

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Tecnología de la Construcción

Monografía

"ANÁLISIS Y DISEÑO DE SECCIONES COMPUESTAS DE ACERO Y CONCRETO APLICADO A LOS ELEMENTOS PRINCIPALES DEL EDIFICIO PLAZA AEW, POR EL MÉTODO LRFD".

Para optar al título de Ingeniero Civil

Elaborado por:

Br. Harry Saúl Castillo Pauth

Br. Sahith Josué Luna Gaitán

Tutor

M.Sc. Ing. Carlos Gutiérrez Mendoza.

Managua, noviembre 2020.

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN DEPARTAMENTO DE ESTRUCTURAS

Managua, Nicaragua 23 de noviembre de 2020

Dr. Ing. Oscar Gutiérrez Somarriba. Decano FTC. <u>Su despacho</u>

Estimado Dr. Gutiérrez:

Por este medio hago de su conocimiento que he concluido la tutoría del trabajo de MONOGRAFÍA titulado: "ANÁLISIS Y DISEÑO DE SECCIONES COMPUESTAS DE ACERO Y CONCRETO APLICADO A LOS ELEMENTOS PRINCIPALES DEL EDIFIO PLAZA AEW, POR EL MÉTODO LRFD"; elaborado por los bachilleres HARRY SAÚL CASTILLO PAUTH y SAHITH JOSUÉ LUNA GAITÁN, para optar al título de Ingeniero Civil.

Dicho trabajo fue desarrollado con absoluta independencia y concluyo que el documento es completo y apto para ser presentado por los sustentantes, para lo cual solicito se les programe fecha para realizar la Defensa del mismo.

Sin nada más que agregar, me despido de usted reiterándole mi más alta estima y consideración.

Atentamente;

MSc. Ing. Carlos Gutiérrez Mendoza Docente Depto de Estructuras

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

> DEC-FTC-REF-No.141 Managua, 21 Junio del 2019

Bachilleres HARRY SAUL CASTILLO PAUTH SAHITH JOSUE LUNA GAITAN Su atención

Estimados (as) Bachilleres:

Es de mi agrado informarles que el PROTOCOLO de su Tema MONOGRAFICO, titulado "ANALISIS Y DISEÑO DE SECCIONES COMPUESTAS DE ACERO Y CONCRETO APLICADO A LOS ELEMENTOS PRINCIPALES DEL EDIFICIO PLAZA AEW, POR EL METODO LRFD" Ha sido aprobado por esta Decanatura.

Asimismo les comunico estar totalmente de acuerdo, que el (la) **Ing. Carlos Gutiérrez Mendoza,** sea el (la) tutor (a) de su trabajo final.

La fecha límite, para que presenten concluido su documento, debidamente revisado por el tutor guía será el **21 de Diciembre del 2019.**

Esperando puntualidad en la entrega de la Tesis, me despido.

Atentamente,

IDAD NACIONAL DE IN Dr. Ing. Oscar Gutiérrez Somarriba CARADOCTIO

CC: Protocolo Tutor – Ing. Carlos Gutiérrez Mendoza Archivo*Consecutivo

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

DEC.FTC.REF No. 001 Managua, 10 Enero del 2020.

Bachilleres HARRY SAUL CASTILLO PAUTH SAHITH JOSUE LUNA GAITAN Presentes

Estimados Bachilleres:

En atención a su carta de solicitud de **PRORROGA**, para efectuar la pre-defensa de su trabajo de **Monografía** titulado "ANALISIS Y DISEÑO DE SECCIONES COMPUESTAS DE ACERO Y CONCRETO APLICADO A LOS ELEMENTOS **PRINCIPALES DEL EDIFICIO PLAZA AEW, POR EL METODO LRFD**". Esta Decanatura le aprueba **3 MESES DE PRORROGA**, considerando los problemas planteados en su comunicación.

La fecha límite, para que presenten concluido su documento, debidamente revisado por el tutor guía será el **10 de abril del 2020.** Para la programación de su fecha de pre-defensa.

Esperando de ustedes puntualidad en la entrega de su trabajo final, me despido.

tentamente. Dr. Ing. Oscar Gutiérrez Somarriba Decano

CC: Tutor - Ing. Carlos Gutiérrez Mendoza Archivo-Consecutivo

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

DEC.FTC.REF No. 045 Managua, 23 Abril del 2020.

Bachilleres HARRY SAUL CASTILLO PAUTH SAHITH JOSUE LUNA GAITAN Estimados (as) Bachilleres:

En atención a su carta de solicitud de AMPLIACION DEL TIEMPO DE ENTREGA, para efectuar la pre-defensa de su trabajo de Monografía titulado "ANALISIS Y DISEÑO DE SECCIONES COMPUESTAS DE ACERO Y CONCRETO APLICADO A LOS ELEMENTOS PRINCIPALES DEL EDIFICIO PLAZA AEW, POR EL METODO LRFD". Esta Decanatura le aprueba 1 MESES DE AMPLIACION, considerando los problemas planteados en su comunicación.

La fecha límite, para que presenten concluido su documento, debidamente revisado por el tutor guía será el **23 de Junio del 2020.** Para la programación de su fecha de pre-defensa.

Esperando de ustedes puntualidad en la entrega de su trabajo final, me despido.

Atentamente, NERSIDAD NACIONAL DE INGENIE Dr. Ing. Oscar Gutiérrez Somarribacaragut Dectano

CC: Tutor – Ing. Carlos Antonio Gutiérrez Mendoza Archivo-Consecutivo

DEDICATORIA

Después de haber culminado esta etapa de estudio con éxito no me queda más que agradecer a todos aquellos que de una u otra forma me apoyaron para alcanzar el objetivo de graduarme.

Siempre tuve la confianza en que lograría salir adelante, en que los retos se podían superar y que lograría graduarme de la universidad, y todo se lo debo al más grande de todos, a Dios.

A mi madre, Blanca Nubia Pauth Centeno y mi Abuela Reyna Esperanza Castillo Rizo, quienes me han heredado el tesoro más grande que pueda dársele a un hijo: amor, quien sin escatimar esfuerzo alguno han sacrificado gran parte de su vida. A quienes nuca le podré pagar todos los desvelos ni con las riquezas más grandes del mundo.

A mi hijo, lan Joseph Castillo Rivera, mi pequeño travieso a quien, con el corazón lleno de tristeza tuve que robarle horas de convivencia, cuidados y juegos para terminar mi carrera, agradeciéndole que, a cambio al verme, brille su mirada y corra con alegría hacia mí, llenándome de besos, para ti hijo por ser la razón de mi vida.

A mi esposa; Ericka Massiel Rivera López y mi suegra; Martha Lucia López Urbina por el respaldo y apoyo incondicional, porque siempre han estado a mi lado en los buenos y malos momentos de mi vida.

A mis hermanos y Tíos porque son esa clase de personas que todo lo comprenden y dan lo mejor de sí mismos sin esperar nada a cambio, porque saben escuchar y brindar ayuda cuando es necesario.

Hoy y siempre gracias por lo que hemos logrado juntos.

Br. Harry Saúl Castillo Pauth

DEDICATORIA

A Dios por su amor y su misericordia, y permitirme el haber llegado hasta este momento tan importante de mi formación profesional, por darme la oportunidad de culminar una etapa más de mi vida.

A mi Madre, Ana Matilde Gaitán Ruiz con la mayor gratitud por todos tus esfuerzos, tus sacrificios para que yo pudiera terminar mi carrera profesional, por tus noches de desvelo, por haberme dado todo y por enseñarme a luchar por lo que se quiere, gracias por guiar mi camino y estar siempre junto a mí en los momentos más difíciles.

A mi Padre, Enrique José Luna Rodríguez por su apoyo incondicional y desinteresado, por su sacrificio y esfuerzo constante, por creer en mí, porque a través de sus consejos logre forjar un camino para alcanzar el éxito en mi superación como profesional.

A mis hermanos que me han alentado durante todo este proceso y deseo que siempre se sientan orgullosos de mí, así como yo lo estoy de ustedes.

En el camino encuentras personas que iluminan tu vida, que con su apoyo alcanzas de mejor manera tus metas, a través de sus consejos, su cariño y comprensión. A ti mi Amada Dayana Eloísa Reyes Paladino por tu amor, paciencia y apoyo incondicional en todo momento durante la realización del trabajo monográfico.

Br. Sahith Josué Luna Gaitán

RESUMEN

En este trabajo monográfico se presenta el análisis y diseño de un sistema compuesto de acero estructural y concreto reforzado, tomando en cuenta las solicitaciones de cargas basadas en el Reglamento Nacional de la Construcción (RNC-07) para realizar el análisis sísmico (Estático y Dinámico modal espectral), para ello se construyó un modelo tridimensional del edificio con el software ETABS y considerando los criterios de diseño del AISC 360-16 Capítulo I, Diseño de secciones compuestas por el método LRFD, además de las normas de diseño del Instituto Americano del Concreto (ACI 318-14).

Índice

CAPÍTULO I				
1.		GEN	IERALIDADES 2	
	1.1	IN	TRODUCCIÓN2	
	1.2	AN	ITECEDENTES 4	
	1.3	JU	STIFICACIÓN 8	,
	1.4	OE	3JETIVOS 10	1
	1.	4.1	Objetivo general10	1
	1.	4.2	Objetivos específicos10	1
C	APÍ1	rulc) 	
2.		MAF	RCO TEÓRICO 12	
	2.1	Co	nceptos básicos 12	
	2.2	Méto	dos de Diseño15)
	2.	2.1 N	létodo Distribución de Esfuerzo Plásticos15	,
	2.	2.2 N	létodo Compatibilidad de Tensiones15	,
	2.	2.3 N	létodo Distribución de Esfuerzo Elásticos16	,
	2.	2.4 N	létodo efectivo Esfuerzo-Deformación16	,
	2.3	Tipos	s de secciones compuestas16	,
	2.	3.1 V	/iga compuesta (Steel Deck)16	,
		2.3.	1.2 Tipos de conectores de Cortante17	•
		2.3.7	1.3 Modos de Falla 19	1
		2.3.	1.4 Construcción Apuntalada y No apuntalada20	1
	2.	3.2 E	ntrepisos Compuestos21	
		2.3.2	2.1 Influencia de la lámina de acero en la conexión de cortante23	;

2.3.3 Columnas compuestas	24
2.3.3.1 Ventajas	24
2.3.3.2 Soporte Lateral	
2.3.3.3 Transmisión de la carga a la cimentación	
2.4 Conexiones	27
2.4.1 Placa Base	27
2.4.2 Otras Conexiones.	
	33
3. DISEÑO METODOLÓGICO	34
3.1 Metodología utilizada	34
3.2 Análisis e Interpretación de Resultados	35
3.3 Criterios de diseño	35
3.4 Resistencia de diseño de secciones compuestas	36
3.4.1 Flexión	36
3.4.1.1 Viga compuesta	36
3.4.1.2 Viga de acero embebida en concreto	43
3.4.1.3. Diafragmas compuestos y vigas colectoras	44
3.4.2 Carga Axial	48
3.4.2.1 Columnas de acero embebidas en concreto	48
3.4.2.2 Columnas de acero rellenas de concreto	53
3.4.3 Transferencia de carga	56
3.4.3.1 Requisitos generales	56
3.4.3.2 Asignación de fuerzas	56
3.4.3.3 Mecanismos de transferencia de fuerza	58
3.4.3.4 Requisitos de detalle	60

	3.4.3	Combinación de carga axial y flexión	62
	3.4.4	1.1 Diagramas de Iteración	63
C	APÍTULO) IV	69
4	. ANÁLISI	S DE LA ESTRUCTURA	70
	4.1 Desc	ripción del sistema estructural del edificio	70
	4.2 Mo	delo estructural y consideraciones para el análisis	70
	4.2.2 D	iafragma	71
	4.2.3 S	istema resistente a cargas laterales.	72
	4.2.4 N	lodelo en Etabs	72
	4.3 Car	gas gravitacionales	73
	4.3.1	Acciones Permanentes	73
	4.3.1	1.2 Cargas Permanentes	73
	4.3.2	2 Acciones Variables	75
	4.4 Cond	iciones de regularidad	75
	4.4.1 E	structura Regular	76
	4.4.2 E	structura Irregular	83
	4.4.3 E	structura Fuertemente Irregular	84
	4.5 Facto	r de comportamiento sísmico o capacidad dúctil de la estructur	a 84
	4.6 Facto	r de reducción por ductilidad (Arto. 21 RNC-07)	84
	4.7 Corre	cción por Irregularidad	85
	4.8 Coefi	ciente de diseño sismo resistente	85
	4.9 Métod	do estático equivalente	86
	4.10 Aná	lisis Dinámico Modal Espectral	88
	4.10.2	Comprobación de la inclusión de los modos naturales	90
	4.10.3	Periodo estructural	91

4.10.4 Periodo aproximado fundamental	
4.10.5 Revisión del cortante basal.	
4.10.6 Revisión de los desplazamientos	
CAPITULO V	
5.DISEÑO DE ELEMENTOS PRINCIPALES	
5.1 Diseño de columna compuesta embebida	
5.1.1 Propiedades de la sección wide flange	
5.1.2 Elaboración de diagrama de interacción	
5.1.3 Determinar la resistencia al cortante	105
5.2 Diseño de viga segundaria	
5.2.5 Cargas Aplicadas	
5.2.6 Diseño para Condición Precompuesta	
5.2.7 Diseño para condición Compuesta	
5.3 Diseño de viga principal	121
5.3.5 Diseño para Condición Precompuesta	
5.3.6 Diseño para condición Compuesta	126
5.4 Diseño de placa base sometida a carga axial y momento	
5.4.1 Parámetros de diseño	
5.5 Conexión precalificada a momento end - plate tipo 8es	
5.5.1 Definición de los perfiles a utilizar	
5.6 Verificación de relación viga-columna	
5.6.1 Cortes y momentos en la rótula plástica	
5.7 Conexión a corte de viga secundaria a viga principal	151
5.8 Diseño de clavador de techo	
CONCLUSIONES	

RECOMENDACIONES	
6. BIBLIOGRAFÍA	170
ANEXO A	i
PROCESO DE MODELADO Y ANÁLISIS EN ETABS	i
ANEXO B	xxi
TABLAS Y FIGURAS CONSULTADAS	xxi

Simbología

Símbolo	Definición
а	Profundidad del bloque de Whitney, in.
a_0	Fracción de aceleración de la gravedad.
A – 36	Acero grado 36 (36 Ksi)
A_B	Área de concreto cargada, in².
A _C	Área bruta de la sección de concreto, in².
ACI	American Concrete Institute (Instituto Americano de concreto)
AISC	American Institute of Steel Construction
	(Instituto Americano de Construcciones de Acero)
A_g	Área gruesa de la sección de concreto, in².
A_r	Área de refuerzo de la losa de concreto, in².
A_s	Área de la sección de acero estructural, in².
A _{sc}	Área de la sección transversal de un perno de corte, in².
A_{sf}	Área del patín de la sección de acero, in².
A _{sr}	Área de refuerzo de acero longitudinal, in².
A _{st}	Área del refuerzo de corte (Estribos), in².
A _{su}	Área de la sección transversal del perno, in².
A _{sw}	Área del alma de la sección de acero, in².
A_w	Área del alma de la sección de acero, in².
AWS	American Welding Society (Asociación Americana de Soldadura)
b	Ancho de la sección de concreto, in.
b	Ancho efectivo de la losa de concreto, in.
b	Ancho de una sección HSS, in.
С	Coeficiente sísmico para análisis Estructural.
С	Fuerza a compresión en la losa de concreto, kips.

- Coeficiente para el cálculo de rigidez efectiva de una sección compuesta embebidas a compresión.
- C₂ Coeficiente de corrección de P₀ para columnas compuestas rellenas: 0.85 secciones rectangulares, 0.95 secciones circulares
- C₃ Coeficiente de corrección de la rigidez del concreto para columnas compuestas rellenas.

CM Carga Muerta, Psf
$$\binom{kg}{m^2}$$

 C_r Promedio de la distancia de la cara del refuerzo longitudinala compresión hasta la cara del refuerzo longitudinal a tensión, in.

CV Carga Viva, Psf
$$\binom{kg}{m^2}$$

CVR Carga Viva Reducida, Psf
$$\binom{kg}{m^2}$$

d Peralte efectivo de la sección de concreto, in.

d₁ Distancia desde la fuerza a compresión del concreto a la parte
 superior de la sección de acero, in.

d₂ Distancia desde el centroide de la fuerza a compresión de la sección
 de acero hasta la parte superior de la sección; en ausencia de compresión, in.

DDiámetro de una sección HSS, in.E_cMódulo de Elasticidad del concreto, Ksi.

 EI_{efe} Rigidez efectiva de la sección compuesta, Kips $-in^4$.

E_s Módulo de Elasticidad del Acero, Ksi.

ETABS Extended Three – Dimensional Analyses of Building Systems (Análisis Tridimensional Extendido a Sistema de Edificios).

f'_c Resistencia a compresión del concreto, Ksi.

 f_u Resistencia última especificada del acero, Ksi.

- F_u Resistencia mínima a tracción especificada de un perno, Ksi.
- *f*_y *Resistencia límite de fluencia especificada del acero estructural, Ksi.*

f_{yf}	Esfuerzo límite de fluencia especificado del patín del perfil
	de acero,Ksi.
fyr	Resistencia límite de fluencia especificada del acero de refuerzo
	longitudinal,Ksi.
f_{yw}	Esfuerzzo límite de fluencia especificado del alma del perfil
	de acero,Ksi.
h	Altura del alma, in.
h_s	Altura del conector de corte, in.
HSS	Hollow Structural Steel.
h_r	Altura de la lámina colaborante de acero, in.
I _{av}	Momento de inercia promedia de la lámina troquel.
I _c	Momento de inercia del concreto, in ⁴ .
I_{LB}	Momento de inercia más bajo, in ⁴ .
I _{sr}	Momento de inercia de las barras de refuerzo, in ⁴ .
Κ	Factor de longitud efectiva.
Ksi	Kilo Pounds Square Inches (Kilo libra por pulgadas cuadradas).
L	Longitud del elemento, ft, in.
L _b	Longitud del miembro sín soporte lateral, in.
L_p	Longitud límite sin soporte lateral para el estado límite de, in.
L_r	Longitud límite sín soporte lateral para el estado límite de pandeo
	flexo torsional inelástico, in.
LRFD	Load & Resistance Factor Design(Factor de Diseño por Carga
	y Resistencia)
M _{nx}	Momento nominal resistente de la sección respecto al
	$eje \ x - x$, $Kips - ft$.
M_{ny}	Momento nominal resistente de la sección respecto al
	eje y – y, Kips – ft.

M _{ux}	Resistencia de flexión requerida alrededor del eje x,kips – ft.
M _{uy}	Resistencia de flexión requerida alrededor del eje y,kips – ft.
M_p	Momento de flexión plástico, kips — ft.
Мра	Unidad internacional de medida, Mega Pascal.
P _e	Carga crítica de pandeo de Euler, Kips.
P_n	Resistencia a Tensión para columnas compuestas cargadas
	axialmente, Kips.
P _{no}	Resistencia nominal a compresión para miembros compuestos
	cargados axialmente, Kips.
P_0	Resistencia nominal axial a compresión sin considerar los
	efectos de longitud, Kips.
P_r	Fuerza externa axial aplicada al miembro compuesto, Kips.
Psf	Pounds Square foot (Libra por pie cuadrado).
P_u	Resistencia axial requerida en compresión según las combinaciones
	de carga, Kips.
$P_{\mathcal{Y}}$	Resistencia a tensión de la sección de acero, Kips.
P _{yc}	Resistencia a compresión de la sección de acero, Kips.
Q	Factor de reducción por ductilidad.
Q'	Factor de reducción por ductilidad corregido.
Q_n	Resistencia Nominal de un pernos de corte,Kips.
R _n	Resistencia Nominal por aplastamiento directo, Kips.
$r_{x,y}$	Radio de giro de la sección en los ejes principales de análisis, in.
RNC –	- 07 Reglamento Nacional de la Construcción de Nicaragua 2007.
$S_{x,y}$	Módulo de corte de la sección sobre los ejes principales, in ³ .
S	Separación del refuerzo a corte, in (cm).
S	Factor de Amplificación por tipo de suelo.
SDI	Steel Deck Institute (Instituto de láminas de acero).

- t Espesor de una sección HSS, in.
- t_w Espesor del alma de una sección, in.
- T Periodo Fundamental de vibración de la estructura, s.
- *V_r Resistencia Requerida de corte, kips.*
- V'_r

Fuerza requerida de corte transferida a partir de conectores de corte, kips.

V_n Resistencia Nominal a Corte, Kips.

V₀ Cortante Basal, Tonf.

V_s Velocidad Promedio de las Ondas de Corte, m/s.

WF Wide Flange (Perfiles I de ala ancha).

 w_0 CM + CVR; Carga muerta más carga viva reducida, kg/m^2

 Y_{ENA} Altura del eje Neutro Plástico respecto al eje y - y, in

 z_x Módulo plástico de la sección de acero sobre el eje x - x, in³.

 z_y Módulo plástico de la sección de acero sobre el eje y - y, in³.

 ΣQ_n Suma de la Resistencia Nominal de los Conectores de Corte entre el punto de máximo Momento positivo y el punto de momento cero, Kips.

Δ	Deflexión del miembro, in.
λ	Parámetro de Esbeltez.
λ_p	Estado límite de esbeltez para elementos compactos.
λ_r	Estado límite de esbeltez para elementos no compactos.
$\phi_{\scriptscriptstyle B}$	Factor de reducción por resistencia a flexión, 0.90.
ϕ_{c}	Factor de reducción por resistencia a compresión, 0.75.
ϕ_t	Factor de reducción por resistencia a tensión, 0.90.
$ ho_{sr}$	Relación del refuerzo de las barras de acero al área bruta de concreto.
Ω	Factor de reducción por sobrerresistencia.

CAPÍTULO I

1. GENERALIDADES

1.1 INTRODUCCIÓN

La combinación más importante y frecuente de materiales de construcción es la del acero y el concreto, con aplicaciones en edificios comerciales y fábricas de varias plantas, así como en puentes. Estos materiales, aunque esencialmente diferentes son totalmente compatibles y complementarios entre sí, tienen casi la misma dilatación térmica y una combinación de resistencia ideal, ya que el concreto es eficaz a compresión mientras que el acero lo es a tracción. Además, el concreto proporciona protección contra la corrosión y aislamiento térmico al acero a temperaturas elevadas y puede proteger las secciones delgadas de acero contra abolladuras y pandeo lateral por torsión.

La combinación de núcleos de concreto, pórticos de acero y entrepisos compuestos se ha convertido en el método estándar de construcción para edificios comerciales de múltiples niveles en diversos países. Se ha avanzado mucho en lugares como Japón, donde el pórtico de acero/concreto reforzado es el sistema estándar en edificios altos. La razón principal de esta preferencia es que son los más idóneos para resistir cargas repetidas causadas por sismos, que requieren gran resistencia y ductilidad.

En el presente documento nos trazamos como objetivo el análisis y diseño de secciones compuestas de acero y concreto, considerando las normas del AISC y el ACI para el diseño de los principales elementos (Vigas, Columnas, Sistema de entrepiso y conexiones). Considerando las solicitaciones de cargas basadas en el reglamento nacional de la construcción (RNC-07) para realizar un análisis dinámico modal espectral en el programa ETABS.

La estructura en estudio Edificio plaza AEW es una edificación existente consta de 4 niveles con una altura de 17.3 m y un área total en planta de aproximadamente 3558 m^2 destinada a usarse como edificio de oficinas, localizada en Managua, Nicaragua.

El sistema resistente a carga lateral de la edificación se basa de marcos de acero resistentes a momento. El área de escaleras y ascensor se trata como un sistema desligado de la estructura principal y su resistencia a cargas laterales la provee un muro de concreto de 17.5 cm de espesor.

Por lo tanto, se realizará la propuesta de este particular sistema con el fin de presentar el diseño de un sistema de marcos compuestos resistentes a momento, tomando en cuenta los criterios de diseños del AISC 360-16 "Specification for Structural Steel Building", AISC 341-16 "Seismic Provisions for Structural Steel Buildings", además de las especificaciones del AISC 358-16 "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications", "Seismic Design Manual" ANSI/AISC y las normas de diseño del Instituto Americano del Concreto ACI 318-14.

1.2 ANTECEDENTES

La utilización de los elementos compuestos en el diseño de estructuras, se ha incrementado notablemente en los últimos años. Esta tendencia se debe al hecho de que los elementos poseen características y cualidades que resultan totalmente distintas a las de los elementos normalmente utilizados con fin estructural.

Las estructuras formadas por elementos de sección compuesta de acero y concreto (simple o reforzado) se han utilizado desde hace mucho tiempo. Al principio, estas estructuras simplemente tomaban como ventaja la protección que aportaba el concreto a los perfiles de acero para resistir el fuego y la corrosión. Pero las investigaciones en cuanto a la resistencia de dichos miembros empezaron desde principios de 1900 (Talbot y Lord, 1912), y las primeras disposiciones de diseño fueron creadas en 1924 ("Joint committee report on standard specifications for concrete and reinforced concrete"). En la actualidad, con la aparición de construcciones de estructuras compuestas en edificios de gran altura, los ingenieros han desarrollado nuevos criterios de diseño para considerar las ventajas que se tienen en cuanto a resistencia y rigidez en una sección transversal compuesta (Griffis y Moore, 1992).

Anteriormente la combinación de dos o más materiales ya estaba en uso en diferentes culturas o civilizaciones, se empezó a estudiar el sistema compuesto a mediados del siglo XIX. En 1840 William Howe patento una armadura compuesta de madera y hierro forjado; está misma combinación de materiales la utilizaron Thomas y Caleb Pratt para diseñar una armadura de una configuración diferente.

Figura 1.1 Armadura William Howe. Fuente: Tesis Secciones compuestas de aceroconcreto (Método LRFD), Juan Carlos Navarrete, México, D.F (2003).

A principios del siglo XX se realizaron varios estudios de las vigas compuestas, ya que se utilizaba como un sistema para la protección del fuego. En 1923 se realizaron estudios Sobre el comportamiento de vigas embebidas de concreto, lo cual en 1925 Scott público los resultados de la investigación, más tarde R.C Cauglhey estudio el comportamiento de vigas compuestas de acero estructural y concreto.

En 1929 Cauglhey y Scott publicaron un artículo sobre el diseño de una viga de acero con una losa de concreto, dónde mencionaron que para resistir las fuerzas cortantes horizontales se tienen que incluir conectores mecánicos; estos estudios lo hicieron con y sin uso de puntales.

Una vez que se había extendido el uso compuesto, se empezaron a utilizar diferentes tipos de conectores de cortantes como el espiral. El uso compuesto se empleaba comúnmente en puentes, por lo que se empezó a incluir en las especificaciones de la American Association of State Highway Officials (AASHTO) en 1944 Y el American Institute of Steel Construction (AISC) en 1952.

El adoptar las especificaciones de la AASHTO en 1944, misma que aprueba el método de construcción de los elementos compuestos, permitió la utilización de dichos elementos en puentes, desde la década de 1950 el uso de puentes con pisos compuestos ha aumentado rápidamente y hasta la fecha se construyen normalmente en todo el mundo. (McCormac, 2002).

En 1952, las especificaciones AISC aprobaron por vez primera el uso en edificios de pisos compuestos y en la actualidad se vuelven rápidamente más populares.

Uno de los requisitos más importante de la sección compuesta es impedir el deslizamiento entre el concreto y el perfil estructural, mediante el empleo de conectores de cortante debidamente soldados o anclados al elemento estructural.

Figura 1.2 Desarrollo histórico de los Conectores de Corte. (a) Sistema de ranuras de cortante (Julius Kahn 1903). (b) Conectores de espiral. (c) Canales. (d) Pernos soldados. Fuente: Structural Engineering Handbook, Ed. Chen Wai-Fah (1999).

En 1973, el estudio de columnas compuestas se asignó a un comité permanente (Task Group 20) del "Consejo de Investigación sobre Estabilidad Estructural" ("Structural Stability Research Council", SSRC). El Consejo reconoció, gracias a la abundante información que se tenía sobre el comportamiento de columnas de acero, que la compresión de miembros compuestos por acero y concreto debería comportarse de manera similar a una columna formada solamente por acero si en la sección transversal compuesta la resistencia y rigidez del acero estructural fuera mucho más grande que la resistencia y rigidez del concreto (Task Group 20, 1979). El Consejo también estaba consciente de que, si en una sección la resistencia rigidez del transversal compuesta. V concreto fuera significativamente más grande que la resistencia y rigidez del acero estructural, el miembro en compresión compuesto tendría un comportamiento parecido al de una columna ordinaria de concreto reforzado (Task Group 20, 1979).

Las consecuencias de los resultados inconsistentes que se obtenían debido a los diferentes conceptos de diseño condujeron a que se realizaran investigaciones para encontrar criterios que permitieran un diseño adecuado.

La tendencia de las investigaciones se encaminó a secciones de acero-concreto, por lo cual se trataron sobre aspectos como el levantamiento de losas, la eficiencia de los conectores de cortante de distintos tipos, la adherencia natural entre acero y concreto, vibración y resistencia última, y los efectos de la torsión. En estos últimos años la construcción compuesta es unas de las alternativas para ingenieros y arquitectos en el diseño de estructuras resistentes, económicas, ligeras y de construcción rápida, por lo cual su uso se ha ido extendiendo de forma exponencial a lo largo del planeta.

En Nicaragua, el Hospital Monte España es el único edificio con antecedentes de haber sido construido en su totalidad con marcos compuestos de acero estructural embebidos en concreto reforzado.

1.3 JUSTIFICACIÓN

En el presente documento monográfico, se pretende promover un sistema constructivo que por sus características ha permitido el desarrollo de nuevos criterios de diseños para considerar las ventajas que se tienen en cuanto a Resistencia y rigidez en una sección transversal compuesta.

Siendo Nicaragua un país altamente vulnerable ante sismos de gran magnitud, los culés se han presentado con periodos de duración muy cortos, epicentros poco profundos y devastaciones inminente como lo experimentado en el terremoto de 1972 en la ciudad de Managua, el cual fue de gran aprendizaje sobre la vulnerabilidad a la que están expuestas las estructuras sobre el territorio nacional.

El diseño de un sistema estructural compuesto sería una solución óptima, aunque el costo de construcción puede ser un poco elevado, pero es muy seguro al momento de un eventual sismo para construcciones que se realicen en zonas vulnerables.

Por otra parte, las secciones compuestas son un sistema estructural con muy poco uso a nivel nacional. Este sistema, cuya practica se ha implementado con éxito en países desarrollados como Japón, Inglaterra, Estados Unidos, entre otros. Posee grandes ventajas estructurales debido a la sinergia de los dos materiales al hacerlos trabajar eficientemente como una sola unidad. Al combinar sus propiedades mecánicas la estructura en si puede alcanzar mayor resistencia, rigidez y ductilidad,

No es tan preciso afirmar que son mejores las estructuras Acero estructural o de concreto reforzado. Ambas estructuras son seguras si son diseñadas apropiadamente. Sin embargo, el concreto por su rigidez, su falla es frágil, la ventaja de la estructura metálica es que puede volver a su lugar a pesar del movimiento siempre y cuando no alcance su nivel de colapso. Al combinar ambos materiales se logra proporcionar un comportamiento de la estructura más

favorable que por separados, y ya que lo que se quiere es construir estructuras que tienen más capacidad de absorber la fuerza sísmica, en comparación con otra, las secciones compuesta seria hasta ahora lo más seguro que se encuentra hoy en día en el campo constructivo

La falta de investigaciones sobre este tema, la falta de conocimiento de su uso por parte del constructor, la disyuntiva del Ingeniero Estructural de diseñar estructuras de acero o en concreto reforzado, entre otros factores ajenos a los estructurales, son las principales causas que desalientan el uso de este tipo de construcción.

Un aspecto de gran importancia es que este estudio permitirá consolidar conocimientos adquiridos en el área estructural, ampliarlos y hacer un soporte sobre el tema, sumar bibliografía en el área y seguir profundizando mediante la realización de investigaciones sobre este tipo de sistemas.

1.4 OBJETIVOS

1.4.1 Objetivo general

 Realizar el análisis y diseño de secciones compuestas de acero y concreto aplicado a los elementos principales del edificio plaza AEW.

1.4.2 Objetivos específicos

- Realizar análisis dinámico modal espectral según el RNC-07.
- Emplear el método LRFD considerando las normas del AISC 2016 para el diseño de los elementos principales.
- Realizar el diseño de las conexiones considerando las normas del AISC 2016.

CAPÍTULO II

2. MARCO TEÓRICO

2.1 Conceptos básicos

La construcción compuesta comprende miembros estructurales constituido por dos materiales acero estructural y concreto reforzado, juntos en un componente de tal manera que la disposición resultante funcione como un solo elemento. Estrictamente hablando, cualquier miembro formado por dos o más materiales es compuesto. Sin embargo, en edificios y puentes, esto, de manera usual significa acero estructural y concreto reforzado y eso, por lo común quiere decir vigas o columnas compuestas [William T. Segui, 2013].

Existe una amplia gama de elementos estructurales compuestos de amplio uso. Los miembros compuestos que se abordarán en el presente estudio serán:

- Miembros de acero estructural embebidos en concreto (Figura 2.1a).
- Miembros de acero estructural rellenos de concreto (Figura 2.1b).
- Losa de concreto soportada sobre viga de acero con placa colaborante (Figura 2.1c).

a. Miembro embebido en concreto

c. Viga Compuesta (Steel Deck)

Para entender la esencia del comportamiento mixto se empleará el tipo se sección compuesta que más comúnmente se utiliza en la práctica, la viga compuesta (Steel Deck). Empezaremos con una ilustración simple, consideremos una viga que está constituida por dos partes idénticas como se muestra en la figura 2.2. En el caso de la figura 2.2a ambas partes tienen comportamientos diferentes y se desplazan libremente una con respecto a la otra en la interface o zona de contacto entre las dos áreas, mientras que en el caso de la figura 2.2b ambas partes están restringidas a actuar juntas. Se debe notar también que en el caso (a) existe un desplazamiento longitudinal como se muestra en los extremos de la viga lo que muestra que no hay acción compuesta en ese elemento, mientras que en el caso (b) todas las secciones transversales permanecen planas y sin deslizamientos una con respecto a la otra, garantizando así el comportamiento compuesto en el elemento. Esta restricción al desplazamiento provoca que la viga (b) sea más resistente y rígida que la viga del caso (a) estudios han demostrado que es hasta dos veces más resistente y cuatro veces más rígida la viga (b)¹. De lo anterior podemos afirmar que mientras mayor desplazamiento relativo exista entre los dos elementos el porcentaje de acción compuesta es menor.

Figura 2.2 Mecanismos básicos de acción compuesta. Fuente: Composite Construction, David Nethercot (2003).

Ahora consideremos el arreglo acero-concreto de la figura 2.3a. Las dos partes en que está dividida la sección tienen diferentes tamaños y poseen diferentes características de esfuerzo deformación. Asumiendo que hay una interacción completa compuesta entre los dos materiales y por lo tanto no hay

¹ Composite Construction, David Nethercot. Capítulo I, Sección 3.

desplazamientos longitudinales, la distribución de esfuerzos plásticos en la sección transversal mostrada será la que se muestra en la figura 2.3b y figura 2.3c dependiendo de la localización del eje neutro. Si el eje neutro se encuentra en la losa de concreto quiere decir que el acero estará actuando totalmente a tensión y por lo tanto este desarrollara su capacidad máxima, mientras que si el eje neutro se encuentra en la sección de acero quiere decir que el concreto estará actuando totalmente a totalmente a tensión y

Figura 2.3 Representación de los bloques de esfuerzos plásticos.

Fuente: Composite Construction, David Nethercot (2003).

Dicho lo anterior, vale remarcar que los buenos diseños deben de tender a colocar el eje neutro de la sección en la zona de interface entre el acero y el concreto, lo cual representa una mayor eficiencia en la resistencia de los dos materiales (concreto actuando completamente a compresión y el acero desarrollando su máxima capacidad a tensión).

La acción compuesta es utilizada con mayor frecuencia en la combinación de una viga y una losa para formar los entrepisos de los edificios o las cubiertas de los puentes, también es utilizado en columnas como las mostradas anteriormente en la figura 2.1a y 2.1b. Sin embargo, el uso de columnas compuestas, en su mayoría, está restringido para edificios muy altos o para edificios bajos en los cuales las cargas de compresión que deben ser resistidas son extremadamente elevadas, de otra forma el diseño no resultaría económico.

La construcción de vigas compuestas² posee varias ventajas respecto a la construcción no compuesta:

- a. Reducciones en los pesos de acero que son comúnmente del 30 al 50%.
- La mayor rigidez del sistema significa que las vigas puedan ser menores para los mismos claros, logrando alturas menores en los pisos y economías en el revestimiento.
- c. Es de construcción rápida.

La desventaja principal es la necesidad de proporcionar los conectores de cortante en la interface entre el acero y concreto. Puede haber también un aumento claro en la complejidad de diseño. Sin embargo, tablas de diseño pueden ser una ayuda para la selección del tamaño de los miembros proporcionadas por el LRFD.

2.2 Métodos de Diseño.

Para determinar la resistencia en los elementos de estructuras que incluyen Secciones Compuestas, se encuentran cuatro métodos según el código ANSI-AISC 360-16:

2.2.1 Método Distribución de Esfuerzo Plásticos.

Para el método de distribución de esfuerzos plásticos, el esfuerzo nominal deberá asumirse que los componentes de acero habrán alcanzado un esfuerzo F_y , en ambos casos tensión y compresión; y los componentes de concreto habrán alcanzado un esfuerzo de $0.85f_c$. Para tubos rellenados con concreto, el esfuerzo está permitido de $0.95f_c$, para el uso de componentes de concreto en compresión uniforme y así satisfacer los efectos del confinamiento del concreto.

2.2.2 Método Compatibilidad de Tensiones.

Para el Método compatibilidad de Tensión, una distribución lineal de esfuerzos para la sección deberá ser asumida, con un máximo esfuerzo a compresión del concreto igual a 0.003 plg/plg (mm/mm). La relación de esfuerzo-tensión para el

² Ventajas de vigas compuestas, Steel Designers Manual 5th Edición.

acero-concreto deberá obtenerse por medio de pruebas o por resultados publicados de materiales similares.

El método Compatibilidad de Tensiones deberá ser usado para determinar la resistencia nominal en secciones irregulares y para casos donde el acero no posee un comportamiento elástico-plástico.

2.2.3 Método Distribución de Esfuerzo Elásticos.

Para el método de Distribución de Esfuerzo Elásticos, la resistencia nominal será determinada de la superposición de esfuerzos elásticos para el estado límite de fluencia o aplastamiento del concreto.

2.2.4 Método efectivo Esfuerzo-Deformación.

Para el método efectivo Esfuerzo-Deformación será determinada asumiendo compatibilidad de deformación y relaciones esfuerzo-deformaciones efectivas para componentes de acero y concreto que tienen en cuenta los efectos del pandeo local, la fluencia, la interacción y el confinamiento del concreto.

2.3 Tipos de secciones compuestas2.3.1 Viga compuesta³ (Steel Deck).

En los edificios y vigas de acero de puentes a menudo deben soportar losas de concreto. Bajo las cargas de servicio cada componente actúa independientemente con movimiento relativo o deslizamiento que ocurren en su adherencia. Si los componentes se conectan entonces el deslizamiento es eliminado, o considerablemente reducido (Figura 2.4), entonces la losa y la viga de acero actúan juntos como un compuesto, una unidad. Hay un aumento consecuente en la fuerza y rigidez de la viga compuesta a la suma de los componentes.

³ Aplicaciones de vigas compuestas, Steel Designers Manual 6th Edición.

Figura 2.4 Comportamiento de Vigas compuestas y No compuestas. Fuente: Steel Designers Manual, Wiley-Blackwell (2003).

El Método normal de diseño por esfuerzo admisible de vigas simplemente apoyadas es el análisis plástico de la sección transversal. Conexión completa de pernos de cortante garantiza que la sección desarrollará completamente su capacidad plástica. Vigas diseñadas con conexión completa de pernos resulta en vigas de tamaño más ligero. Donde menos conectores de cortante se proporcionan (conocido como la conexión de cortante parcial) el tamaño de la viga es más pesado, pero el diseño global puede ser más económico. La conexión de cortante parcial es muy atractiva donde el número de conectores se pone en un modelo normal; como uno por nervio o alternado, donde se use la lámina troquel. En cada caso, la resistencia de los conectores de cortante es una cantidad fija independiente del tamaño de la viga o losa.

El diseño elástico convencional de la sección produce las vigas más pesadas que con el diseño plástico porque no es posible desarrollar la capacidad a tensión completa del acero de la sección Diseños basados en los principios elásticos serán usados donde los elementos axiales de la sección son no-compactos o esbeltos. Esto afecta el diseño de vigas continuas principalmente.

2.3.1.2 Tipos de conectores de Cortante⁴.

Los conectores de cortante modernos son los pernos cabeza soldado que va de 1/2-1 in de diámetro y de 2.5-5 in de altura. El tamaño más popular es 3/4 in de

⁴ Tipos de conectores de corte, Steel Designers Manual 6th Edición.
diámetro y 4 in de altura. Cuando es usado con láminas troquelada, los pernos son a menudo soldados a través del uso de taladros conectados a un generador de poder. Cada perno toma sólo unos segundos en ser soldados en el sitio. Alternativamente, los pernos pueden soldarse directamente a las vigas de acero y la lámina en la fábrica o con hendiduras encima de los pernos.

Figura 2.5 Un perno de acero y carbón, las cabezas están marcadas para identificar el manufacturador o distribuidor. (a) Con cabeza hexagonal. (b) Con cabeza cuadrada. (c) Con cabeza radial. Fuente: Steel Designers' Manual, Wiley-Blackwell (2003).

Hay algunas limitaciones para las soldaduras: la lámina del patín superior de la viga no debe pintarse, el acero galvanizado debe ser al menos de 1.25 mm espesor y la lámina debe estar limpia y libre de humedad.

Donde la losa de concreto prefabricado es empleada, las posiciones de los conectores de cortante, es normalmente tal que ellos proyectan los agujeros en la losa que después es llenada con concreto. Alternativamente, un hueco es dejado entre el final de las planchetas prefabricadas que se sientan sobre el patín superior de la viga en el que los conectores de cortante son fijados. El refuerzo (normalmente en forma de barras dobladas) se proporciona alrededor de los conectores de cortante.

Hay un rango de formas de conectores de cortantes soldados, pero no todos se adecuan a las aplicaciones prácticas. Barras y canales se ha usado en la construcción de puentes como conectores de cortantes soldados. Pernos colocados por pistolas son comercializados para su uso en proyectos de edificios más pequeños dónde el suministro eléctrico del sitio podría ser un problema. Todos los conectores de cortante deben ser capaces de resistir las fuerzas de levantamiento; del uso de encabezado en lugar de los montantes llanos.

2.3.1.3 Modos de Falla⁵.

Los análisis de diseño pueden enfocarse en pocos fenómenos críticos y los estados del límite asociados. Para el modelo de la carga uniforme usual, se indican los modos de falla típicas esquemáticamente en Figura 2.6: el modo I es por fatiga debido al momento último de resistencia en la sección transversal en el centro del claro. El modo II es por falla por cortante en los apoyos, y el modo III es por falla de la resistencia máxima de los conectores de cortante entre acero y el concreto próximo a los apoyos. Un diseño cuidadoso de los detalles estructurales es necesario para evitar las fallas locales (Modo IV y V) como el fallo del cortante longitudinal de la losa a lo largo de los planos mostrados en la Figura 2.7 dónde el colapso bajo el cortante longitudinal hace que no involucre los conectores, o la falla en la franja de concreto por deslizamiento debido a las fuerzas transversales de tensión.

Figura 2.6 Modos de fallas típica para vigas compuestas, secciones críticas. Fuente: Structural Engineering Handbook, Ed. Chen Wai-Fah (1999).

Figura 2.7 Plano potencial de falla por cortante. Fuente: Structural Engineering Handbook, Ed. Chen Wai-Fah (1999).

⁵ Modos de falla de vigas compuestas, Structural Engineering Handbook, Ed. Chen Wai-Fah (1999) capítulo 6.3.1.

2.3.1.4 Construcción Apuntalada y No apuntalada⁶.

Durante la construcción el miembro puede apoyarse temporalmente (es decir, la construcción apuntalada) a los puntos del intermedio para reducir las tensiones y deformación de la sección de acero durante el vaciado del concreto. Los procedimientos de la construcción pueden afectar la conducta estructural de la viga compuesta.

En el caso de la construcción sin apuntalar, el peso del concreto fresco y cargas de construcción son soportadas por el miembro de acero solamente hasta que el concreto haya logrado al menos el 75% de su fuerza y la acción compuesta puede desarrollarse, y la sección de acero tiene que ser verificada para todas las posibles condiciones de cargas que se levanta durante la construcción. En particular, la comprobación contra la falla por torsión lateral puede ser importante porque no hay el beneficio del refrenamiento proporcionado por el concreto en la losa, y la sección de acero tiene que ser asegurada y adecuada horizontalmente.

En el caso de construcciones apuntaladas, la carga global, incluso el mismo peso, se resiste por el miembro compuesto. Este método de construcción es ventajoso de un punto de vista del estático, pero puede llevar al aumento significante de costo. Los sostenes normalmente se ponen en la mitad y a los cuartos del claro, para que el apuntalamiento lleno se obtenga. El efecto del método de construcción en el estado de tensión y la deformación de los miembros generalmente tiene que ser considerada para en los cálculos de diseño. Es interesante para observar que, si la sección compuesta posee ductilidad suficiente, el método de construcción, no influya en la capacidad última de la estructura. Las respuestas diferentes de apuntalado "dúctil" se muestran los miembros de la figura 2.8: la conducta bajo las es muy diferente, pero si los elementos son lo suficientemente

⁶ Construcción Apuntalada y No Apuntalada, Structural Engineering Handbook, Ed. Chen Wai-Fah (1999).

dúctiles las dos estructuras logran la misma capacidad última. Más generalmente, la ductilidad del miembro compuesto permite varios fenómenos, como el encogimiento del concreto, tensiones residuales en las secciones de acero, y asentamiento de apoyos, a ser despreciado en el estado último. Por otro lado, todas estas acciones pueden influir en la actuación substancialmente en el servicio y la resistencia última del miembro en el caso de secciones esbeltas (delgados) susceptibles a falla local en el rango elástico.

Figura 2.8 Relación entre el Momento sin Apuntalar (curva A), y Apuntalada (curva B) vigas compuestas y vigas de Acero (curva C. Fuente: Structural Engineering Handbook, Ed. Chen Wai-Fah (1999).

2.3.2 Entrepisos Compuestos⁷.

Los pisos compuestos, en general es el término utilizado para denotar la acción compuesta de vigas de acero y concreto constituyendo losas compuestas y formar un piso estructural. Las losas de entrepiso compuestas, en este contexto, comprenden perfiles de cubierta de acero como una permanente forma de trabajo bajo la losa de concreto soportado sobre vigas. La cubierta actúa de forma compuesta con el concreto bajo cargas de servicio. El también soporta las cargas aplicadas antes que el concreto tenga un aumento adecuado de esfuerzo. Un

⁷ Entrepisos Compuestos, Steel Designers Manual 6th Edición, Capítulo 20.

refuerzo ligero en forma de malla se coloca sobre el concreto. A través de una sección transversal típica se muestra una losa compuesta, Figura 2.9. Los conectores de cortante son utilizados para un desarrollo de acción compuesta entre la losa de concreto y las vigas de acero.

La cubierta tiene varias funciones. Estas son:

- 1. Soportan las cargas durante la construcción.
- 2. Trabaja como una plataforma.
- 3. Desarrollan una adecuada acción compuesta con el concreto.
- 4. Transferencia de cargas en el plano por acción diafragmática a los elementos verticales o muros.
- 5. Estabiliza las vigas contra el pandeo lateral.
- 6. Actúa como un refuerzo transversal a las vigas compuestas.
- 7. Distribuye el encogimiento por fatiga previendo el agrietamiento serio.

Figura 2.9 Sección transversal de un sistema de losa compuesto típico de láminas troqueladas. Fuente: Steel Designers Manual, 6th Edición, Wiley-Blackwell (2003).

Además, tiene varias ventajas sobre prefabricados o concretos elaborados en el sitio.

- 1. Los periodos de construcción son reducidos.
- 2. La cubierta es de fácil manejo.

- 3. Las uniones pueden hacerse fácilmente.
- 4. Pueden hacerse aberturas.
- 5. Los conectores de cortante ser soldados a través de la lámina.
- 6. La cubierta puede cortarse longitudinal y ser menos propensa a problemas de tolerancia.
- 2.3.2.1 Influencia de la lámina de acero en la conexión de cortante

La eficiencia de la conexión de cortante entre la losa compuesta y la viga compuesta puede ser reducida por la sección de lámina de acero. Esto es análogo para diseñar juntas de losas donde la resistencia de la conexión de cortante es dependiente del área de concreto a su alrededor. Típicamente debe tener una protección de 45° de la base del conector al interior o núcleo de fa losa para ta trasferencia del cortante fácilmente en el concreto sin ruptura local.

Figura 2.10 Comportamiento de la conexión de cortante (a) conexión de cortante en losa sólida. (b) Conector de cortante empotrado en canal de lámina de acero. Fuente: Steel Designers Manual, 6th Edición, Wiley-Blackwell (2003).

El modelo de la acción de la conexión de cortante colocado en el canal de una lámina de acero es mostrado en la figura 2.10, donde se establece una comparación mostrando el comportamiento de un conector en una losa sólida (Figura 2.10a) y un conector de cortante empotrado en canal de lámina de acero (Figura 2.10b). Efectivamente el centro de la resistencia en el caso anterior se mueve hacia la cabeza del perno y la pareja creada en parte resistente por flexión de un perno, pero también por fuerzas de tensión y compresión en la losa, y consecuentemente la resistencia del perno es reducida.

2.3.3 Columnas compuestas⁸.

2.3.3.1 Ventajas

Para el caso de columnas compuestas varias ventajas se pueden desarrollar, ventajas que no se podrían fácilmente obtener en columnas exclusivamente de concreto o exclusivamente de acero. Estas ventajas incluyen contar con elementos de mayor resistencia y mayor capacidad de deformación: además, permite contar con conexiones fáciles, sencillas y más confiables, al mismo tiempo que permite tener un sistema de fácil y rápida construcción, más económico, muy resistente a cargas laterales. Las columnas compuestas, con cualquiera de sus arreglos han demostrado en estudios analíticos y experimentales que son miembros estructurales robustos, resistentes y dúctiles.

Figura 2.11 Secciones Típicas de Columnas Compuestas. Fuente: Análisis y diseño de columnas compuestas de acero estructural y concreto reforzado, Tiziano Perea, Roberto T. León.

⁸ Análisis y diseño de columnas compuestas de acero estructural y concreto reforzado, Tiziano Perea, Roberto T. León.

Las columnas compuestas se pueden formar con diversas configuraciones: algunas de las más comunes se muestran en la figura 2.11. De acuerdo a las especificaciones del AISC (2016), hay en general dos tipos de secciones para columnas compuestas. Éstas son:

Sección metálica ahogados en concreto, la cual está integrada por un elemento metálico embebido en concreto. La sección de acero es con frecuencia una sección I de patín ancho, aunque también se han empleado perfiles con forma circular, T o canal, entre otras. Las varillas longitudinales y los estribos transversales se utilizan para reforzar y confinar el concreto. En algunos casos, las columnas de acero se diseñan para soportar las cargas de gravedad durante la etapa de construcción y, en una etapa posterior durante la construcción, se encajonan con concreto reforzado una vez que se hayan conectado con las vigas: de esta manera, se provee al sistema de mayor resistencia a cargas laterales y resistencia a flexión en las conexiones viga-columna. La gran ventaja de este sistema es que la estructura metálica se monta rápidamente (con conexiones a cortante), lo mismo que los sistemas de piso, y el encajonamiento con concreto convierte a las conexiones en resistentes a momentos.

Sección metálica rellena con concreto, la cual consiste en una sección tubular de acero rectangular o circular rellena con concreto simple. Este tipo de sección compuesta presenta, entre los materiales que la componen, una interacción muy interesante que mejora el comportamiento de éstos; por un lado, el tubo metálico confina al concreto simple, aumentando la resistencia y capacidad de deformación del concreto como refuerzo longitudinal y transversal. Por otro lado, el relleno de concreto a su vez retrasa el pandeo local del tubo, y consecuentemente, la ductilidad del elemento metálico mejora. En principio no se requiere adicionar acero de refuerzo longitudinal y transversal, aunque se sugiere refuerzo adicional en caso de incendio; en tal caso, el tubo de acero se fundiría y las varillas de refuerzo adicional (protegidas por un adecuado recubrimiento de concreto,) proporcionarían de refuerzo y confinamiento a la sección de concreto,

garantizando así una resistencia ante cargas de gravedad durante el tiempo que dure el incendio.

2.3.3.2 Soporte Lateral

La resistencia a cargas laterales en los edificios altos con las estructuras comunes de acero o concreto reforzado, se proporciona conforme avanza la construcción de los pisos. Por ejemplo, durante la construcción de un edificio con estructura de acero puede proporcionarse en cada piso un sistema de arriostramiento diagonal, o bien, juntas resistentes a momento. De igual manera, la resistencia lateral requerida en una estructura de concreto reforzado puede proporcionarse mediante la resistencia a momentos lograda con la construcción monolítica de sus miembros por medio de muros de cortante.

En la construcción compuesta, la resistencia lateral deseada de un edificio no se obtiene sino hasta que el concreto se ha colocado alrededor de o dentro de los miembros de acero montados y ha endurecido lo suficiente.

Como hemos mencionado, al montar la estructura de acero el fabricante proporciona el arriostramiento contraviento necesario conforme va montando los pisos. En general, los marcos de acero usados en edificios altos en construcción compuesta no tienen tal arriostramiento y los marcos no poseen la resistencia lateral deseada. Esta resistencia se logra sólo después de que el concreto se ha colocado y curado en muchos pisos del edificio.

2.3.3.3 Transmisión de la carga a la cimentación.

Por lo general se proporciona una pequeña placa de acero de base en las columnas compuestas. Su propósito es recibir los pernos necesarios para anclar el perfil de acero ahogado a la cimentación durante el montaje de la estructura, antes de que el concreto endurezca y pueda desarrollarse la acción compuesta. Esta placa debe ser suficientemente pequeña para que no interfiera con las espigas necesarias en la parte de concreto reforzado en la columna.

2.4 Conexiones

2.4.1 Placa Base⁹.

Normalmente una placa base para una columna compuesta ahogada en concreto es diseñada para la menor distancia posible para acomodar los pernos de anclaje en la fundación durante la fase de erección. Logrando que la placa base interfiera lo menos posible con las barras de refuerzo que surgen de la fundación para empalmar con las barras longitudinales verticales de la columna compuesta.

Figura 2.12 Detalle de Anclaje Placa Base. Fuente: W-Shapes Encased in Concrete, Steel Design Guide 6, Lawrence G. Griffis (2003).

El ingeniero diseñador debe proporcionar las barras de refuerzo de la columna compuesta a la fundación para transmitir la carga de la columna en exceso de esfuerzo de flexión admisible durante el fraguado del concreto en esta etapa,

⁹ Load and Resistance Factor Design of W-Shapes E Encased in Concrete, Steel Design Guide 6, Lawrence G. Griffis (2003).

siendo el área efectiva a flexión (el área de la columna compuesta total menos el área de la columna Wide Flange ahogada en la placa base).

En algunos casos, dependiendo del tamaño de la placa base, puede ser necesario agregar las varillas de fundación adicionales adecuadamente para una adecuada transmisión de carga llevada por el concreto de la columna compuesta. Un detalle de placa base se muestra en la Figura 2.12.

2.4.2 Otras Conexiones¹⁰.

El uso de las conexiones compuestas a menudo simplifica algunos desafíos especiales asociados con la construcción tradicional de acero y concreto. En el acero estructural, las conexiones compuestas a menudo evitan o minimizan el uso de soldadura, en comparación con el concreto reforzado, hay pocos casos donde el anclaje y la longitud de desarrollo del refuerzo en vigas principales es un problema.

Dadas las muchas configuraciones de estructuras compuestas y conexiones, hay pocos detalles estándares para las conexiones en la construcción compuesta. En la mayoría de las construcciones compuestas construidas a la fecha los ingenieros han diseñado las conexiones usando mecanismos básicos, equilibrio, las normas existentes para el acero y el concreto.

Los requisitos para la capacidad de deformación aplicados para ambos diseños de conexiones son solo por fuerza de gravedad y conexiones que son parte de un sistema resistente a cargas sísmicas. Los requisitos de ductilidad para cargas de gravedad intentan evitar la falla por conexiones de gravedad que pueden tener restringida, pero de limitada capacidad a rotación. Por ejemplo, la figura 2.13 muestra una conexión entre la pared de concreto reforzado y la viga de acero que está diseñada para resistir cargas de gravedad y no es considerada parte del sistema resistente a cargas sísmicas. Sin embargo, esta conexión requiere ser

¹⁰ Seismic Provisions for Structural Steel Buildings AISC 341-16, Comentarios Capítulo D, Conexiones compuestas.

diseñada para mantener el esfuerzo a corte vertical bajo rotación y/o momento que son impuestas por deformaciones sísmicas inelásticas de la estructura.

Figura 2.13 Conexión de Cortante con carga gravitacional entre Viga de Acero y Pared de Concreto Reforzado. Fuente: Seismic Provisions for Structural Steel Building, 2016.

Calculando la resistencia requerida de los conectores, basadas en la resistencia nominal de los miembros conectados, el límite permitido debe hacerse para todos los componentes de los miembros que pueden incrementar la resistencia nominal sobre los normales calculados en el diseño, esto puede ocurrir en vigas donde la resistencia de momento negativo proporcionado por el refuerzo de la losa a menudo no es tomado en cuenta en el diseño pero incrementa los momentos aplicados a través de la conexión viga-columna. Otro ejemplo, son los arriostres tubulares llenos donde se incrementan los esfuerzos a tensión y compresión del arriostre o abrazadera debidos al concreto que debe ser considerado en la determinación del esfuerzo requerido en la conexión; el cálculo de resistencia requerida en los conectores debe, como mínimo, ser elaborado usando el esfuerzo de fluencia de los miembros de acero conectados. Donde las conexiones resisten fuerzas impuestas por el esfuerzo a fluencia del acero en miembros de concreto reforzado, ACI-318, sección 21.5 implica que se espera un esfuerzo a fluencia igual a 1.25 F_v para las barras de refuerzo.

Las barras de refuerzo alrededor de la región del nodo tienen dos funciones la resistencia a las fuerzas internas calculadas de tensión y proporciona confinamiento al concreto. Las fuerzas de tensión internas pueden ser calculadas

usando los modelos establecidos de ingeniería que satisfacen el equilibrio (por ejemplo, la teoría elástica de viga-columna, las cerchas análogas, los modelos de pernos y estribos). Los estribos requeridos para el confinamiento usualmente están basados en modelos empíricos basados en pruebas de datos y comportamiento de estructuras pasadas.

- 1) En conexiones compuestas parcialmente restringidas, la fuerza transferida entre la losa de concreto y la columna de acero requiere un detallamiento cuidadoso. Para las conexiones parcialmente restringidas (ver figura 2.15), la fuerza del concreto está orientada contra el patín de las columnas, que debe verificarse. Solo la porción sólida de la losa (área anterior a la ranura) debe ser tomada en cuenta, y el esfuerzo nominal debe ser limitado a $1.2f_c^{\prime}$, el refuerzo transversal de acero debe proporcionar un adecuado desarrollo a tensión a la losa. De los cálculos de equilibrio, esta cantidad debe ser igual a la que proporciona el refuerzo longitudinal y debe extenderse por lo menos 12 pulg (305 mm) más allá en el lado del ancho efectivo de la losa.
- 2) Debido al límite del tamaño de los nodos y la congestión del refuerzo, a menudo es difícil de proporcionar la longitud de desarrollo en las barras de refuerzo dada en el ACI-318, para el refuerzo transversal en los nodos de las columnas, es importante tomar en cuenta los requisitos especiales y recomendaciones para estribos requeridos como especifica las conexiones de concreto reforzado en el ACI-318. Los datos de prueba en conexiones de vigas-columnas compuestas similares a las mostradas en la figura 2.14 indica que la cara que resiste (rígida) la placa atada a la viga de acero proporcione un confinamiento efectivo del concreto.
- 3) Como una conexión de concreto reforzado, grandes esfuerzos transferidos de las cargas al refuerzo de la columna pasando a través de la unión vigacolumna puede resultar en el desprendimiento de las barras bajo cargas extremas. La práctica actual para reforzar las conexiones de concreto está

controlado este desprendimiento por el límite máximo del tamaño de las barras longitudinales descrito en el ACI.

Figura 2.14 Conexión a Momento de columna de concreto reforzado a viga de Acero. Fuente: Seismic Provisions for Structural Steel Buildings, 2016

Figura 2.15 Conexión Compuesta parcial. Fuente: Seismic Provisions for Structural Steel Buildings, 2016.

El esquema de una conexión para marcos de momento compuestos con columnas de concreto reforzados es mostrado en la figura 2.14, donde las vigas de acero pasan continuamente a través de la columna y se empalma fuera de la conexión

de la viga con la columna. A menudo, las columnas de acero cortas que están interrumpidas por las vigas son usadas para la construcción y luego embebidas en columnas de concreto reforzadas. Desde antes de 1980, más de 60 pruebas de gran escala en este tipo de conexiones han sido conducidas en los Estados Unidos y en Japón bajo cargas monótonas y cargas cíclicas. En particular tales detalles como los que se muestran en la figura 2.14, se evitan la necesidad de la soldadura en la pestaña de la viga en la unión crítica de la viga-columna. Por consiguiente, estas uniones no están generalmente susceptibles a la fractura, comportamiento que ahora es reconocido como un aspecto critico en las soldaduras de acero como conexiones de momento. Estas pruebas demuestran que, hay muchas formas posibles de fortalecer los nodos, en la cara de las placas de los soportes (ver figura 2.14) y la franja de acero (ver figura 2.16) atando a la viga de forma muy efectiva para inmovilizar la fuerza de corte en el nodo del concreto reforzado y proporcionando confinamiento al concreto.

Figura 2.16 Placas abrazaderas usadas para reforzar el nodo. Fuente: Seismic Provisions for Structural Steel Buildings, 2016.

Donde las vigas de acero continúas a través de las columnas compuestas, los mecanismos de transferencia de cargas internas y el comportamiento de estas conexiones son similares a las conexiones para las columnas de concreto reforzado (Figura 2.14). Por otra parte, cuando las vigas son interrumpidas en la cara de columna, los detalles especiales (conexión) son necesarios para transferir las cargas al ala de la columna a través de la unión.

CAPÍTULO III

3. DISEÑO METODOLÓGICO

3.1 Metodología utilizada

El presente diseño metodológico se propone con el fin de sistematizar y exponer de la forma más comprensible la metodología a seguir para el diseño de secciones compuestas perfiles de acero y concreto reforzado constituidos principalmente por marcos de momentos en las dos direcciones, sistema de entrepisos actuando en dos direcciones, sistema de techo y conexiones.

Para la realización de este trabajo monográfico y cumplimiento de los objetivos propuestos se ha determinado seguir una secuencia de trabajo como se describe a continuación:

- Cálculo de pesos y cargas superficiales de los elementos no estructurales del edificio a utilizarse en el análisis y diseño del sistema estructural.
- Analizar la estructura en el programa ETABS.
- Cálculo de las Cargas de Servicio y Cargas Vivas Reducida, tomadas del RNC-07.
- Cálculo de las Cargas Sísmicas por medio del Método Estático Equivalente del RNC-07.
- Análisis Sísmico por el Método Dinámico Modal Espectral del RNC-07, determinar la masa, rigidez, excentricidades y desplazamientos por cada nivel y dirección del sistema estructural con ayuda del software.
- Revisión manual del diseño de los Elementos Principales de Secciones Compuestas; Vigas, Columnas, Sistemas de entrepiso utilizando las normas del AISC 360-16 método del LRFD y AISC 341-16.
- Diseño manual de las Conexiones Viga-Columna, Placa Base, Pernos de Anclaje, por el método LRFD del AISC 360-16 y las normas de diseño del AISC 358-16.

- Revisión manual del diseño de los Elementos Secundarios de Acero (Elementos del Techo, Vigas Secundarias de Entrepiso) por el método LRFD del AISC 360-16.
- Conclusiones.
- Recomendaciones.

3.2 Análisis e Interpretación de Resultados Con ayuda del software ETABS determinar:

- Fuerza Sísmica horizontal, fuerza cortante horizontal en las direcciones X e Y por cada nivel.
- Rigidez en cada piso en las direcciones X e Y.
- Coordenadas del centro de torsión, excentricidad y momentos torsionantes en las direcciones X e Y.
- Fuerzas Cortantes actuando en cada nivel de piso y por cada eje en las direcciones X e Y.
- Desplazamientos máximos y derivas totales por cada nivel.
- Realizar el Análisis Sísmico Dinámico con el Método Modal Espectral utilizando el espectro de aceleraciones del RNC-07. Espectro de diseño para Nicaragua.
- Seleccionar los resultados de las combinaciones de cargas que generen las fuerzas más desfavorables en los miembros principales y secundarios, para realizar el diseño de los elementos de techo, vigas de entrepiso, columnas, losa de entrepiso y conexiones, conformados de secciones compuestas, concreto reforzado y acero estructural.

3.3 Criterios de diseño

Todo diseño estructural se auxilia de métodos, criterios de diseño, normas estándares internacionales (ACI, AISC, ASCE) así como el reglamento nacional (RNC-07, RNC17/AE-001) y basarse en el sistema de estructuración especificado para el análisis y diseño del edificio.

Para la obtención de resultados acertados, el sistema estructural será modelado en el software ETABS el cual está orientado para satisfacer las múltiples asunciones que se aplicaron para el análisis y diseño de la superestructura.

El diseño de los elementos de techo, vigas de entrepiso, columnas, placa base y conexiones serán realizadas de forma manual aplicando los criterios de diseño de los códigos ACI 318-14, el AISC 360-16, AISC 341-16, AISC 358-16, de igual manera los criterios del ASCE 7-16.

Cabe destacar que el diseño de las fundaciones queda excluido de la presente monografía ya que ésta se enfoca principalmente en el diseño de los diferentes tipos de secciones compuestas, de igual manera no se consideran los criterios de diseño actualizados del Reglamento nacional de la construcción en su título Acero estructural ya que este no toma en cuenta el diseño de las secciones compuestas.

3.4 Resistencia de diseño de secciones compuestas

- 3.4.1 Flexión
- 3.4.1.1 Viga compuesta
- 3.4.1.1.1 Ancho efectivo

El ancho efectivo de la losa de concreto es la suma de los anchos efectivos a cada lado del eje de la viga, cada uno de los cuales no puede exceder:

- a. 1/8 del claro de la viga medido entre centros de apoyos para claros simples y continuos.
- La mitad de la distancia entre el eje central de la viga y el eje central de la viga adyacente.
- c. La distancia al borde de la losa (solo aplica para vigas de borde).

Este ancho efectivo se aplica también para vigas de acero completamente embebidas y para perfiles tubulares rellenos de concreto.

3.4.1.1.2 Resistencia durante la construcción

Como se explicó anteriormente, cuando no se disponga de apuntalamiento temporal durante la construcción, se deberá diseñar la sección de acero para que tenga la resistencia suficiente para soportar todas las solicitaciones de carga aplicadas antes que el concreto obtenga el 75% de su resistencia especificada f_c^{\prime} . La resistencia disponible a flexión de la viga de acero sola, se determina en base a lo especificado en el capítulo F del AISC-360-16.

3.4.1.1.3 Resistencia a flexión de vigas compuestas

La resistencia a flexión de la viga compuesta puede ser controlada por la resistencia de la sección de acero, la losa de concreto o por los conectores de corte. La fuerza de compresión presente en la losa de concreto es entonces la menor de las siguientes: (ver figura 6.1)

- ✓ Controla la fluencia del acero: $C = A_s F_y$
- ✓ Controla el aplastamiento del concreto: $C = 0.85 f_c^{\cdot} A_c$
- ✓ Controla los conectores de corte: $C = \Sigma Q_n$

Donde:

 $f'_c = resistencia de compresión del concreto.$ $A_c = área de losa de concreto dentro del ancho efectivo.$ $A_s = área de la sección transversal de acero.$ $F_y = esfuerzo de fluencia del acero.$ $\Sigma Q_n = suma de las resistencia nominales de los conectores de corte.$

La profundidad del bloque de compresión es:

$$a = \frac{c}{0.85f_c'b}$$

Donde:

b = ancho efectivo de la losa de concreto

Una viga compuesta con colaboración total corresponde al caso controlado por la resistencia de fluencia de la viga de acero o por la resistencia de compresión de la losa de concreto.

Figura 3.1 Distribución de esfuerzos plásticos para momento positivo en vigas compuestas.

La distribución de esfuerzos plásticos puede tener el eje neutro plástico (PNA) en el alma, en el ala superior de la sección de acero o en la losa de concreto, dependiendo del valor de C. El momento nominal resistente de una sección compuesta en flexión positiva es dado por la siguiente ecuación:

$$M_n = C(d_1 + d_2) + P_{\nu}(d_3 + d_2)$$

Donde:

 $P_y = A_s F_y = resistencia de tracción de la sección de acero$

 d_1 = Distancia desde el centroide de la fuerza de compresión C, al borde superior de la sección de acero.

 d_2 = Distancia desde el centroide de la fuerza de compresión en la sección de acero, al borde superior de la sección de acero

Para el caso de que no haya compresión en la sección de acero

 $d_2 = 0.$ $d_3 = distancia desde P_v al borde superior de la sección de acero.$

3.4.1.1.4 Láminas colaborantes de acero

A continuación, se mencionan algunas recomendaciones mínimas que se deben tomar en cuenta al momento de elegir las dimensiones de la lámina colaborante de acero y los conectores de corte.

Se requiere que los conectores de cortante se proyecten un mínimo de 1 1/2" sobre el patín superior de la placa de acero. Esto intenta ser una proyección mínima y las longitudes de los pernos antes de la instalación deben de considerar cualquier acortamiento que pueda ocurrir durante el proceso de soldado. La cubierta mínima de concreto especificada sobre el perno de anclaje de acero debe de ser de 1/2" después de la instalación, con esto se intenta prevenir que el anclaje quede expuesto después que se termine la construcción. En cumplir estos requisitos el diseñador debe considerar cuidadosamente las tolerancias de la contraflecha de la viga de acero, el vaciado del concreto y las tolerancias de terminación y la confiabilidad con que las deflexiones en la viga de acero puedan ser calculadas.

El espaciamiento máximo para conectar la lámina colaborante de acero de soporte es de 18", esto cumple con la función de limitar el levantamiento a un mínimo durante la fase de construcción previa al vaciado del concreto. La figura 3.2 muestra todos los requisitos antes mencionados, además de las dimensiones mínimas que debe de tener la lámina de acero.

Figura 3.2 Limites de láminas colaborantes de acero

3.4.1.1.5 Transferencia de carga entre la viga de acero y la losa de concreto

El corte horizontal total entre la viga de acero y la losa de concreto debe suponerse que es transferida por conectores de corte. El corte nominal entre la viga de acero y la losa de concreto, transferido por anclajes de acero, V, entre el punto de máximo momento positivo y el punto de momento cero es la misma fuerza de compresión *C*, detallada anteriormente.

3.4.1.1.6 Conectores de cortante

3.1.1.1.6.1 Tipo perno

El diámetro de los conectores de corte no debe ser mayor a 2.5 veces al espesor del metal base al cual es soldado, a menos que sea soldado a un ala directamente sobre el alma. Por otro lado, la longitud de los conectores no debe ser inferior a cuatro veces el diámetro del perno desde la base a extremo de la cabeza del perno después de ser instalado.

Es importante tener en cuenta que el número total de conectores debe ser suficiente para desarrollar el corte en cada lado del punto de máximo momento. La resistencia nominal de un conector de corte será determinada con la siguiente expresión:

$$Q_n = 0.5A_{su}\sqrt{f_c'E_c} \le R_g R_P A_{su} F_u$$

Donde:

 $egin{aligned} A_{su} &= lpha rea \ de \ la \ seccion \ transversal \ del \ perno. \end{aligned}$ $E_c &= M \acute{o} dulo \ de \ elasticidad \ del \ concreto. \end{aligned}$ $F_u &= Resistencia \ m \acute{n} ima \ a \ tracción \ especificada \ de \ un \ perno. \end{aligned}$ $R_g &= 1 \ para:$

a. Para un perno soldado en un nervio de la lámina de acero orientada perpendicularmente al perfil de acero.

- b. Para cualquier número de pernos soldados en una fila directamente al perfil de acero.
- c. Para cualquier número de pernos soldados en una fila a través de una lámina de acero con nervios orientados paralelamente al perfil de acero y con una razón ancho promedio a profundidad del nervio mayor o igual a $1.5 \left(\frac{w_r}{h_r} \ge 1.5\right)$.

 $R_g = 0.85 \ para:$

- Para dos pernos soldados en un nervio de una lámina de acero orientada perpendicularmente al perfil de acero.
- b. Para un perno soldado a través de una lámina de acero con nervios orientados paralelamente al perfil de acero y con una razón ancho promedio a profundidad del nervio menor a $1.5 \left(\frac{w_r}{h_r} < 1.5\right)$.

 $R_{g} = 0.7 \, para:$

 a. tres o más pernos soldados en un nervio de la lámina de acero orientada perpendicularmente al perfil de acero.

 $R_g = 0.75 \ para:$

- a. Para pernos soldados directamente al perfil de acero.
- b. Para pernos soldados en una losa compuesta con láminas de acero con nervios orientados perpendicularmente al perfil de acero y con $e_{mid-ht} \ge 2$ "
- c. Para pernos soldados a través de la lámina de acero con nervios orientados de manera paralela a la viga de acero.

 $R_g = 0.6 \, para:$

a. Para pernos soldados en una losa compuesta con lámina de acero con nervios orientados perpendicularmente a la viga de acero y con $e_{mid-ht} < 2$ "

 e_{mid-ht} = Distancia desde el borde del esparrago hasta el alma de la lámina de acero, medida a media altura del nervio de la lámina y en la dirección de carga del

conector (en otras palabras, en la dirección de momento máximo para una viga simplemente apoyada).

3.4.1.1.6.2 Tipo canal

La resistencia nominal de un conector de corte de tipo canal embebido en una losa de concreto solido debe ser determinado:

$$Q_n = 0.3 \big(t_f + 0.5 t_w \big) l_a \sqrt{f_c' E_c}$$

Donde:

 $l_a = longitud \ del \ canal$

La resistencia del conector de tipo canal debe ser desarrollada soldando al canal el ala de la viga para una fuerza igual a Q_n , considerando la excentricidad del conector.

3.4.1.1.7 Deflexiones en vigas compuestas

La deflexión de una viga compuesta es un estado límite de servicio, por lo tanto, debe ser revisado utilizando solamente la carga viva a la que está sometido el elemento. La deflexión debido a la carga viva aplicada una vez que se ha alcanzado la acción compuesta estará limitada a L/360 o 1" usando el 50% de reducción en la carga viva.

La deflexión para miembros compuestos será determinada usando el límite inferior del momento de inercia I_{LB} , mediante la siguiente ecuación:

$$I_{LB} = I_S + A_S (Y_{ENA} - d_3)^2 + \left(\frac{\Sigma Q_n}{F_y}\right) (2d_3 + d_1 - Y_{ENA})^2$$

Donde:

 I_S = momento de inercia del perfil de acero

 ΣQ_n = suma de las resistencias nominales de los conectores de corte entre el punto de máximo momento y el punto de momento cero.

$$Y_{ENA} = \left[\left(A_S d_3 + \left(\frac{\Sigma Q_n}{F_y} \right) (2d_3 + d_1) \right) / \left(A_S + \frac{\Sigma Q_n}{F_y} \right) \right]$$

 Y_{ENA} = Distancia desde la parte superior de la sección de acero hasta el eje neutro elástico.

3.4.1.1.8 Resistencia al cortante

La resistencia al cortante de diseño debe ser determinada basada en la resistencia disponible al corte de la sección de acero especificada en el capítulo G del AISC-2016.

$$V_n = 0.6F_y A_w$$

 $A_w =$ área del alma de la sección de acero.

3.4.1.2 Viga de acero embebida en concreto

En el caso de miembros compuestos embebidos no se toma en cuenta los efectos por pandeo local, debido al núcleo de concreto que cubre el perfil de acero, esto le provee arriostramiento continuo en toda la longitud. La resistencia a flexión de este tipo de estructuras se deberá determinar basado en lo siguiente:

- a) El estado límite de la primera fluencia (momento de primera fluencia), se determina mediante la superposición de tensiones elásticas en la sección compuesta, considerando los efectos de apuntalamiento.
- b) En el estado límite de fluencia (momento plástico), por distribución de tensiones plásticas en la sección de acero solamente.

 c) El estado límite de fluencia (momento plástico), se permite por distribución de tensiones plásticas o por el método de compatibilidad de deformaciones en la sección compuesta.

3.4.1.3. Diafragmas compuestos y vigas colectoras

En la construcción compuesta, las losas de piso o techo que consisten en una cubierta de metal compuesto y relleno de concreto, están típicamente conectadas al marco estructural para formar diafragmas compuestos. Los diafragmas son miembros que se extienden horizontalmente, análogos a las vigas profundas, que distribuyen cargas sísmicas y / o de viento desde su origen al sistema de resistencia lateral, ya sea directamente o en combinación con elementos de transferencia de carga conocidos como colectores o vigas colectoras.

Los diafragmas cumplen la importante función estructural de interconectar los componentes de una estructura para que se comporten como una unidad. Los diafragmas se analizan comúnmente como tramos simples o vigas profundas que se extienden continuamente, y por lo tanto están sujetos a fuerzas de corte, de momento y axiales, así como a las deformaciones asociadas. Se puede encontrar más información sobre las clasificaciones y el comportamiento del diafragma en AISC (2006a) y SDI (2001).

3.4.1.3.1 Resistencia del diafragma compuesto

Los diafragmas deben diseñarse para resistir todas las fuerzas asociadas con la recolección y distribución de las fuerzas sísmicas y / o de viento al sistema de resistencia de la fuerza lateral. En algunos casos, las cargas de otros pisos también deben incluirse, como en un nivel donde existe un desplazamiento horizontal en el sistema de resistencia de fuerza lateral. Existen varios métodos para determinar la resistencia al corte en el lugar de los diafragmas compuestos. Tres de estos métodos son los siguientes:

a) Según lo determinado para la resistencia combinada de la cubierta compuesta y relleno de concreto que incluye las consideraciones de

configuración del Steel deck compuesta, así como el tipo y la disposición de los accesorios del Steel deck. Una publicación que se considera que proporciona dicha guía es el Manual de diseño de diafragmas de SDI (SDI, 2004). Esta publicación cubre muchos aspectos del diseño del diafragma, incluidos los cálculos de resistencia y rigidez. También se proporcionan procedimientos de cálculo para métodos alternativos de conexión de cubierta a marco, tales como soldadura de charcos y sujetadores mecánicos en los casos en que no se utilizan anclajes. Donde se utilicen conectores de corte, los valores de resistencia al corte del perno serán los determinados en la Sección I8 del AISC.

b) A medida que aumenta el espesor del concreto sobre la plataforma de acero, la resistencia al corte puede aproximarse a la de una losa de concreto del mismo espesor. Por ejemplo, en diafragmas de Steel deck de piso compuesto que tienen profundidades de cobertura entre 2 pulg. (50 mm) y 6 pulg. (150 mm), se han medido tensiones de corte del orden de $0.11\sqrt{f'_c}$ (donde f'_c está en unidades de ksi). En tales casos, la resistencia del diafragma de las losas de cubierta de metal y concreto puede basarse de manera conservadora en los principios del diseño de concreto reforzado (ACI, 2008) utilizando el concreto y el refuerzo sobre las nervaduras de la cubierta de metal e ignorando el efecto beneficioso del concreto en los nervios de la lámina.

c) Resultados de pruebas en plano de diafragmas rellenos de concreto.

3.4.1.3.2 Vigas del colector y otros elementos compuestos

Las fuerzas horizontales del diafragma se transfieren al marco de acero resistente a carga lateral como fuerzas axiales en las vigas colectoras (también conocidas como puntales de diafragma o puntales de arrastre). El diseño de las vigas colectoras no se ha abordado directamente en este capítulo. El diseño riguroso de las columnas de vigas compuestas (vigas colectoras) es complejo y existen pocas pautas detalladas sobre dichos miembros. Hasta que la investigación adicional esté disponible, se proporciona un enfoque de diseño simplificado razonable de la siguiente manera:

Aplicación de la fuerza. Las vigas colectoras pueden diseñarse para los efectos combinados de la carga axial debida a las fuerzas del diafragma, así como a la flexión debida a la gravedad y/o las cargas laterales. El efecto del desplazamiento vertical (excentricidad) entre el plano del diafragma y la línea central del elemento colector debe investigarse para el diseño.

Resistencia axial. La resistencia axial disponible de las vigas colectoras se puede determinar de acuerdo con las disposiciones no compuestas del Capítulo D y el Capítulo E de la especificación AISC. Para la carga de compresión, las vigas colectoras generalmente se consideran sin sujetar para pandeo entre los puntos reforzados alrededor de su eje mayor, y están completamente sujetadas por el diafragma compuesto para pandeo sobre el eje menor.

Resistencia a flexión. La resistencia a la flexión disponible de las vigas colectoras se puede determinar utilizando las disposiciones compuestas del Capítulo I o las disposiciones no compuestas del Capítulo F de la especificación AISC. Se recomienda que todas las vigas colectoras, incluso aquellas diseñadas como miembros no compuestas, contengan suficientes anclajes para garantizar que se logra un 25% de acción compuesta. El objetivo de esta recomendación es evitar que los diseñadores utilicen una pequeña cantidad de anclajes únicamente para transferir las fuerzas del diafragma en una viga diseñada como miembro no compuesto.

Los anclajes diseñados solo para transferir el corte horizontal debido a las fuerzas laterales aún estarán sujetos al corte horizontal debido a la flexión de las cargas de gravedad superpuestas en la sección compuesta y podrían sobrecargarse en condiciones de carga por gravedad. La sobrecarga de los anclajes podría provocar la pérdida de la fuerza del perno, lo que podría inhibir la capacidad de la viga colectora para funcionar como se requiere para la transferencia de las fuerzas del diafragma debido a las cargas laterales. **Interacción.** La fuerza axial y la flexión combinadas se pueden evaluar utilizando las ecuaciones de interacción que se proporcionan en el Capítulo H del AISC. Como una simplificación razonable para propósitos de diseño, es aceptable usar la resistencia axial no compuesta y la resistencia a la flexión compuesta en combinación para determinar la interacción.

Conexión de corte. No se requiere superponer el corte horizontal debido a las fuerzas laterales con el corte horizontal debido a la flexión para la determinación de los requisitos de anclaje de acero. El razonamiento detrás de esta metodología es doble. Primero, las combinaciones de carga que se presentan en ASCE / SEI 7 (ASCE, 2016) proporcionan niveles de carga viva reducida para combinaciones de carga que contienen cargas laterales. Esta reducción disminuye la demanda de los conectores de acero y proporciona capacidad adicional para la transferencia de la fuerza del diafragma. En segundo lugar, el corte horizontal debido a la flexión fluye en dos direcciones. Para una viga cargada uniformemente, el flujo de corte emana hacia el exterior desde el centro de la viga, como se ilustra en la Figura 3.3a. Las cargas laterales en las vigas colectoras inducen el corte en una dirección. A medida que este cortante se superpone, los cortes horizontales en una parte de la viga aumentan, y los cortes horizontales en la porción opuesta de la viga disminuyen como se ilustra en la Figura 3.3b. En lugar de investigaciones adicionales, se considera aceptable que la carga adicional localizada de los conectores de acero en el segmento de viga aditiva se considere compensada por la descarga concurrente de los pernos de acero en el segmento de viga sustractiva hasta un nivel de fuerza correspondiente a la suma de las resistencias nominales de todos los pernos colocados en la viga.

(a) Shear flow due to gravity loads only

(b) Shear flow due to gravity and lateral loads in combination

3.4.2 Carga Axial

En esta sección se consideran los dos tipos de miembros compuestos sometidos a carga axial, columnas embebidas en concreto y columnas rellenas de concreto.

3.4.2.1 Columnas de acero embebidas en concreto

Las columnas compuestas embebidas deben ser sujetas a las siguientes limitaciones:

 El área total de la sección transversal del perfil de acero no debe ser menor de 1% del área total de la columna compuesta.

- Cuando un núcleo de acero se ahoga en concreto, el colado debe reforzarse con barras longitudinales continuas y estribos laterales o espirales. Si se usan estribos laterales, deberá usarse como mínimo una barra del # 3 con una separación máxima de 12" centro a centro, o una barra del # 4 o mayor con una separación máxima de 16" centro a centro. El espaciamiento máximo de los estribos laterales no deberá exceder de 0.5 veces la dimensión mínima de la columna.
- La relación mínima de refuerzo para este tipo de acero es $\rho_{sr} = A_{sr}/A_g = 0.004$

Donde:

 A_{sr} = área de las barras continuas de refuerzo. A_g = área total del miembro compuesto.

3.4.2.1.1 Resistencia a compresión

La resistencia de diseño de compresión $\phi_c P_n$ de columnas compuestas embebidas cargadas axialmente debe ser determinadas para el estado límite de pandeo por flexión basado en la esbeltez de la columna:

$$\phi_c = 0.75 \text{ (LRFD)}$$

a) Cuando
$$\frac{P_{no}}{P_e} \le 2.25$$
 $P_n = P_{no} = \left[0.658^{\left(\frac{P_{no}}{P_e}\right)}\right]$

b) Cuando
$$\frac{P_{no}}{P_e} > 2.25$$
 $P_n = 0.877P_e$

Donde:

$$P_{no} = A_s F_y + A_{sr} F_{ysr} + 0.85 f_c' A_c$$

$$P_e = \frac{\pi^2 (EI_{efe})}{(KL)^2}$$
 Carga crítica de pandeo elástico

 $EI_{efe} = E_s I_s + E_s I_{sr} + C_1 E_c I_c$ Rigidez efectiva de la columna compuesta. $C_1 = 0.25 + 3\left(\frac{A_s + A_{sr}}{A_g}\right) \le 0.7$

 C_1 = Coeficiente para el cálculo de rigidez efectiva de una sección compuesta embebida a compresión.

3.4.2.1.2 Resistencia a la tensión

La resistencia a tracción para columnas compuestas embebidas cargadas axialmente será determinada por el estado límite de fluencia como:

$$P_n = A_s F_y + A_{sr} F_{ysr} \qquad \phi_t = 0.90$$

3.4.2.1.3 Resistencia al corte

Miembros compuestos embebidos

La resistencia del diseño al corte, $\Phi_v V_n$, debe ser determinada basada en uno de los siguientes casos:

a. La resistencia al corte disponible únicamente de la sección de acero especificada en el capítulo G del AISC.

$$V_n = 0.6 F_y A_w C_v \qquad \Phi_v = 1$$

- b. La resistencia al corte disponible de la porción de concreto reforzado (concreto más el acero de refuerzo) definida en el ACI 318.
- c. La resistencia al corte disponible de la sección de acero como se define en el capítulo G, más la resistencia nominal del acero de refuerzo como se define en el ACI 318.

3.4.2.1.4 Transferencia del cortante longitudinal

Cuando fuerzas externas son aplicadas a un miembro compuesto embebido axialmente cargado, la fuerza cortante longitudinal (V') estará en dependencia de la ubicación de la carga externa axial.

a) Si la fuerza externa esta aplicada a la sección de acero.

$$V'_r = P_r \left(1 - \frac{A_s F_y}{P_{no}} \right) \tag{1}$$

Donde:

 $P_r = fuerza$ externa axial aplicada al miembro compuesto.

- b) Si la fuerza externa esta aplicada al concreto.
 - i. Para miembros compuestos embebidos y rellenos que son compactos o no compactos

$$V'_r = P_r \left(\frac{A_s F_y}{P_{no}}\right) \tag{2}$$

ii. Para miembros compuestos rellenos esbeltos

$$V'_r = P_r \left(\frac{A_s F_{cr}}{P_{no}}\right) \tag{3}$$

c) Si la fuerza externa esta aplicada conjuntamente al acero y concreto, en estos casos la fuerza de corte longitudinal a ser transferida debe ser aquella que establezca el equilibrio en la sección transversal. Es decir, la diferencia entre las magnitudes de la porción de la fuerza externa aplicada directamente al concreto y la requerida por la ecuación (1) o la porción de

la fuerza externa aplicada directamente a la sección de acero y la requerida por la ecuación (2).

3.4.2.1.5 Mecanismos de transferencia de fuerza

La fuerza longitudinal en columnas embebidas puede ser transferida por medio de conexión de corte o aplastamiento directo. Se utilizará el mecanismo de transferencia de fuerzas que entregue la mayor resistencia nominal (R_n) .

3.4.2.1.5.1 Aplastamiento directo

La resistencia al aplastamiento disponible del concreto para el estado límite de aplastamiento del concreto será determinado como:

$$R_n = 1.7 f_c' A_1 \phi_b = 0.65$$
 (LRFD)

Donde:

 $A_1 =$ área de concreto cargada. in².

El mecanismo de transferencia por aplastamiento directo se realiza generalmente por medio de placas de acero conectadas. Por lo tanto, se deberá determinar a su vez el espesor de la placa a conectar.

3.4.2.1.5.2 Conectores de corte

La resistencia disponible de un conector de corte está dada por la siguiente ecuación:

$$R_c = \Sigma Q_{cv}$$

Donde:

 ΣQ_{cv}

= Suma de las resistencias disponibles al corte ϕQ_{nv} según sea apropiado, determinadas de acuerdo con la sección I8.3a o I8.3b del AISC.

3.4.2.1.6 Requisitos de detallamiento

Para los miembros compuestos embebidos en concreto, se deben cumplir los siguientes requisitos de detallamiento:

- a. La separación libre entre el perfil de acero y el refuerzo longitudinal debe ser un mínimo de 1.5 veces el diámetro de la barra de refuerzo, pero no menos de 1.5 pulg. (38 mm).
- b. El espaciamiento mínimo entre el centro de un perno de anclaje a otro debe ser cuatro veces el diámetro del perno, en cualquier dirección.
- c. El espaciamiento máximo entre el centro de un canal de anclaje de acero y otra debe ser de 24 in (600 mm).

3.4.2.2 Columnas de acero rellenas de concreto

Limitaciones

- a) Para miembros compuestos rellenos, el área transversal de la sección de acero deberá contener por lo menos un 1% del área total del miembro compuesto.
- b) Los miembros compuestos rellenos deberán ser clasificados por pandeo local de acuerdo con la sección I1.4 del AISC.
- c) El refuerzo longitudinal mínimo no es requerido, si el refuerzo longitudinal es proporcionado, el refuerzo transversal interno no es requerido para la resistencia.
3.4.2.2.1 Resistencia a compresión

La resistencia a compresión de diseño de secciones compuestas rellenas en concreto debe ser determinada para el estado límite de pandeo por flexión de la misma manera que se determina para secciones compuestas embebidas en concreto con las siguientes modificaciones:

a. Para perfiles compactos: $P_{no} = P_p$

$$P_p = A_s F_y + C_2 f_c' \left[A_c + A_{sr} \left(\frac{E_s}{E_c} \right) \right]$$

 $C_2 = 0.85$ Para perfiles rectangulares y 0.95 para perfiles circulares

b. Para perfiles no compactos:

$$P_{no} = P_p - \frac{P_p - P_y}{\left(\lambda_r - \lambda_p\right)^2} \left(\lambda - \lambda_p\right)^2$$

 λ , λ_p , λ_r : son relaciones de esbeltez de la Tabla I1. 1a del AISC

P_p: Se toma de la Ecuación I2-9b del AISC

$$P_{y} = A_{s}F_{y} + 0.7f_{c}\left(A_{c} + A_{sr}\left(\frac{E_{s}}{E_{c}}\right)\right)$$

c. Para perfiles esbeltos:

$$P_{no} = A_s F_{cr} + 0.7 f_c' \left[A_c + A_{sr} \left(\frac{E_s}{E_c} \right) \right]$$

i. Para perfiles rectangulares rellenos: $F_{cr} = \frac{9E_s}{\left(\frac{b}{t}\right)^2}$

ii. Para perfiles redondos rellenos:

$$F_{cr} = \frac{0.72 F_{y}}{\left[\left(\frac{D}{t}\right)\left(\frac{F_{y}}{E_{s}}\right)\right]^{0.2}}$$

La rigidez efectiva de la sección compuesta EI_{eff} , para todas las secciones debe ser:

$$EI_{eff} = E_s I_s + E_s I_{sr} + C_3 E_c I_c$$

Donde

 $C_3 = coeficiente para el calculo de la rigidez efectiva de miembros compuestos rellenos en compresión.$

$$C_3 = 0.45 + 3\left(\frac{A_s + A_{sr}}{A_g}\right) \le 0.9$$

3.4.2.2.2 Resistencia a la tensión

La resistencia a tracción para columnas compuestas embebidas cargadas axialmente será determinada por el estado límite de fluencia como:

$$P_n = A_s F_y + A_{sr} F_{ysr} \qquad \phi_t = 0.90$$

3.4.2.2.3 Transferencia del cortante longitudinal

El cálculo de la fuerza cortante longitudinal a ser transferida entre los elementos que compones una columna rellena de concreto, sigue los mismos principios que las columnas embebidas en concreto. De tal manera que las fórmulas a utilizar son las de la sección 3.1.2.1.2 del presente documento.

3.4.2.2.4 Mecanismos de transferencia de fuerza

La conexión de corte no se encuentra comúnmente en este tipo de columnas rellenas debido a que están limitadas por las dimensiones del perfil tubular y no es practico su uso.

3.4.3 Transferencia de carga

3.4.3.1 Requisitos generales

Las fuerzas externas se aplican típicamente a los miembros compuestos a través de una conexión directa con el miembro de acero, que se apoyan en el concreto, o una combinación de ellos. El diseño de la conexión para aplicación de fuerza deberá seguir los estados límite aplicables dentro de los Capítulos J y K de la especificación AISC.

Hay que tener en cuenta que, para las verificaciones de rodamientos de concreto en miembros compuestos rellenos, el confinamiento puede afectar la resistencia del rodamiento para la aplicación de fuerza externa, como se explica en la Sección de Comentarios I6.2 de la especificación AISC. Una vez que se ha proporcionado un camino de carga para la introducción de fuerza externa al miembro, la interfaz entre el concreto y el acero debe diseñarse para transferir el corte longitudinal requerido para obtener el equilibrio de fuerza dentro de la sección compuesta. La sección I6.2 contiene disposiciones para determinar la magnitud del corte longitudinal a transferir entre el acero y el concreto, dependiendo de la condición de aplicación de fuerza externa. La sección I6.3 contiene disposiciones que abordan los mecanismos para la transferencia de corte longitudinal.

Las disposiciones de transferencia de carga de la Especificación están destinadas principalmente a la transferencia de corte longitudinal debido a las fuerzas axiales aplicadas. La transferencia de carga de corte longitudinal debido a los momentos de flexión aplicados está fuera del alcance de la Especificación; sin embargo, las pruebas (Lu y Kennedy, 1994; Prion y Boehme, 1994; Wheeler y Bridge, 2006) indican que los miembros compuestos rellenos pueden desarrollar su capacidad plástica total de momento basándose solo en la conexión sin el uso de anclajes adicionales.

3.4.3.2 Asignación de fuerzas

La Especificación aborda las condiciones en las que se aplica la fuerza externa completa al acero o concreto, así como las condiciones en las que la fuerza

externa se aplica a ambos materiales al mismo tiempo. Las disposiciones se basan en el supuesto de que, para lograr el equilibrio en la sección transversal, la transferencia de corte longitudinales a lo largo de la interfaz entre el concreto y el acero debe ocurrir de modo que los niveles de fuerza resultantes dentro de los dos materiales puedan ser proporcionados de acuerdo con un esfuerzo plástico de distribución. La asignación de carga basada en el modelo de distribución de tensión plástica está representada por las ecuaciones:

$$V'_{r} = P_{r} \left(1 - \frac{A_{s}F_{y}}{P_{no}} \right) \quad (1)$$
$$V'_{r} = P_{r} \left(\frac{A_{s}F_{y}}{P_{no}} \right) \quad (2)$$

La ecuación 1 representa la magnitud de la fuerza que está presente dentro del concreto embebido o relleno de concreto en equilibrio. El corte longitudinal generado por las cargas aplicadas directamente a la sección de acero se determina según la cantidad de fuerza que se distribuirá al concreto de acuerdo con la Ecuación 1. A la inversa, cuando la carga se aplica solo a la sección de concreto, el corte longitudinal requerido para el equilibrio de la sección transversal se basa en la cantidad de fuerza que se distribuirá al acero de acuerdo con la Ecuación 2. Cuando las cargas se aplican simultáneamente a los dos materiales, la fuerza de corte longitudinal a transferir para lograr el equilibrio de la sección transversal puede tomarse como la diferencia en magnitudes entre la porción de fuerza externa aplicada directamente al concreto y la requerida por la Ecuación 2.

Cuando se aplican fuerzas externas al concreto de un miembro compuesto relleno a través del rodamiento, es aceptable suponer que el revestimiento de acero proporciona un confinamiento adecuado para permitir el uso de la máxima resistencia de rodamiento disponible permitida por la Ecuación: (Ecuación J8-2 de la especificación AISC).

$$P_p = 0.85 f'_c A_1 \sqrt{\frac{A_2}{A_1}} \le 1.7 f'_c A_1$$

Esta fuerza se obtiene al establecer el término $\sqrt{A_2/A_1} = 2$. Esta discusión se refiere a la introducción de una carga externa al miembro de compresión. La transferencia de corte longitudinal dentro del miembro de compresión a través de mecanismos de apoyo tales como placas de acero internas se abordan directamente en la Sección I6. 3a de la especificación AISC.

3.4.3.3 Mecanismos de transferencia de fuerza

La transferencia de corte longitudinal por aplastamiento directo a través de mecanismos de aplastamientos internos, como placas de aplastamiento internas o conexión de corte mediante anclajes de acero, está permitida tanto para elementos compuestos rellenos como embebidos. La transferencia de corte longitudinal a través de la interacción de conexión directa está permitida únicamente para elementos compuestos rellenos compactos y no compactos. Aunque se reconoce que la transferencia de fuerza también ocurre por la interacción de conexión directa entre el acero y el concreto para columnas compuestas embebidas, este mecanismo generalmente se ignora y la transferencia a corte generalmente se lleva a cabo únicamente con anclajes de acero (Griffis, 1992).

El uso del mecanismo de transferencia de fuerza que proporciona la mayor resistencia es permisible. La superposición de los mecanismos de transferencia de fuerza no está permitida, ya que los datos experimentales indican que el aplastamiento directo o la conexión de corte a menudo no se inician hasta que se rompe la interacción de conexión directa, y hay pocos datos experimentales disponibles con respecto a la interacción del aplastamiento directo y la conexión de corte mediante pernos de acero.

3.4.3.3.1 Aplastamiento directo

Para la condición general de evaluar la carga aplicada directamente al concreto en el aplastamiento, y considerando un área de concreto de apoyo que es más ancha en todos los lados que en el área cargada, la resistencia nominal de aplastamiento para el concreto se puede tomar como:

$$R_n = 0.85 f'_c A_1 \sqrt{\frac{A_2}{A_1}} \qquad (Ec \ I6 - 1 \ AISC \ 360)$$

Donde:

 $A_1 =$ área cargada de concreto, in².

 A_2

 área máxima de la porción de la superficie de soporte que es geométricamente similar y concéntrica con el área cargada, in².

 f'_c = resistencia específica a compresión del concreto, ksi.

El valor de $\sqrt{A_2/A_1}$ debe ser menor o igual a 2 (ACI 2014).

Para la condición específica de transferencia de corte longitudinal por aplastamiento directo a través de mecanismos de aplastamientos internos, la Especificación usa la máxima resistencia nominal del aplastamiento permitida por la Ecuación 1 o la ecuación 1.7 $f'_c A_1$. El factor de resistencia para el aplastamiento, ϕ_B , es de 0.65 de acuerdo con ACI 318.

3.4.3.3.2 Conexión de corte

Los anclajes de acero para la conexión de corte deben diseñarse como componentes compuestos de acuerdo con la Sección I8.3 de la especificación AISC.

3.4.3.3.3 Interacción de conexión directa

La transferencia de fuerza por conexión directa se usa comúnmente en miembros compuestos rellenos siempre que las conexiones se detallan para limitar las deformaciones locales (API, 1993; Roeder et al., 1999). Si bien la adhesión

química proporciona alguna contribución, la conexión directa es principalmente un mecanismo de resistencia a la fricción. Existe una gran dispersión en los datos experimentales sobre la conexión de miembros compuestos rellenos a compresión; sin embargo, se han identificado algunas tendencias (Roeder et al., 1999; Zhang et al., 2012). Las secciones transversales más grandes, las paredes más delgadas, las secciones rectangulares, las interfaces alisadas o aceitadas y el concreto de alta contracción contribuyen a una fuerza de conexión aparente más baja. Las secciones transversales más pequeñas, las paredes más gruesas, las formas circulares, las interfaces más rugosas, el concreto expansivo y la presencia de momento flector (incluida la carga excéntrica) contribuyen a una mayor resistencia a conexión aparente.

Las ecuaciones para la interacción de conexión directa para los miembros compuestos rellenos sometidos a compresión suponen que todo el perímetro de la conexión está involucrado en la transferencia de tensión. En consecuencia, y en contraste con la edición anterior de la Especificación, la resistencia se compara con la suma de la fuerza requerida para ser transferida desde los elementos de conexión que se enmarcan desde todos los lados. La dispersión en los datos experimentales conduce al valor bajo recomendado del factor de resistencia ϕ .

3.4.3.4 Requisitos de detalle

Para evitar un esfuerzo excesivo en la sección de acero estructural o el concreto en las conexiones de los elementos compuestos embebidos o rellenos, se requiere que ocurra la transferencia de corte longitudinal dentro de la longitud de introducción de la carga. La longitud de introducción de la carga se toma como dos veces la dimensión transversal mínima del miembro compuesto tanto por encima como por debajo de la región de transferencia de carga. La región de transferencia de carga se toma generalmente como la profundidad del elemento de conexión como se indica en la Figura 3.4. En los casos en que las fuerzas aplicadas son de tal magnitud que la transferencia de corte longitudinal requerida no puede tener lugar dentro de la longitud de introducción de carga prescrita, el diseñador debe tratar el miembro de compresión como no compuesto a lo largo de la longitud adicional requerida para la transferencia de corte.

Para los miembros compuestos embebidos, se requieren anclajes de acero en toda la longitud del elemento de compresión para mantener la acción compuesta del miembro en momentos incidentales (incluida la flexión inducida por pandeo). Estos anclajes generalmente se colocan en el espacio máximo permitido de acuerdo con la sección I8.3e del AISC. Los anclajes adicionales requeridos para la transferencia de corte longitudinal deben ubicarse dentro de la longitud de introducción de la carga como se describió anteriormente.

A diferencia de los miembros embebidos en concreto, los anclajes de acero en los miembros rellenos solo se requieren cuando se usan para transferencia longitudinal de corte y no se requieren a lo largo del miembro fuera de la región de introducción. Esta discrepancia se debe al adecuado confinamiento provisto por el revestimiento de acero que evita la pérdida de acción compuesta en momentos incidentales.

3.4.3 Combinación de carga axial y flexión

El procedimiento para diseñar miembros sometidos a flexión y carga axial en este documento está basado en la resistencia de la sección compuesta, lo que conduce a diagramas de interacción similares a los empleados en el diseño de concreto reforzado. El método se conoce como "Curvas de interacción a partir del Método de Distribución de las Tensiones Plásticas" (figura 3.5).

Los cuatro puntos (A, B, C y D) que definen la curva de interacción determinados en base a las fórmulas que el AISC entrega en "AISC Ejemplos de Diseño".

Figura 3.5 Diagrama de interacción de viga-columnas compuestas.

El punto A es la resistencia axial pura de la sección compuesta. El punto B se determina como la resistencia de flexión de la sección. El punto C corresponde a la ubicación del PNA que resulta en la misma capacidad de flexión del punto B, pero incluyendo compresión axial. El punto D corresponde a una resistencia axial en compresión igual a la mitad de la determina por el punto C.

Los puntos A', B', C' y D' se determinan reduciendo los puntos A, B, C y D por un factor de esbeltez (λ). Este factor de esbeltez se determina con la ecuación

provista en este documento de resistencia a compresión de columnas compuestas. La curva de interacción final es la que resulta de aplicar los factores de resistencia a los puntos reducidos por el factor de esbeltez.

Las ecuaciones de interacción serán las siguientes:

Si $P_u < P_c$

$$\frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cy}} \le 1 \quad (Ec \ C - I5 - 1a \ del \ AISC)$$

Si $P_u \ge P_c$

$$\frac{P_u - P_c}{P_A - P_c} + \frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cy}} \le 1 \quad (Ec \ C - I5 - 1b \ del \ AISC)$$

Donde:

 $P_u = Resistencia de compresión axial requerida$ $P_A = Resistencia de compresión axial disponible en el punto A''$ $P_C = Resistencia de compresión axial disponible en el punto C''$ $M_{ux} = Resistencia de flexión requerida alrededor del eje x (fuerte)$ $M_{uy} = Resistencia de flexión requerida alrededor del eje y (débil)$ $M_{Cx} = Resistencia de flexión disponible en el punto C'' alrededor del eje x$ $M_{cy} = Resistencia de flexión disponible en el punto C'' alrededor del eje y$

3.4.4.1 Diagramas de Iteración.

Al igual que con todos los análisis de marcos en la especificación, las resistencias requeridas para las vigas-columnas compuestas deben obtenerse del análisis de segundo orden o del análisis de primer orden amplificado, como se especifica en el Capítulo C y el Apéndice 7 (AISC 360-16). Las Secciones I2.1 y I2.2 de las especificaciones AISC sugieren una rigidez reducida apropiada, *EI*, para los miembros de compresión compuestos que se usarán con el método de análisis directo del Capítulo C. Para la evaluación de la resistencia disponible, las disposiciones de la Especificación para la interacción entre la fuerza axial y la flexión en los miembros compuestos son las mismas que para los miembros de

acero descubiertos, como se describe en la Sección H1.1. Las disposiciones también permiten un análisis basado en las disposiciones de resistencia de la Sección I1.2 que llevaría a un diagrama de interacción similar a los utilizados en el diseño de concreto reforzado.

Para los miembros compuestos recubiertos, la resistencia axial disponible, incluidos los efectos de pandeo, y la resistencia a la flexión disponible se pueden calcular utilizando el método de distribución de tensión plástica o el método de compatibilidad con deformación (León et al., 2007; León y Hajjar, 2008). Para miembros compuestos rellenos, las resistencias axiales y de flexión disponibles se pueden calcular utilizando las Secciones I2.2 y I3.4, respectivamente, que también incluyen los efectos del pandeo local para las secciones no compuestas y esbeltas (clasificadas de acuerdo con la Sección I1.4).

La siguiente sección describe tres enfoques diferentes para diseñar vigascolumnas compuestas que se aplican tanto a las formas de acero revestidas con hormigón como a las secciones compactas de HSS rellenas de hormigón. Los dos primeros enfoques se basan en variaciones en el método de distribución de tensión plástica, mientras que el tercer método hace referencia a la Guía de diseño AISC 6, Diseño de factor de carga y resistencia de secciones W embebidas en concreto (Griffis, 1992), que se basa en una versión anterior de la especificación. El método de compatibilidad de deformación es similar al utilizado en el diseño de elementos de compresión de concreto, como se especifica en el Capítulo 10 de ACI 318. El diseño de secciones rellenas de concreto no compactas y esbeltas se limita al uso del método 1 que se describe a continuación (Varma y Zhang, 2009).

 Método 1 — Ecuaciones de interacción de la sección H1 (Especificación AISC).

El primer enfoque se aplica a columnas de viga compuestas doblemente simétricas, la geometría más común que se encuentra en la construcción de edificios. Para este caso, las ecuaciones de interacción de la Sección H1 proporcionan una evaluación conservadora de la resistencia disponible del miembro para la compresión y flexión axiales combinadas (Figura 3.6).

Estas disposiciones también pueden ser utilizadas para la combinación de tensión axial y flexión. El grado de conservadurismo generalmente depende de la magnitud de la contribución concreta a la resistencia general en relación con la contribución del acero.

Cuanto mayor sea la contribución de la carga que proviene de la sección de acero, menos conservadora será la predicción de la fuerza de las ecuaciones de interacción de la Sección H1. Así, por ejemplo, las ecuaciones son generalmente más conservadoras para los miembros con alta resistencia a la compresión del concreto en comparación con los miembros con baja resistencia a la compresión del concreto. Las ventajas de este método incluyen lo siguiente: (1) Son aplicables las mismas ecuaciones de interacción utilizadas para las columnas de vigas de acero; y (2) Solo se necesitan dos puntos de anclaje para definir las curvas de interacción: uno para flexión pura (punto B) y otro para carga axial pura (punto A). El punto A se determina utilizando las ecuaciones I2-2 o I2-3, según corresponda. El punto B se determina como la resistencia a la flexión de la sección de acuerdo con las disposiciones de la Sección I3. Hay que tener en cuenta que la esbeltez también debe considerarse utilizando las disposiciones de la Sección I2. Para muchas secciones de HSS rellenas de concreto, las resistencias axiales disponibles se proporcionan en las tablas en el manual. El diseño de secciones rellenas de hormigón compactas y no compactas se limita a este método de solución de ecuación de interacción. Los otros dos métodos descritos a continuación no pueden usarse para su diseño, debido a la falta de investigación para validar esos enfoques para secciones transversales que no sean compactas. Las fortalezas nominales pronosticadas usando las ecuaciones de la Sección H1 se comparan de manera conservadora con una amplia gama de datos experimentales para secciones rectangulares y redondas rellenas no compactas / compactas (Varma y Zhang, 2009).

 Método 2: Curvas de interacción del método de distribución de tensión plástica.

El segundo enfoque se aplica a columnas de vigas compuestas doblemente simétricas y se basa en el desarrollo de superficies de interacción para la compresión axial y la flexión combinadas en el nivel de resistencia nominal utilizando el método de distribución de tensión plástica. Este enfoque da como resultado superficies de interacción similares a las que se muestran en la Figura 3.7. Los cuatro puntos identificados en la figura están definidos por la distribución de tensión plástica utilizada en su determinación.

Figura 3.7 Diagrama de interacción para el diseño de vigas-columnas compuestas método 2

Las ecuaciones de resistencia para las secciones W embebidas en concreto y las secciones HSS rellenas con concreto que se utilizan para definir cada punto A y D se proporcionan en los ejemplos de diseño del AISC (Geschwindner, 2010b). El punto A es la resistencia axial pura determinada de acuerdo con la Sección I2. El punto B se determina como la resistencia a la flexión de la sección de acuerdo con las disposiciones de la Sección I3. El punto C corresponde a una ubicación de eje neutro de plástico que produce la misma resistencia a la flexión que el punto B, pero que incluye la compresión axial. El punto D corresponde a una resistencia a la compresión axial de la mitad de la determinada para el punto C. Se incluye un punto E adicional (consulte la Figura C-I1.1 de la especificación AISC 360-16) (entre los puntos A y C) para las secciones W embebidas inclinadas sobre su eje débil. El punto E es un punto arbitrario, que generalmente corresponde a una ubicación plástica del eje neutro en las puntas de los patines de la sección W embebida, necesaria para reflejar mejor la resistencia a la flexión para la flexión de formas encajonadas en el eje débil. Se puede utilizar la interpolación lineal entre estos puntos de anclaje. Sin embargo, con este enfoque, se debe tener cuidado al reducir el Punto D mediante un factor de resistencia o para tener en cuenta la esbeltez del miembro, ya que esto puede llevar a una situación insegura en la que se permite una resistencia adicional a la flexión a una resistencia a la compresión axial más baja. Este problema potencial puede evitarse mediante una simplificación de este método por el cual el punto D se elimina de la superficie de interacción. La figura 3.8 demuestra esta simplificación con la línea discontinua vertical que conecta el punto C" al punto B".

Una vez que se determina la superficie de interacción de la fuerza nominal, se deben aplicar los efectos de longitud de acuerdo con las ecuaciones I2-2 e I2-3 de las especificaciones AISC 360-16. Hay que tener en cuenta que el mismo factor de reducción de esbeltez ($\lambda = A' / A$ en la Figura 3.7, igual a P_n / P_{no} , donde P_n y P_{no} se calculan a partir de la Sección I2) se aplica a los puntos A, C, D y E. La resistencia disponible se determina luego aplicando los factores de resistencia a compresión y a flexión o los factores de seguridad a los puntos A" a E".

Figura 3.8 Diagrama de interacción para el diseño de vigas-columnas compuestas método 2 simplificado.

Usando la interpolación lineal entre los puntos A", C" y B" en la figura 3.8, se pueden derivar las ecuaciones de interacción C - I5 - 1a y C - I5 - 1b de la especificación AISC en sus comentarios, mostradas en la sección anterior para vigas-columnas compuestas sometidas a compresión axial más flexión biaxial combinadas.

Para la flexión biaxial, el valor de la resistencia a la compresión axial en el punto C puede ser diferente cuando se calcula para el eje mayor y menor. El menor de los dos valores debe usarse en las ecuaciones C - I5 - 1a y b.

• Método 3: Guía de diseño 6.

El enfoque presentado en la Guía de diseño 6 del AISC (Griffis, 1992), también se puede usar para determinar la resistencia de secciones W embebidas en concreto viga-columna. Aunque este método se basa en una versión anterior de la Especificación, la carga axial y las fuerzas de momento se pueden determinar de forma conservadora directamente a partir de las tablas en esta guía de diseño. La diferencia en los factores de resistencia de la Especificación anterior puede ignorarse con seguridad. **CAPÍTULO IV**

4. ANÁLISIS DE LA ESTRUCTURA

4.1 Descripción del sistema estructural del edificio

La estructura en estudio consta de cuatro niveles con una altura de 17.3 metros y un área total en planta de aproximadamente 3558 m² destinada a usarse como edificio de oficinas y que estará localizada en Managua, Nicaragua.

Figura 4.1 Elevación estructural del edificio, eje 7.

El sistema resistente a carga lateral de la edificación se basa de marcos compuestos (acero estructural y concreto reforzado) resistentes a momento. El edificio está revestido casi en toda su superficie por vidrio fijo. El área de escalera y ascensor se trata como un sistema desligado de la estructura principal.

4.2 Modelo estructural y consideraciones para el análisis

Con el objetivo de simplificar el análisis del comportamiento, se recure a una serie de consideraciones y criterios basada en los planos constructivos.

4.2.1 Elemento no estructurales

Las paredes divisorias en el interior del edificio son de particiones livianas con una altura de 3 m y 5 in de espesor. Estas se consideran desligada de los elementos estructurales, es decir no aportan rigidez al sistema.

El cielo falso es de gypsum con perfiles de aluminio, suspendido debajo de la estructura de entrepiso.

Respecto al muro de cortina (revestimiento extremo de vidrio), se supone que su peso está distribuido uniformemente en cada piso.

4.2.2 Diafragma

La losa está formada por láminas de entrepiso compuesto GALVADECK 63, calibre 20 con un relleno de concreto (*topping*) de 5 pulgadas de espesor, reforzada con malla electrosoldada monolit $6" \times 6" 8/8$ GR70 (Ver figura 4.3). El sistema esta soportado sobre vigas metálicas.

Figura 4.2 Detalle de Losa de entrepiso.

Todos los niveles poseen el mismo tipo de losa, incluso la azotea, donde destacan la participación de los conectores de corte entre la losa y las vigas segundarias, por lo tanto, se considera un diafragma rígido. Esta condición se define en el modelo de ETABS utilizando el formulario Assign – Joint - Diaphragms, el cual vincula los nodos de cada nivel para que sus desplazamientos horizontales sean idénticos.

En cuanto a la cubierta de techo, esta no se considera en el modelo del software, solamente se toma en cuenta el aporte de peso.

4.2.3 Sistema resistente a cargas laterales.

La estructura está compuesta por un conjunto de marcos compuestos de acero y concreto con orientación ortogonal, estos son especiales, o bien C-SMF (*Composite Special Moment Frame*) por lo que los elementos principales del edificio se diseñaran siguiendo los requisitos que establece el AISC 341.16 en su capítulo G.

4.2.4 Modelo en Etabs

El modelo tridimensional de la estructura se realizó con el software Etabs, en la siguiente figura se muestra una imagen tridimensional de la estructura (El proceso de creación del modelo se incluyó en los Anexos).

Figura 4.3 Modelo Tridimensional de la estructura en Etabs.

4.3 Cargas gravitacionales

4.3.1 Acciones Permanentes

Son aquellas fuerzas que actúan continuamente sobre la estructura y su magnitud se puede considerar invariable en el tiempo, tales como, peso propio de elementos estructurales y equipos.

4.3.1.2 Cargas Permanentes (CP)

En este estado de carga se considera la acción del peso propio de los elementos estructurales más todas las cargas permanentes impuestas.

Los pesos de los materiales son tomados de las tablas 1A, 2A, 3A, 4A, 5A y 6A del RNC-07.

Losa Nivel 1-3 (Entrepisos)

Descripción	Peso (Kg/m²)		
Mortero de Cascote con espesor de 1"	55		
Ladrillo de cerámico	30		
Instalaciones Electromecánicas	30		
Cielo Falso	12.5		
Lámparas y accesorios	6.5		
Particiones livianas	100		
Total carga muerta CM:	234		

Descripción	Peso (Kg/m)
Muro cortina de vidrio	88

Tabla 4.1 Sobrecarga en entrepisos.

Losa Nivel 4 (Techo)

Descripción	Peso (Kg/m ²)		
Mortero de Cascote con espesor de 1"	55		
Impermeabilizante de Techo	15		
Instalaciones Electromecánicas	30		
Cielo Falso	12.5		
Lámparas y accesorios	5		
Total carga muerta CM	117.5		

Tabla 4.2 Sobrecarga en losa Nivel 4.

Cubierta Liviana (Techo)

Descripción	Peso (Kg/m²)		
Cubierta de techo	5.6		
Instalaciones Electromecánicas	30		
Cielo Falso	12.5		
Lámparas y accesorios	5		

Total carga muerta CM	53.1
i otal carga muerta civi	55.1

Tabla 4.3 Sobrecarga en cubierta Liviana de techo.

4.3.2 Acciones Variables

Son aquellas que actúan sobre la estructura, con una variabilidad de su magnitud y/o localización en el tiempo.

4.3.2.1 Carga Viva (CV)

Las cargas vivas se determinaron según el reglamento nacional de la construcción RNC-07.

Carga viva en Techo: Losa con pendiente menor a 5 % = 100 Kgf/m²

Carga viva en Entrepisos: Losa de Edificios de Oficina= 250 Kgf/m² 4.3.2.2 Carga Viva Reducida (CVR)

Las cargas vivas reducidas se determinaron según el reglamento nacional de la construcción RNC-07.

Carga viva reducida en Techo: Losa con pendiente menor a 5 % = 40 Kgf/m²

Carga viva reducida Entrepisos: Losa de cuartos de hoteles = 100 Kgf/m²

4.4 Condiciones de regularidad

Según el artículo 23 del Reglamento Nacional de la Construcción una estructura se puede clasificar en regular, irregular o fuertemente irregular; para conocer en que categoría se encuentra el edificio en estudio se analiza cada una de las condiciones.

4.4.1 Estructura Regular

Para que la estructura pueda considerarse regular debe satisfacer los siguientes requisitos.

 Su planta es sensiblemente simétrica con respecto a dos ejes ortogonales por lo que toca a masas, así como a muros y otros elementos resistentes. Estos son, además, sensiblemente paralelos a los ejes ortogonales principales del edificio.

No cumple, ya que no existe simetría en ambas direcciones. Ver anexo B-4

2. La relación de su altura a la dimensión menor de su base no pasa de 2.5.

Sabiendo que la altura es 17.3 m y la menor dimensión en planta es de 24.70 m

$$\frac{H}{b} \le 2.5$$

$$\frac{15.4 m}{24.70 m} = 0.623 < 2.5 ok cumple$$

Por lo tanto, el edificio satisface esta condición. Ver anexo B-4 y B-6

 La relación de largo a ancho de la base no excede de 2.5." Tomando como largo el eje en Y y como ancho el eje en X.

Sabemos que la longitud del eje más largo en dirección Y (eje 5) es de 33.68 m y en la dirección X (eje B) es de 24.70 m, la relación en planta es:

$$\frac{33.68 \, m}{24.70 \, m} = 1.364 \, < 2.5 \, ok \, cumple$$

Por lo tanto, el edificio satisface esta condición. Ver anexo B-4

 En planta no tiene entrantes ni salientes cuya dimensión exceda de 20 por ciento de la dimensión de la planta medida paralelamente a la dirección que se considera del entrante o saliente.

En nuestro caso la saliente más importante se localiza entre los ejes j - k cuya dimensión es de 8.70 m medida paralelamente al eje 10 de la vista en planta la cual es de 33.68 m.:

Para verificar dicha condición se plantea que:

 $a \leq 0.20A$

$$0.20(33.68m) = 6.736$$

$$8.70 \ m > 6.736 \ m$$

Por lo tanto, no cumple.

Ver anexo B-4

5. En cada nivel tiene un sistema de techo o piso rígido y resistente.

Considerando las suposiciones de análisis presentadas en la sección 4.2.2 el edificio cumple con esta condición debido a que en cada nivel existe un diafragma rígido en su plano.

6. No tiene aberturas en sus sistemas de techo o piso cuya dimensión exceda de 20 por ciento de la dimensión en planta medida paralelamente a la abertura; las áreas huecas no ocasionan asimetrías significativas ni difieren en posición de un piso a otro, y el área total de aberturas no excede en ningún nivel de 20 por ciento del área de la planta.

Cabe destacar que esta condición solo se analiza para el nivel 4, el cual es el único que presenta aberturas en su plano.

 a. No tiene aberturas en sus sistemas de techo o piso cuya dimensión exceda de 20 por ciento de la dimensión en planta medida paralelamente a la abertura

En nuestro caso la abertura en dirección X denomina m es de 19.82 m y la dimensión en planta medida paralelamente al eje B es de 25.7 m. Por lo tanto, se plantea que:

 $(m \le 0.20L)$

dado que (19.82 > 5.14) la estructura no cumple con dicha condicion

Para las aberturas en la dirección Y denomina a y b presentan dimensiones 14.011 m y 14.029 m respectivamente, y la dimensión en planta medida paralelamente al eje 5 es de 35. m.

Por lo tanto, se plantea que:

$$(a+b \le 0.20L)$$

dado que (28.04 > 7) la estructura no cumple con dicha condición

 b. El área total de aberturas no excede en ningún nivel de 20 por ciento del área de la planta.

Se considera que:

área total de abertura = 555.84 m^2 área en planta = 889.50 m^2

$$\frac{555.84 \ m^2}{899.50 \ m^2} \times 100 = 61.79 \ \% > 20\% \ por \ lo \ tanto \ no \ cumple$$

Como resultado del análisis el edificio no cumple con la condición en estudio.

7. El peso de cada nivel, incluyendo la carga viva que debe considerarse para diseño sísmico, no es mayor que 110 por ciento del correspondiente al piso inmediato inferior ni, excepción hecha del último nivel de la construcción, es menor que 70 por ciento de dicho peso.

Si w_n es el peso de un nivel y w_{n-1} el peso del piso inmediato inferior, debe cumplirse que

$$0.7 \le \frac{w_n}{w_{n-1}} \le 1.1$$

La siguiente tabla muestra que la diferencia de peso no es significativa en elevación, así que el edificio cumple con esta condición.

Nivel	Área	PP	СМ	CVR	W _{total}	w/w_n-1	%	Estado
	m^2	kg	kg/m^2	kg/m^2	ton			
Nivel 4	343.66	203,867.10	117.5	40	267.85	0.48	48	cumple
Nivel 3	852.28	327,933.33	234	100	612.59	1	100	cumple
Nivel 2	852.28	327,933.33	234	100	612.59	1	100	cumple
Nivel 1	852.28	327,933.33	234	100	612.59		0	

Tabla 4.4 Regularidad de masas.

8. Ningún piso tiene un área, delimitada por los paños exteriores de sus elementos resistentes verticales, mayor que 110 por ciento de la del piso inmediato inferior ni menor que 70 por ciento de ésta. Se exime de este último requisito únicamente al último piso de la construcción.

Si A_n es el peso de un nivel y A_{n-1} el peso del piso inmediato inferior, debe cumplirse que

$$0.7 \le \frac{A_n}{A_{n-1}} \le 1.1$$

La tabla siguiente tabla demuestra que las diferencias de áreas no son significativas en elevación. Por lo tanto, el edificio cumple con esta condición.

Nivel	Área m ²	A/An-1	%	Estado
Nivel 4	343.66	0.403	48	-
Nivel 3	852.28	1	100	Cumple
Nivel 2	852.28	1	100	Cumple
Nivel 1	852.28			-

Tabla 4.5 Regularidad de las áreas de pisos consecutivos.

 Todas las columnas están restringidas en todos los pisos en dos direcciones sensiblemente ortogonales por diafragmas horizontales y por trabes o losas planas.

Figura 4.4 Restricción lateral de columna.

El edificio cumple pues todas las columnas están restringidas por vigas en las dos direcciones ortogonales.

10. La rigidez al corte de ningún entrepiso excede en más de 50 por ciento a la del entrepiso inmediatamente inferior. El último entrepiso queda excluido de este requisito. Dado que la diferencia de rigidez del nivel 2 con respecto al 1, es mayor al 50% de la rigidez del nivel inmediato inferior, el edificio no cumple con la condición establecida.

Nivel	Rigidez x	Rigidez y	Δx	Δy	50% Kx	50% Ky	Estado
	(ton/m)	(ton/m)					
Nivel 1	41,122.51	49,032.30			20,561.26	24,516.15	-
Nivel 2	20,539.34	25,521.63	-20,583.17	-23,510.67	10,269.67	12,760.81	No
							cumple
Nivel 3	15,571.52	20,128.16	-4,967.82	-5,393.47	7,785.76	10,064.08	Cumple
Nivel 4	6,986.53	9,568.18	-8,584.99	-10,559.98	3,493.27	4,784.09	Eximido

Tabla 4.6 Regularidad de las rigideces de pisos.

11. La resistencia al corte de ningún entrepiso excede en más de 50 por ciento a la del entrepiso inmediatamente inferior. El último entrepiso queda excluido de este requisito.

En vista que se tiene igual cantidad de elementos resistentes en todos los pisos, se puede considerarse que la resistencia al corte de los entrepisos adyacentes no cambia considerablemente, a como se demuestra en la siguiente tabla, de esta manera, el edificio cumple con la condición.

$$\Delta x \ y \ \Delta y < 50\% kn \quad ok.$$

Nivel	Resistencia al	Resistencia al	Δx	Δy	50% Kx	50% Ky	Estado
	corte en X ton	corte en Y ton					
Nivel 1	233.25	259.94			116.63	129.968	-
Nivel 2	203.70	227.91	-29.55	-32.02	101.85	113.957	cumple
Nivel 3	144.28	159.41	-59.42	-68.50	72.14	79.707	cumple
Nivel 4	49.77	51.32	-94.50	-108.10	24.89	25.658	Eximido

Tabla 4.7 Regularidad de los cortantes de pisos.

12. En ningún entrepiso la excentricidad torsional calculada estáticamente, e_s excede del diez por ciento de la dimensión en planta de ese entrepiso medida paralelamente a la excentricidad mencionada.

Cumple ya que, la excentricidad torsional no excede el 10% de la dimensión en planta de este edificio, en los ejes "X" e "Y" se presenta una leve excentricidad que cumple con el requisito establecido por el reglamento. Como se demuestra a continuación:

Nivel	Centro	de masa	Centro d	le rigidez
	Xcm (m)	:m (m) Ycm (m)		Ycr (m)
4	11.92	16.24	12	15.99
3	12.04	16.10	12	15.99
2	12.04	16.10	12	16.00
1	12.04	16.10	12	16.00

Tabla 4.8 Centro de Masa y Rigidez por piso.

Por lo tanto, la excentricidad torsional estática es la distancia entre el en centro de masa y el centro de rigidez.

Excentricidad en el eje X							
Nivel	ex (m)	X (m)	10% (m)				
4	0.08	25.7	2.57	Cumple			
3	0.04	24.7	2.47	Cumple			
2	0.04	24.7	2.47	Cumple			
1	0.04	24.7	2.47	Cumple			

Tabla 4.9 Excentricidad en eje X.

Excentricidad en el eje Y							
Nivel	ey (m)	Y (m)	10% (m)				
4	0.25	35	3.5	Cumple			
3	0.11	33.68	3.37	Cumple			
2	0.10	33.68	3.37	Cumple			
1	0.10	33.68	3.37	Cumple			

Tabla 4.10 Excentricidad en eje Y.

4.4.1.2 Resumen de cumplimiento de condiciones

Condiciones de regularidad	Estado
1	No cumple
2	Cumple
3	Cumple
4	No cumple
5	Cumple
6	No cumple
7	Cumple
8	Cumple
9	Cumple
10	No cumple
11	Cumple
12	Cumple

Tabla 4.11 Resumen de cumplimiento de condiciones de regularidad.

El edificio cumple 8 de las 12 condiciones de regularidad establecidas en el artículo 23 inciso a.

4.4.2 Estructura Irregular

Toda estructura que no satisfaga uno o más de los requisitos del inciso a del Arto.23 será considerada irregular

4.4.3 Estructura Fuertemente Irregular

Una estructura será considerada Fuertemente Irregular si se cumple alguna de las condiciones siguientes;

- 1. La excentricidad torsional calculada estáticamente, e_s , excede en algún entrepiso de 20% de la dimensión en planta de ese entrepiso, medida paralelamente a la excentricidad mencionada.
- La rigidez o la resistencia al corte de algún entrepiso excede en más de 100% a la del piso inmediatamente inferior

4.5 Factor de comportamiento sísmico o capacidad dúctil de la estructura

Se usará Q=4 Debido a que la estructura cumple los criterios expuestos en el RNC-07 artículo 21 para la selección de la ductilidad, el cual menciona:

"La resistencia en todos los entrepisos es suministrada exclusivamente por marcos no arriostrados de acero o concreto reforzado o compuestos de los dos materiales, o bien por marcos arriostrados o con muros de concreto reforzado o de placa de acero o compuesto de los dos materiales, en los que en cada entrepiso los marcos son capaces de resistir, sin contar muros ni contravientos si hubieran, cuando menos 50 por ciento de la fuerza sísmica actuante".

4.6 Factor de reducción por ductilidad (Arto. 21 RNC-07)

El reglamento nacional la construcción plantea que la ductilidad deberá reducirse en función del periodo estructural de la siguiente forma:

$$Q' = \begin{bmatrix} Q, si \ se \ desconoce \ T \ o \ T > T_a \\ 1 + \frac{T}{T_a}(Q-1), Si \ T \le T_a \end{bmatrix}$$

84

En el caso de la estructura en estudio el periodo fundamental es de T = 0.771 s; Ta = 0.10 s.

$$T > T_a$$
$$Q' = Q = 4$$

4.7 Corrección por Irregularidad

El factor de reducción Q' definida en el Arto.21, se multiplicará por 0.9 cuando no se cumpla con uno de los requisitos del inciso a del Arto.23, por 0.8 cuando no cumpla dos o más de dichos requisitos, y por 0.7 cuando la estructura sea Fuertemente Irregular según las condiciones del inciso c del Arto.23, en ningún caso el factor Q' se tomará menor que uno.

De acuerdo a las condiciones mencionadas en el inciso b del Arto.23 la estructura es considera irregular, por lo que el factor Q' se multiplicara por 0.8 de acuerdo al inciso d del Arto.23.

$$Q' = 4 \times 0.8$$
$$Q' = 3.2$$

4.8 Coeficiente de diseño sismo resistente

El coeficiente sísmico de una estructura se calcula para el método estático equivalente:

$$c = \frac{V_0}{W_0} = \frac{S(2.7 \times a_0)}{Q' \times \Omega} \text{ pero nunca menor que } S \times a_0$$

Donde:

 $W_0 = CM + CVR$ $V_0 = Cortante basal$

$$c = \frac{V_0}{W_0} = \frac{1.5(2.7 \times 0.31)}{3.2 \times 2} \longrightarrow C = 0.196$$

 $S \times a_0 = 0.465$ *Rige* Por lo tanto C = 0.465

4.9 Método estático equivalente

a) Fuerzas Cortante

$$Fs_i = cW_i h_i \frac{\Sigma W_i}{\Sigma W_i h_i}$$

Donde:

 $W_i = es \ el \ peso \ de \ la \ i - ésima \ masa; y$

 $h_i = es$ la altura de la i - ésima masa sobre el desplante.

c = coeficiente sísmico definido en el artículo 24.

4.9.1 Fuerzas sísmicas por nivel

Dirección X					
Nivel	hi (m)	Wi (ton)	Wihi	Fi (ton)	Vi (ton)
Nivel 4	15.40	267.85	4124.89	220.989	220.989
Nivel 3	11.55	612.59	7075.41	379.062	600.051
Nivel 2	7.70	612.59	4716.94	252.708	852.759
Nivel 1	3.85	612.59	2358.47	126.354	979.113
Σ		2105.62	18275.72		

Tabla 4.12 Fuerza sísmica por nivel.

En la tabla se muestran las fuerzas de aplicación de las fuerzas estáticas calculadas para cada entrepiso en cada una de las direcciones ortogonales del análisis X e Y.

b) Reducción de Fuerzas Cortantes

Habrá la posibilidad de reducir las fuerzas sísmicas de diseño si se conoce el periodo fundamental de la estructura. Según se estipula en el artículo 32 inciso b, el periodo fundamental aproximado se puede determinar usando la siguiente ecuación:

$$T = 2\pi \sqrt{\frac{\Sigma W_i x_i^2}{g \Sigma F_i x_i}}$$

Donde x_i es el desplazamiento del nivel *i*, relativo a la base de la estructura, en la dirección de la fuerza calculados según la fuerza del artículo 32 inciso a) del RNC-07, *g* es la aceleración de la gravedad y las sumatorias se llevan a todos los niveles.

En la tabla se muestran los desplazamientos en traslación obtenidos para cada una de las direcciones de análisis

Nivel	$\delta_{x}(cm)$	$W_i x_i^2$	$F_i X_i$	$\boldsymbol{\delta}_{y}\left(\boldsymbol{cm} ight)$	$W_i y_i^2$	$F_i y_i$
Nivel 4	13.311	47458.39	2941.59	10.181	27765.57	2249.98
Nivel 3	10.542	68083.31	3996.19	8.352	42729.72	3165.85
Nivel 2	6.687	27395.01	1689.93	5.407	17906.82	1366.29
Nivel 1	2.542	3683.38	309.83	2.020	2499.61	255.24
Σ		146620.09	8937.54		90901.7	7037.36

Tabla 4.13 Cálculo del periodo aproximado de la estructura.

Los periodos encontrados fueron los siguientes:

$$T_x = 0.81 s$$
 $T_y = 0.72 s$

Como puede notarse los periodos encontrados en las dos direcciones de análisis esta entre los periodos T_b y T_c del espectro de diseño para Nicaragua (0.6 s y 2.0 s respectivamente). Por lo tanto, la ordenada del espectro de aceleraciones se calcula con la tercera opción de la ecuación (6) del RNC-07. Por lo cual las fuerzas sísmicas se reducen de la siguiente manera:

$$a = s \cdot d\left(\frac{T_b}{T}\right) = 1.2555 \left(\frac{0.6}{0.771}\right) = 0.977$$
$$Fs_i = \frac{a}{\Omega Q'} W_i h_i \times \frac{\Sigma W_i}{\Sigma W_i h_i}$$

Donde:

$$\frac{a}{\Omega Q'} = \frac{0.977}{2 \times 3.2} = 0.153$$

En la siguiente tabla se muestra el resultado que se obtiene para las fuerzas reducidas en dirección "X"

Dirección X					
Nivel	hi (m)	Wi (ton)	Wihi	Fi (ton)	Vi (ton)
Nivel 4	15.40	267.85	4124.89	72.552	72.552
Nivel 3	11.55	612.59	7075.41	124.449	197.001
Nivel 2	7.70	612.59	4716.94	82.966	279.967
Nivel 1	3.85	612.59	2358.47	41.483	321.450
Σ		2105.62	18275.72		

Tabla 4.14 Fuerzas sísmicas reducidas.

4.10 Análisis Dinámico Modal Espectral

4.10.1 Caracterización sísmica según el RNC-07

El Reglamento Nacional de la construcción en el artículo 17 señala que toda estructura deberá ser diseñada y construida para resistir las cargas sísmicas que se calcularán a continuación.

4.10.1.1 Grupo

B, Edificación no esencial.

De acuerdo al Arto. 20, se trata de una estructura con grado de seguridad intermedio, donde el daño parcial o total causaría pérdidas de magnitud intermedia, después de ocurrido un desastre producto de un sismo intenso.

4.10.1.2 Factor de reducción por sobre resistencia

En el artículo 22 del reglamento nacional de la construcción establece un factor de sobre resistencia igual a 2.

$$\Omega = 2$$

4.10.1.3 Factor de amplificación por tipo de suelo

La estructura se localiza en el departamento de Managua, de la figura 2 del RNC-07, se encuentra en la Zona C.

$$S = 1.5$$
 (Suponiendo un suelo Tipo II)

Aceleración máxima del terreno (del mapa de isoaceleraciones del RNC-07)

$$a_0 = 0.31$$

4.10.1.4 Máxima aceleración espectral, Sd.

Aceleración máxima del terreno (del mapa de isoaceleraciones del RNC-07)

$$S \times d = S (2.7 a_0) = 1.5 \times 2.7 \times 0.31 = 1.2555$$

Figura 4.3 Espectro de Diseño.

4.10.2 Comprobación de la inclusión de los modos naturales

El Reglamento Nacional de la construcción en el artículo 33 refiere que: "Si en el análisis modal se reconoce explícitamente el acoplamiento, deberá incluirse el efecto de los modos naturales que, ordenados según valores decrecientes de sus periodos de vibración, sean necesarios para que la suma de los pesos efectivos en cada dirección de análisis sea mayor o igual a 90 por ciento del peso total de la estructura".

	Case	ItemType	ltem	Static %	Dynamic %
•	Modal	Acceleration	UX	100	100
	Modal	Acceleration	UY	100	100
	Modal	Acceleration	UZ	0	0

Figura 4.4 Participación de carga modal estática y dinámica.

4.10.3 Periodo estructural

Figura 4.5 Modo de Vibración 1, T=0.771 s (Traslación x)

Figura 4.6 Modo de Vibración 2, T=0.692 s (Traslación Y)

Figura 4.7 Modo de Vibración 3, T=0.537 s (Rotación en Z)

4.10.4 Periodo aproximado fundamental

Podemos determinar un periodo fundamental aproximado de la estructura de acuerdo a la sección 12.8.2.1 de las especificaciones ASCE 7-16 mediante la siguiente ecuación:

$$T_a = C_t h_n^x$$

Donde h_n es la altura de la estructura y los coeficientes C_t y x son determinados de la Tabla 12.8-2 del ASCE 7-16. (Ver ANEXO ¿?)

 $h_n = 15.4 \ m \ C_t = 0.0724 \ x = 0.8$

$$T_a = C_t h_n^X$$

$$T_a = 0.645 \ s$$

El ASCE 7-16 establece en el inciso 12.8.2 que el periodo de una estructura no deberá ser mayor que el producto de T_a con el coeficiente C_u obtenido de la Tabla 12.8-1 del ASCE 7-16.

$$C_u = 1.4$$

$$T_{m \acute{a} x} = C_u \times T_a$$

$$T_{m \acute{a} x} = 1.4 \times 0.645 \ s$$
 $T_{m \acute{a} x} = 0.903 \ s$

Debido a que el período obtenido del análisis estructural tridimensional T = 0.771 s es menor que $T_{max} = 0.903 s$, se puede utilizar los períodos calculados con ETABS para la reducción de las fuerzas sísmicas del análisis estático.

	Mode	Period sec	UX	UY	SumUX	SumUY	RZ	SumRZ
•	1	0.771	0.7853	0	0.7853	0	0.0001	0.0001
	2	0.692	0	0.7979	0.7853	0.7979	0	0.0001
	3	0.537	0.0001	0	0.7854	0.7979	0.8112	0.8114
	4	0.2	0.1443	0	0.9297	0.7979	9.433E-06	0.8114
	5	0.182	0	0.1373	0.9297	0.9352	0	0.8114
	6	0.152	1.258E-05	0	0.9297	0.9352	0.1259	0.9372
	7	0.094	0.0524	0	0.9821	0.9352	1.108E-05	0.9372
	8	0.087	0	0.0488	0.9821	0.984	0	0.9372
	9	0.076	2.513E-05	0	0.9821	0.984	0.0471	0.9843
	10	0.059	0.0178	0	1	0.984	2.392E-05	0.9843
	11	0.056	0	0.016	1	1	0	0.9843
	12	0.05	4.278E-05	7.681E-07	1	1	0.0157	1

4.10.5 Revisión del cortante basal.

El inciso a) del Arto. 33 en el Reglamento Nacional de la Construcción manifiesta que para cada dirección considerada se debe cumplir la siguiente relación entre el cortante basal estático y el cortante basal dinámico:

$$V_D \ge 0.8 \ \frac{a}{\Omega \ Q'} W_0$$

En donde el cortante dinámico V_D, no debe ser menor que el 80% del valor del cortante basal estático. De lo contrario se deben de incrementar todas las fuerzas de diseño y desplazamientos laterales correspondientes en una proporción en el V_D que iguale este valor; a y Q' se calculan para el periodo fundamental de estructura en la dirección de análisis.

Nivel	Sismo	Vx	Nivel	Sismo	Vy
4		-51.6703	4		-51.6703
3	Sismo	-184.8201	3	Sismo	-184.8201
2	Estático X	-273.5867	2	Estático Y	-273.5867
1		-317.97	1		-317.97
4		52.0219	4		53.922
3	Sismo	158.1465	3	Sismo	175.140
2	Dinámico X	225.5227	2	Dinámico Y	252.896
1		257.8478	1		288.517

Tabla 4.15 Cortante Basal.

Las relaciones entre los cortantes basales son mostradas a continuación:

Direccion en X	Direccion en Y
$\frac{257.848}{317.970} = 0.811 \ge 0.80$	$\frac{288.517}{317.970} = 0.907 \ge 0.80$

El Cortante basal dinámico es mayor que el 80% del cortante basal estático para ambas direcciones, por lo tanto, no hay que realizar ni una modificación.

4.10.6 Revisión de los desplazamientos

Los desplazamientos fueron determinados mediante el programa de ETABS considerando el esfuerzo de las fuerzas sísmicas en cada dirección de análisis.

Los resultados se revisaron con las condiciones de límite de servicio y colapso como lo establece el artículo 34 del RNC-07.

De acuerdo al artículo 34, los desplazamientos serán los que resulten del análisis estructural ante fuerzas reducidas multiplicadas por el factor $Q'\Omega/2.5$. Mientras que los desplazamientos en condiciones de colapso serán los que resulten del análisis estructural ante fuerzas reducidas multiplicado por el factor $Q\Omega$.

 Las distorsiones de entrepiso no deben exceder la distorsión máxima permisible en el estado límite de servicio, la cual se toma igual a 0.004 porque no cuenta con elementos capaces de soportar deformaciones apreciables como muros de mampostería.

	Distorciones de entrepiso en Condiciones de Servicio							
		De	splazamien	tos de Se	rvicio			
Nivel	h _i (cm)	$\delta_x (cm)$	δ_{xT} (cm)	Δ_{xT}	$\delta_{y}\left(cm ight)$	δ_{yT} (cm)	Δ_{xT}	
1	385	3.5982	9.211	0.0050	3.0561	7.824	0.0037	
2	385	2.8436	7.280	0.0069	2.5061	6.416	0.0059	
3	385	1.7989	4.605	0.0076	1.6200	4.147	0.0068	
4	385	0.6577	1.684	0.0044	0.6035	1.545	0.0040	

Q' = 3.2	$\Omega = 2$	$Q'\Omega/2.5 = 2.56$
----------	--------------	-----------------------

Tabla 4.16 Desplazamiento en condiciones de Servicio

Para las condiciones actuales de la estructura, solamente los niveles 1 y 4 en la dirección Y tienen desplazamientos que no exceden el máximo permitido por el RNC-07. Esto indica que la estructura no cumple los requisitos principales de seguridad.

 La distorsión máxima permisible en el estado límite de colapso se toma igual a 0.030 porque la estructura es a base de marcos dúctiles de acero y concreto (RNC-07 Arto 34c-b Tabla 4).

Q = 4 $\Omega = 2$ $Q\Omega = 8$

	Distorciones de entrepiso en Condiciones de Colapso.						
		Des	plazamient	os de Col	apso.		
Nivel	h _i (cm)	$\delta_x(cm)$	δ_{xT} (cm)	Δ_{xT}	$\delta_y (cm)$	δ_{yT} (cm)	Δ_{xT}
1	385	3.598	28.786	0.0157	3.0561	24.449	0.0114
2	385	2.844	22.749	0.0217	2.5061	20.049	0.0184
3	385	1.799	14.391	0.0237	1.620	12.960	0.0211
4	385	0.658	5.262	0.0137	0.6035	4.828	0.0125

Tabla 4.17 Desplazamiento en condiciones de colapso.

En la Tabla 4.17 vemos que los desplazamientos cumplen con el estado límite para las distorsiones de entrepiso en condiciones de colapso.

Para el análisis con sismo tanto en la dirección X como en Y, las distorsiones de entrepiso calculadas, superan ligeramente a las máximas permitidas por el Reglamento Nacional de la Construcción RNC-07 para estado límite de servicio. Sin embargo, es de conocimiento general que dichos límites son excesivamente rigurosos. La revisión de distorsiones de nuestro Reglamento Nacional RNC-07 está basada en las Norma Técnica Complementaria del Distrito Federal del año 2004, que establece un valor de Q'R/7 para la revision de las distorciones de entrepiso en condicion de servicio. Por lo que, como recomendación se propone un valor de $Q'\Omega/5$ para cumplir con los requisitos de distorsiones de piso en condición de servicio que establece el Reglamento Nacional.

Es importante mencionar que, al ser un edificio de alta ductilidad, la manera más adecuada de controlar este parámetro es proponer un aumento en las secciones transversales de los elementos, esto para aumentar su rigidez y reducir los desplazamientos laterales.

CAPITULO V

5.DISEÑO DE ELEMENTOS PRINCIPALES

5.1 Diseño de columna compuesta embebida

5.1.1 Propiedades de la sección wide flange

- $As = 67.7 in^2$
- d = 15.05 inIsx = 2420 in⁴bf = 12.895 inIsy = 742 in⁴ver tabla 1 1 AISC manual en anexotf = 2.07 inZsx = 386 in³tw =1.285 inSxx = 321 in³

5.1.1.1 Propiedades de los materiales

Acero Concreto

Fy = 50 Ksi $w_c = 144.9 \, pcf$

Fu = 65 Ksi $f'_c = 4 ksi$

Es = 29000 Ksi $E_c = 3900 \text{ ksi}$

5.1.1.2 Acero de refuerzo

Fyr = 60 ksi

Ag = 625 in ²	db = 1 in
Asri = 0.79 in ²	Isri = 0.0491 in ⁴
Asrs = 1.57 in ²	lsr = 472 in ⁴
Asr = 6.28 in ²	lcx = 29660 in ⁴
Ac = 551 in ²	lcy = 31338 in ⁴

5.1.1.3 Combinación crítica:

Element Details

Level	Element	Unique Name	Location (ft)	Combo	Section
Story1	C4	4	0	1.2CM+CV-SY-0.3SX	CC-25"X25"

5.1.1.4 Fuerzas actuantes:

Stress Check forces and Moments

Location (ft)	P " (kip)	M _{u33} (kip-ft)	M _{u22} (kip-ft)	V _{u2} (kip)	V _{u3} (kip)	T _u (kip-ft)
0	-293.919	198.3243	413.9732	19.981	42.939	0

Pu = 293.92 kips

Mu = 413.9732 kips-ft

Vu = 42.94 kips

5.1.1.5 Limitaciones

5.1.1.5.1 Limitaciones de refuerzo Longitudinal y acero estructural

i. Relación de refuerzo mínimo de acero estructural

$$\frac{A_s}{A_g} \ge 0.01 = 0.108$$
 ok

ii. Refuerzo longitudinal mínimo.

No menor que
$$0.01(A_g - A_s) = 5.573 in^2$$
 ok

iii. Refuerzo longitudinal máximo.

No mayor que
$$0.08(A_g - A_s) = 44.584 in^2$$
 ok

- iv. Número mínimo de barras longitudinales = 4 Se proponen 8 ok
- v. Separación entre barras longitudinales

$$S_{min} = m \acute{a}x \; valor \; egin{array}{c} 1.5 \; in \ 1.5 \; d_b = 1.5 \; in \ 1.33 \; d_{agg} = 0.665 \; in \end{array}$$

$$separación = 9$$
 in Cumple.

vi. Separación libre entre las barras longitudinales y la sección de acero.

La separación mínima será igual al mayor valor de: 1.5 in o $1.5d_b$

 $S = \frac{h_2}{2} - \frac{d}{2} - c - \frac{d_b}{2} = 1.975$ in cumple

 $S_{min} = 1.5 in$

5.1.1.5.2 Limitaciones de refuerzo transversal

Requerimiento mínimo de Estribo #3@10 in

Separación Máxima de los Estribos

 $S_{m \pm x} = 0.5 \text{ x}$ Dimensión mínima de la columna $S_{m \pm x} = 0.5 \times 25 \text{ in} = 12.5 \text{ in}$ cumple 5.1.1.5.3 Recubrimiento del concreto

Recubrimiento mínimo c = 1.5

Recubrimiento = 2.5 in $-\frac{d_b}{2} - \phi$ varilla de estribo = 2.5 in $-\frac{1 \text{ in}}{2} - \frac{3}{8}$ in

Recubrimiento mínimo = C = 1.63 in cumple

5.1.2 Elaboración de diagrama de interacción para determinar si la sección compuesta propuesta es adecuada ante las solicitaciones de cargas

5.1.2.1 Curva de interacción de los puntos A, B, C, D sin considerar efectos de longitud

5.1.2.1.1 PUNTO A (Compresión axial pura)

 $P_A = A_s F_y + A_{sr} F_{yr} + 0.85 f_c A_c$

 $P_A = 5635 \, kips \qquad M_A = 0 \, k. \, ft$

5.1.2.1.2 PUNTO D (Momento Nominal Máximo)

 $P_D = \frac{0.85f_cA_c}{2} P_D = 937 \ kips$ $M_D = Z_s F_y + Z_r F_{yr} + (0.85f_c) \frac{Z_c}{2} = 28032 \ k. in$ $M_D = 2336 \ k. ft$ $Z_r = (A_{sr} - A_{srs}) \left(\frac{h_2}{2} - C\right) = 47 \ in^3$ $Z_c = \frac{h_1 h_2^2}{4} - Z_s - Z_r = 3473 \ in^3$

5.1.2.1.3 PUNTO B (Flexión Pura)

$$\begin{split} P_B &= 0 \ kips \\ M_B &= M_D - Z_{sn} F_y - \frac{Z_{cn}(0.85f_c^*)}{2} \\ M_B &= 26512.3 \ k. \ in \ M_B &= 2209 \ k. \ ft \\ h_n &= \frac{0.85f_c^* \left(A_c + A_s - db_f + A_{srs}\right) - 2F_y(A_s - db_f) - 2F_{yr} \ A_{srs}}{2[0.85f_c^*(h_1 - b_f) + 2F_y b_f]} \\ h_n &= 5.22 \ in \\ Z_{sn} &= Z_{sx} - b_f \left(\frac{d}{2} - h_n\right) \left(\frac{d}{2} + h_n\right) \\ Z_{sn} &= 7.5 \ in^3 \\ Z_{cn} &= h_1 h_n^2 - Z_{sn} &= 674.3 \ in^3 \\ 5.1.2.1.4 \ \text{PUNTO C} \ (\text{Punto Intermedio}) \\ P_c &= 0.85 \ f_c^* A_c &= 1873 \ kips \\ M_c &= M_B &= 26512.3 \ k. \ in \end{split}$$

$$M_C = 2209 \ k. ft$$

Tabla de resultados de la curva de interacción para los puntos A, B, C, D.

	Μ	Р
PUNTO A	0	5635
PUNTO C	2209	1873
PUNTO D	2336	937
PUNTO B	2209	0

5.1.2.2 Curva de interacción de los puntos A', B', C', D' con efectos de longitud

5.1.2.2.1 Cálculo del factor de reducción de esbeltez

$$P_{no} = P_A \qquad P_{no} = 5635 \ kips$$

$$C_1 = 0.25 + 3 \left(\frac{A_S}{A_g + A_{sr}}\right) \le 0.7 \ (\text{EC I2-7 ESPECIFICACION AISC})$$

$$C_1 = 0.572 \ \le 0.7$$

$$EI_{eff} = E_s I_{sy} + 0.5 \ E_s I_{sry} + C_1 E_c I_{cy} \ (\text{EC I2-6 ESPECIFICACION AISC})$$

$$EI_{eff} = 98232946.58 \ ksi$$

 $P_e = \frac{\pi^2(EI_{eff})}{(KL)^2}$ (Ec I2-5 Especificación AISC) K = 1.4 (De la tabla del comentario de la especificación AISC Figura C-A-7.2, K es aproximadamente 1.40). Ver Anexo

$$P_{e} = 21534 \ kips$$

$$\frac{P_{no}}{P_{e}} = < 2.25 \ \text{Usar Ec } 12\text{-}2 \ \text{Especificación AISC}$$

$$\frac{P_{no}}{P_{e}} = 0.262$$

$$SI \ \frac{P_{no}}{P_{e}} \le 2.25 \ P_{n} = P_{no} \left[0.658^{\left(\frac{P_{no}}{P_{e}}\right)} \right] \ \text{Ec } 12\text{-}2 \ \text{Especificación AISC}$$

$$SI \ \frac{P_{no}}{P_{e}} > 2.25 \ P_{n} = 0.877P_{e} \ \text{Ec } 12\text{-}3 \ \text{Especificación AISC}$$

$$P_{n} = 5051 \ kips$$

Factor de reducción de esbeltez

$$\lambda = \frac{P_n}{P_{no}} = 0.8963$$

5.1.2.2.3 Aplicando el factor λ

$$P_{A'} = \lambda P_A = 5635 \times 0.8963$$
 $P_{A'} = 5051 \ kips$
 $P_{B'} = \lambda P_B$ $P_{B'} = 0 \ kips$
 $P_{C'} = \lambda P_C = 1873 \times 0.8963$ $P_{C'} = 1679 \ kips$

 $P_{D'} = \lambda P_D = 937 \times 0.8963$ $P_{D'} = 840 \ kips$

Tabla de resultados de la curva de interacción para los puntos A', B', C', D'.

	М	Р
PUNTO A'	0	5051
PUNTO C'	2209	1679
PUNTO D'	2336	840
PUNTO B'	2209	0

5.1.2.3 Curva de interacción de los puntos A", B", C", D" aplicando los factores de reducción de resistencia.

5.1.2.3.1 Factor de reducción por resistencia a compresión $\phi_c = 0.75$

 $P_{A''} = \phi_C P_{A'} = 0.75 \times 5051 = 3997 \ kips$ $P_{B''} = \phi_C P_{B'} = 0.75 \times 0 = 0 \ kips$ $P_{C''} = \phi_C P_{C'} = 0.75 \times 1679 = 1329 \ kips$ $P_{D''} = \phi_C P_{D'} = 0.75 \times 840 = 664 \ kips$

5.1.2.3.2 Factor de reducción por resistencia a Flexión $\phi_b = 0.90$

 $M_{A''} = \phi_b M_A = 0.90 \times 0 = 0 \ k. ft$ $M_{B''} = \phi_b M_B = 0.90 \times 2209 = 1988 \ k. ft$ $M_{C''} = M_{B''} = 1988 \ k. ft$ $M_{D''} = \phi_b M_D = 0.90 \times 2336 = 2102 \ k. ft$

	Μ	Р
PUNTO A"	0	3997
PUNTO C"	1988	1329
PUNTO D"	2102	664
PUNTO B"	1988	0

5.1.3 Determinar la resistencia al cortante disponible de la sección de acero más el acero de refuerzo

5.1.3.1 Resistencia Nominal por Corte de la sección de Acero (Capitulo G AISC 360-16)

$$V_n = 0.6F_v A_w C_v = 580 \ kips$$
 $C_v = 1.0$ $A_w = dt_w = 19.34 \ in^2$

Tabla de resultados de la curva de interacción para los puntos A", B", C", D".

5.1.3.1.1 Resistencia a Corte disponible de la sección de Acero

$$\phi_{v}V_{n} \geq V_{u} \qquad \phi_{v} = 1$$

 $\phi_v V_n = 580 \ kips > V_u = 42.94 \ kips$ ok

5.1.3.2 Refuerzo Transversal para la resistencia al corte. Sección I4.1 (C) Especificación AISC y ACI 318-14

$$\phi_v = 0.75$$
 $d = 22.5$ in

$$\frac{A_v}{s} = \frac{V_u - \phi_v V_{ns}}{\phi_v f_{yr} d} = -0.4123$$
 Ec 22.5.10.5.3 ACI 318-14

Este valor no cumple ya que es un valor negativo, por lo tanto, se calculará el valor mínimo de refuerzo.

• Refuerzo mínimo para cortante (Sección 10.6.2.2 ACI 318-14)

5.1.3.2.1 Límite mínimo de refuerzo

$$A_{v\,min} = 0.75\,\sqrt{f_c'}\,\left(\frac{b_ws}{f_{yr}}\right) \ge \frac{50\,b_ws}{f_{yr}}$$

 $A_{v \min} = 0.0198 \ge 0.0208$

$$\frac{A_v}{s} = 0.0208$$

Usando 2 Estribos #3 $A_v = 0.11 in^2$

s = 10.6 in Usar separación de estribos centro a centro = 10 in

5.1.3.2.2 Límite máximo de refuerzo

$$V_s = \frac{A_v f_{yr} d}{s} = 29.8 \ kips$$

5.1.3.2.3 Separación Máxima para refuerzo cortante

$$V_{s\,m\dot{a}x} = 4\sqrt{f'_c}b_w d$$

 $V_{s\,m\acute{a}x} = 142 \,kips$

Si
$$V_s \leq V_{s \ max} \ s_{max} = Menor \ de \ \frac{d}{2} \ y \ 24 \ in$$

Si
$$V_s > V_{s m \acute{a} x} s_{m \acute{a} x} = Menor de \frac{d}{4} y 12 in$$

$$s_{max} = \frac{d}{2} = \frac{22.5 \text{ in}}{2} = 11.25 \text{ in} > 10 \text{ in ok.}$$

Por lo tanto, la separación de estribos propuesta para la columna compuesta es adecuada.

5.2 Diseño de viga segundaria

Sección = $W14 \times 38$

Datos Preliminares.

Posición de la lámina = Perpendicular

 $Longitud \; del \; claro = 26.25 \; ft$

Ancho tributario = 6.56 ft

5.2.1. Propiedades del perfil propuesto. (Manual AISC)

Propiedades Geométricas de la				
Sección Compuesta				
$A_s = 11.2 \ in^2$	$I_{sx} = 385 \ in^4$			
d = 14.1 in	$I_{sy} = 26.7 \ in^4$			
$b_f = 6.77 in$	$Z_{sx} = 61.5 \ in^3$			
$t_f = 0.515 \ in$	$S_{xx} = 54.6 \ in^3$			
$t_w = 0.31 in$	$h/t_w = 39.6$			

Tabla 5.4 Propiedades Geométricas de la sección.

Propiedades Geométricas del Steel Deck

hr = 2.5 in	wrb = 7.4 in
sr = 12 in	<i>tc</i> = 2.5 <i>in</i>
wrt = 4.6 in	<i>hs</i> = 4.5 <i>in</i>

Acero

$$f_y = 50 \ ksi$$
$$f_u = 65 \ ksi$$
$$E_s = 29,000 \ ksi$$

concreto

$$f'_c = 4 ksi$$

5.2.3 Steel Deck

Espesor de losa = 5 in

5.2.4 Verificación de los requisitos de la Cubierta Compuesta y Anclajes

(Sección I1.3, I3.2c y I8 Especificación AISC)

1. Resistencia del concreto

$3 Ksi \leq f_c'$	$f_c' = 4ksi$	cumple
2. Altura del nervio		
$h_r \leq 3$ in	$h_r = 3 in$	cumple
3. Ancho medio del nervio		
$w_r \ge 2$ in	$w_r = 6 in$	cumple
4. Conectores de cortante	2	
$d_{sa} \leq \frac{3}{4}in$	$d_{sa} = \frac{5}{4}in$	cumple
4		
6.Longitud de conectores de cortante		
$L_c = 4 1/2 in$	$L_c = 4 \ 1/2 \ in$	cumple
7. Longitud minima de conectores de cortante = 4DSA		
(2)		cumple
$4d_{sa} = \left(4 * \frac{3}{4}\right) = 3 \text{ in}$		
8. Recubrimiento de los conectores de cortante.		
$R_{min}=\frac{1}{2}\ in.$	Recubrimieto = 2.5	cumple
9. Espesor de losa sobre el steel deck ≥ 2 in	Espesor de diseño 5 in	cumple

5.2.5 Cargas Aplicadas

5.2.5.1 Carga muerta

5.2.5.1.1 Condición precompuesta

$$Losa = 50 \frac{lb}{ft^2}$$

Peso propio = $5.79 \frac{\text{lb}}{ft^2}$ asumir peso de la viga

Peso propio = $3.17 \frac{lb}{in}$

5.2.5.1.2 Condición Compuesta

$$Varios = 47.927 \frac{lb}{ft^2} \ (cielo, mortero \ de \ cascote, otros \)$$

5.2.5.2 Carga Viva

5.2.5.2.1 Condición precompuesta

Construccion = $25 \frac{lb}{ft^2}$ (cargas temporales durante la colocación del concreto)

5.2.5.2.2 Condición Compuesta: Aplicado después de que se haya logrado la acción compuesta

No reducida =
$$51.21 \frac{lb}{ft^2}$$
 (ocupacion de montaje)

5.2.6 Diseño para Condición Precompuesta

5.2.6.1 Carga Muerta

 $W_{D} = [(A. Tributario)(peso propio)]$ $W_{D} = \left[(6.56 ft) \left(50 \frac{lb}{ft} + 5.79 \frac{lb}{ft^{2}} \right) \right] (0.001 \frac{kip}{lb})$ $W_{D} = 0.366 kip/ft$

$$W_{L} = \left[(A. Tributario)(cargas temporales durante la colocacion del concreto) \right]$$
$$W_{L} = \left[(6.56 ft) \left(25 \frac{lb}{ft^{2}} \right) \right] (0.001 \frac{kip}{lb})$$
$$W_{L} = 0.164 kip/ft$$

5.2.6.3 Resistencia a Flexión Requerida por el método LRFD

$$M_{U} = \frac{W_{U}L^{2}}{8}$$

$$W_{U} = (1.2W_{D} + 1.6W_{L})$$

$$W_{U} = 1.2(0.366 \frac{kip}{ft} + 1.6(0.164 \frac{kip}{ft}))$$

$$W_{U} = 0.70 \ kip/ft$$

$$M_{U} = \frac{\left(0.70 \frac{kip}{ft}\right)(26.56ft)^{2}}{8}$$

$$M_{U} = 60 \ kip - ft$$

5.2.6.4 Módulo de Sección Plástico Requerido Esp. AISC F2-1

$$Z_{X,min} = \frac{M_U}{\phi_b F_y} \qquad Z_{X,min} = \frac{(60 \ kip - ft) \left(12 \frac{in}{ft}\right)}{0.90(50 \ ksi)}$$

 $Z_{x,min} = 16.11 \ in^3$

De la Tabla 3 - 2 del manual AISC, se selecciona un W14 x 38, con valor Z_x de 61.5 in³ 5.2.6.5 Deflexión Máxima

$$\Delta_{nc} = \frac{5w_{D}L^{4}}{384El} \rightarrow \Delta_{nc} = \frac{5\frac{\left(0.366\frac{kip}{ft}\right)}{12\frac{in}{ft}}\left[(26.25ft)\left(12\frac{in}{ft}\right)\right]^{4}}{384(29000ksi)(385in^{4})}$$

 $\Delta_{nc} = 0.35$ in

Según la Guía de diseño del AISC recomienda que la sumatoria de la deflexión más el peso propio, no deben de exceder el mínimo de

$$\frac{L}{360}$$
 ó 1 in

Donde: $L/_{360} = 1.5 in$ Por lo tanto, la sección es adecuada por deflexión.

5.2.7 Diseño para condición Compuesta

5.2.7.1 Carga Muerta

 $W_D = [(A. Tributario)(peso propio)]$

$$W_D = \left[(6.56 ft) \left(50 \frac{lb}{ft} + 5.79 \frac{lb}{ft^2} + 47.92 \, lb/ft^2 \right) \right] (0.001 \frac{kip}{lb})$$
$$W_D = 0.68 \, kip/ft$$

5.2.7.2 Carga Viva

 $W_{L} = \left[(A. Tributario)(cargas no reducibles, ocupacion del ensamble) \right]$ $W_{L} = \left[(6.56 ft) \left(51.21 \frac{lb}{ft^{2}} \right) \right] (0.001 \frac{kip}{lb})$ $W_{L} = 0.34 kip/ft$

5.2.7.3 Resistencia a Flexión Requerida por el método LRFD Capitulo 2 de ASCE/SEI 7

$$M_{U} = \frac{W_{U}L^{2}}{8}$$

$$W_{U} = (1.2W_{D} + 1.6W_{L})$$

$$W_{U} = 1.2(0.68\frac{kip}{ft} + 1.6(0.34\frac{kip}{ft}))$$

$$W_{U} = 1.35 kip/ft$$

$$M_{U} = \frac{(1.35\frac{kip}{ft})(26.56 ft)^{2}}{8}$$

$$M_U = 177 \, kip - ft$$

5.2.7.4 Ancho efectivo de la losa de concreto AISC sección I3.1

El menor de:

$$\left\{ \left(\frac{26.56 \ ft}{8} \times 2 \ lados\right), \left(\frac{6.56 \ ft}{2} \times 2 \ lados\right), (Distancia \ al \ borde \ de \ la \ losa) \right\}$$

Donde

$$\frac{26.56}{8} * 2 = 6.56 \, ft \quad y \quad \frac{6.56 ft}{2} * 2 = 6.56 \, ft$$

Por lo tanto el ancho efectivo de la losa es b = 6.56 ft

5.2.7.5 Resistencia a flexión AISC Sección, I3.12(a)

 $\phi_b M_n \ge M_u$

Utilizando la tabla 3-19 del manual AISC

La resistencia a la flexión nominal se determinará a partir de la distribución de la tensión plástica

Cuando
$$\frac{h}{tw} \le 3.76 \sqrt{\frac{E}{f_y}} \rightarrow 49.4 \le 3.76 \sqrt{\frac{29000 \ ksi}{50 \ ksi}} \rightarrow 39.6 \le 90.6$$

Por lo tanto, use la distribución de tensión plástico para determinar la resistencia a la flexión nominal.

Para utilizar la Tabla 3-19 del Manual AISC, primero debe determinarse la distancia desde la fuerza a compresión del concreto, hasta el patín superior de la viga, Y2, como se ilustra en la Figura 3-3 del Manual. El cincuenta por ciento de acción compuesta [Σ Qn ≈ 0.50 (AsFy)] se usa para calcular un valor de prueba de la profundidad del bloque de compresión, para determinar Y2 de la siguiente manera:

$$a_{prueba} = \frac{\Sigma Q_n}{0.85 f'_c b} \rightarrow \Sigma Q_n \approx 0.50 (A_s F_y)$$

Ver figura 3-3 en Anexos

$$a_{prueba} = \frac{0.50(11.2 \text{ in}^2)(50\text{ksi})}{0.85(4\text{ksi})(6.56\text{ft})\left(12\frac{\text{in}}{\text{ft}}\right)} \rightarrow a_{prueba} = 1.05 \text{ suponer 1 in}$$

$$Y2 = Y_{con} - \frac{a_{prueba}}{2}$$

 Y_{con} = distancia desde la parte superior de la viga de acero hasta la parte superior de la losa, pulg.

$$Y_{con} = 5 in$$
 \rightarrow $Y2 = 4.5 in$

Dado que se utilizó un 50% de la acción compuesta, la ubicación del PNA (eje neutro plástico) en la tabla 3-19, se encuentra en la posición 5 (BFL).

 $\Sigma Q_n = 211 \ kips$ Ver tabla 3-19 del Manual AISC en anexo $\phi_b M_n \ge M_u$

$$\rightarrow \quad \phi_b M_n = 361 \, kip - ft \tag{115}$$

$$\phi_b M_n \operatorname{con} Y_2 = 7$$

$$M_U = 177 \operatorname{kip} - ft$$

$$361 \operatorname{ki} - ft \ge 177 \operatorname{kip} - ft$$

La sección cumple con la resistencia a flexión requerida

Profundidad del bloque a compresión areal

$$a = \frac{\Sigma Q_n}{0.85f'_c b} \rightarrow \Sigma Q_n = 211 \text{ kips}$$
 $\frac{L}{360} \text{ ó } 1 \text{ in}$

 $a_{real} = 0.79 < a_{prueba} = 1.05 \rightarrow suponer 1 in$

5.2.7.6 Deflexión por carga viva luego de haberse logrado la acción compuesta.

$$\begin{split} \Delta_{c} &= \frac{5W_{L}L^{4}}{384EI_{LB}} \longrightarrow I_{lb} = 472 \ in^{4} \\ &= \frac{5\frac{\left(0.34\frac{kip}{ft}\right)}{12\frac{in}{ft}} \left[(26.56\ ft)\left(12\frac{in}{ft}\right)\right]^{4}}{384(29000ksi)(472\ in^{4})} = 0.26 \ in^{4} \end{split}$$

Por lo tanto, la sección es adecuada por deflexión luego de haberse cumplido la acción compuesta.

5.2.8 Resistencia de los conectores de cortante

5.2.8.1 Consideraciones Típicas

- Concreto de peso normal $f'_c = 4 Ksi$
- Steel Deck orientada perpendicularmente

• Pernos de acero ³/₄"

1 Anclaje por nervio:
$$Q_n = 17.2 \frac{kips}{anclaje}$$
 ok! **Tabla 3-20 del Manual AISC**
2 Anclajes por nervio: $Q_n = 14.6 \frac{kips}{anclaje}$

Los nervio de la plataforma están espaciadas a 12 pulgadas en el centro de acuerdo con la literatura del fabricante de la plataforma. El número mínimo de nervios de cubierta a lo largo de la viga, suponiendo que la primera flauta comience a un máximo de 12 pulgadas desde la línea de soporte en cada extremo, es:

 $n_{nervio} = n_{espacios} + 1$

 $n_{nervio} = \frac{26.56 \, ft - 2(12 \, in)(^{1 \, ft}/_{12 \, in})}{2 \, (1 \, ft \, por \, espacio)} + 1$

 $n_{nervio} = 13.12 \rightarrow usar 13$

5.2.8.2 Números de conectores de cortante

 $n_{conectores} = \frac{\Sigma Q_n}{Q_n}$ $n_{conectores} = \frac{211 \ kips}{17.2 \ kips} \rightarrow 12.27 \approx 13$

Usar 13 conectores de cortante a cada lado de la línea central de la viga.

La capacidad de corte horizontal revisada de los conectores de cortante ubicados al centro de la canaleta es:

 $\Sigma Q_n = (13 conectores * 17.2 kips)$

 $\Sigma Q_n = 223.6 \ kips > 211 \ kips \ ok!.$

El patrón de anclaje final elegido se ilustra en la Figura I.1-2.

5.2.8.3 Requisitos de espaciamiento de los conectores de corte

Esp. AISC 18.2d e 13.2c.

i. Espacio máximo de los conectores de corte a lo largo de la viga:

 $8wrt_{losa} = 60$ in 6 36 in $\rightarrow 8wrt_{losa} = 12$ in < 36 in ok!

- ii. Espacio mínimo de los conectores de corte a lo largo de la viga: $6d_{sa} = 4\frac{1}{2}in \, 636 \, in \quad \rightarrow \quad 12 \, in < 4.50 \, in \, ok!$
- iii. Espacio mínimo transversal entre conectores de cortante:

 $4d_{sa} = 3 in \rightarrow 3 in = 3 in ok!$

iv. Distancia mínima al borde libre en la dirección de la fuerza de corte horizontal:

La sección I8.2d de la especificación AISC requiere que la distancia desde el centro de un conector de corte hasta un borde libre en la dirección de la fuerza de corte sea de un mínimo de 8 pulgadas para losas de concreto de peso normal.

12 *in* > 8 in ok!

v. Espacio máximo del accesorio de la plataforma:

La Sección I3.2c (4) de la especificación AISC requiere que la plataforma de acero se ancle a todos los miembros de soporte a una distancia máxima de 18 pulgadas. Para este caso Los anclajes de los espárragos se sueldan a través de la plataforma de metal a una distancia máxima de 12 pulgadas, por lo tanto, este límite se cumple sin la necesidad de soldaduras de charcos adicionales o sujetadores mecánicos.

Separación máxima = 18 *in* > *separacion de diseño* = 12 *in ok*!

5.2.9 Resistencia por cortante

Tabla 3-2 del Manual AISC

De acuerdo con la Sección I4.2 de la especificación AISC, la viga debe evaluarse para determinar la resistencia al corte disponible como una viga de acero desnudo utilizando:

$$\phi V_n > V_u$$

$$\phi = 1$$

$$\phi V_n = 131 \ kipd$$

$$V_u = \frac{W_u L}{2}$$

$$V_u = 17.77 \ kips$$

 $\phi V_n = 131 \ kips > V_u = 17.77 \ kips \ ok!$

Resumen De la Figura I.1-2, el número total de conectores de cortante utilizados es igual a (2)(13) = 26 En la figura I.1-3 se proporciona un diseño en planta que ilustra el diseño final de la viga:

Un perfil W14 \times 38 con conectores de cortante de ³/₄" de diámetro por 4 7/8" de largo son adecuados para resistir las cargas impuestas.

5.3 Diseño de viga principal.

5.3.1 Datos

sección = W24 x 76

posicion de la lamina = Perpendicular

Longitud del claro = 26.56 ft

Longitud de la viga = 26.56 ft

Ancho tributario = 6.56 ft

5.3.2 Propiedades del perfil propuesto.

TABLA 1-1; MANUAL AISC

PROPIEDADES GEOMETRICAS DE LA SECCION COMPUESTA					
AS=	22.4	in ²	lsx=	2100	in ⁴
D=	23.92	in	lsy=	82.5	in ⁴
RF-	8 00	in	7ev-	200	in ³
DI -	0.33		237-	200	
TF=	0.515	in	Sxx=	176	in ³
TW=	0.44	in	h/tw=	49	

5.3.3 Propiedades de los materiales

Acero

$$f_y = 50 \ ksi$$

 $f_u = 65 \ ksi$
 $E_s = 29,000 \ ksi$

concreto

$$f'_c = 4 ksi$$

Propiedades del STEEL DECK

hr =	2.5	in
sr =	12.0	in
wrt =	4.6	in
wrb =	7.4	in
tc =	2.5	in
hs =	4.5	in

Espesor de losa = 5 in

5.3.4 Verificación de los requisitos de la Cubierta Compuesta y Anclajes

(Sección I1.3, I3.2c y I8 Especificación AISC)

1. Resistencia del concreto

	$f_c' = 4ksi$	cumple
$3 KSl \leq f_c$		
2. Altura del nervio $h < 3$ in		
$n_r \leq 5 \ m$	$h_r = 3 in$	cumple

$w_r \ge 2$ in	$w_r = 6 in$	cumple
4. Conectores de cortante		
3	$d_{sa} = \frac{3}{-in}$	cumple
$d_{sa} \leq \frac{3}{4}in$		
5. No aplica		
1	(de acuerdo a la Seccion especificavion AISC.	18.1 de la
6.Longitud de conectores de cortante $L_c = 4 \ 1/2 \ in$		
	$L_c = 4 11/16 in$	cumple
7. Longitud minima de conectores de cortante = 4DSA $Ad = -(A + \frac{3}{2}) = -2$ in		
$4a_{sa} - (4*\frac{1}{4}) - 5 ln$	$si L_c > 4d_{sa}$	cumple
8. Recubrimiento de los conectores de cortante.		
$R_{min}=\frac{1}{2}\ in.$	Recubrimiento = 2.81 in	cumple
9. Espesor de losa sobre el steel deck ≥ 2 in	Espesor de diseño 4.5 in cumple	

3. Ancho medio del nervio

	5.3.4.1 Ca	rgas		
Carga M	luerta:			
	Precompues	sta:		
Losa =		50	lb/ft ²	
Peso Pr	opio =	38	lb/ft	Peso de la viga segundaria
		76	lb/ft	Peso de la viga de prueba
	Compuesta:	Aplicado	despu	iés de que se haya logrado la acción
	compuesta			
	Varios =	47.927	lb/ft ²	(Cielo, Mortero de cascote, otros)
Carga v	iva			
	Precompues	sta:		
	Construcció	n= 25	lb/ft ²	(cargas temporales durante la colocación del concreto)
	Compuesta:	Aplicado	despu	iés de que se haya logrado la acción
	compuesta			
	No reducida	= 51.21	lb/ft ²	(Ocupación de montaje)

5.3.5 Diseño para Condición Precompuesta

• Carga Muerta

 $P_D = [(longitud del claro)(A.Tributario)(peso propio)]$

$$P_{D} = \left[(26.25 ft)(6.56 ft) \left(50 \frac{lb}{ft^{2}} \right) + (26.25 ft)(38 \frac{lb}{ft}) \right] (0.001 \frac{kip}{lb})$$

$$P_{D} = 9.61 kip/ft$$

Carga Viva

 $P_{L} = [(A.Tributario)(cargas temporales durante la colocacion del concreto)]$ $P_{L} = \left[(26.25 ft)(6.26 ft) \left(25 \frac{lb}{ft^{2}} \right) \right] (0.001 \frac{kip}{lb})$ $P_{L} = 4.3 kip/ft$

5.3.5.1 Resistencia a Flexión Requerida por el método LRFD

$$M_{U} = P_{u}a + \frac{W_{U}L^{2}}{8}$$

$$P_{U} = (1.2P_{D} + 1.6P_{L})$$

$$P_{U} = 1.2(9.61 \text{ kips} + 1.6(4.3kips))$$

$$P_{U} = 18.42 \text{ kips}$$

$$W_{u} = 1.2(76 \text{ lb/ft})$$

$$W_{u} = 0.09 \text{ kip/ft}$$

$$M_{U} = (18.42 \text{ kips})(6.56 \text{ ft}) + \frac{\left(0.09 \frac{\text{kip}}{\text{ft}}\right)(26.56 \text{ ft})^{2}}{8}$$

$$M_U = 128.71 \, kip - ft$$

Módulo de Sección Plástico Requerido

Esp. AISC F2-1

$$Z_{X,min} = \frac{M_U}{\phi_b F_y}$$

$$Z_{X,min} = \frac{(128.71 \, kip - ft) \left(12 \frac{in}{ft}\right)}{0.90(50 \, ksi)}$$

 $Z_{x.min} = 34.32 \ in^3$

Resistencia a flexión

De la Tabla 3 - 2 del manual AISC, se selecciona un **W24 x 76**, con valor Z_x de 200 in³

 $L_b = 6.56 ft$ $L_p = 6.78 ft$ $L_r = 19.5 ft$

LRFD

$$\phi_b BF = 22.6 \ kips \qquad \phi_b M_{px} = 750 \ kip - ft \qquad \phi_b M_{rx} = 462. \ kip - ft$$
Debido a que Lb <Lp; considerar la resistencia a la flexion del eje fuerte φb Mpx

como la resistencia a la flexion ϕb Mn del perfil W. $\phi_b M_n = 750 \ kip - ft \ ok!$

 $\phi_b M_n \ge M_u$

 $\phi_b M_n = 750 \ kip - ft > M_u = 128.71 \ kip - ft \ ok!$

5.3.5.2 Deflexión Máxima

$$\Delta_{nc} = \frac{P_D L^3}{28EI} + \frac{5W_D L^4}{384EI}$$

$$\Delta_{nc} = \frac{9.61kips[(26.25ft)(12in/ft]^3}{28(29,000ksi)(2,100in^4)} + \frac{5\left[\frac{(0.09\,kip/ft)}{12in/ft}\right][(26.25ft)(12in/ft)]^4}{384(29,000ksi)(2,100in^4)}$$

 $\Delta_{nc} = 0.19$ in

Según la Guía de diseño del AISC recomienda que la sumatoria de la deflexión más el peso propio, no deben de exceder el mínimo de: $\frac{L}{360}$ ó 1 *in*

Donde: $L/_{360} = 1.00 \ in$

Por lo tanto, la sección es adecuada por deflexión.

5.3.6 Diseño para condición Compuesta

$$\begin{split} P_{D} &= \left[(longitud \, del \, claro) (A. \, Tributario) (peso \, propio + miscelaneo) \right] \\ P_{D} &= \left[(25.26 \, ft) (6.56 \, ft) \left(50^{lb} /_{ft^{2}} + 47.927^{lb} /_{ft^{2}} \right) + (26.25 ft) (38^{lb} /_{ft}) \right] (0.001 \frac{kip}{lb}) \qquad P_{D} = 17.86 \, kips \\ P_{L} &= \left[(longitud \, del \, claro) (A. \, Tributario) (cargas \, temporales \, durante \, la \, colocacion \, del \, concreto) \right] \end{split}$$

$$P_{L} = \left[(26.56 ft)(10 ft) \left(51.21 \frac{lb}{ft^{2}} \right) \right] (0.001 \frac{kip}{lb})$$
$$P_{L} = 8.8 kips$$

5.3.6.1 Resistencia a la flexión compuesta

$$P_{r} = P_{u}$$

$$P_{U} = (1.2P_{D} + 1.6P_{L}) \xrightarrow{P_{U}} = 1.2(17.86 \text{ kips} + 1.6(8.8 \text{ kips}))$$

$$P_{U} = 36 \text{ kips}$$

$$W_{u} = 1.2(0.0760 \text{ kip/ft}) \qquad 0.0760 \frac{\text{kip}}{ft} = peso \text{ propio de la viga de prueba}$$

$$W_u = 0.09 \, kip/ft$$

Del manual del AISC tabla 3-23 caso 1 y 9

$$\begin{split} M_{u1} &\approx M_{u3} \\ M_{u1} &= P_{u}a + \frac{W_{u}a}{2}(L-a) \\ M_{u1} &= (36\ kips)(6.56ft) + \frac{\left(\frac{0.0912kip}{ft}\right)(6.56ft)}{2}(26.25ft-6.56ft) \\ M_{u1} &= 239.13\ kip/ft \\ &\qquad W_{u}L^{2} \end{split}$$

$$M_{u3} = P_u a + \frac{\pi u}{8}$$

$$M_{u3} = (36 \, kips)(6.56ft) + \frac{(0.0912 kip/ft)(30ft)^2}{8}$$

$$M_{u3} = 241.09 \, kip/ft$$

Ancho efectivo de la losa de concreto AISC sección I3.1

El menor de :
$$\left\{ \left(\frac{26.56 ft}{8} \right) * 2 \ lados , \left(\frac{26.56 ft}{2} \right) * 2 \ lados , (distancia al borde de la losa) \right\}$$

Donde

$$\frac{26.56}{8} * 2 = 6.56 \, ft \quad Y \quad \frac{10ft}{2} * 2 = 25.56 \, ft$$

Por lo tanto el ancho efectivo de la losa es b = 6.56 ft

Resistencia a flexión

AISC Sección, I3.12(a)

ver en utilizando la tabla 3-19 del manual AISC anexo $\phi_b M_n \ge M_u$

La resistencia a la flexión nominal se determinará a partir de la distribución de la tensión plástica

Cuando
$$\frac{h}{tw} \le 3.76 \sqrt{\frac{E}{f_y}} \rightarrow \frac{49.4 \le 3.76 \sqrt{\frac{29000 \ ksi}{50 \ ksi}}}{49.4 \le 90.6}$$

ver tabla b4.1b del manual AISC en anexo

Por lo tanto, use la distribución de tensión plástico para determinar la resistencia a la flexión nominal

Para utilizar la Tabla 3-19 del Manual AISC, primero debe determinarse la distancia desde la fuerza a compresión del concreto, hasta el patín superior de la viga, Y2, como se ilustra en la Figura 3-3 del Manual. El cincuenta por ciento de acción compuesta [Σ Qn ≈ 0.50 (AsFy)] se usa para calcular un valor de prueba de la profundidad del bloque de compresión, para determinar Y2 de la siguiente manera:

$$a_{prueba} = \frac{\Sigma Q_n}{0.85f'_c b} \rightarrow \Sigma Q_n \approx 0.50 (A_s F_y)$$
 Ver figura en Anexos
$$a_{prueba} = \frac{0.50(22.4in^2)(50ksi)}{0.85(4ksi)(6.56ft)\left(12\frac{in}{ft}\right)} \rightarrow a_{prueba} = 2.09$$

$$Y2 = Y_{con} - \frac{a_{prueba}}{2}$$

 $Y_{con} = distancia desde la parte superior de la viga de acero hasta la parte superior de la losa, pulg.$

 $Y_{con} = 5 in$ \rightarrow Y2 = 3.95 in

5.3.6.1.1 Para calcular la resistencia a flexión se utilizan 2 métodos

Método 1 (Por tabla)

Dado que se utilizó un 50% de la acción compuesta, la ubicación del PNA (eje neutro plástico) en la tabla 3-19, se encuentra en la posición 5 (BFL).

$$\Sigma Q_n = 509 \ kips$$
 $\phi_b M_n = 1140 \ kip - ft$

 $\phi_b M_n \ge M_u$

$$M_u = 239.19 \, kip - ft$$
 $\phi_b M_n = 1140 kip - ft \ge M_u = 239.19 kip - ft \, ok!$

Profundidad del bloque a compresión areal

$$a = \frac{\Sigma Q_n}{0.85 f'_c b} \rightarrow \Sigma Q_n = 509 \text{ kips}$$

$$a_{real} = 1.90 < a_{prueba} = 02.09 \ ok!$$

Conectores de Cortante.

$$Q_n = 0.5A_{sa}\sqrt{f'_c E_c}$$

$$A_{sa} = \frac{\pi d_{sa}^2}{4} \rightarrow \qquad A_{sa} = 0.44 \ in^2$$

$$E_c = W_c^{1.5}\sqrt{f'_c}$$
tabla 3-21 del manual

 W_c para concreto normal = $145 \, lb/ft^3$

 $E_c = 3492 \ ksi$

 $R_g = 1$ Pernos de cortante soldado directamente al perfil de acero dentro de la losa

AISC

 $R_p = 0.75$ Conector de cortante soldado directamente al perfil de acero

 $F_u = 65 \ ksi$ Del manual del AISC Tabla 2-6 para ASTM A108 anclajes de acero

$$Q_n = (0.5)(0.442in^2)\sqrt{(4ksi)(3492ksi)_c} \le (1.0)(0.75)(0.442in^2)(65ksi)$$

$$Q_n = 26.11 \ kips > 21.54 \ kips \ ok!$$

usar $Q_n = 21.54$ kips ok!

Método 2 (Calculo directo)

De acuerdo con la Sección I3.2a del Comentario de la especificación AISC, el número y la resistencia de los anclajes de espárragos con cabeza de acero gobernará la fuerza de compresión, C, para una viga parcialmente compuesta. El porcentaje compuesto se basa en el mínimo de los estados límite de trituración de hormigón y rendimiento de acero de la siguiente manera:

(1) Trituración del concreto

Relleno de concreto Ac = Área de losa de concreto dentro del ancho efectivo. Suponga que el perfil del mazo es 50% vacío y 50%

$$\begin{aligned} A_c &= b_{eff} \left(4\frac{1}{2}in \right) + \left(\frac{b_{eff}}{2} \right) (3in) \rightarrow \end{aligned} (6.56ft) \left(12\frac{in}{ft} \right) \left(4\frac{1}{2}in \right) + \left[\frac{(6.56ft)(12\frac{in}{ft})}{2} \right] * 3 in \\ A_c &= 477.44 in^2 \\ C &= 0.85f'_c A_c \rightarrow C = 0.85(4ksi)(472.44 in^2) \rightarrow C = 1606.30 \, kips \end{aligned}$$

(2) Rendimiento de acero

 $C = A_s F_y \rightarrow C = 1120 \ kips$

(3) Transferencia de corte

El cincuenta por ciento se utiliza como porcentaje de prueba de acción compuesta de la siguiente manera:

$$C = \Sigma Q_n \quad \rightarrow \quad C = 50\% \left(Min \begin{cases} 1606.30 \ kips \\ 1120 \ kips \end{cases} \right)$$

$$x = 0.623 \ge t_f = 0.515$$

Por lo tanto, el PNA se encuentra en el patín del elemento.

Resistencia a la flexión

(comm. Eq. C - I3 - 10)

$$M_n = C(d_1 + d_2) + P_y(d_3 - d_2)$$

$$a = \frac{C}{0.85f'_{c}b} \rightarrow a = 2.09 \text{ in} < 4.5 \text{ in} \text{ arriba de la cubierta}$$
$$d_{1} = t_{slab} - a/2 \qquad d_{1} = (5 \text{ in} - \frac{2.09 \text{ in}}{2}) \rightarrow d_{1} = 3.954 \text{ in}$$

 $d_2 = x/2$ $d_2 = 0.311$ in

 $d_3 = d/2$ $d_3 = 12 in$

 $P_y = A_s F_Y$ $P_y = 1120 \ kips$

 $M_n = 560 \ kips(3.954 \ in + 0.311 \ in) + 1120 \ kips(12 \ in - 0.311 \ in)$

 $M_n = 1286.26 \ kip.ft$

Chequeo por flexión

$$\phi_{b} = 0.90$$

 $\phi_b M_n \ge M_u$

$$\phi_b M_n = 1157.63 \ kip - ft$$

 $M_u = 239.13 \, kip - ft$

 $\phi_b M_n = 1157.63 \ kip - ft > M_u = 239.13 \ kip - ft$ ok!

Número y separación de conectores de corte

Sección I8.2c de la especificación AISC

 $N_{conectores} = \frac{\Sigma Q_n}{Q_n} \qquad N_{conectores} = \frac{C}{Q_n}$

 $N_{conectores} = 26$ Conectores de cortante de cada extremo a puntos de cargas concentradas

Separación

 $8t_{losa} = (8)(5 in)$ $8t_{losa} = 40 in \circ 36 \rightarrow$ Gobierna 36 in

el número total de anclajes de pernos utilizados es igual a (13) (2) + 3+ (13) (2) = 55

Deflexión por carga viva luego de haberse logrado la acción compuesta.

limitada por: $\frac{L}{360}$ ó 1 *in*

 $I_{lb} = 3770 \ in^4$ tabla 3-21 del manual AISC

$$\Delta_{LL} = \frac{(8.8 \ kips)(25.26ft)^2(12\frac{in}{ft})}{28(29,000 ksi)(3770 \ in^4)}$$

$$\Delta_{LL} = 0.09 in < 1 in ok!$$

Sección I4.2 de la especificación AISC

diseño 3 no fu

Resistencia al corte disponible

Las resistencias al corte disponibles Manual AISC tabla 3 - 2

para un perfil W24 × 76 = 315 kips

$$V_u = P_u + (Wu)(\frac{\text{longitud de la viga}}{2})$$

 $V_u = 122 \ kips$

 $\phi_v V_n = 315 \ kips$

 $\phi_v V_n \ge V_u \quad ok!$

Viga Principal W24 X 76 con 26 conectores de corte a cada extremo a puntos de cargas concentradas.

Manual AISC Tabla 3-23, Caso 9:

La reducción del 50% en la carga viva de diseño según lo permitido por la Guía de diseño 3 no fue necesaria para cumplir con este límite) 5.4 Diseño de placa base sometida a carga axial y momento

5.4.1 Parámetros de diseño

- Pu = 318.597 kips
- Mu = 237.069 k.ft
- f´c = 4 Ksi
- Fy = 50 Ksi
- Fu= 65 Ksi
- 5.4.1.1 Propiedades del perfil analizado W12X230
- $A = 67.7 \text{ in}^2$
- d = 15.05 in
- tw = 1.285 in
- bf = 12.9 in
- tf = 2.07 in

5.4.2 Dimensiones propuesta de Placa Base:

- B = 20 in
- N = 20 in
- 5.4.2.1 Tipo de Placa Base:

5.4.2.1.1 Excentricidad de la carga

$$e = \frac{M_u}{P_u} = \frac{237.069 \text{ kip. } ft \times 12 \text{ in/ft}}{318.597 \text{ kips}} = 8.93 \text{ in}$$
$$\frac{N}{6} = \frac{20 \text{ in}}{6} = 3.33 \text{ in}$$

Placa Base con momento grande e > N/6

5.4.3 Geometría de la Placa Base:

$$\phi_c 0.85 f'_c B a = P_u + T_u$$

 $T_u = \phi_t R_n = \phi_t \ 0.75 F_u A_b$

Tomando momentos alrededor de los pernos a Tensión

$$P_u(h - 0.5N) + M_u = \phi_c 0.85 f'_c B a \left(h - \frac{a}{2}\right)$$

(Ec 2)

Suponiendo h = 0.9 N = 18 in

Proponiendo 3 Pernos con Diámetro 3/4"

$$A_b = 1.33 \ in^2$$

 $\phi_c 0.85 f'_c B a = P_u + \phi_t 0.75 F_u A_b$

$$a = \frac{P_u + \phi_t \ 0.75 F_u A_b}{\phi_c \ 0.85 f'_c \ B} = 8.30 \ in$$

$$N = 17.56 in$$

Escoger mayor N = 20 in

5.4.4 Longitudes en voladizo en la zona de compresión:

$$m = \frac{N - 0.95d}{2} = 2.85 \text{ in}$$

$$n = \frac{B - 0.80 \ b_f}{2} = 4.84 \ in \ Rige$$

5.4.5 Momento máximo factorizado por ancho tributario de Placa Base:

$$M_u = (0.85\phi_c f_c') \left(\frac{l^2}{2}\right)$$

 $l = m \acute{a} x(m, n) = 4.84 in$

$$M_u = 25.91 \, kip. \, in$$

5.4.6 Espesor de Placa Base:

$$t_p = \sqrt{\frac{4M_u}{\phi_b b_p F_y}}$$

$$t_p = 1.52 in$$

 b_p = Ancho unitario de Placa base = 1 *in*

5.4.7 Chequeo de deflexión de la Placa Base en la zona de tensión causada por la fuerza de tensión en los pernos:

5.4.7.1 Momento aplicado por ancho unitario de Placa Base

$$M_u = \frac{T_u x}{B}$$

 $T_u = 0.75 \phi_t F_u A_b$ $T_u = 48.48 kips$

x = Distancia del borde de la columna al centro del perno

$$\frac{N-d}{2} = 2.475$$
 in

$$x = 0.475$$

$$M_u = 1.15 \ kip. in$$

5.4.8 Nuevo espesor de Placa Base:

$$t_p = \sqrt{\frac{4M_u}{\phi_b b_p F_y}} = 0.32 \text{ in}$$

Usar valor mayor de Espesor

$$t_p = 1.52 in$$
 $t_p = 1\frac{3}{4} in$

Usar placa de base con dimensiones: 20 in x 20 in x 1 3/4 in.

5.4.9 Diseño de la soldadura entre la columna y la placa de base.

5.4.9.1 Longitud total de la soldadura de filete en cada patín

 $L = (2 \times 12.9 in) - 1.285 in = 24.505 in$

$$C = T = \frac{M_u}{d - t_f} = 219.70 \ kips$$

5.4.9.2 Resistencia de una soldadura de filete de 1 in de 1 in de largo usando electrodos E70

$$\phi R_{nw} = \phi (0.60 F_{EXX})(0.707)(a)$$

$$\phi R_{nw} = 22.271 \ kips/in$$

5.4.9.3 Tamaño de soldadura requerido =

$$t = \frac{C}{L \times \phi R_{nw}} = 0.402 \ in$$

Use soldaduras de filete de 7/16 in, electrodo E70, SMAW.

5.5 Conexión precalificada a momento end - plate tipo 8es

Se realizará el diseño de la viga W 24 X 76 y la columna compuesta formada por un perfil W 12 X 230 embebido en concreto y confinado con barras de acero de refuerzo longitudinal y transversal, obteniendo una conexión precalificada. En esencia, consiste en diseñar la conexión de acuerdo al procedimiento 8 ES del AISC 358-16, aplicado al perfil interno de la columna embebida.

5.5.1 Definición de los perfiles a utilizar

 $Zxb = 200 in^3$

5.5.1.1 Propiedades Geométricas de la sección	Parámetros del material
Viga W 24X76	
db = 23.92 in	Fyb= 50 Kip/in ²
bbf = 8.99 in	Fub = 65 Kip/in ²
tbf = 0.68 in	Ry= 1.1
tbw = 0.44 in	

L= 255.079 in

 $C_{pr} = rac{F_{yb} + F_{ub}}{2F_{yb}}$ $C_{pr} = 1.15$ $C_{pr} \le 1.2$ ok

5.5.1.2 Propiedades Geométricas de la sección

Columna	W 12 X 230	Parámetros del material
Ac = 67.7 in ²	2	Fyc= 50 Kip/in ²
dc = 15.05 ir)	Fuc= 65 Kip/in ²
bfc = 12.895	in	Ryc= 1.1
tfc = 2.07 in		
twc = 1.285 i	n	
Zxb = 386 in	3	
4.5.1.3 Mate	rial de la placa extrema	Material del Rigidizador
Fy= 50 Kip/ir	1 ²	Fys = 50 Kip/in ²
Fup = 65 Kip	/in ²	E = 29000 Kip/in
Ry = 1.1		Ry = 1.1
5.5.2 Factore	es de Resistencia según ANSI/AISC 3	350-16
$\phi_d = 1$ Para	estados limites dúctiles.	

 $\phi_n = 0.90$ Para estados limites no dúctiles.

5.5.3 Parámetros de la geometría de la conexión y la calidad del perno:

5.5.3.1 Calidad del material del perno: ASTM A490

Fnt =113 Kip/in² Tensión nominal a tracción conforme a la tabla J3.2 de la norma ANSI/AISC 360-16 (ver anexo)

Fnb = 68 Kip/in² Tensión nominal a corte conforme a la tabla J3.2 de la norma ANSI/AISC 360-16 (ver anexo)

5.5.4 Cálculo del momento máximo probable de la viga en la rótula plástica.

 $M_{pr} = C_{pr} * R_y * F_{yb} * Z_{xb}$ $M_{pr} = 12650 kip. in$

5.5.5 Cálculo de la fuerza de corte en la rótula plástica.

 $S_h = L_{st} + t_p$ $S_h = 15.582$ *in* Distancia de la cara de la columna hasta la rótula plástica, según el AISC 358-10.

cm = 16.733 kips

 $CP = 0.066 \, kip/in$

 $CV = 7.611 \, kips$

CV = 0.030 kip/in

Sds = 0.5 Aceleración espectral para periodos cortos

 $V_p = \frac{2M_{pr}}{L_n}$ $V_p = 121.13$ kips Corte por capacidad en la rótula plástica.

 $V_u = V_g + V_p V_u = 133.15 kips$ Corte máximo esperado en la rótula plástica.

5.5.6 Cálculo del momento en la cara de la columna:

- $M_f = M_{pr} + V_u.S_h$
- $M_f = 14724.72 \ kip.in$

5.5.7 Determinar el diámetro requerido del perno:

$$d_{bolth-req} = \sqrt{\frac{2M_f}{\pi \cdot \varphi_n \cdot F_{nt}(h_1 + h_2 + h_3 + h_4)}}$$

 $d_{bolt-req} = 0.99 in$

5.5.7.1 Seleccionar un diámetro de prueba según el paso anterior:

 $d_{bolth} = 1 in$

5.5.8 Determinar el espesor requerido de la plancha extrema:

$$b_{p_efect} = menor \ de \ b_p, b_{bf} + 1 \ b_{p_efect} = 9.99 \ in$$

$$s = \frac{1}{2}\sqrt{b_{p_efect}.g}$$
 $s = 3.87$ in

Separación vertical máxima del perno a la línea de falla.

Si
$$P_{fi}$$
 > s usar P_{fi}

$$P_{fi} = 2.27 in \quad d_e = 2.4 in$$

Caso 1: si se cumple que $d_e \leq s$

$$\begin{split} Y_{p1a} &= \frac{b_{p.efect}}{2} \cdot \left(h_1 \cdot \frac{1}{2d_e} + h_2 \cdot \frac{1}{P_{fo}} + h_3 \cdot \frac{1}{P_{fi}} + h_4 \cdot \frac{1}{s} \right) \\ Y_{p1a} &= 157.31 \ in \\ Y_{p1b} &= \frac{2}{g} \left[h_1 \left(d_e + \frac{P_b}{4} \right) + h_2 \left(P_{fo} + \frac{3P_b}{4} \right) + h_3 \left(P_{fi} + \frac{P_b}{4} \right) + h_4 \left(s + \frac{3P_b}{4} \right) + P_b^2 \right] + g \\ Y_{p1b} &= 144.552 \ in \\ Y_{p1} &= Y_{p1a} + Y_{p1b} \quad Y_{p1} = 301.858 \ in \\ \text{Caso 2: si se cumple que } d_e > s \\ Y_{p2a} &= \frac{b_{p.efect}}{2} \cdot \left(h_1 \cdot \frac{1}{s} + h_2 \cdot \frac{1}{P_{fo}} + h_3 \cdot \frac{1}{P_{fi}} + h_4 \cdot \frac{1}{s} \right) \\ Y_{p2a} &= 164.626 \ in \\ Y_{p2b} &= \frac{2}{g} \left[h_1 \left(s + \frac{P_b}{4} \right) + h_2 \left(P_{fo} + \frac{3P_b}{4} \right) + h_3 \left(P_{fi} + \frac{P_b}{4} \right) + h_4 \left(s + \frac{3P_b}{4} \right) + P_b^2 \right] + g \\ Y_{p2b} &= 158.92 \ in \end{split}$$

$$Y_{p2} = Y_{p2a} + Y_{p2b} \ Y_{p2} = 323.549 \ in$$

$$Y_p = 301.858 in$$

$$t_{p_req} = \sqrt{\frac{1.1M_f}{\varphi_d F_{yp} Y_p}} t_{p_req} = 1.036 in$$

5.5.8.1 Seleccionar un espesor para la plancha extrema, no menor al valor requerido en el paso anterior:

$$t_p = 1 \ 1/4 \ in$$

5.5.9 Calcular la fuerza factorizada en el ala de la viga:

$$F_{fu} = \frac{M_f}{d_b - t_{bf}} \quad F_{fu} = 633.59 \text{ kips}$$

5.5.10 Seleccionar el espesor del rigidizador y diseñar sus soldaduras de conexión con la plancha extrema y con el ala de la viga.

El valor del espesor del rigidizador será igual o mayor a:

$$t_{bw}.\frac{F_{yb}}{F_{ys}} = 0.44 \ in$$

Espesor a utilizar $t_s = \frac{5}{8}$ in

5.5.11 Revisión por pandeo local: $\lambda = \frac{h_{st}}{t_s} \lambda = 13$

$$\lambda_{m \acute{a} x} = 0.56 \sqrt{rac{E}{F_{ys}}} \quad \lambda_{m \acute{a} x} = 13.487 \; {
m ok}$$

5.5.12 Chequear la resistencia a corte de los pernos en el ala a compresión:

 $n_b = 8$ Número de pernos en el ala de compresión

 $A_{bolth} = \frac{\pi d_{bolth}^2}{4} A_{bolth} = 0.785 in^2$ Área gruesa nominal del perno.

$$V_u = 133.15 \ kips$$

 $\phi_n R_{nv} = \phi_n n_b F_{nv} A_{bolth} \phi_n R_{nv} = 384.53 \ kips$ ok. Resistencia nominal minorada.

5.5.13 Chequear la falla por desgarramiento y aplastamiento por carga de los pernos de la plancha extrema y del ala de la columna:

 $n_{i1} = 2$ Número de pernos internos

 $n_{o1} = 2$ Número de pernos externos

 $n_{i2} = 2$ Número de pernos internos intermedios

 $n_{o2} = 2$ Número de pernos externos intermedios

5.5.14 Revisión de la plancha extrema.

$$L_{ci1} = P_b - d_{bolth} = 2.46 in$$

$$L_{ci2} = P_{fi} + P_{fo} + t_{bf} - d_{bolth} = 4.22 in$$

$$L_{co} = d_e - \frac{d_{bolth}}{2} = 1.9 in$$

$$r_p = 2.4 d_{bolth} * t_p * F_{up} = 195 kips$$

$$r_{di1} = 1.2 L_{ci1} * t_p * F_{up} = 239.85 kips$$

$$r_{ni1} = \min(r_p, r_{di1}) = 195 kips$$

$$r_{di2} = 1.2 L_{ci2} * t_p * F_{up} = 411.45 kips$$

$$r_{ni2} = \min(r_p, r_{di2}) = 195 kips$$

$$r_{do} = 1.2 L_{co} * t_p * F_{up} = 185.25 kips$$

$$r_{no} = \min(r_p, r_{do}) = 185.25 kips$$

5.5.14.1 Resistencia nominal minorada:

 $\phi_n R_n = \phi_n (n_{i1} + n_{o2}) * r_{ni1} + \phi_n * n_{i2} * r_{ni2} + \phi_n * n_{o1} * r_{no}$

 $\phi_n R_n = 1386.45 \ kips$

 $V_u = 133.15 \ kips$ $V_u \le \phi_n R_n \ Cumple.$

5.5.15 Revisión en el ala de la columna:

 $t_{spc} = 0.5$ in espesor estimado de la plancha de continuidad en la columna, según el espesor del ala de la viga.

$$P_{si} = P_{fi} - \frac{(t_s - t_{bf})}{2} P_{si} = 2.298 in$$

$$P_{so} = P_{fo} - \frac{(t_s - t_{bf})}{2} P_{so} = 229.8 in$$

$$S_c = \frac{1}{2} \sqrt{b_{fc} * g} S_c = 4.398 in$$

$$r_p = 2.4 d_{bolth} * t_{fc} * F_{uc} r_p = 322.92 kips$$

$$r_{di1} = 1.2 L_{ci1} * t_{fc} * F_{uc} r_{di1} = 397.192 kips$$

$$r_{ni1} = \min(r_p, r_{di1}) r_{ni1} = 322.92 kips$$

$$r_{ni2} = 1.2 L_{ci2} * t_p * F_{up} r_{di2} = 411.95 kips$$

$$r_{ni2} = \min(r_p, r_{di2}) r_{ni2} = 322.92 kips$$

Nota: El ala de la columna al ser continua en los pernos externos no se produce el efecto de desgarramiento, por lo que condiciona en ese caso la resistencia por aplastamiento.

5.5.15.1 Resistencia nominal minorada:

$$\begin{split} \phi_n R_n &= \phi_n (n_{i1} + n_{o2}) * r_{ni1} + \phi_n * n_{i2} * r_{ni2} + \phi_n * n_{o1} * r_{no} \\ \phi_n R_n &= 2325.024 \text{ kips} \\ V_u &= 133.15 \text{ kips} \qquad \qquad V_u \leq \phi_n R_n \text{ cumple.} \end{split}$$

5.6 Verificación de relación viga-columna.

5.6.1 Cortes y momentos en la rótula plástica.

$$M_{pr} = C_{pr} * R_y * F_{yb} * Z_{xb} M_{pr} = 12650 kip. in$$

$$S_{h} = L_{st} + t_{p} S_{h} = 15.332 in$$

$$Q = (1.2 + 0.2 S_{ds}) CP + CV \quad Q = 0.115 \ kip/in$$

$$L_{n} = L - 2S_{h} - d_{c} L_{n} = 209.366 in$$

$$V_{g} = \frac{Q * L_{n}}{2} V_{g} = 12.05 \ kips$$

$$V_{p} = \frac{2M_{pr}}{L_{n}} V_{p} = 120.841 \ kips$$

5.6.2 Revisión de momentos en la junta viga-columna.

$$\Sigma M_{PC} = M_{PC-1} + M_{PC-2} = M_{PC-R}$$
$$\Sigma M_{PB} = M_{PB-1} + M_{PB-2} = M_{PB-R}$$
$$\frac{M_{PC-R}}{M_{PB-R}} > 1$$

5.6.3 Cálculo de la sumatoria de momentos de las vigas en la junta.

$$V_{ub-1} = V_p + V_g V_{ub-1} = 132.892 \ kips$$

$$V_{ub-2} = V_p - V_g V_{ub-2} = 108.790 \ kips$$

$$M_{pr-1} = M_{pr} M_{pr-1} = 12650 \ kip. \ in$$

$$M_{pr-2} = M_{pr} M_{pr-2} = 12650 \ kip. \ in$$

$$M_{pb-1} = M_{pr-1} + V_{ub-1}(S_h + 0.5d_c)$$

$$M_{pb-1} = 15687.453 \ kip. \ in$$

$$M_{pb-2} = M_{pr-2} + V_{ub-2}(S_h + 0.5d_c)$$

 $M_{pb-2} = 15136.574 \ kip. \ in$
 $M_{pb-R} = M_{pb-1} + M_{pb-2}$
 $M_{pb-R} = 30824.027 \ kip. \ in$
5.6.4 Cálculo de la sumatoria de mor

5.6.4 Cálculo de la sumatoria de momentos en la junta de la columna.

$$P_{uc-1} = 295.607 \ kips$$

$$P_{uc-2} = 286.971 \ kips$$

$$M_{pc-1} = Z_{xc} \left(F_{yc} - \frac{P_{uc-1}}{A_c} \right) = 17614.560 \ kip. \ in$$

$$M_{pc-2} = Z_{xc} \left(F_{yc} - \frac{P_{uc-2}}{A_c} \right) = 17663.799 \ kip. \ in$$

$$M_{pc-R} = M_{pc-1} + M_{pc-2} = 35278.359 \ kip. \ in$$

5.6.4.1 Evaluación de la relación de momentos:

$$\frac{M_{pc-R}}{M_{pb-R}} = 1.145 > 1 "cumple"$$

5.6.5 Chequeo de la zona de panel.

La resistencia requerida en la zona del panel se determina a través de la suma de las fuerzas que se producen debido a los momentos máximos probables de las vigas, ubicados en la cara de la columna, menos el corte máximo esperado que actúa en la misma.

5.6.6 Demanda en la zona del panel:

 a) En primer lugar, se determinan los momentos máximos esperados de las vigas en la cara de la columna, a fin de obtener las fuerzas resultantes concentradas sobre la misma:

$$M_{f-1} = M_{pr-1} + V_{ub-1} S_h = 14687.441 \ kip. \ in$$

$$F_{fu-1} = \frac{M_{f-1}}{\left(d_b - t_{bf}\right)} = 631.990 \ kips$$

$$M_{f-2} = M_{pr-2} + V_{ub-2} S_h = 14317.927 \text{ kip. in}$$
$$F_{fu-2} = \frac{M_{f-2}}{(d_b - t_{bf})} = 616.090 \text{ kips}$$

- b) En segundo lugar, se determina el corte último que actúa en la columna considerando el menor valor entre los momentos resistentes de las mismas y los momentos máximos probables que puedan transferir las vigas. En general se tiene:
 - L = 151.575 in Longitud de la columna.

$$L_v = L - d_b L_v = 127.655$$
 in

$$V_{uc-vigas} = \frac{M_{pb-R}}{L} = 203.359 \ kips$$

 $M_{pc-1} = 17614.560 \ kip. in$

$$2\frac{M_{pc-1}}{L_{v}} = 275.97 \ kips$$
$$V_{uc-1} = min\left(2\frac{M_{pc-1}}{L_{v}}, V_{uc-vigas}\right) V_{uc-1} = 203.359 \ kips$$

$$M_{pc-2} = 17663.799 \ kip. in$$

$$2\frac{M_{pc-2}}{L_{v}} = 276.74 \ kips$$
$$V_{uc-2} = min\left(2\frac{M_{pc-2}}{L_{v}}, V_{uc-vigas}\right) V_{uc-2} = 203.359 \ kips$$

$$V_{uc} = min(V_{uc-1}, V_{uc-2}) V_{uc} = 203.359 kips$$

$$R_u = F_{fu-1} + F_{fu-2} - V_{uc} \qquad R_u = 1047.721 \ kips$$

5.6.7 Resistencia de la zona del panel:

 $P_{uc-1} = 295.607 \ kips$ $P_{yc} = A_c F_{yc} \ P_{yc} = 3385 \ kips$ $\frac{P_{uc-1}}{P_{yc}} = 0.087 \ \text{Relación demanda/capacidad.}$ $Si \ \frac{P_{uc-1}}{P_{yc}} \le 0.40$

$$R_{\nu 1} = 0.60 F_{\nu c} d_c t_{wc} R_{\nu 1} = 580.178 \, kips$$

$$RV = 580.178 \, kips$$

Revisión de la relación demanda/capacidad:

 $\phi = 1$ Factor de minoración

 $\frac{R_u}{\phi_{RV}} = 1.801$ Requiere Refuerzo

Demanda requerida para planchas adosadas al alma: Se define obteniendo la diferencia entre la demanda por corte y la resistencia de la zona del panel.

$$R_{dp}REQ = R_u - (\phi RV) R_{dp}REQ = 464.544 kips$$

Espesor requerido de planchas adosadas al alma:

$$Si \; \frac{P_{uc-1}}{P_{yc}} \le 0.40$$

$$t_{dp}REQ_1 = \frac{R_{dp}REQ}{0.60 F_{yc} d_c} t_{dp}REQ_1 = 1.03 in$$

 $t_{dp}REQ = 1.03$ in

 $t_p REQ = \frac{t_{dp}REQ}{2} t_p REQ = 0.514$ in Espesor requerido de cada plancha de refuerzo soldada en el alma

5.6.8 Disposición de planchas adosadas al alma:

$$t_{p-pro} = \frac{5}{8} in$$

$$t_{total} = t_{wc} + 2t_{p-pro} \quad t_{total} = 2\frac{1}{2} in$$

$$t_{min} = \frac{d_c - 2t_{fc} + d_b - 2t_{bf}}{90} t_{min} = 0.372 in$$
 "cumple"

5.6.9 Planchas de continuidad.

Espesor mínimo de la columna para no colocar planchas de continuidad:

$$t_{fc} \ge 0.40 \sqrt{1.8 \ b_{fb} \ t_{fb} \ \frac{R_{yb}F_{yb}}{R_{yc}F_{yc}}} \qquad t_{fc} = 1.327 \text{ in}$$
$$t_{fc} \ge \frac{b_{fb}}{6} \ t_{fc} \ge 1.498 \ in \qquad t_{fc-req} = 1.498 \ in$$

 $t_{fc} = 2.07 in$ Espesor del ala de la columna

Si $t_{fc} > t_{fc-req}$ No necesita Planchas de Continuidad

5.7 Conexión a corte de viga secundaria a viga principal.

Vigas Secundarias W14X38

 $d_s = 358.14 \ mm$

$$b_{fs} = 171.96 \ mm$$

$$F_{vs} = 3515 \ kg/cm^2$$

 $t_{fs} = 13 mm$

 $t_{ws} = 7.87 \ mm$

Viga Principal W24X76

 $d_s = 607.57 \ mm$ $t_w = 11.18 \ mm$

$$b_f = 228.35 mm$$

$$F_{us} = 4570 \ kg/cm^2$$

$$t_f = 17.28 \ mm$$

Planchas y pernos de conexión.

$n_b = 3$	$S_v = 80 mm$	$L_p = 328 mm$
$d_b = 23.81 mm$	$L_{es} = 30 \ mm$	$t_p = 8 mm$
$d_b = 22.22 mm$	$L_{eh} = 30 \ mm$	e = 10 mm
$d_a = 23.81 mm$	$L_{ev} = 30 mm$	Clip = 30 mm

Acero de la Plancha: ASTM - A992 50

 $F_{yp} = 3515 \ kg/cm^2$ $F_{up} = 4570 \ kg/cm^2$

Tipos de pernos: A 325 (SR)

 $F_v = 4780 \ kg/cm^2$

5.7.1 Soldadura de la conexión: Tipo de Electrodo: E70xx

$$F_{EXX} = 4920 \ kg/cm^2$$

$$D_{wx} = 5 \ mm$$

$$D_{wy} = 5 \ mm$$

$$L_{wx} = 0.5(b_{fm} - t_{wm}) - clip$$

$$L_{wx} = 78.585 \ mm$$

$$L_{wx} = 0.5(607.57 \ mm - 11.18 \ mm) - 30 \ mm$$

$$L_{wx} = 78.585 \ mm$$

$$L_{wy} = d_m - 2 \ Clip - 2t_{fm}$$

$$L_{wy} = 607.57 \ mm - 2(30 \ mm) - 2(17.27 \ mm)$$

$$L_{wy} = 513.024 \ mm$$

5.7.2 Centro de gravedad del grupo de soldadura:

$$X_{cwg} = 16.25 mm$$

$$Y_{cwg} = \frac{(d_m - 2t_{fm})}{2}$$

$$Y_{cwg} = \frac{(607.57 \, mm - 2(17.27 \, mm))}{2}$$

$$Y_{cwg} = 286.51 \, mm$$

Fuerza de corte mayorada: $V_u = 13264.29 \ kg$

5.7.3 Diseño de los pernos.

 $X_{cwg} = 16.25 \ mm$ Excentricidad de la carga: $a = 0.5(b_{fm} - t_{wm}) + e + L_{es} - X_{cwg}$ a = 0.5(228.35 mm - 11.18 mm) + 10 mm + 30 mm - 16.250 mma = 132.35 mmFuerza de corte sobre el perno más solicitado: $Y_1 = 80 mm$ $I_n = 2 Y_1^2$ $I_p = 2(80 mm)^2$ $I_p = 128 cm^2$ $P'_{x} = \frac{V_{u} a Y_{1}}{I_{n}}$ $P_{\chi}' = \frac{13264.29 \, kg)(\frac{132.34}{10} mm)(\frac{80}{10} mm)}{128 \, cm}$ $P'_{x} = 10970.80 \, kgf$ $P'_y = \frac{V_u}{n_h}$ $P'_{y} = \frac{13264.29 \, kg}{3} \qquad \qquad P'_{y} = 4421.43 \, kgf$ $P' = \sqrt{{P_x'}^2 + {P_x'}^2}$ $P' = \sqrt{(10970.819)^2 + (4421.43 \, kgf)^2}$ $P' = 11,828.26 \, kg$ 5.7.3.1 Resistencia al corte de un perno según AISC 360-10, Cap. J, Sec J3.6.

 $\phi = 0.75$

$$A_b = \frac{\pi \, d_b^2}{4} \qquad \qquad A_b = \frac{\pi \, (\frac{22.22 \, mm}{10})^{\wedge 2}}{4}$$

 $A_b = 3.88 \ cm^2$

$$\phi R_n = \phi F_v A_b$$
 $\phi R_n = 0.75(478 \frac{kg}{cm^2})(3.878 \ cm^2)$

 $\phi R_n = 13,901.676 kgf$

5.7.3.2 Resistencia al aplastamiento de un perno según AISC 360-10, Cap. J, Sec J3.6.

5.7.3.3 Resistencia al aplastamiento de un perno sobre la plancha:

$$\phi r_{n1} = \phi \ 2.4 \ d_b \ t_p F_{up}$$

$$\phi r_{n1} = 0.75(\ 2.4(\frac{22.22}{10}mm)(\frac{8}{10}mm)(4570\frac{kg}{cm^2}) \qquad \phi r_{n1} = 14622.538 \, kgf$$

5.7.3.4 Resistencia al aplastamiento de un perno sobre el alma de la viga:

$$\phi r_{n2} = \phi 2.4 d_b t_{ws} F_{us}$$

$$\phi r_{n2} = \phi \left(2.4 \left(\frac{22.22}{10} mm\right) \left(\frac{7.84}{10} mm\right) \left(4570 \frac{kg}{cm^2}\right)\right)$$

$$\phi r_{n2} = 14,392.233 \, kgf \qquad \leftrightarrow \phi r_{n \, min}$$

 $\phi r_{n \min} > P'$

5.7.4 Espesor límite de la plancha:

Espesor mínimo para prevenir el pandeo local de la plancha en flexión:

$$t_{p\,\min} = m\acute{a}x\,(\frac{L_p}{64}, 6\,mm)$$

$$\frac{L_p}{64} = \frac{328 \ mm}{64} = 5.13 \ mm$$

 $t_{p\ min} = 6\ mm$

5.7.5 Espesor máximo de la plancha para garantizar la ductilidad rotacional en la conexión:

$$t_{p \ max} = max \left(\frac{d_b}{2} + \frac{25.4}{16}, t_{p \ min}\right)$$
$$t_{p \ max} = \left(\frac{22.22 \ mm}{2} + \frac{25.4}{16}\right) \qquad t_{p \ max} = 12.70$$

Cedencia por corte de la plancha, según AISC 360-10, Cap J, Sec J4.2b:

$$A_g = t_p L_p$$

$$A_g = (\frac{8 \text{ mm}}{10})(\frac{328 \text{ mm}}{10}) \iff A_g = 26.24 \text{ cm}^2$$

$$\phi = 1$$

$$\phi R_n = \phi \ 0.60 \ F_{yp} A_g$$

$$\phi R_n = (1)(0.60(3515 \frac{\text{kg}}{\text{cm}^2})(26.24 \text{ cm}^2)\text{j} \iff R_n = 55,340.16 \ kg$$

Ruptura por corte de la plancha, según AISC 360-10, Cap J, Sec J4.2b:

$$\phi = 0.75$$
$$A_{nv} = t_p (L_p - d_a n_b)$$

$$A_{nv} = \frac{8}{10} mm \left(\frac{328}{10} mm - \frac{23.81}{10} mm\right)(3) \right) \leftrightarrow A_{nv} = 20.53 \ cm^2$$

 $\phi R_n = \phi \ 0.60 \ F_{up} A_{nv}$

$$\phi R_n = 0.75(0.60 \left(4570 \frac{kg}{cm^2}\right)(20.53 \ cm^2) \quad \leftrightarrow \ \phi R_n = 42,210.90 \ kgf$$

Bloque de corte de la plancha, según AISC 360-10, Cap J, Sec J4.2b:

$$\phi = 0.75$$

$$A_{gv} = t_p (L_p - L_{ev}) \quad \leftrightarrow \quad A_{gv} = 8 mm(328 mm - 30 mm)$$

$$A_{gv} = 23.84 cm^2$$

$$A_{nv} = t_p [(L_p - L_{ev}) - d_a(n_b - 0.5)]$$

$$A_{nv} = \frac{8 \ mm[(328 \ mm - 30 \ mm) - 23.81 \ mm(3 - 0.5)]}{100} \quad \leftrightarrow \quad A_{nv} = 19.08 \ cm^2$$
$$A_{nt} = t_p \left(L_{eh} - \frac{d_a}{2} \right)$$
$$A_{nt} = \frac{8 \ mm \left(30 \ mm - \frac{23.81 \ mm}{2} \right)}{100} \quad \leftrightarrow \quad A_{nt} = 1.45 \ cm^2$$

$$\phi R_{n1} = \phi \ 0.60 \ F_{up} A_{nv} + \phi \ F_{up} \ A_{nt}$$

$$\phi R_{n1} = 0.75(0.60(4570 \frac{kg}{cm^2})(19.08 \ cm^2) + 0.75(4570 \frac{kg}{cm^2})(1.49 \ cm^2)$$

$$\phi R_{n1} = 44,195.56 \ kgf$$

$$\phi R_{n2} = \phi \ 0.60 \ F_{yp} A_{gv} + \phi \ F_{up} \ A_{nt}$$

$$\phi R_{n1} = \ 0.75(0.60(3515\frac{kg}{cm^2})(23.84 \ cm^2) + 0.75(4570\frac{kg}{cm^2})(1.49 \ cm^2)$$

$$\phi R_{n2} = 42,670.57 \ kgf$$

 $\phi R_{n min} = 42,670.57 \ kgf$

5.7.5 Resistencia a la flexión de la porción extendida de la plancha de conexión:

Resistencia requerida a la flexión:

$$e_p = a = 132.335 mm$$

$$M_u = (V_u)(e_p)$$

$$M_u = \frac{(13,264.29 \ kg)(132.335 \ mm)}{10} \quad \leftrightarrow \quad M_u = 175,532.88 \ kgf. \ cm$$

5.7.5.1 *Cedencia por flexión de la plancha:*

Esfuerzo critico de flexión en presencia del esfuerzo cortante, Fv:

$$F_{v} = \frac{V_{u}}{A_{g}}$$

$$F_{v} = \frac{13,264.29 \ kg}{26.24 \ cm^{2}} \iff Fv = 505.50 \ kgf/cm^{2}$$

$$\phi = 0.90$$

$$\phi F_{cr} = \sqrt{\left(\phi F_{yp}\right)^{2} - 3(F_{v})^{2}}$$

$$\phi F_{cr} = \sqrt{\left(0.9(3515 \ kg/cm^{2})^{2} - 3(505.5 \ kgf/cm^{2})^{2}\right)^{2}}$$

$$\phi F_{cr} = 3039.93 \, kgf/cm^2$$

5.7.5.2 Resistencia a la flexión:

$$S_p = \frac{t_p L_p^2}{6}$$

$$S_p = \frac{\frac{(8 mm)(328 mm)^2}{6}}{1000} \qquad S_p = 143.45 cm^3$$

$$\phi M_n = \phi F_{cr} S_p$$

$$\phi M_n = (3,039.93 \frac{kgf}{cm^2})(143.45 \ cm^3)$$

$$\phi M_n = 436,063.078 \ kg. \ cm$$

$$\phi M_n > M_u$$

5.7.5.3 Rotura por flexión de la plancha:

$$S_{net} = \frac{t_p}{6} \left[L_p^2 - \frac{S_v^2 n_b (n_b^2 - 1) d_a}{L_p} \right]$$
$$S_{net} = \frac{\left(\frac{8 mm}{6} \left[(328 mm)^2 - \frac{(80 mm)^2 (3) ((3^2 - 1) 23.81 mm)}{328 mm} \right] \right)}{1000}$$

$$S_{net} = 128.58 \ cm^2$$

$$\begin{split} \phi &= 0.75 \\ \phi & M_n = \phi F_{up} S_{net} \\ \phi & M_n = 0.75(128.58 \ cm^3 (4570 \frac{kg}{cm^2}) \\ \phi & M_n = 440,703.16 \ kgf. \ cm \qquad \phi M_n > M_u \qquad ok! \end{split}$$

5.7.6 Diseño de la soldadura.

5.7.6.1 Propiedades de la Soldadura

$$r_i = \sqrt{(x_i)^2 + (y_i)^2}$$
 $F_x = \frac{M_u y_i}{I_p}$

$$A_i = \frac{\sqrt{2}}{2} D_i L_{wi} \qquad \qquad F_y = \frac{V_u}{A_w} + \frac{M_u x_i}{I_p}$$

$$I_{pi} = A_i \left(\frac{L_{wi}^2}{12} + r_i\right)$$
 $F = \sqrt{(F_x)^2 + (F_y)^2}$

 $L_{wy} = 513.024mm$

$$\begin{aligned} r_1 &= \sqrt{(47.1)^2 + (-286.89)^2} &\leftrightarrow r_1 \\ &- 200\ 0072102\ mm \\ r_1 &= \sqrt{(47.1)^2 + (286.89)^2} &\leftrightarrow r_1 \end{aligned}$$

$$-200.0072103 mm$$

$$r_2 = \sqrt{(-9.9)^2 + (0)^2} \quad \leftrightarrow \quad r_2 = 9.9 \ mm$$

pos	xi (mm)	yi (mm)	r (mm)	Aw (mm2)	lp
1	47.1	-286.89	290.730601	191.0072193	1619.12058
2	-9.9	0	9.9	1816.48661	4013.61812
3	47.1	286.89	290.730601	191.0072193	1619.12058
suma			591.361202	2198.501049	7251.85928

$$\begin{split} M_u &= 175,532.88 \ kgf. \ cm \qquad V_u = 13264.29 \ kgf \\ F_A &= \sqrt{(598.833137)^2 + (758.0564353)^2} \quad \leftrightarrow \quad F_A = 966.049008 \ kgf/cm^2 \\ F_A &= \sqrt{(536.213338)^2 + 535.170411^2} \quad \leftrightarrow \quad F_A = 757.583073 \ kgf/cm^2 \end{split}$$

pos	xj (mm)	Yj (mm)	Fx (kgf/cm2)	Fy (kgf/cm2)	F (kgf/cm ²)
А	74.125	286.89	598.833137	758.0564353	966.049008
В	-9.9	256.89	536.213338	535.170411	757.583073

Esfuerzo máximo de la soladura: $F = 966.04 \ kgf/cm^2$

Resistencia de la soldadura: $F_{EXX} = 4920 \ kgf/cm^2$

 $\phi F_w = 2214 \, kgf/cm^2$

Comprobación de Resultado $\phi F_w > F$

Por lo tanto, la soldadura es adecuada ante las solicitaciones de carga correspondiente.

5.8 Diseño de clavador de techo

Longitud del miembro = 6.00 mseparación = 0.99 m

GEOMETRIA DEL TECHO

PENDIENTE	EN GRADOS	SIN O	COSθ
7%	4°	0.0697	0.9976

5.8.1 PROPIEDADES GEOMETRICAS Y PESO

$A = 1.188 in^2$	\rightarrow	$7.66 \ cm^2$	$S_x = 1.815 \ in^3$	\rightarrow	29.7 cm ³
$I_x = 4.537 \ in^4$	\rightarrow	189.9 cm ⁴	$S_y = 0.421 \ in^3$	\rightarrow	6.9 cm ³

 $Peso = 0.785x7.66 = 6.01 \ kg/m$
5.8.1.1 Cargas

CARGAS MUERTAS

Peso de cubierta de techo <i>calibre</i> 26	5.6 <i>kg/m</i> ²
Acciones electromecánicas	30 <i>m</i>
Cielo falso	12.50 kg/m^2
Lámparas y accesorios	$5 kg/m^2$
∑cm	53.10 kg/m ²
CARGAS VIVA	
Distribuida =	10 <i>kg/m</i> ²
Puntual =	100 <i>kg</i>
CARGA POR VIENTO $P_z =$	-88.84 kg/m ²

5.8.2 Diseño

5.8.2.1 Componentes en X & Y

Carga muertaCarga Viva $w_y = w \cos \theta$ $w_y = w \cos \theta$ $w_y = (59.11kg/m)(\cos(4))$ $w_y = (10kg/m)(\cos(4))^p = (100 kg/m)(\cos(4))$ $w_y = 58.97 kg/m$ $w_y = 9.98 kg/m$ $w_x = w \sin \theta$ $w_x = w \sin \theta$ $w_x = (59.11kg/m)(\sin(4))$ $w_x = (10kg/m)(\sin(4))$ $w_x = 4.12 kg/m$ $w_x = 0.70 kg/m$

Carga por viento

$$P_z = Wz \cos \theta$$

$$p_y = (-88.84 \ kg/m) \ (\cos(4))$$

$$w_x = -88.62 \ kg/m$$

5.8.2.2 Combinaciones de cargas

COMB1	COMB2	COMB3
1.2CM+1.6CV	1.2CM+CV+1.6PZ	0.9CM+1.6PZ
86.72	-61.06	-88.73
6.06	5.64	3.71
	99.76	
	9.67	

6.8.2.3 Fuerzas internas Máximas

$$M_{X=} \frac{w_y L_x^2}{8} + \frac{p_y L_x}{4} \qquad M_{Y=} \frac{w_x L_y^2}{8} + \frac{p_x L_Y}{4}$$

Combinación 1

Combinación 2

$$M_{X} = \frac{\left(86.72 \frac{kg}{m}\right)(6 m)^{2}}{8} \qquad \qquad M_{X_{z}} \frac{\left(61.06 kg/m\right)(6 m)^{2}}{8} + \frac{(99.76 kg/m)/(6 m)^{2}}{4} \\ M_{X} = 390.26 kg/m \qquad \qquad M_{X} = -125.13 kg/m \\ M_{y} = \frac{\left(6.06 \frac{kg}{m}\right)(6 m)^{2}}{8} \qquad \qquad = \frac{\left(5.64 kg/m\right)(6 m)^{2}}{9} + \frac{\left(6.97 kg/m\right)/(6 m)^{2}}{4} \\ M_{X} = 27.27 kg/m \qquad \qquad M_{X} = 35.84 kg/m$$

Combinación 3

$$M_X = \frac{(-88.73 \ kg/m)(6 \ m)^2}{8}$$
$$M_X = -399.26 \ kg/m$$
$$M_X = \frac{(3.71 \ kg/m)(6 \ m)^2}{8}$$
$$M_X = \frac{(3.71 \ kg/m)(6 \ m)^2}{8}$$

5.8.2.4 Resistencia Nominal por Flexión

$$M_n = M_p = F_y S_x$$
$$M_n = (36 \text{ ksi})(1.815 \text{ in}^3)$$

 $M_n=65.34\,kip-in$

Resistencia a flexión

$$\phi = 0.90$$

(0.90(63.34 k

$$\phi M_n = \frac{(0.90(63.34 \text{ kip} - \text{in}))}{12}$$

$$\phi M_n = 678.93 \ kg - m$$

Por lo tanto; El clavador es adecuado para soportar las solicitaciones de cargas a las que será sometido.

CONCLUSIONES

El sistema de secciones compuestas posee muchas variantes en la construcción, la combinación de materiales ligeros con materiales resistentes como el acero y el concreto son también una alternativa empleada en la construcción, resultando un elemento más resistente, logrando un comportamiento que combina las principales propiedades del concreto (rigidez) y del acero (flexibilidad), por lo que este método es viable para estructura que deben soportar grandes solicitaciones de cargas y para edificios de gran altura [ITEA TOMO 12 Construcción Mixta].

- Al emplear el análisis modelo espectral conseguimos periodos no mayores a 0.903 s este valor fue calculado mediante la metodología propuesta del ASCE 7-16 que nos permite saber el valor aproximado del periodo de la estructura, el cual no debe ser menor que los periodos obtenido en el análisis, lo que nos proporciona fiabilidad con los datos resultantes de la estructura.
- Para las condiciones actuales de la estructura, todos los niveles exceden el valor máximo permitido para el estado límite de servicio en la dirección x, donde las distorsiones de entrepiso son mayores a 0.004 lo cual nos indica que la estructura no cumple los requisitos principales de seguridad, de acuerdo a lo estipulado en el capítulo 34 inciso c-a "revisión de los desplazamientos laterales".
- Se observa que las columnas compuestas de los niveles 1 a 4, están diseñada por secciones compuestas de concreto de 25" x 25", con perfiles W 12 x 230 y refuerzo longitudinal de 8 varillas # 8, según los resultados obtenidos en el programa Etabs, nos brinda una relación demanda-capacidad baja, los cual nos indica que los elementos estructurales presentan secciones muy grandes antes las cargas solicitadas. Los marcos compuestos resistentes a momentos deben de disponer de una

significativa capacidad de deformación inelástica, por lo cual se aplica el criterio de diseño "columna fuerte – viga débil" según el reglamento esta condición se cumple mediante el requisito 4.4a del AISC 341-16 "conexión viga-columna". Las dimensiones de las secciones utilizadas en el diseño, fueron necesarias para cumplir dicha condición.

Es importante tener en cuenta que la conexión fue precalificada a tipo 8 es momento End Plate, dando como resultado una placa extrema de 10 5/8" x 39 6/7" x 1 1/4" y 8 pernos de 1" de diámetro ASTM 490 y un rigidizador de 8 1/8" x 14" x 5/8" siguiendo la norma AISC 358 -16 (Capitulo 6) y AISC 341-16 (Capítulo G3) las cuales permiten el diseño de unión de vigas I y perfiles W con columnas compuestas, (perfil embebido en concreto).

RECOMENDACIONES

- Con la implementación del programa ETABS se permite localizar elementos críticos y optimizar el diseño estructural del edificio de secciones compuesta. Ya que le permite al ingeniero concentrarse en probar perfiles que mejoren la economía y el comportamiento de la estructura.
- De este estudio se desprende la necesidad de realizar un trabajo en el que abarque la diferencia económica entre un edificio diseñado con elementos de concreto reforzado, elementos de acero estructural y elementos compuestos.
- Es necesario que el RNC-07 incorpore el diseño estructural de secciones compuestas, (Acero Estructural – Concreto Reforzado). Ya que Nicaragua es un país con alta vulnerabilidad sísmica, y con este sistema constructivo se puede alcanzar mayor resistencia, rigidez y ductilidad.
- Desde el punto de vista sísmico los marcos rígidos, su principal ventaja es la gran ductilidad y capacidad de disipación de energía que se puede lograr con este sistema. Dado que el comportamiento ante carga lateral está regido por las deformaciones de flexión de sus vigas y columnas, el sistema presenta una resistencia y rigidez a cargas laterales relativamente bajas, a menos que las secciones transversales de estos elementos sean demasiado robustas. Los edificios a base de marcos resultan en general considerablemente flexibles y en ellos se vuelve crítico el problema de mantener los desplazamientos laterales dentro de los limites prescritos por las normas.

Como resultado del análisis estructural, se mostró que la estructura en estudio no cumple con los requisitos del RNC-07 para las distorsiones en condiciones de servicio, por lo que se recomienda lo siguiente:

Sabemos que nuestro Reglamento Nacional de la Construcción está basado en la Norma Técnica complementaria del Distrito federal del año 2004, el cual en su apéndice A4 hace énfasis a las revisiones de desplazamientos laterales, menciona:

"Para limitación de daños a elementos no estructurales, las diferencias entre los desplazamientos laterales de pisos consecutivos producidos por las fuerzas cortantes sísmicas de entrepiso, calculadas para las ordenadas espectrales reducidas según la sección anterior y multiplicadas por el factor Q'R/7 no excederán 0.002 veces las diferencias de elevaciones correspondientes"

El RNC indica en su artículo 34 especifica:

"Para limitación de daños a elementos no estructurales, las diferencias entre los desplazamientos laterales de pisos consecutivos, calculados como lo estipula el Artículo 34 inciso a), no excederán 0.002 veces las diferencias de elevaciones correspondientes, salvo que no haya elementos incapaces de soportar deformaciones apreciables, como muros de mampostería, o estos estén separados de la estructura principal de manera que no sufran daños por sus deformaciones, en tal caso, el límite en cuestión será de 0.004."

Se observa que hay una diferencia significativa entre el rango permisible de distorsión por servicio para un mismo criterio que no depende directamente de la zona sísmica sino a las características propias de los sistemas estructurales, por lo que el reglamento es demasiado conservador al momento de esta revisión, por este motivo se ha considerado no utilizar el valor de 2.5 sino un valor de 5 para considerar razonable la revisión del estado límite de servicio, resultando:

Distorciones de entrepiso en Condiciones de Servicio									
	Desplazamientos de Servicio								
Nivel	h _i (cm)	$\delta_x (cm)$	δ_{xT} (cm)	Δ_{xT}	Δ_{Serv}	$\delta_y (cm)$	δ_{yT} (cm)	Δ_{xT}	Δ_{Serv}
1	385	3.5982	4.606	0.0025	0.004	3.4049	4.358	0.0021	0.004
2	385	2.8436	3.640	0.0035	0.004	2.7709	3.547	0.0034	0.004
3	385	1.7989	2.303	0.0038	0.004	1.7596	2.252	0.0038	0.004
4	385	0.6577	0.842	0.0022	0.004	0.6237	0.798	0.0021	0.004

Y por lo tanto se considera que las distorsiones calculadas son aceptables.

6. BIBLIOGRAFÍA

- 1. AISC Design Examples vs 15 (2017), American Institute of Steel Construction, October, United Stated of America.
- ASCE/SEI (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, ASCE/SEI 7-16.
- American Concrete Institute (ACI). 2014. Building Code Requirements for Structural Concrete, ACI 318-14.
- 4. American Institute of Steel Construction. Specification for Structural Steel Buildings 2016 ANSI/AISC 360-16
- 5. American institute of Steel Construction. (1999) Load and Resistance Factor Design Specification for Structural Steel Buildings.
- 6. Cosenza E., Zandonini R. (1999). Structural Engineering Handbook. Ed. Chen Wai-Fah. CRC Press LLC.
- David A. Nethercot (2003). Composite Construction (1^{ra} Ed.). London: Tylor & Francis.
- Davison, B., Owens G. (2012) Steel Designer's Manual 7th Edition. The Steel Construction Institute. Wiley- Blackwell.
- 9. Especificación ANSI/AISC 360-16 Para construcciones de Acero. Asociación Latinoamericana del Acero (ALACERO).

- McCormac Jack C., Csernak Stephen F. (2013). Diseño de Estructuras de Acero (5^a. Ed.). Editorial Alfaomega.
- Prequalified Connections for Special and Intermediate Moment Frames for Seismic Application (2016), American Institute of Steel Construction, Chicago Illinois, United Stated of America.
- 12. Reglamento Nacional de la construcción RNC-07. Ministerio de Transporte e Infraestructura. Managua, Nicaragua.
- René Jesús Bermúdez Cruz. (2008). Revisión del diseño estructural del hospital monte España Villa Fontana. Análisis y diseño de secciones compuestas de acero y concreto, por el método LRFD. Managua, Nicaragua.
- 14. Roberto T. León. "Desarrollos recientes en construcción mixta en los Estados Unidos de Norteamérica". Informe.
- 15. T. Segui, William. (2013). Diseño de Acero, 5ta Edición. Cengage Learning.
- 16. Williams P. Jacob, Jerome F. Hajjar. Paper of "Load Transfer in composite construction".

ANEXO A

PROCESO DE MODELADO Y ANÁLISIS EN ETABS

1. PROCESO DE MODELADO Y ANÁLISIS EN ETABS.

1.1 Idealización de características preliminares del modelo a desarrollar

Se construirá un modelo tridimensional del edificio utilizando el programa computacional ETABS 18.0.2 incluyendo en este todas las características estructurales especificadas en los planos arquitectónicos y secciones propuestas del edificio. El programa ETABS cuenta con propiedades que nos permite definir una estructura lo más cercano posible a la realidad de un edificio con la finalidad de analizar el comportamiento de la estructura y sus elementos.

Figura A-7 Interface del programa. Fuente: ETABS.

1.2 Definición de Geometría.

Para empezar nuestro proceso de análisis y diseño es necesario definir el número de ejes, distancias entre ejes, número de pisos, altura de entrepisos, estos datos son ingresados según requerimientos arquitectónicos.

En la figura A-1 se muestra la interfaz de Edit story and grid system data donde definimos dichos valores geométricos y espaciamientos, tanto en planta como en elevaciones.

tory Data	
Story4 Story3 Story2 Story1 Base	Modify/Show Story Data
	Quick Add Story
	Set Story Names to Default
G1	Add New Grid System Modify/Show Grid System
G1	Add New Grid System Modify/Show Grid System
G1	Add New Grid System Modify/Show Grid System Delete Grid System
[G1	Add New Grid System Modify/Show Grid System Delete Grid System Copy Existing Grid System
G1	Add New Grid System Modify/Show Grid System Delete Grid System Copy Existing Grid System Add from .dxf File
G	Add New Grid System Modify/Show Grid System Delete Grid System Copy Existing Grid System Add from .dxf File Add New from .dxf File

Figura A-8 Edit story and grid system data. Fuente: ETABS

1.3 Definición de Materiales.

Para la definición de un material de utilizamos el menú *Define > Materials*. En la ventana *Define Materials*.

Figura A-9 Define Materials. Fuente: ETABS.

En la ventana que se despliega han de colocarse las propiedades mecánicas deseadas, como por ejemplo la resistencia del material, peso unitario, masa, módulo de Poisson y los módulos de elasticidad, entre otros.

General Data			
Material Name	4000Psi		
Material Type	Concrete		\sim
Directional Symmetry Type	Isotropic		\sim
Material Display Color		Change	
Material Notes	Modify	/Show Notes	
Material Weight and Mass			
Specify Weight Density	O Spec	ify Mass Density	
Weight per Unit Volume		2402.77	kgf/m³
Mass per Unit Volume		245.014	kgf-s²/m4
Mechanical Property Data			
Modulus of Elasticity, E		2534563541	kgf/m²
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A		0.0000099	1/C
Shear Modulus, G		1056068142	kgf/m²
Design Property Data			
Modify/Show M	laterial Property	Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping Pr	operties
Time D	ependent Prope	rties	

Figura A-10 Definición de propiedades del concreto 4000 psi. Fuente: ETABS

General Data			
Material Name	A992Fy50		
Material Type	Steel		\sim
Directional Symmetry Type	Isotropic		\sim
Material Display Color		Change	
Material Notes	Mod	ify/Show Notes	
Material Weight and Mass			
Specify Weight Density	🔘 Sp	ecify Mass Density	
Weight per Unit Volume		7850	kgf/m³
Mass per Unit Volume		800.477	kgf-s²/m4
Mechanical Property Data			
Modulus of Elasticity, E		20389019158	kgf/m²
Poisson's Ratio, U		0.3	
Coefficient of Thermal Expansion	n, A	0.0000117	1/C
Shear Modulus, G		7841930445	kgf/m²
Design Property Data			
Modify/Sho	ow Material Proper	ty Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping Pr	operties
Tir	me Dependent Proj	perties	

Figura A-11 Definición de propiedades del Acero A992. Fuente: ETABS.

En la figura A-5 se puede apreciar los valores para las propiedades de un acero tipo A992 grado 50 y en la figura 4 las propiedades para un concreto normal de resistencia 4000 Psi.

1.4 Definición de Secciones.

Para la definición de un material habremos de utilizar el menú *Define > Sections Properties> Frame Sections*. Como se observa en la figura A-6.

Figura A-12 Definición de secciones. Fuente: ETABS.

General Data		
Property Name	CC-25"X25"	
Material	A992Fy50	
Notional Size Data	Modify/Show Notional Size	
Display Color	Change	• •
Notes	Modify/Show Notes	
Shape		• • •
Section Shape	Concrete Encasement Rectangle 🛛 🗸	
Section Property Source		
Source: User Defined		Property Modifiers
Section Dimensions		Modify/Show Modifiers
Depth	25 in	Currently Default
Width	25 in	Reinforcement
		Modify/Show Rebar
	Chan Contine Reporting	
	Show Section Properties	
Embedded I-Section		
Embedded I-Section	W12X230 V	
Encasement		ОК
		0

Figura A-13 Definición de Columna compuesta. Fuente: ETABS.

En la figura A-7 se puede observar la creación de una sección compuesta, con un perfil de acero de tipo ala ancha Wide Flange W 12 X 230 embebido en una columna de concreto reforzado de 25" X 25" con 8 barras de refuerzo longitudinal y concreto de 4000 psi.

1.4.1 Definición de losa tipo deck.

Establecemos el tipo de piso (Deck), ver figura A-8.

Deck Property	Click to:
Deck1	Add New Property
	Add Copy of Property
	Modify/Show Property
	Delete Property
	ОК
	Cancel

Figura A-14 Deck Properties. Fuente: ETABS.

En el programa se creó una losa de 5 in de espesor tipo deck. Ver figura A-9.

Property Name	Deck1
Туре	Filed 🗸 🚺
Slab Material	4000Psi ~
Deck Material	A992Fy50 ~
Modeling Type	Membrane \vee
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Property Data	
Slab Depth, tc	2.5 in
Rib Depth, hr	2.5 in
Rib Width Top, wrt	7.4 in
Rib Width Bottom, wrb	4.6 in
Rib Spacing, sr	12 in
Deck Shear Thickness	0.0339 in
Deck Unit Weight	0.00001 kip/in ²
Shear Stud Diameter	0.75 in
Shear Stud Height, hs	4.5 in
	65 kin/in²

Figura A-15 Deck Properties data. Fuente: ETABS.

En la figura se observa la losa tipo deck propuesta con sus respectivas propiedades tales como: el tipo de relleno, la resistencia de concreto (4000psi), el tipo de material deck (acero ASTM A992) con una fluencia de 50Ksi.

Por último, en property data se establece la profundidad de la losa, Rib Spacing, Rib Width, Rib Width Bottom, entre otros valores técnicos que pueden ser encontrados en fichas técnicas para tipo de lámina cero propuesto.

1.4.2 Definición de diafragma rígido.

En la misma interfaz define, creamos un diafragma para cada piso, se coloca dicha propiedad seleccionando toda la losa de cada piso, y esta aplicada según el número de cada piso.

Define Diaphragm	×
Diaphragms	Click to:
D1 D2	Add New Diaphragm
D3 D4	Modify/Show Diaphragm
	Delete Diaphragm
	ОК
	Cancel

Figura A-16 Define Diaphragm. Fuente: ETABS.

1.5 Digitación del Espectro de Diseño

En el programa es necesario calcular el espectro de diseño, dicho cálculo será mostrado en el capítulo 4 del presente trabajo, generalmente para facilitar el trabajo, el cálculo se realiza en una hoja de Excel, luego se exporta en un block de notas y se introduce en Add New Function, pero antes de eso es necesario seleccionar la opción de user en choose funtion type (vea figura A-11), para definir un espectro según nuestros datos y no según las diferentes normas establecidas por el programa, esto debido que nuestro reglamento no aparece como una opción el cual nos permita generar nuestro espectro de forma automática.

Figura A-17 Define Response Spectrum Fuctions. Fuente: ETABS.

Figura A-18 Response Spectrum Function Definition. Fuente: ETABS.

Como se visualiza en la figura 12 este es la manera adecuada de generar el espectro de diseño dentro del programa, muestra los datos y el grafico de la función generada.

1.6 Definición de patrones de cargas.

Es necesario definir las variables de cargas gravitacionales y sísmicas tales como carga muerta, viva, carga viva reducida, sismo en X y sismo en Y para el cálculo del cortante basal estático.

ads				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
P P	Dead	~ 1	~	Modify Load
SCP	Live Super Dead			Modify Lateral Load
	Reducible Live Seismic	0	User Coefficient	Delete Load
JUNO 1	Jeanic		User Coemcient	
				OK Cancel

Figura A-19 Define Load Patterns. Fuente: ETABS.

1.6.1 Modificación de cargas.

Para definir el coeficiente de cortante basal, el reglamento nacional presenta en el artículo 24 el coeficiente de diseño sismorresistente, se toma en cuenta la deriva según el sismo actuante, es decir si analizamos el sismo en X por el método estático, en el programa se seleccionará la opción únicamente en la deriva más excentricidad en X, y el valor del coeficiente sismo resistente en la casilla de Base Shear, ver figura A-14.

Direction and Eccentricity		Factors	
X Dir	Y Dir	Base Shear Coefficient, C	0.153
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity		
		Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story4
Overwrite Eccentricities	Overwrite	Bottom Story	Base 🚿

Figura A-20 Seismic Load Pattern. Fuente: ETABS.

1.7 Definición de casos de carga.

Luego de ello se definen los Casos de Carga (Load Cases), los cuales sirven para agrupar los diferentes patrones de carga y especificar los que actúan y su comportamiento de tipo estático, dinámico y modal.

Load Case Name		СМ		Design
Load Case Type		Linear Static	;	V Notes
Exclude Objects in this Grou	up	Not Applicat	ble	
Mass Source		MsSrc1		
Use Nonlinear Case (Lo Nonlinear Case	tings None oads at End of Case NC	DT Included)	Modify/Show.	
Use Nonlinear Case Applied Load Type	tings None oads at End of Case NC	DT Included)	Modify/Show	•
Use Preset Pueta Set Use Nonlinear Case Use Applied Load Type Load Type	Ings None Doads at End of Case NC Load N	DT Included)	Modify/Show Scale Factor	
Use Prese Proteit Set Use Nonlinear Case Use Nonlinear Case Load Applied Load Type Load Pattem Load Pattem	ings None oads at End of Case NC Load N PP SCP	DT Included)	Modify/Show Scale Factor	Add Delete

Figura A-21 Load case Data. Fuente: ETABS.

deneral					
Modal Case Name		Modal			Design
Modal Case SubType		Eigen		~	Notes
Exclude Objects in this Group		Not Applicab	e		
Mass Source		MsSrc1			
P-Delta/Nonlinear Stiffness					
Ose Preset P-Delta Settings	None		Mod	ify/Show	
O Use Nonlinear Case (Loads at En Nonlinear Case	d of Case N	OT Included)			
oads Applied					
Advanced Load Data Does NOT Exis					Advanced
Other Parameters					
Maximum Number of Modes			12		
Minimum Number of Modes			12		
Frequency Shift (Center)			0		cyc/sec
Cutoff Frequency (Radius)			0		cyc/sec
Convergence Tolerance			1E-09		
Allow Auto Frequency Shifting					

Figura A-22 Modal Case Data. Fuente: ETABS.

De ese modo se observa que se han creado para la edificación de 4 niveles, 12 modos de vibración como mínimo (3 modos por cada nivel).

		SDX		Design
Load Case Type		Response Spectrum	~	Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc1)		
ads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U1	ESPECTRO RNC-07	9.8067	Add
her Parameters		Modal	~	
her Parameters				
her Parameters Modal Load Case		Modal	~	
her Parameters Modal Load Case Modal Combination Meth	od	Modal CQC	~	
her Parameters Modal Load Case Modal Combination Meth Dinclude Rigid F	od Response	Modal CQC Rigid Frequency, f1	~ ~	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	× ×	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	× ×	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response on, td	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	v	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response on, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response on, td Type al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	> > - - - - - - - -	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination Absolute Direction Modal Damping	od Response on, td Type al Combination Scale [Constant at 0.05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	

Figura A-23 Load Case Data, Sismo Dinámico en X. Fuente: ETABS.

Load Case Name		SDY		Design
Load Case Type		Response Spectrum	· · · · ·	- Notes
Exclude Objects in this (Group	Not Applicable		_
Mass Source		Previous (MsSrc1)		-
Loads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U2	ESPECTRO RNC-07	9.8067	Add
Other Parameters	-			Advan
Other Parameters Modal Load Case Modal Combination Meth	nod	Modal CQC		Advan
Other Parameters Modal Load Case Modal Combination Metr	nod Response	Modal CQC Rigid Frequency, f1	~	Advan
Other Parameters Modal Load Case Modal Combination Meth Include Rigid I	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~	Advan
Other Parameters Modal Load Case Modal Combination Met Include Rigid I Earthouske Durat	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advan
Other Parameters Modal Load Case Modal Combination Metr Include Rigid I Earthquake Dural Directional Combination	nod Response ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		
Other Parameters Modal Load Case Modal Combination Mett Include Rigid I Earthquake Durat Directional Combination Absolute Directior	nod Response ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		
Other Parameters Modal Load Case Modal Combination Meth Include Rigid 1 Earthquake Durat Directional Combination Absolute Direction Modal Damping	nod Response ion, td Type nal Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	Modfy/Show	

Figura A-24 Load Case Data, Sismo Dinámico en Y. Fuente: ETABS.

También se han definido los sismos, SDX y SDY, para los cuales se aplica un factor de 9.8067 m/s² que es el valor de la aceleración de la gravedad y se toma en cuenta la combinación modal CQC, la combinación direccional SRSS y un amortiguamiento de 5%. De esta manera se tienen los casos de carga como se muestra en la figura A-19:

Load Case Name	Load Case Type		Add New Case
СМ	Linear Static		Add Copy of Case
cv	Linear Static		Modify/Show Case
CVR	Linear Static		Delete Care
SDX	Response Spectrum	*	Delete case
SDY	Response Spectrum		Show Load Case Tree
SISMO X	Linear Static	×	
SISMO Y	Linear Static		
			ОК

Figura A-25 Load Case. Fuente: ETABS.

1.8 Definición de la Fuente de masa.

Luego se deben definir los Orígenes de las Masas (*MassSource*). Este parámetro involucra las cargas actuantes y las cargas de acuerdo a su participación según normativa (RNC-07). Por lo tanto, al definir este parámetro, se introducen valores normativos de modo que los resultados sean de acuerdo a la norma lo más ajustado posible según el método de análisis.

Mass Source Name MsSrc1	mass	land Dettern	No. No. No.	
	pp	Luad Pattern	1	
Mass Source	PP		1	Add
Element Self Mass	SCP		1	Modify
Additional Mass				Delete
Specified Load Patterns				
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Mass	Options		
This Ratio of Diaphragm Width in X Direction		nclude Lateral Mass		
This Ratio of Diaphragm Width in Y Direction		nclude Vertical Mass		
	1 L	ump Lateral Mass at Stor	y Levels	

Figura A-26 Mass Source Data. Fuente: ETABS.

De acuerdo a esto se especifica al programa que tome en cuenta el 100% de la carga muerta (Peso Propio más sobrecargas permanentes) y las cargas vivas reducidas de acuerdo al uso de la edificación ($W_0 = CM + CVR$ Definido en el Arto 24 del RNC-07). Todas estas masas serán provenientes de las cargas asignadas al modelo y serán las encargadas de generar las traslaciones y rotaciones de la edificación. También definen la participación de las mismas en los modos de vibración.

1.9 Combinaciones de cargas.

Acto seguido, se definen las combinaciones de carga, estas son presentadas en el artículo 15 del reglamento nacional de la construcción y son introducidas al programa una por una hasta tener todas las combinaciones de servicio y diseño.

nbos
1

Figura A-27 Load Combinations. Fuente: ETABS.

1.10 Cargas aplicadas a la Estructura.

Cada elemento ya sean nodos, vigas, columnas y losas pueden adherírseles cargas, por lo general en las losas es necesario agregar cargas tipo Shell Loads para definir lo que son cargas vivas y muertas.

Uniform Load Set Name	LOSA NIVEL 1-	3
oad Set Loads		
Load Pattern	Load Value (kgf/m²)	
SCP	234	Add
CV	250	, 66
CVR	100	Delete
Noto: Loado aro in the gravitur	direction]

Figura A-28 Shell Uniform Load Set Data, Losa Niveles 1-3. Fuente: ETABS.

Uniform Load Set Name	LOSA NIVEL 4 (TECHO)
oad Set Loads		
Load Pattern	Load Value (kgf/m²)]
SCP	146.18	Add
CV	100	7100
CVR	40	Delete
Note: Loads are in the gravity	direction	

Figura A-29 Shell Uniform Load Set Data, Losa Nivel 4. Fuente: ETABS.

1.11 Análisis chequeo de digitación.

Una vez creado todo el modelo, el programa tiene una opción muy importante que nos permite determinar si existe alguna incongruencia al momento de introducir o dibujar un elemento, dentro de los errores más comunes esta: No haber unido adecuadamente la viga de nodo a nodo, algún elemento de área superpuesto en otro, así entre otros tipos de incongruencias en la digitación.

Figura A-30 Analyze Check Model. Fuente: ETABS.

1.11.1 Ajuste de chequeo.

Check Model	×
Length Tolerance for Checks	
Length Tolerance	0.001 m
Length Tolerance for Checks	0.001 m
Joint Checks	
Joints/Joints within Tolerance	
Joints/Frames within Tolerance	
Joints/Shells within Tolerance	
Frame Checks	
Frame Overlaps	
Frame Intersections within Tolerance	e
✓ Frame Intersections with Area Edge	s
Shell Checks	
Shell Overlaps	
Other Checks	
Check Meshing for All Stories	
Check Loading for All Stories	
Check for Duplicate Self Mass	
Fix	
✓ Trim or Extend Frames and Move Jo	pints to Fix Problems
Joint Story Assignment	
Check Selected Objects Only	
Select/Deselect	: All
ОК	Cancel

Figura A-31 Check Model. Fuente: ETABS.

Para el cheque del modelo se selecciona todas las casillas, le que es uniones de vigas, traslape en elementos de áreas, cargas en todos los pisos, en general todas

las casillas a excepción de ajuste (fix), con el sentido de ver en qué parte se encuentran los errores digitados.

Figura A-32 Warning. Fuente: ETABS.

Una vez finalizado el chequeo el programa nos indicara que elementos deben ser corregidos, vea figura A-26, no tenemos elementos que corregir ya que todo se encuentra debidamente digitado.

1.12 Verificación de los desplazamientos de la estructura.

Para verificar las derivas en X y Y podemos irnos a la pestaña de Display, luego a story response plot y al final veremos la casilla de formato como aparece en la figura, el cual nos muestra un gráfico del comportamiento y la tabla de los desplazamientos véase la figura A-27.

Figura A-33 Maximum Story Displacement. Fuente: ETABS.

- 1.12.1 Desplazamientos de la estructura.
- 1.12.1.1 Sismo dinámico en Dirección X.

ET S	itory Response				23
	MOB				
	Story	Elevation cm	Location	X-Dir cm	Y-Dir cm
•	Story5	1759	Тор	0	0
	Story4	1540	Тор	3.5982	0.1902
	Story3	1155	Тор	2.8436	0.183
	Story2	770	Тор	1.7989	0.1224
	Story1	385	Тор	0.6577	0.0475
	Base	0	Тор	0	0

Figura A-34 Desplazamientos debido al Sismo dinámico en dirección X.

1.12.1.2 Sismo dinámico en Dirección Y.

ET S	tory Response				23
	Story	Elevation cm	Location	X-Dir cm	Y-Dir cm
•	Story5	1759	Тор	0	0
	Story4	1540	Тор	0.1904	3.0561
	Story3	1155	Тор	0.1611	2.5061
	Story2	770	Тор	0.1082	1.62
	Story1	385	Тор	0.0421	0.6035
	Base	0	Тор	0	0

Figura A-35 Desplazamientos debido al Sismo dinámico en dirección Y.

En la tabla de la figura A-28 y figura A-29 se puede encontrar la información de los desplazamientos por piso, el cual nos permitirá conocer el límite de servicio y colapso.

1.13 Fuerza cortante por piso.

1.13.1 Sismo estático en dirección X.

Figura A-36 Story Shears, Sismo estático en X.

1.13.2 Sismo dinámico en dirección Y.

Figura A-37 Story Shears, Sismo dinámico en X.

ANEXO B

TABLAS Y FIGURAS CONSULTADAS

DESTINO	MÁXIMA (CV)	INCIDENTAL (CVR)	Notas	
Residencial (casas, apartamentos, cuartos de	200	80	(1)	
hoteles, internados de escuelas, cuarteles,				
cárceles, correccionales)				
Salones de clase: Escuelas primarias	250	150		
Secundaria y universidad	250	200		
Hospitales (salas y cuartos), Asilos, Centros de Salud y Clinicas	200	100		
Salas de Operación	400	150		
Oficinas: Despachos	250	100	(2)	
Salas de Archivo	500	250		
Bibliotecas: Salones de Lectura	300	150		
Salón de Libros	600	400		
Lugares de Reunión: Salones de Baile, gimnasios,	400	250		
restaurantes, museos y Salas de juegos				
Auditorios, Cines, Templos: Sillas Fijas	350	250		
Sillas móviles	500	250		
Teatros: Vestibulos	200	80		
Piso del escenario	700	350		
Graderias y tribunas	500	250		
Lugares de Comunicación para peatones (Pasillos,	500	250	(3)	
escaleras, rampas y pasajes de acceso libre al				
público);				
Estadios y lugares para espectáculo provisto de	500	350		
gradas (desprovisto de bancas o butacas)				
Laboratorios	250	125		
Comercio: Ligero	350	300	(4)	
Semi-pesado	450	400	(4)	
Pesado	550	500	(4)	
Fábrica y Talleres: Ligero	400	350	(4)	
Semi-pesado	500	450	(4)	
Pesado	700	600	(4)	
Bodegas: Ligero	450	400	(4)	
Semi-pesado	550	475	(4)	
Pesado	650	550	(4)	
Techos de losas con pendiente no mayor de 5%	100	40	(5)	
Techos de losas con pendiente mayor de 5%	50	20		
Garajes y estacionamientos (para automóviles	250	150	(6)	
exclusivamente, altura controlada a 2.40 m)				
Andamios y cimbra para concreto	150	100		
Volados en vía pública (marquesinas, balcones y	400	200		
similares)				

Tabla B-1 Cargas vivas unitarias mínimas en kg/m² (Tabla 1 RNC-07)

Observaciones

(1). Para elementos con área tributaria, A, mayor de 36 m², CV podrá reducirse, tomándola igual a 100 + 420/»A. Cuando sea más desfavorable se considerará en lugar de CV una carga de 500 kg aplicada sobre un área de 50 x 50 cm en la posición más crítica.

(2). Para elementos con área tributaria, A, mayor de 36 m², CV podrá reducirse, tomándola igual a 180 + 420/»A. Cuando sea más desfavorable se considerará en lugar

de CV una carga de 1000 kg aplicada sobre un área de 50 x 50 cm en la posición más crítica.

(3). Para el diseño de pretiles de cubiertas, azoteas y barandales para escaleras, rampas, pasillos y balcones, se tomará en cuenta lo estipulado en el inciso b) de este artículo.

(4). La carga unitaria CV, deberá especificarse en los planos estructurales y en placas metálicas colocadas en lugares fácilmente visibles de la edificación.

(5). Las cargas vivas especificadas para cubiertas y azoteas no incluyen las cargas producidas por recipientes de agua y anuncios, ni las que se deben a equipos u objetos pesados que puedan apoyarse o colgarse. Estas cargas deben preverse por separado y especificarse en los planos estructurales. Adicionalmente los elementos de las cubiertas y azoteas deberán revisarse con una carga concentrada de 100 kg aplicada en la posición más crítica.

(6). Más una carga concentrada de 1500 kg en el lugar más desfavorable del miembro estructural de que se trate.

Tabla B-2 Distorsiones máximas permisibles para el estado limite de colapso (Tabla 4 RNC-07)

Sistema estructural	Distorsión
Marcos dúctiles de concreto reforzado (Q= 3 ó 4)	0.0300
Marcos dúctiles de acero (Q= 3 ó 4)	0.0300
Marcos de acero ò concreto con ductilidad limitada (Q= 1 ó 2)	0.0150
Losas planas sin muros o contravientos	0.0150
Marcos de acero con contravientos excéntricos	0.0200
Marcos de acero o concreto con contravientos concéntricos	0.0150
Muros combinados con marcos dúctiles de concreto (Q= 3)	0.0150
Muros combinados con marcos de concreto con ductilidad	0.0100
limitada (Q= 1 ó 2)	
Muros diafragma	0.0060
Muros de carga de mampostería confinada de piezas macizas	0.0050
con refuerzo horizontal o malla	
Muros de carga de: mamposteria confinada de piezas macizas;	0.0040
mampostería de piezas huecas confinada y reforzada	
horizontalmente; o mampostería de piezas huecas confinada y	
reforzada con malla	
Muros de carga de mampostería de piezas huecas con refuerzo	0.0020
interior	
Muros de carga de mampostería que no cumplan las	0.0015
especificaciones para mamposteria confinada ni para	
mampostería reforzada interiormente	

Tabla B-3 Cubierta de techo, incluye material de fijación (Tabla 1A RNC-07)

CONCEPTO	PESO (kg/m ²)
Zinc corrugado calibre 28	3.6
Zinc corrugado calibre 26	5.4
Zinc corrugado calibre 24	6.1
Asbesto cemento 5 mm tipo Tejalita	9
Asbesto Cemento o Fibrocemento, lámina ondulada 6 mm	18
Asbesto cemento autoportante tipo Canaleta	19
Autoportante tipo maxiplac	15
Teja de barro tipo española nacional, saturada.	50
Nota: en techo de teja deberá añadirse 35 kg/m en líneas de	
cumbrera y	
de limatesas	
Cartón asfáltico de 3 capas	35

Tabla B-4 Cielos rasos (Tabla 2A RNC-07)

CONCEPTO	PESO (kg/m ²)
Cielo raso de Plywood de 3/16" con estructura de madera	14
Cielo raso de Plywood de 1/4" con estructura de madera	16
Fibrocemento liso 4 mm con estructura de madera	18
Fibrocemento liso 6 mm con estructura de madera	22
Fibrocemento liso 4 mm con perfiles de aluminio	5
Fibrocemento liso 6 mm con perfiles de aluminio	7
Machihembre de 1/2"	7
Yeso con perfiles de aluminio	8
Placa de 1/2" de fibrocemento reforzada con malla de fibra de	18
vidrio	
Mortero: cemento cal y arena en malla metálica (15 mm)	30

Tabla B-5 Cubiertas de piso (Tabla 3A RNC-07)

CONCEPTO	PESO (kg/m ²)
Ladrillo de cemento	83
Ladrillo de barro	58
Ladrillo de Cerámica	30
Fibrocemento de 20 mm	22

Α.	ROCAS	Kg/m°	C.	MATERIALES DIVERSOS	Kg/m³
	Arenisca	2600		Alquitrán	1200
	Arenisca porosa y caliza porosa	2400		Asfalto	1300
	Basalto, diorita	3000		Caucho en plancha	1700
	Calizas compactas y mármoles	2800		Papel	1100
	Granito, sienita, diabasa, pórfido	2800		Plástico en plancha	2100
	Gneis	3000		Vidrio plano	2600
	Mármol	2700	D.	METALES	
	Pizarra	2800		Acero	7850
В	MADERAS			Hierro dulce	7800
	Pochote	530		Fundición	7250
	Pino Costeño	801		Aluminio	2750
	Pino Ocote	660		Plomo	11400
	Genizaro	513		Cobre	8900
	Cedro Macho	615		Bronce	8500
	Cedro Real	481		Zinc	6900
	Laurel hembra	561		Estaño	7400
	Almendro	770		Latón	8500
	Bálsamo	960		Mercurio	1360
	Roble	745		Niquel	9000
	Caoba	500	E.	OTROS	
	Cortez	960		Vidrios	2500
	Guayabo	738		Concreto asfáltico	2400
	Guayacán	1240		Concreto estructural	2400
	Laurel	565		Mortero	2200
	Comenegro	950		Losetas	2400
	Guapinol	930		Cartón bituminado	600
	Nispero	1010		Asbesto – cemento	2500
	Madero Negro	960		Leña	600
	Mora	920		Tierra	1600
	Melón	930			
	Nambar	1100			

Tabla B-6 Materiales almacenables (Tabla 5A RNC-07)

Sistema estructural	Descripción	Factor de comportamiento sismico, Q
a) Edificios industriales	Edificios con marcos rígidos en una dirección (X), y contraventeados con	$Q_x \ge 2^{(1)}$
	diagonales que trabajan exclusivamente a tensión en la dirección ortogonal (Y).	Q _y = 1
	Edificios con marcos rígidos en una dirección (X), contraventeados con	$Q_x \ge 2^{(1)}$
	diagonales que pueden trabajar en tensión o compresión en la dirección ortogonal (Y).	Q _y = 1.5
 b) Sistemas contraventeados 	Contraventeo excéntrico.	4
	Contraventeo concéntrico dúctil.	3
	Contraventeo concéntrico con ductilidad normal.	2
c) Marcos rígidos	Marcos rigidos de acero con ductilidad alta.	4 ó 3
	Marcos rigidos de acero con ductilidad reducida.	2

Tabla B-7 Factores de comportamiento sísmico Q (Tabla 1B RNC-07)

Figura B-1 Espectro de diseño para Nicaragua (Figura 3 RNC-07).

Figura B-2 Mapa de Isoaceleraciones (Anexo C RNC-07).

Tabla 12.8-1 Coeficientes para límite superior en el cálculo de periodosegún Norma ASCE 7-16.

Design Spectral Response Acceleration Parameter at 1 s, <i>S</i> _{D1}	Coefficient C _u
≥0.4	1.4
0.3	1.4
0.2	1.5
0.15	1.6
≤0.1	1.7

Table 12.8-1 Coefficient for Upper Limit on Calculated Period

Tabla 12.8-1 Valores aproximación para parámetros de periodo segúnASCE 7-16.

Structure Type	C _t	x
Moment-resisting frame systems in which the		
frames resist 100% of the required seismic		
force and are not enclosed or adjoined by		
components that are more rigid and will		
prevent the frames from deflecting where		
subjected to seismic forces:		
Steel moment-resisting frames	0.028 (0.0724) ^a	0.8
Concrete moment-resisting frames	0.016 (0.0466) ^a	0.9
Steel eccentrically braced frames in	0.03 (0.0731) ^a	0.75
accordance with Table 12.2-1 lines		
B1 or D1		
Steel buckling-restrained braced frames	0.03 (0.0731) ^a	0.75
All other structural systems	0.02 (0.0488) ^a	0.75

Table 12.8-2 Values of Approximate Period Parameters C_t and x

^aMetric equivalents are shown in parentheses.

Figura B-3 Zonificación sísmica de Nicaragua.

FIGURA B-4 VISTA EN PLANTA NIVELES 1-3

FIGURA B-5 VISTA EN PLANTA NIVEL 4

FIGURA B-6 ELEVACION ESTRUCTURAL EJE C.

TABLA 1-1 AISC MANUAL EDICIÓN 2014 (PERFIL W)

	d X-		k		Tat	ole 1 W	I-1 -Sl	(con hap ension	tinue es ns	ed)												Ta	ble W F	1-1 (d -Sh Prope	cont ape erties	inue 25 s	ed)			W14	-W12
	(h	Area,	Depth	, T	We hicknes:	b 3, t,		FI Width,	ange Thíci	mess,		k	Distan	ce	Work-	~	Nom- inal	Comp Secti Crite	ion ria	·	Axis	X-X			Axis	Y-Y		r _{is}	ho -	Torsi Prope	onal erties
	Snape	A	U		t _w	.2	`	b ₁		t _f	Kates	Kaet	A 1	<u> </u>	Gage	-	WL.	br	h	.1.	S	r	Z	1	S	r	Z		6	1	C _W
		in.2	in.		ín.	in.		in.		<u>n.</u>	in.	in,	in.	in.	in.		lb/ft	24	4	in.4	in.3	in.	in.3	in.	in.3	in.	in. ³	in.	ín.	in.	in.º
Y	V14×132	38.8	14.7 1	4⁵⁄a 0	645 %	- ^{\$} ∕1	6 14	.7 143/4	1.03	1	1.63	2%/16	1%16	10	51/2	1	132	7.15	10.3	1380	190	6.28	234	248 495	67.5	3.70	102	4.23	13.6	9.37	20000
	×120	35.3	14.5 14	172 U 13/5 D	525 1/2	6 91 1/4	6 14 14	6 14%	0.940	7/8	1.04	274	11/2				109	8.49	21.7	1240	173	6.22	192	447	61.2	3.73	92.7	4,17	13.4	7.12	20200
1	x105	29.1	14.2 1	41/a 0	485 1/2	1/4	14	.6 145/	0.780	3/4	1.38	21/16	17/16				99	9.34	23.5	1110	157	6.17	173	402	55.2	3.71	83.6	4.14	13,4	5.37	18000
	×90 ^f	26.5	14.0 14	4 0	.440 7/1	6 1/4	14	5 141/2	0.710	11/16	1.31	2	17/16	Į.Y.	Y		90	10.2	25.9	999	143	6,14	157	362	49.9	3.70	75.6	4.10	13.3	4.06	16000
ly	V14×82	.24.0	14.3 14	41/4 0	.510 1/2	1/4	10	1 10%	0.855	7/8	1.45	111/16	11/16	10%	51/2		82	5.92	22.4	881	123	6.05	139	148	29.3	2.48	44.8	2.85	13,4	5.07	6710
	×74	21.8	14.2 1	4½ 0	.450 7/1	6 1/4	10	.1 10%	0.785	13/16	1.38	1 ⁵ /8	11/16				74	6,41 2	25,4	795	112	6.04	126	134	26.6	2.48	40.5	2.83	13.4	3.87	5990
	×68	20.0	14.0 14	4 0	.415 1/1	6 ¹ /4	10	.0 10	0.720	3/4	1.31	19/16	11/16				68	6.97 2	27.5	722	103	5.01	115	121	24.2	2.46	36.9	2.80	13.3	2.01	5380
	×61	17.9	13.9 11	3'/8 0	.375 %	-71	6 10	.0 10	0.645	1/8	1.24	1 72	1	1	1			1.10		940	32,1	0.00	102		21.0	2,40	02.0	2.10	10.0	2.10	4710
V	V14×53	15.6	13.9 1	37/a O	.370 3/8	3/1	6 8	.06 8	0.660	11/16	1.25	11/2	1	10%	51/2		53	6.11 3	90.9 13 A	541	7/.8	5.89	87.1 79.4	51.1	14.3	1.92	10.6	2.22	13.2	1.94	2540
	- ⊤×48	14.1	13.8 1	33/4 0 25/6 0	340 %	5 ³ /1 3/4	6 8	.03 8	0.595	-/8	1.19	1//16		I¥.	1 1		43	7.54 3	37.4	428	62.6	5.82	69.6	45.2	11.3	1.89	17.3	2.20	13.2	1.05	- 1950
	X43	12.0	13.7		.003 /1		° °	.00 0	0.000	1.	1.12	1.0					20	6 57	20.6	200	EAG	5 07	61 E	26.7	7 00	1 55	121	1 07	12.6	0 709	1920
V	V14×38°	11.2	14.1	4%	310 %	6 - 1/1 	6 6	77 63/4	0,515	72	0.915	174	3/.	11%	31/29		34	7.41	3.1	340	48.6	5.83	54.6	23.3	6.91	1.53	10.6	1.80	13.5	0.569	1070
	×34°	8.85	13.8 1	4 U 37/8 O	200 -1/4	5 1/R	6 0	73 63/4	0.450	3/8	0.785	11/8	3/4	×	31/2		30	8.74	15.4	291	42.0	5.73	47.3	19.6	5.82	1.49	8.99	1.77	13.4	0.380	887
w1	2x336 ^b x305 ^h x279 ^h x252 ^h x252 ^h x230 ^h x120 x170 x152 x136 x120 x106 x96 x87 x79 x79 x65 ^f	98.9 1 88.5 1 81.9 1 67.7 1 61.8 1 56.0 1 56.0 1 56.0 1 30.2 1 31.2 1 31.2 1 28.2 1 31.2 1 28.2 1 21.1 1 19.1 1 19.1 1	6.8 167 6.3 168 5.9 157 5.1 15 5.4 143 4.4 143 3.7 133 3.1 131 2.9 127 2.7 128 2.5 12 2.4 122 2.5 12 2.4 12 2.5 12 2.1 12	/s 1.7 /s 1.6 /s 1.5 /s 1.4 1.2 /s 1.0 0.9 /s 0.7 /s 0.6 /s 0.7 /s 0.6 /s 0.7 /s 0.6 /s 0.7 /s 0.4 /s 0.7 /s 0.4 /s 0.7 /s 0.4 /s 0.7 /s 0.4 /s 0.7 /s 0.4 /s 0.7 /s 0.7 /	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/8 13/16 3/4 11/16 5/8 9/16 7/16 7/16 3/8 5/18 5/18 5/18 1/4 1/4 1/4 3/18	13.4 13.2 13.1 12.9 12.8 12.7 12.6 12.7 12.6 12.2 12.2 12.2 12.2 12.2 12.1 12.0 12.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.96 2.71 2.47 2.25 2.07 1.90 1.74 1.56 1.40 1.25 1.11 0.990 0.810 0.735 0.670 0.605	2 ¹⁵ /16 2 ¹¹ /16 2 ¹ /2 2 ¹ /4 2 ¹ /16 1 ⁷ /8 1 ³ /4 1 ⁹ /16 1 ³ /5 1 ¹ /4 1 ¹ /18 1 ³ /4 1 ¹ /16 5/8	3.55 3.30 3.07 2.85 2.67 2.50 2.33 2.16 2.00 1.85 1.70 1.59 1.50 1.41 1.33 1.27 1.20	37/8 35/8 33/8 31/8 215/16 213/16 25/8 27/16 25/16 21/8 21/18 11/18 15/8 19/16 11/2	1 ¹¹ / ₁₆ 1 ⁵ / ₈ 1 ⁵ / ₈ 1 ¹ / ₂ 1 ⁷ / ₁₆ 1 ³ / ₈ 1 ⁵ / ₁₆ 1 ¹ / ₄ 1 ³ / ₁₈ 1 ¹ / ₈ 1 ¹ / ₁₆ 1 ¹ / ₁₆ 1	91/8	51/2		336 305 279 252 230 210 190 170 152 136 120 106 96 87 79 72 65	2.26 2.45 2.66 2.89 3.11 3.37 3.65 4.03 1 4.96 1 5.57 1 6.76 1 7.48 1 8.22 2 8.99 2 9.92 2	5.47 5.98 6.35 6.96 7.56 8.23 9.16 0.1 1.2 2.3 3.7 5.9 7.7 8.9 0.7 2.6 4.9	4060 3550 3110 2720 2420 1650 1650 1650 1240 1070 933 833 740 662 597 533	483 435 393 353 321 292 263 235 209 186 163 145 131 118 107 97,4 87,9	6.41 6.29 6.16 6.06 5.97 5.89 5.82 5.74 5.66 5.58 5.51 5.44 5.38 5.34 5.34 5.31 5.28	603 537 481 428 386 311 275 243 214 186 164 147 132 119 108 96.8	1190 1050 937 828 742 664 589 517 454 398 345 301 270 241 216 195 174	177 159 143 127 115 104 93.0 82.3 72.8 64.2 56.0 49.3 44.4 39.7 35.8 32.4 29.1	3.47 3.42 3.38 3.34 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02	274 244 220 196 177 159 143 126 111 98.0 85.4 75.1 67.5 60.4 54.3 49.2 44.1	4.13 4.05 4.00 3.93 3.87 3.81 3.77 3.70 3.66 3.52 3.49 3.46 3.43 3.41 3.38	13.8 13.6 13.4 13.2 13.0 12.8 12.7 12.4 12.3 12.2 12.0 11.9 11.8 11.7 11.7 11.6 11.5	243 185 143 108 83.8 64.7 48.8 35.6 25.8 18.5 12.9 9.13 6.85 5.10 3.84 2.93 2.18	57000 48600 33800 27200 23600 20100 117200 12400 10700 9410 8270 7330 6540 5780
18	hape exceed	s compa	t limit for	flexure	with $F_{y} =$	50 ksi.																									
11	he actual siz	e, combi	nation and	orient	ation of fa	stener o	xompor	nents shou	ld be cor	npared v	with the	geomet	ry of th	e cross	section																
B	i ensure com lange thickni	ipacionity ess preat	er than 2 i	in. Søe	cial requir	ements	mav a	pply per Al	ISC <i>Saec</i>	ification	Section	A3.1c.																			
1																															

	TABLA 1-1	AISC MANUAL	EDICIÓN 2014 ((PERFIL W)
--	-----------	-------------	----------------	------------

d X-	Y by	r		Т	able \	∍ 1- N\$ Din	1 (c Sha nens	onti ape sion	nue S s	d)							i. J		
	[Web			Fla	nge			1	Distanc	e					Γ
· · ·	Area,	Dep	oth,	Thick	ness.	t.	Wid	lth,	Thick	ness,	1	¢ (Work-			inal	ŀ
Shape	A	- 1	1	t		2	6	4	<u>_</u> t	r i	k des	Kdat	A1		Gage			Wt.	ŀ
	in 2	i	1	it	n.	in.	ii	1.	ir	ι.	in.	in.	in.	in.	in.			łb/ft	1
W24~370 ^h	109	28.0	28	1.52	11/2	3/4	13.7	135/8	2.72	2 ³ /4	3.22	35/8	19/16	20 ³ /4	5½			370	Г
×335 ^h	98.3	27.5	271/2	1.38	13/8	11/16	13.5	131/2	2.48	21/2	2.98	33/8	11/2					335	
×306 ^h	89.7	27.1	271/8	1.26	11/4	.5/8	13.4	13 ³ /8	2.28	21/4	2.78	33/16	17/16					306	
x279 ^h	81.9	26.7	263/4	1.16	13/16	5/8	13.3	131/4	2.09	21/16	2.59	3	1/16					279	
×250	73.5	26.3	263/8	1.04	11/16	9/16	13.2	131/8	1.89	17/8	2.39	213/16	13/8					250	L
×229	67.2	26.0	26	0.960	15/16	1/2	13.1	131/8	1.73	13/4	2.23	2%	19/16					229	L
×207	60.7	25.7	253/4	0.870	7/8	7/16	13.0	13	1.57	1%16	2.07	21/2	174					207	
×192	56.5	25.5	251/2	0.810	13/16	7/16	13.0	13	1.46	1//16	1.96	2%	174					192	l
×176	51.7	25.2	251/4	0.750	3/4	3/8	12.9	121/8	1.34	1%16	1.84	27/4	19/16					176	
×162	47.8	25.0	25	0.705	11/16	3/8	13.0	13	1.22	1%	1.72	2'/8	11/16					162	l
×146	43.0	24.7	243/4	0.650	5/8	5/16	12.9	121/8	1.09	17/16	1.09	174	11/4				1	146	1
×131	38.6	24.5	241/2	0.605	9/8	7/16	12.9	1278	0.950	7/16	1.40	13/4	11/0					131	
×117°	34.4	24.3	241/4	0.550	1/16	9/16	12.8	12%	0.850	34	1.00	15/6	11/10	1	1.			117	
×104°	30.7	24.1	24	0.500	1 1/2	1/4	12.8	12º/4	0.750	*/4	1.23	17/6	1/10			1		104	1
W24×103 ^c	30.3	24.5	241/2	0.550	9/16	5/16	9.00	9	0.980	1	1.48	17/8	11/a	203/4	51/2			103	
×94°	27.7	24.3	241/4	0.515	5 1/2	1/4	9.07	9 ¹ /8	0.875	7/8	1.38	13/4	1/16					94	
×84°	24.7	24.1	241/8	0.470	1/2	1/4	9.02	9	0.770	3/4	1.27	111/16	1/16					84	
×76°	22.4	23.9	237/8	0.440	7/16	1/4	8.99	9	0.680	11/16	1.18	11/16	1/16					76	
×68°	20.1	23.7	233/4	0.415	5 7/16	1/4	8.97	9	0.585	\$/16	1.09	1 1/2	1/16	11	1			68	
W24×62 ^c	18,2	23.7	233/4	0.430	7/16	1/4	7.04	7	0.590	9/16	1.09	11/2	11/16	203/	31/29		,	62	
	I said	1	1	10.000	-1 97	1 2/	1 7 04		10 505		· • 01			1 1 1 1 1 1 1					

17 X	Y ki X Y bi	r k		т	abl	e 1 W- Dii	-1 SI ne	(co ha	ipe ion	nue S S	d)						
	Area	Der	th.		Web	r	T		Fla	nge				Distan	ce .	Wo	rk-
Shape	A A		1	Thick	ness,	$\frac{t_w}{2}$		Widi b,	6n, (TRICK	ness,	Kew	Kert	<i>k</i> 1 [·]	T	ab Ga	le ae
	in 2			ir		in.	+	in		i	1.	in.	in.	in.	in.	ir	۱.
701	100	28.0	28	1.52	11/2	3/4	13	7	135/8	2.72	23/4	3.22	35/8	19/16	203/4	5	/2
335h	98.3	27.5	271/2	1.38	13/8	11/1	6 13	.5	131/2	2.48	21/2	2.98	33/8	11/2			
3061	89.7	27.1	271/8	1.26	11/4	5/8	13	4	13 ³ /8	2.28	21/4	2.78	33/16	17/16			ч.
279 ^h	81.9	26.7	263/4	1.16	1 ³ ∕16	5/8	13	.3	13¼	2.09	21/16	2.59	3	17/16			
×250	73.5	26.3	263/8	1.04	11/16	9/16	13	.2	13½	1.89	17/8	2.39	213/16	13/8			
229	67.2	26.0	26	0.960	16/16	1/2	13	1	131/8	1.73	13/4	2.23	25/8	15/16			
×207	60.7	25.7	253/4	0.870	7/8	7/16	13	.0	13	1.57	1%16	2.07	21/2	1%			
192	56.5	25.5	251/2	0.810	13/16	5 7/16	13	.0	13	1.46	1//16	1.96	2%	174			
<176	51.7	25.2	251/4	0.750	3/4	3/8	12	.9	121/8	1.34	1%16	1.84	274	19/16		1	
×162	47.8	25.0	25	0.705	11/16	3/8	13	.0	13	1.22	144	1.72	278	1-716		L	
×146	43.0	24.7	243/4	0.650	5/8	5/10	3 12	2.9	12%	1.09	1 /16	1.59	2	178			
×131	38.6	24.5	241/2	0.605	5/8	5/1	3 12	.9	12%	0.960	1/16	1.46	19/.	178			
×117 ^c	34.4	24.3	241/4	0.550	9/16	3/1	s 12	.8	12%	0.850	1 2/	1.35	15/-	11/10	I V		1
×104°	30.7	24.1	24	0.500	1/2	1/4	12	2.8	124/4	0.750	\$/4	1.25	17/8	1 7 16	1		1
4~103¢	30.3	24.5	241/2	0.550	9/16	5/1	6 9	9.00	9	0.980	1	1.48	17/8	11/8	203/	4 5	1/2
-0100	27.7	24.3	241/4	0.515	1/2	1/4	19	0.07	9 ¹ /s	0.875	7/8	1.38	13/4	11/16			
2840	24.7	24.1	241/8	0.470	1/2	1/4	18	9.02	9	0.770	3/4	1.27	111/1	6 11/16			
~76°	22 4	23.9	237/4	0.440	7/16	1/4	18	3.99	9	0.680	11/16	1.18	1%16	11/16		1	Ţ
×68°	20.1	23.7	233/4	0.415	7/16	1/4	18	3.97	9	0.58	\$/16	1.09	11/2	1/16	11		۲
			0.02	0.00	71.	1/	1.		7	0.50	9/10	1 109	11/2	11/16	203/	4 3	1/29
24×62¢	18,2	23.7	23%	0.430	31.	3/	. 1	7.04	7	0.50	1/2	1 01	17/1	li	203/	1 3	1/29

Propiedades del Steel Deck.

				SOBRECA	ARGA PERMISI	ible (KG/M2)					
	Lug liber		G	alvadeck Perfil 6	53			C	Galvadeck Perfil 7	5	
Calibre	Luz libre		Espe	sor de concreto	(cm)			Espe	esor de concreto	(cm)	
	(m)	5	6	8	10	12	5	6	8	10	12
	2.00	1050	1277	1948	2577	3109	1317	1575	2247	3136	3954
24	2.40	670	819	1271	1874	2531	850	1022	1476	2079	2835
24	2.80	440	543	863	1924	1853	570	689	1010	1441	1984
	3.20	291	365	598	918	1335	387	474	708	1028	1433
	2.00	1245	1511	2043	2575	3107	1592	1930	2608	3285	3962
22	2.60	742	903	1318	1881	2306	990	1170	1605	2187	2899
22	3.20	423	521	780	1135	1601	582	693	964	1332	1784
	3.80	243	306	475	714	1031	351	423	603	850	1159
	2.00	1243	1509	2040	2563	3105	1592	1930	2608	3285	3962
20	2.80	754	905	1290	1747	2114	998	1166	1582	2110	2722
20	3.60	378	459	675	965	1342	520	612	846	1146	1525
	4.40	188	236	364	543	781	277	331	472	659	897

TABLA 3-2 AISC MANUAL EDICIÓN 2014 (PERFIL W)

Z,	С.		Т	able M Se	3-2 /-Sl lecti	(cont hap on by	tinue ES y <i>Z_x</i>	d)		F _y	=.50 I	csi
	T	M_{px}/Ω_b	φ _b M _{px}	M_{rx}/Ω_b	¢₀M _{rx}	BF/Ωb	ф _b BF	1		<i>I</i>	V_{nx}/Ω_{v}	¢ √V nx
Shape	Zx	kip-ft	kip-ft	kip-ft	kip-ft	kips	kips	-p	~1	**	kips	kips
Since .	in.3	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD
W18~95	66.5	166	249	101	151	8.14	12.3	4.31	12.3	510	106	159
W10×30	64.2	160	241	101	151	3.80	5.80	6.89	22.4	348	81.1	122
W16v36	64.0	160	240	98.7	148	6.24	9.36	5.37	15.2	448	93.8	141
W14×38	61.5	153	231	95.4	143	5.37	8.20	5.47	16.2	385	87.4	131
1M10~40	60.4	151	227	95.4	143	2.46	3.71	8.97	31.6	272	68.0	102
1W8~58	59.8	149	224	90.8	137	f.70	2.55	7.42	41.6	228 .	89.3	134
W19~40	57.0	142	214	89.9	135	3.66	5.54	6.85	21.1	307	70.2	105
W16-/6	5/0	127	206	85.8	129	2.59	3.89	7.10	26.9	248	70.7	106

W12×40 W10×45	57.0 54.9	142 137	214	89.9 85.8	129	2.59	3.89	7.10	26.9	248	70.7	106
W14×34	54.6	136	205	84.9	128	5.01	7.55	5.40	15.6	340	79.8	12 0
W16×31 W12×35	54.0 51.2	135 128	203 192	82.4 79.6	124 120	6.86 4.34	10.3 6.45	4.13 5.44	11.8 16.6	375 285	87.5 75.0	131 113

	U 14	THVN .				ويعجز والمتح والمحافظ					And St.	0.40
11/04-04	224	559	840	342	515	16.2	24.2	6.89	20.3	2370	227	340
W24×84	664 004	CET .	020	225	504	14.6	22.0	6.50	21.3	2070	251	376
W21×93	221	501 0	029	000	100	1 02	80.8	11.2	63.2	1240	212	318
W12×136	214	534	803	325	400	4.02	7.00	12.0	61.0	1380	171	257
W14×120	212	529	795	332	499	5.09	CO. \	13.2	01.9	1300	inn i	200
1010-07	211	526	791	328	494	9.41	14.1	9.36	30.4	1/50	199	299
WIOX34	, 71 1					1		c 70	10 5	2100	210	315
W24×76	200	499	750	307	462	15.1	22.6	6,78	19.0	2100	2000	000
WHA HAD	100	101	743	306	459	7.86	11.9	8.87	32.8	1490	199 1	298
W16X1UU	190	404	796	200	110	13.8	20.8	6.46	20.2	1830	220	331
) W21×83	196	489	133	299	454	C 01	7.54	122	48.5	1240	150	225
W14×109	192	479	720	302	454	5.01	7.04	10.2	08.0	1520	177	265
W18×86	186	464	698	290	436	9.01	13.6	9.29	28.0	1550	100	070
W40.400	196	164	698	285	428	3.94	5.95	11.1	56.5	1070	186	219
W12×120	100	404	000	1					· .	1	r May	0.07

TABLA B4.1b AISC MANUAL EDICIÓN 2014 (PERFIL W)

,	Wi	idth-to-Th	TAB icknes Memb	LE B4.1b ss Ratios ers Subje	(contin : Comp ect to F	ued) ression E lexure	lements
	Case	Description of Element	Width-to- Thick- ness Ratio	Limiti Width-to-Thick λ_p (compact/ noncompact)	ng (ness Ratio λ _r (noncompact/ slender)	Еха	mples
	15	Webs of doubly symmetric I- shaped sections and channels	h∕t _w	$3.76\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$	$-t_{\pi}$ h	t# h
	16	Webs of singly symmetric I-shaped sections	h _c ∕t _w	$\frac{\frac{h_{c}}{h_{p}}\sqrt{\frac{E}{F_{y}}}}{\left(0.54\frac{M_{p}}{M_{y}}-0.09\right)^{2}} \le \lambda_{r}$	$5.70\sqrt{\frac{E}{F_y}}$		
its	17	Flanges of rectangular HSS	ЬÅ	$1.12\sqrt{\frac{E}{F_y}}$	$1.40\sqrt{\frac{E}{F_y}}$	<u>1</u>	
Stiffened Elemor	18	Flange cover plates and dlaphragm plates between lines of fasteners or welds	Ьł	$1.12\sqrt{\frac{E}{F_y}}$	$1.40\sqrt{\frac{E}{F_y}}$		
	19	Webs of rectangular HSS and box sections	hł	$2.42\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$		/ <u></u>]n
	20	Round HSS	D/t	0.07 ^E / _{Fy}	0.31 ^E F _y	-(
	21	Flanges of box sections	bit	$1.12\sqrt{\frac{E}{F_y}}$	$1.49\sqrt{\frac{E}{F_y}}$		

 $|M_{K_{C}} = 4/\sqrt{h/t_{W}}$, shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes. $|M_{F_{L}} = 0.7F_{y}$ for siender web i-shaped members and major-axis bending of compact and noncompact web bult-up i-shaped members with $S_{M}/S_{W} \ge 0.7$; $F_{L} = F_{y}S_{M}/S_{W} \ge 0.5F_{y}$ for major-axis bending of compact and noncompact web bult-up i-shaped members with $S_{M}/S_{W} \ge 0.5F_{y}$ for major-axis bending of compact and noncompact web bult-up i-shaped members with $S_{M}/S_{W} < 0.7$, where S_{W} , $S_{M} =$ elastic section modulus referred to compression and tension flanges, respectively, in.² (mm²). $|A|M_{y}$ is the moment at yielding of the extreme fiber. $M_{p} = F_{y}Z_{x}$ plastic bending moment, kip-in. (N-mm), where $Z_{x} =$ plastic section modulus taken about x-axis, in.³ (mm²). E = modulus of elasticity of steel = 20.000 kel (200.000 MPa).

ENA - elastic neutral axis

а) PNA - plastic neutral axis

FIGURA 3-3 DEL MANUAL AISC

TABLA 3-19 AISC MANUAL EDICIÓN 2014 (PERFIL W)

			00 Avai	lahk	Str	enal	th in	Flex	aure.		Fy =	50 k	si
W16-	W14		Ava	iani	1	kip-f	t		,				
	MIO	h.H.							72 ^b ,	in.			
Chana	kin	-ft	PNA	110	ΣQe	. 2		2	5	3		3.	5
anaha .	450	LRFD		in.	kip	ASD	LRFD	ASD	LRFD	ASD.	LRFD	ASD	LRFD
116-28	110	166	TFL	0	384	())的;	284	,198	298	208	312	217	327
NIGAZO	100		2	0.0863	337	184	276 .	192	289	201	302	209	314
- *-	100		3	0.173	289	379	269.	186	280	193	291	201	301
1.5	100		4	0.259	242	11174	261	过\$0	270	186	278	192	265
	Bak		BFL.	0.345	194	168	253	173	260	178	267	183	2/5
1 T	35	1.1	6	2.05	145	161	241	164	247	168	252	1/1	200
	10	7	7	4.01	96.0	148	223	151	226	153	230	150	2,34
		144	m		sen	253	380	1267	401	281	422	295	.443
W14×38	153	Z31	INL	0.120	473	244	367	256	384	268	402	279	420
	110	l	2	0.129	9/3	034	352	244	367	254	381.	263	396
	158	1.1	1. 3	0.200	300	-:994	397	292	348	239	360	247	371
	-925	120	9	0.500	230	1914	321	219	329	224	337	229	345
	130		BPL	0.510	178	200	313	213	320	217	327	222	333
	649	1	0	1,30	140	.001	303	205	308	206	313	212	319
	- 665	1	1.1	2,55	140		000	1		1	075	her	904
W14x34	136	205	TR.	0	500	225	338	.237	356	250	3/5	000	979
۰.	235	6	2	0.114	423	217	326	227	342	235	40/	290	352
1.1.4	101	3%.	3	0.228	346	208	313	217	326	220	338	209	200
	102	1.5	4	0.341	270	200	300	206	310	213	320	220	230
	155	173	BPL	0:455	193	- 190	286	196	293	200	301	107	207
~ 1.0	1.80	197	6	1.42	159	2186	279	190	285	193	281	100	201
	63	1.5	7	2.61	125	179	269	182	273.	185	2/0	100	200
	1	1.77	TE		443	397	295	-208	312	219	329	230	345
W14x30	118	1.""	1.	0,008	9 979	100	285	199	300	209	314	218	328
	1.16	÷	1.	0.103	1 912	-183	275	191	287	199	298	206	310
1 3	1.35	11.1	1 3	n 980	248	176	264	182	273	188	283	194	292
	3ex	. Ľ	80	0.285	183	168	253	173	260	177	266	182	271
	1.3	12	art of	1 46	147	183	245	167	250	170	256	174	26
	185	1.1		2.80	111	156	234	158	238	161	242	164	240
	140	1	11	2.00			1	3	0.99	1	1007	001	i an
W14×28	100	151	TR	0	385	172	258	181	2/3	5.181	20/	201	29
11	104	11	2	0.105	332	2166	250	175	262	183	2/3	101	27
	120	1	3	0.210	279	5161	241	168	252	1/3	202	104	25
	13	\mathbb{C}^{2}	4	0.31	226	155	232	8 160	241	100	245	1/0	20
	1:50		BP	0.42) 173	146	223	153	230	15/	230	101	23
	(płs	1.1	6	1.67	135	14	215	14	220	142	940	1.4	21
	.00	1	7	3.18	96	.1 13	201	13	205	1	20	1	- C
	13						8	and a	ġ.,	1		100	n.
	20	ġ.				12	÷.	Sec.	<u>.</u>	60.	d	1960	<u> </u>

KIP-TI W16- Shape					ana			. A						
Shape 4 4.5 5 5.4 6.5 6.5 M16×26 227 341 237 56 246 370 256 384 265 389 275 471 W16×26 227 241 277 245 340 244 352 243 356 246 384 265 389 275 471 285 208 312 271 321 322 322 344 229 345 237 356 244 365 188 297 204 306 210 315 216 324 325 318 233 225 112 213 326 318 237 300 324 301 205 112 213 318 230 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231 231							KI	ρ-π					W16	-V
Shape 4 4.5 5.0 6.7 6.3 6.7 M20 IAF0 ASD IAFD I		<u> </u>		<u>.</u>				72	, in.					
Name Name <th< th=""><th>Shape</th><th>460</th><th>4</th><th>4</th><th>.5 1 PCD</th><th>- 400</th><th>1000</th><th>5</th><th>.5</th><th>400</th><th>6 I DED</th><th>6</th><th>5. LIDED</th><th></th></th<>	Shape	460	4	4	.5 1 PCD	- 400	1000	5	.5	400	6 I DED	6	5. LIDED	
W16x26 227 341 237 350 248 370 256 364 275 365 265 377 259 310 218 327 226 340 224 352 224 324 229 356 251 377 259 310 188 237 120 121 215 323 222 334 228 315 266 227 311 212 218 336 188 232 192 289 197 266 202 344 207 311 212 318 337 506 351 527 365 548 379 509 3 729 433 303 455 315 473 327 491 338 506 353 527 365 548 373 507 215 340 303 455 353 299 440 276 416 324		ASU	CWD All	ASU	and	1010	070	ADU	LAPU .	-ADE	LINPU 200	ADU	412	AD
216 227 240 320 222 334 220 336 231 371 236 244 336 241 371 245 340 241 345 231 222 334 228 345 231 222 333 228 345 188 237 206 360 210 315 217 311 212 218 167 268 182 274 186 279 189 255 183 280 158 237 160 241 163 244 165 248 167 252 170 255 W14×38 303 455 315 473 327 401 283 262 333 269 404 276 416 284 471 371 462 214 452 245 353 240 361 242 373 373 253 333 350 244 365 233	W16×26	227	341.	237	350	240	3/0	200	364	200	399	2/5	913	20
Cub F12 C13 C22 C24 C34 C24 C34 C34 <thc34< th=""> <thc34< th=""> <thc34< th=""></thc34<></thc34<></thc34<>		218	342	220	340	234	302	295	300	201	311	200	300	20
198 221 102 209 197 260 202 304 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 314 202 315 200 315 200 315 201 315 200 315 327 316 330 309 444 303 303 455 315 473 302 454 314 465 321 442 302 452 322 422 333 209 404 276 416 294 427 433 322 322 333 322 333 322 333 322 333 322 333 322 424 337 246 433 322 433 322 433 322 433 322 433 322 <td></td> <td>200</td> <td>207</td> <td>1004</td> <td>323</td> <td>910</td> <td>316</td> <td>910</td> <td>340</td> <td>202</td> <td>300</td> <td>244</td> <td>3/2</td> <td>20</td>		200	207	1004	323	910	316	910	340	202	300	244	3/2	20
100 cm 122 623 112 224 126 227 126 227 136 227 136 227 136 227 136 226 133 220 135 230 135 230 135 230 135 231 136 244 135 244 135 227 136 379 599 235 335		190	280	102	200	107	206	002	304	207	211	919	318	91
173 600 179 600 162 210 163 210 163 210 163 220 163 220 163 220 170 255 W14×36 309 464 523 485 337 506 351 527 365 548 373 509 2 294 438 303 455 735 473 302 454 315 638 505 548 321 482 254 325 262 333 269 406 272 365 540 2261 332 261 332 265 340 229 345 233 350 2263 340 230 465 235 353 240 360 244 365 243 335 246 331 246 233 351 240 341 342 343 345 243 351 240 331 2463 331 246		100	200	170	200	100	200	100	270	100	205	101	200	6)
W14×38 309 464 323 485 337 506 351 527 365 548 379 509 291 433 303 455 315 473 327 491 338 508 505 535 273 410 282 282 393 269 404 276 416 224 422 291 438 201 345 224 393 269 404 276 416 224 427 291 438 235 353 240 361 245 353 299 300 444 366 244 373 215 324 219 324 229 344 226 340 231 350 433 352 243 356 252 376 260 371 253 371 433 322 481 377 456 424 351 240 351 240		158	237	160	241	163	244	165	248	167	252	170	255	17
294 435 303 455 315 473 327 491 338 505 535 535 273 410 283 425 282 433 3002 454 314 465 321 452 254 382 262 383 269 404 276 416 284 427 291 438 235 353 240 361 245 369 250 376 266 384 281 373 215 324 219 329 222 334 226 340 229 345 233 350 64 243 365 252 373 250 401 331 246 430 243 365 252 373 250 421 301 244 363 312 468 210 315 214 322 219 301 243 351 200	W14x38	309	464	323	485	337	506	351	527	365	548	379	569	39
273 410 283 425 292 439 302 454 314 465 224 452 254 382 262 393 269 404 276 416 224 427 291 433 235 353 240 361 245 353 259 360 244 362 235 353 226 340 226 340 226 340 226 340 226 340 236 233 350 215 324 219 326 222 344 226 340 229 345 233 350 243 365 252 376 260 391 269 440 277 473 312 469 344 312 469 361 243 351 240 351 240 351 240 351 240 351 240 351 240 361 321 443	H L TOUG	291	438	303	455	315	473	327	491	338	508	350	526	36
254 322 262 333 269 404 276 416 284 427 291 433 235 353 240 361 245 359 250 376 256 344 466 248 373 225 340 230 346 255 353 229 360 244 366 248 373 215 324 219 329 222 334 226 340 239 350 243 350 259 369 259 431 299 450 312 409 324 488 337 506 243 365 252 373 260 311 291 437 501 453 312 468 243 365 252 376 260 311 207 321 227 341 231 231 231 231 231 231 331 230 <t< td=""><td></td><td>273</td><td>410</td><td>283</td><td>425</td><td>292</td><td>439</td><td>302</td><td>454</td><td>311</td><td>468</td><td>321</td><td>482</td><td>33</td></t<>		273	410	283	425	292	439	302	454	311	468	321	482	33
285 353 240 361 245 359 250 376 256 342 251 332 226 340 230 362 255 353 239 360 244 366 248 373 215 324 219 329 222 334 226 340 229 345 233 350 W14×24 274 413 287 431 299 450 312 469 324 488 337 566 259 360 289 405 291 437 901 453 312 468 243 355 252 376 400 311 291 437 71 253 381 260 311 207 303 205 303 209 315 213 321 217 327 214 322 217 331 217 321 321 321 331		254	382	262	393	269	404	276	416	284	427	291	438	29
226 340 230 346 225 353 2.99 360 244 366 248 373 215 324 219 329 222 334 226 340 229 345 233 350 W14×34 274 413 287 431 299 400 312 469 324 488 337 506 263 389 299 405 280 421 291 437 501 433 312 469 331 240 351 243 351 240 331 250 301 227 311 253 351 240 351 243 351 260 301 251 322 219 337 227 311 253 351 240 351 253 351 260 301 251 331 260 301 251 331 260 331 261 331 261 331		235	353	240	361	245	369	250	376	256	384	261	392	26
215 324 219 329 222 334 226 340 229 345 233 350 W14×34 274 413 287 431 299 450 312 469 324 488 337 506 259 305 289 406 280 421 c211 431 301 443 312 469 243 56 282 376 c400 311 289 404 377 477 285 430 227 340 223 351 240 361 247 371 253 381 260 311 207 303 205 303 209 315 213 321 217 377 221 333 319 237 194 222 2197 297 201 301 204 305 275 331 191 237 196 240 370		226	340	230	348	235	353	239	360	244	366	248	373	25
W14×24 274 413 287 431 299 450 312 469 324 488 397 506 243 365 252 376 200 321 269 404 271 261 437 501 443 312 468 317 260 301 269 404 277 417 266 400 277 301 223 351 240 351 240 317 253 381 260 311 270 300 225 308 209 315 213 321 217 327 221 333 31 260 311 31 321 217 327 224 321 321 217 325 311 31		215	324	219	329	222	334	226	340	229	345	233	350	23
259- 389 -269 405 -200 421 -201 437 501 453 312 468 . 243 365 252 373 420 391 268 404 477 477 266 430 227 340 /233 351 /240 361 247 371 253 381 260 391 210 315 /244 322 219 300 224 337 229 344 234 351 201 303 205 309 207 321 217 327 221 333 391 237 194 222 197 277 201 301 204 306 207 311 191 237 194 262 234 237 265 395 275 413 31 214 327 222 344 240 301 207 314	W14×34	274	413	287	431	299	450	312	469	324	488	337	506	34
243 365 252 378 280 391 269 404 277 417 286 430 7 227 340 233 351 940 361 247 371 253 381 260 391 210 315 214 322 219 330 224 337 229 344 234 351 207 303 205 309 206 315 213 321 217 327 221 333 331	1.1	259	389	269	405	280	421	291	437	301	453	312	468	32
127 340 1233 351 1240 361 1247 371 253 381 260 391 1 1210 315 124 322 1219 330 1224 337 1229 344 234 351 207 300 205 308 209 315 213 321 217 327 224 333 1 919 237 194 222 197 297 201 301 204 305 207 311 1 919 237 194 262 107 297 201 301 204 305 207 311 1 914 322 127 263 345 245 345 245 345 245 345 245 345 245 345 245 349 247 313 246 370 253 361 245 349 245 349 245 <		243	365	252	378	260	391	269	:404	277	417	286	430	29
210 315 214 322 219 330 224 337 1299 344 234 331 207 303 205 300 209 315 213 321 217 327 224 333 321 217 327 224 333 331		227	340	(233	351	240	361	247	-371	253	381	260	391	26
203 303 205 309 209 315 213 321 217 327 221 333 3 391 237 194 262 197 297 201 301 204 306 207 311 w14×30 241 362 252 378 283 395 274 412 285 428 296 445 326 226 342 1237 396 246 370 256 365 265 399 275 413 214 322 1222 334 230 345 288 377 455 369 253 361 201 301 207 311 1271 370 216 339 235 39 231 348 166 280 191 277 165 276 169 241 170 267 108 271 w14×26 167 520		210	315	214	322	219	330	.224	337	229	344	234	351	23
391 237 194 222 197 291 201 301 204 306 207 311 4 W14-30 244 362 252 378 263 395 274 412 285 428 296 445 228 324 2237 395 264 370 256 385 265 399 275 413 214 322 222 334 230 345 288 367 245 399 275 313 48 201 301 207 311 213 320 225 339 231 348 160 280 191 277 105 278 109 301 205 308 293 325 339 231 348 166 280 191 277 105 278 109 246 377 100 271 W14×26 167 250 168 220		201	303	205	309	209	315	213	321	217	327	221	333	24
W14.:30 241 362 1252 378 243 395 274 412 235 428 296 445 1 226 342 1237 396 246 370 256 365 265 399 275 413 1 214 322 1222 334 230 345 288 377 245 389 275 311 2 166 207 311 213 320 216 389 213 348 1 349 1 349 1 349 210 311 348 1 349 1 349 1 349 1 349 1 349 1 349 1 349 1 349 1 349 1 349 1 349 1 1 349 1 1 1 349 1 1 1 1 1 1 1 1 1 1 <td></td> <td>191</td> <td>287</td> <td>194</td> <td>292</td> <td>G197</td> <td>297</td> <td>201</td> <td>,301</td> <td>204</td> <td>306</td> <td>207</td> <td>311</td> <td>21</td>		191	287	194	292	G197	297	201	,301	204	306	207	311	21
*228 342 1237 395 -246 370 256 385 265 399 275 413 3 214 322 -222 334 230 345 288 377 245 369 253 361 201 301 207 311 213 320 219 339 225 339 231 348 166 280 191 277 165 277 169 284 200 301 205 306 209 315 167 250 169 255 172 259 175 263 178 267 108 271 W14×26 210 316 220 330 228 152 172 259 175 263 178 267 100 271 W14×26 210 316 220 330 228 369 246 373 258 388 198 39	W14×30 .	241	362	252	378	263	395	274	412	285	428	296	445	30
214 322 1222 334 1230 345 288 357 245 369 253 381 201 301 207 311 213 320 219 339 225 339 231 349 166 280 191 277 196 244 200 301 205 308 209 315 178 267 181 273 105 278 189 244 192 280 196 285 167 250 169 255 172 259 175 263 178 267 180 281 196 244 192 281 190 271 W14x26 210 316 220 300 228 345 1282 123 349 244 362 183 198 304 244 362 148 282 100 300 205 309 166 249 170		228	342	237	356	246	370	256	385	265	399	275	413	,28
201 301 (207 311 (213 320 229 329 225 339 231 348 345 348 345 348 345 346 373 349 345 345 346 373 348 348 346 373 348 346 373 348 346 373 348 347 347 348 347 347 348 347 347 </td <td></td> <td>214</td> <td>322 -</td> <td>222</td> <td>334</td> <td>.230</td> <td>345</td> <td>238</td> <td>357</td> <td>245</td> <td>369</td> <td>253</td> <td>381</td> <td>26</td>		214	322 -	222	334	.230	345	238	357	245	369	253	381	26
1966 200 191 287 196 294 200 301 205 308 209 315 178 267 181 273 185 278 189 284 192 289 196 285 1 167 250 169 255 172 259 175 263 178 267 100 271 W14×26 210 316 220 330 229 345 239 359 246 373 258 388 3 199 300 208 312 216 324 229 345 233 349 241 362 363 199 300 208 312 216 324 237 423 349 241 362 363 432 349 241 362 363 346 275 168 275 168 275 168 275 168 275 168 275 168 275		201	301	207	311	213	320	219	329	225	339	231	348	23
178 277 181 273 185 273 189 264 192 239 196 285 167 250 169 255 172 259 175 263 178 267 100 271 W14×26 210 316 220 330 229 345 239 359 246 373 258 368 199 300 208 312 216 324 237 233 349 241 362 188 198 263 198 248 373 258 368 1 198 267 100 271 344 241 362 1 180 283 194 203 349 241 362 1 180 283 198 248 373 258 368 1 183 275 168 282 199 301 260 300 205 399 166 249 170 256		186	280	191	287	196	294	200	301	205	308	209	315	ZI
Info ZNO Ingle ZNO ZNO <thzno< th=""> ZNO ZNO <thz< td=""><td></td><td>178</td><td>20/-</td><td>181</td><td>2/3</td><td>185</td><td>2/8</td><td>189</td><td>204</td><td>192</td><td>260</td><td>190</td><td>285</td><td>20</td></thz<></thzno<>		178	20/-	181	2/3	185	2/8	189	204	192	260	190	285	20
W16x26 210 316 220 330 229 345 289 369 246 373 258 388 399 300 2038 312 216 325 324 337 233 349 241 362 363 168 233 349 241 362 363 168 233 349 241 362 364 373 258 388 369 248 373 253 349 241 362 364 373 258 384 241 362 364 373 258 384 241 362 374 375 163 275 168 237 168 237 168 248 300 200 300 205 309 306 306 306 306 307 308 248 303 255 309 306 307 308 308 308 308 308 308 308 308 308 308		167	230	169	200	172	259	175	263	178	207	180	2/1	18
199 300 208 312 1216 324 324 337 233 349 241 362 180 283 195 294 202 304 209 315 216 325 223 336 177 265 143 275 168 285 194 282 200 300 205 309 166 249 170 256 174 262 179 268 183 275 187 282 156 235 160 240 163 275 166 250 170 255 173 260 156 235 160 240 163 245 166 250 170 255 173 260 144 216 146 220 149 223 151 227 153 231 156 234	W14×26	210	316	220	330	229	345	.239	359	248	373	258	388	26
180 283 195 294 1/202 304 1/209 315 216 325 223 336 1 177 266 143 275 168 283 194 282 200 300 205 309 166 249 170 256 174 262 179 269 183 275 187 282 156 235 160 240 163 2/5 166 250 170 255 173 260 144 216 146 220 149 223 151 227 153 231 156		199	300	208	312	216	325	224	337	233	349	241	362	23
177 256 1183 275 168 283 194 282 200 300 205 309 166 249 170 256 174 252 179 268 183 275 187 282 156 235 160 240 163 245 166 250 170 255 173 260 144 216 146 220 149 223 151 227 153 231 156 234		188	283	(195	294	202	304	209	315	216	325	223	336	23
166 249 170 256 174 262 179 269 183 275 187 282 156 235 160 240 163 245 166 250 170 255 173 260 144 216 146 220 149 223 151 227 153 231 156 234	5	177	266	183	275	188	283	194	292	200	300	205	309	21
156 235 160 240 163 245 1966 250 170 255 173 260 144 216 146 220 149 223 151 227 153 231 146 234		166.	249	170	256	174	262	179	269	183	275	187	282	18
144 216 146 220 149 223 151 227 153 231 156 234		156	235	160	240	163	245	:166	250	170	255	173	260	17
160 C. 163 C. 17 C. 17 C. 18 C. 17 C. 18 C		144	216;	146	220	149	223	151	227	153	231	156	234	1
- 그 않았는 않았는 않았는 물건을 다 하는 물건을 다 나는 것이 좋아. 나는 것이 않아. 나는 것이 좋아. 나는 것이 않아. 나는 것이					1	5						12		Ľ

TABLA 3-19 AISC MANUAL EDICIÓN 2014 (PERFIL W)

			Avai	lable	Str	engt	h in	Flex	ure,		ry≡	90 K	al
W27-	W24				k	ip-fl	ł						
	Mg/Ωs	AsM2		No.	50				Y20,	in.			
Shape	kip	-11	PNAC		Lun	2	1050	2.	URED)	ASD	LRFD	ASO	LRFD
÷.,	ASO	LRFD		in.	KUP	ASU	1420	977	1470	1010	15t0	1040	1560
V27×84	609	915	TR.	0 .	1240	990	1420	958	1440	983	1480	1010	1520
1	$\xi(M_{ij})$	8 h	2	0.160	015	011	1370	- 924	1400	957	1440	980	1470
÷.	963		3	0.520	755	892	1340	911	1370	930	1400	949	143(
	No. No.	1	-	0.400	595	872	1310	887	1330	902	1360	916	138
	6.12		- G	3.53	452	1843	1270	855	1280	866	1300	877	132
- e (7	6.64	309	793	1190	800	1200	808	1210	816	123
	No.	- · ·	11.	ų Alt		079	1470	1010	1520	1050	1570	1080	163
N24×94	634	953	IR.	0	1390	9/8	1470	947	1490	1020	1530	1050	157
1.1	47.55	1.1	2	0.219	1190	108	1440	P 959	1440	: 983	1480	1010	151
1717	άŝ.	1.1	3	0,438	368	000	1270	928	1400	1948	1430	968	145
·2	201	2	4	0,656	790	881	1320	896	1350	911	1370	926	139
	396	2	BIL	10.8/0	201	858	1290	869	1310	881	1320	893	134
- 1925	22.2	Ť.	6	3,0	946	819	1230	828	1240	837	1260	845	127
- 19 ·	990) 1997	1. 11	11	5,45	340	010	16.00		4050	097	1200	liera	14
W24×84	559	840	1FL	0	1240	886	1300	29/	1350	001	1350	927	13
- K.	0900	1.0	2	0.193	1060	1848	1270	- 6/4	1010	\$72	1310	894	13
	(30)	12.	3	0.385	888	828	1240	1000	1200	842	1270	860	12
	1983	\sim	4	0.578	714	305	1210	1707	1200	810	1220	824	12
- 12 s	- 938	15	BFI.	0.770	040	783	1140	777	1160	182	1180	793	11
	-218	1.1	6	3.02	420	225	1 1001	733	1100	740	1110	748	11
1.6	12		17	5.48	308	1959	1000				+000	100	1
W24-76	495	750	TFL	0	1120	780	1170	10808	1210	830	1200	836	12
1001014	1897	N.	2	0.170	967	764	1150	780		78	11180	807	112
1	(1,1)	14	3	0,340	814	747	112	0 76		76	1110	770	11
- 5.	$\bar{q}^{\dagger}s$	1	4	0.510	652	728	1090	74	112	79	4 110	74	11
	-53	134	BA	0.68	509	708	1060	1 42	7 105	1 70	7 1060	71	11
	4	1.	6	2.99	394	687	103	60	A 00	68	5 1000	67	2 11
зф.	137		1	5.59	280	1 00	8/3	00	30				
would	20	2 68	4 TF	0	1010	695	104	0 72	0 103	0 74	5 112	1.4	
1/24/00	153		2	0.14	6 87	4 68	102	0 70	3 105	0 72	5 109 109	79	2 1
	1.	. · .	3	0,29	3 74	3 666	100	0 68	5 103	0 70	1 100	RO	
- j.		1	4	0.43	9 61	1 65	97	8 (65	0 100	00 00	30 00	0 87	01
	÷.		67	L 0.58	5 48	0 63	80	4 04	1 8/	6 09	0 0	9 64	i
		5	6	3.04	36	6 61		2 04	3 33	8 5	19 88	6 55	6
	ų.		1	5.80	1 25	1 57	86	/ [.90	* #	"	~	30	
		ç.				1		1		5		3	9
	65	40		1		14		4		13		- <u>M</u>	13. ve

$F_y = 0$	50 ks	si	C	iai om Ielie	pos pos	site	(coi W	-Sł	1ed) 1ap	es	ł		Γ	1
			~~	ana		ki	p-ft		IGA	416)		W27	1 -W2	4
Chana	ļ						12	, in.						
ouabe	ACD	4 LERED	4	.ə L RED	450	IRFD	¢ D24	URED	450	LRFD	ASD	LRFD	ASD	LRS
W97-94	1070	1610	1100	1650	1190	1700	1167	1750	1100	1790	1220	1840	1250	186
1127204	1010	1950	1060	1600	1000	1640	1120	1680	1140	1720	1170	1760	1200	180
	1000	1510	1030	1540	1050	1580	1070	1610	1090	1640	1120	1680	1140	171
1.85	968	1450	987	1480	1010	1510	1020	1540	1040	1570	1060	1600	1080	16
- X	931	1400	948	1420	961	1440	976	1470	991	1490	1010	1510	1020	15
	888	1340	900	1350	911	1370	922	1390	933	1400	945	1420	956	14
	824	1240	831	1250	839	1260	847	1270	854	1280	862	1300	870	13
W24-94	1120	1680	1150	1730	1190	1780	1220	1830	1250	1890	1290	1940	1320	19
1167007. 1	1080	1620	1110	1660	1130	1710	1160	1750	1390	1790	1220	1840	1250	18
÷	1030	1550	1060	1590	1080	1630	1110	1660	1130	1700	1160	1740	1180	17
	988	1480	1010	1510	1030	1540	1050	1570	1070	1600	1090	1630	1110	16
	940	1410	955	1440	970	1460	985	1480	999	1500	1010	1520	1,030.	15
	904	1360	916	1380	928	1390	8939	1410	951	1430	963	1450	975	14
	854	1280	863	1300	871	1310	-880	1320	888	1340	897	1350	906	13
W24×84	989	1490	1020	1530	1050	1580	1080	1630	1110	1670	1140	1720	1170	17
	954	1430	980	1470	1010	1510	1030	1550	1050	1590	1090	1630	1110	16
	916	1380	939	1410	961	1440	983	1480	1010	1510	1030	1540	1050	15
114	878	1320	895	1350	913	1370	931	1400	949	1430	967	1450	- 585	14
<i>i</i> 2 :	837	1260	851	1280	1864	1300	878	1320	891	1340	904	1380	918	13
	804	1210	814	1220	:825	1240	835	1260	846	1270	856	1290	867	13
	756	1140	1 764	1150	771	1160	779	1170	787	1180	794	1190	802	12
W24×76	891	1340	919	1380	947	1420	975	1470	1000	1510	1030	1550	1060	15
1	860	1290	884	1330	909	1370	933	1400	957	1440	981	1470	1010	15
1 e (828	1240	848	1270	868	1310	889	1340	-909	1370	929	1400	950	14
÷.	794	1190	811	1220	827	1240	844	1270	860	1290	877	1320	893	13
	759	1140	772	1160	784	1180	797	1200	810	1220	823	1240	\$35	12
	726	1090	736	1110	746	1120	756	1140	766	1150	775	1170	785	11
	679	1020	686	1030	693	1040	700	1050	° 707,	1090	/14	10/0	121	10
W24x68	795	1190	820	1230	845	1270	870	1318	895	1350	920	1380	945	14
	768	1150	790	1190	812	1220	c 834	1250	855	1290	877	1320	899	13
	741	1110	759	1140	778	1170	796	1200	815	1220	833	1250	852	12
	712	1070	727	1090	742	1120	. 758	1140	773	1160	789	1180	804	12
24	682	1030	694	1040	706	1060	718	1080	730	1100	742	1120	754	11
	650	977	659	890	668	1000	0//	020	085	1030	090	0.00	630	
	BUZ	204	008	214	014	823	020	900	02/	342	033	391	033	1
	ň.,		Q		5/ K.,		ેળ્ય				L			
ASD	LRFD	17=	distance	from to	p of the :	steel ber stool ber	im to pla im to con	ISTIC NELL	ital ads www.live					1
Q4=1.57 ¢	6= 0.90	See f	igre 3-	to for P	iA locati	91001 Deg 1983.			inda inte	•				;

xxxix

TABLA 3-20 AISC MANUAL EDICIÓN 2014 (PERFIL W)

				Tat L	ole 3 _OV	8-20 ver	(co - B	ntini D un	ued) I d			7	r	
F _y = ($F_y = 50 \text{ ksi}$ Elastic Moment of Inertia, I_{LB} , for Plastic I_{LB} W16-W14Composite Sections													} 14
Shaned	shaped PNA ^o $Y1^a$ ΣQ_n $Y2^b$, in.													
unapo		in.	kip	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
W16×26	TFL	0	384	674	712	753	796	840	887	935	985	1040	1090	1150
(301)	2	0.0863	337	649	686	724	763	805	849	894	941	990	1040	1090
- 18 	3	0.173	289	621	654	689	726	764	804	846	889	934	980	1030
and	. 4	0.259	242	589	619	651	683	718	754	791	830	i 871	912	956
	BFL	0.345	194	551	577	604	633	663	. 694	727	760	795	832	869
	7	2.05	06 0	150	52/	549	5/2	597	622	649	6/6	705	734	765
4	1	4.01	90.0	400	400	402	499	517	535	555	5/5	596	617	640
W14×38	TFL	0	560	844	896	951	1010	1070	1130	1200	1270	1340	1410	1490
(385)	2	0.129	473	805	853	903	956	1010	1070	1130	1190	1260	1330	1400
	3	0.258	386	759	802	847	894	943	995	1050	1100	1160	1220	1290
	4	0.386	299	704	741	779	819	861	905	951	999	1050	1100	1150
	BPL	0.515	211	636	665	695	726	759	794	830	868	907	948	990
	7.0	1.38	1/0	604	629 500	656	683	712	742	774	807	841	877	914
·	1	2.05	140	200	269	011	.034	628	684	/10	738	766	796	827
1	1	1				1000	4770	1000	1 5400	5220	5510	5710	5010	6120
W24×76	TFL	0	1120	4280	4440	4600	4//0	4950	10130	5080	5260	5440	5630	5830
(2100)	2	0.170	J 967	3020	4270	4420	4350	4500	4650	4810	4970	5140	5310	5490
1. 1 ³⁴	4	0.54	662	3720	3840	3960	4090	4220	4350	4490	4630	4780	4930	5090
	BFL	0.680	509	3460	3560	3660	3770	3880	3990	4110	4230	4360	4480	4610
	6	2.99	394	3230	3320	3400	3490	3580	3680	3770	3880	3980	4080	4190
	7	5.59	280	2970	3040	3100	3170	3240	3310	3390	3460	3540	3630	3710
W24×68	TFL	0	1010	3760	3900	4050	4200	4360	4520	4690	4860	5040	5220	5410
(1830)	2	0.14	6 874	3620	3760	3890	4030	4180	4330	4480	4640	4810	4980	5150
	3	0.29	3 743	3470	3590	3710	3840	3980	4110	4260	4400	4550	4710	4870
	4	0.43	9 611	3290	3390	3510	3620	3740	3860	3990	4120	4250	4390	4530
	BFL	0.58	5 480	3080	3170	3260	3360	3460	3260	30/0	3450	3540	3640	3740
	6	13.04	366	2860	2930	2720	2780	2840	2900	2970	3040	3110	3180	3260
	1 '	0.00	231	2000	2000	1 20	1.00		-		1			
a V1 - dieta	nce from	top of t	the steel h	learn to	lastic ne	eutral ax	1 is	<u> </u>		L	J	<u>.</u>		L
$\flat Y2 = dista$	nce from	top of t	the steel t	beam to	concrete	flange f	orce			2010		1.15		
C See Figure	3-3c for arenthese	r PNA loo es is <i>I.,</i> (i	cations. in. ⁴) of po	ncombos	site steel	shape.		1			1.1			

Ł

TABLA 3-21 AISC MANUAL EDICIÓN 2014 (φ CONECTOR DE CORTE)

F _u =	65 k	si N	Shea Iominal H	Table 3 ar Stud orizontal	-21 Ancho Shear St)r rength	Q_n
1	.10	or Or	Stud anchor	Normal we	ight concrete	or, Q _n , kip	DS -
Deck	conditi	ion	diameter,	W _a =	145 pcf	W _c ≈	110 pcf
			in.	€ = 3 ksi	i⊊ = 4 ksi	Ç = 3 ksi	€ = 4 ksi
No	deck		² ys 1/2 5/8	5.26 9.35 14,6	5.38 9.57 15.0	4.28 7.60 11.9	5.31 9.43 14.7
	$\frac{w_r}{h_r}$	≥1.5	9/8 1/2 5/8	5.26 9.35 14.6	21.5 5.38 9.57 15.0	17.1 4.28 7.60 11.9	21.2 5.31 9.43 14.7
Deck Par	Hy hr	<1.5	3/4 3/6 1/2 5/6	21.0 4.58 8.14 12.7	21.5 4.58 8.14 12.7	17.1 4.28 7.60 11.9	21.2 4.58 8.14 12.7
	= 0.60}	1	- 7/4 - 3/14 - 1/2 - 6/16 - 10/4	4.31 7.66 12.0	18.3 4.31 7.66 12.0	17.1 4.28 7.60 11.9	18.3 4.31 7.66 12.0
(¹ .	ds per rib (R _p	2	2/6 1/2 5/8 2/4	3.66 6.51 10.2 14.6	3.66 6.51 10.2 14.6	3.66 6.51 10.2	3.66 6.51 10.2
endicular	Weak stu	3	³ /8 Vz ⁵ /8 3/4	3.02 5.36 8.38 12.1	3.02 5.36 8.38 12.1	3.02 5.36 8.38	3.02 5.36 8.38
Deck Per	, = 0.75)	1	³ /8 1/2 ⁵ /8 3/4	5.26 9.35 14.6 21.0	5.38 9.57 15.0 21.5	4.28 7.60 11.9 17.1	5.31 9.43 14.7
	ds per rib (R	2	340 1/2 578 214	4.58 8.14 12.7	4.58 8.14 12.7	4.28 7.60 11.9	4.58 8.14 12.7
	Strong stu	з	3/8 1/2 8/8 3/4	3.77 6.70 10.5 15.1	18,3 3.77 6.70 10.5 15.1	17.1 3,77 6,70 10.5 16.1	18.3 3.77 6.70 10.5

r

Note: Tabulated values are applicable only to concrete made with ASTM C33 aggregates for normal weight concrete and ASTM C330 appropriates for lightweight concrete. Abor-wold steel headed stud anchor lengths assumed to be \ge Deck height + 1.5 in.

TABLA J3.3 DIAMETROS NOMINAL DE AGUJEROS

	Nomin	TABLE al Hole Di	J3.3 mensions, in						
Hole Dimensions									
Bolt Diameter, in.	Standard (Dia.)	Oversize (Dia.)	Short-Slot (Width × Length)	Long-Slot (Width × Length)					
1/2	⁹ /16	5/8	⁹ /16 × ¹¹ /16	⁹ /16 × 1 ¹ /4					
⁵ /8	¹¹ /16	¹³ /16	¹¹ / ₁₆ × ⁷ / ₈	¹¹ /16 × 1 ⁹ /16					
3/4	¹³ /16	¹⁵ /16	¹³ /16 × 1	¹³ /16 × 1 ⁷ /8					
7/8	¹⁵ /16	1 ¹ /16	¹⁵ /16 × 1 ¹ /8	$^{15}/_{16} imes 2^{3}/_{16}$					
1	1 ¹ /8	1 ¹ /4	1 ¹ /8 × 1 ⁵ /16	1 ¹ /8 × 2½					
≥ 1 ¹ /8	d + 1/8	d + ⁵ /16	$(d + \frac{1}{8}) \times (d + \frac{3}{8})$	$(d + \frac{1}{8}) \times 2.5d$					

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN

SECRETARÍA DE FACULTAD

F-8:CARTA DE EGRESADO

El Suscrito Secretario de la FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION hace constar que:

CASTILLO PAUTH HARRY SAUL

Carne: 2013-61064 Turno Diurno Plan de Estudios 97-15 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente CARTA DE EGRESADO, a solicitud del interesado en la ciudad de Managua, a los uno días del mes de abril del año dos mil veinte.

Atentamente, JUNO NALIONAL DE IN SECRETARIA ACADÉMICA

Dr. Francisco Efraín Chamorro Blandón Secretario de Facultad

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 01-abr-2020

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN

SECRETARÍA DE FACULTAD

F-8:CARTA DE EGRESADO

El Suscrito Secretario de la **FACULTAD DE TECNOLOGIA DE LA** CONSTRUCCION hace constar que:

LUNA GAITAN SAHITH JOSUE

Carne: 2013-61296 Turno Diurno Plan de Estudios 97-15 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente **CARTA DE EGRESADO**, a solicitud del interesado en la ciudad de Managua, a los uno días del mes de abril del año dos mil veinte.

IONAL DE I Atentamente,

Dr. Francisco Efraín Chamorro Blandón Secretario de Facultad^{ua, Nical}

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 01-abr-2020

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2020

. Kecido UUZ	-		N	o. Inscripció	on 110	4		
OMBRES Y APELLIDOS: Harry Saul Castillo F	Pauth							
ARRERA: INGENIERIA CIVIL	CARNET: 2013-6	61064 TURNO:						
LAN DE ESTUDIO: 97-15	SEMESTRE:SEG 2020	UNDO SEME	STRE FE	CHA: 28/1	0/2020			
o. ASIGNATURA		GRUPO	AULA	CRED.	F	R		
1	•			1				
	ULTIMA LINEA	······						
		21						
					· vi			
		0.8						
					l ang s			
		8 - 18 18						
				<u>,</u>				
						14		
		8						
	The mail is having	and the states						
1	Di Louis	Constant of						
Frecuencia de Inscripciones de Asignatura R: Retiro de Asignat	ura.	2 8 K						
AJIMENEZ	ANTOT	icatagua		190	MAR			
GRABADOR	FIRMA Y SELLO	DEL		FIRMA DEL				
COPIA:EXPEDIENTE - COPIA:EXPEDIENTE.	FUNCIONARIC			ESTUDIANTE				
	DEMICO EL 28 oct 2020	n						

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2020

lo. Recibo DO'I		т	N	o. Inscripci	ón 110	13				
OMBRES Y APELLIDOS: Sahith Josue Luna	Gaitan			1						
ARRERA: INGENIERIA CIVIL	CARNET: 2013-6	61296	TU	RNO:						
LAN DE ESTUDIO: 97-15	SEMESTRE: SEC 202	GUNDO SEME	JNDO SEMESTRE FECHA: 28/10/2020							
Io. ASIGNATURA		GRUPO	AULA	CRED.	F	R				
1										
	ULTIMA LINEA									
			⁶							
					1. Car					
				1 C N						
		26 (H) 20 (C)								
					11.08	Tas.				
					e	9				
		8 								
	IN SECTION D ?	CONAL DE LUC	2							
F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asigna	atura.	(A)	e Vill		Δ.					
AJIMENEZ	ATTOTAL	ARIA ACADEMICA	*/	Stunay						
GRABADOR	FIRMA Y SELLO	DEL aragua	// <u>-</u>	FIRMA DEL						
cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.	FUNCIONARIO	0	ESTUDIANI							