

UNIVERSIDAD NACIONAL DE INGENIERIA

Facultad de Tecnología de la Construcción

Monografía

Diseño de la estructura de pavimento articulado de 1.2 km del Barrio 16 de Julio, casco urbano de Estelí, por medio del método de la AASHTO 93.

Para optar al título de ingeniero civil

Elaborado por

Br. Yudelky Vanessa Pineda Rodríguez.

Br. Julio Josué Gutiérrez Rodríguez.

Tutor

Msc.Ing. Jimmy Sierra Mercado.

Managua, 2016

UNIVERSIDAD NACIONAL DE INGENIERÍA. FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN.

Decanatura.

Managua 21 de Abril del 2016

Decano:

Dr. Ing. Oscar Gutiérrez Somarriba.

Por medio de la presente es de mi agrado comunicarle que el tema de monografía titulado DISEÑO DE LA ESTRUCTURA DE PAVIMENTO ARTICULADO DE 1.2 KM DEL BARRIO 16 DE JULIO, CASCO URBANO DE ESTELÍ, POR MEDIO DEL MÉTODO DE LA AASHTO 93. desarrollado por los Br. Yudelky Vanessa Pineda Rodríguez.Br. Julio Josué Gutiérrez Rodríguez.

Ha cumplido con las correcciones y observaciones realizadas, en tal sentido expreso la conformidad del trabajo realizado, por lo que considero pertinente realizar las gestiones administrativas propias de la defensa.

Sin más a que referirme se despide.

Ing. Jimmy Sierra Mercado

TUTOR

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

DEC-FTC-REF-No.1059 Managua, octubre 21 del 2015.

Bachilleres YUDELKY VANESSA PINEDA RODRIGUEZ JULIO JOSUE GUTIERREZ RODRIGUEZ Presente

Estimados Bachilleres:

Es de mi agrado informarles que el PROTOCOLO de su Tema Monográfico titulado "DISEÑO DE LA ESTRUCTURA DE PAVIMENTO ARTICULADO DE 1.2 KM DEL BARRIO 16 DE JULIO, CASCO URBANO DE ESTELI, POR MEDIO DEL METODO AASHTO 93., ha sido aprobado por esta Decanatura.

Asimismo les comunico estar totalmente de acuerdo, de que el MSc.Ing. JIMMY SIERRA MERCADO, sea el tutor de su trabajo final.

La fecha límite, para que presenten concluido su documento, debidamente revisado por el tutor guía será el 21 de abril del 2016.

Esperando puntualidad en la entrega de la Tesis, me despido.

Atentamente,

Dr. Ing. Oscar Gutierrez Somarriba

Decano

CC: Protocolo Tutor Archivo*Consecutivo DIOGS*mary

Dedicatoria.

Principalmente a Dios, por darnos la vida y ser nuestro guía espiritual dándonos la sabiduría, fortaleza y el entendimiento para así poder cumplir nuestras metas como profesionales de éxitos.

A nuestros padres que son el pílar más importante y demostrarnos su cariño y apoyo incondicional, que han sabido formarnos con buenos hábitos, valores, sacrificio, dedicación y brindarnos su apoyo día a día para poder lograr nuestro objetivo, gracías por iluminar nuestro camino con su presencia a lo largo de nuestra formación universitaria y ayudarnos a confiar en nosotros, ya que de ellos aprendimos que todo lo que nos proponemos lo podemos lograr.

A la alcaldía de Estelí, por brindarnos su apoyo incondicional, por darnos la oportunidad de aportar al desarrollo de nuestro municipio y facilitarnos medios para culminar exitosamente nuestro trabajo.

A nuestro tutor Msc.Ing. Jímmy Sierra por dirigirnos y corregirnos en cada etapa de este trabajo monográfico, por animarnos a continuar luchando, darnos lecciones que ayudaron a afianzar nuestros conocimientos.

Yudelky Pineda Rodríguez.

Julio Gutiérrez Rodríguez.

Agradecímiento.

Primeramente, a Dios por protegernos durante todo nuestro camino y darnos las fuerzas necesarias para seguir adelante y habernos permitido llegar hasta este punto y lograr nuestros objetivos, además de su infinita bondad y amor.

A nuestros padres, por brindarnos apoyado incondicional en todo momento, por sus consejos, sus valores, por la motivación constante que nos han permitido ser personas de bien, pero más que nada, por su amor, ejemplos de perseverancia que nos han enseñado a no rendirnos ante nada, por el valor mostrado para salir adelante.

A la alcaldía municipal de Estelí, en especial al personal del área de planificación urbana por brindarnos información necesaria para nuestro trabajo y por apoyarnos en lo que respecta con la topografía, agradecemos al topógrafo-Ingeniero Jairo Saldaña por compartir sus conocimientos con nosotros.

Al tutor Msc.Ing. Jímmy Sierra por su apoyo y la sabiduría que nos trasmitió en el desarrollo de nuestra formación profesional por las explicaciones intensivas que nos dío, por estar siempre muy atento y pendiente de nuestro trabajo, por sus consejos de vida, por ser una persona humilde y trabajadora, y por toda la información bibliográfica que nos brindó.

Yudelky Pineda Rodríguez.

Julio Gutiérrez Rodríguez.

RESUMEN EJECUTIVO

El presente trabajo monográfico, comprende todos los criterios y estudios técnicos necesarios para la realización del proyecto titulado: Diseño de la estructura de pavimento articulado de 1.2 km del Barrio 16 de Julio, casco urbano de Estelí, por medio del método de la AASHTO 93.

Estructura del contenido.

- I. Generalidades.
- II. Estudio Geotécnico.
- III. Estudio de Tráfico.
- Diseño Estructural de Pavimento.

CAPÍTULO I: GENERALIDADES.

Este capítulo aborda las generalidades del proyecto como donde estará ubicado, una breve introducción, antecedentes del barrio, justificación sobre la importancia del diseño de los 1.2 km de adoquinado y objetivos planteados necesarios para lograr con éxito su diseño final.

CAPÍTULO II: ESTUDIO GEOTÉCNICO.

Se hicieron 17 sondeos manuales sobre la calle a diseñar, con el objetivo de identificar las propiedades y clasificación de los diferentes estratos existentes hasta una profundidad máxima de 1.50 metros, los resultados los materiales que predominan son suelos arcillosos del tipo A-2-7 y A-7-6.

El banco de materiales a utilizar es el **Nº2** (**Los Chilamates**), está conformado por materiales granulares, compuestos por fragmentos de Grava fina a gruesa, con arena limosa, que según el sistema de clasificación AASHTO son suelos del tipo A-1-a con índice de grupo 0, según las especificaciones NIC-2000, son suelos de buena calidad para sub-rasante.

La información necesaria del banco de material disponible cerca de la zona, fue facilitada por la Alcaldía Municipal de Estelí.

CAPÍTULO III: ESTUDIO DE TRÁFICO.

Se basa analizar la condición actual del tráfico sobre el tramo de carretera en estudio y su respectiva proyección; tomando como parámetro los volúmenes de tránsito obtenidos mediante aforos en el sitio de estudio, ya que el tráfico es uno de los aspectos más significativos a considerar en el diseño de pavimentos

El aforo vehicular se realizó durante 7 días sobre la vía, se obtuvo el Tránsito Promedio Diario Anual (TPDA) de 436 vehículos.

A demás, se estimó una tasa de crecimiento del **3.85%**, tomando en cuenta los datos históricos del TPDA de la estación de conteo vehicular más cercana a la vía (Estación 107), se realizaron las correlaciones del TPDA-PIB y del TPDA-Población.

Al proyectar el tráfico actual, considerando un periodo de diseño de 15 años, se obtuvo el número de repeticiones por eje equivalente (ESAL's) o W_{18} =266,216.00

CAPÍTULO IV: DISEÑO DE LA ESTRUCTURA DE PAVIMENT ARTICULADO.

Conociendo las propiedades del suelo y una vez realizada las proyecciones del tráfico se procedió a calcular los espesores del paquete estructural utilizando los nomogramas y se finalizó haciendo uso del software WinPAS (Pavement Analysis Software).

Se diseñó una alternativa de pavimento articulado aplicando la metodología AASHTO 93.

Los principales valores de las variables para determinar los espesores estructura de pavimento articulado del tramo en estudio fueron:

El paquete estructural para el tramo dio como resultado: una capa de rodamiento de **4.00 pulgadas** (espesor estándar del adoquín de concreto) y una base granular de **5.00 pulgadas**. Este paquete cumple con los requerimientos mínimos establecidos por la AASHTO 93.

En este capítulo se utilizó el SoftwareWinPAS (Pavement Analysis Software 1.0.4), para verificar los cálculos realizados de forma manual con los resultados del programa, con el objetivo de verificar que el diseño cumpla a los esfuerzos que será sometido.

ÍNDICE

CAPÍTULO I:GENERALIDADES	1
1.1 INTRODUCCION	1
1.2 ANTECEDENTES	2
1.3 JUSTIFICACION	3
1.4 OBJETIVOS	4
1.4.1 Objetivo General	4
1.4.2 Objetivos Específicos.	4
CAPÍTULO II:ESTUDIO GEOTÉCNICO	5
2.1 Metodología	6
2.2. Ensayos de Suelos en Línea.	6
2.2.1. Resultados de Ensayes a Muestras de Sondeos de Línea	7
2.3. Resultados de Ensayes a Muestras de Fuentes de Materiales	9
2.3.1. Consideraciones para elección del banco a utilizar	10
2.4. Banco de materiales a utilizar	11
2.5. CBR de Diseño.	12
CAPÍTULO III:ESTUDIO DE TRÁNSITO	15
3.1 Generalidades	16
3.2. Recopilación de datos	16
3.2.1. Tipos de vehículos	17
3.2.2. Clasificación del tipo de vehículo por la disposición de sus eje	s18
3.3. Procesamiento de información	18
3.3.1. Tránsito promedio diurno	18

3.3.2. Determinación del Tránsito Promedio Diario Anual (TPD	νA) 19
3.3.3. Tasas de crecimiento	21
3.3.4. Proyección de tráfico	24
3.4. Análisis de la información obtenida	29
3.4.1. Análisis de la tasa de crecimiento a utilizar	30
3.5. Tráfico de diseño	30
3.5.1. Período de Diseño (PD)	31
3.5.2. Factor de Crecimiento (FC).	31
3.5.3. Factor Distribución Por Dirección (FD)	32
3.5.4. Factor Carril	32
3.5.5. El Índice de Serviciabilidad Inicial (Po)	33
3.5.6. El Índice de Serviciabilidad Final (Pt).	33
3.5.7. Perdida de Serviciabilidad (ΔPSI)	34
3.5.8. Número Estructural Asumido (SN).	34
3.5.9. Factor de Equivalencia (FESAL).	34
3.6. Ejes Equivalentes (ESAL o W18)	35
CAPÍTULO IV:DISEÑO DE PAVIMENTO	37
4.1. Generalidades	38
4.2. Consideraciones del Diseño AASHTO 93	38
4.2.1. Carga de Ejes Simples Equivalentes	38
4.2.2. Confiabilidad	39
4.2.3. Desviación estándar	40
4.2.4. Serviciabilidad	41
4.2.5. Coeficiente de drenaje	41
4.2.6. Cálculo del CBR de diseño	42

4.2.7. Módulo de Resilencia (MR)4	13
4.2.9. Número Estructural4	ļ5
4.3. Calculo de Espesores	ļ 5
4.3.1. Cálculo del espesor de la base (D ₂)	ļ 6
4.3.2. Espesores finales de Diseño	ļ 7
4.4. Uso del programa WinPAS4	19
CONCLUSIONES	50
RECOMENDACIONES	51
BIBLIOGRAFÍA5	52
ANEXOS	. I
ANEXOS CAPÍTULO I: GENERALIDADES	Ш
Anexo Nº 1: Localización del Proyecto	Ш
Anexo Nº 2: Fotos del Barrio en estudio	V
ANEXOS CAPÍTULO II: ESTUDIO GEOTÉCNICO	۷I
Anexo Nº 3: Ubicación de Sondeos Manuales de Suelo	۷I
Anexo № 4: Resultados ensayes de suelos "Barrio 16 de Julio"	/
Anexo Nº 5: Clasificación de suelos, según AASHTOI	X
Anexo Nº 6: Estratigrafía del Terreno "Barrio 16 de Julio"	Χ
Anexo Nº 7: CBR de Diseño de la Sub-rasante	ΧI
Anexo Nº 8: Resultados de laboratorio de banco de materiales a utilizarX	(II
ANEXOS CAPITULO III: ESTUDIO DE TRÁFICOX	Ш
ANEXO Nº 9: Ubicación de Aforo VehicularX	Ш
ANEXO Nº 10: Formato para conteo de Tráfico Vehicular por Día XI	V
Anexo Nº 11: Conteo de Tráfico Vehicular por DíaXI	V

Anexo Nº 12: Indicadores Macroeconómicos 2014 XVI	II
Anexo Nº 13: Tipología y Descripción VehicularXI	X
Anexo Nº 14: Dependencia de la EMC 107 entre ECD y ECS	X
Anexo Nº 15: Factores 2014 EMC 107X	X
Anexo Nº 16: Listado Histórico TPDA Estación 107XX	(1
Anexo Nº 17: Diagrama de cargas permisibles por tipo de vehículo XX	(1
Vehículos Liviano XX	(1
Anexo Nº 18: Diagrama de cargas permisibles por tipo de vehículo XX	Ш
Vehículos PesadosXX	Ш
Anexo Nº 19: Factores Equivalentes de Cargas, Ejes SimplesXXI	II
Anexo Nº 20: Factores Equivalentes de Cargas, Ejes TándemXXI	V
Anexo Nº 21: Interpolación de factores equivalentesXX	V
ANEXOS CAPITULO IV: DISEÑO DE PAVIMENTOXXV	II
AnexoNº 22: Coeficiente estructural a2, de la capa BaseXXV	II
Anexo Nº 23: Ábaco de Diseño AASTHO para SN _{requerido} XXVI	Ш
Anexo Nº 24: Uso del software de diseño WinPASXXI	X
GLOSARIOXXXI	Ш

CAPÍTULO I GENERALIDADES

1.1 INTRODUCCION.

El transporte de un país es vital en la economía por lo que es uno de los componentes importantes que genera divisas al país, ya que permite a los ciudadanos transportarse ya sea para trasladar sus producciones o bien hacer uso de este servicio.

En Nicaragua el acceso vial es de mucha importancia para el desarrollo social y económico. En este sentido, la mejora de la accesibilidad ayuda al crecimiento de los sectores productivos y del empleador lo cual esto provoca un futuro económico positivo para el departamento.

El barrio 16 de Julio se ubica en la salida norte de Estelí. (Ver Anexo Nº1 del Capítulo I, pág. II). Es una red vial de significativa importancia por encontrarse ahí una serie de fábricas tabacaleras altamente productivas por lo que es necesario una vía en buen estado en todo tiempo para transportar la producción.

La metodología que se empleo es el método AASHTO 93, ya que este considera las cargas a las que está expuesta la estructura de pavimento debido al tráfico que circula por ella, cabe mencionar que dicho diseño deberá cumplir con los criterios y especificaciones a utilizar en este trabajo se basará en la recopilación de datos de campo para los estudios de suelos.

El diseño deberá cumplir con los criterios y especificaciones de la NIC-2000, el cual aporta elementos técnicos que se debe de tomar en cuenta para realizar proyectos de construcción con mayor durabilidad especialmente con superficies de rodadura de carreteras, para una mejor seguridad y comodidad de los usuarios.

1.2 ANTECEDENTES.

En el Barrio 16 de Julio de la ciudad de Estelí la topografía es accidentada, debido al crecimiento urbano, este barrio es relativamente nuevo, por eso sus calles en su totalidad no poseen cunetas ni un buen revestimiento de la carpeta de rodamiento, en consecuencia, la dificultad del acceso del transporte público y privado, lo que empeora en el periodo de invierno por el estancamiento de las aguas superficiales. (Ver Anexo N° 2 del Capítulo I, pág. IV).

El tramo en estudio se encuentra en mal estado por lo que los pobladores han demandado desde hace 9 años la mejora de este tramo. Su último recarpeteo fue en el periodo de gobierno del Alcalde Pedro Pablo Calderón en el año 2006.

En el año 2009, ENACAL excavo todas las calles de este barrio para instalar tuberías de aguas negras y agua potable, lo que provoco que la carpeta de rodamiento no brinde las condiciones mínimas para transitar y además su drenaje pluvial quedara en malas condiciones.

Los pobladores tienen muchos motivos para requerir una infraestructura vial en buenas condiciones, por lo cual nace la necesidad de dicho proyecto ya que la zona está experimentando un gran avance económico debido al asentamiento de fábricas que se dedican al procesamiento del tabaco, los que se beneficiarían directamente con la mejora de esta vía que utilizan para transportar su producción.

Este estudio pretende dar respuesta a la problemática del barrio; lo que permitirá mejorar las condiciones de vida de sus habitantes y promover un desarrollo económico acorde a las nuevas exigencias.

1.3 JUSTIFICACION.

En el barrio 16 de Julio es una zona donde se encuentran concentradas varias fábricas tabacaleras que utilizan de ruta este barrio lo que, en el aspecto económico, los costos productivos se ven notablemente alterados, por la dificultad que se les presenta de trasladar materia prima, trabajadores y maquinaria. En temporada de invierno el acceso del transporte privado y colectivo en las calles se da con gran dificultad.

Las empresas tabacaleras y los pobladores que son alrededor de 200 familias ubicadas a lo largo del barrio se beneficiaran de manera directa, ya que habrá una reducción en ahorro de los costos de operación para que el transporte público y privado que tendrá acceso al barrio con mayor facilidad y de manera indirecta a los barrios colindantes zona norte de la ciudad.

La alcaldía se beneficiará directamente al brindarles un diseño de la estructura de pavimento articulado, que le servirá para que se gestione fondos para la formulación de este proyecto.

Este trabajo surge por la iniciativa de realizar el diseño del pavimento articulado con adoquines de 1.2 km de este barrio utilizando el método AASHTO 93 ya que es uno de los métodos confiables y utilizados. Así mismo este trabajo servirá para afianzar los conocimientos teóricos que se adquirieron a lo largo de la carrera y así optar al título de Ingeniero Civil.

1.4 OBJETIVOS.

1.4.1 Objetivo General.

Diseñar la estructura de pavimento articulado con adoquín de 1.2 km del barrio 16 de Julio, casco urbano de Estelí, por medio del método de la AASHTO 93.

1.4.2 Objetivos Específicos.

- Realizar un estudio geotécnico a lo largo de la vía y en el banco de materiales para determinar las propiedades físico-mecánicas del suelo esenciales para el diseño de la estructura de pavimento.
- Realizar un estudio de tráfico por medio de un aforo vehicular, para determinar el Tránsito Promedio Diario Anual (TPDA) y las cargas que actuarán sobre la estructura de pavimento.
- Determinar los espesores de la estructura de pavimento articulado por el método de la AASHTO 93 mediante nomogramas y el software WinPAS.

CAPÍTULO II ESTUDIO GEOTÉCNICO

2.1 Metodología.

La metodología implementada para la ejecución del estudio de suelos, comprende básicamente una investigación de campo a lo largo del prisma vial definido por el eje de la carretera del proyecto; mediante la ejecución de prospecciones de exploración (calicatas), y obtener muestras representativas y en cantidades suficientes para ser sometidas a ensayos de laboratorio.

En este capítulo se detallarán los procedimientos llevados a cabo a lo largo del tramo en estudio, con el propósito de evaluar las características físicas, mecánicas y condiciones de soporte del suelo, y así poder contar con la información básica necesaria para la determinación de los espesores a colocar a lo largo de la vía.

Todos los ensayos necesario para determinar sus propiedades, entre ellas: Humedad, Valor de Soporte (CBR), Granulometría, Límites de Atterberg (Límite líquido e índice plástico) y Densidad (Proctor), se realizaron en conformidad a lo establecido en las Normas de la ASTM (Asociación Internacional para la Prueba de Materiales), y AASHTO, los cuales son los siguientes:

Tabla N°1: Tipos de ensayos para estudio de suelos.

Ensayo	Especificación ASTM	Especificación AASHTO
Granulometría	D – 422	T – 2788
Límite Líquido	D – 423	T –8990 y 9087
Índice de Plasticidad	D – 424	T – 9097
Ensayo Proctor Modificado	D - 1557 - 91	T – 180 – 90
Ensayo CBR.	D - 1883 - 73	T – 193 – 81

Fuente: AASHTO, Tercero Edición. Año 2003. Páginas 53-85.

2.2. Ensayos de Suelos en Línea.

Con el propósito de conocer las condiciones y características del sub- suelo, a lo largo del tramo en estudio, se efectuaron 17 sondeos manuales distribuidos aproximadamente a cada 80 m y variando de acuerdo a las condiciones críticas del suelo. (Ver Ubicación de Sondeos en Anexo Nº 3 del Capítulo II, pág. VI).

En estos sondeos se tomaron 39 muestras alteradas representativas de cada estrato encontrado, marcando las profundidades respectivas. Cada sondeo se realizó con una profundidad máxima de 1.50 m.

El procedimiento utilizado para la extracción del material y la toma de muestras se basó en la excavación de un hoyo de 50 cm de diámetro con las herramientas adecuadas y utilizadas en función de la dureza de los estratos encontrados.

El material extraído fue colocado secuencialmente, de acuerdo a cada cambio de estratos observado en el lugar, a orillas de la excavación y posteriormente introducido en bolsas plásticas las cuales fueron identificadas con una ficha que detalló el nombre del proyecto, el número de sondeo, la estación progresiva, el número de la muestra, la profundidad a que fue tomada y el peso estimado. La agrupación de todas las bolsas que contienen los materiales extraídos, es decir, las muestras tomadas, constituyen la "radiografía" inicial del sitio en estudio.

2.2.1. Resultados de Ensayes a Muestras de Sondeos de Línea.

La profundidad a que fueron obtenidas las muestras en las perforaciones sobre la línea de las calles y avenidas fue de 1.50 metros máximo por lo que la información que se obtuvo de los ensayes brindó amplios datos del comportamiento del suelo a lo largo de la ruta en estudio.

Los resultados obtenidos brindan información acerca de la composición de los materiales en todos los estratos estudiados y de la familia de éstos en cada uno de ellos. (Ver resultados en Anexo Nº 4 del Capítulo II, pág. VII).

El primer estrato de suelos estudiados cuenta con una profundidad que varía entre 10 y 20 cm. A partir de los resultados, se logró conocer que existen dos tipos de material bien definidos en este primer estrato los cuales son A-2-7 y A-2-4. De forma esporádica se encontraron materiales del tipo A-7-5 y A-7-6. De estos materiales, los clasificados como A-2-7, A-7-5 y A-7-6 son los que representa mayor riesgo para conformar un pavimento

dado que sus límites líquidos e índice de plasticidad no son aceptables dentro de las especificaciones de sub-base o base.

Los tipos de Suelos A – 2 presentan una composición de grava y limos y grava y arcilla. Estos materiales, de acuerdo al análisis realizado al porcentaje que pasa por la malla 200 y a sus valores de Límite Líquido e Índice de Plasticidad, se subdividieron en:

A – 2 – 7: Son materiales que cuentan con Índice de Grupo entre 0 y 2; cuentan con valores de Límite Líquido e Índice de Plasticidad que varían entre 52 y 42 para el primero y entre 21 y 16 para el segundo. La fracción fina que contiene este material es de alta compresibilidad y de alta plasticidad

A – 2 – 6: El índice de Grupo de estos materiales es de 0 (cero). El ensaye de Límites de Atterberg determinó que estos materiales cuentan, como promedio, con Índices de Plasticidad de 13 y Límite Líquido de 40. El porcentaje que pasa por la malla 200 es de 19.

A – 2 – 4: Los materiales encontrados en los sondeos y que corresponden a la clasificación señalada, presentan un mejor comportamiento en cuanto a sus características físicas y mecánicas. El Límite Líquido determinado se ubica entre 38 y 36, mientras que el Índice de Plasticidad tiene un valor entre 9 y 10.

El segundo estrato empieza a partir de los 20 cm de profundidad y hasta los 1.50 metros, en la composición del material predominan los suelos con clasificación A – 2 – 7, A – 7 -6 y A – 2 – 6. Estos materiales se encuentran por debajo de la capa de sub-rasante con los mismos valores descritos en los suelos del primer estrato.

Para detallar los tipos de suelos y su profundidad, en base al trabajo de campo y los resultados obtenidos en los ensayos de laboratorio se realizó la secuencia estratigráfica del sitio en estudio. (Ver en Anexo Nº 6 del Capítulo II, pág. X).

2.3. Resultados de Ensayes a Muestras de Fuentes de Materiales.

Se tomaron muestras de tres (3) Bancos de Préstamo, los cuales son los siguientes:

Tabla N°2: Banco de materiales.

No. Del Banco	UBICACIÓN	UBICACIÓN PROCEDENCIA	
1	Km 137 carretera a Sebaco	Banco La Guanabana	18,000
2	Predios de la Escuela de Agricultura	Banco Los Chilamates	25,200
3	(1+ 200)	Banco Las Pintadas	38,400

Fuente: Alcaldía Municipal de Estelí.

Tabla N°3: Dimensiones de los bancos de materiales.

Dimensiones en metros (largo x alto x ancho)						
Banco # 1	60x10x30					
Banco # 2	75x12x28					
Banco # 3	80x20x24					

Fuente: Alcaldía Municipal de Estelí.

Tabla N°4: Características de los Bancos de materiales.

N. D.I			9,	6 que	pasa p	or tam	iz			L.L.	I.P.	CT ACTELCACION	CBR a Compactación		
No. Del Banco	2"	1½"	1"	3/4"	3/8"	#4	# 10	# 40	# 200	(%)	(%)	CLASIFICACION AASHTO	000/	050/	1000/
Danco												AASIITO	90%	95%	100%
Banco #1	100	99	91	84	77	68	62	43	31	37	9	A-2-4 (o)	27	78	97
Banco#2			100	84	70	48	14	7	2		NP	A-1-a (o)	34	82	100
Banco#3	100	88	84	77	68	61	47	28	13	40	9	A-2-5 (o)	30	67	89
	Observaciones: L.L= Limite Liquido, I.P= Indice de Plasticidad														

Fuente: Alcaldía Municipal de Estelí.

2.3.1. Consideraciones para elección del banco a utilizar.

2.3.1.1. Consideraciones para la Sub-Base.

Esta se puede definir como aquella capa que se coloca por debajo de la capa base y está alejada de las cargas que resiste directamente la capa de rodamiento, no se requieren materiales de gran resistencia como los de la capa base, por lo que su módulo de elasticidad es menor. Debe de cumplir las especificaciones de la tabla siguiente:

Tabla N° 5: Especificaciones de los materiales para la Sub – base.

N°	Propiedad	Limites	Norma de Prueba
1	Límite líquido	25% Máx.	AASHTO T-89
2	Limite Plástico	6% Máx.	AASHTO T-90
3	C.B.R	40% Mín.	AASHTO T-193
4	Desgaste de los Ángeles	50% Máx.	AASHTO T-96
5	Intemperismo Acelerado	12% Máx.	AASHTO T-104
6	Compactación	95% mín. del peso volumétrico seco máx. obtenido por medio de la prueba Proctor modificado	AASHTO T-191 y/o T-238

Fuente: Especificaciones Nic-2000. Sección: 1003.09 (a y b). 1003.23. II (a).

2.3.1.2. Consideraciones para la Base.

Esta es la capa que se encuentra colocada por debajo de la carpeta de rodamiento, por lo que su ubicación muy cercana a la aplicación de las cargas se requiere materiales de gran calidad y resistencia.

Por lo tanto, los módulos de elasticidad de estas capas son altos para poder absorber gran parte de los esfuerzos y distribuirlos a las capas inferiores en una magnitud tal que estos esfuerzos puedan ser resistidos por los materiales de menor calidad como lo es la capa de sub-base y de sub-rasante. Por lo tanto deben de cumplir las especificaciones que se muestran en la siguiente tabla:

Tabla N° 6: Especificaciones de materiales empleados en una base granular.

N°	Propiedad	Limites	Norma de Prueba
1	Límite líquido	25% Máx.	AASHTO T-89
2	Limite plástico	6% Máx.	AASHTO T-90
3	C.B.R	80% Mín.	AASHTO T-193
4	Desgaste de los Ángeles	50% Máx.	AASHTO T-96
5	Intemperismo Acelerado	12% Máx.	AASHTO T-104
6	Compactación	95% mín. del peso volumétrico seco máx. obtenido por medio de la prueba Poctor modificado.	AASHTO T-191 y/o T-238

Fuente: Especificaciones Nic-2000. Sección: 1003.09 (a y b). 1003.23. II (b)

2.4. Banco de materiales a utilizar.

De acuerdo a los resultados obtenidos se considerará utilizar como fuente de materiales para capa de base granular el Banco Los Chilamates (Banco # 2), debido a que su granulometría y resistencia (CBR) se ajusta a lo establecido en la sección II del Artículo-1003.23 de la NIC-2000, en donde se plantean los requisitos que debe cumplir un material utilizado como base granular, después de colocado y compactado. (Ver Anexos Nº 8.3 y Nº 8.4 del Capítulo II, pág. XII).

El Banco de Materiales está conformado por materiales granulares de clasificación (A-1-a) con índice de grupo 0. (Ver Anexos Nº 8.1 del Capítulo II, pág. XII). Según el sistema de clasificación de suelos de la AASHTO, este material se caracteriza de bueno para ser utilizado como material de base y subbase en estructuras de pavimento.

El ensaye de CBR para el banco de materiales con suelo (A-1-a) al 95% es de 82%, (Ver Anexos Nº 8.1 del Capítulo II, pág. XII), el cual cumple las condiciones establecidas según las Especificaciones Generales para la Construcción de Caminos, Calles y Puentes (NIC-2000).

2.5. CBR de Diseño.

El Ensayo CBR (California Bearing Ratio): Ensayo de Relación de Soporte de California, mide la resistencia al esfuerzo cortante de un suelo y sirve para poder evaluar la calidad del terreno para sub rasante, sub base y base de pavimentos. Se efectúa bajo condiciones controladas de humedad y densidad, y esta normado por la ASTM-D1883 y por la AASTHO T-193. Para la aplicación de este ensayo las muestras se sometieron a saturación por un periodo de 96 horas de anticipación.

La Sub-rasante es la capa de una carretera que soporta la estructura de pavimento y que se extiende hasta una profundidad que no sea afectada por las cargas de diseño que corresponde al tránsito previsto.

En la siguiente tabla se presentan las especificaciones para sub-rasante.

Tabla N°7: Especificaciones para terraplenes y materiales para sub-rasante

No.	Propiedad	Terraplenes	Capa Sub-rasante	Metodología
1	% de malla Nº 200	40 % máx.	30% máx.	AASHTO T-11
2	Limite Líquido	40 % máx.	30% máx.	AASHTO T-89
3	Índice Plástico	15 % máx.	10 % máx.	AASHTO T-90
4	CBR	10 % Min.	20 % Min.	AASHTO T-193
5	Compactación	95 % máx. del peso volumétrico seco máx. obtenido por medio de la prueba proctor modificado. (AASHTO-99)	95 % máx. del peso volumétrico seco máx. obtenido por medio de la prueba proctor modificado. (AASHTO-T-180)	AASHTO T-191 y/o T-238 (in situ)

Fuente: Especificaciones generales para la construcción de caminos, calles y puentes NIC-2000.

El método más difundido para calcular el CBR de diseño es el propuesto por el instituto de Asfalto, el cual recomienda tomar un valor total que el 60%, el 75% o el 87.5% de los valores individuales obtenidos que sea iguales o mayor que él, de acuerdo con el tránsito que se espera circule por el pavimento.

Tomando en cuenta que el ESAL's es **de 266,216.00** por tanto para nuestro diseño utilizaremos un percentil de 75%, tal y como se indica en la tabla Nº8.

Tabla Nº8: Criterio del Instituto de Asfalto para determinar CBR de Diseño.

Cargas Equivalentes Totales (ESAL´s)	Percentil de Diseño (%)
< de 10,000 ESAL's	60
Entre 10,000 y 1,000,000 de ESAL's	75
> de 1,000,000 ESAL´s	87.5

Fuente: Manual AASHTO-93 Design Requirements.

En la siguiente tabla se muestra la acumulación de los valores de CBR de diseño del material existente en la sub rasante, la cual se consideró que está a una profundidad de 20 cm, ya que es donde se encuentra un estrato de suelo más uniforme, y de esta manera se compensa el espesor que tendrá la estructura de pavimento articulado.

Tabla Nº9: Valores de CBR Predominantes.

CBR	Cantidad de valores iguales o mayores	Frecuencia	%			
5	31	7	100.00%			
6	24	3	77.42%			
7	21	2	67.74%			
8	19	1	61.29%			
15	18	9	58.06%			
17	9	1	29.03%			
18	8	1	25.81%			
21	7	1	22.58%			
22	6	1	19.35%			
23	5	1	16.13%			
25	4	2	12.90%			
28	2	1	6.45%			
30	1	1	3.23%			

Fuente: Elaboración Propia.

Con los valores CBR y porcentaje de valores se dibuja un gráfico donde se determina el CBR de diseño para sub-rasante.

Al trazar tangente sobre el valor percentil de 75 % obtenemos el CBR de diseño para la sub-rasante igual a 6.2%. (Ver Anexo Nº7 del Capítulo II, pág. XI). Se asume que este porcentaje se establece como una muestra representativa de los valores de CBR encontrados en los sondeos de línea.

CAPÍTULO III ESTUDIO DE TRÁNSITO

3.1 Generalidades.

En este capítulo se realiza la proyección del tráfico actual de la vía, el tránsito posiblemente es la variable más importante para el diseño de una vía, pues, si bien el volumen y dimensiones de los vehículos influyen en su diseño geométrico, el número y el peso de los ejes de estos son factores determinantes en el diseño de la estructura de pavimento y de esta manera poder calcular los espesores de pavimento.

Dependiendo de los resultados que exprese este estudio, se proyectarán los niveles de servicio que deberá ofrecer el tramo en análisis para su período de diseño.

Para la correcta elaboración de este capítulo se dividió en tres etapas:

- ✓ Recopilación de datos.
- ✓ Procesamiento de información.
- ✓ Análisis de la información obtenida.

3.2. Recopilación de datos.

Los datos de Tráfico Promedio Diario Anual, así como los factores de ajuste estacional, el número promedio de ejes y otros parámetros, serán obtenidos de los datos de campo y de los cálculos de gabinete.

La estación de Conteo Vehicular fue ubicada en una zona con adecuada visibilidad y con amplitud en los hombros, logrando captar el tráfico en ambos sentidos de la vía. Se eligió la estación 0+163 (Avenida 5) frente el supermercado PALI-El Rosario. (Ver Anexo Nº 9 del Capítulo III, pág. XIII).

El aforo se realizó de siete días de duración, comenzando la actividad a partir del día lunes 2 de noviembre del 2015 y concluyendo esta actividad el día Domingo 8 de noviembre del 2015, realizando el conteo y clasificación vehicular de 12.0 horas continuas entre las 06:00 horas y las 18:00 horas.

.Para realizar el aforo, se utilizó el Formato mostrado en el **Anexo Nº 10 del Capítulo III, pág. XIV.**

En el **Anexo Nº 11 del Capítulo III, pág. XIV**, se muestran los Resultados del Conteo y Clasificación por Día (12.0 horas), del Barrio 16 de Julio, casco urbano de Estelí, son los presentados a continuación:

3.2.1. Tipos de vehículos.

Para el levantamiento de la información de campo es necesario tener en cuenta las características de los vehículos, en nuestro país actualmente hay una gran variedad de vehículos, en total el MTI presenta una clasificación vehicular compuesta por 17 tipos de vehículos, por lo que es conveniente agruparlos en cuatro categorías.

3.2.1.1. Motocicletas.

Se incluyen todas las categorías de dos, tres y cuatro ruedas de vehículos motorizados, en esta categoría incluyen scooter, motonetas, motonetas y otros triciclos a motor.

3.2.1.2. Vehículos Livianos.

Son los vehículos automotores de cuatro ruedas que incluyen, los Automóviles, Camionetas, Pick – Ups y Jeep.

3.2.1.3. Vehículos Pesados de Pasajeros.

Son los vehículos destinados al Transporte Público de Pasajeros de cuatro, seis y más ruedas, que incluyen los Microbuses Pequeños (hasta 15 Pasajeros) y Microbuses Medianos (hasta 25 pasajeros) y los Buses medianos y grandes.

3.2.1.4. Vehículos Pesados de Carga.

Son los vehículos destinados al transporte pesado de cargas mayores o iguales a tres toneladas y que tienen seis o más ruedas en dos, tres, cuatro, cinco y más ejes, estos vehículos incluyen, los camiones de dos ejes (C2) mayores o iguales de tres Toneladas, los camiones de tres ejes (C3), los camiones combinados con remolque del tipo (C2R2) y los vehículos articulados de cinco y seis ejes de los

tipos (T3S2) y (T3S3) y otros tipos de vehículos para la clasificación de vehículos especiales, tales como agrícolas y de construcción.

El **Anexo Nº 13 del Capítulo II, pág. XIX**, presenta la Tipología y DescripciónVehicular.

3.2.2. Clasificación del tipo de vehículo por la disposición de sus ejes.

La diversidad de vehículos que circulan sobre un pavimento durante su periodo de diseño, traen como consecuencia un amplio espectro de ejes de cargas, con diferentes distancias entre ejes, lo que origina una amplia gama de esfuerzos y deformaciones aplicados a un determinado punto de la estructura. Se ha clasificado el tipo de vehículos de acuerdo con el número y disposición de sus ejes de la forma que se muestra en el Diagrama de Cargas Permisibles. (Ver Anexos Nº 17 y Nº 18 del Capítulo III, pág. XXI, XXII).

3.3. Procesamiento de información.

3.3.1. Tránsito promedio diurno.

Es el tránsito total registrado por día, dividido por los siete días de la semana del conteo realizado en la estación supermercado PALI-El Rosario, se determina el transito promedio diurno por medio de la siguiente ecuación:

TPDiurno =
$$\frac{\sum TDiurno}{7}$$
 [Ecuación N° 1]

Donde:

TPDiurno = Tránsito promedio diurno.

ΣΤDi = Suma de Tránsito diurno.

Tabla Nº10: Transito Promedio Diurno semanal para cada tipo de vehículo.

Estación: (Pali El Rosario)																	
			Veh. Livianos			Veh. de Pasajeros			Veh. de Carga								
Día	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2 Liv	C2	СЗ	C4	C2R2	C2R3	TxSx <=4e	T3S2	T353	Otros
Lunes	191	98	21	50	18	8	5	43	11	0	0	0	0	0	0	0	0
Martes	185	74	4	65	14	7	3	28	4	0	0	0	0	0	0	0	0
Miércoles	181	52	7	71	11	3	7	43	3	4	0	0	0	0	0	0	0
Jueves	163	45	18	70	4	4	3	18	9	0	0	0	0	0	0	0	0
Viernes	140	103	6	77	7	9	4	26	5	4	0	0	0	0	0	0	0
Sábado	108	68	4	80	4	6	7	32	7	4	0	0	0	0	0	0	0
Domingo	109	43	2	60	3	2	2	11	2	0	0	0	0	0	0	0	0
Total	1077	483	62	473	61	39	31	201	41	12	0	0	0	0	0	0	0
TPDiurno semanal	154	69	9	68	9	6	4	29	6	2	0	0	0	0	0	0	0

Fuente: Elaboración Propia.

3.3.2. Determinación del Tránsito Promedio Diario Anual (TPDA).

El tránsito promedio diario anual, representa el promedio de los volúmenes diarios de tránsito durante un año en una sección dada de una vía, para fines de diseño se calcula a través de la ecuación:

$$TPDA = TD_{12H} * FD * FT$$
 [Ecuación N° 2]

Donde:

TD₁₂: Tráfico Diario 12 horas

Fd: Factor día

Ft: Factor temporada

Apoyados en el anuario estadístico del MTI del año 2014, se emplearon los factores de expansión (Fd, Ft) del tercer cuatrimestre de la estación 107 perteneciente al tramo Sébaco - Empalme San Isidro por ser una de la más próxima al tramo en estudio considerándose como representativa de las condiciones existentes en el mismo. Los factores a utilizar se reflejan en el **Anexo Nº 16 del Capítulo III. pág. XX.**

El Tráfico Promedio Diario Anual (TPDA) correspondiente al tramo fue de 436 vehículos por día, tal como se muestra en la Tabla Nº 11.

TablaNº11: Tráfico Promedio Diario Anual (TPDA).

Tipo de Vehículo/ Factor	Moto	Carro	Jeep	Ctas	MicBus	MB >15 P	Bus	C2 Liv	C2	C3	TOTAL
Factor Día (12h diurnas a 24h)	1.22	1.28	1.33	1.26	1.29	1.21	1.17	1.34	1.48	1.45	
Factor Ajuste	0.91	1.22	0.91	0.95	1.00	1.03	0.97	0.88	0.95	0.84	
TPDiurno	154	69	7	68	9	6	4	29	6	2	354
TPDA	171	108	8	81	12	7	5	34	8	2	436
% TPDA	39.2%	24.8%	1.8%	18.6%	2.8%	1.6%	1.1%	7.8%	1.8%	0.5%	100%

Fuente: Elaboración Propia.


TablaN⁰12: Composición del Tráfico del Barrio.

Composición del Tráfico									
% vehículos livianos	% vehículos de pasajeros	% vehículos de carga							
84.4%	5.5 %	10.1%							

Fuente: Elaboración Propia.

La composición del trafico indica que los vehículos livianos son los más predominantes con el 84.4% del tráfico total de los cuales las motos representan el 39.2%, le siguen los vehículos de carga con el 10.1% y por último los vehículos de pasajeros con un 5.5% del tráfico. (Ver Figura N° 1).

Figura N° 1: Composición Vehicular Promedio.

Fuente: Elaboración Propia.

3.3.3. Tasas de crecimiento.

Para estimar la tasa de crecimiento y realizar las proyecciones de tránsito de la

vía en estudio se analizaron las siguientes variables: PIB (Producto Interno

Bruto), tasa de crecimiento poblacional y el historial del tránsito en la zona según

datos del Anuario 2014 del MTI.

Las tasas de crecimiento interanual se calculan usando la siguiente ecuación:

$$\mathbf{TC} = \left[\left(\frac{A\|\mathbf{o}_n\|}{A\|\mathbf{o}_{n-1}\|} \right) - \mathbf{1} \right] * \mathbf{100}$$
 [Ecuación N° 3]

Dónde:

TC: Tasa de crecimiento.

Año n: Año actual.

Año n-1: Año anterior.

3.3.3.1. Estación de Mayor Cobertura 107.

La tasa de crecimiento vehicular varía dependiendo del tipo de vehículo, la

determinación de las mismas se realiza a partir de series históricas de tráfico, en

base a estudios anteriores del tramo.

El Anuario 2014 del MTI nos brinda el listado histórico del tránsito en la zona de

la estación 107 perteneciente al tramo Sébaco - Empalme San Isidro de los

últimos 18 años desde 1996 hasta el 2014. En nuestro caso se analizaron los

registros de los últimos 13 años, perteneciente al periodo 2002-2014. (Ver Anexo

Nº 15del Capítulo III. pág. XXI).

Para la estación 107 el promedio del 2002 al 2014 es de 4125 de vehículos al

año, con una tasa de crecimiento promedio de 4.28%, los datos utilizados se

muestran en la Tabla Nº13.

TablaNº13: Listado Histórico de TPDA de la Estación 107.

Año	TPDA	TAC
2002	3272	
2003	3428	4.77
2004	3622	5.66
2005	3405	-5.99
2006	3849	13.04
2007	3853	0.10
2008	4092	6.20
2009	4101	0.22
2010	4334	5.68
2011	4517	4.22
2012	4843	7.22
2013	4954	2.29
2014	5350	7.99
Promedio	4125	4.28

Fuente: Anuario de aforos de tráfico. MTI, Año 2014.

3.3.3.2. Producto Interno Bruto.

Esta variable es el valor de todos los bienes y servicios finales producidos dentro de una nación en un período. El PIB se utiliza como un indicador de la riqueza generada por una nación, durante un año, un trimestre u otra medida de tiempo.

Partiendo de la información del Banco Central de Nicaragua, se elaboró una tabla con los datos históricos existentes del PIB de los últimos 13 años. (Ver Indicadores Macroeconómicos en Anexo Nº 12 del Capítulo III, pág. XVIII).

Las tasas de crecimiento del PIB interanual se calcularon usando la **(Ecuación N°3**). El PIB promedio del 2002 al 2014 es de 7706 Millones de dólares, con una tasa de crecimiento promedio de 9.8%, los datos a utilizar se muestran en la Tabla Nº 14.

Tabla Nº 14: PIB Nicaragua 2008 - 2014.

Año	TPDA	PIB (millones \$)	TAC
2002	3272	4,026.0	
2003	3428	4,101.5	1.88
2004	3622	4,464.7	8.86
2005	3405	4,872.0	9.12
2006	3849	6,786.3	39.29
2007	3853	7,446.6	9.73
2008	4092	8491.4	14.03
2009	4101	8380.7	-1.30
2010	4334	8741.3	4.30
2011	4517	9755.6	11.60
2012	4843	10460.9	7.23
2013	4954	10850.7	3.73
2014	5350	11805.6	8.80
Promedio	4125	7706	9.8

Fuente: Indicadores macroeconómicos. Banco Central de Nicaragua, informe anual 2014.

3.3.3.3. Tasa de Crecimiento Poblacional.

Es el cambio en la población en un cierto plazo y puede ser cuantificado como el cambio en el número de individuos en una población usando tiempo por unidad para su medición. La tasa de crecimiento poblacional se analiza con base a los resultados del Censo Nacional de Población 2011 y publicadas por el Instituto Nacional de Información y Desarrollo (INIDE).

Las tasas de crecimiento poblacional interanual se calcularon usando la **(Ecuación N°3)**. A partir del año base 2002 al año 2014, se obtuvo elpromedio poblacional de Nicaragua (2002-2014), de 5,728 millones de habitantes, con una tasa de crecimiento promedio de 1.40%.

La Tabla Nº 15 muestra las tasas de crecimiento poblacional interanual calculadas:

Tabla № 15: Crecimiento Poblacional de Nicaragua 2008 – 2014.

Año	TPDA	Población (miles)	TAC
2002	3272	5,244.7	
2003	3428	5,312.7	1.30
2004	3622	5,380.5	1.28
2005	3405	5,450.4	1.30
2006	3849	5,522.6	1.32
2007	3853	5595.5	1.32
2008	4092	5778.8	3.28
2009	4101	5850.5	1.24
2010	4334	5923.1	1.24
2011	4517	5996.6	1.24
2012	4843	6071.0	1.24
2013	4954	6134.3	1.04
2014	5350	6198.2	1.04
Promedio	4125	5728	1.40

Fuente: Indicadores macroeconómicos. Banco Central de Nicaragua, informe anual 2014.

3.3.4. Proyección de tráfico.

Las series históricas de los volúmenes de tránsito de la carretera y datos recopilados de estudios de tráfico realizados en diferentes corredores viales del país, servirán como base de las proyecciones junto al análisis de otras variables, tales como: Plan Nacional de Desarrollo económico, Datos poblacionales, pronósticos de crecimiento y el crecimiento económico como consecuencia del Proyecto.

3.3.4.1 Correlaciones Estación 107.

Para realizar las correlaciones es preciso tener los registros históricos del Producto Interno Bruto (PIB), Tráfico Promedio Diario Anual (TPDA) y Población.

Las tablas Nº 16 y Nº 18 se muestra los datos utilizados para la correlación del PIB vs. TPDA y de la Población vs. TPDA, en el período 2002 – 2014 y la representación gráfica con la ecuación de correlación en las figuras Nº 2 y Nº 3.

Tabla Nº 16: Correlación PIB Vs. TPDA (Estación Nº 107).

Año	TPDA	PIB (millones \$)	LN TPDA	LN PIB
2002	3272	4,026.0	8.09	8.30
2003	3428	4,101.5	8.14	8.32
2004	3622	4,464.7	8.19	8.40
2005	3405	4,872.0	8.13	8.49
2006	3849	6,786.3	8.26	8.82
2007	3853	7,446.6	8.26	8.92
2008	4092	8491.4	8.32	9.05
2009	4101	8380.7	8.32	9.03
2010	4334	8741.3	8.37	9.08
2011	4517	9755.6	8.42	9.19
2012	4843	10460.9	8.49	9.26
2013	4954	10850.7	8.51	9.29
2014	5350	11805.6	8.58	9.38

Fuente: Elaboración propia.

Al establecer relación los resultados son:

Tabla Nº 17: TPDA-PIB vs. LN TPDA-LN PIB.

	Ecuación	Correlación	
TPDA - PIB	y = 4.016x - 8859	R ² =0.938	R² es mayor
LN TPDA - LN PIB	y =2.357x - 10.71	$R^2 = 0.900$	

Fuente: Elaboración propia.

La correlación de las variables genera un coeficiente de determinación (R²) igual a 0.938, lo cual nos permite hacer uso de éstas, para determinar las tasas de crecimiento del tráfico de carga, que son los vehículos de transportes que mueven la producción hacia los mercados nacionales e internacionales, lo mismo que los insumos para la producción.

Donde los datos utilizados pueden ser explicados por esta ecuación y = 4.016x - 8859, donde X es el año respectivo y 4.016 es su elasticidad, el cual es coeficiente constante de la ecuación.

Correlación de TPDA vs. PIB 14,000.0 y = 4.0162x - 8859 $R^2 = 0.9381$ 12,000.0 10,000.0 8,000.0 ♦ PIB (millones \$) 6,000.0 - Linear (PIB (millones \$)) 4,000.0 2,000.0 0.0 1000 0 2000 3000 4000 5000 6000 **TPDA**

Figura Nº2: Correlación de TPDA vs.PIB.

Fuente: Elaboración propia.

Tabla Nº 18: Correlación TPDA Vs. POB.

Año	TPDA	Población (miles)	LN TPDA	LN Pob.
2002	3272	5,244.7	8.09	8.56
2003	3428	5,312.7	8.14	8.58
2004	3622	5,380.5	8.19	8.59
2005	3405	5,450.4	8.13	8.60
2006	3849	5,522.6	8.26	8.62
2007	3853	5595.5	8.26	8.63
2008	4092	5778.8	8.32	8.66
2009	4101	5850.5	8.32	8.67
2010	4334	5923.1	8.37	8.69
2011	4517	5996.6	8.42	8.70
2012	4843	6071.0	8.49	8.71
2013	4954	6134.3	8.51	8.72
2014	5350	6198.2	8.58	8.73

Fuente: Elaboración propia.

Al establecer relación los resultados son:

Tabla Nº 19: TPDA-POB vs. LN TPDA-LN POB.

	Ecuación	Correlación	
TPDA - POB	y = 0.490x + 3705	$R^2 = 0.934$	
LN TPDA - LN POB	y = 0.362x + 5.642	$R^2 = 0.947$	R² es mayor

Fuente: Elaboración propia

La correlación de las variables genera un R² igual a 0.947, lo cual nos permite hacer uso de éstas, para determinar las tasas de crecimiento del tráfico de pesados de pasajeros, que son los vehículos de transporte que mueven la mayor cantidad de población hacia los diferentes destinos (laborales, compras, estudios y de otras índoles).

Correlación de LN TPDA vs. LN POB 8.80 y = 0.362x + 5.64238.75 $R^2 = 0.9472$ 8.70 LN Pob 8.65 Linear (LN Pob) 8.60 8.55 8.00 8.10 8.30 8.20 8.40 8.50 8.60 8.70 **LN TPDA**

Figura Nº 3: Correlación de LN TPDA vs LN POB.

Fuente: Elaboración propia.

3.3.4.2. Tasas de crecimiento.

A partir de estas series históricas, se procede a calcular la tasa de crecimiento para cada variable aplicando la siguiente expresión matemática:

$$TC_{TPDA} = \left[\left(\frac{TPDA_i}{TPDA_0} \right)^{1/n} - 1 \right] *100$$
 [Ecuación N° 4]

Dónde:

TPDA_i: Tráfico Promedio Diario Anual.

TPDA_o:Tráfico Promedio Diario Anual del año base.

N: La diferencia de años.

Las tasas de crecimiento calculadas son:

$$TC_{TPDA} = \left[\left(\frac{5,350}{3272} \right)^{1/13} - 1 \right] *100 = 3.85\%$$

$$TC_{PIB} = \left[\left(\frac{1,1805.6}{4026.0} \right)^{1/13} - 1 \right] *100 = 8.63\%$$

$$TC_{POB} = \left[\left(\frac{6,198.2}{5,244.7} \right)^{1/13} - 1 \right] *100 = 1.29%$$

Obteniendo los resultados de la tabla siguiente.

Tabla N° 20: Tasas de crecimiento del PIB, TPDA y Población.

Tasas de Crecimiento			
PIB	TPDA	Población	
8.63%	3.85%	1.29%	

Fuente: Elaboración propia.

3.3.4.3. Tasas de crecimiento afectadas por las elasticidades.

Para conocer el valor de las tasas de crecimiento promedio deben afectarse por las elasticidades correspondientes, en este caso, PIB, TPDA y Población de la siguiente manera:

Las elasticidades son los coeficientes constantes que se muestran en cada uno de los gráficos (Figura N°1 y N°2) las cuales se resumen en la siguiente tabla:

Tabla N° 21: Elasticidades resultantes de las correlaciones.

Correlación	Elasticidad
TPDA - PIB	4.016
TPDA – POB.	0.362

Fuente: Elaboración propia.

✓ Producto Interno Bruto: para conocer el valor de tasa de crecimiento promedio para el producto interno bruto se obtiene mediante la ecuación N°5, resultando una tasa de 34.65%.

✓ Para la población: aplicando el modelo matemático expresado en la ecuación N°5, la cual permite conocer una tasa de 0.47% para el crecimiento poblacional.

3.4. Análisis de la información obtenida.

A nuestro criterio se decidió utilizar la tasa de crecimiento vehicular de 3.85% para todo el tráfico, a consecuencia de que las tasas de crecimiento afectadas por la elasticidad para carga y pasajeros son muy alta de 34.65% y bajas de 0.47% respectivamente.

Tabla N° 22: Tasa de crecimiento a utilizar.

Ecuación	TPDA
TC	3.85%

Fuente: Elaboración Propia.

3.4.1. Análisis de la tasa de crecimiento a utilizar.

Seutilizará una Tasa Anual de Crecimiento (TAC) del 3.85%, la cual se considera como tasa de crecimiento estable y conservadora dentro de la economía del paísen vías de desarrollo y considerando el crecimiento del producto interno bruto (PIB), el crecimiento poblacional , vehicular del tramo en estudio y las condiciones actuales que está viviendo nuestro país.

3.5. Tráfico de diseño.

Para convertir el volumen de tráfico obtenido de los conteos se usará el tránsito de Diseño (TD) que es un factor fundamental para el diseño estructural de pavimentos. Este se obtiene a partir de la información básica suministrada por el Tránsito Promedio Diurno (TPDA), el Factor de Crecimiento (FC), Factor de Distribución (FD) y Factor Carril (fc). Se calcula mediante la siguiente ecuación:

$$T_D = TPDA * F_C * F_D * f_C * 365$$
 [Ecuación N° 6]

Dónde:

T_D: Tránsito de diseño.

TPDA: Tránsito promedio diario del año base.

FC: Factor crecimiento.

F_D: Factor de distribución.

f_c: Factor Carril.

365: Constante equivalente a la estimación de los 365 días del año.

3.5.1. Período de Diseño (PD).

Es la cantidad de años para la cual será diseñada la estructura de pavimento, por lo general varía dependiendo del tipo de carreteracaracterísticas del pavimento evaluando su comportamiento para distintas alternativas a largo plazo con el fin de satisfacer las exigencias del servicio durante el periodo seleccionado, a un costo razonable.

De acuerdo a las características geométricas de la vía y al volumen actual de tránsito que circula por ella, elegimos 15 años para el período de diseño, ya que tenemos un TPDA de 436 vehículos por día, considerado como bajo volumen de tránsito, tal como se muestra en la Tabla Nº 23.

Tabla Nº 23: Período de Diseño.

Tipo de carretera	Período de Diseño
Gran volumen de Transito Urbano	30 – 50 años
Gran volumen de Transito Rural	20– 50 años
Bajo volumen pavimentado	15– 25 años

Fuente: Diseño de Pavimentos AASHTO-93

3.5.2. Factor de Crecimiento (FC).

Este se obtiene a partir del período de diseño y está en dependencia del grado de importancia de la vía, y la tasa anual de crecimiento del tránsito. Se determina mediante la siguiente ecuación:

Tasa de crecimiento TPDA: 3.85%

Periodo de diseño: 15 años

$$FC = \frac{[(1+i)^n - 1]}{i}$$
 [Ecuación N° 7]

$$FC = \frac{[(1+0.0385)^{15}-1]}{0.0385} = 19.80$$

Dónde:

FC= Factor de Crecimiento.

Tc= Tasa de Crecimiento considerada en decimales.

n= Período de Diseño considerado.

Reemplazando los valores en la ecuación N° 7, obtiene un valor de 19.80 para el Factor crecimiento.

3.5.3. Factor Distribución Por Dirección (FD).

Este valor se pude deducir del estudio de tránsito (conteo), es la relación entre la cantidad de vehículos que viajan en una dirección y la cantidad de vehículos que viajan en la dirección opuesta, para un camino de 2 carriles por lo general es 0.5 debido a que la cantidad de vehículos es la misma en ambos sentidos, aunque hay casos en que puede ser mayor en una dirección que en otra.

En este caso se trabajó con un factor direccional de 50%, ya que la mitad de los vehículos va en una dirección; y la otra mitad va en otra dirección tal y como se muestra en la tabla Nº24.

Tabla Nº24: Factor de Distribución por Dirección

Número de carriles en ambas direcciones	LD
2	50
4	45
6 o más	40

Fuente: Guía para el diseño de estructuras de pavimento, AASHTO-93.

3.5.4. Factor Carril.

Es preciso tener en cuenta que para efectos de dimensiones de un pavimento importa el número mayor de ESAL que pasa sobre un carril, al cual se le denomina carril de diseño. Los valores para el factor carril son: 1.0 para análisis de un carril por dirección, que es el caso de nuestro tramo en análisis, tal y como se muestra en la tabla Nº 25.

Tabla Nº25: Factor de Distribución por Dirección

Número de carriles en una sola dirección	LC ¹¹
1	1.00
2	0.80 - 1.00
3	0.60 - 0.80
4	0.50 - 0.75

Fuente: Guía para el diseño de estructuras de pavimento, AASHTO-93.

3.5.5. El Índice de Serviciabilidad Inicial (Po).

Se define en función del diseño del pavimento y de la calidad de la construcción. Se recomienda una Po=4.2, para pavimento flexible, y una po=4.5 para pavimentos rígidos, según el Manual Diseño de Pavimentos AASTHO-93 (capítulo 8.2.5 pp.172)

En el Diseño de la Estructura de Pavimento Articulado del Barrio 16 de Julio se trabajó con un valor igual a:

Po = 4.2

3.5.6. El Índice de Serviciabilidad Final (Pt).

Es el valor más bajo que puede ser tolerado por los usuarios de la vía antes de que sea necesario tomar acciones de rehabilitación, reconstrucción o repavimentación, y generalmente varía con la importancia o clasificación funcional de la vía cuyo pavimento se diseña, y son normalmente los siguientes: Según el manual SIECA para vías locales, ramales, secundarias y agrícolas se toma un valor de pt = 1.8 - 2.0. Además, considerando que la AASHTO 93 (cap. 8.2.5 pp. 172) recomienda Pt = 2.0 para caminos de tránsito menor.

En el Diseño de la Estructura de Pavimento Semiflexible del Barrio 16 de Julio se trabajó con un valor de:

Pt = 2.0.

3.5.7. Perdida de Serviciabilidad (ΔPSI).

Es la diferencia que existe entre la serviciabilidad inicial y la serviciabilidad final. Entre mayor sea el ΔPSI mayor| será la capacidad de carga del pavimento antes de fallar, calculado con la siguiente ecuación:

$$\Delta PSI = Po - Pt$$
 [Ecuación N° 8]

En el Diseño de la Estructura de Pavimento articulado del tramo de carretera en estudio, se trabajó con un valor de:

$$\Delta$$
PSI = 2.2

3.5.8. Número Estructural Asumido (SN).

Es un número abstracto que expresa la resistencia estructural de un pavimento requerido. El SN es utilizado para calcular el ESAL o W18 (cantidad de repeticiones esperadas de un eje de carga equivalente de 18 mil libras), se debe de asumir un valor inicial de SN. Para este Diseño se considera un valor SN= 5.

3.5.9. Factor de Equivalencia (FESAL).

Se obtiene de las tablas de la AASHTO 93 para ejes sencillos, dobles y triples. Conociendo la serviciabilidad final y el número estructural asumido (SN). Se utilizó una serviciabilidad final de Pt = 2 para ejes sencillos y dobles, asumiendo un número estructural SN = 5.

Este valor se determina con las tablas de la AASHTO – 93, si los pesos de los ejes no se encuentran en estas tablas se deben interpolar. (Ver Anexo Nº 19 del capítulo III, pág. XXIII), para ejes sencillos. (Ver anexos Nº 20 del capítulo III, pág. XXIV), para ejes dobles.

Para Interpolar dichos valores en este caso se utilizo aplicando la ecuación N°9.

$$y_x = y_0 \frac{x - x_0}{x_1 - x_0} (y_1 - y_0)$$
 [Ecuación N° 9]

Los resultados de la interpolación para obtener el FESAL se muestran en el Anexo Nº 21del capítulo III, pág. XXV.

En la tabla Nº 26 se muestra el cálculo del tránsito de diseño por tipo de vehículo necesario para el cálculo de ESAL´S aplicando la ecuación N° 6.

Tabla Nº26: Transito de diseño para el cálculo del ESAL´s.

Tipo de vehículos	Transito Actual (2015)	F.C.	Días del año	Tránsito de diseño	Factor por carril(Fc)	Factor de Dirección (Fs)	Tránsito para el carril de diseño
Carro	108	19.80	365	780,516.00	0.50	1.00	390,258.00
Jeep	8	19.80	365	57,816.00	0.50	1.00	28,908.00
Camioneta	81	19.80	365	585,387.00	0.50	1.00	292,693.50
MicBus	12	19.80	365	86,724.00	0.50	1.00	43,362.00
MB >15 P	7	19.80	365	50,589.00	0.50	1.00	25,294.50
Bus	5	19.80	365	36,135.00	0.50	1.00	18,067.50
C2 Liviano	35	19.80	365	245,718.00	0.50	1.00	122,859.00
C2	7	19.80	365	50,589.00	0.50	1.00	25,294.50
C3	2	19.80	365	14,454.00	0.50	1.00	7,227.00
						Total	953,964.00

Fuente: Elaboración propia.

En este cuadro se muestra el tráfico proyectado el cual corresponde a **953,964.00** Vehículos proyectados para el año 2030.

3.6. Ejes Equivalentes (ESAL o W18).

Este se obtiene conociendo El Tránsito de Diseño (TD) y los factores de equivalencia (ESAL). Se calcula utilizando la siguiente expresión:

El Tráfico pesado es el que mayor daño produce a la estructura de pavimento por lo que deberá de estimarse con la mayor precisión posible. En base a los datos anteriormente definidos se realizó la determinación de los Ejes equivalente (ESAL´s), aplicando la ecuación N° 10, obteniendo así un ESAL´S de 269,216.00, el que se muestran en la tabla N° 27.

Tabla Nº27: Cálculo de ESAL's del carril de diseño.

Tipo de vehículos	Peso X eje(Ton.met)	Peso X eje (Kips)	Tipo de eje	To. 2015	TD	TD corregido	Factor ESAL	ESAL´S de diseño
Autos	1.00	2.20	Simple	108	390,258.00	390,258	0.00038	148
Autos	1.00	2.20	Simple	100	000,200.00	000,200	0.00038	148
Jeep	1.00	2.20	Simple	8	28,908.00	28,908	0.00038	11
Jeep	1.00	2.20	Simple	0	20,900.00	20,900	0.00038	11
Camionetas	1.00	2.20	Simple	81	292,693.50	292,694	0.00038	111
Carrionetas	2.00	4.40	Simple	01	292,093.30	292,094	0.0034	995
MicBus	2.00	4.40	Simple	12	43 363 00	43,362	0.0034	147.5
IVIICDUS	4.00	8.80	Simple	12	12 43,362.00	43,302	0.0502	2177
MB >15 P	4.00	8.80	Simple	7	7 25,294.50	50 25,295	0.0502	1270
IVID > 13 P	8.00	17.60	Simple	,	25,294.50		0.9206	23287
Bus	5.00	11.00	Simple	5	5 18,067.50	18,068	0.1265	2286
Dus	10.00	22.00	Simple	5			2.35	42460
C2 Liviano	4.00	8.80	Simple	35	122,859.00	122,859	0.0502	6168
GZ LIVIANO	8.00	17.60	Simple	5	122,059.00	122,009	0.9206	113104
C2	5.00	11.00	Simple	7	25,294.50	25,295	0.1265	3200
62	10.00	22.00	Simple	,	25,294.50	25,295	2.35	59443
C3	5.00	11.00	Simple	2	7 227 00	7,227	0.1265	914
US	16.50	36.30	Doble	2 7,227.00		1,221	1.43	10335
					Total ESA	L'S de disei	ño(W18)	266,216

Fuente: Elaboración propia.

Para el Diseño de la carretera en estudio se obtuvo un número de repeticiones por eje equivalente (ESAL's) de:

ESAL's o W18 = $2.70*10^5$

CAPÍTULO IV DISEÑO DE PAVIMENTO

4.1. Generalidades.

El método de Diseño de Espesores de pavimento de la AASHTO 1993, es el más usado y cuenta con técnicas de diseño para estructuras de pavimentos rígidos, semi-rígidos, flexibles y articulados. Se ha elegido el método AASHTO, porque a diferencia de otros métodos introduce el concepto de Serviciabilidad en el diseño de pavimentos como una medida de su capacidad para brindar una superficie lisa y suave al usuario. Seguidamente se utilizaron los nomogramas de la AASHTO, y criterios de diseño ajustados a la Buena Práctica en Ingeniería (BPI).

En Nicaragua se utilizan 4 tipos de carpeta de rodamiento en la construcción de carreteras: macadam, asfáltica, de concreto hidráulico y adoquinado. Debido a su fácil manejo y otras características en este estudio se eligió adoquines, en todo caso resulta una alternativa económica y de fácil mantenimiento.

4.2. Consideraciones del Diseño AASHTO 93:

4.2.1. Carga de Ejes Simples Equivalentes.

Se refiere al deterioro que produce cada vehículo en un pavimento, éste corresponde al número de ejes equivalentes llamado también "eje estándar", el cual tiene un peso de 8.2 ton. (18,000 libras) y se presentará en el carril de diseño. Se considera que el "eje estándar" tiene un factor de daño F=1.

Al realizar el estudio de tráfico, se clasifican todos los vehículos livianos y pesados según su peso por eje, encontrando así los volúmenes de tránsito, luego dichos volúmenes se proyectan a un período de diseño en concordancia a una tasa de crecimiento que se determina según las condiciones económicas y sociales de la zona, el proceso anterior nos permite determinar el tránsito de diseño (TD), posteriormente se afecta este tránsito de diseño por un factor de equivalencia de carga, la sumatoria de todos los procesos anteriores para cada vehículo clasificado se denomina ESAL de diseño. En el tramo en estudio, el ESAL de diseño es 266.216.00.

Es importante destacar que los espesores mínimos para bases granulares en función de los ESAL se indican en la Tabla Nº28.

Tabla Nº28: Espesores mínimos de concreto asfáltico y base granular.

Numero de ESAL´s	Espesor mínimo (cm)			
Numero de ESAL S	Concreto Asfaltico	Base Granular		
Menos de 50,000	2.5	10		
50,000 - 150,000	5	10		
150,000 - 500,000	6.5	10		
500,000 - 2,000,000	7.5	15		
2,000,000 - 7,000,000	9	15		
Más de 7,000,000	10	15		

Fuente: Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93.

4.2.2. Confiabilidad.

La confiabilidad se define como la probabilidad de que el sistema de pavimento durante todo el período de diseño se comporte de manera satisfactoria bajo las condiciones de carga.

Esta variable trata de llegar a cierto grado de certeza en el método de diseño, cuyo valor depende de variaciones al azar tanto en la predicción del tránsito como en la predicción del comportamiento, del nivel de confiabilidad elegido y del error estándar combinado, para asegurar que las diversas alternativas de la sección estructural que se obtengan se desempeñarán satisfactoriamente sobre las cargas de tráfico y condiciones ambientales que durarán como mínimo el período de diseño.

De acuerdo con la clasificación funcional de la vía, el Manual Centroamericano de Normas para el Diseño Geométrico de las carreteras Regionales, SIECA 2004 recomienda diferentes niveles de confiabilidad. Para el tramo en estudio se utilizará un valor de confiabilidad R del 80%, que corresponde a un valor recomendado para una Carretera Colectora suburbana lo cual se muestra en la tabla Nº29. Esta confiabilidad seleccionada de acuerdo al grado funcional del tipo de la carretera presenta una desviación **Zr** de -0.841, lo cual se muestra en la tabla Nº30.

Tabla Nº29: Niveles de Confiabilidad R en función del tipo de carretera.

	Niveles de confiabilidad R		
Tipo de Carretera	Suburbanas	Rurales	
Autopista Regional	85-99.9	80-99.9	
Troncales	80-95	75-95	
Colectoras	50-80	50-80	

Fuente: Manual Centroamericano de Normas para el Diseño Geométrico de las carreteras Regionales, SIECA 2004.

Tabla Nº30: Valores de Zr en función de la confiabilidad R.

Confiabilidad R (%)	Desviación normal estándar (Zr)
50	0
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.34
92	-1.405
93	-1.476
94	-1.555
95	-1.645
96	-1.751
97	-1.881
98	-2.054
99	-2.327
99.9	-3.09
99.99	-3.75

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93.

4.2.3. Desviación estándar.

La desviación estándar Aplicada en este modelo, se identifica como la variación en la predicción del comportamiento de los niveles de servicio del tránsito teniendo en cuenta los errores en la predicción del mismo.

Para la estimación de la deviación estándar, la AASHTO ha dispuesto ciertos valores que fueron desarrollados a partir de un análisis de varianza que existía en el Road Test y en base a predicciones futuras del tránsito.

Tabla Nº31: Desviación estándar dependiendo de las condiciones de servicio.

Condición	Pavimento Rígido	Pavimento Flexible
En construcción nueva	0.35	0.45
En sobre capas	0.39	0.49

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93.

4.2.4. Serviciabilidad.

La serviciabilidad se define como la capacidad del pavimento para brindar un uso confortable y seguro a los usuarios. Para su determinación se realizan estudios de calidad en dependencia del tipo de carpeta de rodamiento a evaluar.

La forma más sencilla para determinar la pérdida de serviciabilidad se muestra en el capítulo 7, página 5 del Manual Centroamericano para el Diseño de Pavimentos (SIECA), se muestran los valores recomendados de desvío estándar comprendidos dentro de los intervalos siguientes:

Tabla Nº32: Factores de Serviciabilidad.

Serviciabilidad Inicial	Serviciabilidad Final
Po= 4.5 para pavimentos rígidos	Pt= 2.5 o más para caminos principales
Po= 4.2 para pavimentos flexibles	Pt= 2.0 para caminos de transito menor

Fuente: Manual Centroamericano para Diseño de Pavimentos.

4.2.5. Coeficiente de drenaje.

El drenaje de agua en los pavimentos es un aspecto importante a considerar en el diseño de las carreteras. De lo contrario el exceso de agua combinado con el incremento de volúmenes de tránsito y cargas podrían anticipar los daños a la estructura del pavimento.

La AASHTO 93 recomienda ciertos coeficientes de drenajes que son usados para los cálculos en la estimación de los espesores de los miembros de los

paquetes estructurales, la forma de consideración de los coeficientes se demuestran en la tabla Nº33.

La calidad del drenaje es expresado en la fórmula del numero estructural, dado que se asume una buena capacidad para drenar el agua de la vía en cada una de las capas que conforman el pavimento, el coeficiente de drenaje a utilizar es de mi = 1.00.

Tabla N°33: Capacidad del drenaje para remover la humedad.

Capacidad del drenaje para remover la humedad						
Calidad del	Aguas removidas en:					
drenaje	50% de s	aturación	85% de saturación			
Excelente	2 ho	oras	2 horas			
Bueno	1 (día	2 a 5 ho	ras		
Regular	1 ser	mana	5 a 10 ho	oras		
Pobre	1 n	nes	De 10 a 15	horas		
Malo	No d	Irena	Mayor de 15 horas			
Calidad del		npo que el pavi humedad cerc				
Calidad del drenaje						
	niveles de	humedad cerc	anos a la satur	ación.		
drenaje	niveles de < 1%	humedad cerc	anos a la satur 5% - 25%	ación. > 25%		
drenaje Excelente	niveles de < 1% 1.40 - 1.35	1% - 5% 1.35 - 1.30	anos a la satur 5% - 25% 1.30 - 1.20	ación. > 25% 1.20		
drenaje Excelente Bueno	niveles de < 1% 1.40 - 1.35 1.35 - 1.25	1% - 5% 1.35 - 1.30 1.25 - 1.15	anos a la satur 5% - 25% 1.30 - 1.20 1.15 - 1.00	ación. > 25% 1.20 1.00		

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93.

4.2.6. Cálculo del CBR de diseño.

La ASTM denomina a este ensayo, simplemente como "Relación de soporte" y esta normado con el número ASTM D 1883-73 y en la AASHTO con el número T-193. El CBR de diseño del Barrio 16 de Julio, Estelí es de 6.2%. Este se obtuvo con un percentil de 75%. (Ver anexo Nº 7 del capítulo II, pág. XI).

4.2.7. Módulo de Resiliencia (MR).

La base para la caracterización de los materiales de sub-rasante en este método es el Módulo Resiliente, el cual es una medida de la propiedad elástica de los suelos y se determina con un equipo especial que no es de fácil adquisición, por lo tanto, se han establecido correlaciones para calcularlo a partir de otros ensayos, como el CBR.

La guía de diseño de la AASTHO, establece las siguientes correlaciones para encontrar el Módulo Resiliente de la sub rasante.

Tabla Nº34: Correlación entre el CBR Y Módulo Resiliente para sub rasante.

Valor de CBR	Consideración
CBR < 10%	Mr= 1500 * CBR
CBR > 10%	Mr= 4326* Ln(CBR) + 241

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93.

En este caso como se obtuvo un CBR de diseño para la sub rasante de 6.2%, utilizaremos el primer criterio para calcular el Módulo Resiliente de la sub-rasante aplicando la ecuación N° 11, por tanto:

Mr=1,500*CBR [Ecuación N° 11] Mr=1,500*6.2%

El módulo resiliente de la sub rasante es, Mr=9,300 psi

4.2.8. Coeficientes de capa.

El método asigna a cada capa del pavimento un coeficiente (an), los cuales son requeridos para el diseño estructural normal de los pavimentos. Estos coeficientes permiten convertir los espesores reales a números estructurales SN. Estos están representados con la siguiente simbología:

a1: Para la carpeta de rodamiento

a2: Para la base granular

a3: Para la sub-base.

4.2.8.1. Coeficientes Estructural a₁.

Se considera el coeficiente de $a_1 = 0.45$ cuando se utiliza adoquín como carpeta de rodamiento, valor tomado del Manual Centroamericano para Diseño de Pavimentos, Capítulo 7, Diseño de espesores con adoquín, Método AASHTO, página 107.

El adoquín a utilizarse será tipo tráfico cuya resistencia será de 4500 PSI, como el que se muestra en la figura N°3.

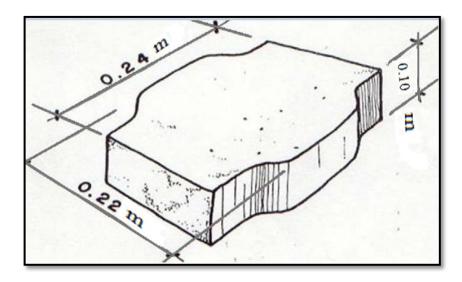


Figura N° 3: Adoquín típico.

Fuente: Elaboración propia.

4.2.8.2. Coeficientes Estructural a₂.

La determinación del coeficiente estructural a₂ se realizó en base a la aplicación del nomograma para base granular proporcionado por la Guía para diseño de estructura de pavimento (AASHTO 1993).

El valor de CBR usado para el cálculo de la Base es igual a 82% que corresponde al Banco de Préstamo #2, de acuerdo a la línea trazada en el nomograma se obtuvo en la escala izquierda un coeficiente estructural de $a_2 = 0.134$ y en la escala derecha un módulo resiliente para base granular de Mr = 28,400 PSI. (Ver anexo Nº22 del capítulo IV, pág. XXVII).

Debido a que el material para este diseño se extraerá de un solo banco de materiales, no se propone sub- base.

4.2.9. Número Estructural.

También conocido como valor de soporte de suelo, es un número asignado para poder representar la capacidad de soporte de un pavimento. Este número indica la cantidad de espesores o capas que requiere un pavimento para soportar las cargas a las que será sometido durante su vida útil.

Para cada capa se consideran coeficientes relativos que dependen del material que las conforman, por lo tanto podemos decir que el pavimento tendrá mayor capacidad de soporte mientras mayor sea el número estructural y viceversa. El número estructural (SN) se puede expresar por medio de la siguiente ecuación:

$$SN = a_1 * D_1 + a_2 * D_2 * m_2 + a_3 * D_3 * m_3$$
 [Ecuación N° 12]

Donde:

D_{1,2,3}= espesores de capas asfálticas, base y subbase respectivamente en (pulgadas).

a_i= coeficiente estructural de capa i, dependiente de su módulo

m_i= coeficientes de drenaje para capas no estabilizadas, dependiente del tiempo requerido para drenar y del tiempo en que la humedad se encuentre en niveles cercanos a la saturación. La determinación de este valor también se puede encontrar haciendo uso de ábacos, la única diferencia radica en la precisión. Siendo el nomograma más rápido pero de poca precisión.

4.3. Calculo de Espesores.

El espesor D1 para nuestro caso está definido, debido que utilizará adoquín como carpeta de rodamiento, por lo tanto D_1 = 4 pulgadas.

Se calcula el número correspondiente a la capa de la siguiente forma:

$$SN_1 = a_1*D_1$$
 [Ecuación N° 13]
 $SN_1 = (0.45)*(4.00)$
 $SN_1 = 1.8$

Para el cálculo de **SN**₂ se utilizó el Ábaco establecido por la Guía para diseño de estructura de pavimento (AASHTO 1993), obteniendo un SN para la sub-rasante de **2.40.** (Ver anexo N°23 del capítulo IV, pág. XXVIII).

4.3.1. Cálculo del espesor de la base (D₂).

Teniendo en cuenta que es conocido el valor de SN1, entonces el valor del coeficiente estructural de la base se obtiene de la siguiente manera:

$$D_2= (SN_2-SN_1) / (a_2*m_2)$$
 [Ecuación N° 14]
 $D_2= (2.40-1.8) / (0.134*1.00)$
 $D_2= 5.00$ pulgadas

Se corrige el número estructural:

$$SN_2 = a_2*D_2*m_2$$
 [Ecuación N° 15]
 $SN_2 = (0.134)*(5.00)*(1.00)$
 $SN_2 = 0.670$

Comprobación

SN₁₊ SN₂ ≥ SNrequerido [Ecuación N° 16]
$$1.8+0.670 \ge 2.40$$

$$2.47 \ge 2.40 \text{ O.K}$$

Las 5.00 pulgadas será el espesor que se requiere para que **D**₂ (Base), resista los esfuerzos que le trasmitirá la carpeta de adoquín, comprobando este espesor de acuerdo a la tabla Nº35, de espesores mínimos resulta que para el Esal´s de diseño de 266,216.00 el espesor mínimo de la base granular es 4 pulgadas (10 centímetros).

Tabla Nº35: Espesores mínimos sugeridos por capa.

Numero de ESAL's	Espesor mínimo (pulgadas)		
Numero de ESAL S	Concreto Asfaltico	Base Granular	
Menos de 50,000	1	4	
50,000 - 150,000	2	4	
150,000 - 500,000	2.6	4	
500,000 - 2,000,000	3	6	
2,000,000 - 7,000,000	3.6	6	
Más de 7,000,000	4	6	

Fuente: Manual de Diseño de Pavimentos AASHTO 1993, pág. 175

4.3.2. Espesores finales de Diseño.

En base al análisis y a los resultados obtenidos, la estructura de pavimento del tramo de carretera del Barrio 16 de Julio, será de 4 pulgadas la carpeta de rodamiento ya que este caso se utilizara adoquín, para todo el tramo en estudio, los espesores detallados son los siguientes:

Tabla Nº36: Espesores de Diseño.

Cons	Espesor		
Сара	Pulgadas	Centímetros	
Capa de rodamiento(Adoquín)	4	10	
Capa de arena	2	5	
Base granular	5	13	
Espesor Total Requerido	9	23	

Fuente: Elaboración propia.

A como se observa en la tabla anterior, al utilizar adoquín como carpeta de rodamiento, el espesor de 5 centímetros de arena no es tomado en cuenta en la

suma total del espesor requerido, dado que se considera que el lecho de arena no tiene ningún aporte estructural. Tal y como se muestra en la figura Nº 4 la estructura total es de 9 pulgadas.

Adoquín 4 pulg
Base 5 pulg

Figura Nº 4: Estructura de pavimento.

Fuente: Elaboración propia.

En resumen se ha obtenido como resultado la siguiente estructura de pavimento donde se muestran los valores de SN₁y SN₂, además de los espesores D_{1 y} D₂.

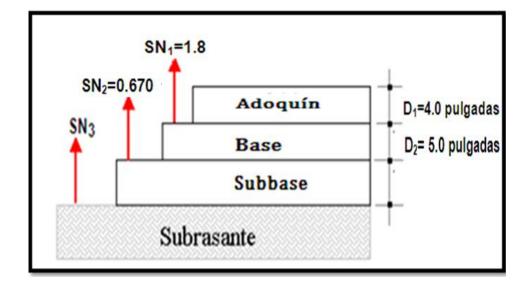


Figura Nº 5: Estructura de pavimento.

Fuente: Elaboración propia.

4.4. Uso del programa WinPAS.

A continuación se muestran en la tabla Nº33 los valores de las variables ya conocidas para el diseño de la estructura de pavimento articulado (adoquín), del tramo en estudio:

Tabla №33: Resumen de datos para calcular espesores en el programa WinPAS (Pavement Analysis Software 1.0.4).

Consideraciones del Diseño AASHTO 93	Valores a utilizar
ESAL de diseño	266,216
Confiabilidad	80%
Valor desviador (Zr)	-0.841
Desviación Estándar (So)	0.45
Serviciabilidad inicial (Po)	4.2
Serviciabilidad Final (Pt)	2.0
ΔPSI	2.2
Coeficiente de drenaje (mi)	1.00
Coeficiente de capa, Adoquín (a ₁)	0.45
Coeficiente de capa, Base granular(a2)	0.134

Fuente: Elaboración propia.

Para comparar y comprobar los resultados obtenidos en los cálculos anteriores, se determinaron los espesores de las diferentes capas de pavimento utilizando el programa WinPAS. El cual resulta una herramienta útil que agiliza y facilita los cálculos para el diseño. Al introducir los datos de la tabla Nº33 en el software se obtuvieron los resultados que se detallan en el anexo Nº24 del capítulo IV, pág. XXIX, en los cuales podemos apreciar que los resultados cumplen con el SN requerido y se obtuvo un resultado de:

 $\Sigma SN = 2.47$

SN requerido=2.34.

Aplicando el siguiente criterio se puede comprobar el diseño estructural.

 $\Sigma SN \ge SN requerido$

2.47 ≥ 2.34 O.K

CONCLUSIONES.

De acuerdo a los objetivos planteados se ha concluido que:

Para el **Estudio geotécnico** se determinó que los suelos predominantes en la línea son A-2-6 y A-7-6, los cuales no cumplen con las normativas establecidas, por lo tanto se usará el banco de materiales el banco # 2 (Los Chilamates), por ser catalogado como bueno con un valor CBR de 82% al 95% próctor.

Como solo se utilizará un banco de préstamos se propone que la estructura de pavimento esté compuesta por una capa de rodadura de adoquín y una capa base granular que se clasifica dentro del grupo A-1-a con índice de grupo 0, los el cual es un material de buena calidad que cumplen con las especificaciones NIC-2000.

En el **Estudio de tráfico**, se realizó un aforo vehicular de 12 horas durante 7 días (1 semana), del cual se obtuvo un TPDA de 436 vehículo/día. De los cuales se obtuvo una composición vehicular de 84.4% de Vehículos Livianos y un 10.1% de Vehículos Pesados. Para la proyección del tráfico se utilizó una tasa de crecimiento del 3.85%, obtenida mediante las correlaciones del TDPA-PIB, TPDA-Población y utilizando las variables de las tasas de crecimiento históricas de la estación 107.

En el **Diseño de pavimento**, en el tramo en estudio se obtuvo un ESAL'S de 266,216.00 para un periodo de diseño de 15 años, con un CBR de diseño de 6.2%, los espesores resultantes son de 4" para la carpeta de rodamiento (adoquín), y 5" para base granular.

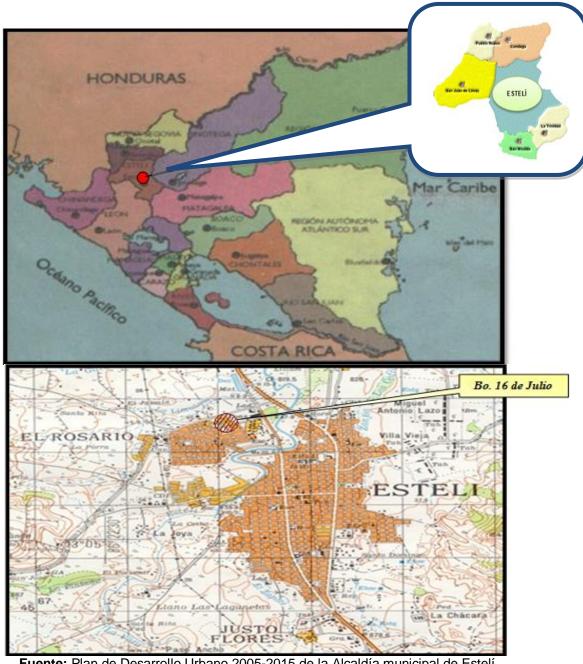
La estructura de pavimento cumplirá a los esfuerzos que será sometido, dado que estos valores cumplen con la normativa de Diseño de pavimentos de la AASHTO 93 en cuanto a espesores mínimos requeridos, todo esto indica que será una estructura de pavimento que satisfaga y soporte la demanda vehicular a proyectarse en este caso a 15 años.

RECOMENDACIONES.

- En la elaboración de la capa base, se debe constatar que el material esté libre de cualquier otro material contaminante, como basura, trozos de árboles o rocas muy grandes, ya que esto podría afectar la resistencia de la estructura.
- 2. Se deberá llevar un estricto control de compactación de campo al momento de colocar los materiales de los bancos.
- 3. En ningún punto de la capa de sub-base terminada, el espesor deberá variar en más de dos centímetros con el espesor indicado. Sin embargo, el promedio de los espesores comprobados no podrá ser inferior al especificado.
- 4. Se recomienda que la arena que servirá de colchón a los adoquines deberá ser arena lavada, dura, angular, uniforme Su graduación será tal que pase por el tamiz No. 4 y no más del 15% sea retenido en el tamiz No. 10. El espesor de esta capa, no deberá ser menor de 3 cm, ni mayor de 10 centímetros.
- Verificar que la calidad de los materiales es la determinada en el diseño, que cumplan con las especificaciones de calidad y resistencia propuestas en las Normas Nic- 2000.
- Darle mantenimiento periódico de manera preventiva a la carpeta de rodamiento para maximizar su vida útil, que también evita los altos costos del mantenimiento correctivo y/o rehabilitación.

BIBLIOGRAFÍA

- AASHTO, e. a. (93). Diseño de Pavimentos AASHTO 93 (3ra edicion). San Juan: instituto Nacional de Carreteras de Estados Unidos.
- Ayllón Acosta, J. (2004). Guia de pavimentos de concreto Asfaltico. Cochabamba Bolivia: Cochabamba.
- Fonseca, A. M. (2011). Ingeneria de Pavimentos para Carreteras 2da.
- Hernandez, M. I. (2011). Ingeneria de Trafico. Esteli: Universidad Nacional de Ingeniria (UNI-RUACS).
- Hoel, N. J. (2005). Ingenería de Tránsito y carreteras. Mexico: International Thomson Editores, S.A. de C.V.
- MTI. (2008). Manual para Revisión de Estudios Geotécnicos.
- MTI. (2014). Anuario de Aforos de Tráfico. Managua.
- NIC. (2000). Especificaciones generales para la construcción de caminos, calles y puentes.
- SIECA. (2004). Normas para el diseño geométrico de las carreteras regionales.
- Villalaz, C. (1976-1980). Mecánica de Suelos y Cimentaciones. Monterrey México: Limusa Noriega Editores.


ANEXOS

ANEXOS CAPÍTULO I: GENERALIDADES

Anexo Nº 1: Localización del Proyecto.

Anexo Nº1.1: macro localización.

El proyecto se encuentra localizado al norte de Nicaragua, en el departamento de Estelí.

Fuente: Plan de Desarrollo Urbano 2005-2015 de la Alcaldía municipal de Estelí.

Anexo Nº 1.2: Micro localización.

Fuente: Google Earth.

NOTA IMPORTANTE

- ➤ En la ciudad de Estelí las Avenidas van en sentido Norte Sur, distribuidas al Este y al Oeste de la Avenida central.
- ➤ Por su parte las calles están en sentido Este Oeste y distribuidas al Norte y al Sur de la calle Transversal.

Fuente: Planificación Urbana de la Alcaldía de Estelí.

Anexo Nº 2: Fotos del Barrio en estudio.

Anexo № 2.1: Situación actual de la Avenida 5 entre las Est. 0+142.77 y 0+163.

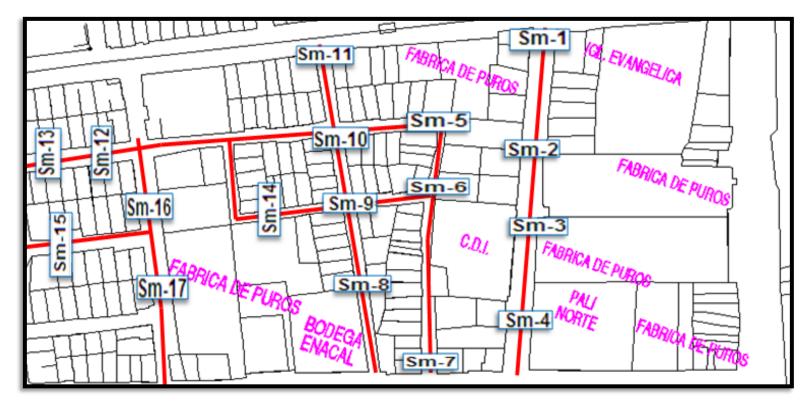
Fuente: propia.

Anexo № 2.2: Mal drenaje pluvial de la Avenida 5 entre las Est. 0+142.77 y 0+163.

Fuente: propia.

Anexo № 2.3: Acceso a la Avenida 5 entre las Estación 0+183.16 y 0+203.13.

Fuente: propia.


Anexo Nº 2.4: Situación actual de la Calle 1 Estación 0+114.83.

Fuente: propia.

ANEXOS CAPÍTULO II: ESTUDIO GEOTÉCNICO

Anexo Nº 3: Ubicación de Sondeos Manuales de Suelo.

Fuente: Elaboración Propia.

Anexo Nº 4: Resultados ensayos de suelos "Barrio 16 de Julio".

		PROFUND	MUESTRA			96	QUE PA	ASA PO	RTAN	ИIZ						CBR	a Compact	ación
LOCALIZACION EN EL BARRIO	ESTACION	EN METROS	No.	2"	1 1/2"	1"	3/4"	3/8"	#4	#10	# 40	# 200	L.L.	I.P.	CLASIFIC AASHTO	90%	95%	100%
									Sm-	1								
	0+003.29	0.0-0.15	1		100	86	74	56	44	33	21	13	37	14	A-2-7(o)	9	15	28
İ	0+003.29	0.15-0.45	2		100	91	88	58	42	39	33	26	52	21	A-2-7(4)	12	18	30
l	0+003.29	0.45-1.30	3		86	72	61	42	30	25	20	14	47	15	A-2-7(1)	11	15	28
l									Sm-									
	0+083.16	0.0-0.40	4	100	85	81	72	53	45	35	23	18	42	15	A-2-7(o)	9	15	30
.6	0+083.16	0.40-1.10	5	96	75	54	42	33	26	21	16	11	38	9	A-2-4(0)	10	30	36
AVENIDAS									Sm-	3								
JET	0+163	0.0-0.30	6						100	98	90	81	63	31	A-7-5(9)	2	6	10
₽	0+163	0.30-0.80	7						100	92	82	71	46	14	A-7-6(10)	1	5	8
	0+163	0.80-1.50	8	92	83	70	60	37	25	22	18	11	35	9	A-2-4(0)	11	25	41
[Sm-	4								
	0+223.32	0.00-0.20	9	94	84	78	72	56	44	35	27	22	43	15	A-2-7(3)	11	16	30
	0+223.32	0.20-0.45	10	100	88	83	78	71	51	47	38	33	45	14	A-2-7(3)	9	15	29
	0+223.32	0.45-1.45	11						100	94	71	50	54	28	A-7-6(15)	3	7	10
									Sm-	5								
	0+336.81	0.0-0.25	12				100	77	67	60	45	41	51	21	A-2-7(1)	10	15	34
	0+336.81	0.25-1.50	13						100	94	71	50	54	28	A-7-6(15)	3	5	12
- A A									Sm-	6								
AVENUA A	0+217.36	0.0-0.15	14	95	85	76	67	54	47	37	29	24	42	14	A-2-7(3)	9	16	33
ave	0+217.36	0.15-1.50	15						100	99	95	93	62	28	A-7-5(19)	2	8	7
,									Sm-	7								
[0+182.07	0.0-1.35	16						100	93	70	52	55	30	A-7-6(12)	2	6	7

Las celdas color gris son valores tomados para acumulación del CBR de Diseño.

Fuente: Alcaldía Municipal de Estelí.

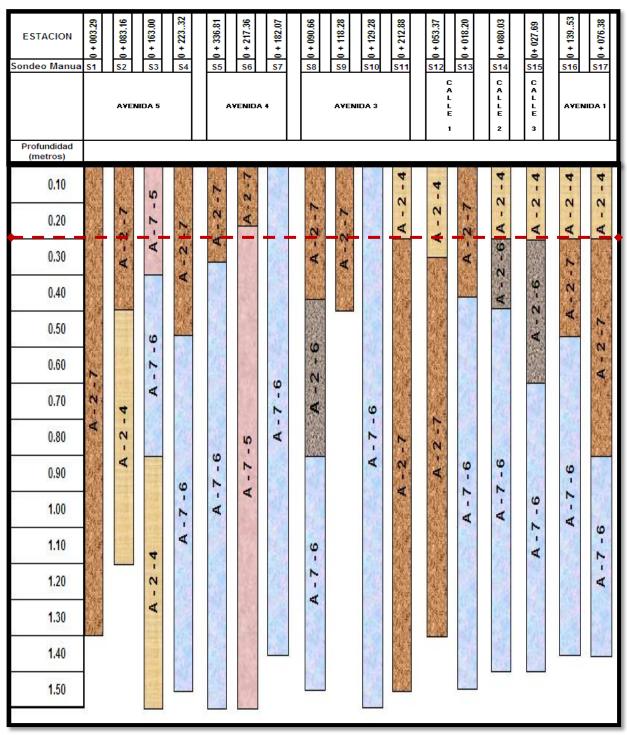
Anexo Nº4: Resultados ensayos de suelos "Barrio 16 de Julio".

		PROFUND	MUESTRA			%	QUEP	ASA P	DR TAI	MIZ						CBR	a Compact	ación
BARRIO	ESTACION	EN METROS	No.	2"	1 1/2'	1"	3/4"	3/8"	#4	# 10	# 40	# 200	L.L.	I.P.	CLASIFIC AASHTO	90%	95%	100%
									Sm-	8								
	0+090.66	0.0-0.35	17		100	86	74	56	44	33	21	13	52	21	A-2-7(o)	10	17	35
[0+090.66	0.35-0.80	18	100	93	82	71	53	41	34	27	19	40	13	A-2-6(o)	10	23	34
[0+090.66	0.80-1.45	19						100	94	84	73	47	15	A-7-6(10)	1	5	4
_3	Ì								Sm-	9								
-IID	0+118.28	0.0-0.40	20	79	70	67	63	60	53	44	33	23	54	32	A-2-7(2)	9	15	30
AVENUA 3									Sm-1	_								
P	0+129.28	0.0-1.50	21						100	89	84	68	44	15	A-7-6(10)	2	5	7
l .	0.040.00		22		400	00	70		Sm-1	_	40		24		4.0.47-3		0.5	
	0+212.88 0+212.88	0.0-0.20 0.20-1.45	22 23	100	100 97	99 98	70 78	57 42	35 98	15 84	10 80	6 14	34 42	10 14	A-2-4(0) A-2-7(0)	9 10	25 15	33 32
	U+212.00	0.20-1.45	23	100	31	30	10		Sm-1		00	14	42	14	A-2-7(0)	10	15	32
	0+053.37	0.0-0.25	24	100	91	79	72	58	47	41	32	25	36	10	A-2-4(0)	10	28	43
	0+053.37	0.25-1.30	25	100	85	53	46	34	27	23	18	13	36	13	A-2-7(1)	12	15	30
calle"						-			Sm-1						7,27(1)			
Chr	0+018.20	0.0-0.35	26		87	74	58	44	30	25	20	14	47	15	A-2-7(1)	9	15	33
	0+018.20	0.35-1.45	27						100	92	87	71	46	14	A-7-6(10)	2	5	9
									Sm-1	14								
2.2	0+080.03	0.0-0.20	28	100	93	77	68	55	44	37	31	24	35	9	A-2-4(o)	10	30	43
~,,,,	0+080.03	0.20-0.40	29	100	94	79	68	51	39	33	24	18	39	12	A-2-6(o)	9	22	32
CALLEZ	0+080.03	0.40-1.40	30						100	93	86	74	46	14	A-7-6(10)	1	5	10
									Sm-1	15								
CALLE 3	0+027.69	0.0-0.20	31	100	92	87	77	68	53	48	44	27	34	10	A-2-4(0)	9	25	43
	0+027.69	0.20-0.60	32	90	78	63	57	45	34	26	18	13	36	13	A-2-6(o)	10	21	35
Chr	0+027.69	0.60-1.40	33		100	99	99	51	97	90	90	70	46	14	A-7-6(10)	2	7	8
									Sm-1									
	0+139.53	0.0-020	34	100	99	98	82	73	70	62	55	38	34	10	A-2-4 (0)	9	27	38
[0+139.53	0.20-0.45	35		100	86	74	56	44	33	21	13	52	21	A-2-7(0)	10	25	37
OP'	0+139.53	0.45-1.35	36						100	92	82	71	46	14	A-7-6 (10)	2	6	9
AVENUA'									Sm-1	_								
1 2 Jr	0+076.38	0.0-0.18	37	100	99	92	81	78	68	61	42	31	38	9	A-2-4(0)	12	30	38
'	0+076.38 0+076.38	0.18-0.80 0.80-1.35	38 39	100	87	88	70	52	42 100	32 93	19 70	11 52	51 54	23 28	A-2-7(2) A-7-6 (12)	10 2	15 5	30 9
	0+076.38	0.00-1.35	39						100	53	70	52	54	20	A-7-0 (12)	2	5	9

Las celdas color gris son valores tomados para acumulación del CBR de Diseño.

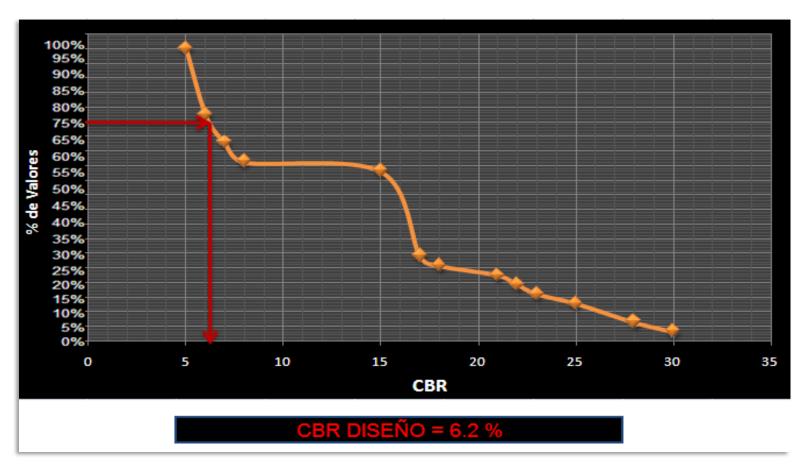
Fuente: Alcaldía Municipal de Estelí.

Anexo Nº 5: Clasificación de suelos, según AASHTO.


CLASIFICACION GENERAL		- 62		ales Granul				100 100 000		no - Arcillo:	
		(igua	al o menor del	35% pasa	el tamiz N	l° 200)		(más de	135% que p	asa el tami	z N° 200)
GRUPOS	А	-1			А	\-2					A-7
SUB - GRUPOS	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5
											A-7-6
% que pasa el Tamiz:											
Nº 10	50 máx.										
Nº 40	30 máx.	50 máx.	51 máx.								
N° 200	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mír
Características del Material que pasa el tamiz Nº 40											
Límite Líquido			NO	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 má
Índice de Plasticidad	6máx	6 máx.	PLÁSTICO	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mír
Índice de Grupo	0	0	0	0	0	4 máx.	4 máx.	8 máx.	12 máx.	16 máx.	20 má
Tipos de Material	piedra	entos de grava y ena	Arena fina	Grava	, arenas lin	nosas y ard	cillosas	Suelos	Limosos	Suelos A	Arcilloso
Terreno de Fundación		E	celente a Bue	no				Regular a	Deficiente		

NOTA: El índice de plasticidad de los suelos A-7-5 es igual o menor que su Límite Líquido 30, el de los A-7-6 mayor que su Límite Líquido (fig. 1) se halla indicada la relación ente lo LL e IP de los materiales finos. Dicho de otro modo, el grupo A-7 es subdividido en A-7-5 ó A-7-6 dependiendo del Límite Plástico (L.P.)
Si el LP ≥ 30, la clasificación es A-7-6

Si el LP < 30, la clasificación es A-7-5


Fuente: Libro de diseño de pavimentos, AASHTO 93.

Anexo Nº 6: Estratigrafía del Terreno "Barrio 16 de Julio".

La línea punteada en rojo muestra la sub-rasante considerada.

Anexo Nº 7: CBR de Diseño de la Sub-rasante.

Anexo Nº 8: Resultados de laboratorio de banco de materiales a utilizar.

No. del Banco	Ubicación	Procedencia
2	Escuela de agricultura	Banco Los Chilamates

Fuente: Alcaldía Municipal de Estelí.

AnexoNº8.1: Ensayo CBR del Banco Los Chilamates.

PVSS	PVSC	Densidad Máxima	Humedad Optima		CBR		Volumen Explotable
Kg/m ³	Kg/m ³	Kg/m ³	%	90%	95%	100%	(m³)
		Fuente de	Materiales: "	'Banco I	_os Chil	amates	II
1,211	1,318	1,962	12.4	34	82	100	25,200
Observ	aciones: I	PVSS= Peso Vo	lumétrico Seco	Suelto, P	VSC= Pes	o Volumét	rico Seco Compacto

Fuente: Alcaldía Municipal de Estelí.

AnexoNº8.2: Granulometría y Clasificación del Banco Los Chilamates.

		9	% que	pasa	por ta	miz			L.L.	I.P.	Clasificación
2"	11/2"	1"	3/4"	3/8"	# 200	(%)	(%)	AASHTO			
			Fuer	nte de	hilama	ates"					
		100	84	70	48	14	7	2		NP	A-1-a (o)
			Obse	vacion	es: L.L=	Limite Li	iquido, I.I	P= Índice	de Plast	icidad	

Fuente: Alcaldía Municipal de Estelí.

AnexoNº8.3: Requisitos que debe cumplir el material, para ser utilizado como base.

Prueba	Requerimiento mínimo NIC-2000	Banco de préstamo Chilamates	Valoración
Graduación	Cuadro 1003.10	Cumple	Cumple
Desgaste	Máx. 50%	-	-
Índice de plasticidad	Máx. 10%	N.P	Cumple
CBR al 95% de AASHTO modificado (AASHTO T- 180) y 4 días de saturación	Min. 80%	82%	Cumple

Fuente: Especificaciones generales para la construcción de caminos, calles y puentes NIC-2000.

AnexoNº8.4: Cuadro 1003.10 de NIC 2000, Requisitos graduación de agregados para el mejoramiento de la sub rasante.

Tamiz (mm)	NIC-2000	Banco de Préstamo Los Chilamates	Valoración
75	100	100	Cumple
4.75	30-70	48-70	Cumple
0.075	0-15	2-7	Cumple

Fuente: Especificaciones generales para la construcción de caminos, calles y puentes NIC-2000.

ANEXOS CAPITULO III: ESTUDIO DE TRÁFICO

El objetivo planteado es recopilar información que permita la realización de un estudio detallado del tráfico que circula en el tramo en estudio. (Aforo Vehicular).

ANEXO Nº 9: Ubicación de Aforo Vehicular.

Fuente: Google Earth.

ANEXO Nº 10: Formato para conteo de Tráfico Vehicular por Día.

			Veh.	Livia	nos	V	eh. Pasajero	IS					Veh.	Pesado	os de Ca	arga				Veh. P	esados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2	C2 Liv	C2 > 5 ton	C3	C4	C2R2	C2R3	TxSx <=4e	T352	T3S3	Otros	Veh. Const	Veh. Agríc	Trac. Animal	TOTAL VPH
06:00 am - 07:00 am																							
07:00 am - 08:00 am																							
08:00 am - 09:00 am																							
09:00 am - 10:00 am																							
10:00 am - 11:00 am																							
11:00 am - 12:00 md																							
12:00 md - 01:00 pm																							
01:00 pm - 02:00 pm																							
02:00 pm - 03:00 pm																							
03:00 pm - 04:00 pm																							
04:00 pm - 05:00 pm																							
05:00 pm - 06:00 pm																							

Anexo Nº 11: Conteo de Tráfico Vehicular por Día.

AnexoNº11.1: Conteo lunes 2 de noviembre 2015.

			Vehicu	ılos Li	vianos	Pesado	s de Pas	ajeros					Pesac	los de (Carga				Veh. I	esados	Veh.	TOTAL
Hora	Bicic	Motos	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2 Liv	C2	C3	C4	C2R2	C2R3	TxSx <=4e	T3S2	T353	Otros	Veh. Agríc	Veh. Const	Trac. Anim	VPH
06:00 am - 07:00 am	13	23	4	0	3	2	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	49
07:00 am - 08:00 am	11	14	5	1	1	1	0	1	3	2	0	0	0	0	0	0	0	0	0	0	0	39
08:00 am - 09:00 am	7	12	11	0	4	0	0	0	5	1	0	0	0	0	0	0	0	0	0	0	0	40
09:00 am - 10:00 am	5	6	7	1	7	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	28
10:00 am - 11:00 am	11	14	3	2	3	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	37
11:00 am - 12:00 md	4	21	18	0	2	2	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0	53
12:00 md - 01:00 pm	12	18	6	1	80	0	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0	50
01:00 pm - 02:00 pm	7	23	12	1	1	0	0	0	3	2	0	0	0	0	0	0	0	0	0	0	0	49
02:00 pm - 03:00 pm	2	17	5	6	4	1	0	0	6	1	0	0	0	0	0	0	0	0	0	0	0	42
03:00 pm - 04:00 pm	4	10	7	2	13	2	1	0	5	1	0	0	0	0	0	0	0	0	0	0	0	45
04:00 pm - 05:00 pm	7	11	11	4	1	7	1	2	2	1	0	0	0	0	0	0	0	0	0	0	0	47
05:00 pm - 06:00 pm	22	22	9	3	3	3	2	0	7	0	0	0	0	0	0	0	0	0	0	0	0	71
	105	191	98	21	50	18	8	5	43	11	0	0	0	0	0	0	0	0	0	0	0	550

AnexoNo11.2: Conteo martes 3 de noviembre 2015.

			Vehict	ılos Li	vianos	Pesado	s de Pas	ajeros					Pesad	los de (Carga				Veh. I	esados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2 Liv	C2	C3	C4	C2R2	C2R3	TxSx <=4e	T3S2	T3S3	Otros	Veh. Cons	Veh. Agríc	Trac. Anim	VPH
06:00 am - 07:00 am	11	21	4	0	2	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	42
07:00 am - 08:00 am	5	14	1	1	2	1	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	28
08:00 am - 09:00 am	2	6	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
09:00 am - 10:00 am	1	11	9	1	9	3	0	0	6	1	0	0	0	0	0	0	0	0	0	0	0	41
10:00 am - 11:00 am	9	14	3	0	3	1	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	33
11:00 am - 12:00 md	7	11	5	0	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	28
12:00 md - 01:00 pm	25	18	14	0	8	2	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	71
01:00 pm - 02:00 pm	2	24	3	0	4	0	1	0	1	2	0	0	0	0	0	0	0	0	0	0	0	37
02:00 pm - 03:00 pm	5	œ	2	1	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	21
03:00 pm - 04:00 pm	6	19	11	1	14	1	1	0	4	1	0	0	0	0	0	0	0	0	0	0	0	58
04:00 pm - 05:00 pm	7	12	9	0	4	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	35
05:00 pm - 06:00 pm	17	27	12	0	10	3	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	77
	97	185	74	4	65	14	7	3	28	4	0	0	0	0	0	0	0	0	0	0	0	481

AnexoNº11.3: Conteo miércoles 4 de noviembre 2015.

			Vehicu	los Li	vianos		Pasajero	5					Pesad	los de C	Carga				Veh. I	esados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB	Bus	C2	C2	C3	C4	C2R2	C2R3	TxSx	T352	T353	Otros	Veh.	Veh.	Trac.	TOTAL VPH
				<i>'</i> .			>15 P		Liv						<=4e				Cons	Agric	Anim	
06:00 am - 07:00 am	15	10	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	30
07:00 am - 08:00 am	3	11	2	1	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	21
08:00 am - 09:00 am	6	17	1	1	3	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	34
09:00 am - 10:00 am	2	19	1	0	4	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	29
10:00 am - 11:00 am	7	12	4	0	6	0	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	33
11:00 am - 12:00 md	9	11	2	1	5	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	31
12:00 md - 01:00 pm	23	27	4	0	3	1	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	62
01:00 pm - 02:00 pm	4	18	8	0	4	0	0	1	9	1	0	0	0	0	0	0	0	0	0	0	0	45
02:00 pm - 03:00 pm	3	11	10	0	8	1	0	0	3	0	2	0	0	0	0	0	0	0	0	0	0	38
03:00 pm - 04:00 pm	12	16	6	2	7	0	0	2	11	0	1	0	0	0	0	0	0	0	0	0	0	57
04:00 pm - 05:00 pm	6	11	3	1	11	0	0	1	5	1	0	0	0	0	0	0	0	0	0	0	0	39
05:00 pm - 06:00 pm	9	18	7	1	17	4	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	62
	99	181	52	7	71	11	3	7	43	3	4	0	0	0	0	0	0	0	0	0	0	481

AnexoN⁰11.4: Conteo jueves 5 de noviembre 2015.

			Vehict	ılos Li	vianos	I	esados o	le					Pesad	los de C	Carga				Veh. I	esados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2	C2 >5	C3	C4	C2R2	C2R3	TxSx <=4e	T3S2	T3S3	Otros	Veh. Cons	Veh. Agríc	Trac. Anim	VPH
06:00 am - 07:00 am	11	23	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38
07:00 am - 08:00 am	7	14	2	0	3	1	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	31
08:00 am - 09:00 am	6	6	1	0	6	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	20
09:00 am - 10:00 am	2	16	2	1	2	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	25
10:00 am - 11:00 am	9	6	8	83	7	0	1	0	3	2	0	0	0	0	0	0	0	0	0	0	0	39
11:00 am - 12:00 md	4	12	17	4	4	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	44
12:00 md - 01:00 pm	9	22	2	0	12	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	48
01:00 pm - 02:00 pm	1	6	1	2	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	12
02:00 pm - 03:00 pm	1	2	3	3	3	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	15
03:00 pm - 04:00 pm	1	12	5	2	11	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	33
04:00 pm - 05:00 pm	1	22	3	2	7	0	0	1	1	4	0	0	0	0	0	0	0	0	0	0	0	41
05:00 pm - 06:00 pm	12	22	1	1	12	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	52
	64	163	45	18	70	4	4	3	18	9	0	0	0	0	0	0	0	0	0	0	0	398

AnexoNº11.5: Conteo viernes 6 de noviembre 2015.

			Vehicu	ılos Li	vianos		Pasajeros	;					Pesad	los de C	Carga				Veh. I	esados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2 Liv.	C2	C3	C4	C2R2	C2R3	TxSx <=4e	T352	T3S3	Otros	Veh. Const	Veh. Agríc	Trac. Anima	VPH
06:00 am - 07:00 am	5	8	1	1	2	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	20
07:00 am - 08:00 am	15	12	4	2	4	0	0	0	3	0	1	0	0	0	0	0	0	0	0	0	0	41
08:00 am - 09:00 am	6	8	12	1	5	1	0	2	2	1	0	0	0	0	0	0	0	0	0	0	0	38
09:00 am - 10:00 am	5	5	4	1	8	2	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	29
10:00 am - 11:00 am	10	9	18	0	5	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	44
11:00 am - 12:00 md	6	16	7	0	4	1	2	0	5	0	1	0	0	0	0	0	0	0	0	0	0	42
12:00 md - 01:00 pm	14	11	10	1	11	1	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	51
01:00 pm - 02:00 pm	7	25	11	0	7	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	51
02:00 pm - 03:00 pm	5	4	13	0	5	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	31
03:00 pm - 04:00 pm	7	8	8	0	3	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	29
04:00 pm - 05:00 pm	9	16	5	0	7	0	2	0	2	2	0	0	0	0	0	0	0	0	0	0	0	43
05:00 pm - 06:00 pm	14	18	10	0	16	1	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	65
	103	140	103	6	77	7	9	4	26	5	4	0	0	0	0	0	0	0	0	0	0	484

AnexoNº11.6: Conteo sábado 7 de noviembre 2015.

			Vehicu	ılos Li	vianos	1	?asajero	S					Pesad	los de (Carga				Veh. I	esados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2 Liv	C2	C3	C4	C2R2	C2R3	TxSx <=4e	T352	T3S3	Otros	Veh. Const	Veh. Agríc	Trac. Anima	VPH
06:00 am - 07:00 am	4	4	2	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
07:00 am - 08:00 am	12	13	3	0	7	0	0	2	1	0	1	0	0	0	0	0	0	0	0	0	0	39
08:00 am - 09:00 am	3	5	6	0	3	1	0	2	5	0	0	0	0	0	0	0	0	0	0	0	0	25
09:00 am - 10:00 am	5	4	2	1	5	0	0	1	7	0	0	0	0	0	0	0	0	0	0	0	0	25
10:00 am - 11:00 am	2	6	4	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	15
11:00 am - 12:00 md	2	10	33	0	9	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	27
12:00 md - 01:00 pm	00	18	9	0	11	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	48
01:00 pm - 02:00 pm	3	7	4	0	2	1	0	1	3	0	1	0	0	0	0	0	0	0	0	0	0	22
02:00 pm - 03:00 pm	2	15	7	0	8	0	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	36
03:00 pm - 04:00 pm	4	8	12	0	12	0	0	0	4	1	1	0	0	0	0	0	0	0	0	0	0	42
04:00 pm - 05:00 pm	6	4	0	0	8	0	2	0	7	2	0	0	0	0	0	0	0	0	0	0	0	29
05:00 pm - 06:00 pm	14	14	16	2	10	1	4	0	2	0	0	0	0	0	0	0	0	0	0	0	0	63
	65	108	68	4	80	4	6	7	32	7	4	0	0	0	0	0	0	0	0	0	0	385

AnexoNº11.7: Conteo domingo 8 de noviembre 2015.

			Vehicu	ılos Li	vianos	I	esados d	le					Pesad	los de (Carga				Veh. I	Pesados	Veh.	TOTAL
Hora	Bicic	Moto	Autos	Jeep	Ctas	Mbus	MB >15 P	Bus	C2 Liv	C2	C3	C4	C2R2	C2R3	TxSx <=4e	T352	T353	Otros	Veh. Cons	Veh. Agríc	Trac. Anim	VPH
06:00 am - 07:00 am	5	17	3	0	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	30
07:00 am - 08:00 am	2	6	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
08:00 am - 09:00 am	3	9	3	1	4	3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	24
09:00 am - 10:00 am	3	18	6	0	5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	33
10:00 am - 11:00 am	4	8	5	0	8	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	27
11:00 am - 12:00 md	2	9	2	0	10	0	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	27
12:00 md - 01:00 pm	2	4	2	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16
01:00 pm - 02:00 pm	6	7	6	0	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	23
02:00 pm - 03:00 pm	5	5	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16
03:00 pm - 04:00 pm	7	5	5	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	20
04:00 pm - 05:00 pm	2	7	6	0	8	0	1	0	2	1	0	0	0	0	0	0	0	0	0	0	0	27
05:00 pm - 06:00 pm	4	14	1	0	4	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	25
	45	109	43	2	60	3	2	2	11	2	0	0	0	0	0	0	0	0	0	0	0	279

Anexo Nº 12: Indicadores Macroeconómicos 2014.

Conceptos	2008	2009	2010	2011	2012	2013	2014
Actividad económica 1/							
PIB a precios constantes (tasas de crecimiento)	2.9	(2.8)	3.2	6.2	5.1	4.5	4.7
PIB per-cápita (en US\$)	1,469.4	1,432.5	1,475.8	1,626.9	1,723.1	1,768.9	1,904.7
PIB per-cápita (tasas de crecimiento)	12.5	(2.5)	3.0	10.2	5.9	2.7	7.7
Precios y tipo de cambio							
Inflación anual acumulada nacional (IPC año base=2006)	13.8	0.9	9.2	8.0	6.6	5.7	6.
Inflación anual acumulada (Managua) ^{2/}	12.7	1.8	9.1	8.6	7.1	5.4	6.
Devaluación anual (%)	5.0	5.0	5.0	5.0	5.0	5.0	5.
Tipo de cambio oficial promedio (C\$ x US\$)	19.4	20.3	21.4	22,4	23.5	24.7	26.
Tipo de cambio oficial a fin de período (C\$ x US\$)	19.8	20.8	21.9	23.0	24.1	25.3	26.
Sector monetario (tasas de crecimiento)							
Base monetaria	5.3	19.8	17.1	25.6	4,9	6.7	14.
RIB / base monetaria (número de veces)	2.2	2.6	2.7	2,4	2.4	2.5	2
Depósitos totales	7.3	15.2	24.4	17.6	5.5	13.9	19.
Cartera de crédito bruta	12.3	(6.4)	2.9	19.1	29.2	21,3	19
Saldo de reservas internacionales netas (millones US\$)	1,029.8	1,422.8	1,631.6	1,710.5	1,718.1	1,840.0	2,153
Saldo de reservas internacionales brutas (millones US\$) Sector externo (millones US\$) 4/	1,140.8	1,573.1	1,799.0	1,892.3	1,887.2	1,993.0	2,276
Cuenta corriente (% del PIB)	(17.8)	(8.6)	(8.9)	(11.8)	(10.6)	(11.1)	(7.1
Exportaciones de mercancías FOB	1,475.3	1,393.8	1,822.1	2,251.7	2,671.8	2,401.8	2,632
Exportaciones de bienes de zona franca	1,264.1	1,227.9	1,630.1	2,108.5	2,144.5	2,342.5	2,510
Importaciones de mercancías FOB	3,995.4	3,229.1	3,872.5	4,863.5	5,420.9	5,225.4	5,452
Importaciones de bienes de zona franca	893.6	838.6	1,166.0	1,491.2	1,357.0	1,462.4	1,492
Deuda pública externa							
Saldo de deuda pública externa (millones US\$)	3,541.6	3,856.3	4,068.2	4,263.2	4,480.8	4,723.7	4,796
Deuda externa / PIB	41.7	46.0	46.5	43.7	42.8	43.5	40
Servicio de deuda externa /exportaciones ^{5/}	3.1	3.3	2.4	1.9	1.8	2.0	2
Partidas informativas (millones C\$)							
PIB (a precios constantes) ^{1/}	129,120.1	125,557.4	129,564.3	137,638.3	144,701.6	151,228.4	158,340
PIB (córdobas corrientes)	164,494.3	170,459.9	186,683.0	218,762.9	246,306.5	268,260.5	306,461
PIB (en millones US\$)	8,491.4	8,380.7	8,741.3	9,755.6	10,460.9	10,850.7	11,805
Población (miles de habitantes) ^{6/}	5,778.8	5,850.5	5,923.1	5,996.6	6,071.0	6,134.3	6,198
Base monetaria	10,369.5	12,425.7	14,549.8	18,278.0	19,174.4	20,466.9	23,502
Depósitos totales 7/	48,776.4	56,489.1	70,400.3	82,043.5	86,550.1	98,591.8	117,345
Crédito total ⁸ /	47,198.6	44,241.7	45,289.1	53,852.4	69,457.2	84,281.8	100,712
Balance del SPNF a/d Balance del SPNF d/d	(4,875.2) (1,027.8)	(6,576.7) (2,195.9)	(4,121.9) (1,101.6)	(3,457.4) 354.2	(4,144.5) (626.5)	(5,800.5) (3,021.4)	(7,957. (4,541.

Fuente: Banco Central de Nicaragua. Informe anual 2014.

Anexo Nº 13: Tipología y Descripción Vehicular de Conteos de Trafico de la oficina de Diagnostico, Evaluación de pavimentos y puentes.

CLASIF. VEHICULAR	TIPOS DE VEHICULOS	ESQUEMA VEHICULAR	DESCRIPCIÓN DE LA TIPOLOGÍA VEHICULAR
	MOTOCICLETAS		Incluye todos los tipos de Motocicleta tales como, Minimotos, Cuadraciclos, Moto Taxis, Etc. Este último fue modificado para que pudiera ser adaptado para el traslado de personas, se encuentran más en zonas Departamentales y Zonas Urbanas. Moviliza a 3 personas incluyendo al conductor.
	AUTOMOVILES	ゆるり	Se consideran todos los tipos de automóviles de cuatro y dos puertas, entre los que podemos mencionar, vehículos cope y station wagon.
VEHICULOS	JEEP	R 3 0	Se consideran todos los tipos de vehículos conocidos como 4*4. En diferentes tipos de marcas, tales como TOYOTA, LAND ROVER, JEEP, ETC.
DE PASAJEROS	CAMIONETA		Son todos aquellos tipos de vehículos con tinas en la parte trasera, incluyendo las que transportan pasajeros y aquellas que por su diseño están diseñadas a trabajos de carga.
PASAJEROS	MICROBUS	10.0 10.0 10.0	Se consideran todos aquellos microbuses, que su capacidad es menor o igual a 14 pasajeros sentados.
	MINIBUS		Son todos aquellos con una capacidad de 15 a 30 pasajeros sentados.
	BUS		Se consideran todos los tipos de buses, para el transporte de pasejeros con una capacidad mayor de 30 personas sentadas.
	LIVIANO DE CARGA	*	Se consideran todos aquellos vehículos, cuyo peso máximo es de 4 toneladas o menores a ellas.
	CAMIÓN DE CARGA C2 - C3		Son todos aquellos camiones tipos C2 (2 Ejes) y C3 (3 Ejes), con un peso mayor de 5 toneladas. Tambien se incluyen las fugonetas de carga liviana.
VEHICULOS	CAMIÓN DE CARGA PESADA Tx-Sx<=4		Carniones de Carga Pesada, son vehículos diseñados para el transporte de mercancía liviana y pesada y son del tipo Tx-Sx<=4.
DE CARGA	Tx-Sx>=5		Este tipo de camiones son considerados combinaciones Tractor Camión y semi Remolque, que sea igual o mayor que 5 ejes.
	Cx-Rx<≃4		Camión Combinado, son combinaciones camión remolque que sea menor o igual a 4 ejes y están clasificados como Cx-Rx<=4
	Cx-Rx>=5		Son combinaciones iguales que las anteriores pero iguales o mayores cantidades a 5 ejes.
EQUIPO	VEHICULOS AGRÍCOLAS	000	Son vehículos provistos con llantas especiales de hule, de gran tamaño. Muchos de estos vehículos poseen arados u otros tipos de equipos, con los cuales realizar las actividades agrícolas. Existen de diferentes tipos (Tractores - Arados - Cosechadoras)
PESADO	VEHICULOS DE CONSTRUCCIÓN		Generalmente estos tipos de vehículos se utilizan en la construcción de obras civiles. Pueden ser de diferentes tipos, Motoniveladoras, retroexcavadoras, Recuperador de Caminos/Mezclador, Pavimentadora de Asfalto, Tractor de Cadenas, Cargador de Ruedas y Compactadoras.
OTROS	REMOLQUES Y/O TRAILERS	00000	Se incluye remolques o trailers pequeños halados por cualquier clase de vehículo automotor, tambien se incluyen los halados por tracción animal (Semovientes).

Fuente: Anuario de aforos de tráfico. MTI, Año 2014.Pag. 32.

Anexo Nº 14: Dependencia de la EMC 107 entre ECD y ECS.

ESTACION DE MAYOR COBERTURA	NIC	Nº ESTACION	TIPO	Pkm	NOMBRE DEL TRAMO
	NIC-1	108	ECD	119.5	Emp. San Isidro - La Trinidad
	NIC-1	109	ECD	129.1	La Trinidad - Emp. San Nicolás
	NIC-1	142	ECD	140.0	Emp. San Nicolás - Estelí
	NIC-4	405	ECD	65.0	Emp. Guanacaste - Emp. Nandaime
	NIC-4B	434	ECD		Rtda Tisma - Rtda. Las Flores (circunvalacion)
107	NIC-11A	1100	ECD	38.0	Emp. Coyotepe - Emp. Zambrano
Sébaco - Emp.	NIC-11A	1101	ECD	46.1	Emp. Zambrano - Tipitapa (Inter NIC-1)
San Isidro	NIC-15	1501	ECD	223.5	Yalagüina - Ocotal
	NIC-19B	720	ECS	120.0	Emp.Santa Rosa (Inter NIC-7) - Comalapa
	NIC-20A	126	ECD	18.3	Proincasa - Cofradia
	NIC-35C	2605	ECS	166.0	El Jicaral - Santa Rosa del Peñón
	NIC-52	5201	ECD	65.0	Emp. Puerto Sandino - Puerto Sandino
	NN-202	2004A	ECD	19.4	Sabana Grande - Proinco

Fuente: Anuario de aforos de tráfico. MTI, Año 2014.Pag. 37.

Anexo No 15: Factores 2014 EMC 107.

Factores del primer cuatrime	estre del	año En	ero - Al	bril													
Descripción	Moto	Carro	Jeep	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	C2	СЗ	Tx- Sx<=4	Tx- Sx=>5	Cx- Rx=<4	Cx- Rx=>5	V.A	v.c	Otros
Factor Día	1.24	1.23	1.31	1.27	1.33	1.40	1.17	1.36	1.38	1.46	1.40	1.63	1.00	2.00	1.00	1.17	1.27
Factor Semana	0.97	1.03	1.01	0.96	1.04	1.17	0.98	0.89	0.91	0.84	0.83	0.90	1.00	1.00	1.00	1.00	1.06
Factor Fin de Semana	1.07	0.94	0.98	1.12	0.92	0.73	1.05	1.46	1.33	1.86	2.00	1.39	1.00	1.00	1.00	1.00	0.88
Factor Expansión a TPDA	1.03	0.94	0.98	1.03	1.14	0.92	1.01	1.17	0.94	1.23	1.00	1.11	1.00	1.00	1.89	0.52	1.11
Descripción	Moto	Carro	Jeep	Camioneta	Micro	Mini	Bus	Liv. 2-5 t.	C2	СЗ	Tx- Sx<=4	Tx- Sx=>5	Cx- Rx=<4	Cx- Rx=>5	V.A	v.c	Otros
Factor Día	1.28	1.26	1.28	1.30	1.28	1.28	1.18	1.33	1.48	1.53	1.00	1.52	1.00	1.00	1.10	1.00	1.18
Factor Día Factor Semana	1.28	1.26 0.99	1.28 0.98	1.30 0.92			1.18 0.98		1.48 0.88	1.53 0.85					1.10 0.87	1.00	1.18 0.96
					1.28	1.28		1.33			1.00	1.52	1.00	1.00			
Factor Semana Factor Fin de Semana	1.00	0.99	0.98	0.92	1.28 0.99	1.28 1.10	0.98	1.33 0.88	0.88	0.85	1.00	1.52 0.88	1.00	1.00 1.00	0.87	1.00	0.96 1.11
Factor Semana	1.00 1.01 1.07	0.99 1.03 0.90	0.98 1.06 1.14	0.92 1.26 1.01	1.28 0.99 1.03 0.89	1.28 1.10 0.82 1.05	0.98 1.07	1.33 0.88 1.55 0.99	0.88 1.48	0.85 1.76	1.00 1.00 1.00 1.00	1.52 0.88 1.49 0.93	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	0.87 1.61	1.00	0.96
Factor Semana Factor Fin de Semana Factor Expansión a TPDA Factores del tercer cuatrimes	1.00 1.01 1.07 stre del	0.99 1.03 0.90 año sep	0.98 1.06 1.14 stiembre	0.92 1.26 1.01 e - Diciembre	1.28 0.99 1.03 0.89	1.28 1.10 0.82 1.05	0.98 1.07 1.03	1.33 0.88 1.55 0.99	0.88 1.48 1.12	0.85 1.76 1.01	1.00 1.00 1.00 1.00	1.52 0.88 1.49 0.93	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	0.87 1.61 0.67	1.00 1.00 1.22	0.96 1.11 0.96
Factor Semana Factor Fin de Semana Factor Expansión a TPDA Factores del tercer cuatrime: Descripción	1.00 1.01 1.07 stre del	0.99 1.03 0.90 año sep Carro 1.28	0.98 1.06 1.14 stiembro Jeep 1.33	0.92 1.26 1.01 e - Diciembre Camioneta 1.26	1.28 0.99 1.03 0.89	1.28 1.10 0.82 1.05 Mini Bus 1.21	0.98 1.07 1.03 Bus	1.33 0.88 1.55 0.99 Liv. 2-5 t. 1.34	0.88 1.48 1.12	0.85 1.76 1.01	1.00 1.00 1.00 1.00	1.52 0.88 1.49 0.93	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	0.87 1.61 0.67 V.A	1.00 1.00 1.22	0.96 1.11 0.96 Otros
Factor Semana Factor Fin de Semana Factor Expansión a TPDA Factores del tercer cuatrimes Descripción Factor Día	1.00 1.01 1.07 stre del	0.99 1.03 0.90 año sep	0.98 1.06 1.14 stiembre	0.92 1.26 1.01 e - Diciembre	1.28 0.99 1.03 0.89 Micro Bus 1.29	1.28 1.10 0.82 1.05	0.98 1.07 1.03	1.33 0.88 1.55 0.99	0.88 1.48 1.12	0.85 1.76 1.01	1.00 1.00 1.00 1.00	1.52 0.88 1.49 0.93	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	0.87 1.61 0.67	1.00 1.00 1.22 V.C	0.96 1.11 0.96

Fuente: Anuario de aforos de tráfico. MTI, Año 2014.Pag. 231.

Anexo Nº 16: Listado Histórico TPDA Estación 107.

EST.	TIPO	NOMBRE DEL TRAMO	Año	Motos	Autos	Јеер	Cmta.	McBus <15 pas.	MnBus 15-30 s.	Bus	Liv. 2-5 Ton	C2 5 + Ton	C3		Tx-Sx >= 5e			V.A	v.c	Otros	TPDA
107	EMC	Sébaco - Emp. San Isidro	2014	654	947	374	1760	77	14	234	419	412	57	1	377			8	1	15	5,350
			2013	539	949	325	1551	100	10	231	408	393	65		356			10	1	16	4,954
ı			2012	435	916	353	1581	57	14	237	435	358	56	8	374			6	1	12	4,843
ı			2011	355	870	353	1503	49	9	226	400	329	53	1	352			6	1	10	4,517
ı			2010	306	871	356	1492	43	8	228	353	288	44		327			8		10	4,334
ı			2009	293	812	337	1389	40	8	216	332	287	48		321			7	1	10	4,101
ı			2008	222	705	356	1394	44	13	229	335	351	47		380			8		9	4,092
ı			2007	139	676	341	1344	36	12	266	337	299	41		343			7		12	3,853
			2006	123	687	349	1362	39	13	269	317	298	44	1	326			7		14	3,849
ı			2005	88	540	335	1208	34	10	243	270	277	37	4	348			5		5	3,405
ı			2004	104	594	359	1267	38	13	228	284	309	37	1	369	1		9		9	3,622
ı			2003	103	550	362	1239	36	10	221	270	296	34	1	291	1		6	1	7	3,428
ı			2002	135	468	360	1300	35	5	207	244	295	38	2	161		0	14	0	7	3,272
ı			2001	107	361	320	1295	35	6	203	229	322	46		170			19		9	3,122
ı			2000	108	287	325	1230	26	5	190	204	309	31	1	171		0	11	0	7	2,905
ı			1999	117	293	361	1241	19	6	165	193	350	40	2	148	0	0	16	0	10	2,960
			1998	91	305	292	1073	23	4	121	97	269	23	1	102		1	9		11	2,422
			1997	112	263	260	1079	13	2	120	140	249	32	1	84		1	19		15	2,390
ட			1996	99	254	254	967	12	28	113	114	300	38	1	85	1	1	25	1	12	2,305

Fuente: Anuario de aforos de tráfico. MTI, Año 2014.Pag. 101.

Anexo Nº 17: Diagrama de cargas permisibles por tipo de vehículo.

Vehículos Liviano y Pasajeros.

Tipo de Vehículo	Peso por eje (TON)	Peso por eje (LBS)
AUTOMOVIL	1/1	2200/2200
JEEP	1/1	2200/2200
CAMIONETA	1/2	2200/4400
MC-15	2/4	4400/8800
MC-15-30	4/8	8800/17600
C-2 LIV	4/8	8800/17600
BUS=C2	5/10	11000/22000

Fuente: Ministerio de Transporte e Infraestructura (MTI).

Anexo Nº 18: Diagrama de cargas permisibles por tipo de vehículo.

Vehículos Pesados.

TIPO	ESQUEMAS			PI	ESO MAX	IMO AUT	ORIZADO	
DE VEHICULOS	DE VEHICULOS	1er. Eje	2do. Eje	Зег. Еје	4to. Eje	5to. Eje	6to. Eje	Peso Máximo Total (1) Ton - Met.
C2	4	5.00	10.00					15.00
C3		5.00	16. 8.25	.50 8.25	•			21.50
C4	4	5.00	6.67	20.00 6.66	6.66			25.00
T2-S1		5.00	9.00	9.00				23.00
T2-S2		5.00	9.00	16 8.00	.00 8.00			30.00
T2-S3	3 000	5.00	9.00	6.67	20.00 6.66	6.66		34.00
T3-S1		5.00	16 8.00	.00 8.00	9.00			30.00
T3-S2	300 00	5.00	16 8.00	.00 8.00	16 8.00	.00 8.00		37.00
T3-S3	6 60 600	5.00	16. 8.00	.00 8.00	6.67	20.00 6.66	6.66	41.00
00.00		4.50	9.00	4.0 a	4.0 a			21.50
C2-R2	6 6 6	4.50	9.00	6.5 b	6.5 b			26.50
C2 D2		5.00	16	.00	4.0 a	4.0 a		29.00
C3-R2	<u>6 8 8 8</u>	5.00	8.00	8.00	6.5 b	6.5 b		34.00
C3-R3	60 00 000	5.00 5.00	16 8.0 b	.00 8.0 b	4.0 a 6.5 b		5.0 a 5.0 b	35.00 37.50

NOTA: El peso máximo permisible será el menor entre el especificado por el fabricante y el contenido en esta columna.

a: Lje sencillo llanta sencilla.

b: Éje sencillo llanta doble.

Fuente: Ministerio de Transporte e Infraestructura vial (MTI).

Anexo Nº 19: Factores Equivalentes de Cargas, Ejes Simples.

Carga	por eje		SN	pulg	(mm)	↓	
(kips)	(KN)	1.0 (25.4)	2.0 (50.8)	3.0 (76.2)	4.0 (101.6)	5.0 (127.0)	6.0 (152.4)
2	8.9	.0002	.0002	.0002	.0002	.0002	.0002
4	17.8	.002	.003	.002	0.002	.002	.002
6	26.7	.009	.012	.011	0.10	.009	.009
8	35.6	.030	.035	.036	.033	.031	.029
10	44.5	.075	.085	.090	.085	0.79	.076
12	53.4	.165	.177	.189	.183	.174	.168
14	62.3	.325	.338	.354	.350	.338	.331
16	71.2	.589	.598	.613	.612	.603	.596
18	80.0	1.00	1.00	1.00	1.00	1.00	1.00
20	89.0	1.61	1.59	1.56	1.55	1.57	1.59
22	97.9	2.49	2.44	2.35	2.31	2.35	2.41
24	106.8	3.71	3.62	3.43	3.33	3.40	3.51
26	115.7	5.36	5.21	4.88	4.68	4.77	4.96
28	124.6	7.54	7.31	6.78	6.42	6.52	6.83
30	133.5	10.4	10.0	9.2	8.6	8.7	9.2
32	142.4	14.0	13.5	12.4	11.5	11.5	12.1
34	151.3	18.5	17.9	16.3	15.0	14.9	15.6
36	160.0	24.2	23.3	21.2	19.3	19.0	19.9
38	169.1	31.1	29.9	27.1	24.6	24.0	25.1
40	178.0	39.6	38.0	34.3	30.9	30.0	31.2
42	186.9	49.7	47.7	43.0	38.6	37.2	38.5
44	195.8	61.8	59.3	53.4	47.6	45.7	47.1
46	204.7	76.1	73.0	65.6	58.3	55.7	57.0
48	213.6	92.9	89.1	80.0	70.9	67.3	68.6
50	222.5	113	108	97	86	81	82

Los números en color rojo son valores a interpolar, en función a SN=5.

Fuente: Manual AASHTO-93 Design Requirements.

Anexo Nº 20: Factores Equivalentes de Cargas, Ejes Tándem.

Ca	arga por eje		SN	pulg	(mm)		
(ki	ps) (KN)	1.0 (25.4)	2.0 (50.8)	3.0 (76.2)	4.0 (101.6)	5.0 (127.0)	6.0 (152.4)
2	8.9	.0000	.0000	.0000	.0000	.0000	.0000
4	17.8	.0003	.0003	.0003	.0002	.0002	.0002
(26.7	.001	.001	.001	.001	.001	.001
8	35.6	.003	.003	.003	.003	.003	.002
1	0 44.5	.007	.008	.008	.007	.006	.006
1	2 53.4	.013	.016	.016	.014	.013	.012
1	4 62.3	.024	.029	.029	.026	.024	.023
1	6 71.2	.041	.048	.050	.046	.042	.040
1	8 80.0	.066	.077	.081	.075	.069	.066
2	0 89.0	.103	.117	.124	.117	.109	.105
2	2 97.9	.156	.171	.183	.174	.164	.158
2	4 106.8	.227	.244	.260	.252	.239	.231
2	6 115.7	.322	.340	.360	.353	.338	.329
2	8 124.6	.447	.465	.487	.481	.466	.455
3	0 133.5	.607	.623	.646	.643	.627	.617
3	2 142.4	.810	.823	.843	.842	.829	.819
3	4 151.3	1.06	1.07	1.08	1.08	1.08	1.07
36.3 3	6 160.0	1.38	1.38	1.38	1.38	1.38	1.38
3	8 169.1	1.76	1.75	1.73	1.72	1.73	1.74
4	0 178.0	2.22	2.19	2.15	2.13	2.16	2.18
4	2 186.9	2.77	2.73	2.64	2.62	2.66	2.70
4	4 195.8	3.42	3.36	3.23	3.18	3.24	3.31
4	6 204.7	4.20	4.11	3.92	3.83	3.91	4.02
4	8 213.6	5.10	4.98	4.72	4.58	4.68	4.83
5	0 222.5	6.15	5.99	5.64	5.44	5.56	5.77
5	2 231.4	7.37	7.16	6.71	6.43	6.56	6.83
5	4 240.3	8.77	8.51	7.93	7.55	7.69	8.03
5	6 249.2	10.4	10.1	9.3	8.8	9.0	9.4
5	8 258.1	12.2	11.8	10.9	10.3	10.4	10.9

El número en color rojo es el valor a interpolar, en función a SN=5.

Fuente: Manual AASHTO-93 Design Requirements.

Anexo Nº 21: Interpolación de factores equivalentes que no están reflejados.

APLICACIÓN DE LA FORMULA DE INTERPOLACIÓN

$$y_x = y_0 + \frac{x - x_0}{x_1 - x_0} (y_1 - y_0)$$

Anexo Nº 21. 1: Parakips2. 2, eje simple.

(kips)	Sn=5					$y_{2.2} = 0.0002 + \frac{2.2 - 2}{4 - 2}(0.002 - 0.0002)$
X	Y					4 – 2
2	0.0002	X0=	2	Y0=	0.0002	0.2
2.2	Υx	X1=	4	Y1=	0.002	$y_{2.2} = 0.0002 + \frac{0.2}{2}(0.0018)$
4	0.002			Y2.2=	0.00038	-
						$y_{2.2} = 0.00038$

Anexo Nº 21. 2: Parakips4. 4, eje simple.

(kips)	Sn=5					4.4. — 4.
X	Y					$y_{4.4} = 0.002 + \frac{4.4 - 4}{6 - 4}(0.009 - 0.0002)$
4	0.002	X0=	4	Y0=	0.002	
4.4	Υx	X1=	6	Y1=	0.009	$y_{4.4} = 0.002 + \frac{0.4}{2}(0.007)$
6	0.009			Y4.4 =	0.0034	$y_{4.4} = 0.002 + \frac{1}{2}(0.007)$
						$y_{4.4} = 0.0034$

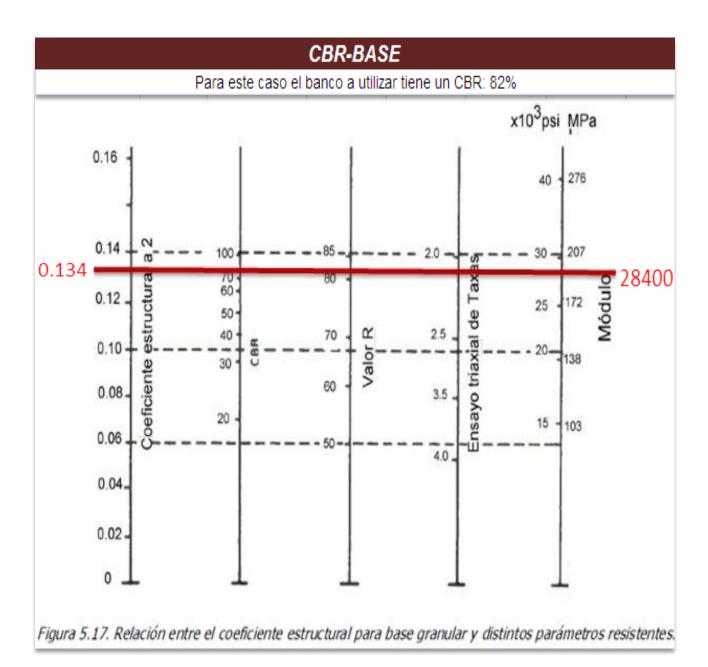
Anexo Nº 21.3: Parakips8.8, eje simple.

(kips)	Sn=5				8.8 - 8
X	Y				$y_{8.8} = 0.031 + \frac{8.8 - 8}{10 - 8}(0.079 - 0.031)$
8	0.031	X0= 8	Y0=	0.031	
8.8	Υx	X1= 10	Y1=	0.079	$y_{8.8} = 0.031 + \frac{0.8}{2}(0.048)$
10	0.079		Y8.8=	0.0502	98.8 = 0.031 + 2 (0.010)
					$y_{8.8} = 0.0502$

Anexo Nº 21.4: Parakips11, eje simple.

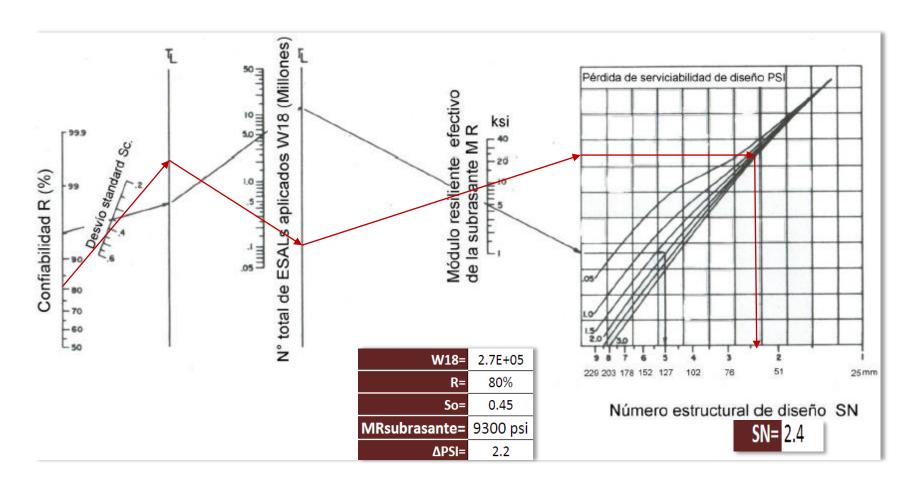
(kips)	Sn=5				$y_{11} = 0.079 + \frac{11 - 10}{12 - 10}(0.174 - 0.79)$
X	γ				1
10	0.079	X0= 10	Y0=	0.079	$y_{11} = 0.079 + \frac{1}{2}(0.095)$
11	Υx	X1= 12	Y1=	0.174	Z
12	0.174		Y11=	0.1265	$y_{11} = 0.1265$

Anexo Nº 21.5: Parakips 17.60, eje simple.


(kips)	Sn=5		17.6 – 16
X	Υ		$y_{17.6} = 0.603 + \frac{17.6 - 16}{18 - 16} (1.00 - 0.603)$
16	0.603	X0= 16 Y0= 0.603	
17.6	Yx	X1= 18 <u>Y1= 1.000</u>	$y_{17.6} = 0.603 + \frac{1.6}{2}(0.397)$
18	1.000	Y17.6= 0.9206	$y_{17.6} = 0.003 + 2 (0.377)$
			$y_{17.6} = 0.9206$

Anexo $N^{\underline{o}}$ 21. 6: Para kips 36. 3, eje doble (Tándem).

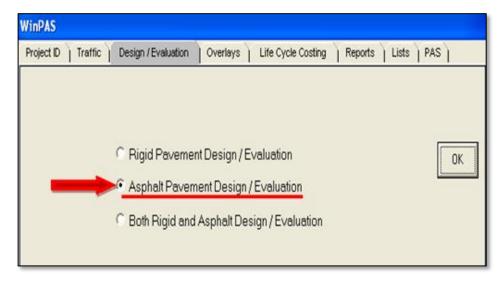
(kips)	Sn=5				
Х	Υ				$y_{36.3} = 1.38 + \frac{36.3 - 36}{38 - 36} (1.73 - 1.38)$
36	1.38	X0= 36	Y0=	1.38	38 – 36
36.3	Υx	X1= 38	Y1=	1.73	0.3
38	1.73		Y36.3=	1.43	$y_{36.3} = 1.38 + \frac{0.3}{2}(0.35)$
					L
					$y_{36.3} = 1.43$


ANEXOS CAPITULO IV: DISEÑO DE PAVIMENTO

Anexo Nº 22: Coeficiente estructural a2, de la capa Base.

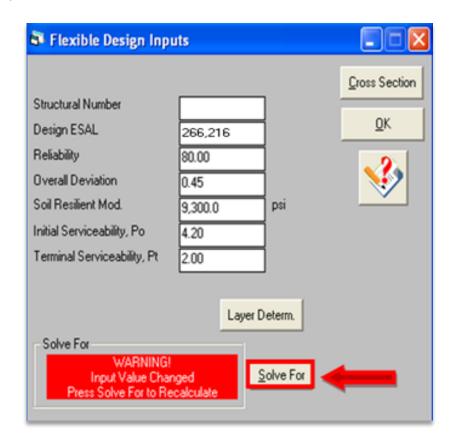
Fuente: Guía para Diseño de Estructuras de Pavimento, AASHTO 93.

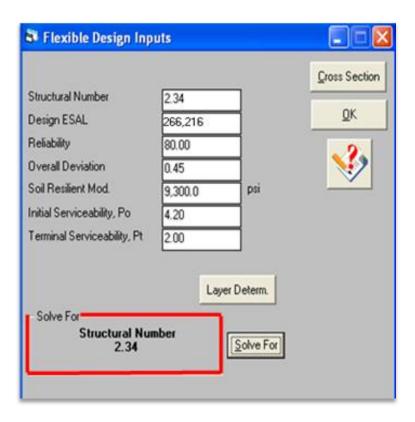
Anexo Nº 23: Ábaco de Diseño AASTHO Para Cálculo de Número Estructural SN.


Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93.

Anexo Nº 24: Verificación de Numero Estructural (SN), haciendo uso del software de diseño WinPAS.

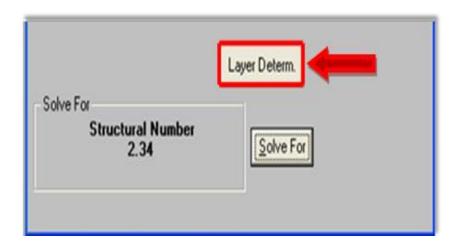
Fuente: WinPAS (Pavement Analysis Software 1.0.4).


El primer paso es seleccionar la pestaña de diseño/evaluaciones, donde se nos abrirá una nueva ventana que nos mostrará tres opciones de diseño, donde en este caso se tendrá que elegir la opción 2 de diseño/evaluaciones de pavimento asfaltico.

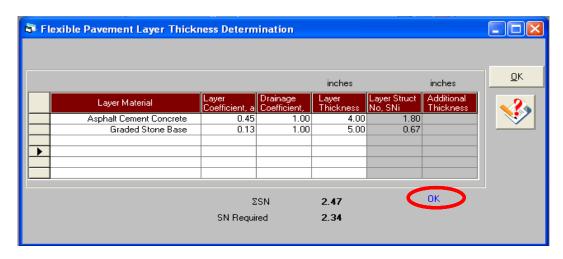

Luego se abrirá otra ventana que es donde se deben introducir los datos iníciales para el diseño:

- Esal's de Diseño= 266,216.00
- Confiabilidad= 80%
- Desviación estándar= 0.45
- ➤ MR sub rasante= 9,300 psi
- ➤ Serviciabilidad Inicial= 4.20
- Serviciabilidad final= 2.00

No se debe escribir el número estructural, ya que este lo calcula el programa después de haber digitado el resto de datos, dando click en la pestaña resolver (Solve for).

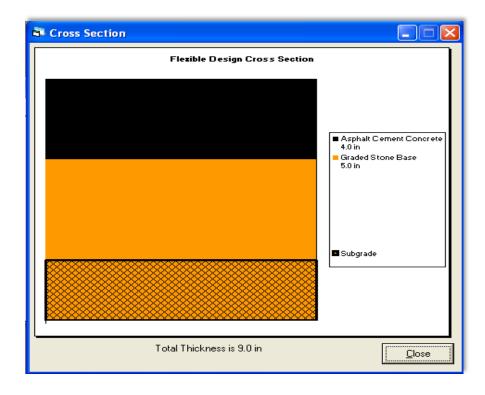


Después de haber dado click en la pestaña *resolver (Solve for)*. Según el software WinPAS se requiere un SN=2.34.



Fuente: WinPAS (Pavement Analysis Software 1.0.4).

Lo siguiente será proponer la estructura de pavimento, entrando en la pestaña Layer Determ.



Se procede a introducir los coeficientes estructurales (a₁ y a₂), los coeficientes de drenaje (m₁ y m₂), y por último los espesores (D₁ Y D₂). Se puede observa que al proponer los espesores calculados manualmente, estos cumplen, ya que ΣSN=2.47, es mayor que el SN requerido=2.34.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

Y por último se Graficó espesores de pavimento en WinPAS.

GLOSARIO.

Adoquines: Son elementos construidos de material pétreo y cemento colocados sobre una capa de arena, su función primordial es absorber las irregularidades que pudiera tener la base proporcionando a los adoquines un acomodamiento adecuado.

Adoquinado: Tipo de pavimento cuya superficie de rodadura está formada por adoquines.

Agregados: Un material granular duro de composición mineralógica como la arena, la grava, la escoria o la roca triturada, usado para ser mezclado en diferentes tamaños.

Agregado fino: Material proveniente de la desintegración natural o artificial de partículas cuya granulometría es determinada por las especificaciones técnicas correspondientes. Por lo general pasa la malla N° 4 (4,75 mm) y contiene finos.

Agregado grueso: Material proveniente de la desintegración natural o artificial de partículas cuya granulometría es determinada por las especificaciones técnicas correspondientes. Por lo general es retenida en la malla N°4 (4,75 mm).

Bache: Depresión que se forma en la superficie de rodadura producto del desgaste originado por el tránsito vehicular y la desintegración localizada.

Bombeo: Inclinación transversal que se construye en las zonas en tangente a cada lado del eje de la plataforma de una carretera con la finalidad de facilitar el drenaje lateral de la vía.

Banco de Material: Lugar donde se extraerá material de préstamo para ser utilizado en una obra civil, en el cual es necesario conocer el tipo de suelos existentes en dicha zona así como el volumen aproximado de material que pueda ser utilizable.

Base: Es la capa de espesor diseñado, constituyente de la estructura del pavimento destinada fundamentalmente a distribuir y transmitir las cargas originadas por el tránsito a las capas subyacentes y sobre la cual se coloca la carpeta de rodadura.

Calicata: Excavación superficial que se realiza en un terreno, con la finalidad de permitir la observación de los estratos del suelo a diferentes profundidades y eventualmente obtener muestras generalmente disturbadas.

Capa sub-rasante: Capa de terreno de una carretera, que soporta la estructura del pavimento y que se extiende hasta una profundidad en que no le afecte la carga de diseño que corresponde al tránsito previsto.

Cama de Arena: Esta capa se construye de 5 centímetros, con arena suelta, gruesa y limpia la cual no se compacta antes de colocar los adoquines sobre ella.

Capacidad de carga ultima del terreno: Es la presión requerida para producir la falla del terreno, sin considerar factores de seguridad.

Carretera, Calle o Camino: Términos genéricos que designan una vía terrestre para fines de circulación de vehículos y que incluye la extensión total comprendida dentro del derecho de vía.

Carretera no pavimentada: Carretera cuya superficie de rodadura está conformada por gravas o afirmado, suelos estabilizados o terreno natural.

Carretera pavimentada: Carretera cuya superficie de rodadura está conformada por mezcla bituminosa (flexible), de concreto Pórtland (rígida) o de adoquín (articulado).

Carpeta: Debe proporcionar una superficie de rodamiento adecuada con textura y color conveniente que resista los efectos abrasivos del tránsito, desde el punto de vista del objetivo funcional del pavimento es el elemento más importante.

CBR. (Relación de Carga California): Relación entre la presión necesaria para penetrar los primeros 0.25 cm en un material de prueba y la presión necesaria

para penetrar la misma profundidad en un material de características conocidas o patrón.

Cota de rasante: Valor numérico de un punto topográfico que representa el nivel terminado o rasante referido a un BENCH MARK (BM).

Cota de terreno: Valor numérico de un punto topográfico del terreno referido a un BENCH MARK (BM).

Cuneta: Canalillo lateral paralelo al eje de una carretera, camino o calle construida inmediatamente después del borde de los hombros, que permite el escurrimiento del agua, y a la vez, sirve de barrera entre la calzada y la acera.

Elementos viales: Conjunto de componentes físicos de la vía, tales como superficie de rodadura, bermas, cunetas, obras de drenaje, elementos de seguridad vial.

Estación: Lugar o punto específico donde se realizan conteos, para conocer las características del tráfico, la que será útil para el desarrollo de carreteras.

Estación de control: Tienen por objeto conocer las variaciones diarias, semanales y estacionales; se realizan en caminos de adoquinado y asfalto, en tramos donde el tráfico es menor que una estación permanente. Sin embargo su principal función es de llevar un control de las estaciones Permanentes y en donde se les efectúan conteos una vez al año a diferencia que las estaciones sumarias.

Estación permanente: Se encuentran ubicadas sobre la Red Troncal Principal, destacándose la zona Central y Pacifica del país, efectuándose conteos clasificados de 24 horas por día durante dos periodos en el año (Verano-Invierno), con duración de 7 días consecutivos en cada período.

Estación sumaria: Se caracterizan por estar en caminos que no han sido pavimentados, con un flujo vehicular moderado. En este tipo de estación se realiza como mínimo un aforo anual durante 12 horas diarias (de 6 am a 6 pm)

en períodos de tres (Martes – Miércoles – Jueves) generalmente en todo el transcurso del año se efectúan en épocas de Verano y/o Invierno.

Estudio de impacto ambiental: Son herramientas para predecir y su objetivo es buscar las relaciones de causalidad entre una actividad de desarrollo y el medio ambiente, medir o estimar los impactos ambientales y sociales que esto significa, y finalmente sugerir medidas para potenciar los efectos positivos y mitigar o eliminar los negativos.

Intersección: Caso en que dos o más vías se interceptan a nivel o desnivel.

Índice de plasticidad: Contenido de agua de un suelo entre el estado plástico y el semisólido.

Levantamiento topográfico: Conjunto de operaciones de medidas efectuadas en el terreno para obtener los elementos necesarios y elaborar su representación gráfica.

Límite líquido: Contenido de agua del suelo entre el estado plástico y el líquido de un suelo.

Módulo resiliente (suelos): Esfuerzo repetido axial de desviación de magnitud, duración y frecuencias fijas, aplicado a un espécimen de prueba apropiadamente preparado y acondicionado.

Niveles de servicio: Indicadores que califican y cuantifican el estado de servicio de una vía, y que normalmente se utilizan como límites admisibles hasta los cuales pueden evolucionar su condición superficial, funcional, estructural, y de seguridad.

Pavimento: Es una capa o conjunto de capas de materiales seleccionados, comprendidos entre la subrasante y la superficie de rodamiento o rasante.

Pavimento articulado: Los pavimentos articulados están compuestos por una capa de rodadura que está elaborada con bloques de concreto prefabricado,

llamados adoquines, de espesor uniforme e iguales entre sí. Esta puede ir sobre una capa delgada de arena la cual a su vez se apoya sobre la capa de base granular o directamente sobre la sub-rasante, dependiendo de la calidad de esta y de la magnitud y frecuencia de las cargas por dicho pavimento.

Pendiente de la carretera: Inclinación del eje de la carretera, en el sentido de avance.

Proyecto: La sección específica de la carretera, camino, calle o puente, junto con todas las obras que serán construidas.

Sección transversal: Representación gráfica de una sección de la carretera en forma transversal al eje y a distancias específicas.

Sub- base: Se coloca para absorber deformaciones perjudiciales de la terracería, también actúa como dreno para desalojar el agua que se infiltra al pavimento y para impedir la ascensión capilar del agua procedente de la terracería hacia la base.

Sub- rasante: Es el nivel del terreno sobre el cual se asientan las capas de subbase, base y carpeta del pavimento. Corresponde al nivel de lo que se conoce como terracería.

Suelo: Es un agregado natural no cementado de granos minerales y materia orgánica en descomposición, con líquido y gas en los espacios vacíos entre las partículas que lo constituyen.

Terraplén: Es aquella parte de la estructura de una obra vial construida con material producto de un corte o un préstamo, la cual queda comprendida entre el terreno de fundación y el pavimento.

Tránsito: Circulación de personas y vehículos por calles, carreteras

Vida útil: Lapso de tiempo previsto en la etapa de diseño de una obra vial, en el cual debe operar o prestar servicios en condiciones adecuadas bajo un programa de mantenimiento establecido.

LISTA DE ABREVIATURAS Y SIGLAS.

AASHTO: Asociación Americana de Oficiales de Carreteras Estatales y Transportación.

ASTM: Sociedad Americana para Pruebas y Materiales (Ing. American Society For Testing and Materials).

CBR: California Bearing Ratio.

CREC: Crecimiento.

ESAL: Ejes de Cargas Estándar Equivalentes.

EST: Estación.

FC= Factor de Crecimiento

FD= Factor de Distribución Direccional

Fc= Factor Carril

INIDE: Instituto Nacional de Información de Desarrollo.

MTI: Ministerio de Transporte e Infraestructura.

MR= Módulo resiliente.

NP: No Plástico.

PIB: Producto Interno Bruto.

PSI= Libras por pulgada cuadrada.

SIECA: Secretaría de Integración Económica Centroamericana. (Manual Centroamericano para Diseño de Pavimentos).

TPD: Tránsito Promedio Diario.

TPDA: Tránsito Promedio Diario Anual.

VPD: Volumen Promedio Diario.