto

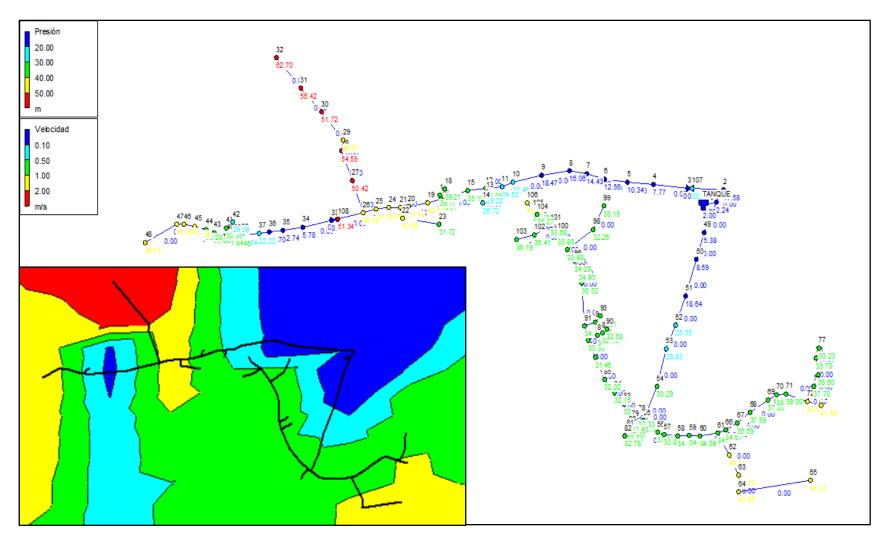

Fuente: Resultados EPANET

Tabla 5. 20 - Resultados de la simulación en nodos con consumo

Conexión 1 81 Conexión 2 80 Conexión 3 79 Conexión 4 78 Conexión 5 78 Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 15 75 Conexión 16 75	8.21 2.87 4.94 7.16 4.60 2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	HIDRÁULICO (msnm) 820.41 820.28 794.94 794.67 794.49 794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.65 793.65 793.65 793.90 792.93	2.20 17.41 25.04 7.50 9.89 11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 1 81 Conexión 2 80 Conexión 3 79 Conexión 4 78 Conexión 5 78 Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	8.21 2.87 4.94 7.16 4.60 2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	820.41 820.28 794.94 794.67 794.49 794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.65 793.65 793.90 792.93	17.41 25.04 7.50 9.89 11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 2 80 Conexión 3 79 Conexión 4 78 Conexión 5 78 Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	2.87 4.94 7.16 4.60 2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	820.28 794.94 794.67 794.49 794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.65 793.65 793.36 792.93	17.41 25.04 7.50 9.89 11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 3 79 Conexión 4 78 Conexión 5 78 Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	4.94 7.16 4.60 2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	794.94 794.67 794.49 794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.36 792.93 792.93	25.04 7.50 9.89 11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 4 78 Conexión 5 78 Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	7.16 4.60 2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	794.67 794.49 794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.65 793.36 792.93	7.50 9.89 11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 5 78 Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	4.60 2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	794.49 794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.36 792.93	9.89 11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 6 78 Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	2.38 0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	794.33 794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.36 792.93	11.95 13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 7 78 Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	0.51 8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	794.21 794.11 793.94 793.79 793.75 793.65 793.65 793.36 792.93 792.93	13.70 15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 8 77 Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	8.88 6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	794.11 793.94 793.79 793.75 793.65 793.65 793.65 793.36 792.93	15.23 17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 9 77 Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	6.47 2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17	793.94 793.79 793.75 793.65 793.65 793.65 793.36 792.93 792.93	17.47 21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 10 77 Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	2.48 0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	793.79 793.75 793.65 793.65 793.65 793.36 792.93 792.93	21.31 23.34 28.80 26.93 25.43 33.61 37.67
Conexión 11 77 Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	0.41 4.86 6.72 8.22 9.75 5.26 5.17 5.73	793.75 793.65 793.65 793.65 793.36 792.93 792.93	23.34 28.80 26.93 25.43 33.61 37.67
Conexión 12 76 Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	4.86 6.72 8.22 9.75 5.26 5.17 5.73	793.65 793.65 793.65 793.36 792.93 792.93	28.80 26.93 25.43 33.61 37.67
Conexión 13 76 Conexión 14 76 Conexión 15 75 Conexión 16 75	6.72 8.22 9.75 5.26 5.17 5.73	793.65 793.65 793.36 792.93 792.93	26.93 25.43 33.61 37.67
Conexión 14 76 Conexión 15 75 Conexión 16 75	8.22 9.75 5.26 5.17 5.73	793.65 793.36 792.93 792.93	25.43 33.61 37.67
Conexión 15 75 Conexión 16 75	9.75 5.26 5.17 5.73	793.36 792.93 792.93	33.61 37.67
Conexión 16 75	5.26 5.17 5.73	792.93 792.93	37.67
	5.17 5.73	792.93	
Conexion 1/ 1 /5	5.73		
		700.00	37.76
		792.93	37.20
	2.82	792.74	39.92
	0.75	792.49	41.74
	0.16	792.40	42.23
	2.49	792.39	39.90
	3.22	792.39	29.17
	9.34	792.28	42.94
	8.79	792.16	43.37
	8.56	792.04	43.48
	4.52	791.99	47.47
	0.35 8.87	791.95 791.94	51.61 43.08
	3.22		48.70
	8.51	791.92 791.91	53.40
	2.24	791.91	59.67
		743.59	
	3.59 7.81	743.59	48.35 5.72
	0.85	743.49	12.64
	6.89	743.49	16.58
		743.47	22.08
	1.38 4.86	743.44	28.58
	3.13	743.43	30.30
	1.76	743.43	31.67
	3.54	743.43	29.89
	4.50	743.43	28.93
	8.51	743.42	34.91
	5.39	743.42	38.03
	1.84	743.42	41.58
	9.18	743.41	44.23
	8.32	743.41	45.10
	5.46	743.41	47.94
	5.40	820.08	5.01
	1.86	819.80	7.94
——————————————————————————————————————	1.81	819.44	17.63
	5.11	819.17	24.06
	1.62	818.95	27.33

	0074	GRADIENTE		
N° DE NUDO	COTA	HIDRÁULICO	PRESIÓN	
	(msnm)	(msnm)		
Conexión 54	790.16	818.65	28.49	
Conexión 55	788.10	818.38	30.28	
Conexión 56	787.09	818.34	31.25	
Conexión 57	786.62	818.33	31.71	
Conexión 58	786.28	818.31	32.04	
Conexión 59	786.40	818.29	31.89	
Conexión 60	786.06	818.28	32.22	
Conexión 61	785.82	818.25	32.43	
Conexión 62	779.62	818.22	38.60	
Conexión 63	778.32	818.21	39.89	
Conexión 64	776.79	818.21	41.42	
Conexión 65	775.44	818.18	42.74	
Conexión 66	785.78	818.24	32.46	
Conexión 67	784.86	818.22	33.37	
Conexión 68	782.86	818.20	35.34	
Conexión 69	782.62	818.18	35.56	
Conexión 70	782.05	818.17	36.12	
Conexión 71	781.45	818.17	36.72	
Conexión 72	779.88	818.16	38.28	
Conexión 73	778.79	818.16	39.37	
Conexión 74	782.76	818.16	35.40	
Conexión 75	784.85	818.15	33.30	
Conexión 76	786.75	818.15	31.40	
Conexión 77	787.22	818.15	30.94	
Conexión 78	788.12	818.36	30.25	
Conexión 79	788.05	818.36	30.31	
Conexión 80	788.02	818.36	30.34	
Conexión 81	787.72	818.36	30.64	
Conexión 82	787.67	818.36	30.69	
Conexión 83	788.21	818.33	30.12	
Conexión 84	788.30	818.31	30.01	
Conexión 85	788.43	818.28	29.86	
Conexión 86	788.99	818.25	29.26	
Conexión 87	787.09	818.23	31.14	
Conexión 88	788.55	818.23	29.68	
Conexión 89	788.32	818.23	29.91	
Conexión 90	787.87	818.23	30.36	
Conexión 91	785.58	818.22	32.63	
Conexión 92	786.41	818.21	31.80	
Conexión 93	786.14	818.21	32.07	
Conexión 94	785.13	818.19	33.05	
Conexión 95	785.52	818.18	32.66	
Conexión 96	786.17	818.18	32.01	
Conexión 97	786.57	818.17	31.60	
Conexión 98	788.19	818.12	29.93	
Conexión 99	790.30	818.11	27.81	
Conexión 100	786.66	818.16	31.51	
Conexión 101	786.77	818.16	31.39	
Conexión 102	785.04	818.14	33.10	
Conexión 103	784.26	818.14	33.88	
Conexión 104	785.18	818.16	32.98	
Conexión 105	782.75	818.16	35.41	
Conexión 106	778.75	818.16	39.41	

5.2.1 Análisis hidráulico de la red de distribución sin consumo (presiones y velocidades)

Fuente: Resultados simulación hidráulica EPANET

Tabla 5. 21 – Resultados de la simulación en nodos sin consumo

N° DE NUDO	COTA (msnm)	GRADIENTE HIDRÁULICO (msnm)	PRESIÓN
Conexión 1	818.21	820.45	2.24
Conexión 2	802.87	820.45	17.58
Conexión 3	794.94	794.94	25.51
Conexión 4	787.16	794.94	7.77
Conexión 5	784.60	794.94	10.34
Conexión 6	782.38	794.94	12.56
Conexión 7	780.51	794.94	14.43
Conexión 8	778.88	794.94	16.06
Conexión 9	776.47	794.94	18.47
Conexión 10	772.48	794.94	22.46
Conexión 11	770.41	794.94	24.53
Conexión 12	764.86	794.94	30.08
Conexión 13	766.72	794.94	28.22
Conexión 14	768.22	794.94	26.72
Conexión 15	759.75	794.94	35.19
Conexión 16	755.26	794.94	39.67
Conexión 17	755.17	794.94	39.77
Conexión 18	755.73	794.94	39.21
Conexión 19	752.82	794.94	42.12
Conexión 20	750.75	794.94	44.19
Conexión 21	750.16	794.94	44.77
Conexión 22	752.49	794.94	42.45
Conexión 23	763.22	794.94	31.72
Conexión 24	749.34	794.94	45.60
Conexión 25	748.79	794.94	46.15
Conexión 26	748.56	794.94	46.38
Conexión 27	744.52	794.94	50.42
Conexión 28	740.35	794.94	54.59
Conexión 29	748.87	794.94	46.07
Conexión 30	743.22	794.94	51.72
Conexión 31	738.51	794.94	56.42
Conexión 32	732.24	794.94	62.70
Conexión 33	743.59	743.59	51.34
Conexión 34	737.81	743.59	5.78
Conexión 35	730.85	743.59	12.74
Conexión 36	726.89	743.59	16.70
Conexión 37	721.38	743.59	22.22
Conexión 38	714.86	743.59	28.74
Conexión 39	713.13	743.59	30.46
Conexión 40	711.76	743.59	31.84
Conexión 41	713.54	743.59	30.05
Conexión 42	714.50	743.59	29.09
Conexión 43	708.51	743.59	35.08
Conexión 44	705.39	743.59	38.20
Conexión 45	701.84	743.59	41.76
Conexión 46	699.18	743.59	44.41
Conexión 47	698.32	743.59	45.28
Conexión 48	695.46	743.59	48.13
Conexión 49	815.07	820.45	5.38
Conexión 50	811.86	820.45	8.59
Conexión 51	801.81	820.45	18.64
Conexión 52	795.11	820.45	25.35
Conexión 53	791.62	820.45	28.83

N° DE NUDO (msnm) HIDRAULICO (msnm) PRESION (msnm) Conexión 54 790.16 820.45 30.29 Conexión 55 788.10 820.45 32.35 Conexión 57 786.62 820.45 33.83 Conexión 58 786.28 820.45 34.18 Conexión 60 786.06 820.45 34.05 Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 43.66 Conexión 63 776.79 820.45 43.66 Conexión 65 775.44 820.45 45.01 Conexión 66 785.78 820.45 35.59 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 37.83 Conexión 71 781.45 820.45 37.70		GRADIENTE				
Conexión 54 790.16 820.45 30.29 Conexión 55 788.10 820.45 32.35 Conexión 57 786.62 820.45 33.36 Conexión 57 786.62 820.45 33.38 Conexión 58 786.28 820.45 34.18 Conexión 59 786.40 820.45 34.05 Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 45.01 Conexión 66 785.78 820.45 34.67 Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.83 Conexión 69 782.62 820.45 33.40 Conexión 70 782.05 820.45 39.00 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 37.70 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 37.70 Conexión 77 787.22 820.45 33.37 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.33 Conexión 80 788.02 820.45 32.33 Conexión 80 788.02 820.45 32.33 Conexión 81 787.72 820.45 32.73 Conexión 83 788.21 820.45 32.73 Conexión 84 788.30 820.45 32.73 Conexión 89 788.05 820.45 32.73 Conexión 80 788.09 820.45 32.73 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.73 Conexión 84 788.30 820.45 32.15 Conexión 89 788.32 820.45 32.15 Conexión 99 786.41 820.45 32.15 Conexión 99 786.41 820.45 32.15 Conexión 99 786.57 820.45 33.36 Conexión 99 786.51 820.45 33.38 Conexión 99 786.51 820.45 33.80 Conexión 99 786.57 820.45 33.88 Conexión 99 786.57 820.45 33.88 Conexión 99 786.57 820.45 33.88 Conexión 99 786.57 820.45 33.80 Conexión 90 786.67 820.45 33.88 Conexión 90 786.67 820.45 33.80 Conexión 90 786.67 820.45 33.88 Conexión 90 786.67 820.45 33.80 Conexión 100 786.60 820.45 33.80 Conexión 100 786.60 820.45 33	N° DE NUDO	DE NUDO COTA HIDRÁUL		PRESIÓN		
Conexión 55 788.10 820.45 32.35 Conexión 56 787.09 820.45 33.36 Conexión 57 786.62 820.45 33.83 Conexión 58 786.28 820.45 34.18 Conexión 59 786.40 820.45 34.05 Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 42.13 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 43.61 Conexión 67 784.86 820.45 35.59 Conexión 69 782.86 820.45 37.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 37.83 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 37.70		(msnm)	(msnm)			
Conexión 56 787.09 820.45 33.36 Conexión 57 786.62 820.45 33.83 Conexión 58 786.28 820.45 34.18 Conexión 60 786.06 820.45 34.05 Conexión 61 785.82 820.45 34.39 Conexión 62 779.62 820.45 34.63 Conexión 62 7776.79 820.45 42.13 Conexión 63 778.32 820.45 43.66 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 43.66 Conexión 66 785.78 820.45 35.59 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.59 Conexión 70 782.05 820.45 38.40 Conexión 70 782.05 820.45 39.00 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 37.70 <th< td=""><td>Conexión 54</td><td>790.16</td><td>820.45</td><td>30.29</td></th<>	Conexión 54	790.16	820.45	30.29		
Conexión 57 786.62 820.45 33.83 Conexión 58 786.28 820.45 34.18 Conexión 69 786.40 820.45 34.05 Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.59 Conexión 69 782.62 820.45 37.33 Conexión 70 782.05 820.45 37.33 Conexión 71 781.45 820.45 37.33 Conexión 72 779.88 820.45 39.00 Conexión 73 778.79 820.45 37.70 Conexión 74 782.76 820.45 32.73	Conexión 55	788.10	820.45	32.35		
Conexión 58 786.28 820.45 34.18 Conexión 59 786.40 820.45 34.05 Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 34.67 Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.59 Conexión 70 782.05 820.45 37.83 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 39.00 Conexión 73 778.79 820.45 39.00 Conexión 74 782.79 820.45 37.70 Conexión 75 784.85 820.45 37.70	Conexión 56	787.09	820.45	33.36		
Conexión 59 786.40 820.45 34.05 Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 34.67 Conexión 66 785.78 820.45 35.59 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.59 Conexión 70 782.05 820.45 37.59 Conexión 70 782.05 820.45 39.00 Conexión 70 782.05 820.45 39.00 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 37.70 Conexión 73 778.79 820.45 37.70 Conexión 74 782.76 820.45 33.70	Conexión 57	786.62	820.45	33.83		
Conexión 60 786.06 820.45 34.39 Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 34.67 Conexión 66 785.78 820.45 35.59 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.59 Conexión 70 782.05 820.45 37.83 Conexión 70 782.05 820.45 37.83 Conexión 70 782.05 820.45 39.00 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 39.00 Conexión 73 778.79 820.45 37.70 Conexión 74 782.76 820.45 33.70 Conexión 75 784.85 820.45 33.70	Conexión 58	786.28	820.45	34.18		
Conexión 61 785.82 820.45 34.63 Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 33.40 Conexión 71 781.45 820.45 33.40 Conexión 72 779.88 820.45 39.00 Conexión 73 778.79 820.45 33.70 Conexión 74 782.76 820.45 33.70 Conexión 75 784.85 820.45 33.70 Conexión 76 786.75 820.45 33.23 Conexión 77 787.22 820.45 32.33 Conexión 79 788.05 820.45 32.43	Conexión 59	786.40	820.45	34.05		
Conexión 62 779.62 820.45 40.83 Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 45.01 Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.59 Conexión 70 782.05 820.45 33.40 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 39.00 Conexión 73 778.79 820.45 39.00 Conexión 73 778.79 820.45 37.70 Conexión 74 782.76 820.45 33.70 Conexión 75 784.85 820.45 33.70 Conexión 76 786.75 820.45 33.23 Conexión 77 787.22 820.45 32.33 Conexión 79 788.05 820.45 32.43	Conexión 60	786.06	820.45	34.39		
Conexión 63 778.32 820.45 42.13 Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 45.01 Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 38.40 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 39.00 Conexión 73 778.79 820.45 37.70 Conexión 74 782.79 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.23 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.40 Conexión 79 788.05 820.45 32.43 Conexión 80 788.02 820.45 32.73	Conexión 61	785.82	820.45	34.63		
Conexión 64 776.79 820.45 43.66 Conexión 65 775.44 820.45 45.01 Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 39.00 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 37.70 Conexión 74 782.76 820.45 35.60 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.72 820.45 32.73		779.62	820.45	40.83		
Conexión 65 775.44 820.45 45.01 Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.59 Conexión 70 782.05 820.45 37.83 Conexión 70 782.05 820.45 39.00 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 37.70 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 33.70 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.01 820.45 32.33 Conexión 80 788.02 820.45 32.40 Conexión 81 787.72 820.45 32.43 Conexión 82 787.67 820.45 32.73	Conexión 63	778.32		42.13		
Conexión 66 785.78 820.45 34.67 Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.59 Conexión 70 782.05 820.45 37.83 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 33.70 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 33.23 Conexión 78 788.01 820.45 32.33 Conexión 79 788.05 820.45 32.33 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.43 Conexión 82 787.67 820.45 32.73 Conexión 83 788.21 820.45 32.78	Conexión 64	776.79	820.45	43.66		
Conexión 67 784.86 820.45 35.59 Conexión 68 782.86 820.45 37.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 38.40 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 33.70 Conexión 76 786.75 820.45 33.23 Conexión 77 787.22 820.45 32.33 Conexión 79 788.05 820.45 32.33 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.43 Conexión 82 787.67 820.45 32.73 Conexión 83 788.21 820.45 32.73 Conexión 84 788.30 820.45 32.24	Conexión 65	775.44	820.45	45.01		
Conexión 68 782.86 820.45 37.59 Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 38.40 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 33.70 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.73 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.24		785.78		34.67		
Conexión 69 782.62 820.45 37.83 Conexión 70 782.05 820.45 38.40 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.43 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.78 Conexión 84 788.30 820.45 32.24 Conexión 85 788.43 820.45 32.15	Conexión 67	784.86				
Conexión 70 782.05 820.45 38.40 Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.24 Conexión 86 788.99 820.45 32.02 Conexión 87 787.09 820.45 31.46						
Conexión 71 781.45 820.45 39.00 Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 32.13			+			
Conexión 72 779.88 820.45 40.57 Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 33.36 Conexión 87 787.09 820.45 32.13 Conexión 89 788.32 820.45 32.13						
Conexión 73 778.79 820.45 41.66 Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 32.33 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.78 Conexión 84 788.30 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 32.13 Conexión 89 788.32 820.45 32.13						
Conexión 74 782.76 820.45 37.70 Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 33.23 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 33.36 Conexión 87 787.09 820.45 31.46 Conexión 88 788.55 820.45 32.13 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.13						
Conexión 75 784.85 820.45 35.60 Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 33.23 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.46 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.13 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.93						
Conexión 76 786.75 820.45 33.70 Conexión 77 787.22 820.45 33.23 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.13 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.93 Conexión 93 786.14 820.45 34.93						
Conexión 77 787.22 820.45 33.23 Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.90 Conexión 88 788.55 820.45 32.13 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.31 Conexión 93 786.14 820.45 34.31						
Conexión 78 788.12 820.45 32.33 Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.46 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.13 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.31 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.93						
Conexión 79 788.05 820.45 32.40 Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.90 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.31 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.93 Conexión 95 785.52 820.45 34.28						
Conexión 80 788.02 820.45 32.43 Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.90 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.31 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.93 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 33.88						
Conexión 81 787.72 820.45 32.73 Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 31.90 Conexión 88 788.55 820.45 32.13 Conexión 89 788.32 820.45 32.58 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.93 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.93 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.80						
Conexión 82 787.67 820.45 32.78 Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.31 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.93 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 99 790.30 820.45 33.80						
Conexión 83 788.21 820.45 32.24 Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 99 790.30 820.45 33.80 Conexión 100 786.66 820.45 33.80 <td< td=""><td></td><td></td><td></td><td></td></td<>						
Conexión 84 788.30 820.45 32.15 Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.31 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 33.80 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 <t< td=""><td></td><td></td><td></td><td></td></t<>						
Conexión 85 788.43 820.45 32.02 Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 34.31 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 33.80 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 35.41 <t< td=""><td></td><td></td><td></td><td></td></t<>						
Conexión 86 788.99 820.45 31.46 Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 33.80 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 35.41 Conexión 102 785.04 820.45 35.41 <						
Conexión 87 787.09 820.45 33.36 Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 33.80 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 35.41 Conexión 102 785.04 820.45 35.41 Conexión 104 785.18 820.45 35.27						
Conexión 88 788.55 820.45 31.90 Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 33.80 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 35.41 Conexión 102 785.04 820.45 35.41 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 89 788.32 820.45 32.13 Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 35.41 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 37.70						
Conexión 90 787.87 820.45 32.58 Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 35.41 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 91 785.58 820.45 34.87 Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 92 786.41 820.45 34.04 Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 93 786.14 820.45 34.31 Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 94 785.13 820.45 35.32 Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 95 785.52 820.45 34.93 Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 96 786.17 820.45 34.28 Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 97 786.57 820.45 33.88 Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 98 788.19 820.45 32.26 Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 99 790.30 820.45 30.15 Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 100 786.66 820.45 33.80 Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 101 786.77 820.45 33.68 Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 102 785.04 820.45 35.41 Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70			-			
Conexión 103 784.26 820.45 36.19 Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70			-			
Conexión 104 785.18 820.45 35.27 Conexión 105 782.75 820.45 37.70						
Conexión 105 782.75 820.45 37.70						
	Conexión 106	778.75	820.45	41.70		

5.3 Presupuesto

Para determinar el costo total del proyecto, se realizó el cálculo de las cantidades de obras (take off) de los componentes propuestos para el sistema de acuerdo a las especificaciones que se plantearon en los planos.

El presupuesto es la resultante de la suma de cuatro elementos que componen el costo estimado de la obra que son: Costo Directo (CD) + Costo Indirecto (CI) + Costo de Administración (CA) + Impuestos (I).

Para el cálculo de los costos directos del proyecto se realizaron fichas de precios unitarios por actividad o concepto de obra manifestado por unidad de medida. Tomando en cuenta los siguientes rubros que afectan directamente la ejecución del proyecto, utilizando las normas de rendimiento horario elaboradas por el FISE.

- Materiales
- Mano de Obra
- Maquinaria y Equipo (depreciación)
- Herramientas (depreciación)
- Transporte

Los gastos administrativos son los costos en que se incurre por mantener el personal administrativo de campo el tiempo que dure el proyecto.

Los costos indirectos se calcularon estimando que tiempo de ejecución del proyecto será de 90 días calendarios. En este caso son los costos previstos que se deben incurrir de manera global o generalizada para realizar la construcción, mantenimiento o reparación sin que puedan ser aplicados directamente en la realización de una actividad o un concepto de obra.

Se incluyen los costos para operar el tiempo de vida útil del proyecto.

Tabla 5. 22 - Costos administrativos e indirectos

COSTOS ADMINISTRATIVOS E INDIRECTOS				
DESCRIPCION	COSTO			
PERSONAL	C\$	105,125.00		
PAPELERIA Y OFICINA	C\$	1,180.00		
ALQUILER	C\$	5,400.00		
TRANSPORTE	C\$	34,999.92		
COSTO TOTAL	C\$	146,704.92		

El proceso de cálculo presupuestario se realizó de manera automatizada por medio del uso de hojas de cálculo del programa Microsoft Excel elaboradas por nuestro equipo de trabajo.

El costo total del proyecto para la construcción del sistema de agua potable de la comunidad La Ermita asciende a un monto total C\$ 2,536,738.870 (dos millones, quinientos treinta y seis mil setecientos treinta y ocho con 87/100).

Tabla 5. 23 -Presupuesto por etapas y sub etapas

PROYECTO: ABASTECIMIENTO DE AGUA DE POTABLE POR GRAVEDAD COMUNIDAD LA ERMITA DEPARTAMENTO DE JINOTEGA -MUNICIPIO DE SAN RAFAEL DEL NORTE

PRESUPUESTO POR ETAPAS Y SUBETAPAS

CODIGO	DESCRIPCION		COSTO TOTAL	
	PRELIMINARES	C\$	34,995.37	
	TRAZO Y NIVELACION	C\$	34,995.37	
	LINEA DE CONDUCCIÓN	C\$	411,640.03	
	PRUEBA HIDROSTATICA.	C\$	10,440.00	
	INSTALACIÓN TUBERIA DE 3" DE DIAMETRO.	C\$	370,277.80	
	VALVULAS Y ACCESORIOS.	C\$	30,922.23	
330	LINEA DE DISTRIBUCION.	C\$	219,508.64	
	PRUEBA HIDROSTATICA.	C\$	13,050.00	
	INSTALACION DE TUBERIA DE 1/2" DE DIAMETRO.	C\$	15,175.86	
	INSTALACIÓN TUBERIA DE 1" DE DIAMETRO.	C\$	13,949.04	
	INSTALACIÓN TUBERIA DE 1 1/2" DE DIAMETRO.	C\$	64,791.09	
	INSTALACIÓN TUBERIA DE 2" DE DIAMETRO.	C\$	81,509.92	
	BLOQUES DE REACCION	C\$	3,250.00	
	VALVULAS Y ACCESORIOS.	C\$	9,821.46	
	VALVULAS DE LIMPIEZA	C\$	14,121.27	
	VALVULAS DE SECTORIZACION	C\$	3,840.00	
325	PILAS ROMPE PRESION	C\$	67,138.92	
	TRAZO Y NIVELACION.	C\$	2,116.80	
	MOVIMIENTO DE TIERRA.	C\$	5,516.51	
	FUNDACIONES	C\$	4,210.30	
	ESTRUCTURAS DE CONCRETO	C\$	16,080.04	
	MAMPOSTERÍA	C\$	12,318.79	
	ACABADOS	C\$	13,091.48	
	TUBERIA, VALVULAS Y ACCESORIOS	C\$	13,805.00	
320	CAPTACIÓN	C\$	249,695.06	
	TRAZO Y NIVELACION	C\$	10,600.00	
	MOVIMIENTO DE TIERRA.	C\$	19,784.70	
	MEJORAMIENTO DE SUELO	C\$	6,185.50	
	REPRESA DE CAPTACIÓN	C\$	138,945.80	
	CAJA DE CAPTACIÓN	C\$	5,497.26	
	COLOCACION DE CERCO DE LA FUENTE	C\$	34,240.00	
	CONSTRUCCIÓN DE CAUCE	C\$	34,441.80	
335	TANQUE DE ALMACENAMIENTO CONCRETO REFORZADO		742,275.71	
	TRAZO Y NIVELACION.	C\$	14,128.80	
	MOVIMIENTO DE TIERRA.	C\$	85,914.46	
	TANQUE DE ALMACENAMIENTO.	C\$	579,749.23	
	VALVULAS Y ACCESORIOS.	C\$	33,323.21	
	CERCA PERIMETRAL	C\$	29,160.00	
350	CONEXIONES.	C\$	300,198.78	
	CONEXIONES INTRADOMICILIARES. TOTAL GENERAL	C\$	300,198.78	
	C\$	2025,452.50		
	IMPUESTOS (MUNICIPAL, IR, IVA)	C\$	364,581.45	
	COSTOS ADMINISTRATIVOS E INDIRECTOS COSTO TOTAL DEL PROYECTO	C\$ C\$	146,704.92 2536,738.87	

Capítulo VI

Conclusiones y recomendaciones

"Cuando protegemos nuestros océanos protegemos nuestro futuro"

Bill Clinton

Capítulo VI. Conclusiones y recomendaciones

6.1. Conclusiones

La comunidad de la Ermita, cuenta en la actualidad (año 2019) con una población base de 502 habitantes, considerando que el periodo de diseño es de 20 años, para el final del mismo (año 2039) se adoptó un crecimiento poblacional de 2.5% para un total de beneficiarios al final del año 2039 correspondiente a 825 habitantes, con un consumo máximo diario de 0.92 lts/s y un consumo máximo hora de 1.66 lt/s.

El manantial seleccionado como fuente de abastecimiento, cuenta con la capacidad hídrica para satisfacer y garantizar la calidad, caudal ecológico y los volúmenes requeridos por la población al final del periodo de diseño.

Para la obra de captación deberá construirse como un muro a gravedad de concreto ciclópeo, será ubicado en el estacionamiento 0+000.00 con elevación de 862.065 msnm, las dimensiones obtenidas del diseño en el capítulo 5 inciso 5.2.4 de este documento, son: base del muro B= 1.50 m, altura total del muro Ht= 2.70 m, altura de la tabla de agua Hw= 1.50 m, altura de desplante Hd= 1.20 m, ancho muro parte superior E= 0.50 m.

Producto del análisis topográfico se determinó que el sistema de abastecimiento sea un mini acueducto por gravedad (MAG), que estará estructurado como Fuente-Tanque-Red.

De acuerdo al análisis hidráulico se determinó que los sitios previstos para construir el tanque de almacenamiento, puestos públicos y tomas domiciliares cuentan con suficiente carga estática o diferencias de niveles respecto a la obra captación (fuente subterránea).

Los diámetros y presiones resultado de la simulación hidráulica en epanet cumplen con los parámetros establecidos en la norma NTON 09002-99 y se pueden observar en el capítulo 5 inciso 5.2.6 de este documento.

Para garantizar el buen funcionamiento de la red de distribución el tanque de almacenamiento estará ubicado en el estacionamiento 3+501 con una elevación

de 818.45 msnm, será de concreto reforzado con f'c=3000 psi, con la capacidad de almacenar 20 m³ de volumen de agua. Las dimensiones obtenidas del diseño en el capítulo 5 inciso 5.2.5 son: paredes del tanque, largo=3.5 m, ancho= 3.50 m, altura total= 2.00 m, altura tabla de agua Hw= 1.60 m, borde libre= 0.40 m, espesor=0.18 m, con acero de refuerzo No. 3 a cada 15 cm y 18 cm en dirección de los ejes X y Y. Para la losa de techo se utilizará acero de refuerzo No. 3 a cada 18 cm en ambas direcciones, las dimensiones serán largo= 3.86 m ancho= 3.86 m y espesor= 0.15 m.

De acuerdo a los cálculos realizados el costo aproximado del mini acueducto por gravedad para la comunidad de la Ermita, municipio de san Rafael del norte, departamento de Jinotega, asciende a un monto en córdobas de C\$2,536,738.870 (dos millones, quinientos treinta y seis mil setecientos treinta y ocho con 87/100), contemplando la construcción e instalación de todos los elementos que forman parte del sistema, tales como: construcción de obras de captación y tanque de almacenamiento, cruces especiales, instalación de tubería para la línea de conducción y redes de distribución, tomas domiciliares, instalación de accesorios, válvulas de aire, válvulas de limpieza válvulas o llaves de pase y micro medidores.

6.2. Recomendaciones

- Garantizar que este sistema este fundamentado bajo los datos obtenidos de las memorias de cálculos de este documento.
- Realizar un manual de operación, administración y mantenimiento para garantizar la funcionabilidad del sistema.
- Realizar un documento donde se detallen las especificaciones técnicas para la construcción de sistema.
- Verificar las disposiciones legales de los terrenos donde se construirán los componentes del sistema y servidumbres de pase de tubería.
- Durante la construcción del sistema se sugiere la contratación de un ingeniero supervisor que verifique se construya de acuerdo al diseño y un trabajador social que se encargue de crear conciencia a la comunidad.
- Una vez construido el sistema es importante que se tomen las medidas necesarias de protección en la zona de la fuente de agua, así como la zona de recarga para garantizar en el futuro agua de calidad y en los volúmenes necesarios para satisfacer la demanda de la población.

Bibliografía

- Barrios Napurí, C., Torrez Ruiz, R., Lampoglia, T. C., & Aguero Pittman, R. (2009). Guía de orientación en saneamiento básico para alcladías de municipios rurales y pequeñas comunidades. En *Guía de orientación en saneamiento básico*.
- Brolo Tobar, G. (13 de Febrero de 2013). La importancia del estudio socioeconómico de la comunidad.
- Comité coordinador regional de instituciones de agua potable y saneamiento de CentroAmérica, Panama y República Dominicana. (1993). Normas de calidad del agua para consumo humano (CAPRE).
- Fondo de inversión social de emergencia. (s.f.). Cartilla "Operación y manteniento de mini acueductos por gravedad (MAG)". En FISE.
- Ing. Fernando García Marquez. (1994). Curso básico de topografía planimetría, agrimensura y altimetría. México: Árbol editorial.
- Instituto Nicaragüense de Acueducto y Alcantarillado. (1998). Normas Rurales de Abastecimiento de Agua Potable. En INAA, *NTON 09002-99.* Managua, Nicaragua.
- Instituto Nicaragüense de acueductos y alcantarillados . (1998). Normas Rurales de Abastecimiento de Agua Potable. En INAA, *NTON 09002-99*. Managua, Nicaragua.
- Instituto Nicaragüense de acueductos y alcantarillados. (1989). Normas técnicas para el diseño de abastecimiento y potabilización del agua. En INAA, *NTON 09 003-99.* Managua, Nicaragua.
- López Cualla, R. A. (1995). *Elementos de diseño para acueductos y alcantarillados.* colombia: Escuela Colombiana de ingeniería.
- Roger Agüero Pittman . (s.f.). Agua potable para poblaciones rurales. En Sistemas de abastecimiento por gravedad sin tratamiento.

Anexos

"Toda el agua que habrá jamás, la tenemos ahora mismo"

National Geographic

Anexo N°. 1 - Jefes de Hogar

	munidad : La Ermita				
N°	NOMBRE DEL PROPIETARIO	No. HAB	N°	NOMBRE DEL PROPIETARIO	No. HAE
1	HENRY NAVARRETE TALAVERA	4	64	ROSA EMILIA GÓMEZ	5
2	NORLAN TALAVERA TÓRREZ	4	65	MARTHA TALAVERA	3
3	JOSE LUIS NAVARRETE	4	66	EXPECTACIÓN HERRERA	3
4	IVAN NAVARRETE TALAVERA	4	67	ENRRIQUE HERRERA BLANDÓN	5
5	JESÚS MARÍA CASTRO	3	68	GERMAN HERRERA	4
5	BERNARDO GUTIÉRREZ	2	69	BERNARDO LÓPEZ	6
7	ARNOLDO CASTRO	4	70	NORLAN ALEJANDRO TALAVERA	4
3	ARNOLDO TALAVERA	4	71	ALEJANDRO TALAVERA	3
•	ANGELA CASTRO FLORES	3	72	CESAR TALAVERA	4
10	PAULINO NAVARRETE	3	73	MANUEL TALAVERA MEZA	4
11	ANGELICA HERRERA	4	74	ROBERTO AVERRUZ FLORES	5
12	JOSE DAVID HERRERA	3	75	JOSE TALAVERA FLORES	6
13	OSWALDO CASTRO ÚBEDA	4	76	JUAN TALAVERA MEZA	4
14	PAULO HERRERA	3	77	JUAN ANGEL TALAVERA TÓRREZ	5
15	ENRRIQUE HERRERA CASTRO	4	78	JOEL TALAVERA TÓRREZ	4
16	MARTÍN HERRERA LANZAS	3	79	REEMBERTO TALAVERA FLORES	3
۱7	ELENA HERRERA	3	80	DONALD FLORES	6
18	MARIA LANZAS	5	81	ISIDRO FLORES	4
19	CARMEN HERRERA LANZAS	4	82	GUSTAVO PALACIOS	3
20	LAURIANO HERRERA GONZÁLEZ	3	83	FREDDY NAVARRETE	5
21	LAURIANO HERRERA RIZO	4	84	ALONSO TALAVERA HERRERA	4
22	EVA BLANDÓN	3	85	GIBERT TALAVERA HERRERA	4
23	BAYRON HERRERA HERRERA	4	86	ALONSO TALAVERA CRUZ	5
24	AMADO HERRERA CASTRO	3	87	MARIO TALAVERA CRUZ	4
25	JESÚS HERRERA HERRERA	4	88	LIZANDRO HERRERA	3
26	MARÍA HERRERA BLANDÓN	4	89	CALLETANO TALAVERA	4
27	ARICEO TALAVERA MEZA	3	90	MARIO CHAVARRIA	5
28	JOSE RAMÓN HERRERA CASTRO	4	91	MARÍA TALAVERA	4
29	CENTRO DE SALUD		92	RENE TALAVERA	3
30	OSWALDO HERRERA CASTRO	5	93	BISMARCK TALAVERA	4
31	PEDRO HERRERA CASTRO	4	94	OSCAR NAVARRETE	3
32	CAPILLA		95	LUCAS ELIAS TALAVERA	5
33	FELIPE HERRERA CASTRO	5	96	MILTON CENTENO	4
34	MARCOS HERRERA HERRERA	4	97	EFRAÍN CENTENO	4
35	NELSON MEZA	4	98	ERNESTO LUMBÍ ARAÚZ	5
36	MOISES HERRERA	4	99	FRANCISCO HERRERA CASTRO	4
37	ROSARIO HERRERA LANZAS	5	100	WILFREDO TALAVERA	6
38	GERONIMO MEZA	4	101	FABIAN RAMÍREZ	7
39	NESTORA MEZA	4	102	NELSON LUMBÍ LANZAS	5
10	JOSE ANDRÉS HERRERA	5	103	SOCORRO LANZAS MEZA	3

Jefes de hogar

Dpt	o. Jinotega Municipio San: Rafa	el del Norte	-		
Cor	nunidad: La Ermita	_			_
Ν°	NOMBRE DEL PROPIETARIO	No. HAB	N°	NOMBRE DEL PROPIETARIO	No. HAB
41	FILIMÓN LANZAS HERRERA	4	104	ORLANDO LUMBÍ	4
42	RAFAEL TALAVERA	5	105	ELSA CENTENO	4
43	ALEJANDRO LANZAS	6	106	TEODORO RAMÍREZ	3
44	JOSE HERRERA BLANDÓN	4	107	JUAN CENTENO	4
45	GLADYS HERRERA TALAVERA	3	108	JHONY CENTENO	5
46	FEDERICO HERRERA TALAVERA	5	109	ARMANDO ÚBEDA	5
47	MARÍA HERRERA TLAVERA	6	110	JOSE LUIS LUMBÍ	4
48	ARISTIDES LANZAS HERRERA	4	111	JOSE MIGUEL ÚBEDA	4
49	PABLO LANZAS HERRERA	3	112	YALBER BLANDÓN	4
50	RAFAEL TALAVERA BLANDON	4	113	ROSA IDALIA LUMBÍ	3
51	ADÁN HERRERA CASTRO	2	114	XIOMARA LUMBÍ	4
52	CARMENZA LÓPEZ MEZA	5	115	GLADYS LUMBÍ	3
53	ERICK LÓPEZ MEZA	3	116	DAVID LUMBÍ	4
54	BAYARDO ANTONIO LÓPEZ	4	117	JORGE LUMBÍ	3
55	FRANCISCO LÓPEZ MEZA	5	118	ERVIN LUMBÍ	5
56	CLAUDIA CHAVARRIA	4	119	KARLA CENTENO	4
57	ESCUELA		120	EVERTH CENTENO	3
58	JESUS NAVARRETE	5	121	SANTOS CENTENO	4
59	ROGER NAVARRETE CASTRO	4	122	WALTER HERRERA	5
60	ADILSON NAVARRETE	4	123	CASA	5
61	DOUGLAS NAVARRETE	3	124	CASA	5
62	JAVIER NAVARRETE	7	125	CASA	4
63	VALENTINA HERRERA	5	126	CASA	2
			Total		502

Anexo N°. 2 - Encuesta socioeconómica

Encuesta socioeconómica

uie	én es el re	espons	able	del hog	ar:	Pad	re_		N	ladre	-	Otro_		
_	de proye	·							- '					
PΕ	=					E	LE	VAC	ION		_16	P_UTM_Si	stem wgs	884
<u>Datos</u> <u>personales:</u> (iniciar con			Parer	entesco	S	exo			Eda	ıd		Nivel de escolarid		Ocupación
es	ponsable de mbres y ap				M	F	1 -5	6- 15	15- 25	26- 35	36+	d		
	Cond	iciones	de l	a Vivier	nda	(Pre	50 ,	234	l ma	arcar	con	X una o m	ás respu	estas)
		.0.00		u 111101	iuu	(, g, ,	- , 0 ,	,	ai oai	0011	in a comme	ao roopa	σοιασή
•	La vivienda es:	a)Pro _l	oia —	b)pres	tad	a			C)alqı	uilad	a		
-	Las Paredes son:	a)Bloo	que	b)Ladr	illo	c)	Ma	dera	ı c	d)Add	obe	e)Ripios	f)Otros	
	El piso es:	a)Mad	lera	b)Tierr	a	•	Ва			•		e)Otros	f)Otros	
•	El techo es:	a)Zind	;	b)teja		c)	Ma	dera					f)Hoja	g)Oti

5.	Cuantas division es tiene la	a)Tres	b)dos	c)No tiene
6.	vivienda Resume n del estado de la vivienda	a)Buena ———	b)Regular ———	c)Mala
	¿Cuántas p	personas del	hogar traba	LA FAMILIA jan? al Fuera de la comunidad HMTotal
¿Cu	ál es el ing	reso econór	nico del mes	, en este hogar? C\$
	_			a eléctrica, realizado en el hogar? C\$
8.	¿En que tra	abajan las pe	ersonas del h	•
خ .9	Qué Cultivo	os realizan?	a) arroz	b) Frijoles c) Maíz d) Otros
10.	¿Tienen G	anado? No_	_ Si	
11.	Tienen Ani	males domé	sticos? No_	Si cuáles? A) Cerdos b) gallinas
12.	Los Animal	les doméstic	os están? a)	Encerrados b) Amarrados c)Sueltos
13.	Los animal	es doméstic	os se abaste	cen de agua en?
A) E	:I riob) C	Quebrada	_c) Pozo	
III. S	SANEAMIE	NTO E HIG	IENE AMBIE	NTAL DE LA VIVIENDA (observar, verificar)
14.	Tienen letri	ina? A) Si	_ en qué est	ado se encuentra a) Buena b) Regular
c) M	lala			
b) N	lo Esta	ría dispuesto	a construir	su letrina si no
15.	¿Quiénes ι	usan la letrin	a? A) Adulto	s b) Niños/as c) Otros familiares
16.	¿La letrina	está constru	ıida en suelo	? A) Rocoso b) Arenoso c) Arcilloso
17.	¿Qué hace	n con las ag	uas servidas	s de la casa? a) la riegan
b) la	ı dejan corı	rer c) tie	nen zanja de	e drenaje

D) tiene filtro de drenaje
18. Existen charcas en el patio? A) si (pasar No. 19) b) No
19. ¿cómo eliminan las charcas? A) Drenando b) aterrando c) otros
IV. RECURSOS Y SERVICIOS DE AGUA
20. ¿Cuentan con servicio de agua? A) No cómo se abastecen?
B) si cuál/Qué tipo:
21. ¿Quién busca o acarrea el agua?
a) La mujer B) El hombre c) los niños/as d Otros Quién?
22. ¿Cuántos viajes realizan diario para buscar el agua que utilizan?
23. ¿En que almacenan el agua? A) Barriles b) Bidones c) Pilas
24. los recipientes en que se almacenan el agua se mantienen
a. Tapados Destapados c. Cómo (verificar)
25. La calidad de agua que consumen en el hogar, la considera: a) Buena
b) Regular c) Mala
26. ¿Qué condiciones tiene el agua que consumen (se puede marcar varias situaciones)
a. tiene mal sabor b. tiene mal olor c. tiene mal olor
V. PROGRAMA DE AGUA POTABLE Y SANEAMIENTO RURAL
27. ¿Conoce el programa de agua potable y saneamiento rural del FISE?
a. Si b) No c) Poco Qué sabe?
A. si b. No c) Porqué 29. ¿cuánto estaría dispuesto/a a pagar por este servicio? (marcar una)
a. C\$ 20 a 35b. C\$ 36 a 50 c) C\$ 51 a más
d. no estaría dispuesto/a: Porqué
30. Los miembros de este hogar pertenecen a alguna organización?Si Qué tipo? A. Productiva B. Social C. Religiosa
OI QUE LIDO: M. I TOUNGLIVA D. DOUIAI G. NEIIUIUSA

D. Otra Nopor	qué?				
31. ¿Cuántos miembros de	el hogar _l	oarticipar	n en la org	anizaciór	n comunitaria?
a. Hombres b. Mu	jeres	c. t	otal		
32. Las personas de este h	ogar PAF	RTICIPAE	RIAN de fo	rma orga	nizada, en la construcción
•	_			_	
de un proyecto de agua po	-		no para si	u comuni	uau. a) si b) No c
Por qué					
VII. SITUACION DE SALU	ID EN LA	VIVIEN	<u>DA</u>		
Enfermedades padecidas	por los m	iembros	del hogar	durante e	el pasado año.
		Grupos	de edad		Observaciones
Enfermedades	1-5	6-15	16-25	36+	
Diarrea					
Tos Resfriados					
Malaria					
Dengue					
Parasitosis					
Infección renal					
Tifoidea					
Hepatitis					
Infecciones dérmicas (Piel)					
Otras					
33. Están vacunados los n	iños/as?	A) si	b)No	Por qu	é
34. Las personas que habi		•	,	•	
Lavado de manos a. si t	o. No c	. Porqué	?		
Hacer buen uso del agua a	a) si b)	No c)	Por qué?		
Hacer buen uso de la letrir	na a) Si_	b) No_	Por	qué?	
35. ¿Cuántos niños/as nac	cieron y/c	fallecier	on en este	e hogar, c	lurante el año pasado?
Vivos/as: Niñas Niños_	Total				
Fallecidos/as: Niñas Ni	ños	Γotal	_		
Nombre del encuestado	 r(a)	Nombre	del super\	visor (a)	Fecha

Fuente: Facilitado por la Alcaldía Municipal de San Rafael del Norte – Jinotega

Anexo N°. 3 - Método de aforo

	Aforo por el	método volumétrico				
Localidad:		Altitud:				
Fecha:		Temporada:				
Hora:	Ubicación:					
Clima:						
Medición	Volumen (Its)	Tiempo (Seg)	Caudal			
1						
2						
3						
4						
5						

Fuente: propia

Anexo N°. 4 - Resultados de calidad de agua

Universidad Nacional Autónoma de Nicaragua

Centro para la Investigación en Recursos Acuáticos de Nicaragua Hospital Monte España 300 m al norte, Teléfonos (505) 2278 6981, 2278 6767, 2278 6982 Telefax (505) 2267 8169, apartado postal 4598, correo: ventas.servicios@cira.unan.edu.ni

CLIENTE

WATER FOR PEOPLE Del Silais 16m al Norte Jinotega, Jinotega Sra. Juana Vanessa Pérez Oporta Tel. 2782 - 2273 / 8708 - 5036

MATRIZ DE LA MUESTRA FUENTE

IDENTIFICACIÓN PROPORCIONADA POR EL CLIENTE LUGAR Y/O COMUNIDAD MUNICIPIO, DEPARTAMENTO COORDENADAS ELEVACIÓN

FECHA DE MUESTREO HORA DE MUESTREO CÓDIGO DEL LABORATORIO

FECHA DE RECEPCIÓN FECHA DE INICIO DEL ANÁLISIS FECHA DEL REPORTE

AGUA NATURAL 2 La Ermita Captación, San Marcos San Rafael del Norte, Jinotega 13.85940 N: 86.55750 E 853 msnm 2019-02-26 09 h 02

AN-0131 2019-02-27 2019-02-27

		Limite y / o Rango		u •			Valores máximos admisible
Parámetros	Método	de Detección	Resultados	(K=2; 95,45%)	Unidades	meq.Γ¹	CAPRE 3
TURBIDEZ	2130.B 1	0,00 a 999	4,55		UNT		5,00 UNT
pH A 25,0 °C	4500-H.B ¹	0,10 a 14,00	7,59	± 0,03	Unidades de pH		6,5 - 8,5 Unidades de pH
CONDUCTIVIDAD ELECTRICA A 25,0 °C	2510.B 1	1,0 a 100 000,00	534,00	± 5,90	μS.cm ⁻¹		Sin referencia
SÓLIDOS TOTALES DISUELTOS	1030. E 1		342,79		mg.l ⁻¹		1000,00 mg.l ⁻¹
COLOR VERDADERO	2120.B 1	5,0 - 100,0	0,32		mg.I ⁻¹ Pt-Co		15,0 mg.l ⁻¹ Pt-Co
SODIO	Electrodo IS - Na 2	10,00 - 1 000,00	54,60		mg.l ⁻¹	2,375	200,00 mg.F ¹
POTASIO	3500-K.B 1	0,17	14,00	± 0,21	mg.F ¹	0,358	10,00 mg.l ⁻¹
MAGNESIO	3500-Mg.B 1	0,09	9,14	± 0,61	mg.f ⁻¹	0,752	50,00 mg.l ⁻¹
CALCIO	3500-Ca.B 1	0,07	40,47	± 0,72	mg.f ⁻¹	2,019	Sin referencia
CLORURO	4110.B1	0,25	43,14		mg.t ⁻¹	1,217	250,00 mg.l ⁻¹
NITRATO	4110.B1	0,25	1,03		mg.f ⁻¹	0,017	50,00 mg.l ⁻¹
SULFATO	4110.B1	0,25	16,92		mg.f ⁻¹	0,352	250,00 mg. Г¹
CARBONATO	2320.B 1	2,00	< 2,00		mg.f ⁻¹		Sin referencia
BICARBONATO	2320.B 1	0,75	224,55		mg.t ⁻¹	3,680	Sin referencia
DUREZA TOTAL Como CaCO ₃	2340. C 1	0,11	138,60	± 1,79	mg.f ⁻¹	2,772	Sin referencia
ALCALINIDAD TOTAL Como CaCO ₃	2320.B 1	0,62	184,00		mg.f ¹	3,680	Sin referencia
ALCALINIDAD A LA FENOLFTALEINA	2320.B 1	1,67	< 1,67		mg.l ⁻¹		Sin referencia
SILICE REACTIVO DISUELTO	4500-SiO ₂ .C 1	0,15	109,62	± 1,99	mg.f1		Sin referencia
NITRITO	4500-NO ₂ .B 1	0,007	< 0,007		mg.f ⁻¹		0,10 ó 3,00 mg.l ⁻¹ **
HIERRO TOTAL	3500-Fe.B 1	0,01	0,03	± 0,03	mg.f ¹		0,30 mg.l ⁻¹
FLUORURO	4110.B 1	0,25	< 0,25		mg.f1		0,7 - 1,5 mg.l ⁻¹
AMONIO	4500-NH ₃ .F ¹	0,006	0,026	± 0,009	mg.t1		0,5 mg.l ⁻¹
BALANCE IONICO DE LA MUESTRA	1030. E 1		2,21		%		

* Incertidumbre asociada a la medición

Datos de campo proporcionados por el cliente pH: 7 Unidades de pH

Conductividad: 512 µS.cm⁻¹

Temperatura: 25,6 °C

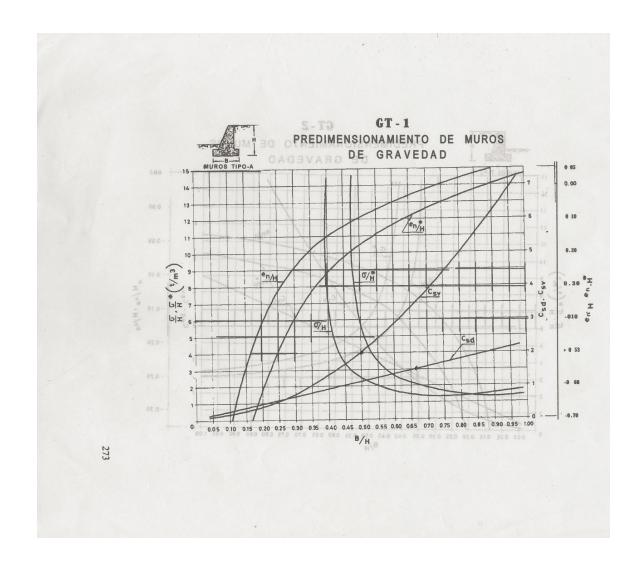
DECLARACIÓN DEL ASEGURAMIENTO Y ANALÍTICA EN ESTE REPORTE

En función de las previsiones contenidas en la N 04 001 05), el Laboratorio de Aguas Naturale codificada como AN-0131 fue captada, pres laboratorio por el Cliente. Ha sido procesada Operativos Normalizados establecidos po Aseguramiento de la Calidad de la Información Procedimientos en mención son los descritos e Operativos Normalizados del Laboratorio de Agu

Conservamos los resultados cualitativos procesamiento de la muestra que se encuentra análisis solicitado en la bitácora general del estos registros los mantendrá la Institucion por i

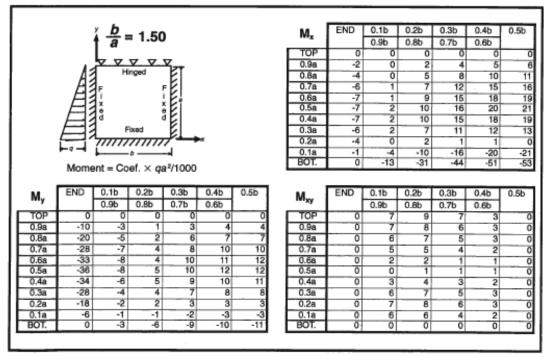
Los resultados emitidos en este informe se ensayado. El Cliente está en libertad de repr resultados aquí anotados, bajo su propio no citar al Centro bajo expresa y formal autorizaci el CIRA/UNAN-Managua se compromete a contenido de este informe de resultados, salvo del Cliente.

Managua, a los diecinueve días del mes de ma

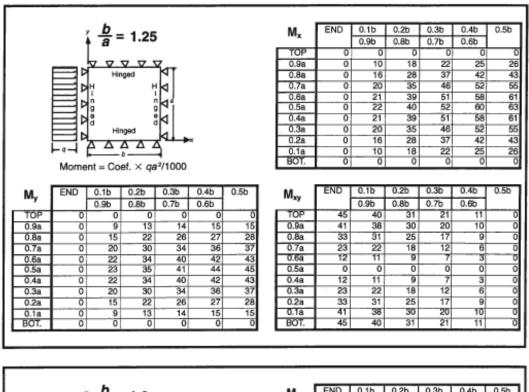

ÁREA TÉCNICA, ASEGURA Y CONTROL DE LA CAI

American Public Health Association (APHA). (2012). Standard Methods for the Examination of Water and Wastewater. 22 nd Edition Washington: APHA.

Thermo Orion, (2008), ROSS Sadium Electrodes Instruction Manual, Model 86-11BN. USA: Thermo Orion.


³ Comité Coordinador Regional de Instituciones de Aqua Potable y Saneamiento de Centro América, Panamá y República Dominicana (CAPRE) (1993). Normas de Calidad para consumo humano. Costa Rica

Anexo N°. 5 - Pre dimensionamiento de muros de gravedad


Anexo N°. 6 Caso 4 de la PCA (concrete rectangular tanks, revised fifth edition)

2 - 26 Rectangular Tanks

Anexo N°. 7 Caso 10 de la pca (concrete rectangular tanks, revised fifth edition)

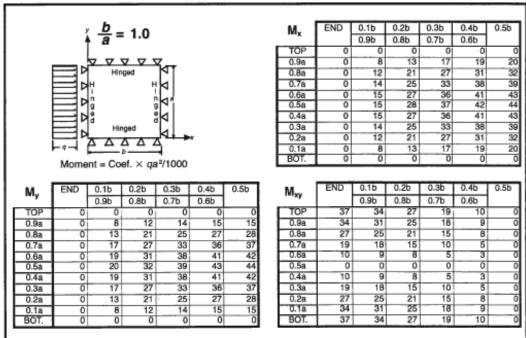


Plate Analysis Results 2 - 63

Anexo N°. 8 Take off Pilas rompe presión.

TRAZO Y NIVELACIÓN									
LARGO	ANCHO	AREA							
1.4									

MEJORAMIENTO DE SUELO								
LARGO ANCHO ESPESOR VOLUMEN								
2	1.8	0.3	1.08					

	CONCRETO PARA FUNDACIONES									
EJE	EJE DESCRIPCION ANCHO LARGO LONGITUD CANTIDAD VOLUMEN									
	LOSA DE FONDO	1.4	1.2	0.1	1	0.17				
	TOTAL CONCRETO PARA FUNDACIONES 0.1									

	FORMALETA PARA FUNDACIONES										
	LADO LADO LADO LADO										
EJE	EJE DESCRIPCION L1 L2 LONGITUD 1 2 3 4 CANTIDAD AREA									AREA	
	LOSA DE FONDO	1.4	1.2		0.14	0.12	0.14	0.12	1	0.52	
				TOTAL F	ORMALE	TA				0.52	

	ACERO PRINCIPAL PARA FUNDACIONES											
	CANTIDAD DE											
EJE	DESCRIPCION	ELEMENTOS	LONGITUD	ANCLAJE	CANTIDAD	HIERRO (ML)	PESO (KG)					
	LOSA DE FONDO	11	1.2	0	1	1.2	2.14					
	LOSA DE FONDO	9	1.4	0	1	1.4	2.50					
		TOT	TAL ACERO I	√°3			4.64					

	ESTRUCTURAS DE CONCRETO									
EJE	DESCRIPCION ANCHO LARGO LONGITUD CANTIDAD VOLUMEN									
	C-1	0.15	0.15	1.15	4	0.10				
	LOSA SUPERIOR	1.4	1.2	0.1	1	0.12				
		TOTAL DE	CONCRET	0		0.22				

	FORMALETA PARA ESTRUCTURAS DE CONCRETO										
EJE	DESCRIPCION	L1	L2	LONGITUD	LADO 1	LADO 2	LADO 3	LADO 4	CANTIDAD	AREA	
	C-1	0.15	0.15	1.15	0.1725	0.1725			4	1.38	
	LOSA SUPERIOR	0.9	1.1		0.5				1	0.50	
	LOSA SUPERIOR	1.4	1.2	0.1	0.14	0.12			2	0.52	
	AREA TOTAL DE FORMALETA									2.40	

	ACERO PRINCIPAL PARA ESTRUCTURAS DE CONCRETO										
EJE	DESCRIPCION	CANTIDAD DE ELEMENTOS	LONGITUD	ANCLAJE	CANTIDAD	HIERRO (ML)	PESO (KG)				
	C-1	3	1.15	0.8	4	23.40	28.83				
	LOSA SUPERIOR	11	1.2	0.4	1	17.60	21.68				
	LOSA SUPERIOR	9	1.4	0.4	1	16.20	19.96				
	LOSA SUPERIOR	7	0.7	0	2	9.80	12.07				
TOTAL ACERO N°3 (LB)											

	ACERO PRINCIPAL PARA ESTRUCTURAS DE CONCRETO								
EJE	DESCRIPCION	CANTIDAD DE ESTRIBOS	DESARRO LLO	CANTIDAD	HIERRO (ML)	PESO (KG)			
	C-1	12	0.4	4	19.2	10.4448			
	TOTAL DE ACERO N°2 (LB)								

PARED DE LADRILLO				
EJE	AREA			
A	1.27			
В	1.27			
1	1.04			
2	1.04			
TOTAL	4.62			

AREA DE FINO PIZARRA						
EJE	AREA					
Α	1.27					
В	1.27					
1	1.04					
2	1.04					
LOSA DE FONDO	0.9					
TOTAL	5.52					

AREA DE REPELLO Y FINO EXTERNA					
EJE	AREA				
A	1.47				
В	1.47				
1	1.72				
2	1.72				
TOTAL	6.38				

AREA DE PINTURA						
EJE	AREA					
Α	1.47					
В	1.47					
1	1.72					
2	1.72					
LOSA SUPERIOR	1.19					
TOTAL	7.57					

Anexo N°. 9 - Take off Tanque de almacenamiento

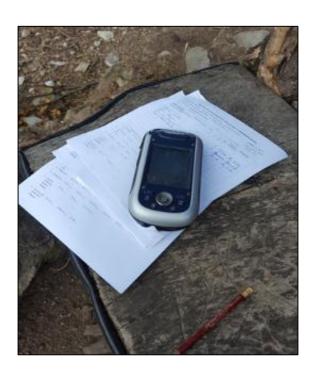
LARGO	ANCHO	AREA	PROFUNDIDAD	VOLUMEN DE MEJORAMIENTO
5.8	5.8	33.64	1.5	50.46

	CONCRETO ESTRUCTURAL									
EJE	DESCRIPCION	ANCHO	LARGO	LONGITUD	CANTIDAD	VOLUMEN				
	LOSA DE FONDO	0.15	5.8	5.8	1	5.05				
	LOSA SUPERIOR	0.15	3.86	3.86	1	2.14				
	PAREDES	0.18	3.5	2	4	5.04				
	TOTAL CONCRETO									

	ACERO DE REFUERZO													
EJE	DESCRIPCION		NTIDAI DE MENT(LONGITU	JD	ANCL	.AJE	CA	NTIDAD	HIERR	O (ML)	PES	60 (LB)
	LOSA DE FONDO		39		5.8		0			2	45	2.4		557.36
	LOSA SUPERIOR		22		3.86		0.	8		2	205	5.04		252.61
	PAREDES		14		2		0.8			4	15	6.8		193.18
		FOR	MALE	TA	PARA TA	NQ	UE DE	ALM	ACE	NAMIEN	ITO			
EIE	DESCRIPCION	1.4	1.2		MOITUD	1 4	DO 1	LAD	0.2	LADO	LADO	CANITI		ADEA
EJE	DESCRIPCION	L1	L2	LU	NGITUD	LA	DO 1	LAD		3	4	CANTI	UAU	AREA
	LOSA DE FONDO	0.15			5.8		5.65	0	.87				1	6.52
	LOSA SUPERIOR	0.15	3.5		3.86		2.316	12	.25				1	14.57
	PAREDES	3.5	3.86		2		28	59.5	598				1	87.60
	AREA TOTAL DE FORMALETA										108.68			

AREA DE REPELLO						
DESCRIPCIÓN	AREA					
AREA INTERIOR	28.00					
AREA EXTERIOR	30.88					
AREA LOSA SUPERIOR	14.90					
AREA LOSA SUPERIOR INTERNA	11.61					

CANAL	
LONGITUD	23.86


THE TEOCHTON ENTON		11.01			
DESCRIPCIÓN	Desarrollo		Elementos	HIERRO (ML)	PESO (LB)
Estribo Largo	0.7	744	48	35.712	44.00
Estribo Largo	0.0	544	48	26.112	32.17
Estribo Corto	0.1	186	42	7.812	9.62
Principal		2.9	48	139.2	171.49
Total					257.29

Anexo N°. 10 - Memoria fotográfica

Fotografía 1. Encuesta realizada a los pobladores de la comunidad La Ermita

Fotografía 2. Ubicación de coordenadas UTM para la localización de la zona

Fotografía 3. Afloramiento de la fuente

Fotografía 4. Aforo del caudal de la fuente captada

Fotografía 5. Ubicación de puntos de control georreferenciados

Fotografía 6. Levantamiento topográfico en la comunidad La Ermita

