

UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Tecnología de la Construcción

Monografía

DISEÑO GEOMÉTRICO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KILOMETROS DEL TRAMO DE CARRETERA, SOMOTILLO - COMARCA SANTA TERESA CHINANDEGA, APLICANDO EL SOFTWARE AUTOCAD CIVIL 3D 2018.

Para optar al título de Ingeniero Civil

Elaborado por

Br. Eddys Iván Rodríguez Pineda Br. José Noel Hernández Vallecillo

Br. Jasser Paul Torrez Solís

Tutor

Ing. Beatriz de los Ángeles Torrez Rodríguez

Managua, Octubre 2020.

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN DEPARTAMENTO DE VÍAS DE TRANSPORTE

Managua, Nicaragua Octubre 09 del 2020

Dr. Ing. Oscar Gutiérrez Somarriba Decano de la FTC Sus Despacho

Estimado Dr. Gutiérrez,

Me es grato dirigirme a usted, es esta ocasión para comunicarle que después de haber revisado el trabajo monográfico titulado "DISEÑO GEOMÉTRICO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KILOMETROS DEL TRAMO DE CARRETERA, SOMOTILLO – COMARCA SANTA TERESA CHINANDEGA, APLICANDO EL SOFTWARE AUTOCAD CIVIL 3D 2018", realizado por los Brs. Eddys Iván Rodríguez Pineda, José Noel Hernández Vallecillo y Jasser Paúl Tórrez Solís.

Lo he encontrado satisfactorio y doy mi aprobación para su presentación y defensa ante el tribunal que usted estime a bien nombrar.

Sin más a que hacer referencia, aprovecho la oportunidad para desearle éxito en su gestión.

Atentamente,

Ing. Beatriz Tórrez Rodríguez Tutor **UNI-RUPAP**

C.C. Archivo

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

> DEC-FTC-REF-No.073 Managua, 30 Abril del 2020

Bachilleres EDDYS IVÁN RODRÍGUEZ PINEDA JOSÉ NOEL HERNÁNDEZ VALLECILLO JASSER PAUL TORREZ SOLÍS Estimados (as) Bachilleres:

Es de mi agrado informarles que el PROTOCOLO de su Tema **MONOGRAFICO**, titulado: "DISEÑO GEOMÉTRICO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KILOMETROS DEL TRAMO DE CARRETERA, SOMOTILLO – COMARCA SANTA TERESA CHINANDEGA, APLICANDO EL SOFWARE AUTOCAD CIVIL 3D 2018". Ha sido aprobado por esta Decanatura.

Asimismo les comunico estar totalmente de acuerdo, que el (la) **Ing. Beatriz Torrez Rodriguez.** sea el (la) tutor (a) de su trabajo final.

La fecha límite, para que presenten concluido su documento final, debidamente revisado por el tutor guía será el **30 de Octubre del 2020**

Esperando puntualidad en la entrega de la Tesis, me despido.

Atentamente,

VERSIDAD NACIONAL DE INGEN Dr. Ing. Oscar Gutiérrez Somarriba cano DECANO MANAGUA, NICARAGUA

CC: Protocolo Tutor – Ing. Beatriz Torrez Rodriguez. Archivo*Consecutivo

DEDICATORIA.

- Este esfuerzo es dedicado a la memoria de mi padre Eddy Rodríguez Méndez Q. E. P. D. y mi hermana Deyling Rodríguez Pineda Q. E. P. D., quienes anhelaban estar conmigo cuando llegara este momento.
- A mi madre María Lourdes Pineda Soriano quien me brindó el apoyo incondicional desde el inicio de mi carrera hasta el último momento.
- A mi hermano Dilan Yair Rodríguez Pineda quien fue mi motivación para lograr terminar mi carrera.

DEDICATORIA.

- Dedico este proyecto de monografía y toda la carrera universitaria primeramente a Dios, quien nos da la vida, el pan de cada día y siempre cuida de todos nosotros.
- A mis Padres Elba Vallecillo, Noel Hernández, que siempre están a mi lado apoyándome en todo momento, dándome fuerzas para continuar luchando cada día y seguir adelante rompiendo todas las barreras que se me presenten.
- A mi Tía Rosa Hernández que es como mi segunda madre que de igual forma siempre me apoya y está conmigo en todo momento.

Como agradecimiento a todo el esfuerzo, amor y apoyo incondicional, ya que gracias a ellos pude culminar mis estudios y que durante mi formación como profesional inspiraron valor para seguir adelante sin temor a nuevos retos.

Br. José Noel Hernández Vallecillo.

DEDICATORIA.

Este esfuerzo es dedicado:

- A mi padre Vicente Paul Torrez Valle, a mi madre Gladis Solís Sequeira, a mis hermanos; Jeider Frederick Torrez Solís, Jadiel Beker Torrez Solís por siempre estar conmigo apoyándome en todo momento y motivándome para lograr cumplir esta meta.
- A mis abuelos, Ángela Valle Soza, Vicente Torrez Gutiérrez, por creer en mí y ayudarme cuando más lo necesitaba.
- A mis tíos, que los considero como hermanos por siempre motivarme, darme consejos y enseñarme que esta vida no hay obstáculo que no se pueda vencer.

Br. Jasser Paul Torrez Solís.

AGRADECIMIENTO.

- A Dios por permitirme por darme la vida, la fuerza y el entendimiento para tomar las mejores decisiones en mi vida.
- A mi madre por apoyarme incondicionalmente cada día durante el proceso de mi formación, permitiéndome cumplir todos mis proyectos.
- A mi familia por la motivación a no rendirme en momentos difíciles.
- A nuestra tutora Ing. Beatriz de los Ángeles Torrez Rodríguez por dedicarnos tiempo y compartir sus conocimientos para orientarnos en el trabajo realizado.

AGRADECIMIENTO.

- A Dios sobre todas las cosas, por brindar el bienestar físico y espiritual.
- A mi familia quienes son personas incondicionales en mi vida, dándome todo su amor, apoyo, consejos y dedicación.
- A nuestra tutora, Ing. Beatriz de los Ángeles Torrez y al Ing. Juan Carlos Mendoza por dedicarnos tiempo y compartir sus conocimientos para orientarnos en la realización de este trabajo.

AGRADECIMIENTO.

- A Dios por darme la sabiduría, la vida y las oportunidades de lograr esta meta.
- A mis padres por estar apoyándome hasta el final sin importar las dificultades.
- A todos mis profesores y mentores que me ayudaron a escalar poco a poco para llegar a esta a cumplir este logro.
- A nuestra tutora Ing. Beatriz de los Ángeles Torrez Rodríguez por dedicarnos tiempo y compartir sus conocimientos para orientarnos en el trabajo realizado.

RESUMEN EJECUTIVO.

El desarrollo de este trabajo consiste realizar el Diseño Geométrico y Estructura de Pavimento Articulado de 2.8 km del tramo de carretera, Somotillo – Comarca Santa Teresa Chinandega, aplicando el software AutoCAD Civil 3D 2018.

En el diseño de este proyecto, se hará uso de las Normas AASHTO y las Normas de la SIECA para el Diseño de Pavimento con el fin de que el diseño cumpla con todas las especificaciones emitidas por dichas normas.

El documento consta de seis capítulos que se describen a continuación:

• Capítulo I: Generalidades.

Aborda los aspectos generales del municipio de Somotillo en donde está ubicado el proyecto, de igual manera se hace una descripción del sitio de estudio, se presentan los objetivos y una explicación de la importancia del proyecto.

Capítulo II: Estudio Topográfico.

En este capítulo se describe lo referente al estudio topográfico, se detallan los equipos utilizados en el levantamiento y todo lo relacionado con la planimetría y altimetría del terreno.

Capítulo III: Estudio Geotécnico.

Este capítulo detalla el análisis de los suelos encontrados por medio de sondeos manuales realizados sobre el camino y así mismo a los bancos de préstamos cercanos al sitio.

Capítulo IV: Estudio de Tránsito.

Comprende el desarrollo del estudio de tránsito, en el que se realizó un aforo vehicular en el tramo de estudio durante siete días consecutivos para determinar las composiciones del tráfico, el TPDA, tasas de crecimiento, proyección del tránsito, periodo de diseño y el tránsito de diseño.

Capítulo V: Diseño Geométrico Aplicando Software AutoCAD Civil 3D 2018.

Este capítulo detalla el procedimiento para la elaboración del diseño geométrico de la carretera teniendo en cuenta todas las normativas y reglamentos vigentes.

Estará enfocado en el diseño geométrico en donde se dibujó el alineamiento horizontal en donde se diseñan las curvas horizontales, verticales, peralte y sobre ancho, en base a las normas establecidas por la SIECA, haciendo uso del programa AutoCAD Civil 3D 2018, por medio del cual se adaptaron los elementos de curvas que se presentan en tablas de resultados.

• Capítulo VI: Diseño de Estructura de Pavimento.

Se enfoca en la idealización de la estructuras de pavimento, el diseño se realizó basándose en el Método de la AASHTO 1993, partiendo de los resultados obtenidos de los estudios de suelo y tránsito, para determinar los espesores adecuados que conformarán la estructura de pavimento final.

LIMITACIONES.

En el presente documento, no se consideraron todos los estudios que intervienen en el diseño geométrico de una carretera (hidrográficos, materiales, medioambiente, entre otros), esto debido a que el documento se volvería amplio e implicaría costos adicionales que no podríamos asumir.

- En el estudio topográfico se realizó un levantamiento en campo de 2,820.00 metros lineales de carretera existente; al momento de realizar el diseño geométrico en Civil 3D, con los ajustes correspondientes según normas se establecieron 2,779.06 metros lineales.
- Para el estudio de transito el conteo vehicular se realizó en un periodo de 7 días consecutivos, por el factor de tiempo no se pudo realizar en 2 periodos de 4 días en fechas diferentes como se estableció en el protocolo.
- En el estudio de suelo los sondeos manuales se realizaron a cada 200 metros debido a que como se estableció en el protocolo a cada 100 metros se incrementarían los costos los cuales no podíamos solventar en el momento.
- La intersección de la vía no se diseñó en este documento por considerarse un estudio especial, cuya amplitud superaba los límites de nuestro proyecto monográfico.
- No se diseñó el drenaje requerido para la vía, por considerarse una especialidad amplia, difícil de abarcar en esta obra.

ÍNDICE.

CAPITULO I: GENERALIDADES.

1.1.	Intr	oducción1
1.2.	Ant	ecedentes 2
1.3.	Ubi	cación del proyecto3
1.3	.1.	Macro localización 3
1.3	.2.	Micro localización4
1.4.	Jus	tificación5
1.5.	Obj	etivos6
1.5	.1.	General6
1.5	.2.	Específicos
CAPIT	JLO	II: ESTUDIO TOPOGRÁFICO.
2.1.	Intr	oducción7
2.2.	Def	iniciones básicas7
2.3.	Met	todología y desarrollo del tema9
2.3	.1.	Levantamiento topográfico9
2.3	.2.	Resultados del levantamiento topográfico11
CAPIT	JLO	III: ESTUDIO GEOTÉCNICO.
3.1.	Intr	oducción13
3.2.	Def	iniciones básicas13
3.2	.1.	Humedad de los suelos
3.2	.2.	Granulometría de los suelos 14
3.2	.3.	Consistencia y plasticidad de los suelos15
3.2	.4.	Clasificación de los suelos17

CAPITULO IV: ESTUDIO DE TRÁNSITO.						
3.3.2.	Características de los bancos de Materiales.	.27				
3.3.1.	Resultados de las investigaciones de las muestras de campo	.26				
3.3. Me	etodología y desarrollo del tema	25				
3.2.6.	Capacidad de soporte del suelo o CBR	.22				
3.2.5.	Compactación de los suelos.	18				

		2D 2019	GEOMETRICO	AI LICANDO		SOLIWARE
CAPITU	0 V·	DISEÑO	GEOMÉTRICO		FI	SOFTWARE
4.3.7	. Estin	nación del t	ránsito de diseño.			
4.3.6	6. Resu	iltados para	a cada variable			42
4.3.5	i. Tasa	s de crecin	niento			
4.3.4	. Dete	rminación o	le TPDA			
4.3.3	. Cara	cterísticas	de la vía			
4.3.2	. Com	posición de	l tráfico			37
4.3.1	. Aforc	o vehicular.				36
4.3. N	Metodolo	ogía y desa	rollo del tema			35
4.2. [Definicio	nes básicas	5			
4.1. I	ntroducc	ión				

5.1.	Intr	oducción	47
5.2.	De	finiciones básicas	47
5.3.	Me	todología y desarrollo del tema	52
5.3	8.1.	Normas para el diseño geométrico	52
5.3	8.2.	Diseño geométrico aplicando el software AutoCAD CIVIL 3D	61
5.3	8.3.	Importación de puntos	62
5.3	8.4.	Creación de grupo de puntos	63

5.3.	5.	Superficies DTM (Modelo Digital del Terreno).	64					
5.3.	6.	Diseño geométrico en planta.	67					
5.3.	7.	Diseño geométrico en perfil.	75					
5.3.	8.	Informes y planos	86					
CAPITU	CAPITULO VI: DISEÑO DE ESTRUCTURA DE PAVIMENTO.							
6.1.	Intro	oducción	87					
6.2.	Defi	iniciones básicas	87					
6.3.	Met	odología y desarrollo del tema.	89					
6.3.	1.	Método de diseño	89					
6.3.	2.	Determinación de los Ejes ESAL's equivalentes (W18)	90					
6.3.	3.	Determinación del CBR de diseño	91					
6.3.	4.	Índice de serviciabilidad (Pi)	93					
6.3.	5.	Confiabilidad (R).	94					
6.3.	6.	Desviación estándar So	95					
6.3.	7.	Módulo de resiliencia (MR).	96					
6.3.	8.	Coeficientes del paquete estructural	97					
6.3.	9.	Cálculo de número estructural (SN)	97					
6.3.	10.	Cálculo de espesores	99					
Conclus	sione	es1	02					
Recome	enda	ciones1	04					
Bibliogra	afía.		05					
ANEXO	S	I						

CAPÍTULO I GENERALIDADES.

1.1. INTRODUCCIÓN.

El municipio de Somotillo está ubicado aproximadamente a unos 200 kilómetros de la capital (Managua), pertenece al departamento de Chinandega. Limita al norte con el municipio de Santo Tomás, Cinco Pinos, San Francisco del Norte y la República de Honduras, al sur con el municipio de Chinandega, al este con el municipio de Villanueva, al oeste con el municipio Puerto Morazán.

El municipio de Somotillo está compuesto por 38 comarcas rurales, posee 4 principales vías de acceso a dichas comunidades las cuales en su mayoría se encuentran revestidas material selecto, con ausencia de una carpeta de rodamiento estable y un diseño geométrico adecuado, tal es el caso de la carretera que comunica la zona urbana con las comarcas: Santa Teresa, La Fragua, El Caimito, El Rodeíto, El Danto, Las Marías y Rodeo Grande. En los últimos años dichas comarcas han alcanzado mayor desarrollo socioeconómico, con mejoras en las infraestructuras de sus viviendas, incrementos en productos agrícolas y negocios locales.

En este documento se pretende realizar el diseño geométrico y estructural de pavimento articulado. El tramo en estudio se encuentra ubicado 2.1 kilómetros al Noreste del centro de Somotillo y conecta al municipio con la comarca Santa Teresa, teniendo una distancia de 2.8 km.

Para proceder a realizar el diseño haremos uso de equipos topográficos para el levantamiento plani-altimétrico del tramo, se realizarán ensayos de laboratorio para determinar la calidad de suelos y conteos vehiculares para determinar el tránsito actual para la proyección del TPDA del sitio, para conocer las cargas que soportará la estructura de pavimento y se utilizará el software AutoCAD Civil 3D 2018, para el diseño geométrico de la carretera, así como el uso del método del AASHTO 93 para el diseño de pavimento articulado.

1.2. ANTECEDENTES.

En los últimos años se han venido mejorando las principales calles de la zona urbana del municipio Somotillo y se les ha dado mantenimiento continuo a las principales vías de acceso hacia comunidades rurales ya que el tránsito vehicular ha aumentado.

Las mayorías de las vías de acceso interno al municipio están constituidas por calles de concreto hidráulico, asfalto, adoquines y material selecto. En lo que se refiere a las vías de acceso al área rural del municipio, se encuentran construidas con material selecto o solamente trochas.

El tramo de carretera Somotillo - Santa Teresa desde la estación 0+000 hasta la estación 2+800 está conformada por una superficie de rodamiento de material selecto. Dicho tramo solo cuenta con obras de drenaje menor.

No se encontraron registros del levantamiento de esta carretera, ya que las instituciones correspondientes no han realizado ningún tipo de estudio en la zona.

1.3. UBICACIÓN DEL PROYECTO.

El lugar de estudio del proyecto está ubicado en el departamento de Chinandega, específicamente en el municipio de Somotillo, parte occidente del país de Nicaragua.

1.3.1. Macro localización.

Figura No. 1: Macro localización del sitio en estudio de Chinandega.

Fuente: www.google.com/maps. (Modificado por elaboración propia).

1.3.2. Micro localización.

La carretera Somotillo – Comarca Santa Teresa se encuentra ubicada a 2.1km Norte del centro del municipio.

Figura No. 2: Micro localización del tramo de carretera Somotillo – comarca Santa Teresa, Chinandega.

Fuente: www.google.com/maps. (Modificado por elaboración propia).

1.4. JUSTIFICACIÓN.

La carretera no cuenta actualmente con una superficie de rodamiento, lo que la hace vulnerable a los diversos agentes climatológicos presentes en todo el año y principalmente en el invierno.

Esta vía comunica la zona urbana de Somotillo con la comarca Santa Teresa se considera una vía de mucha importancia dado a que, por su ubicación geográfica, ésta conecta a diversas comarcas como: La Fragua, El Caimito, El Rodeíto, El Danto, Las Marías y Rodeo Grande, que contribuyen a la economía directa del municipio a través del comercio, la agricultura y la ganadería.

Según datos proporcionados por la alcaldía municipal de Somotillo, en la comarca Santa Teresa habitan 300 personas y en la comunidad más próxima denominada La Fragua habitan alrededor de 350 personas, las cuales se verán directamente beneficiadas con la construcción de esta carretera, con lo cual se logrará:

- a) Mejorar las condiciones de accesibilidad a servicios públicos como: salud y educación, aumentando la calidad de vida.
- b) Mayor seguridad para los peatones y ciclistas.
- c) Incrementar el intercambio comercial de la zona rural con la zona urbana.
- d) Disminuir el tiempo de viaje.

1.5. OBJETIVOS.

1.5.1. General.

Realizar el diseño geométrico y estructura de pavimento de 2.8 kilómetros del tramo de carretera, Somotillo - Comarca Santa Teresa Chinandega, aplicando el software AutoCAD Civil 3D 2018.

1.5.2. Específicos.

- Realizar un levantamiento topográfico que sirva de base para el diseño geométrico del tramo.
- Hacer un estudio de suelo en el tramo y en los bancos de préstamo cercanos con el fin de determinar las características física-mecánicas, para analizar su implementación en la estructura de pavimento.
- Determinar el tránsito actual mediante un aforo vehicular para conocer las cargas que se van a aplicar en el diseño estructural y su periodo de proyección.
- Diseñar geométricamente el tramo en estudio aplicando las normas del manual centroamericano SIECA 2004 mediante el software AutoCAD CIVIL 3D 2018.
- Diseñar una estructura de pavimento articulado usando adoquín basado en el método AASHTO 93.

CAPÍTULO II ESTUDIO TOPOGRÁFICO.

2.1. Introducción.

El levantamiento topográfico es el punto de partida para poder realizar toda una serie de etapas básicas dentro de la identificación y señalamiento del terreno a edificar, como elaboración de planos (planimétricos y altimétricos), replanteo de planos, deslindes, amojonamientos y demás.

El levantamiento debe representar el terreno mediante tres planos fundamentales: un plano del eje de la carretera (alineamiento horizontal), un plano de perfil longitudinal y un plano de secciones transversales; los mismos que un conjunto nos proporcionarán una representación tridimensional del proyecto, para después realizar los diseños de rasante y las secciones transversales.

En esta etapa se vincula de forma analítica, los diferentes ejes de simetría de la obra entre sí, con elementos fijos del terreno, BM (Banco Maestro) con fines de su posterior replanteo.

2.2. Definiciones Básicas.

BM´S: Puntos de control vertical materializados en estructuras bien identificadas en el terreno mediante diferentes tipos de monumentos, cuya elevación en metros está referida a la red de nivelación nacional.

Líneas de Base: son líneas de referencia a partir de un punto inicial de línea base y un punto final de línea base.

Planimetría: Estudia el conjunto de métodos y procedimientos que tienden a conseguir la representación a escala de todos los detalles interesantes del terreno sobre una superficie plana (plano geometría), prescindiendo de su relieve y se representa en una proyección horizontal.

Alineamiento Horizontal: Es la proyección del eje de la vía sobre un plano horizontal y está compuesto por rectas y curvas horizontales; las rectas se caracterizan por su longitud y dirección. Los cambios de dirección de las rectas se suavizan con las curvas horizontales, las cuales se caracterizan por su curvatura y longitud. En el diseño de alineamiento horizontal se utilizan las curvas circulares (radios de curvatura constantes) y curvas de transición (radios de curvatura variable).

Secciones Transversales: Es un corte vertical normal al alineamiento horizontal, el cual permite definir la disposición y dimensiones de sus elementos.

Curvas Horizontales: Se definen como arcos de circunferencia de un solo radio que son utilizados para unir dos alineamientos rectos de una vía.

Altimetría: Estudia el conjunto de métodos y procedimientos para determinar y representar la altura o "cota" de cada punto respecto de un plano de referencia. Con la altimetría se consigue representar el relieve del terreno, (planos de curvas de nivel, perfiles, etc.).

Curvas Verticales: Es un arco de parábola de eje vertical que une dos tangentes del alineamiento vertical.

Curvas de Nivel: Una curva de nivel es aquella línea que en un mapa une todos los puntos que tienen igual altitud sobre el nivel del mar o profundidad.

Pendiente: Es el grado de inclinación de un punto respecto al otro.

2.3. Metodología y Desarrollo del Tema.

2.3.1. Levantamiento Topográfico.

Para realizar el levantamiento topográfico de este proyecto se utilizaron los siguientes equipos (Ver Anexos, Figura No. 8, No. 9 y No. 10, Página I y II):

- ✓ Estación Total Sokkia CX 55.
- ✓ GPS Garmin etrex 10.
- ✓ Cinta Métrica de 30 metros.
- ✓ Mojones de Madera.
- ✓ Chapas.
- ✓ Pintura en Aerosol.
- ✓ Clavos.

El estudio topográfico de la carretera se realizó en tres días ya que tiene una longitud de 2.8km, obteniendo los datos necesarios para conocer las condiciones topográficas en que se encuentra la vía.

Puntos Base.

Se realizó el proceso obtención de dos puntos de referencia pertenecientes a la Poligonal de la Línea Base; que en éste caso correspondió a dos puntos iniciales de la línea; P-1, P-2, que se encuentra al inicio del proyecto. Identificados con mojones de madera de 4 pulgadas de diámetro empotrados a 30 centímetros en el terreno natural.

El equipo utilizado para la obtención de las coordenadas fue un GPS Garmin eTrex 10, el cual proporciona coordenadas UTM en el sistema WGS 84. Éstas coordenadas fueron utilizadas como referencia en el levantamiento Planimétrico de la carretera.

Elección del Método.

El procedimiento utilizado para el levantamiento, fue el método de perfil longitudinal y secciones transversales considerando que es el más adecuado para este tipo de proyecto.

Alineamiento Horizontal.

El trabajo consistió en el seccionamiento del eje central cada 20mts, a partir de los puntos de la Línea Base previamente establecida. En el levantamiento, se tomaron detalles en los puntos correspondientes al centro del camino, orillas, bordes, zona despejada, entre otros; los cuales fueron anotados esquemáticamente todos los detalles de la infraestructura levantada, así como los esquemas de los puntos de la Línea Base, con el respectivo número de código correspondiente al archivo en la Estación Total Sokkia CX 55.

El alineamiento da comienzo en el estacionamiento 0+000, propiamente ubicado en la intersección de la carretera NIC-23 (Somotillo-Cinco Pinos) con la carretera NN-272 (Somotillo-Rodeo Grande, Valle Los Quesos) y finalizó en la estación 2+800 de la carretera NN-272.

Secciones Transversales.

El levantamiento de las secciones transversales se hizo sobre la poligonal abierta y perpendicular al eje del camino. Se tomó en cuenta el cambio de nivel para que al momento de realizar el cálculo de volúmenes de tierra sean más precisos y se determinó secciones constantes de 20 metros a lo largo de la vía.

Establecimiento de BM´S.

Se utilizó como Banco Maestro (BM) la elevación 55.4450 metros tomada con el Garmin etrex 10 en el (P-1).

Curvas de Nivel.

Se determinaron las elevaciones de 1,411 puntos en todo el tramo de la carretera, éstos fueron procesados en el software AutoCAD Civil 3D 2018, obteniendo así el mapa de curvas de nivel que ayudan a conocer el tipo de relieve de la vía existente y que servirá de apoyo para el dibujo de las secciones transversales y perfil longitudinal.

2.3.2. Resultados del Levantamiento Topográfico.

Los resultados del levantamiento son los datos de coordenadas, elevación y descripción de los puntos, descargados de la Estación Total SOKKIA CX 55.

En la siguiente tabla se presentan algunos de los puntos obtenidos del levantamiento.

No.de Punto	Coordenada Norte	Coordenada Este	Elevación	Código de punto	Detalle de Punto
100	8761.153	1326.379	56.197	74	Zona Despejada
101	8760.936	1328.72	56.685	74	Zona Despejada
102	8760.544	1329.889	56.81	7	Lindero de Propiedad
103	8760.099	1325.857	56.392	1	Eje Central
104	8782.563	1322.578	56.289	2	Eje Derecho
105	8781.514	1329.075	56.251	3	Eje isquierdo
106	8782.911	1320.761	56.362	74	Zona Despejada
107	8781.482	1318.814	56.585	74	Zona Despejada
108	8781.345	1330.8	56.333	74	Zona Despejada
109	8781.345	1331.906	56.75	7	Lindero de Propiedad
110	8802.519	1329.051	56.514	1	Eje Central
111	8802.184	1332.192	56.366	3	Eje isquierdo
112	8803.213	1325.596	56.322	2	Eje Derecho
113	8801.975	1333.699	56.335	74	Zona Despejada
114	8803.349	1323.769	56.434	74	Zona Despejada
115	8801.896	1334.917	56.739	74	Zona Despejada

Tabla No. 1: Resultados representativos del levantamiento topográfico.

Fuente: Datos descargados de Estación Total Sokkia CX 55.

Pendiente.

Los resultados de la pendiente son los siguientes:

- Para el Primer Tramo (Alineamiento 1) las pendientes varían entre 0.34% y 0.44%.
- Para el Segundo Tramo (Alineamiento 2) las pendientes son: 6.26%, -7.96%, 3.65%, -2.53, 4.30, -7.76.

Dichos resultados se obtuvieron mediante el software Auto CAD Civil 3D 2018.

Elaboración de Planos.

La información recopilada del levantamiento topográfico se utilizó para elaborar los planos finales de construcción en hojas planta-perfil los cuales muestran la línea central, BM's, el perfil longitudinal y la rasante.

CAPÍTULO III ESTUDIO GEOTÉCNICO.

3.1. Introducción.

Toda construcción debe estar sustentada en los respectivos estudios de ingeniería, con el fin de obtener proyectos técnicos óptimos y seguros que garanticen la durabilidad para el periodo de diseño de la estructura.

El suelo es un agregado natural de granos y minerales, con o sin componentes orgánicos, que pueden separarse por medio de mecanismos comunes.

Un estudio de suelos permite conocer las características físicas y mecánicas del suelo, es decir, la composición de las capas de terreno en la profundidad. Se necesitan habitualmente para saber el tipo de cimentación más acorde para una obra a construir y los asentamientos de la estructura en relación al peso que va a soportar.

3.2. Definiciones Básicas.

3.2.1. Humedad de los Suelos.

Se denomina humedad al peso de agua dividido por el peso de las partículas sólidas de una muestra de suelo. Se obtiene de la siguiente manera: se pesa el suelo natural, se seca en el horno u otra fuente de calor; se pesa el suelo seco y se determina el contenido de humedad con la siguiente ecuación:

Ecuación No. 1

$$\%w = \frac{Peso\ de\ Agua\ Contenida}{Peso\ Seco} = \frac{W_h - W_s}{W_s}\ x\ 100$$

Donde:

%*W* = Porcentaje de Humedad del Suelo.

 W_h = Peso de la Muestra Húmeda.

 W_s = Peso de la Muestra Seca.

En la siguiente tabla se muestran las cantidades de material para la determinación del contenido de humedad.

Tamaño máximo de las partículas(pasa el 100%	Peso recomenda (grar	Precisión de la	
el tamiz dado).	Mínimo	Máximo	Dalaliza (grafilos)
No.10 (2.0 mm)	20	20	0.01
No. 4 (4.75 mm)	20	100	0.01
20 mm (3/4")	250	2500	0.1
38 mm (1 1/2")	1000	10000	1
75 mm (3")	5000	50000	1

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 1: Contenido de Humedad de los Suelos, Página No. 11.

La importancia de la humedad de un suelo radica en que, junto a otras características, determina su comportamiento; por ejemplo, influye directamente en los cambios de volumen, estabilidad mecánica y cohesión, siendo particularmente influyente cuando se trata de suelos finos.

3.2.2. Granulometría de los Suelos.

Este método de ensayo cubre la determinación cuantitativa de la distribución de tamaños de las partículas de un suelo, por medio de un proceso de tamizado para tamaños de partículas retenidas en la malla Nº 200 (0.075mm), brindando la información básica para revelar la uniformidad o graduación de un material dentro de rangos establecidos, y para la clasificación por textura de un suelo. (Ver Anexos, Figura No. 11 y Tabla No. 44, Página III).

El procedimiento de ejecución del ensaye consiste en tomar una muestra de suelo de peso conocido, colocarlo en el juego de tamices ordenados de mayor a menor abertura, pesando los retenidos parciales de suelo en cada tamiz. Esta separación física de la muestra en dos o más fracciones que contiene cada una de las partículas de un solo tamaño, es lo que se conoce como "Fraccionamiento".

Sin embargo, debido a que el menor tamaño de tamiz que se utiliza corrientemente es el 0.074 mm (Malla No. 200), el análisis mecánico está restringido a partículas mayores que ese tamaño que corresponde a arenas limpias finas. Por lo tanto, si el suelo contiene partículas menores que ese tamaño la muestra de suelo analizada debe ser separada en dos partes, para análisis mecánico y por vía húmeda (hidrometría). Por medio de lavado por el tamiz No. 200 y lo que pase por este tamiz será sometido a un análisis granulométrico por vía húmeda, basado en la sedimentación.

3.2.3. Consistencia y Plasticidad de los Suelos.

La consistencia y plasticidad de los suelos finos, se determina mediante Los Límites de Atterberg ya que son ensayos de laboratorio normalizados, que permiten obtener el contenido de humedad, en el cual se produce el cambio de estado de los mismos, con el fin de realizar la clasificación de los suelos.

Para realizar el ensayo de los **Límites de Atterberg** se debe trabajar con el material menor que el tamiz #40 (0.42mm), es decir, se trabaja con la parte fina del suelo y se incluyen partículas de arena fina.

Limite Líquido.

El límite líquido es el contenido de agua, expresado en porcentaje respecto al peso del suelo seco, que delimita la transición entre el estado líquido y plástico de un suelo remoldado o amasado.

En el proceso de la determinación del Límite Líquido se toma una masa de suelo húmedo y se coloca en un recipiente en forma de cuchara llamado Casa Grande, se separa con una herramienta para hacer ranura patrón llamada (ranurador), se deja caer desde una altura de 1cm y sufre el cierre de esa ranura de 1cm después de dar 25 golpes de la cuchara contra la base de caucho dura o similar. (Ver Anexos, Figura No. 12, Página IV). Para la determinación del límite líquido se utiliza la siguiente ecuación:

Ecuación No. 2

$$LL^n = W^n \left(\frac{N}{25}\right)^{0.121}$$

Ecuación No. 3

$$LL^n = KW^n$$

Donde:

 LL^n = Límite Líquido en Porcentaje.

 W^n = Contenido de Agua dado en Porcentaje.

N = Número de Golpes.

K = Factor Límite Líquido dado en la Tabla No. 45. (Ver Anexos, Tabla No. 45, Página IV).

Límite Plástico.

El límite plástico se define como el contenido de humedad del suelo al cual un cilindro de éste, se rompe o desquebraja cuando es amasado y enrollado en una superficie lisa hasta presentar un diámetro aproximadamente de 3mm.

Ésta prueba es bastante subjetiva, es decir, depende específicamente del operador cuando éste se encuentre haciendo el desquebraja miento del cilindro del suelo para lograr el diámetro especificado.

✤ Índice de Plasticidad.

El índice de plasticidad de un suelo es el tamaño del intervalo de contenido de agua, expresado como un porcentaje de la masa seca de suelo, dentro del cual el material está en un estado plástico. Este índice corresponde a la diferencia numérica entre el límite líquido y el límite plástico del suelo, es decir:

Ecuación No. 4

$$IP = LL - LP$$

Donde:

IP =Índice de Plasticidad.

LL = Límite Líquido.

IP = Límite Plástico.

3.2.4. Clasificación de los Suelos.

Método de Clasificación SUCS.

Este sistema agrupa los suelos en dos clases: suelos de partículas **gruesas** y suelos de partículas **finas**.

- Los suelos de partículas gruesas se definen cuando más de la mitad de la masa del suelo, al ser sometida a tamizado, es retenida en la malla N° 200, en donde corresponden la arena y grava.
- Grava: más de la mitad de fracción gruesa es retenida por la malla N° 4.
- Arena: más de la mitad de la fracción gruesa pasa la malla N° 4.
- Se consideran suelos de partículas finas cuando más de la mitad de la masa del suelo pasa la malla N° 200, al cual corresponden: limos y arcillas.

Método de Clasificación AASHTO.

El requerimiento de parámetros de diseño correspondientes a las características del suelo, determina que la clasificación de suelos se realice por el **Método AASHTO (M 145)**, principalmente con el fin de obtener el Índice de Grupo.

Este método clasifica a los suelos, de acuerdo a su composición granulométrica, su límite líquido y su índice de plasticidad, en siete grupos de A-1 a A-7. Los suelos cuyas partículas pasan el tamiz No. 200 (0,075 mm) en un porcentaje menor al 35 %, forman los Grupos A1, A2, A3 y los subgrupos que corresponden.
En cambio, los suelos finos limo-arcillosos que contienen más del 35 % de material fino que pasa el Tamiz No. 200, constituyen los Grupos A-4, A-5, A-6, A-7 y los correspondientes subgrupos (Ver Anexos, Tabla No. 46 y Tabla No. 47, Pág. V).

La ventaja de este método radica en la posibilidad de evaluar la calidad del suelo a través del "**Índice de Grupo**". Los suelos que tienen similar comportamiento se encuentran en el mismo grupo y están representados por un determinado Índice.

Los índices de grupo de los materiales granulares están comprendidos entre 0 y 4, los correspondientes a suelos limosos entre 8 y 12, y los correspondientes a suelos arcillosos entre 11 y 20 o un número mayor.

El índice de grupo debe ser escrito entre paréntesis, su valor puede ser determinado mediante la fórmula siguiente:

Ecuación No. 5

$$IG = (F - 35)(0.2 + 0.005(LL - 40)) + 0.01(F - 15)(IP)$$

Donde:

F = Porcentaje que pasa el tamiz No. 200.

LL = Límite Líquido.

IP =Índice de Plasticidad.

3.2.5. Compactación de los Suelos.

La compactación es el proceso realizado generalmente por medios mecánicos por el cual se obliga a las partículas de suelo a ponerse más en contacto con otras, mediante la expulsión del aire de los poros, lo que implica una reducción más o menos rápida de los vacíos. Esto produce en el suelo cambios de volumen de importancia, principalmente en el volumen de aire, ya que por lo general no se expulsa agua de los huecos durante el proceso de compactación, siendo la condición de un suelo compactado la de un suelo parcialmente saturado.

El ensayo de compactación **Proctor** es uno de los más importantes procedimientos de estudio y control de calidad de la compactación de un terreno. A través de él es posible determinar la densidad seca máxima de un terreno en relación con su grado de humedad, a una energía de compactación determinada.

Existen dos tipos de ensayo Proctor normalizados; el "Ensayo **Proctor Standard**", y el "Ensayo **Proctor Modificado**". La diferencia entre ambos se encuentra en la energía utilizada, la cual se modifica según el caso variando el número de golpes, el pisón (cambia altura y peso), el molde y el número de capas.

* Método Próctor Standard.

El ensaye **Proctor Standard** se refiere a la determinación del peso por unidad de volumen de un suelo, que ha sido compactado por un procedimiento definido para diferentes contenidos de humedad.

Un suelo con un contenido de humedad seleccionado es colocado en tres capas dentro de un molde cilíndrico de dimensiones conocidas, cada capa es compactada por medio de la caída de un pisón de 2.5 Kg (5.5 lb) con una altura de caída de 12", aplicando de 25 a 56 golpes y sometiendo al suelo a un esfuerzo de compactación de 12400 lb-pie/pie3 (600 KN-m/m3), determinándose posteriormente su peso unitario seco.

El procedimiento es repetido para un número suficiente de contenidos de agua para establecer la relación entre el peso unitario seco y el contenido de agua del suelo. Los valores del contenido de agua óptimo y el peso unitario seco máximo del suelo, son determinados utilizando la curva de compactación. Para realizar el ensaye Proctor Standard se utilizan cuatro procedimientos para determinar la relación humedad-densidad de los suelos, los cuales son los siguientes:

- Método A: En éste método se utiliza el material que pasa el tamiz No 4 (4.75 mm) y es compactado en un molde de 4".
- Método B: En éste procedimiento se utiliza el material que pasa el tamiz No 4 (4.75 mm) o cuando el 40% o menos es retenido en el tamiz No.4 y es compactado en un molde de 6".
- Método C: En éste método se utiliza el material que pasa el tamiz ³/₄" (19 mm) y es compactado en un molde de 4".
- Método D: En éste procedimiento se utiliza el material que pasa el tamiz ³/₄" (19 mm) o es retenido 30% o menos en el tamiz de ³/₄" y es compactado en un molde de 6".

Las especificaciones de los métodos para el ensaye están basadas en la norma 698-91 de la ASTM y se presentan en Anexos, Tabla No. 48 y Tabla No. 49, Página VI).

Procedimiento de cálculos:

✓ Cálculo del Volumen del Molde de Compactación.

Ecuación No. 6

$$V_m = \pi \left(\frac{d_i + d_s}{16 x \, 100} \right)$$

Donde:

 V_m = Volumen de la Muestra, en cm3.

- d_i = Diámetro Inferior, en mm.
- d_s = Diámetro Superior, en mm.

✓ Cálculo de Contenido de Humedad de cada Espécimen Compactado.

Ecuación No. 7

$$\%W = \frac{(W_h + T) - (W_s + T)}{(W_s + T) - T} x \ 100$$

Donde:

%W = Porcentaje de Humedad.

 W_h = Peso de la Muestra Húmeda.

 W_s = Peso de la Muestra Seca.

T = Peso de la Tara.

 Cálculo del Peso Volumétrico Húmedo (Densidad Húmeda) en cada Espécimen Compactado.

Ecuación No. 8

$$\gamma_h = \frac{(W_{h+m}) - W_m}{V_m}$$

Donde:

 γ_h = Peso Volumétrico Húmedo en kg/m3.

 W_{h+m} = Peso de la Muestra Húmeda más Molde.

 W_m = Peso del Molde.

 V_m = Volumen de la Muestra.

✓ Cálculo del Peso Volumétrico Seco (Densidad Seca) en cada Espécimen Compactado.

Ecuación No. 9

$$\gamma_d = \frac{\gamma_h}{1 + \left(\frac{\% W}{100}\right)}$$

Donde:

 γ_d = Peso Volumétrico Seco en kg/m3.

 γ_h = Peso Volumétrico Húmedo en kg/m3.

%W = Porcentaje de Humedad.

3.2.6. Capacidad de Soporte del Suelo o CBR.

La capacidad de soporte es una de las propiedades más importantes de los suelos, su comportamiento, al estar sometido a tensiones es bastante más complejo que el de otros materiales.

Cuando un suelo es sometido a tensiones, sufre una determinada deformación. Si alcanza el valor límite de su resistencia, el suelo sufre una rotura por corte o falla por corte. Desde el punto de vista de la mecánica de suelos, interesa tanto tener un adecuado factor de seguridad a la falla por corte como que la estructura solicitante no sufra una deformación tal que le produzca daños.

El Ensayo CBR (California Bearing Ratio: Ensayo de Relación de Soporte de California) mide la resistencia al esfuerzo cortante de un suelo y para poder evaluar la calidad del terreno para sub rasante, sub base y base de pavimentos.

Se efectúa bajo condiciones controladas de humedad y densidad. Éste es uno de los parámetros necesarios obtenidos en los estudios geotécnicos previos a la construcción, como también lo son el Ensayo Proctor y los Análisis Granulométricos del terreno. Para este ensayo se emplea una muestra de suelo de 150 mm de diámetro y 116 mm de altura, compactada en un molde cilíndrico de acero. Antes de realizar el ensaye generalmente se satura para simular las condiciones más desfavorables en cuanto a drenaje de un camino y para determinar su posible expansión. Junto con la saturación y durante la penetración, se somete la muestra a una presión (sobrecarga) igual a la que producirá el futuro pavimento.

En este ensayo se mide la carga necesaria para hacer penetrar un pistón de 50±5 mm de diámetro en una masa de suelo compactada en un molde cilíndrico de acero, a una velocidad de 1,27 mm/min, para producir deformaciones de hasta 12,7 mm (1/2"). Esta carga se relaciona con una carga estándar y el resultado final se expresa en porcentaje. La curva de comparación se llama curva patrón y corresponde a un agregado normalizado al cual se le asigna un valor CBR de 100%.

El CBR se define con la siguiente expresión:

Ecuación No. 10

$$CBR = rac{carga unitaria del ensayo}{carga unitaria patrón} * 100$$

En la ecuación No. 10 se aprecia que el número CBR, es un porcentaje de la carga unitaria patrón. En la práctica el símbolo de (%) se quita y la relación se presenta simplemente por el número entero. (Ver Anexos, Tabla No. 50, Página VI).

Resistencia a la Penetración.

Lleve la muestra a la máquina de ensaye y se colocan sobre ella una cantidad de pesas para reproducir una sobrecarga igual a la que usó en la saturación de la muestra. (Ver Anexos, Tabla No. 51, Página VII).

Se coloca el pistón de penetración hasta que haga contacto con la muestra, luego se le aplica una carga inicial de 4.5 kg. Después de aplicada la carga inicial se ajustan el deformímetro de carga y el deformímetro de penetración a cero.

Aplique las cargas al pistón de penetración, para que la velocidad sea uniforme de 1.27 mm/minuto. Registre la carga o las lecturas de carga a los niveles de penetración. (Ver Anexos, Tabla No. 52, Página VII).

Clasificación y Uso del Suelo según el CBR.

Para el uso del suelo existen intervalos específicos que relacionan la clasificación cualitativa con el valor resultante del CBR y así conocer si es apto para ser utilizado como sub rasante, sub base o base. (Ver Anexos, Tabla No. 53, Página VII).

Procedimiento de cálculos.

✓ Humedad de Compactación.

% de agua a añadir =
$$\frac{H-h}{100+h} \ge 100$$

Donde:

H = Humedad Prefijada.

h = Humedad Natural.

✓ Densidad o Peso Unitario.

La densidad se calcula a partir del peso del suelo antes de sumergirlo y de su humedad de la misma forma que en el método Proctor Standard, para obtener la humedad optima y la densidad máxima.

✓ Porcentaje de Expansión.

% de expansión =
$$\left(\frac{L_f - L_i}{H}\right) x \ 100$$

Donde:

 L_f = Lectura Final del Deformímetro.

 L_i = Lectura Inicial del Deformímetro.

H = Altura de Espécimen.

3.3. Metodología y Desarrollo del Tema.

Para determinar las características del suelo se realizaron sondeos manuales (sobre la vía y en los bancos de préstamos), obteniendo muestras de suelos para su análisis en el laboratorio y así definir su utilización como material de sub rasante de la carretera.

Se realizaron 13 sondeos en la línea del camino a una profundidad máxima de 1.5 metros, con una separación de 200 metros entre cada sondeo y no a 100 metros como lo establece la SIECA debido al factor económico del grupo y a que el suelo presentaba las mismas características en varios tramos de la carretera en estudio.

Los sondeos se realizaron de forma alterna (banda izquierda, banda central y banda derecha) y así la obtención de muestras alternas de los diferentes estratos.

En cuanto a las fuentes de materiales denominadas "Banco 1" y "Banco 2" se analizaron con el propósito de definir su utilización como material de base y/o sub base para el proyecto.

De las muestras obtenidas in situ se realizarán las pruebas y ensayes específicos en base a las normas establecidas de la A.A.S.H.T.O. y la A.S.T.M.

Los ensayes a efectuarse en el laboratorio son los siguientes:

- Contenido de Humedad. (ASTM D-420, D-2216).
- Granulometría. (AASHTO T-88, ASTM D-422).
- Límites de Atterberg. (AASHTO 89-90, ASTM D-4318).
- Clasificación de los Suelos. (AASHTO y ASTM).
- Próctor Standard. (AASHTO T-89, ASTM D-698).

• C.B.R. (AASHTO T-193, ASTM D-1883).

Los resultados de los ensayes del laboratorio se presentan en Anexos, Tabla No. 54, Página VIII.

3.3.1. Resultados de las Investigaciones de las Muestras de Campo.

En base a los resultados obtenidos de los ensayes en el laboratorio, se tiene lo siguiente:

En las Estaciones 0+000 hasta 1+600 m, se encontraron suelos de tipo A - 4(2) (Arena Limosa de Baja Plasticidad), A - 4(5) (Limo Arenoso de Baja Plasticidad), A - 7 - 6(21) (Limo Arcillosos de Alta Plasticidad), A - 6(17) (Limo Arcilloso de Alta Plasticidad), A - 4(0) (Arena Limosa), A - 6(12) (Limo Arcilloso de Baja Plasticidad), A - 4(8) (Limo Arenoso de Baja Plasticidad), A - 2 - 4(1) (Grava con Arena Limosa) y en las Estaciones 1+600 hasta 2+800 m, se encontró A - 6(16) (Limo Arcilloso de Baja Plasticidad), A - 4(2) (Grava con Arena Limosa), A - 6(5) (Arena Arcillosa de Baja Plasticidad), A - 2 - 4(0) (Grava con Arena Limosa), A - 6(5) (Arena Arcillosa de Baja Plasticidad), A - 2 - 4(0) (Grava con Arena Limosa), A - 6(5) (Arena Arcillosa de Baja Plasticidad), A - 2 - 4(0) (Grava con Arena Limosa), A - 6(5) (Arena Arcillosa de Baja Plasticidad), A - 2 - 4(0) (Grava con Arena Limosa), A - 2 - 6(0) (Grava con Arena Limosa), ver estratigrafía del suelo en Anexos, Tabla No. 55, Página IX.

Por tanto, los que predominan son los suelos Limosos y Arcillosos sobre los que se aprecia la presencia de materiales de préstamo para el mejoramiento del suelo con el fin de cubrir o proteger los materiales débiles y proveer una plataforma transitable.

Para el ensaye de **CBR** se agruparon los suelos con la misma clasificación obteniendo los siguientes resultados:

Clasificación		CBR (%)		Clasificación	lleo				
Clasificación	90	95	100	Cualitativa del Suelo	050				
A - 7	2	5	16	Muy Mala	Sub-rasante				
A - 6	4	7	23	Mala	Sub-rasante				
A - 4	7	16	35	Regular a Buena	Sub-rasante				
A - 2	11	19	46	Regular a Buena	Sub-rasante				

Tabla No. 3: Resultados de CBR a las Muestras de Suelos Existentes.

Fuente: Elaboración Propia.

De acuerdo a los resultados se aprecia que los suelos existentes tienen una clasificación de buena a mala en el uso como sub rasante, por tanto se deberá remover el material, homogenizarlo y compactarlo al 95% para obtener una sub rasante adecuada para el proyecto.

3.3.2. Características de los Bancos de Materiales.

Con el fin de suministrar a la obra una base granular adecuada, se tomaron muestras de 2 bancos de préstamos a los cuáles se les hicieron los respectivos ensayes para determinar sus características y se describen a continuación.

Banco de Material No. 1

Está ubicado cerca de la carretera Somotillo – Rodeo Grande a 300 metros del sitio del proyecto. Buen parte del área está descapotada y en proceso de explotación, tiene un buen acceso.

✤ Banco de Material No. 2.

Está ubicado en la carretera Somotillo – Santa Teresa. Tiene un acceso en buen estado, parte del área está descapotada y en proceso de explotación.

Ambos son utilizados por la alcaldía de Somotillo para el revestimiento de caminos.

En las siguientes tablas se muestran los resultados de los ensayes realizados a los bancos de materiales:

Banaa da			%	que p	asa po	or Tar	níz					Clasifianaián	Clasifianaián	Decoringión del
Material	2"	1 1/2"	1"	3/4"	1/2"	3/8"	No. 4	No. 40	No. 200	LL %	IP %	AAS.H.T.O	S.U.C.S	Material
Banco 1	100	100	98	83	74	69	51	20	8	27	10	A - 2 - 6(1)	GP	Grava Pobremente Graduada de Fina a Gruesa
Banco 2	100	98	71	69	51	48	39	15	6	23	5	A - 2 - 4(1)	GP	Grava Pobremente Graduada de Fina a Gruesa

Tabla No. 4: Resultados de Los Bancos de Materiales.

Fuente: Elaboración Propia.

Banco de	Peso Volumétrico	Peso Volumétrico	Peso Volumétrico
Material	Húmedo (kg/m3)	Seco (kg/m3)	Máximo (kg/m3)
Banco 1	1316	1138	1841
Banco 2	1305	1180	1971

Tabla No. 5: Pesos Volumétricos de los Bancos de Materiales.

Fuente: Elaboración Propia.

Tabla No. 6: Ensaye CBR a los Bancos de Materiales.

Clasificación		CBR (%)		Densidad Máxima	Humedad	Clasificación	lice	
Clasificación	90	95	100	(kg/m3)	(%)	Cualitativa del Suelo	030	
Banco 1	49	58	79	1841	15.70	Buena	Sub-base	
Banco 2	55	69	85	1971	10.60	Buena	Base	

Fuente: Elaboración Propia.

A través de los ensayes realizados se logró determinar que el Banco 1 puede ser utilizado para sub-base y el Banco 2 para base de la carretera.

Para el proyecto se tomará como fuente de material el **Banco 2**, ya que tiene mejores características, pero la NIC 2000 expresa que el CBR para base granular es de 80% (dato tomado en la sección 1003, pág. 531); por tanto se mejorarán sus propiedades mecánicas, estabilizándola con un porcentaje de cemento que cumpla con la resistencia mínima de 1800KN/m2 (18.36kg/cm2) a los 7 días de saturación (dato tomado de la sección 1003, pág. 532 de la NIC 2000), para que el material cumpla con lo requerido por la norma y sea utilizado como base granular de la carretera.

Los ensayes a la compresión de las muestras de suelo-cemento se llevaron a cabo en el Laboratorio de Suelos y Materiales de ICC (Ingenieros Consultores Centroamericanos S.A), estos se presentan en Anexos, (Tabla No. 56, Página X y Figuras No. 13 y 14, Página XI).

En la siguiente tabla se muestran los resultados de los ensayes a la compresión del Suelo-cemento.

Tabla No. 7: Resultados de Ensayes a Compresión de Muestra de Suelo-Cemento.

Matorial	% de Cemento								
Wateria	4%	6%	8%						
Banco 2	12.34 kg/cm2	19.35 kg/cm2	23.13 kg/cm2						

Fuente: Elaboración Propia.

El valor obtenido para la resistencia a la compresión es de **19.35 kg/cm2**, superando al valor mínimo recomendado por la NIC 2000.

Para el cálculo de las bolsas de cemento se utiliza la siguiente expresión:

$$Bolsas \ de \ Cemento = \frac{Peso \ Volum \acute{e}trico \ Seco \ (kg/m^3) * 6\%}{42.5kg}$$
$$Bolsas \ de \ Cemento = \frac{(1180kg/m^3) * 0.06}{42.5kg}$$

Bolsas de Cemento = $1.67 \approx 2 Bolsas/m^3$

Tabla No. 8: Porcentaje y No. de Bolsas de Cemento a Utilizar por cada m³.

Motorial	Cantidad de	e Cemento	Peso Volumétrico		
wateria	%	Bolsas/m3	Seco Suelto kg/m3		
Banco 2	6	2	1180		

Fuente: Elaboración Propia.

CAPÍTULO IV ESTUDIO DE TRÁNSITO.

4.1. Introducción.

Un estudio de tránsito tiene como finalidad analizar la movilidad en una zona determinada, contemplando de manera coordinada los diferentes elementos que la componen y simulando la interacción de los nuevos proyectos viales con la red proyectada o existente, realizando un diagnostico que proporcione soluciones ajustadas a cada proyecto con el fin de obtener la movilidad eficiente, segura y comprometida con el medio ambiente.

Los principales impactos que analiza un estudio de transito son la congestión y la accidentabilidad. Para evaluar el comportamiento del tránsito se debe tener en cuenta el tipo de estudio que se necesita y la metodología que puede aplicarse a tal estudio, ya que estas características pueden variar según la localidad y los fines de tal estudio.

4.2. Definiciones Básicas.

Tránsito: El concepto suele utilizarse para nombrar al movimiento de los vehículos y las personas que pasan por una calle, carretera u otro tipo de camino.

Conteos Volumétricos: El conocimiento de los conteos vehiculares es de vital importancia para determinar los volúmenes del tráfico sobre puntos de interés en un sistema vial. De los datos recolectados se determinan las variaciones en la distribución direccional, volúmenes por hora y la composición vehicular.

Composición del Tránsito: La composición de tránsito se define mediante el porcentaje correspondiente a cada diferente tipo de vehículos, expresado en función del volumen de tránsito total.

Clasificación de Vehículos: Es un término general que se refiere a agrupar vehículos en categorías según sus características técnicas y comerciales. Para la clasificación de los vehículos, el Ministerio de Transporte e Infraestructura (MTI) ha designado la siguiente terminología para los vehículos que circulan a través de la infraestructura vial en el país, (Ver Anexos, Figura No. 15, Página XII).

Clasificación del Tipo de Vehículo por la Disposición de sus Ejes: Se ha clasificado el tipo de vehículos de acuerdo al número y disposición de sus ejes de la forma que se muestra en el diagrama de cargas permisibles. (Ver Anexos, Figura No. 16, Página XIII).

Volumen de Tránsito: Es en número de vehículos que pasa por un punto a lo largo de una carretera durante una unidad de tiempo determinada.

Volúmenes de Tránsito Promedio.

- Tránsito Promedio Diario (TPD): Se define como Tránsito Promedio Diario (TPD) al número total de vehículos que pasan durante un periodo de tiempo (días completos) igual o menor a un año y mayor que un día, divido entre el número de días del periodo.
- Tráfico Promedio Diario Anual (TPDA): Se define como la unidad de medida habitual para indicar el uso o importancia de una carretera y se expresa en número de vehículos. En todo estudio de tránsito se deben de llegar a obtener el Tránsito Promedio Diario Anual (TPDA) a partir de censos o conteos de tránsito en el lugar de la futura construcción. Para calcular el tráfico promedio diario anual, se determina con la siguiente expresión matemática:

Ecuación No. 11

$$TPDA = TPD * FD * FA$$

Donde:

TPDA = Tránsito Promedio Diario Anual.

TPD = Tránsito Promedio Diario.

FD = Factor Día.

FA = Factor de Ajuste.

Asociación de Estaciones: En esta metodología se identifican tres tipos de estaciones, las Estaciones de Mayor Cobertura (EMC) que se encuentran ubicadas sobre la red troncal de carreteras, las Estaciones de Corta Duración (ECD) ubicadas ya sea en caminos asfaltados o adoquinados con un flujo vehicular menor que la red troncal y las Estaciones de Conteo Sumarias (ECS) ubicadas en caminos revestidos con un flujo moderado.

Del método de asociación de estaciones se obtienen los factores de ajuste (factor día, factor semana y factor expansión a TPDA) que son necesarios para convertir los volúmenes de tráfico contabilizados a valores de TPDA (tránsito promedio diario anual).

Proyecciones del Tránsito Futuro: En el mejoramiento de una carretera o construcción de una nueva carretera, no solo se toman en cuenta las tasas de crecimiento esperado para el tránsito normal, sino que también debe tenerse en consideración los incrementos de vehículos que se espera utilicen la carretera. El aumento en estos nuevos vehículos se representa como el tránsito generado, tránsito de desarrollo, tránsito desviado y tránsito total.

Componentes del Tránsito Futuro: Una vez finalizado una rehabilitación o construcción en una carretera y ésta entra en funcionamiento, el comportamiento del tráfico esperado se clasifica en:

- Tránsito Normal: Es el flujo vehicular existente, el cual independientemente de existir una mejora o no en la vía la continua utilizando.
- **Tránsito de Desarrollo:** Es el incremento del volumen de tránsito debido a nuevas actividades; ya sea agrícolas, industriales, comerciales, etc.
- Tránsito Generado: Es el aumento en el volumen de tránsito debido a la reducción en los costos de operación, lo cual podría motivar a los usuarios a aumentar sus números de viajes.

- Tránsito Desviado: El tránsito desviado resulta importante cuando la obra en estudio, u otra que se construya en un período próximo, represente una vía alterna dentro de un esquema de transporte.
- Tránsito Total: Es la suma de los volúmenes de tránsito Normal, de Desarrollo, Generado y Desviado.

Tasas de Crecimiento: Es una medida del aumento o disminución promedio de una variable en un determinado periodo de años.

- Tasas de Crecimiento Producto Interno Bruto (PIB): Representa el al aumento o disminución en el nivel de producción de bienes y servicios de una economía expresado en valor monetario en un periodo de tiempo dado.
- Tasas de Crecimiento Poblacional: Es el cambio en la población en un cierto plazo, y puede ser cuantificado como el cambio en el número de individuos en una población por unidad de tiempo para su medición.
- Tasas de Crecimiento Vehicular (TPDA): Es la variación del número de vehículos según su clasificación que pasan por un lugar en una unidad de tiempo determinada.

Clasificación de la Vía: Las carreteras regionales o centroamericanas constituyen una clasificación en sí, que las separa y distingue de las carreteras nacionales de cada país de Centroamérica. Se define como regional todo lo que es propio de la integración centroamericana o se acepta como tal por su proyección, alcance o simple definición de las autoridades competentes. (Ver Anexos, Tabla No. 57, Página XIII).

Periodo de Diseño de la Vía: Es el tiempo durante el cual la estructura que se diseña deberá operar con un nivel de serviciabilidad superior al mínimo sin requerir de acciones de conservación diferente a la del mantenimiento rutinario. (Ver Anexos, Tabla No. 58, Página XIV).

Tránsito de Diseño: Es la denominación del tránsito para el diseño de pavimento que tiene como objetivo la cuantificación del número acumulado de ejes simples equivalentes que circularán por la vía durante el periodo de diseño. El tránsito de diseño se calcula mediante la siguiente ecuación:

Ecuación No. 12

$$TD = To * FC * FD * fc$$

Donde:

TD = Tránsito de diseño.

To = Tránsito Inicial en el año 0.

FC = Factor de Crecimiento

FD = Factor de Distribución Direccional

fc = Factor Carril

Tránsito Inicial en el año 0 (To): Es el TPDA inicial determinado a partir del conteo vehicular que se realiza en el tramo a diseñar.

Factor de Crecimiento (FC): El factor de crecimiento del tránsito considera los años de vida útil de la vía (periodo de diseño) más la tasa de crecimiento vehicular estimada para el proyecto, de esta manera nos muestra cómo se comportará el tránsito vehicular sobre la vía respecto al tiempo

El factor de crecimiento se determina a través de la siguiente fórmula:

Ecuación No. 13

$$FC = 365 * \left[\frac{(1+i)^n - 1}{i} \right]$$

Donde:

- FC = Factor de crecimiento.
- i = Tasa de crecimiento.
- n = Periodo de diseño.

Factor de Distribución Direccional (FD): Se expresa con la relación que existe entre el tráfico y el sentido de circulación, su valor es generalmente es 0.5 para el flujo vehicular en ambas direcciones y 1 si poseen un solo sentido. La característica más general es que el tránsito se divida 50% en un sentido y 50% en el otro.

Factor Carril (*f c***):** Es la relación que existe en la distribución del tráfico cuando dos o más carriles son usados en una sola dirección. (Ver Anexos, Tabla No. 59, Página XIV).

ESAL's de Diseño: Los pavimentos se diseñan en función del daño que produce el paso de un eje con una carga y para que resista un determinado número de cargas aplicadas durante su vida útil. Un tránsito mixto está compuesto de vehículos de diferente peso y número de ejes y que para efectos de cálculo se les transforma en un número de ejes equivalentes de 80 KN o 18 KIPS a los cuales se denomina "Equivalent simple axial load" o ESAL´S (ejes equivalentes).

4.3. Metodología y Desarrollo del Tema.

Para evaluar el comportamiento del tránsito se debe tener en cuenta el tipo de estudio que se necesita y la metodología que puede aplicarse a tal estudio, ya que estas características pueden variar según la localidad y los fines de tal estudio.

4.3.1. Aforo Vehicular.

El conteo vehicular en el tramo Somotillo – Comarca Santa Teresa fue realizado por los estudiantes: Br. Eddys Rodríguez, Br. Noel Hernández y Br. Jasser Torrez, en el segundo cuatrimestre del año 2019, durante siete días consecutivos en las fechas comprendidas del lunes 20 de mayo hasta el domingo 26 de mayo, abarcando 12 horas consecutivas de 6:00 a.m. a 6:00 p.m.

El conteo vehicular del tramo en estudio fue realizado de forma manual y se estableció una estación de conteo, tomándose en cuenta, caseríos, poblados, cercanías con el principal centro urbano.

El conteo se realizó en la estación 0+300 ubicada sobre la vía en estudio, siendo éste un lugar seguro, con topografía llana que facilita la visibilidad. El punto establecido para conteo se muestra en la figura No. 12.

Figura No. 3: Ubicación de la Estación de Conteo.

Fuente: Elaboración propia.

El resumen de los volúmenes totales horarios obtenidos del conteo vehicular para ambos sentidos de circulación se muestra en la tabla No. 9. Tabla No. 9: Volumen de Tránsito Promedio diurno y Composición Vehicular, para el periodo comprendido del 20 al 26 de mayo 2019.

		VEHICUL	OS DE PA	SAJEROS		VEHIC	ULOS DE C	ARGA	
		VEHIC		VIANOS	AUTO- BUSES	AUTO- BUSES CAMIONES			
DIAS	мотоз	AUTOS	JEEP	PICK-UP	BUS	CAMION LIGERO	C2	СЗ	TOTAL
	H	00					F		
LUNES	683	20	10	329	24	13	11	0	1090
MARTES	499	13	9	266	24	15	11	2	839
MIERCOLES	534	27	7	180	24	9	13	5	799
JUEVES	657	55	11	273	24	31	28	7	1086
VIERNES	608	50	8	180	24	11	17	0	898
SABADO	663	83	12	178	24	17	31	2	1010
DOMINGO	543	65	8	131	24	7	33	0	811
TPDi	598	45	9	220	24	15	21	2	934
%	64.09	4.79	0.99	23.53	2.51	1.58	2.2	0.24	100
% TIPO	64.09	29.31	29.31			4.02	100		

Fuente: Elaboración propia.

4.3.2. Composición del Tráfico.

Del conteo volumétrico se obtuvo los volúmenes totales por día de cada tipo de vehículo en la estación 0+300, determinándose el TPDi. De los datos anteriores, conocemos la composición vehicular promedio para la estación, en porcentaje del total de vehículos contabilizados, que está conformada por un 64.09% de motos, 29.31% de vehículos livianos, 2.51% de autobuses, 4.02% de vehículos de carga. Siendo las motos las de mayor representación.

Fuente: Elaboración propia.

4.3.3. Características de la Vía.

Según el anuario de aforos de tráfico 2018, el camino en estudio se encuentra comprendido en el tramo Somotillo – Rodeo Grande – Valle Los Quesos identificado como NN-272 y su estación es el número 2410, de tipo estación de conteo sumario (ECS). Esta a su vez se rige por la estación de mayor cobertura 1802 San Marcos – Masatepe, debido a la similitud de su composición vehicular y tasas de crecimiento.

Para estimar el valor del TPDA a partir de los datos obtenidos en el aforo vehicular se deben aplicar los factores correspondientes a los volúmenes de tráfico establecidos por la estación de mayor cobertura 1802, en función del cuatrimestre que se realizó el conteo volumétrico.

4.3.4. Determinación de TPDA.

De los volúmenes de Tránsito Promedio Diario diurno obtenidos mediante el aforo vehicular se determina el TPDA, multiplicando dichos valores por factores de ajuste que se encuentran establecidos en la estación de mayor cobertura 1802 San Marcos – Masatepe. En la Tabla No. 10 se muestran los respectivos factores de ajustes del segundo cuatrimestre del año mayo – agosto.

 Tabla No. 10: Factores de ajuste del segundo cuatrimestre del año mayo –

 agosto para la estación de mayor cobertura 1802 San Marcos - Masatepe.

Descripción	Moto	Carro	Јеер	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	C2	C3	Тх- SX<= 4	Тх- SX=> 5	Tx- SX<= 4	Cx- RX=> 5	V.A	V.C	Otros
Factor Día	1.36	1.32	1.20	1.24	1.32	1.24	1.16	1.16	1.21	1.14	1.00	1.19	1.00	1.00	1.00	1.00	1.20
Factor Semana	0.98	1.04	1.03	1.02	0.95	0.97	0.91	0.91	0.86	1.00	1.00	0.90	1.00	1.00	1.00	1.00	1.06
Factor Fin de Semana	1.06	0.90	0.93	0.96	1.16	1.08	1.34	1.30	1.70	1.00	1.00	1.40	1.00	1.00	1.00	1.00	0.88
Factor Expansión a TPDA	1.00	1.20	1.11	1.15	1.06	1.01	1.09	1.08	1.16	0.94	1.00	1.33	1.00	1.00	1.00	1.00	1.44

Fuente: Anuario de Aforos de Tráfico, MTI 2018. Pág.335

Ejemplo del cálculo de TPDA para motos, proceso aplicado para cada tipo de vehiculo.

TPDA = TPD * FD * FA

TPDA = 598 * 1.36 * 1.00

TPDA = 814 Vehiculos

Tabla No. 11: Cálculo del TPDA.

CAMINO: NN-272, TRAMO: SOMOTILLO-SANTA TERESA, DIAS: 7, HORAS: 12, PERIODO: 20-26 MAYO 2019									
	VEHICUL	OS DE P	ASAJE	ROS	VEHICULO	ARGA			
		VEHICU	ILOS L	IVIANOS	AUTO- BUSES	CAMIONE			
GRUPOS	мотоѕ	AUTOS	JEEP	PICK-UP	BUS	CAMION LIGERO	C2	C3	TOTAL
TPDi	598	45	9	220	24	15	21	2	934
FACTOR DIA	1.36	1.32	1.2	1.24	1.32	1.16	1.21	1.14	
FACTOR EXPANSIÓN A TPDA	1	1.2	1.11	1.15	1.09	1.08	1.16	0.94	
TPDA	814	72	12	314	35	19	30	2	1298
%TPDA	62.71	5.55	0.92	24.19	2.7	1.46	2.31	0.15	100
% VEHICULOS LIVIANOS 93.37%				%VEHICULOS PESADOS 6.63%			100		

Fuente: Elaboración Propia.

Como se muestra en la tabla anterior para encontrar el TPDA, no se afecta por el factor semana debido a que el aforo se realizó durante los 7 días de la semana.

4.3.5. Tasas de Crecimiento.

Para estimar la tasa de crecimiento y realizar las proyecciones de tránsito de la vía en estudio se analizaron las siguientes variables: PIB (Producto Interno Bruto), tasa de crecimiento poblacional y el historial del tránsito en la zona según datos del MTI.

Tasa de Crecimiento del Producto Interno Bruto (PIB).

Partiendo de la información del Banco Central de Nicaragua, se elaboró una tabla donde se aprecia el comportamiento histórico del Producto Interno Bruto (PIB), para el municipio Somotillo, desde el año 2012 al año 2018.

Ejemplo del cálculo de tasa de crecimiento PIB para el año 2013, procedimiento aplicado para cada año.

% Crecimiento 2013 =
$$\left[\frac{PIB \ 2013}{PIB \ 2012}\right]^{\frac{1}{T(anos)}} - 1$$

% Crecimiento 2013 =
$$\left[\frac{410,849.07}{363,279.68}\right]^{\frac{1}{1}} - 1$$

% *Crecimiento* 2013 = 0.1309 * 100 = 13.09%

Tabla No. 12: PIB de Nicaragua 2010 - 2018.

Año	PIB (Miles de dólares US\$)	% de Crecimiento PIB
2012	363,279.68	11.24%
2013	410,849.07	13.09%
2014	482,103.75	11.75%
2015	460,332.75	0.27%
2016	464,640.93	0.94%
2017	487,861.88	5.00%
2018	505,090.09	3.53%
Promedio	(2012 – 2018)	6.54%

Fuente: Principales Indicadores Macroeconómicos. BCN – Nicaragua.

Tasa de Crecimiento Poblacional.

La tasa de crecimiento poblacional se analiza con base a los resultados de población estimada publicadas por el Instituto Nacional de Información y Desarrollo (INIDE).

Ejemplo del cálculo de tasa de crecimiento poblacional para el año 2013, procedimiento aplicado para cada año.

% Crecimiento 2013 =
$$\left[\frac{Población \ 2013}{Población \ 2012}\right]^{\frac{1}{T(años)}} - 1$$

% Crecimiento 2013 =
$$\left[\frac{32,542}{32,262}\right]^{\frac{1}{1}} - 1$$

% Crecimiento 2013 = 0.0087 * 100 = 0.87%

Tabla No. 13: Tasa de crecimiento Poblacional estimada para el periodo 20)12
– 2018.	

Año	Población (Miles de personas)	% de crecimiento
2012	32,262	0.70%
2013	32,542	0.87%
2014	32,821	0.86%
2015	33,102	0.86%
2016	33,381	0.84%
2017	33,660	0.84%
2018	33,938	0.83%
Promedio	(2012 – 2018)	0.83%

Fuente: Recopilación de Anuario Estadístico - INIDE (2012-2018).

• La Tasa de Crecimiento Vehicular.

Las tasas de crecimiento vehicular, fueron tomadas de los registros históricos de la estación de conteo sumario 2410, Somotillo - Rodeo Grande - Valle Los Quesos, emitidos en el Anuario de Aforos de Tráfico, MTI del año 2012 al 2018.

N°	CODIGO NIC	EST.	NOMBRE DEL TRAMO	TPDA/TASAS DE CRECIMIENTO		
548	NN-272	2410	Somotillo - Rodeo Grande - Valle Los Quesos	AÑO	TPDA	%
				2012	175	7.55
				2013	186	6.49
				2014	199	6.9
				2015	213	6.96
				2016	339	7.59
				2017	364	7.38
				2018	390	7.32
TASAS DE CRECIMIENTO PROMEDIO			7.17%			

Fuente: Recopilación de Anuarios de Aforos de Tráfico, MTI 2012-2018.

4.3.6. Resultados para Cada Variable.

Tabla No. 15: Tasa de Crecimiento para cada Variable.

Tasas de crecimiento					
PIB	Población	TPDA			
6.54%	0.83%	7.17%			

Fuente: Elaboración propia.

Análisis de la Tasa de Crecimiento a Utilizar.

Tomando en cuenta que la tasa de crecimiento poblacional es relativamente baja con relación a la tasa de crecimiento del PIB y el crecimiento vehicular, se consideró utilizar únicamente el promedio de las tasas de crecimiento del PIB y crecimiento vehicular para calcular una tasa de crecimiento que se ajusta al proyecto, cuyo valor es 6.86%, la cual se considera como tasa de crecimiento estable, sin embargo, esta tasa de crecimiento puede sufrir incremento o decremento debido a las posibles variaciones económicas.

Proyección del Tránsito.

Para realizar la proyección del tránsito vehicular es necesario contar con cierta información tales como: el volumen de vehículos para el año de inicio del proyecto (tránsito inicial), la tasa de crecimiento vehicular de la zona de estudio, además del período que se pretende proyectar (período de diseño). Todas estas consideraciones se hacen con el propósito de estimar el volumen de tránsito al cual será sometida la estructura de pavimento durante el período de diseño.

Clasificación de la Carretera.

La carretera en estudio la podemos clasificar como Colectora rural ya que el TPDA es 1,298 vehículos, comprendido entre 500 y 3,000. Esto es de acuerdo a la clasificación funcional de carreteras contenida en el Manual Centroamericano de Normas para el Diseño Geométrico de las Carreteras Regionales SIECA, (Ver Anexos, Tabla 57, Página XIII).

Periodo de Diseño.

Según el Manual centroamericano de normas para el diseño geométrico de las carreteras regionales SIECA 2004, Se estima un periodo de diseño de 20 años ya que la clasificación funcional de la carretera para nuestro proyecto es colectora rural (Ver Anexos, Tabla No. 58 Página XIV).

Tránsito de Diseño.

En vista que el diseño del pavimento de la vía, se basa tanto en el tránsito actual, así como en los incrementos de tránsito que se espera utilicen la carretera, durante su vida útil, resulta necesario realizar las proyecciones de tránsito futuro.

En primer lugar, resulta necesario determinar el periodo de proyección del tráfico, el cual está en función de la vida útil del pavimento, así como las tasas de crecimiento que se han determinado con anterioridad. El tránsito proyectado se calcula mediante la siguiente expresión.

Ecuación No. 14

$$TD = To * FC * FD * fc$$

Donde:

TD = Tránsito de Diseño.

To = Tránsito Promedio Diaro Anual.

FC = Factor de Crecimiento.

FD = Factor de Distribución Direccional.

fc = Factor Carril.

Tránsito Inicial en el año 0 (To).

Es el TPDA inicial determinado a partir del conteo vehicular que se realiza en el tramo a diseñar.

Factor de Crecimiento (FC).

Esta dado en función por el periodo de diseño y la tasa de crecimiento vehicular, el cual puede variar en dependencia del tipo de vehículo. Su ecuación es:

Ecuación No. 15

$$FC = 365 * \left[\frac{(1+i)^n - 1}{i} \right]$$

Donde:

FC = Factor de crecimiento.

i = Tasa de crecimiento.

n = Periodo de diseño.

De acuerdo con la ecuación se obtiene un factor de crecimiento:

i = 6.86 %

n = 20 años

$$FC = 365 * \left[\frac{(1+0.0686)^{20} - 1}{0.0686} \right] = 14,736.59$$

Factor de Distribución Direccional (FD).

Se expresa con la relación que existe entre el tráfico y el sentido de circulación, su valor es generalmente es 0.5 para el flujo vehicular en ambas direcciones y 1 si poseen un solo sentido. La característica más general es que el tránsito se divida 50% en un sentido y 50% en el otro.

Factor Carril (*fc*).

Es el número de carriles por sentido para los cuales se está diseñando. El factor carril utilizado será de 1.

Numero de carriles en cada dirección	% ESAL en el carril de diseño		
1	1		
2	0.80 - 1.00		
3	0.60 - 0.80		
4	0.50 - 0.75		

Tabla No.	16: Factores	de Distribución	Según el Nú	mero de Carriles.
	10.1 00.0103		ocgun ci nu	

Fuente: Libro de diseño de pavimentos AASHTO 93, Pág. 58.

4.3.7. Estimación del Tránsito de Diseño.

El Tráfico pesado es el que mayor daño produce a la estructura de pavimento por lo que deberá de estimarse con la mayor precisión posible.

Ejemplo del cálculo del tránsito de diseño para motos, procedimiento aplicado para cada tipo de vehículo.

TD = To * FC * FD * fc

TD = 814 * 0.5 * 14,736.59 * 1

 $TD = 5,997,792 \ vehiculos$

Tabla No. 17: Cálculo de Tránsito de Diseño.

Vehículo	То	Factor direccional	Factor Crecimiento	Factor carril	T. Diseño
Motos	814	0.5	14,736.59	1	5,997,792
Autos	72	0.5	14,736.59	1	530,517
Jeep	12	0.5	14,736.59	1	88,420
Pick-up	314	0.5	14,736.59	1	2,313,645
Bus	35	0.5	14,736.59	1	257,890
Camión ligero	19	0.5	14,736.59	1	139,998
C2	30	0.5	14,736.59	1	221,049
C3	2	0.5	14,736.59	1	14,737
TOTAL	1298				9,564,048

Fuente: Elaboración propia.

El tránsito de Diseño para un período de 20 años y con una tasa de crecimiento de 6.86% es de **9,564,048** vehículos.

CAPÍTULO V DISEÑO GEOMÉTRICO APLICANDO EL SOFTWARE AUTOCAD CIVIL 3D 2018.

5.1. Introducción

El diseño geométrico de carreteras es la técnica de la ingeniería civil que consiste en trazar el trazado de una calle o carretera, en el terreno natural. Las condiciones para situar una carretera sobre la superficie son muchas, entre ellas: la topografía del terreno, la geología, el medio ambiente, la hidrología o factores sociales y urbanísticos.

Diseño geométrico es el proceso de correlacionar los elementos físicos de la carretera con las características de operación de los vehículos. Es geométrico ya que los elementos físicos se representan por su geometría, como: alineaciones, visibilidades, anchuras, pendientes, taludes y secciones transversales, entre otros.

El AutoCAD Civil 3D es una herramienta de diseño y calculo muy útil en el desarrollo de diseño de carreteras, movimiento de tierra, calculo topográfico replanteo de información, etc.

5.2. Definiciones Básicas.

Tipo de Terreno: El tipo de terreno se compone de líneas rectas y curvas en el plano vertical, identificándose las subidas o pendientes ascendentes con un signo positivo (+), y las bajadas con signo negativo (-), expresadas usualmente en porcentajes

Curvas de Nivel: Las curvas de nivel son líneas que unen puntos de la misma altitud de un terreno. Para la creación de curvas de nivel en el software Civil 3D se debe disponer de una base de datos de puntos propios de la superficie objeto de estudio, esto con el fin de reflejar la forma tridimensional de la superficie terrestre en un mapa bidimensional.

Nivel de Servicio: Es una medida de la calidad del flujo que describe las condiciones de operación de un flujo de tránsito y su percepción por los conductores.

Vehículo de Diseño: Los vehículos de diseño son los vehículos automotores predominantes y de mayores exigencias en el tránsito que se desplaza por las carreteras regionales.

La Velocidad de Operación: Es la máxima velocidad a la cual un conductor puede viajar por una carretera, bajo condiciones climáticas favorables y las condiciones prevalecientes del tránsito.

Velocidad de Ruedo: Es la velocidad promedio de un vehículo en un determinado tramo de carretera, obtenida mediante la relación de la distancia recorrida a lo largo de dicho tramo con el tiempo efectivo de ruedo del vehículo.

Velocidad de Diseño: También conocida como velocidad directriz, es la máxima velocidad que, en condiciones de seguridad, puede ser mantenida en una determinada sección de una carretera, cuando las condiciones son tan favorables como para hacer prevalecer las características del diseño utilizado.

Rasante: Es el término usado para designar la posición vertical de la superficie del camino en relación a la superficie del terreno. La localización final de la rasante está afectada por la topografía, así, en terrenos planos la mayor consideración para el establecimiento de la rasante es usualmente el drenaje.

Peralte o Sobreelevación: Es la pendiente que se da a la corona hacia el centro de la curva para contrarrestar parcialmente el efecto de la fuerza centrífuga de un vehículo en las curvas horizontales.

Factor Máximo de Fricción Lateral: El factor de fricción lateral depende principalmente de las condiciones de las llantas de los vehículos, el tipo y estado de la superficie de rodamiento y de la velocidad del vehículo.

Bombeo: Es la pendiente que se da a la corona en las tangentes del alineamiento horizontal hacia uno y otro lado de la rasante para evitar la acumulación del agua sobre la carretera.

Los Hombros: son las franjas de carretera ubicadas contiguas a los carriles de circulación y que, en conjunto con éstos, constituyen la corona o sección comprendida entre los bordes de los taludes.

Radio Mínimo de Curvatura: El radio mínimo es el valor límite de curvatura para una velocidad de diseño dada y es determinado por la máxima tasa de sobreelevación y el máximo factor de fricción lateral seleccionado para el diseño.

Sobre Ancho: Es el ancho que se adiciona en el extremo interior de la calzada en una curva horizontal, la cual facilita a los conductores mantenerse dentro de su vía.

Longitud de Transición: La longitud de transición se define como la distancia necesaria para pasar desarrollar el peralte de la curva y está compuesta por la distancia necesaria para eliminar el bombeo y la distancia necesaria para llevar el borde exterior de su condición plana a la de máximo peralte o inclinación.

Carril: Es la unidad de medida transversal, para la circulación de una sola fila de vehículos, siendo el ancho de la calzada o superficie de rodamiento, la sumatoria de los carriles, a la que también se hace referencia en la clasificación de las carreteras.

Calzada: S e denomina calzada a la parte de la carretera destinada a la circulación de vehículos, siendo el ancho de la calzada o superficie de rodamiento, la sumatoria de los carriles,

Derecho de Vía: El derecho de vía es la franja de terreno que adquiere el dueño de una carretera, normalmente el Estado, para la construcción de la misma, incluyendo dentro de sus límites el diseño bien balanceado de la calzada con sus carriles proyectados, los hombros interiores y exteriores, las medianas y todos los demás elementos que conforman la sección transversal típica. (Ver anexos, Figura No. 17, Página XIV).

Trazado en Planta: Se entiende como Trazado en Planta o Alineamiento Horizontal a la proyección sobre un plano horizontal del eje de la carretera y que define un punto en cada sección transversal.

Tangentes: Las tangentes son las proyecciones sobre un plano horizontal de las rectas que unen las curvas.

Curvas de Enlace Horizontal: Las curvas de enlace horizontal son aquellas que sirven de unión entre tangentes que están contenidas en el plano horizontal, y su función principal es la de cambiar de una dirección a otra, de forma gradual, a los tramos rectos o tangentes.

Curvas Circulares Simples: Una curva circular simple está formada por solo un arco de circunferencia, es decir, un segmento de circunferencia que sirve de unión entre dos alineaciones y para lograr un cambio gradual en la dirección de las tangentes.

Curva Circular Compuesta: Las curvas circulares compuestas se forman con la combinación de dos o más arcos de circunferencia, uno a continuación del otro.

Curva Inversa o de Reversa: Las curvas inversas o de reversa son aquellas compuestas de dos curvas circulares, de sentido contrario, contiguas y con un tangente en común en el punto de unión.

Curvas de Transición: La curva de transición es una curva de radio variable y creciente a medida que se desarrolla, su diseño permite ofrecer las mismas condiciones de seguridad y comodidad que el resto de elementos.

Trazado en Perfil: Se conoce como Trazado en Perfil o Alineamiento Vertical a la proyección sobre un plano vertical del desarrollo del eje de la sub-corona. A este eje, en trazado en perfil, se le llama línea sub-rasante.

Curvas Verticales: Son las que se utilizan para servir de acuerdo entre la rasante de distintas pendientes, tiene como objetivo suavizar el cambio en el movimiento vertical.

Tipos de Curvas Verticales: Pueden ser cóncavas hacia abajo, las cuales se denominan Curvas en columpio, o cóncavas hacia arriba, a las que se les llama Curvas en Cresta.

Longitud Crítica de una Tangente Vertical: Es la longitud máxima en la que un camión cargado puede ascender sin reducir su velocidad más allá de un límite previamente establecido.

Tangente Vertical: Se caracterizan por su longitud y sus pendientes. Se miden horizontalmente entre el fin de la curva anterior y el principio de la siguiente. La pendiente de la tangente vertical es la relación entre el desnivel o la distancia entre dos puntos de la misma.

Pendiente: La pendiente influye sobre el costo del transporte, por ejemplo en una curva vertical muy inclinada los usuarios tienen mayores dificultades en su recorrido y además disminuye la capacidad de la vía y más aún cuando hay un alto porcentaje de camiones. Al disminuir las pendientes, aumentan los volúmenes de excavación y por ende también los costos de construcción.

Pendiente Máxima: Es la mayor pendiente que se permite en el proyecto y está en dependencia del volumen y la composición del tránsito, las características del terreno y la velocidad del diseño.

Pendiente Mínima: Es la menor pendiente que se permite en el proyecto, para que el agua pueda correr por las cunetas, la línea de fondo de éstas deberá tener como mínimo una pendiente de 0.5%, la línea de fondo de las cunetas deberá tener la misma pendiente que la sub rasante de la vía.

Taludes: El terreno por donde se traza una carretera no es constante, y en muchos casos requiere de diversos taludes conforme la estabilidad del suelo y es por ello que Civil cuenta con una herramienta que permite crear una sección típica que se acomode a las condiciones del terreno.
5.3. Metodología y Desarrollo del Tema.

5.3.1. Normas para el Diseño Geométrico.

Trazado en Planta.

Pendiente Transversal de los Carriles: Según como se establece en el Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras Regionales (SIECA) 2004, La pendiente transversal de una carretera de primera clase con dos carriles en tangente, debe ser del 2.0 por ciento del centro de la sección hacia fuera.

Vehículo de Diseño.

Definimos como vehículo de diseño el camión C2 por ser el vehículo de carga de mayor incidencia en la vía, durante el periodo de análisis. El C2 equivale al tipo de vehículo SU nombrado por el Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras Regionales (SIECA) 2004, las dimensiones de este vehículo se muestran en la Tabla No. 60 y 61 (Ver anexos, Página XV).

Determinación de Pendiente.

Se establecieron dos alineamientos horizontales para el tramo, se generó un perfil longitudinal de cada uno para poder extraer las elevaciones del terreno natural y determinar la pendiente en esta longitud, luego se hizo una clasificación de las pendientes. Obteniendo para el alineamiento 1, desde la estación 0+000 hasta la estación 1+455.82 una pendiente máxima de 1.78 % y el segundo alineamiento, desde la estación 1+401.43 hasta la estación 2+779.06 presentando una pendiente predominante de -10.52 %.

Clasificación del Terreno.

Basados en el Manual centroamericano de normas para el Diseño Geométrico de Carreteras Regionales (SIECA) 2004, clasificamos el tipo de terreno en el primer alineamiento como llano o plano ya que la pendiente natural del terreno es inferior al 5% y el segundo alineamiento como ondulado puesto que la pendiente excede el 5%.

Tabla No. 18: Clasificación del Terreno Según la Pendiente Natural.

Tipo de Terreno	Rango de Pendientes (%)
Llano o plano	G≤ 5
Ondulado	5 >G≤ 15
Montañoso	15 >G≤ 30

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA 2004, Pág. 4-63

Velocidad de Diseño.

Para determinar la velocidad de diseño de la vía es necesario conocer el tipo de terreno y el volumen de transito promedio diario anual (TPDA), basados en los datos anteriormente mencionados, apoyados en el manual centroamericano de normas SIECA determinamos una velocidad de diseño de 70 Km/h para el tramo llano o plano y una velocidad de 60 Km/h para el tramo ondulado.

Tabla No. 19: Velocidad de Diseño en Kilómetros por Hora, en Función delVolumen de Tránsito y la Topografía del Terreno.

Tipo de	Volúmenes de tránsito Diario ó TPDA, en vpd									
Terreno	>20000	20000-10000	10000-3000	3000-500						
Plano	110	90	80	70						
Ondulado	90	80	70	60						
Montañoso	70	70	60	50						

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA 2004, Pág. 4-3

Velocidad de Ruedo

Según el Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA 2004. La velocidad de ruedo, que es la velocidad promedio de un vehículo en un determinado tramo de carretera, obtenida mediante la relación de la distancia recorrida con el tiempo efectivo de ruedo del vehículo.

La determinación de la velocidad promedio de ruedo, donde el flujo del tránsito es relativamente continuo, puede efectuarse mediante la aplicación de conocidos procedimientos de la ingeniería de tránsito para la medición y cálculo de la velocidad instantánea promedio en un punto característico de dicho tramo.

En las carreteras de bajos volúmenes de tránsito, las velocidades promedias de ruedo se aproximan a las velocidades de diseño y llegan a representar entre 90 y 95 por ciento de éstas, por tanto, podemos determinar una velocidad de ruedo de 63 Km/h para el primer alineamiento y 54 Km/h para el segundo alineamiento.

Ancho de Carril.

Cuando haya restricciones en el derecho de vía, el ancho de carril de 3.3 metros se considerará recomendable según el Manual Centroamericano de normas para el Diseño Geométrico de Carreteras Regionales (SIECA) 2004.

Derecho de Vía.

Para las carreteras colectoras, según la SIECA, se considera suficiente disponer de un derecho de vía de 20.0 metros de ancho, que puede ampliarse hasta 30.0 metros de ancho para disponer de una solución más holgada. Para nuestro proyecto establecemos un derecho de vía de 20 metros.

Sobre elevación o Peralte.

Para determinar la tasa de sobreelevación nos basamos en el manual de normas SIECA obteniendo un 8% correspondiente al tipo de área del proyecto.

Tabla No. 20: Tasa de Sob	reelevación.
---------------------------	--------------

Tasa de sobre elevación, "e" en(%)	Tipo de Area
10	Ruralmontañosa
8	Rural plana
6	Suburbana
4	Urbana

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA 2004, Pág. 4-36.

Factor Máximo de Fricción Lateral

El factor de fricción fue definido basándonos en el manual de normas SIECA, en función de la velocidad de diseño dicho factores son 0.15 para una velocidad de 60 km/h y 0.14 para velocidad de 70km/h.

Tabla No. 21: Factor de Fricción en Función de la Velocidad de Diseño.

Velocidad de Diseño	Factor de fricción
(Km/h)	máxima
30	0.17
40	0.17
50	0.16
60	0.15
70	0.14
80	0.14
90	0.13
100	0.12
110	0.11
120	0.09

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA 2004. Pág. 4-41

Nivel de Servicio.

Se escoge un nivel de servicio C según en Manual SIECA puesto que la vía es una colectora rural, en este nivel Se mantiene en zona estable, pero muchos conductores empiezan a sentir restricciones en su libertad para seleccionar su propia velocidad.

Tabla No. 22: Tipo de Área y Nivel de Servicio Apropiado.

Tine de comotore	Tipo de area y Nivel de servicio Apropiado								
fipo de carretera	Rural Plano	Rural Ondulado	Rural Montañoso	Urbano Suburbano					
Autopista Especial	В	В	С	С					
Troncales	В	В	С	С					
Colectoras	С	С	D	D					
Locales	D	D	D	D					

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004. Pág. 2-17

Radio Mínimo de Curvatura.

Los radios mínimos de curvatura horizontal se pueden calcular utilizando la siguiente expresión:

Ecuación No. 16

$$R = \frac{V^2}{127(e+f)}$$

Donde:

R = Radio mínimo de curva, en metros.

- e = Tasa de sobreelevación en fracción decimal.
- f = Factor de fricción lateral.
- V = Velocidad de diseño, en kilómetros por hora.

Grado de Curvatura.

Para países como los centroamericanos, que se rigen por el sistema métrico, se utiliza la siguiente expresión para el cálculo de D:

Ecuación No. 17

$$D_{20} = \frac{1145.92}{R}$$

Utilizando los valores recomendados por el manual de normas SIECA presentados en el siguiente cuadro, establecemos los valores para radio mínimo 120 metros y grado de curvatura de 9°33' para velocidad de 60 km/h, 175 metros y grado de curvatura 6°33' para velocidad de 70 km/h.

Tabla No. 23: Radio y Grado de Curvatura.

	Foston de Friesién	Peralte máximo 8%					
	Factor defriccion	Radio	o (m)	Grado de			
Diseno (Kin/h)	Шахіппа	Calculado	Recomendado	Curva			
30	0.17	28.3	30	38° 12'			
40	0.17	50.4	50	22° 55'			
50	0.16	82	80	14° 19'			
60	0.15	123.2	120	9° 33'			
70	0.14	175.4	175	6° 33'			
80	0.14	229.1	230	4° 59'			
90	0.13	303.7	305	3° 46'			
100	0.12	393.7	395	2° 54'			
110	0.11	501.5	500	2° 17'			
120	0.09	667	665	1° 43'			

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004. Pág. 4-41

Longitud Mínima de Transición.

Se ha definido una longitud mínima de transición de 52 m según la norma SIECA.

	Vd=	30 kr	n/h	Vd=	40 k	m/h	Vd=	50 k	m/h	Vd=	60 k	m/h	Vd=	70 kr	n/h	Vd=	80 k	m/h	/h Vd= 90 km/h Vd= 100 km		m/h	Vd=	110 k	m/h			
+K2:ALK2:AF		L(r	n)		L(1	m)		L(m)		L()	m)		L(1	m)		L(m)		L(r	n)		L(1	m)		L(m)
	е	2	4	е	2	4	е	2	4	е	2	4	е	2	4	е	2	4	е	2	4	е	2	4	е	2	4
(m)	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs	(%)	Crs	Crs
7000	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0
5000	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0
3000	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SI	56	84	2.1	61	92
2500	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SI	50	75	2.1	56	84	2.4	61	92
2000	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SI	44	66	2.2	50	75	2.6	56	84	3	61	92
1500	SN	0	0	SN	0	0	SN	0	0	SN	0	0	SI	39	59	2.4	44	66	2.8	50	75	3.4	56	84	3.9	61	92
1400	SN	0	0	SN	0	0	SN	0	0	SI	33	50	2.1	39	59	2.5	44	66	3	50	75	3.6	56	84	4.1	61	92
1300	SN	0	0	SN	0	0	SN	0	0	SI	33	50	2.2	39	59	2.7	44	66	3.2	50	75	3.8	56	84	4.4	61	92
1200	SN	0	0	SN	0	0	SN	0	0	SI	33	50	2.4	39	59	2.9	44	66	3.4	50	75	4.1	56	84	4.7	61	92
1000	SN	0	0	SN	0	0	SI	28	42	2.2	33	50	2.8	39	59	3.4	44	66	4	50	75	4.8	56	84	5.5	61	92
900	SN	0	0	SN	0	0	SI	28	42	2.4	33	50	3.1	39	59	3.7	44	66	4.4	50	75	5.2	56	84	6	61	92
800	SN	0	0	SN	0	0	SI	28	42	2.7	33	50	3.4	39	59	4.1	44	66	4.8	50	75	5.7	56	84	6.5	61	92
/00	SN	0	0	SI	22	33	2.2	28	42	3	33	50	3.8	39	59	4.5	44	66	5.3	50	75	6.3	56	84	7.2	62	93
600	SIN	0	0	2.2	22	33	2.6	28	42	3.4	33	50	4.3	39	59	5.1	44	66	6	50	75	6.9	56	84	1.1	66	99
500	SIN	17	20	2.2	22	33	3	28	42	3.9	33	50	4.9	39	59	5.8	44	71	0.7	51	76	7.6	61	91	8	69	103
400	2.1	17	26	2.7	22	33	3.0	28	42	4.7	33	50	5.7	39	59	0.0	48	/1	7.5	57	85	ð	64	96	КП	11 n = :	500
300	2.1	17	26	3.4	22	33	4.5	28	42	5.0	34	51	0.7	44	72	7.6	55	OF	КП	iin= 3	05	ĸm	in= s	595			
230	2.5	17	20	4	22	35	5.1	20	42	7	42	50	7.5	40	72	7.9 Bee	57	220									
200	24	17	20	4.0	24	30	5.0	22	47	7	42	03	7.9	52	70			230	l								
1/3	2.4	10	20	5 /	20	39	6.7	26	50	7.4	44	70	O Dm	52 in-1	75												
140	3.8	10	20	5.4	20	42	6.9	27	56	7.0	47	70	- NH		./5												
140	4	20	30	5.8	30	45	7 1	38	58	80	47	72															
120	4.4	21	32	6	31	46	7.3	39	59	Rn	nin=	125						er	nax	=	8.00	%					
110	4.7	23	34	6.3	32	49	7.6	41	62										R	=	Radi	o de	Curv	a			
100	4.9	23	35	6.5	33	50	7.8	42	63									,	v	=	Velo	cidad	de	Dise	ño		
90	5.2	25	37	6.9	36	53	7.9	43	64										e	=	Tasa	de su	per	elev	acion	1	
80	5.5	26	40	7.2	37	56	8	43	65									-	L	=	Long	gitud	mini	ma c	le tra	nsici	on
70	5.9	28	42	7.5	39	58	Rm	in=	80									s	N	=	Seco	ion N	orm	al			
60	6.4	31	46	7.8	40	60												5	SI	=	Seco	ion Ir	ver	tida,	peral	te	
50	6.9	33	50	8	41	62															simi	lar a l	a pe	ndie	nte n	orm	al
40	7.5	36	54	Rm	nin=	50												С	rs	=	Carr	iles					
30	8	38	57				-													CI	FRAS	S RED	OND	EAD	AS	_	
	Rn	nin=	30																								

Tabla No. 24: Elementos de Diseño para Curvas Horizontales.

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004. Pág. 4-47.

Cálculo del Sobre ancho de Diseño.

Para calcular el sobre ancho se utilizará la siguiente fórmula general:

Ecuación No. 18

$$Sa = n\left(R - \sqrt{R^2 - Lc^2}\right) + \frac{V}{10\sqrt{R}}$$

Donde:

n = Números de carriles.

R = Radio de la curva.

Lc = Distancia entre los ejes más distantes del vehículo de diseño (C2).

V = Velocidad de diseño (Km/h).

Para fines de diseño no se consideran los sobre anchos que resultasen menores de 60 cm, si el sobre ancho resulta mayor deberá redondearse al decímetro superior. No es necesario ampliar la vía si los carriles tienen un ancho de 3.60m o más, o cuando el radio de la curva sea mayor de 300m.

Ancho Calzada	7.2 metros	6.6 metros	6.0 metros				
Radio de Curva	Velocidad diseño (Km/h)	Velocidad diseño (Km/h)	Velocidad diseño (Km/h)				
(m)	50 60 70 80 90 100 11	50 60 70 80 90 100 110	50 60 70 80 90 100 110				
1500	0 0 0 0 0 0	0.2 0.2 0.2 0.3 0.3 0.4 0.4	0.3 0.4 0.4 0.4 0.4 0.5 0.6				
1000	0 0 0.1 0.1 0.1 0.1 0.	0.3 0.3 0.3 0.4 0.4 0.4 0.5	0.4 0.4 0.4 0.5 0.5 0.5 0.6				
750	0 0 0.1 0.1 0.1 0.2 0.	0.3 0.3 0.3 0.4 0.5 0.5 0.6	0.6 0.6 0.7 0.7 0.7 0.8 0.8				
500	0.2 0.3 0.3 0.4 0.4 0.5 0.	0.5 0.6 0.6 0.7 0.7 0.8 0.8	0.8 0.9 0.9 1 1 1.1 1.1				
400	0.3 0.3 0.4 0.4 0.5 0.5	0.6 0.6 0.7 0.7 0.8 0.8	0.9 0.9 1 1 1.1 1.1				
300	0.3 0.4 0.4 0.5 0.5	0.6 0.7 0.7 0.8 0.8	0.9 1 1 1.1				
250	0.4 0.4 0.5 0.6	0.7 0.8 0.8 0.9	1 1.1 1.1 1.2				
200	0.6 0.7 0.8	0.9 1 1.1	1.2 1.3 1.3 1.4				
150	0.7 0.8	1 1.1	1.3 1.4				
140	0.7 0.8	1 1.1	1.3 1.4				
130	0.7 0.8	1 1.1	1.3 1.4				
120	0.7 0.8	1 1.1	1.3 1.4				
110	0.7	1	1.3				
100	0.8	1.1	1.4				
90	0.8	1.1	1.4				
80	1	1.3	1.6				
70	1.1	1.4	1.7				

Tabla No.	25:	Sobreancho	en	curvas
-----------	-----	------------	----	--------

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004. Pág. 4-51.

Trazado en Perfil.

El alineamiento vertical está formado por dos elementos principales: El perfil del terreno y la rasante, constituida por una serie de rectas enlazadas por arcos verticales parabólicos.

Curvas verticales convexas: Su diseño de pende de la más amplia distancia de visibilidad para la velocidad de diseño seleccionada. Existen dos condiciones para diseñar este tipo de curvas: La primera considera que la longitud de la curva (L) es mayor que la distancia de visibilidad (S) y la segunda se presenta cuando L es menor que S.

Tabla No. 26: Controles de Diseño de Curvas Verticales en Cresta basadosen las Distancias de Visibilidad de Parada y de Adelantamiento.

Velocidad de Diseño Km/h	Velocidad de marcha Km/h	Distancia de parada para diseño (m)	Tasa de curvatura vertical K, long (m) por % deG'	Distancia minima de adelantam. Para Diseño (m).	Tasa de curvatura vertical, k, long (m) por % de G'
30	30 - 30	30 - 30	3 - 3	217	50
40	40 - 40	45 - 45	5 - 5	285	90
50	47 - 50	60 - 65	9 - 10	345	130
60	55 - 60	75 - 85	14 - 18	407	180
70	67 - 70	95 - 110	22 - 31	482	250
80	70 - 80	115 - 140	32 - 49	541	310
90	77 - 90	130 - 170	43 - 71	605	390
100	85 - 100	160 - 205	62 -105	670	480
110	91-110	180 - 245	80 - 151	728	570

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004. Pág. 4-69.

Curvas Verticales Cóncavas: Se han identificado los siguientes cuatro criterios para usarse en el cálculo de las longitudes de curvas en columpios.

- El primero se basa en la distancia iluminada por los faros delanteros del vehículo.
- La siguiente toma en cuenta básicamente una sensación subjetiva de comodidad en la conducción, cuando el vehículo cambia de dirección en el alineamiento vertical.
- El tercero considera requerimientos de drenaje.
- El último se basa en consideraciones estéticas.

 Tabla No. 27: Controles de Diseño de Curvas Verticales en Columpio

 basados en la Distancia de Visibilidad de Parada, DVP.

velocidad de diseño	Rango de v	elocidad de	Valores	Valores DVP (m)			
Km/h	march	акпуп	Menores	Mayores	uiseno		
30	30 - 30	0.4	30	30	4 - 4		
40	40 - 40	0.38	45	45	8 - 8		
50	47 - 50	0.35	60	65	11 - 12		
60	55 - 60	0.33	75	85	15 - 18		
70	63 - 70	0.31	95	110	20 - 25		
80	70 - 80	0.3	115	140	25 - 32		
90	77 90	0.3	130	170	30 - 40		
100	85 - 100	0.29	160	205	37 - 51		
110	91 - 110	0.28	180	245	43 - 62		

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004. Pág. 4-74.

PARAMETROS TECNICOS DE NORMAS DE DISEÑO									
N⁰	DESCRIPCION/PARAMETRO	FORMA	UNIDAD	VALORES 70km/h-60km/h					
1	Clasificación Funcional	-	Colectora Rural	-					
2	Ancho del Derecho de Vía	ADV	mt.	30					
3	Velocidad de Diseño	VD	KPH	70-60					
4	Velocidad de Ruedo	V _R	KPH	63-54					
5	Vehículo de Proyecto	Veh.	Tipo	C2/SU					
6	Radio de Curvatura Mínimo	R	mt.	175-120					
7	Radio de Curvatura Máximo	G _C	G. Min. Seg	6°33´-9°33´					
8	Número de Carriles de Rodamiento	N _C	Unid.	2					
9	Ancho de Carril de Rodamiento	A _C	mt.	3.3					
10	Ancho Total de Rodamiento	AR	mt.	6.6					
11	Ancho de Hombros	Hm	mt.	0.6					
12	Ancho de Corona	Ac	mt.	8.1					
13	Pendiente Transversal (Bombeo)	В	%	2					
14	Pendiente del Hombro	Hm%	%	2					
15	Sobreelevación Máxima (Peralte)	e max	%	8					
16	Pendiente Relativa	m _r	%						
17	Pendiente Longitudinal Máxima	Pend%	%	7.96					
18	Distancia a Obstrucciones Laterales	Offs.	mt.	60.75					
19	Sobreancho Máximo en Curvas Horiz.	Sm ^{ax}	mt.	1.1					
20	Sobreancho Mínimo en Curvas Horiz.	Smin	mt.	0.6					
21	Coeficiente de Fricción Lateral	f ₁	S/U	0.14-0.15					
22	Coeficiente de Fricción Longitudinal	f ₂	S/U	0.31-0.33					
23	Longitud Mínima de Curva Vertical	CV _{min}	mt.						
24	Distancia de Visibilidad de Parada (min)	DVP	mt.	110-85					
25	Distancia de Visibilidad de Rebase	DVR	mt.	482-407					
26	Distancia de Visibilidad Curv. Horiz.	DVCH	mt.						
27	Superficie-Carpeta de Rodamiento	S _{rod.}	Tipo	Adoquín de Concreto					
28	Carga de Diseño	Cd							

Tabla No. 28: Resumen de elementos de diseño geométrico de carreteras regionales.

Fuente: Elaboración propia, Formato tomado del Manual para la revisión de diseño geométrico Pág. 142.

5.3.2. Diseño Geométrico Aplicando el Software AutoCAD CIVIL 3D

Configuración de los Parámetros de Dibujo.

Dentro de la configuración de los parámetros del dibujo, está definir el sistema de coordenadas a usar, las unidades, escalas y demás opciones que nos permitan trabajar de manera ordenada en el proyecto de diseño. Para ello es necesario seleccionar la ubicación donde se llevará a cabo el proyecto, el cual corresponde a la zona 16 Norte, según el mapa global de zonas UTM. (Ver Anexos, Figura No. 18 y 19, Pagina XVI).

Es necesario definir el sistema de coordenadas con el cual se trabajará, en este caso corresponde a "WGS 84 DATUM". Para ello ubicarse en pestaña Settings de Toolspace, y seleccionar el nombre que se le asignó al dibujo, en este caso es "DISEÑO SOMOTILLO – SANTA TEREZA", luego hacer click derecho y seleccionar "Edit Drawing Settings".

En el cuadro desplegable "Drawing Settings", en la opción "Available coordinate systems", se selecciona el país en nuestro caso Nicaragua y el sistema de coordenadas con la respectiva zona donde se encuentra el proyecto en estudio. El resto de configuraciones se dejan por defecto. Luego hacer click izquierdo en Apply y Ok. (Ver Anexos, figura No. 20, pág. XVII)

5.3.3. Importación de Puntos.

Los puntos son los componentes básicos de AutoCAD Civil 3D utilizados para identificar las entidades en los planes de desarrollo del terreno como las ubicaciones del terreno y elementos de diseño. Cada punto se identifica de forma exclusiva y tiene propiedades que pueden incluir información como ordenada, abscisa, elevación y descripción.

Antes de importar los puntos, es necesario revisar el formato del archivo de puntos, además se debe observar si los componentes están separados por coma o por espacio; los componentes utilizados normalmente para la creación e inserción de puntos son: P (Punto), N (Norte), E (Este), Z (Elevación), D (Descripción abreviada).

Para proceder a importar los puntos, ubicarse en pestaña Home y extender "Points" y seleccionar "Point Creation Tools". En la ventana que se despliega "Create Points", seleccionar la opción "Import Points". (Ver Anexos, figura No. 21, pág. XVII)

Luego en el cuadro desplegable "Import Points", en la opción "Select files", hacer click izquierdo en para buscar el archivo que contiene los puntos a importar, en este caso el archivo es el siguiente: "DATOS DEL LEVANTAMIENTO ". Seguidamente en la opción "Specify point file format (filtering ON)", se selecciona el formato del archivo de punto, en este caso es "PENZD (comma delimited)". Luego en "Preview" se muestra la vista previa de los puntos seleccionados. El resto de configuraciones se dejan por defecto. (Ver Anexos, figura No. 22, pág. XVII)

A continuación se procederá a crear un grupo de puntos a partir de los puntos importados, para ello activar la opción "Add Points to Point Group" y hacer click izquierdo. Luego en la ventana que se despliega "Point File Formats-Create Group", se procede a nombrar el grupo de puntos, en este caso será "SOMOTILLO-SANTA TERESA". Luego click izquierdo en Ok. (Ver Anexos, figura No. 23, pág. XVIII)

Para visualizar en el modelo los puntos importados teclear el comando "ZE" (Zoom Extend) y presionar Enter. (Ver Anexos, figura No. 24, pág. XVIII)

5.3.4. Creación de Grupo de Puntos.

A continuación, se procederá a crear el grupo de punto correspondiente a la línea central de la carretera, para ello, ubicarse en pestaña Prospector de Toolspace, seleccionar "Point Groups", hacer click derecho y seleccionar "New".

En el cuadro que se despliega "Point Group Properties", en pestaña Information se nombrará al grupo de puntos como "LÍNEA CENTRAL", en "Point Style" seleccionar "Benchmark", en "Point Label Style" seleccionar "Description Only". Luego hacer click en Apply y aceptar. (Ver Anexos, figura N° 25, pág. XVIII).

Continuando con la creación del grupo de punto "LINEA CENTRAL", seleccionar la pestaña Include, y activar la cuarta opción (with raw descriptions matching), y digitar el número 1 puesto que 1 es el código de la línea central. Luego click en Apply y aceptar.

Se pueden cambiar las propiedades de los grupos de puntos, para ello, ubicarse en pestaña Prospector de Toolspace, extender "Point Groups", seleccionar el grupo de punto a editar, en este caso "LINEA CENTRAL", hacer click derecho y seleccionar "Properties". (Ver Anexos, figura No. 26, pág. XIX)

5.3.5. Superficies DTM (Modelo Digital del Terreno).

Una superficie es una representación geométrica tridimensional de un área de terreno, y están compuesta por triángulos o rejillas que se crean cuando Civil 3D conecta los puntos que constituyen los datos de la superficie.

Tipos de superficies: Civil 3D admite varios tipos de superficies, las cuales se definen a continuación:

Superficies TIN: Formadas mediante la triangulación de un conjunto arbitrario de puntos.

Superficies de rejilla: Formadas a partir de puntos de una rejilla regular (por ejemplo, modelos de elevación digital o DEM).

Superficies de volumen TIN: Superficies compuestas creadas a partir de una combinación de puntos de una superficie superior (de comparación) e inferior (base), también conocidas como superficies diferenciales.

Superficies de volumen de rejilla: Superficies diferenciales basadas en superficies superiores e inferiores especificadas por el usuario con puntos sobre una rejilla.

Creación de Superficie.

A continuación, se creará la superficie TIN, se le asignará un nombre y se le asociará un grupo de punto. Para ello, ubicarse en Pestaña Prospector de Toolspace, seleccionar "Surfaces" y en el cuadro que se despliega dar hacer click en "Create Surface".

En la opción Type seleccionar "TIN surface", en "Surface layer" seleccionar "C-TOPO". En el nivel Information: En Name se nombra a la superficie como: "TERRENO NATURAL S-ST", en Description teclear "TOPOGRAFÍA DEL TERRENO", en Style hacer click izquierdo en luego en el cuadro que se despliega "Select Surface Style" seleccionar "Contours and Triangle" y click en Ok. (Ver Anexos, figura No. 27, pág. XIX) En la opcion "Render Material" hacer click izquierdo, luego en el cuadro que se desplega "Select Render Material" seleccionar "Site Work Planting Grass Thick". Luego click en Ok y Ok. (Ver Anexos, figura No. 28, pág. XIX)

Definición de Datos de Superficie.

Como se mencionó anteriormente se asignará un grupo de puntos a la superficie, para ello, ubicarse en pestaña Prospector de Toolspace, extender la superficie creada, luego extender "Definition" y seleccionar "Point Groups", hacer click derecho y seleccionar "Add" (Para añadir un grupo de punto a la superficie).

En el cuadro desplegable "Point Groups" seleccionar el grupo de puntos a partir del cual se va a generar la superficie, en este caso será "SOMOTILLO-SANTA TERESA" y luego hacer click en Apply y Ok, la superficie creada aparecerá automáticamente (Ver Anexos, Figura No. 29, Pagina XX).

Editando una Superficie de Triángulos.

Para proceder a la edición de la superficie, ubicarse en pestaña Prospector de Toolspace, extender "Surface", seleccionar "TERRENO NATURAL S-ST", hacer click y seleccionar "Surface Properties". (Ver Anexo, Figura No. 30, Pagina XX).

En el cuadro desplegable "Surface Properties", en pestaña Definition, extender "Build" y en "Use maximum triangle length" seleccionar "Yess" luego en "Máximum triangle lenght" se digita la longitud de triangulación máxima, en este caso se digitó "40m" (valor de prueba). (Ver Anexo, Figura No. 31, Pagina XX).

Luego click en Apply, en la ventana que se desplega "Surface Properties-Rebuild Surface" seleccionar Rebuild the surface", luego click en Ok. Se aprecia la superficie después de la modificación realizada a la longitud de triangulación. (Ver Anexo, Figura No. 32 Página XXI).

Edición de superficie permite corregir errores en la generación de la superficie, para ello seleccionar la superficie, hacer click derecho y seleccionar "Edit surface style", en el cuadro que se desplega "Surface Style", en la pestaña Display, a los componentes "Triangles" y "Border", en la columna "Visible", hacer click izquierdo en para encender dichos componentes. (Ver Anexo, Figura No. 33 Página XXI).

Como parte de la edición de las propiedades de superficie se puede añadir y eliminar líneas. Para ello se selecciona la superficie, luego hacer click izquierdo en "EditSurface" y se desplegarán las diferentes opciones de edición de superficie.

Añadir Breakline.

Los Breakline o líneas de rotura se utilizan para definir superficies lineales, por ejemplo, paredes de contención, bordillos, entre otros; los Breakline fuerza la triangulación de las rejillas para la interpolación de datos.

Tipos de Líneas de Ruptura.

Standard. Se define mediante la designación de líneas 3D, líneas características de explanación y polilineas 3D.

A continuación, se procederá a crear líneas de rotura (Breakline), para ello, ir a la pestaña Prospector de Toolspace, extender "Surfaces", seleccionar la superficie creada "TERRENO NATURAL S-ST", extender "Definition" y seleccionar "Breaklines", hacer click derecho y seleccioar "Add".

En el cuadro que se despliega "Add Breaklines". En Description se asigna una Descripción a los Breaklines, en este caso será "BREAKLINES S-ST", en Type seleccionar el tipo de Breaklines que se desea, para este caso se selecciona "Standard". Luego click en Ok. Posteriormente seleccionar en el modelo las líneas que se asignarán como líneas de rotura, en este caso: La línea central y los dos bordes de la alineación (derecho e izquierdo), finalmente presionar Enter. (Ver Anexos, Figura No. 34 Página XXI).

Creación de Curvas de Nivel.

Las curvas de nivel son líneas que unen puntos de la misma altitud de un terreno. La obtención de las curvas de nivel se obtiene por interpolación sobre los lados de los triángulos. Para crear curvas de nivel, ubicarse en pestaña Prospector de Toolspace y seleccionar la superficie creada "TERRENO NATURAL S-ST", hacer click derecho y seleccionar "Surface Properties". En el cuadro que se despliega, en pestaña Information, en la opción "Surface Style" aparece por defecto el estilo de superficie que se seleccionó anteriormente, cuando se creó la superficie, en este caso, se configurará dicho estilo "Contours and Triangles", para ello hacer click izquierdo en el desplegable y seleccionar "Edit Curten Selection".

En el cuadro que se despliega "Surface Style", en pestaña Information, en la opción Name, se deberá asignar un nombre y una descripción al estilo de la superficie, en este caso se nombrará como "CM@2.5m y CS@0.5m", cabe mencionar que "CM" indica curva maestra y "CS" curva secundaria, el 2.5m y 0.5m se refiere a la distancia que irán las respectivas curvas. (Ver Anexos, Figura No. 35 Página XXII).

Para definir los intervalos entre curvas ir a la pestaña Contours del cuadro "Surface Style", extender "Contours Intervals" y en la opción "Base Elevation" teclear "0.00m", en "Minor Interval" teclear "0.50m" y en "Major Interval" teclear "2.5m".

Luego extender "Contours Smothing" y en la opción "Smooth Contours" seleccionar "True". Para que se active la barra de suavizado de curvas, esta barra aparece en la parte inferior del cuadro "Surface Style" y presenta la graduación a cada 10, en este caso se cambiará a 90 (Este valor de suavizado de curvas se obtuvo a través de prueba). (Ver Anexos, Figura No. 36 página XXII).

5.3.6. Diseño Geométrico en Planta.

Previo a realizar el trazado del alineamiento horizontal, será necesario apagar la superficie creada, para ello, se selecciona la superficie, luego hacer click derecho y seleccionar "Surface Properties" y en el cuadro que se despliega "Surface Properties", en la opción "Surface style" seleccionar "No Display". Luego click en Apply y Aceptar. (Ver Anexos, Figura No. 37 Página XXIII).

Trazado de Alineaciones Rectas o Tangentes.

Inicialmente se creará una capa de nombre "TANGENTE", de color Cyan, luego en la parte inferior del modelo extender y seleccionar "Object Snap Settings" y en el cuadro que se desplega "Drafting Settings", hacer click izquierdo en "Select All".

Una vez realizado esto, teclear el comando "POLYLINE", luego trazar la polilínea en los segmentos que se consideren rectos a lo largo de todo el alineamiento. Una vez que se trazan las polilíneas, se selecciona una de estas, luego hacer click derecho y seleccionar "Select similar" para que se seleccionen todas las polilíneas creadas, luego hacer click derecho y seleccionar "Properties", en la ventana que se despliega "Properties", extender "Geometry" y en la opción Elevation teclear "0.00", luego presionar Enter y cerrar dicha ventana. (Ver Anexos, Figura No. 38 Página XXIII).

Para unir las polilíneas trazadas, ubicarse en el menú Home y en el panel Modify seleccionar "Chamfer" y seleccionar las polilíneas en el orden que se crearon.

A continuación, se procederá a crear el alineamiento; se nombrará y se definirá la estación a partir del cual iniciará, así también se asignará la velocidad de diseño y las normas a aplicar al tramo en estudio, para luego proceder a trazar las tangentes del alineamiento horizontal.

Para realizar un alineamiento, ubicarse el menú Home, seleccionar "Alignment" y seleccionar "Alignment Creation Tools". (Ver Anexos, Figura No. 39 Página XXIII).

En el cuadro que se despliega "Create Alignment-Layout": En Name nombrar al alineamiento "ALINEAMIENTO SOMOTILLO – SANTA TERESA 1", en Type "Centerline" ya que el alineamiento se creará sobre la línea central, en Description teclear "LINEA CENTRAL", en Starting Station teclear la estación donde inicia el alineamiento, en este caso "0+000.00m". Luego en Alignment styles, seleccionar "Proposed" y hacer click izquierdo en el desplegable y seleccionar "Edit Current Selection". Luego en la ventana desplegable "Alignment Style", seleccionar la pestaña "Display" y a los componentes que forman un alineamiento (Line, Curve y Spiral) asignar el color Magenta. Luego click en Apply y Aceptar.

NOTA: Para nuestro proyecto se crearon dos alineamientos para facilitar el diseño de la intersección contenida en el tramo, dicho alineamiento se crea de la misma manera que el "ALINEAMIENTO SOMOTILLO – SANTA TERESA 1", con la diferencia que se nombra "ALINEAMIENTO SOMOTILLO – SANTA TERESA 2". (Ver Anexos, Figura No. 40 Página XXIV).

Continuando con el cuadro anterior en pestaña "Design Criteria", se describe lo siguiente:

Starting Design Speed: Permite digitar la velocidad de diseño del proyecto aquí definimos nuestra velocidad de diseño para el "ALINEAMIENTO SOMOTILLO – SANTA TERESA 1", es de 70 Km/h y para el "ALINEAMIENTO SOMOTILLO – SANTA TERESA 2", es de 60 Km/h.

Use criteria-based design: Al activarlo permite realizar el trazo del alineamiento en base a criterios de diseño.

Use design criteria file: Al activarlo permite seleccionar normas específicas a la alineación.

En la sección Default criteria: Se seleccionan los criterios a usar una vez que se selecciona la norma específica a utilizar en la creación del alineamiento.

Use Design Check set: Al activarlo, muestra el símbolo de advertencia cuando los parámetros de diseño no cumplen las normas establecidas.

Luego de activar la tercera opción antes mencionada, hacer click izquierdo en y seleccionar "_Autodesk Civil 3D Metric (2004) Roadway Design Standards", que es la norma que contiene las tablas de la "A Policy on Geometric Design of Highways and streets AASHTO 2004". Luego click izquierdo en Open.

En la sección Default Criteria: En "Mínimum Radius Table" seleccionar el peralte máximo de la carretera, en este caso corresponde el 8%, por tanto, seleccionar "AASHTO (2004) Metric emax8%". En "Transition Length Table", seleccionar el número de carriles que tendrá la carretera en este caso "2 Lane", y en "Attainment

Method (Método de transición del bombeo), seleccionar "AASHTO 2004Crowned Roadway", luego click en Ok. (Ver Anexos, Figura No. 41 Página XXIV).

Se procederá a trazar las tangentes del alineamiento horizontal sobre las polilíneas creadas anteriormente, para ello, seleccionar "Tangent-Tangent (no curves)", es decir crear tangente-tangente sin curvas, ya que las curvas horizontales se crearán más adelante. (Ver Anexos, Figura No. 42 Página XXIV).

Luego en el mensaje que aparece "Specify start point", seleccionar el inicio de la primera polilínea creada y luego en el mensaje "Specify next point" seleccionar el punto final de dicha polilínea y realizar este mismo procediemiento, hasta lograr redibujar todas las polilíneas creadas, luego presionar Enter. De esta manera se concluye el trazado de las tangentes que conformarán el alineamiento horizontal. (Ver Anexos, Figura No. 43, Página XXV).

Trazado de Curvas Horizontales.

Curvas Circulares Simples: A continuación, se procederá a trazar una curva circular simple para ello seleccionar "Free Curve Fillet (Between two entities, through point)", luego en el mensaje que aparece "Specify first entity" seleccionar la tangente de entrada, luego cuando aparece el mensaje "Specify next entity" seleccionar la tangente de salida y finalmente cuando aparece el mensaje "Specify through point", hacer click izquierdo en el punto donde se ubicará la curva circular. De esta manera se crearán todas las curvas circulares simples en el alineamiento. (Ver esta y demás curvas circulares simples creadas en Anexos, Figuras No. 44 - 45, Páginas XXV – XXVI, respectivamente).

Curvas Espirales de Transición: Para proceder a trazar las curvas espirales, hacer click izquierdo y seleccionar "Free Compound Spiral-Curve-Spiral-Curve-Spiral (Between two tangents)", esta opción permite crear una curva espiral compuesta entre dos tangentes. Posteriormente seleccionar la tangente de entrada, luego la tangente de salida, después ingresar el radio, damos Enter e ingresamos el radio de la segunda curva damos Enter e ingresamos las longitudes de las espirales 1,2 y 3, por ultimo seleccionamos el punto de inicio de la curva.

De esta manera se crearán todas las curvas con espirales en el alineamiento. (Ver curva espiral creada en Anexos, Figura No. 48, Página XXVII).

Creación del contador: se realiza para numerar las curvas circulares y curvas espirales de transición en el sentido de recorrido del alineamiento, para ello, se debe seleccionar el alineamiento y con click izquierdo desplegar el icono "Add Labels" y seleccionar "Add Alignment Labels"; en el cuadro desplegable "Add Labels" en "Feature" seleccionar "Alignment" en "Label type" seleccionar "Single Segment", luego seleccionar "Curve label styles" hacer click izquierdo en el desplegable y seleccionar "Edit Current Selection" para editar las etiquetas de cada curva circular y seleccionar "Edit Current Selection" para editar las etiquetas de cada curva espiral. Despues selección cada curva deando click en "Add". (Ver Anexos, Figura No. 49, Página XXVIII).

Bombeo y Peralte.

Cálculo de súper elevación: Para proceder al cálculo de la súper elevación, se debe seleccionar el alineamiento, luego hacer click izquierdo en el ícono "Superelevation" (peralte) y seleccionar "Calculate/Edit Superelevation".

En la ventana que se desplega "Edit Superelevation", debido a que no existen datos, hacer click izquierdo en "Calculate Superelevation now". En el cuadro desplegable "Calculate Superelevation", seleccionar "Roadway Type", para definir el tipo de carretera, que en este caso corresponde a una carretera sin dividir, para ello se activa la opción "Undivided Crowned" (Calzada única con bombeo) y en la opción "Pivot Method" se define el método a aplicar, que como se mencionó anteriormente es el método desarrollo del peralte por el eje de la vía que corresponde al método Estandar, cuyo pivoteo será por la línea central, para ello seleccionar "Center Baseline". (Ver Anexos, Figura No. 50, Página XXVIII).

Luego seleccionar la opción "Lanes" (Carriles). En esta opción se define el porcentaje o valor del bombeo y ancho normal de la calzada. (Ver anexos, Figura No. 51, Página XXVIII).

A continuación, seleccionar la opción "Shoulder Control", para configurar los hombros, ancho, pendiente y el tratamiento de bombeo. (Ver Anexos, Figura No. 52, Página XXIX).

Seguidamente seleccionar la opción "Attainment" para configurar los peraltes. Para ello, inicialmente se debe revisar que las opciones que se encuentran en el recuadro de color azul sean las configuraciones del alineamiento. En caso de no ser así, en este apartado se pueden seleccionar.

En la sección "Transition formula for superelevation runoff", se definen las los porcentajes para la transición del peralte; para ello, en "% on tangent for tangent curve" teclear "66.67%" es decir, que el peralte cuando la curva circular es simple se debe desarrollar en 2/3 de la tangente, luego en la opción "% on Spiral for Spiral curve" teclear "100%", es decir, que la transición del peralte cuando se utiliza una espiral de transicion se debe desarrollar 100% en la longitud de dicha curva (Según Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras, con enfoque de Gestión de Riesgo y Seguridad Vial. 3a Edición, 2011. Pag. 95.)

Antes de finalizar las configuraciones de los peraltes, se debe activar la opción "Automatically Resolve Ovelap", asi el programa da la mejor solución a esos inconvenientes de diseño presentes entre curvas continuas. Luego click izquierdo en finish. (Ver Anexos, Figura No. 53, Página XXIX).

Sobre ancho en Curvas.

Cuando un vehículo circula por una curva, ocupa un ancho de camino mayor que en una tangente, debido a esto y a lo difícil que se le hace al conductor mantener el vehículo en el centro del carril, es necesario proporcionar un ancho adicional en las curvas, en relación con el ancho en tangente.

Creación de Sobre ancho.

Para proceder a crearlo, se debe seleccionar el alineamiento, luego seleccionar el ícono "Offset Alignment". En la ventana que se desplega "Create Offset Alignments", en la opción "Alignment to offset from" seleccionar "ALINEAMIENTO SOMOTILLO-SANTA TERESA 1", y en "Offset name template" en la opción que aparece por defecto, cambiar esos guiones por guion bajo. Luego en las opciones "No. of offsets on left y No. of offsets on Right" se especifica el número de desplazamientos laterales a la derecha e izquierda del eje central", en este caso es un desplazamiento lateral a ambos lados.

Posteriormente en la opción "Incremental offset on left" teclear "3.3m" (Ancho de carril), al igual que "Incremental offset on right", luego seleccionar la pestaña General y en "Alignment Style" seleccionar "Offset" y hacer click izquierdo en el desplegable y en la ventana que se desplega "Alignment Style", ir a la pestaña Display y a los componentes: Line, Curve, y Spiral, asignarles el color "Yellow", Luego click izquierdo en Apply y Ok. (Ver Anexos, Figura No. 54, Página XXX).

Luego seleccionar la pestaña "Widening Criteria", y en la ventana que se despliega "Create Offset Alignments" activar las opciones "Specify wideningthrough Design standards" y "Add Widdening Around Curves" (para aplicar losc riterios de diseño).

La opción "Specify widening manually" permite añadir a criterio personal los sobreanchos, en este caso se dejará desactivada. Luego Activar "Use DesignCheck set", luego click izquierdo en Ok. Finalmente se aprecia el sobreancho creado. (Ver Anexos, Figura No. 55, Página XXX).

Tabla de Datos de Subentidades.

En el Civil 3D es posible crear tablas de alineaciones que contengan información sobre los componentes de las alineaciones, como líneas, curvas simples y espirales, entre otros, estas también permiten organizar y consolidar la información sobre las alineaciones en el dibujo.

	TABLA DE ELEMENTOS DE CURVAS CIRCULARES											
No. De Curva	Radio	Longitud	Direccion	Punto Inicial PC	Punto Final PT	Delta	Estacion PC	Estacion PI	Estacion PT	Tangente	Externa	Longitud de Cuerda
C:1	320	36.53	N 83° 34' 36.79" E	(8659.80,1307.77)	(8696.08,1311.85)	6° 32' 30"	0+019.37	0+037.66	0+055.90	18.285	0.522	36.51
C:2	233.8	37.33	N 84° 52' 51.54" E	(8912.25,1348.78)	(8949.39,1352.10)	9° 08' 59"	0+275.20	0+293.91	0+312.53	18.704	0.747	37.289
C:3	628.4	96.56	N 85° 03' 14.19" E	(9075.59,1353.30)	(9171.69,1361.62)	8° 48' 14"	0+438.73	0+487.11	0+535.29	48.375	1.859	96.465
C:4	181.3	78.96	N 86° 52' 22.17" E	(9219.46,1369.48)	(9297.68,1385.21)	24° 57' 01"	0+583.70	0+623.82	0+662.66	40.116	4.385	78.338
C:5	380	254.59	N 83° 00' 59.14" E	(9382.92,1342.33)	(9630.93,1372.70)	38° 23' 12"	0+750.94	0+883.22	1+005.53	132.281	22.366	249.856
C:6	168	158.59	N 33° 34' 55.60" E	(9642.45,1378.72)	(9726.95,1505.99)	54° 05' 17"	1+018.53	1+104.29	1+177.12	85.763	20.625	152.771
C:7	170.2	116.55	N 17° 17' 13.41" E	(9725.52,1607.12)	(9759.48,1716.24	39° 13' 57"	1+278.35	1+339.01	1+394.90	60.662	10.487	114.283
C:8	370.7	74.81	S 54° 27' 53.20" E	(9774.44,1715.15)	(9835.22,1671.75)	11° 33' 48"	1+414.15	1+451.68	1+488.96	37.531	1.895	74.68
C:9	116.3	56.19	S 34° 50' 46.33" E	(9890.27,1623.35)	(9922.06,1577.69)	27° 40' 25"	1+562.26	1+590.91	1+618.45	28.655	3.477	55.647
C:10	113	83.85	S 42° 15' 56.99" E	(9935.17,1623.35)	(9990.28,1482.91)	42° 30' 47"	1+655.02	1+698.98	1+738.87	43.958	8.249	81.935
C:11	113.4	49.63	S 50° 59' 05.17" E	(10120.40,1418.10)	(10158.65,1387.10)	25° 04' 30"	1+884.23	1+909.45	1+933.86	25.218	2.77	49.234
C:12	115.4	80.34	S 58° 23' 28.94" E	(10183.09,1356.33)	(10250.14,1315.06)	39° 53' 18"	1+973.16	2+015.03	2+053.50	41.876	7.363	78.729
C:13	113	78.53	S 58° 25' 34.35" E	(10322.78,1300.07)	(10388.34,1259.77)	39° 49' 07"	2+127.67	2+168.60	2+206.20	40.926	7.183	76.96
C:14	113	143.34	S 74° 51' 22.32" E	(10389.43,1258.41)	(10518.70,1223.43)	72° 40' 43"	2+207.94	2+291.07	2+351.28	83.126	27.282	133.92
C:15	113	68.24	N 86° 06' 13.99" E	(10521.53,1224.52)	(10588.58,1229.09)	34° 35' 56"	2+354.32	2+389.51	2+422.55	35.194	5.354	67.204
C:16	113	82.4	S 43° 32' 13.80" E	(10807.12,1173.53)	(10862.63,111511)	41° 46' 52"	2+648.24	2+691.37	2+730.64	43.129	7.951	80.588

 Tabla No. 29: Elementos de Curvas Circulares Simples.

Fuente: Elaboración Propia.

ELEMENTOS DE CURVAS ESPIRALES										
No. De Curva	Valor "A"	Radio(m)	Longitud (m)	Dirección	Punto Inicial	Punto Final	Estación Inicial	Estación final		
S:1	130.77	380.00	45.00	S74°23'51.58"E	9339.36,1353.57	9382.92,1342.33	0+705.94	0+750.94		
S:2	62.57	380.00	13.00	N63°49'22.91"E	9630.93,1372.70	9642.45,1378.72	1+058.53	1+018.53		
S:3	93.47	168.00	52.00	N6°06'16.99"E	9726.95,1505.99	9727.52,1557.93	1+177.12	1+229.12		
S:4	73.65	168.00	48.00	N76°35'48.20"E	10761.43,1187.90	10807.12,1173.53	2+600.24	2+648.24		
S:5	73.65	113.00	48.00	N22°38'47.86"E	10862.63,1115.11	10874.65,1068.74	2+720.64	2+778.64		

Tabla No. 30: Elementos de Curvas Espirales.

Fuente: Elaboración Propia.

5.3.7. Diseño Geométrico en Perfil.

Trazado del Perfil Longitudinal.

El perfil del terreno a lo largo del eje de la vía o perfil longitudinal es la base para realizar el diseño vertical o rasante. Dicho perfil es un gráfico de cotas, donde el eje horizontal corresponde a las abscisas y el eje vertical corresponde a las cotas, dibujadas de izquierda a derecha.

A continuación, se realizará el trazado del perfil longitudinal a partir de una superficie y un alineamiento, para ello, se selecciona el alineamiento, y en la sección "Launch pad" seleccionar "Surface Profile" (Perfil de superficie).

En el cuadro que se despliega "Create Profile from Surface", se selecciona el alineamiento creado, el rango de estación al cual se creará el perfil, luego se elige la superficie de la cual se quiere obtener el perfil. Para ello: En "Alignment" seleccionar el alineamiento "SOMOTILLO-SANTA TERESA", en "Station Range", en Alignment teclear en "Start" 0+000 y en "End" teclear 1+55.22, es decir el Alineamiento completo, en "Select surface" seleccionar la superficie creada, luego click izquierdo en "Add" (Para agregar las configuraciones base del perfil).

Una vez que se creó el perfil, se procederá a dibujarlo, para ello en el cuadro que se mantiene desplegado "Create Profile from Surface", hacer click izquierdo en "Draw in Profile view" (para crear la vista de perfil).

En el cuadro que se despliega 'Create Profile View", seleccionar "General" y en la opción "Select Alignment" seleccionar el alineamiento "SOMOTILLO-SANTA TERESA 1", en "Profile view name" se nombrará a la vista del perfil como

"PERFIL LONGITUDINAL 1, seguidamente en "Profile view style" (Estilo de vista del perfil), se seleccionará "Profile View", luego hacer click izquierdo en el desplegable y seleccionar "Copy Current Selection".

En el cuadro desplegable "Profile View Style", en pestaña Information se nombrará al estilo de la vista de perfil como "_ESTILO DE VISTA DE PERFIL S-ST".

Seguidamente en pestaña Graph (Gráfico), se especificará la orientación de la visualización del perfil, el factor de escala, la escala vertical y horizontal. Para ello, en "Vertical scale" seleccionar "1:100", en "Custom scale" seleccionar 100.

En pestaña Title Annotation (Anotación del título): Se especificará el contenido y el aspecto de los títulos para la visualización del perfil global y para los ejes individuales. Para ello, en "Text style" seleccionar el estilo de texto "Standart", en "Height text" teclear "2.5mm", luego hacer click izquierdo en, y en la ventana que se despliega "Text Component Editor", en la pantalla de edición borrar el contenido que esta antes del contador y teclear "PERFIL LONGITUDINAL 1", luego click izquierdo en Ok.

En el cuadro que permanece abierto "Create Profile View", a continuación, se procederá a especificar el rango de alineamiento al cual se quiere realizar el perfil. Para ello, activar la opción "Automatic" y por defecto en las opciones "Start" y "End" aparecen las estaciones que corresponden al inicio y final del alineamiento. Luego hacer click izquierdo en Next. (Ver Anexos, Figura No. 56, Página XXXI).

En "Profile View Height" se especificará la altura del perfil, es decir la altura mínima y máxima, para ello activar "User specified" y en Mínimum teclear "50m" y en Máximum "72m", luego desactivar "Split profile view" (para que la vista del perfil no sea dividida). Luego hacer click izquierdo en Next y Next.

Seguidamente se elegirá el conjunto de bandas a aplicar en el perfil, estas bandas se pueden colocar en la parte inferior o superior de la visualización del perfil para anotar datos de elevación y estaciones del perfil, puntos de geometría vertical u horizontal, etc. Las bandas se pueden añadir a una visualización del perfil como un conjunto o de forma individual.

Por lo tanto, en la opción "Select band set", seleccionar "EG-FG Elevation and Station" donde:

EG: Existing Ground (Terreno existente).

FG: Finish Ground (Rasante).

Esto indica que los datos que tendrá la banda serán correspondientes al terreno existente y a la rasante, con sus respectivas estaciones y elevaciones.

Posteriormente en "List of bands", en "Location" seleccionar "Bottom of Profile view" (Para que la banda se ubique debajo de la vista de perfil), luego click izquierdo en "Create Profile View" para crear la vista del perfil. Finalmente hacer click izquierdo en un punto cualquiera del modelo para que el perfil sea insertado, se podrá apreciar la vista del perfil y la banda creada.

Diseño de la Rasante.

El trazado de la rasante de una vía está formado por una serie elementos como tramos rectos o tangentes (pendientes o rampas), los cuales se conectan por curvas verticales parabólicas, que pueden ser cóncavas o convexas. El procedimiento para crear la rasante es el siguiente:

Inicialmente se debe encender la capa Tangente, luego teclear el comando Línea y luego trazar los segmentos rectos (tangentes) en el perfil, ajustándolo lo más posible que se pueda al terreno. Una vez realizado esto presionar Enter, luego seleccionar el comando "Chamfer" y luego seleccionar el primer segmento recto y luego el siguiente y así sucesivamente (Esto se realiza para que se unan las tangentes).

A continuación, se realizará la creación de la rasante. Para ello se selecciona la vista del perfil, luego hacer click izquierdo en el ícono "Profile Creation Tools" (Herramientas para creación de perfiles).

En el cuadro que se desplega "Create Profile", nombrar a la rasante como "RASANTE S-ST". Luego seleccionar la pestaña "Design criteria", y activar "Use criteria based design" seguidamente hacer click izquierdo en y seleccionar la Norma "AutoDesk Civil 3D Metric (2004) Roadway design estándards", luego click izquierdo en Open y Ok. (Ver Anexos, Figura No. 57, Página XXXI).

Posteriormente en la barra de herramientas "Profile Layout Tools, se presentan las diferentes opciones que permiten crear el trazado vertical. (Ver anexos, Figura No. 58, Página XXXI).

Continuando con la creación de la rasante, se extenderá la opción número 1 y seleccionar "Draw Tangent" (Dibujar tangente) y redibujar las tangentes creadas anterior mente, luego de recrear todas las tangentes se extendare la opción "Free Vertical Parabola" luego seleccionar el PIV en la primer intersección entre tangente, de esta misma manera se crean todas las curvas verticales. (Ver Anexos, Figura No. 58, Página XXXI).

ELEMENTOS DE CURVAS VERTICALES										
# CURVA	PIV ESTACION	PIV ELEVACION	PTE. ENTRADA	PTE. SALIDA	TIPO DE CURVA	LONGUITUD	VALOR K	V. DISEÑO		
1	0+095.59	55.95	-1.52%	0.78%	Columpio	83.43 m.	36.18	70 km/h		
2	0+663.76	60.39	0.78%	-0.28%	Cresta	102.81 m.	97.13	70 km/h		
3	0+965.00	59.56	-0.28%	1.21%	Columpio	66.56 m.	44.51	70 km/h		
4	1+145.00	61.74	1.21%	-0.56%	cresta	86.62 m.	48.87	70 km/h		
5	1+339.35	60.66	-0.56%	1.78%	Columpio	100.00 m.	42.74	70 km/h		
6	1+580.00	75.19	7.53%	-8.59%	cresta	313.98 m.	19.49	60 km/h		
7	1+885.00	49	-8.59%	4.46%	Columpio	260.91 m.	20	60 km/h		
8	2+158.19	61.19	4.46%	-3.43%	Cresta	231.66 m.	29.38	60km/h		
9	2+376.57	53.72	-3.43%	5.73%	Columpio	188.93 m.	20.62	60 km/h		
10	2+635.00	68.54	5.73%	-10.52%	Cresta	260	15.99	60km/h		

Tabla No. 31: Elementos de Curvas Verticales.

Fuente: Elaboración Propia.

Sección Típica.

En Civil 3D los datos de sección típica se definen y muestran mediante líneas de muestreo, secciones y vistas en sección y todas ellas se administran a través de colección.

Ensambles y Sub ensambles de Sección Típica para Carretera.

Un ensamble representa la línea central de una sección transversal de una calzada; es la unión de uno o más sub ensambles conectados entre sí. Los sub ensambles representan un componente de la sección transversal de un camino, estos pueden ser líneas, cunetas, etc. Es posible apilar cualquier sub ensamble para crear un ensamble tipo y aplicar el mismo ensamble para un intervalo a lo largo de una alineación.

Creación de Sección Típica.

Para proceder a crear la sección típica, inicialmente será necesario crear el ensamble, luego se crearán los sub ensambles carriles, bordillo, hombro; para ello, ubicarse en pestaña Home, extender Assembly y seleccionar "Create Assembly".

En el cuadro que se desplega "Create Assembly", nombrar a la sección transversal como "SECCIÓNTÍPICA_S-ST". En "Assembly Type" (tipo de ensamble), seleccionar "Other" (otro), luego en "Assemblystyle" (estilo del ensamble), seleccionar "Basic", en "Code setstyle" (estilo de conjunto de códigos), seleccionar "All Codes" (todos los códigos), en "Assembly Layer" seleccionar la capa "C-ROAD-ASSM" (es la que trae por defecto la plantilla), luego click izquierdo en Ok, seguidamente definir un punto cualquiera en el modelo, para que el ensamble sea insertado. (Ver anexos, Figura No. 59, Página XXXII).

Para añadir sub ensambles, hacer click izquierdo en el ícono "Tool Palettes", a continuación, se desplegará la barra flotante "TOOL PALETTES CIVIL METRIC SUBASSEMBLIES" (paletas de herramientas de sub ensambles), esta barra flotante cuenta con diferentes ensambles, sub ensambles.

Una vez creado el ensamble, habrá que añadir el resto de entidades (sub ensambles), se iniciará con la creación de los carriles, para ello, ubicarse en la ventana flotante, luego se realiza lo siguiente:

Click izquierdo en la pestaña Lanes (Carriles), y seleccionar "Lane Superelevation AOR" (Este sub ensamble se utiliza normalmente para la creación del carril de uso general). En la ventana desplegable "Properties", se definirán las propiedades geométricas del sub ensamble "Carril".

Insertar bordillo: En la barra flotante "TOOL PALETTES CIVIL METRIC SUBASSEMBLIES", seleccionar en la pestaña "Basic" la opción "Basic Curb" (bordillo básico). Y en la ventana Properties configurar las propiedades del bordillo.

Insertar hombro: Ubicarse en la ventana flotante y seleccionar la pestaña Shoulder, luego seleccionar la opción "Shoulder extendAll". En la ventana Properties, ubicarse en Parameter y configurar las propiedades del hombro. Los subassembly (sub ensambles) creados anteriormente correspondían a los del lado derecho, por tanto, para crear los del lado izquierdo, solo seleccionar todos los sub ensambles que se crearon en la parte derecha y presionar con click izquierdo el ícono "Mirror" y seleccionar el centro del eje del ensamble. (Ver anexos, Figura No. 60, Página XXXII).

Creación de Corredor.

Previo a ello, se debe contar con una superficie, con un alineamiento horizontal, un alineamiento vertical y con una sección típica. Seguidamente se digita el comando "MENUBAR", se presiona Enter, y luego se teclea "1" (este dígito permite activar dicho menú).

A continuación, en el menú Corridor, seleccionar "Create Corridor" y en el cuadro desplegable "Create Corridor", nombrar el corredor como "CORREDOR S-ST", En "Corridor style" seleccionar "Basic", en "Corridor layer" se deja la capa que trae por defecto la plantilla, en Alignmnent se selecciona el alineamiento creado "ALINEAMIENTO SOMOTILLO-SANTA TERESA".

Seguidamente en "Profile" seleccionar la rasante creada, en este caso "RASANTE S-ST (3)", en Assembly seleccionar la sección típica creada "_SECCIÓN TIPICA_S-ST" en "Target" seleccionar la superficie "TERRENO NATURAL S-ST". Y activar "Set baseline and región parameters", luego click izquierdo en Ok.

En la ventana que aparece luego de haber realizado el paso anterior, dar clik en "Apply" seleccionar la opción "Rebuilt the corridor" y click izquierdo en Ok. (Ver Anexos, Figura No. 61, Página XXXIII).

Creación y configuración de las superficies TOP (superior) y DATUM (inferior).

Para proceder a la creación y configuración de las superficies Top y Datum, Seleccionar con click izquierdo el corredor, hacer click derecho y seleccionar "Corridor Surface". En la ventana desplegable "Corridor Surface", hacer doble click izquierdo en el ícono "Create a corridor Surface". Luego nombrar a la primera superficie como "CORREDOR_G-M-SUPERIOR" y a la segunda como "CORREDOR_G-M-INFERIOR". En columna "Surface style" a ambas superficies seleccionar "Contours and triangles". En columna "Render material" hacer click izquierdo en y seleccionar "Sitework Planting Gravel Crushed" (esto igual para ambas superficies).

En columna "Overhang correction", a la primera superficie seleccionar "Top links" y a la segunda "Bottom links". A continuación, seleccionar el "CORREDOR_G-MSUPERIOR" y en la opción "Specify code" seleccionar "Top", y click izquierdo en y en la columna "Add as Breakline" activar el check. Repetir este mismo procedimiento para "CORREDOR_G-M-INFERIOR", y en vez de seleccionar Top, seleccionar "Datum". Luego click izquierdo en Apply. (Ver Anexos, Figura No. 62, Página XXXIII).

Creación y Edición de Líneas de Muestreo.

Para poder obtener las secciones transversales de la superficie de terreno natural y de la obra lineal es necesario muestrear la alineación horizontal, mediante el uso de líneas de muestreo perpendiculares a la alineación.

Para crear las líneas de muestreo se realiza lo siguiente: Se selecciona el alineamiento y en el menú Section, seleccionar "Create sample lines", En la ventana desplegable "Create simple line Group" nombrarlas como "CONJUNTO DE LINEAS DE MUESTREO S-ST" y activar todas las opciones que aparecen en la columna "Sample", luego click en Ok. En la barra desplegable "Sample Line Tools", extender el ícono "Sample line Creation methods" y seleccionar la opción "By range of Station".

En el cuadro que se desplega "Create sample line-By Station Range". En el nivel Station range:

En "From aligment star" y en "From aligment end" seleccionar "True".

En el nivel Left swath width: En width teclear "10m" (es el ancho en el que se reflejarán las secciones transversales), en "Snap to an alignment" seleccionar "False".

En el nivel Right swath width: En "Snap to an aligment" seleccionar "False" y en "Width" teclear "10m".

En el nivel Sampling increment: En "use sampling increments" seleccionar "True", en "Increment relative to" seleccionar "Absolute Station". En la opción "Increment a long target" teclear "20m", es decir cada sección transversal irá a cada 20m. Al resto de opciones teclear "20m.

En el nivel Additional sample controls, a las opciones "At Range Start y At Range End" seleccionar True". Ver figura 330, en la cual se aprecian las configuraciones realizadas y las líneas de muestreo creadas. (Ver Anexos, Figura No. 63, Página XXXIV).

Secciones Transversales y Volúmenes.

A continuación en menú "Sections", seleccionar "Compute material" (calcular material), esto para registrar la lista de los materiales a calcularse más adelante, En la ventana que se desplega "Select a Sample Line Group", en la opción "Select alignment", seleccionar el alineamiento creado "ALINEAMIENTO SOMOTILLO-SANTA TERESA 1". Luego en la opción "Select sample line Group" (se selecciona el grupo de líneas de muestreo que se creó en pasos anteriores), el cual corresponde a "CONJUNTO DE LÍNEAS MUESTREO 1". Luego click izquierdo en Ok. (Ver anexos, Figura No. 64, Página XXXIV).

En el cuadro que se despliega "Compute Material", en "Quantity takeoff criteria"se selecciona los criterios de cubicación, en este caso "Cut and Fill", es decir corte y relleno.

A continuación, se procederá a indicar las superficies a comparar para obtener el volumen, para ello, seleccionar la primera opción "EG" (Existing ground), el cual hace referencia al terreno natural, por tanto, en la columna "Object Name" seleccionar "TERRENO NATURAL S-ST".

Luego seleccionar "Datum", que corresponde a la superficie generada en la parte inferior de la estructura de pavimento, para ello, en la columna "Object Name" seleccionar "CORREDOR S-ST INFERIOR". Luego click izquierdo en Ok.

Luego repetir el procedimiento que se realizó para acceder a la ventana "Select a Sample Line Group", luego click izquierdo en Ok. Seguidamente, en el cuadro que se abre "Edit Material List" (Editar lista de materiales), en la columna "Material Name", dar doble click izquierdo en la opción que aparece y nombrarla como "CORTE Y RELLENO", luego extender esa opción y en "Ground Remove" (Remover terreno) hacer doble click izquierdo y teclear "CORTE" y en "Ground fill" (Rellenar terreno), hacer doble click izquierdo y nombrarlo como "RELLENO".

Creación o Generación de una Vista de Sección.

Inicialmente se activa la escala 1:250. Luego en el menú "Section", seleccionar "Create Multiple section view", Luego en el cuadro que se despliega "Create Multiple Section View", en la pestaña General, en la opción "Sample line" (la que aparece en la parte izquierda), seleccionar la línea de muestreo a la cual se le creará la vista de sección, se puede seleccionar cualquier estación.

A continuación, se procederá a nombrar la vista de sección y a definir el estilo de la misma, para ello en "Section view" nombrarla como "VISTA S-ST" y en "Section view style" seleccionar "Road section". Luego click izquierdo en Next. (Ver Anexos, Figura No. 65, Página XXXIV).

Seguidamente en "Offset Range" (rango de desplazamiento), activar "Automático", y click izquierdo en Next.

Luego en "Elevation Range" (rango de elevación), activar "Automátic" y click izquierdo en Next.

Luego en "Section Display Options" (opciones de visualización de sección) realizar lo siguiente: En la columna "Name", seleccionar en la columna "Label Set" la opción "_No labels" y click izquierdo en Ok y finalmente hacer click izquierdo en Next. (Ver Anexos, Figura No. 66, Página XXXV).

En "Data Bands", en la opción "Select band set" (selección de conjuntos de bandas) seleccionar "Offset only", en "Location" seleccionar "Bottom of section view" (corresponde a la banda inferior de la vista de sección transversal).

En "Set band properties" (establecer propiedades de banda), realizar lo siguiente: En la columna "Style" seleccionar "EG Elevations" y click izquierdo en Ok, en la columna "Surface1" seleccionar "TERRENO NATURAL S-ST" y en la columna "Surface 2" seleccionar "CORREDOR S-ST SUPERIOR", esto se realiza con la finalidad que en la banda inferior de las sección transversal aparezca tanto la elevación del terreno natural como la elevación de la rasante y click izquierdo en Next. (Ver Anexos, Figura No. 67, Página XXXV).

En "Section View Tables" (tabla de vista de sección) se configurará la tabla de la vista de sección, para ello, se realizará lo siguiente:

En la opcion "Type" seleccionar "Total volumen".

En "Select table style" seleccionar "Basic", y click izquierdo en "Add".

En "Section view anchor" seleccionar "Middle right".

En "Table anchor" seleccionar "Middle left".

En X offset teclear "0mm".

En Y offset teclear "0"mm.

En table Layout seleccionar "Horizontal". (Ver Anexos, Figura No. 68, Página XXXVI).

Luego click izquierdo en "Create section view" (crear vista de sección), seguidamente hacer click izquierdo en un punto cualquiera del modelo, para que la vista de sección sea insertada.

Las secciones transversales permiten identificar las áreas de corte y relleno; a partir de estas áreas, se procede a calcular el volumen total de material a excavar o transportarse.

5.3.8. Informes y Planos.

Los informes son documentos que contienen las características específicas de determinados elementos que componen el diseño geométrico de una carretera.

Según informes de movimiento de tierra se determinó un volumen de corte de 13,608.77 metros cúbicos y un volumen de relleno de 10,541.06 metros cúbicos, el volumen de material a cortar compensará el volumen rellenar, por lo tanto, el volumen de material sobrante será de 3,067.71 metros cubico. (Ver Anexos, Tabla No. 62, página XXXVII a XL?

CAPÍTULO VI DISEÑO DE ESTRUCTURA DE PAVIMENTO.
6.1. Introducción.

Un pavimento es una estructura conformada por capas de diferentes espesores, cada capa recibe las cargas de la que está en la parte superior, las distribuye, y luego pasa estas cargas a la capa inmediatamente inferior. Por lo tanto, cuanto más abajo este una capa menor es la carga que recibe.

6.2. Definiciones Básicas.

Sub – rasante.

Se define así al terreno de fundación de los pavimentos, pudiendo estar constituida por el suelo natural del corte o de la parte superior de un relleno debidamente compactado.

Tabla No. 32: Especificaciones para los Materiales de Terraplenes y Capa de Sub-rasante.

Especificaciones de Materiales de Terraplenes y Capa de Sub-rasante					
No.	Propiedad	Especificación	Capa Sub-rasante	Metodología	
1	% de Malla No. 200	40% máx.	30% máx.	AASTHO T-89	
2	Límite Líquido	40% máx.	30% máx.	AASTHO T-90	
3	Límite Plástico	15% máx.	10% máx.	AASTHO T-193	
4	CBR	10% mín.	20% mín.	AASTHO T-96	
		95% min del Peso Volumétrico	95% mín del Peso Volumétrico		
_	Seco máx. Obte	Seco máx. Obtenido de la	Seco máx. obtenido de la	AASTHO T-191	
5	Compactación	Prueba Proctor Modificado	prueba Proctor Modificado	Y/O T-238 (In Situ)	
		(AASTHO-99)	(AASTHO-T-180)		

Fuente: Especificaciones NIC-2000 Sección 203. 11(b), 1003. 21, 1003.24 (g).

Sub – base.

Es una capa generalmente constituida por agregados pétreos convenientemente graduados y compactados, construida sobre la sub-rasante.

Esta deberá ser colocada sobre la terracería en una capa compactada hasta alcanzar el 95% mínimo de su peso volumétrico seco máximo (ASTM D 1557). De igual forma el material debe cumplir con las especificaciones de la NIC 2000.

Especificaciones de Materiales para Sub-base					
No.	Propiedad	Especificación	Metodología		
1	Límite Líquido	25% máx.	AASTHO T-89		
2	Índice Plástico	6% máx.	AASTHO T-90		
3	CBR	40% mín.	AASTHO T-193		
4	Desgaste de los Ángeles	50% máx.	AASTHO T-96		
5	Intemperismo Acelerado	12% máx.	AASTHO T-104		
6	Compactación	95% min del Peso Volumétrico Seco máx. Obtenido de la Prueba Proctor Modificado (AASTHO-180)	AASTHO T-191 Y/O T-238 (In Situ)		

Tabla No. 33: Especificaciones para	los Materiales para Sub-base.
-------------------------------------	-------------------------------

Fuente: Especificaciones NIC-2000 Sección 1003. 09 (a y b), 1003. 23 II (a).

Base.

Es la capa intermedia entre la sub-base y la carpeta del pavimento por agregados pétreos, graduados y compactados, pudiendo contener además un agente estabilizador. La base se deberá colocar sobre la sub-base en una capa y compactarse a un mínimo de 95% Próctor Modificado (ASTM D 1557); así mismo el material usado debe cumplir con las especificaciones de materiales para base granular establecidas por la NIC 2000.

Especificaciones de Materiales para Base Granular					
No.	Propiedad	Especificación	Metodología		
1	Límite Líquido	25% máx.	AASTHO T-89		
2	Índice Plástico	6% máx.	AASTHO T-90		
3	CBR	80% mín.	AASTHO T-193		
4	Desgaste de los Ángeles	50% máx.	AASTHO T-96		
5	Intemperismo Acelerado	12% máx.	AASTHO T-104		
6	Compactación	95% min del Peso Volumétrico Seco máx. Obtenido de la Prueba Proctor Modificado (AASTHO-180)	AASTHO T-191 Y/O T-238 (In Situ)		

Tabla No. 34: Especificaciones para los Materiales para Base Granular.

Fuente: Especificaciones NIC-2000 Sección 1003. 09 (a y b), 1003. 23 II (b).

Superficie de Rodamiento.

La superficie de rodamiento consistirá de una estructura articulada compuesta de unidades de adoquín. La arena que servirá de colchón a los adoquines deberá ser lavada, dura y uniforme y no deberá contener más del 3% de limo y/o arcilla en peso; su granulometría será tal que pase totalmente por el tamiz No. 4 y no más del 15% sea retenido por el tamiz No. 10.

Los adoquines son elementos construidos con material pétreo y cemento de 10 cm de espesor (4 pulgadas), que son colocados sobre una cama de arena de 3 a 5 centímetros de espesor, la que tiene como función primordial absorber las irregularidades que pudiera tener la base, proporcionando a los adoquines un acomodamiento adecuado y ofreciendo una sustentación y apoyo uniforme en toda su superficie. Además, sirve para drenar el agua que se filtra por las juntas, evitando que se dañe la base.

6.3. Metodología y Desarrollo del Tema.

6.3.1. Método de Diseño.

El método utilizado para realizar el diseño de la estructura de pavimento en este trabajo monográfico fue el de la **AASHTO 93**, el cual involucra los estudios abordados anteriormente y es el método más usado ya que cuenta con dos técnicas de diseño para estructura de pavimento: Rígido y Flexible.

Para el diseño de pavimentos flexibles, este método se basa principalmente en identificar un número estructural (SN) para el pavimento, que pueda soportar el nivel de carga solicitado. Para determinar el número estructural, el método se apoya en una ecuación que relaciona los coeficientes estructurales de la capa con sus respectivos números estructurales.

Así mismo se requieren datos de entrada que se obtienen de los parámetros de diseño que son de mucha importancia, por tanto, se debe tomar una buena consideración de los mismos y se presentan a continuación.

6.3.2. Determinación de los Ejes ESAL´s equivalentes (W18). Análisis de Cargas y Ejes Equivalente para el Diseño de Pavimento.

Los factores de equivalencia se obtienen de las tablas de la AASHTO 93, de los ejes sencillos y dobles. Los ejes equivalentes se obtienen conociendo el tránsito de diseño y los factores de equivalencia, mediante la siguiente expresión:

Ecuación No. 19

$$ESAL \ o \ W18 = TD * Factor \ ESAL$$

Donde:

TD = Tránsito de Diseño.

Factor ESAL = Se determina haciendo uso de tablas contenidas en la AASTHO 93, considerando el peso de cada vehículo, el tipo de eje, una serviciabilidad final de 2.0 y un coeficiente estructural de SN=5. (Ver Anexos, Tabla No. 63 y Tabla No. 64, Página XLI).

Ejemplo de cálculo del ESAL´s de Diseño para autos, procedimiento aplicado para cada tipo de vehículo.

 $ESAL \ o \ W18 = TD * Factor \ ESAL$ $ESAL \ o \ W18 = 530,517.00 * 0.00038$ $ESAL \ o \ W18 = 201.6$

Tipo de Vehículo	T. Inicial	W por eje (lbrs)	W por eje (kips)	Tipo de eje	TD	F. ESAL	ESAL de diseño
Motoo	04.4	0	0	Simple	5 007 702 00	0	0
IVIOLOS	014	0	0	Simple	5,997,792.00	0	0
Autos	70	2200	2	Simple	530 517 00	0.00038	201.6
Autos	12	2200	2	Simple	550,517.00	0.00038	201.6
loon	10	2200	2	Simple	99 420 00	0.00038	33.6
Jeep	12	2200	2	Simple	00,420.00	0.00038	33.6
Diakun	214	2200	2	Simple	2 212 645 00	0.00038	879.19
Ріск-ир	314	4400	2	Simple	2,313,645.00	0.0034	7,866.39
Camión	10	8800	4	Simple	257 800 00	0.0502	12,946.08
Ligero	19	17600	11	Simple	257,890.00	0.9206	237,413.53
Bue	35	11000	9	Simple	120 008 00	0.1265	17,709.75
Bus		22000	10	Simple	139,998.00	2.35	328,995.30
63	20	11000	11	Simple	221 040 00	0.1265	27,962.70
62	30	22000	22	Simple	221,049.00	2.35	519,465.15
62	2	11000	11	Simple	14 727 00	0.1265	1,864.23
03	2	36300	36	Doble	14,737.00	1.425	21,000.23
ESAL´s						1,176,572.93	

Tabla No. 35: Calculo del ESAL's de Diseño.

Fuente: Elaboración propia.

6.3.3. Determinación del CBR de Diseño.

a) Una vez calculado el ESAL's de diseño se ubica su valor en la siguiente tabla para identificar el percentil y hallar el % de resistencia.

Tabla No. 36: Límites para la Selección de Resistencia.

Número de Ejes de 8.2 Toneladas en el Carril de Diseño (N)	Percentil a Seleccionar para hallar la Resistencia (%)
< 10,000	60
10,000 - 1,000,000	75
> 1,000,000	87.5

Fuente: Instituto de Asfalto, (MS-1) 1991.

El valor del porcentil es de **87.5%** ya que el ESAL's de diseño (1, 176,572.93) está por encima de (N = 1, 000,000).

 b) Se ordenan los valores de resistencia del CBR compactado al 95% obtenido del Estudio de Suelo de menor a mayor, se determina el número y el porcentaje de valores iguales o mayores de cada uno.

Tipos de Suelo	CBR (%)	Frecuencia	Número de Valores Iguales o Mayores	% de Valores Iguales o Mayores
A-7	5	1	13	100
A-6	7	4	12	92
A-4	16	5	8	62
A-2	19	3	3	23

Tabla No. 37: Determinación de los % de Valores Iguales o Mayores.

Fuente: Elaboración Propia.

c) Se elabora un gráfico que relaciones los valores de CBR con los porcentajes anteriormente determinados y en la curva resultante se determina el CBR de Diseño para el Percentil elegido.

Figura No. 5: Valores Iguales o Mayores Vs CBR %.

Fuente: Elaboración Propia.

Los resultados de la Figura No.66 sugieren un **CBR de 8.5%** para el diseño de pavimento.

6.3.4. Índice de Serviciabilidad (Pi).

Se define como la capacidad de servir al tipo de tránsito para el cual ha sido diseñado. En el diseño del pavimento se deben elegir la serviciabilidad inicial y final.

La inicial, po, es función del diseño del pavimento y de la calidad de la construcción. La final o terminal, pt, es función de la categoría del camino y es adoptada en base a ésta y al criterio del proyectista.

Los valores recomendados son los que se obtuvieron en el AASHTO Road Test:

$\rho 0$ = 4.2 para pavimentos flexibles.

 ρt = 2.5 para caminos muy importantes.

ρt = 2.0 para caminos de menor tránsito.

• Pérdida de Serviciabilidad (APSI).

La pérdida de la serviciabilidad es la diferencia que existe entre la inicial y la final. Se calcula con la siguiente ecuación:

Ecuación No. 20

$$\Delta PSI = \rho O - \rho t$$
$$\Delta PSI = 4.2 - 2.0$$
$$\Delta PSI = 2.2$$

Donde:

PSI = Índice de Servicio Presente.

- $\Delta PSI = Pérdida de Serviciabilidad.$
- $\rho 0 =$ Índice de Servicio Inicial
- $\rho t =$ Índice de Servicio Final.

Los valores de los índices de Serviciabilidad determinado fueron de **4.2** para el inicio por considerarse de un pavimento flexible y de **2.0** para el final por ser un camino de tránsito menor, por tanto, el valor de la pérdida en la calidad de servicio es de **2.2**.

6.3.5. Confiabilidad (R).

De acuerdo con la clasificación funcional de la vía, la guía de la AASHTO 1993 recomienda diferentes Niveles de Confiabilidad NC(R), los cuales se encuentran en la siguiente tabla.

Tabla No. 38: Confiabilida	d Recomendada de acuerd	o al Tipo de Camino.
----------------------------	-------------------------	----------------------

Tipos de Caminos	Confiabilidad Recomenda NC(R)		
	Zonas Urbanas	Zonas Rurales	
Rurales Interestatales y	85 - 100	80 - 100	
Autopista	00 100	00 100	
Arterias Principales	80 - 99	75 - 99	
Colectoras	80 - 95	75 - 95	
Locales	50 - 80	50 - 80	

Fuente: Libro de diseño de pavimentos AASHTO 93, página 137.

El valor de **Confiabilidad NC(R)** que se utilizará en este proyecto es de **80%**, el cual corresponde a un valor recomendado para las zonas rurales y caminos colectores.

• Determinación de Valores de ZR.

Los Valores de ZR están en dependencia de los Niveles de Confiabilidad y se encuentran en la siguiente tabla.

Confiabilidad R	Valor ZR	Confiabilidad R	Valor ZR
50	0.000	93	-1.476
60	-0.253	94	-1.555
70	-0.524	95	-1.645
75	-0.674	96	-1.751
80	-0.841	97	-1.881
85	-1.037	98	-2.054
90	-1.282	99	-2.327
91	-1.340	99.9	-3.090
92	-1.405	99.99	-3.750

Tabla No. 39: Valores de ZR dependiendo del Porcentaje de Confiabilidad.

Fuente: Libro de diseño de pavimentos AASTHO 1993, página 138.

El Valor ZR determinado para este caso es de -0.481.

6.3.6. Desviación Estándar (S_o).

Se define como la variación en la predicción del comportamiento de los niveles de servicio del tránsito teniendo en cuenta los errores en la predicción del mismo.

Es un valor representativo de las condiciones locales particulares, este parámetro está ligado directamente y depende del nivel de confiabilidad (R) seleccionado; en este paso deberá seleccionarse un valor S_o "Desviación Estándar Global" representativo de condiciones locales particulares, que considera posibles variaciones en el comportamiento del pavimento y en la predicción del tránsito.

La **AASHTO 1993**, recomienda adoptar valores de S_o comprendidos dentro de los siguientes intervalos:

Tabla No. 40: Valores	de Estimación de	Desviación Estándar.
-----------------------	------------------	----------------------

Condiciones de Diseño	Desviación Estándar
En sobre - capa	0.5
En construcción nueva	0.35 - 0.40
Para pavimento flexible	0.40 - 0.50

Fuente: Libro de diseño de pavimentos AASTHO 1993, página 135.

El valor de la **Desviación Estándar** determinado es de **0.45** por considerar el comportamiento de la estructura de adoquín como pavimento flexible.

6.3.7. Módulo de Resiliencia (MR).

Es la propiedad utilizada para caracterizar el suelo de la fundación del camino y otras capas. Dependiendo del material en estudio, algunos de los factores más importantes son: parámetros de compactación (peso volumétrico y contenido de agua), método de compactación, número de aplicación de carga, magnitud del esfuerza, tipo y contenido estabilizador, tipo y contenido de modificadores, temperatura, etc.

La capacidad del suelo se mide mediante los ensayes de CBR y Módulo de Resiliencia, dependiendo de los equipos. El CBR es un ensayo de carácter estático y puede realizarse tanto en el sitio como en el laboratorio, el Módulo de Resiliencia es una prueba de carácter dinámica y de esfuerzo triaxial de carga repetitiva que solo se realiza en condiciones ideales.

Si no se cuentan con equipos necesarios para determinar los Módulos de Resiliencia, se hace uso de los valores del CBR, tomando las siguientes consideraciones:

Tabla No. 41: Ecuaciones de Correlación.

Valores de CBR	Consideración
CBR < 10%	MR = 1500 * CBR
CBR > 20%	MR = 4326 * Ln(CBR) + 241

Fuente: Manual de Diseño de Pavimentos AASHTO 93, pág. 92.

Determinación del Módulo de Resiliencia.

Ecuación No. 21

$$MR = 1500 * CBR$$

 $MR = 1500 * 8.5$
 $MR = 12,750 psi$

El Módulo de Resiliencia de nuestro proyecto con un CBR de 8.5% es de 12,750 psi.

6.3.8. Coeficientes del Paquete Estructural.

Son factores estructurales que involucran las características físicas y propiedades de los diferentes materiales, para servir como componente estructural del pavimento.

Los coeficientes estructurales de capa son requeridos para el diseño estructural normal de los pavimentos, lo que permite convertir los espesores reales a los números estructurales (SN), siendo cada coeficiente una medida de la capacidad relativa de cada material para funcionar como parte de la estructura del pavimento.

Los coeficientes estructurales están representados con la siguiente simbología:

- a_1 : para la carpeta de rodamiento.
- a_2 : para la base.

Para la capa de adoquín, el valor del coeficiente $a_1 = 0.45$ fue tomado del Manual Centroamericano para Diseño de Pavimentos, capitulo 7, página 107. Cálculo de Espesores, Método AASHTO.

Para la capa de base estabilizada con cemento, el valor del coeficiente $a_2 = 0.135$ se determinó de acuerdo a la línea trazada en el nomograma con la resistencia última a la compresión en un tiempo de 7 días saturado de 19.35kg/cm2 equivalente a 275.25 psi. (Ver Anexos, Figura No. 69, Página XLII).

6.3.9. Cálculo de Número Estructural (SN).

El Número Estructural (SN) es la capacidad de la estructura para soportar las cargas bajo las condiciones de diseño. El diseño con este modelo se basa primeramente en identificar un SN para el pavimento que pueda soportar el nivel de carga solicitado.

La fórmula general que relaciona el Número estructural con los Espesores de las Capas es la siguiente:

Ecuación No. 22

$$SN = a_1 * m_1 * D_1 + a_2 * m_2 * D_2 + a_3 * m_3 * D_3$$

Donde:

 a_1, a_2, a_3 = Coeficiente Estructural de las Capas (1/pulg).

 D_1, D_2, D_3 = Espesores de Capas (pulg).

 m_1, m_2, m_3 = Coeficiente de Drenaje de Capa Granular.

Esta ecuación no tiene una única solución, hay prácticamente un infinito número de combinaciones de espesores que la pueden satisfacer.

Para el cálculo del SN se utilizan los siguientes valores obtenidos anteriormente:

Factores	Valores Utilizados
Serviacibilidad (pO)	4.2
Serviciabilidad (pt)	2.0
Pérdidas de Serviciabilidad (ΔPSI)	2.2
ESAL´s	1,176,572.93
Confiabilidad	80%
Valor Desviador (ZR)	-0.481
Desviación Estándar (So)	0.45
CBR	8.5%
Módulo de Resilencia (MR) Psi	12,750

Tabla No.42: Valores Utilizados para el cálculo del SN.

Fuente: Elaboración Propia.

Para la determinación del SN, se utilizó el nomograma proyectando líneas hacia los ejes verticales guías, con los valores de la Confiabilidad, Desviación Estándar, ESAL's de Diseño, Módulo de Resiliencia y la Pérdida de Serviciabilidad dando como resultado el valor para el **SN = 2.70.** (Ver Anexos, Figura No. 70, Página XLIII).

6.3.9. Cálculo de Espesores.

Esta metodología se basa en el concepto de que las capas granulares deben estar protegidas de tensiones verticales excesivas que les producirán deformaciones permanentes. El proceso de detalla en la siguiente figura.

Figura No. 6: Capas Estructurales de Diseño según la Guía para Diseños de Pavimentos AASHTO 1993.

Fuente: Guía para Diseños de Pavimentos AASHTO 1993.

El método destinado a dar espesores de capas que puedan ser construidas y protegidas de deformaciones permanentes por las capas superiores más resistentes, se denomina "Diseño con Verificación por Capas".

Para calcular el espesor de la base estabilizada con cemento se utiliza la siguiente ecuación tomada de la Guía para Diseño de Pavimentos AASHTO 1993.

Ecuación No. 23

$$SN = a_1 * D_1 + a_2 * D_2$$

Datos:

SN = Número Estructural = 2.70

 a_1 = Coeficiente de Carpeta de Rodamiento (Adoquín) = 0.45

 a_2 = Coeficiente de Base Estabilizada con Cemento = 0.135

 D_1 = Espesor de Adoquín = 4 pulg.

 D_2 = Espesor de la Base Estabilizada con Cemento =

Introduciendo valores en la Ecuación No. 5 tenemos como resultado:

$$2.70 = 0.45 * 4pulg + 0.135D_2$$
$$D_2 = \frac{2.70 - (0.45 * 4pulg)}{0.135}$$

$$D_2 = 6.66 \ pulg \approx 7 \ pulg = 18 \ cm$$

Verificación de los Resultados Obtenidos.

- El valor del SN se comprobó haciendo uso del programa Ecuación AASHTO 1993 (EqAASHTO93) Versión 2.0, dando como resultado 2.64, y el valor requerido es de 2.70 los cual significa que está correcto. (Ver Anexos, Figura No. 71 Página XLIV).
- Los espesores mínimos sugeridos por la Guía de Diseño de Pavimentos AASHTO 93 se presentan en la siguiente tabla.

 Tabla No. 43: Espesores Mínimos Sugeridos Para Capas de Concreto

 Asfáltico y Base en Función del Tránsito.

Número de ESAL´s	Concreto Asfáltico	Base Granular
Menos de 50,000	2.5 cm	10 cm
50,000 - 15,000	5.0 cm	10 cm
150,000 - 500,000	6.5 cm	10 cm
500,000 - 2,000,000	7.5 cm	15 cm
2,000,000 - 7,000,000	9.0 cm	15 cm
Más de 7,000,000	10.0 cm	15 cm

Fuente: Guía de Diseño de Pavimentos AASHTO 1993, Capítulo 3, pág. 46.

El resultado del espesor de la **Base = 18 cm** cumpliendo con el espesor mínimo sugerido para base granular por la AASHTO 1993.

- Capa de Rodamiento (Adoquín) = 4" (10 centímetros).
- Capa de Arena
 = 2" (5 centímetros).
- ➢ Base = 7" (18 centímetros).

Figura No. 7: Estructura del Pavimento.

Fuente: Elaboración Propia.

CONCLUSIONES.

- En el estudio topográfico se obtuvieron las coordenas de 1,411 puntos sobre el tramo de carretera, éstos fueron procesados en el software AutoCAD Civil 3D 2018, obteniendo así el mapa de curvas de nivel, que ayudan a conocer el tipo de relieve de la vía existente.
- Mediante sondeos manuales realizados en el estudio geotécnico, se logró determinar en laboratorio 4 tipos de suelos existentes los cuales son: A 7, A 6, A 4, A 2, siendo el más predominante el Tipo A 4, los cuales se deberán homogenizar y compactar al 95%, para ser usado como subrasante en la carretera.
- El banco de material a utilizar será el Banco No. 2 el cual presenta las siguientes características: CBR = 69%, Límite Líquido = 23, Índice Plástico = 5%; como este banco no cumplen con el mínimo establecido por la NIC 2000, se procedió a estabilizar el material con 6% de cemento, presentando así una resistencia a la compresión de 19.35 kg/cm2 a los 7 días, superando la resistencia mínima requerida por la NIC 2000 que es 18.36kg/cm2 con una cantidad de bolsas de cemento por cada metro cúbico de 1.67 ≈ 2 bolsas.
- El estudio de tránsito refleja que sobre el tramo circulan distintos tipos de vehículos siendo las motos con un 64.09% las de mayor frecuencia. Considerando una tasa de crecimiento del 6.86%, el tránsito que circulará para un periodo de diseño de 20 años es de 9, 564,048 vehículos y el ESAL's de diseño es de 1, 176,572.93 ejes equivalentes por carril de diseño.

- Aplicando el software AutoCAD Civil 3D, se diseñó la geometría de la carretera, se trazaron 21 curvas horizontales (16 circulares simples y 5 con espiral), 10 curvas verticales (5 en cresta y 5 en columpio). Se calcularon los volúmenes de movimientos de tierra resultando un volumen de corte de 13,608.77 metros cúbicos, un volumen de relleno de 10,541.06 metros cúbicos, un volumen de material sobrante será de 3,067.71 metros cubico.
- El diseño de la estructura de pavimento se realizó por el Método AASHTO 1993, cumpliendo con los espesores mínimos establecidos por la norma, obteniendo así los siguientes espesores: 4 pulgadas para la carpeta de rodamiento (Adoquín), 2 pulgadas para la cama de arena y 7 pulgadas para la base; por tanto, se tiene una estructura de 13 pulgadas.

RECOMENDACIONES.

- Establecer medidas de control (buena señalización, desvíos, personal que oriente la circulación vehicular) con el objeto que vehículos fuera de diseño (que exceden el límite de carga) transiten y provoquen daño prematuro de la vía.
- Cumplir con las especificaciones técnicas propuestas para el mejoramiento del material de banco al momento de ser colocados.
- Para garantizar el buen funcionamiento y duración de vida útil de la carpeta y estructura de pavimento, se deben construir un sistema de drenaje pluvial además de realizar mantenimientos periódicos a la vía.
- Realizar pruebas de resistencia a los adoquines, para comprobar que cumple las especificaciones técnicas propuestas en el presente documento.
- Garantizar que los materiales a utilizarse sean adquiridos en fábricas certificadas, como una forma de asegurarse de que cumplan con la calidad requerida.

BIBLIOGRAFÍA.

- GUIA DE LABORATORIOS DE MECANICA DE SUELOS, UNI-FTC.
- ESPECIFICACIONES GENERALES PARA LA CONSTRUCCIÓN DE CAMINOS, CALLES Y PUENTES NIC-2000, ABRIL 2002.
- ANUARIO ESTADÍSTICO INIDE (2012-2018).
- PRINCIPALES INDICADORES MACROECONÓMICOS. BCN (2018)
- ANUARIO DE AFORO DE TRAFICO, MTI 2012-2018
- RED VIAL DE NICARAGUA, MTI (2018)
- MANUAL PARA EL DISEÑO GEOMÉTRICO VIAL CENTROAMERICANO (SIECA) - 2004.
- MANUAL CENTROAMERICANO PARA DISEÑO DE PAVIMENTOS PARA CARRETERAS, SEGUNDA EDICIÓN 2002.
- GUÍA PARA DISEÑOS DE PAVIMENTOS (AASHTO-93).

ANEXOS

Figura No. 8: Estación total Sokkia CX 55 Utilizado en el Levantamiento Topográfico.

Fuente: Elaboración propia.

Figura No. 9: Garmin etrex 10 Utilizado en el Levantamiento Topográfico.

Fuente: Elaboración propia.

Figura No. 10: Levantamiento Topográfico.

Fuente: Elaboración propia.

Figura No. 11: Representación Gráfica del Tamaño de las Partículas de un Suelo.

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 4: Análisis Granulométrico de los Suelos, Página No. 40.

Alternativa N° 1		Alterna	Alternativa N° 2		Alternativa N° 3	
3"	75.00 mm	3"	75.00 mm	3"	75.00 mm	
2"	50.00 mm	2"	50.00 mm	2"	50.00 mm	
11/2"	37.50 mm	11/2"	37.50 mm	11/2"	37.50 mm	
1"	25.00 mm	1"	25.00 mm	1"	25.00 mm	
3/4"	19.00 mm	3/4"	19.00 mm	3/4"	19.00 mm	
3/8"	9.500 mm	3/8"	9.500 mm	3/8"	9.500 mm	
No. 4	4.750 mm	No. 4	4.750 mm	No. 4	4.750 mm	
No. 10	2.00 mm	No. 8	2.360 mm	No. 8	2.360 mm	
No. 20	0.850 mm	No. 10	2.00 mm	No. 10	2.00 mm	
No. 40	0.425 mm	No. 16	1.180 mm	No. 16	1.180 mm	
No. 60	0.250 mm	No. 30	0.600 mm	No. 40	0.425 mm	
No. 140	0.106 mm	No. 50	0.300 mm	No. 80	0.180 mm	
No. 200	0.075 mm	No. 100	0.150 mm	No. 100	0.150 mm	
		No. 200	0.075 mm	No. 200	0.075 mm	
Tapa y fondo	Tapa y fondo	Tapa y fondo	Tapa y fondo	Tapa y fondo	Tapa y fondo	

Tabla No.44: Serie d	de Tamices y	/ Tamaños de sus	Aberturas.
		/	

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 4: Análisis Granulométrico de los Suelos, Página No. 41.

Figura No. 12: Aparato de Arturo Casa Grande, Incluyendo la Solera Plana y el Ranurador Trapezoidal.

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 5: Determinación del Límite Líquido, Límite Plástico y el Índice de Plasticidad de los Suelos, Página No. 51.

Ν	k
20	0.973
21	0.979
22	0.985
23	0.99
24	0.995
25	1
26	1.005
27	1.009
28	1.014
29	1.018
30	1.022

Tabla No. 45: Factores para la Obtención del Limite Liquid	Tabla N	No. 45: Fac	tores para l	a Obtención	del Límite Li	íquido.
--	---------	-------------	--------------	-------------	---------------	---------

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 5: Determinación del Límite Líquido, Límite Plástico y el Índice de Plasticidad de los Suelos, Página No. 56.

Clasificación General- Material Granular (35% o menos del total que pasa la malla No. 200)								
Grupo de Clasificaón	A1		42		A-2			
	A-1-a	A-1-b	A3	A-2-4	A-2-5	A-2-6	A-2-7	
Análisis de tamices								
(porcentaje que pasa)								
No. 10	50 máx							
No. 40	30 máx	50 máx	51 min					
No. 200	15 máx	25 máx	10 máx	35 máx	35 máx	35 máx	35 máx	
Caracteristica de la fracción que pasa No. 40								
Límite Líquido				40 máx	41 min	40 máx	41 min	
Indíce de Plasticidad	6	6 máx		10 máx	10 máx	11 min	11 min	
Tipos usuales de materiales	Fragmentos pétreos			1000				
que consta	grava y arena grava y arena			lella				
Valoración general del sub grupo	Exelente a bueno							

Tabla No. 46: Clasificación de suelos Método AASHTO (Material Granular).

Fuente: Principles of Goetechnical Engineering Braja M. Das, 1998.

Tabla No. 47: Clasificación de Suelos Método AASHTO (Material Limo-Arcilloso).

Clasificación General- Material Limo - Arcilloso (más del 35% del total que pasa la malla No. 200)						
				Α	A-7	
Grupo de Clasificaon	A-4	A-5	A-6	A-7-5 (a)	A-7-6 (b)	
Análisis de tamices						
(porcentaje que pasa)						
No. 10						
No. 40						
No. 200	36 min 36 min 36 min 36 min 36		36 min			
Caracteristica de la fracción que pasa No. 40						
Límite Líquido	40 máx	41 min	40 máx	41 min	41 min	
Indíce de Plasticidad	10 máx	10 máx	11 min	11 min	11 min	
Tipos usuales de materiales que consta	Suelos limosos Suelos arcillosos					
Valoración general Regular a Pobre del sub grupo						
(a) Para A - 7 - 5, IP < LL -30						
(B) Para A - 7 - 6, IP > LL -30						

Fuente: Principles of Goetechnical Engineering Braja M. Das, 1998.

Tabla No. 48: Especificaciones para el ensaye Proctor Standard (basadas enla norma 698-91 de la ASTM).

Foresificaciones	Metodo				
Especificaciones	Α	В	С	D	
Diámetro del Molde (cm)	10.16	15.24	10.16	15.24	
Volumen del Molde (cm³)	943.3	2124	943.3	2124	
Peso del Martillo o Pisón (Kg)	2.5	2.5	2.5	2.5	
Altura de Caida del Martillo (cm)	30.48	30.48	30.48	30.48	
Número de Golpes del Pisón por cada capa	25	56	25	56	
Número de Capas de Compactación	3	3	3	3	
Energía de Compactación (Kg-cm/cm ³)	6.06	6.03	6.06	6.03	

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 6: Ensaye de Compactación de Suelos "Método Próctor Standard", Página No. 63.

Tabla No. 4	9: Peso de	la Muestra	según el	Método	Seleccionado.
-------------	------------	------------	----------	--------	---------------

Metodo	Peso de la Muestra
А	3.0 Kgs
В	7.0 Kgs
С	5.0 Kgs
D	12.0 Kgs

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 6: Ensaye de Compactación de Suelos "Método Próctor Standard", Página No. 63.

Tabla No. 50: Valores de Carga Unitaria Patrón.

	Penetración		Esfuerzo Unitario ´Patrón				
Milímetros (mm)	Centímetros (cm)	Pulgadas (pulg)	Kg/cm²	Мра	PSI		
2.5	0.25	0.1	70.31	6.9	1,000		
5	0.5	0.2	105.476	10.3	1,500		
7.5	0.75	0.3	133.58	13	1,900		
10	0.1	0.4	131.71	16	2,300		
12.7	1.27	0.5	182.8	18	2,600		

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 9: Ensaye Relación de Soporte de California (CBR), Página No. 104.

Máximo valor de CBR	Capacidad de carga mínima					
medible	Lb	KN				
20	2500	11.2				
50	5000	22.3				
>50	10000	44.5				

Tabla No. 51: Capacidad Mínima de Carga.

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 9: Ensaye Relación de Soporte de California (CBR), Página No. 107.

Tabla No. 52: Niveles de Penetración.

Locturas	Penetraciones					
Lecturas	Milimetros	Pulgadas				
Primera	0.635	0.025				
Segunda	1.27	0.05				
Tercera	2.54	0.1				
Cuarta	3.81	0.15				
Quinta	5.08	0.2				
Sexta	7.62	0.3				
Septima	10.16	0.4				
Octava	12.7	0.5				

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 9: Ensaye Relación de Soporte de California (CBR), Página No. 111.

Tabla No. 53: Clasificación y Uso del Suelo el Valor del CBR.

CBR	Clasificación cualitativa del suelo	Uso
2.0 - 5.0	Muy mala	Subrasante
5.0 - 8.0	Mala	Subrasante
8.0 - 20	Regular a buena	Subrasante
20 - 30	Excelente	Subrasante
30 - 60	Buena	subbase
60 - 80	Buena	Base
80 - 100	Excelente	Base

Fuente: Guía de Laboratorio de Mecánica de Suelos, Práctica No. 9: Ensaye Relación de Soporte de California (CBR), Página No. 114.

Estación	Sondoo	Muestre	Profund					% qu	e pasa	a por T	Famíz						Clasificación	Clasificación				Descrinción del
Kms	No.	No.	mts	Banda	2"	1 1/2"	1"	3/4"	1/2"	3/8"	No. 4	No. 10	No. 40	No. 200	LL %	IP %	AAS.H.T.O	S.U.C.S	G	S	F	Material
0+200	1	1	1.50	Central	100	100	100	100	100	98	88	76	56	37	29	8	A - 4(2)	SM	12	51	37	Arena Limosa de Baja Plasticidad
0+400	2	1	1.50	Izquierda	100	100	100	99	97	94	88	82	71	55	28	6	A - 4(5)	ML	12	33	55	Limo Arenoso de Baja Plasticidad
0+600	3	1	1.50	Derecha	100	100	100	100	100	100	100	98	90	75	42	21	A - 7 - 6(21)	ML	0	25	75	Limo Arcilloso de Alta Plasticidad
0+800	4	1	1.50	Central	100	100	100	100	100	100	100	99	89	71	40	17	A - 6(17)	ML	0	29	71	Limo Arcilloso de Alta Plasticidad
1+000	5	1	1.50	Izquierda	100	100	100	100	98	95	84	73	57	36	24	1	A - 4(0)	SM	16	48	36	Arena Limosa
1+200	6	1	1.50	Derecha	100	100	100	100	100	100	100	98	89	69	30	13	A - 6(12)	ML	0	31	69	Limo Arcilloso de Baja Plasticidad
1+400	7	1	1.50	Central	100	100	100	100	100	100	100	99	88	63	29	8	A - 4(8)	ML	0	37	63	Limo Arenoso de Baja Plasticidad
1+600	8	1	1.50	Izquierda	100	100	99	99	94	91	85	79	61	33	25	9	A - 2 - 4(1)	GM	14	53	33	Grava con Arena Limosa
1+800	9	1	1.50	Derecha	100	100	100	100	100	99	97	94	87	80	35	12	A - 6(16)	ML	3	17	80	Limo Arcilloso de Baja Plasticidad
2+000	10	1	1.50	Central	100	100	99	95	87	83	69	62	46	38	29	7	A - 4(2)	GM	31	31	38	Grava con Arena Limosa
2+200	11	1	1.50	Izquierda	100	100	100	100	100	99	86	78	58	44	32	12	A - 6(5)	SC	14	42	44	Arena Arcillosa de Baja Plasticidad
2+400	12	1	1.50	Derecha	100	100	93	83	67	61	48	39	28	21	26	7	A - 2 - 4(0)	GM	52	27	21	Grava con Arena Limosa
2+600	13	1	1.50	Central	100	100	99	96	90	86	64	51	33	24	34	16	A - 2 - 6(0)	GM	36	40	24	Grava con Arena Limosa

Tabla No. 54: Resultados de Estudio de Suelo.

Fuente: Elaboración Propia.

Estación	0+200	0+400	0+600	0+800	1+000	1+200	1+400	1+600	1+800	2+000	2+200	2+400	2+600
Profundiad (m)	S 1	S2	S 3	S 4	S5	S 6	S 7	S 8	S9	S10	S11	S12	S13
0.10													
0.20													
0.30													
0.40													
0.50													
0.60													
0.70													
0.80													
0.90													
1.00	A - 1(2)		A-7-	A - 6(17)		A - 6(12)	۸ - ۱/۹	A - 2 - 1(1)		A - 1(2)			A - 2 - 6(0)
1.10	A-4(2)	A - 4(5)	6(21)		A - 4(0)		A-4(0)	A-2-4(1)	A - 6(16)	A-4(2)	A - 6(5)	A - 2 - 4(0)	A-2-0(0)
1.20									A-0(10)				
1.30													
1.40													
1.50													

Tabla No. 55: Estratigrafía del Suelo.

Fuente: Elaboración Propia.

Tabla No. 56: Ensayes a la Compresión de Suelo-cemento.

1	I.C.C.	221
ING	ENIEROS CONSUL	TORES SA

INGENIEROS CONSULTORES CENTROAMERICANOS S.A.

Laboratorio de Suelos y Materiales

Código de Info	rme:				Fecha de Ens	ayo:	
Ing. C. de Calio	dad:				Técnico de lat	poratorio:	
Limpiar Dato	s			Mostrar Panel	de Navegación	II	a Menú
	Propo	rcionamiento	de mezclas de	<u>e suelo-cemen</u>	to (ACI-230.	.1R)	
3		Desifiers	ián de meses de	meterial name			h e vete vie
V. Molde, cm ²		Dosilicad ID Dana	M Húmada			Mat Soco	Mat Húmada
Desp., g	94	ID Palla		M. Seca	numedad	Mat. Seco	
- 3/4" - No 4	-70 67	130	9 300	9 282.6	-70 6.2	y	g
Pasa No. 4	38	197	300 9	202.0	7.5		
Total	100	157	Humedad I	275.0 Ponderada %	6.7		
Total	100		Humeduu	onderddd, 70	0.7		
Seleccionar de	nsidad máxima		Seleccionar hu	medad óptima			
Densidad Seca	Máxima con Ce	emento, kg/m ³				Clasificación:	
Humedad Óptir	ma de compacta	ación, %				I.P.	
	Dosificación de	mezcla de Sue	lo - Cemento			Dosifica	r Mezcla
Contenido de o	cemento Portlar	nd, Bolsas/m ³				Limpiar datos	de dosificación
Contenido de o	cemento Portlar	nd sobre la me	zcla,%				
Contenido de o	cemento Portlar	nd sobre los ag	gregados, %				
Masa de cemei	nto Portland pa	ra 1 especímei	n, g			Caracteristica	as de cemento
Contenido de a	agua para mold	ear un especír	nen,%			Tipo	
Masa de agua	para moldear u	n especímen, e	g			Marca	
Mold	las de conceím	anas (ASTM D	1622) v Deci	stancia Cimple	na Confinad		22)
Fecha de Molde	eo de especim	11/11/2019	11/11/2019	11/11/2019			33)
Edad (días)	20	7	7	7			
Fecha de ensa	VO	18/11/2019	18/11/2019	18/11/2019			
Masa de molde	, a	10/11/2015	10/11/2019	10/11/2019			
Volumen de mo	olde cm ³						
Masa Muestra	+ Molde, g						
Masa Húmeda,	g						
Masa Seca, g	-						
Humedad,%							
ρ Seca Máxima	a, kg/m ³						
G. Compactació	ón, %						
$oldsymbol{\Phi}$ de especíme	en, mm	101.0	101.0	101.0			
Área de especi	ímen, cm²	80.1	80.1	80.1			
Cárga Máxima,	KN	9.6500	15.1500	18.1000			
Cárga Máxima,	lbf	2,169	3,406	4,069			
Cárga Máxima,	kgf	986	1,548	1,850			
R. Compresión	, Mpa	1.2	1.9	2.3			
R. Compresión	, kg/cm ²	12.3	19.3	23.1			
R. Compresión	, psi	175	275	328			

Observaciones

Fuente: Laboratorio de Suelos y Materiales ICC.

Figura No. 13: Ensaye a la Compresión de Suelo-cemento.

Fuente: Laboratorio de suelos y Materiales ICC.

Figura No. 14: Ensaye a la Compresión de Suelo-cemento.

Fuente: Laboratorio de suelos y Materiales ICC

CLASIF. VEHICULAR	TIPOS DE VEHICULOS	ESQUEMA VEHICULAR	DESCRIPCIÓN DE LA TIPOLOGÍA VEHICULAR
	MOTOCICLETAS	× * i	Incluye todos los tipos de Motocicleta tales como, Minimotos, Cuadraciclos,Moto Taxis, Etc. Este último fue modificado para que pudiera ser adaptado para el traslado de personas, se encuentran más en zonas Departamentales y Zonas Urbanas. Moviliza a 3 personas incluyendo al conductor.
	AUTOMOVILES		Se consideran todos los tipos de automóviles de cuatro y dos puertas, entre los que podemos mencionar, vehículos cope y station wagon.
VEHICULOS	JEEP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Se consideran todos los tipos de vehículos conocidos como 4*4. En diferentes tipos de marcas, tales como TOYOTA, LAND ROVER, JEEP, ETC.
DE	CAMIONETA	*	Son todos aquellos tipos de vehículos con tinas en la parte trasera, incluyendo las que transportan pasajeros y aquellas que por su diseño están diseñadas a trabajos de carga.
TAJAJERUJ	MICROBUS	-0-0 -0-0	Se consideran todos aquellos microbuses, que su capacidad es menor o igual a 14 pasajeros sentados.
	MINIBUS		Son todos aquellos con una capacidad de 15 a 30 pasajeros sentados.
	BUS		Se consideran todos los tipos de buses, para el transporte de pasejeros con una capacidad mayor de 30 personas sentadas.
	LIVIANO DE CARGA	🍆 😏 🤹	Se consideran todos aquellos vehículos, cuyo peso máximo es de 4 toneladas o menores a ellas.
	CAMIÓN DE CARGA C2 - C3	() () () () () () () () () () () () ()	Son todos aquellos carniones tipos C2 (2 Ejes) y C3 (3 Ejes), con un peso mayor de 5 toneladas. Tambien se incluyen las fugonetas de carga liviana.
VEHICULOS	CAMIÓN DE CARGA PESADA Tx-Sx<=4		Camiones de Carga Pesada, son vehículos diseñados para el transporte de mercancia liviana y pesada y son del tipo Tx-Sx<=4.
CARGA	Tx-Sx>=5		Este tipo de camiones son considerados combinaciones Tractor Camión y semi Remolque, que sea igual o mayor que 5 ejes.
	Cx-Rx<=4		Camión Combinado, son combinaciones camión remolque que sea menor o igual a 4 ejes y están clasificados como Cx-Rκ<=4
	Cx-Rx>=5		Son combinaciones iguales que las anteriores pero iguales o mayores cantidades a 5 ejes.
EQUIPO	VEHICULOS AGRICOLAS		Son vehículos provistos con llantas especiales de hule, de gran tamaño. Muchos de estos vehículos poseen arados u otros tipos de equipos, con los cuales realizar las actividades agrícolas. Existen de diferentes tipos (Tractores - Arados - Cosechadoras)
PESADO	VEHICULOS DE CONSTRUCCIÓN	00	Generalmente estos tipos de vehículos se utilizan en la construcción de obras civiles. Pueden ser de diferentes tipos, Motoniveladoras, retroexcavadoras, Recuperador de Caminos/Mezclador, Pavimentadora de Asfalto, Tractor de Cadenas, Cargador de Ruedas y Compactadoras.
OTROS	REMOLQUES Y/O TRAILERS	0-0-0	Se incluye remolques o trailers pequeños halados por cualquier clase de vehículo automotor, tambien se incluyen los halados por tracción animal (Semovientes).

Figura No. 15: Tipologia y Descripción Vehicular de Conteos de Tráfico.

Fuente: Anuario de Aforos de tráfico 2017 - MTI.

TIPO	ESQUEMAS		0						
DE VEHICULOS	DE VEHICULOS	1er. Eje	2do. Eje	3er. Eje	4to. Eje	5to. Eje	6to. Eje	Peso Máximo Total (1) Ton - Met.	
C2		5.00	10.00					15.00	
C 3		5.00	16 8.25	50 8.25				21.50	
C4		5.00	6.67	20.00 6.66	6.66			25.00	
T2-S1		5.00	9.00	9.00				23.00	
T2-S2		5.00	9.00	16 8.00	.00 8.00			30.00	
T2-S3		5.00	9.00	6.67	20.00 6.66	6.66		34.00	
T3-S1		5.00	16 8.00	00 8.00	9.00			30.00	
T3-S2		5.00	16 8.00	.00 8.00	16 8.00	16.00 8.00 8.00		37.00	
T3-S3		5.00	16 8.00	00 8.00	6.67	20.00 6.66	6.66	41.00	
C2 B2		4.50	9.00	4.0 a	4.0 a			21.50	
62-R2	· · · · · · · · · · · · · · · · · · ·	4.50	9.00	6.5 b	6.5 b			26.50	
C3 P3		5.00	16	.00	4.0 a	4.0 a		29.00	
C3-K2	0 00 0 0	5.00	8.00	8.00	6.5 b	6.5 b		34.00	
C3-R3		5.00 5.00	16 8.0 b	.00 8.0 b	4.0 a 6.5 b	5.0 a 5.0 b	5.0 a 5.0 b	35.00 37.50	

Figura No. 16: Diagrama de Cargas Permisibles.

PESOS MAXIMOS PERMISIBLES POR TIPO DE VEHICULOS

NOTA: El peso máximo permisible será el menor entre el especificado por el fabricante y el contenido en esta columna. a: Eje sencillo llanta sencilla. b: Eje sencillo llanta doble.

Fuente: Anuario de Aforos de Tráfico 2017 - MTI.

Tabla No. 57: Clasificación Funcional de las Carreteras Regionales.

TPDA	>20000		20000	-10000	10000	0-3000	3000-500		
Clasificación funcional	No.C	Superf.	No.C	Superf.	No.C	Superf.	No.C	Superf.	
AR- Autopistas Regionales	6-8	Pav.	4 - 6	Pav.					
TS- Troncales Suburbanas	4	Pav.	2 - 4	Pav.	2	Pav.			
TR- Troncales Rurales	4	Pav.	2 - 4	Pav.	2	Pav.			
CS- Colectoras Suburbanas			2 - 4	Pav.	2	Pav.	2	Pav.	
CR- Colectoras Rurales					2	Pav.	2	Pav.	

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA.

Tabla No. 58: Periodo de Diseño Según la Clasificación de la Vía.

Tipo de Carretera	Período de Diseño				
Autopistas Regionales	20-40 años				
Troncales Suburbanas	15-30 años				
Troncales Rurales					
Colectoras Suburbanas	10-20 años				
Colectoras Rurales					

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA.

Número de carriles	% ESAL en el carril de diseño		
1	1.00		
2	0.08 – 1.00		
3	0.60 – 0.80		
4	0.50 – 0.75		

Tabla No. 59: Factor Carril Según Número de Carriles.

Fuente: Libro de diseño de pavimentos AASHTO 93.

Figura No. 17: Derecho de Vía y Sección Típica de una Carretera Colectora.

Fuente: Manual centroamericano de normas para el diseño geométrico de las carreteras regionales, SIECA, 2004.

Tabla No. 60:	Dimensiones	del Vehículo	de Diseño.
---------------	-------------	--------------	------------

	Р	BUS	SU	WB-15	WB-19	WB-20
Altura	1.3(1.3)	4.1	4.1(4.1)	4.1(4.1)	4.1	4.1
Ancho	2.1(2.1)	2.6	2.6(2.6)	2.6(2.6)	2.6	2.6
Longitud	5.8(5.8)	12.1	9.1(9.2)	16.7(16.8)	21	22.5
Voladizo Trasero	1.5(1.5)	2.4	1.8(1.8)	0.6(0.6)	0.9	0.9
Distancia entre Ejes	3.4(3.4)	7.6	6.1(6.1)	6.1(6.1)	6.1	6.1
Extremos, WB1						
Distancia entre Ejes				0 1/0 2)	17.0	14.2
Extremos, WB2				9.1(9.2)	12.8	14.5

Fuente: SIECA

Tabla No. 61: Radios Mínimos de Giro de los Vehículos de Diseño en Metros.

Vehiculo - Tipo	Radio interior (m)	Radio de Diseño (m)
Automóvil, P	4.2(4.7)	7.3(7.3)
Autobús Sencillo, BUS	7.4	12.8
Camión Sencillo. SU	8.5(8.7)	12.8(12.8)
Camión Articulado, WB-15	5.8(6.0)	13.7(13.7)
Camión Articulado, WB-19	2.8	13.7
Camión Articulado, WB-20	0	13.7

Fuente: SIECA

Figura No. 18: Interfaz de AutoCAD Civil 3D 2018.

Fuente: Elaboración Propia

Figura Nº 19: Mapa Mundial de Zonas UTM - WGS 84.

Fuente: Sistema de coordenada universal transversal mercador.

Figura No. 20: Configuración de coordenada respectiva a la zona.

Fuente: Elaboración Propia.

Figura No. 21: Creación de puntos.

Fuente: Elaboración Propia.

Figura No. 22: Importación de puntos.

A	Imp	ort Points	×	
Selected Fi	les:			
File Name		Status	27 2	—
				Add files. Click here to browse for one or more files.

N.		Select	Source File						×
Look in:	🔒 DATOS TO	POGRAFICOS	~	÷	i , Q	X 🔍	<u>V</u> iews	 Tools 	-
ACCO ACCO Heatory Cocuments Favotes Favotes FTP	Nombre DATOS D PUNTOS.	¢ E LEVANTAMIENTO dwg	Diat	F 2 2	Fecha de 1 21/06/201 21/06/201	modifica 9 04:04 9 03:49	Tipo Docur Archiv	nento de t ro DWG	£
								Onen	
	File name:	DATOS DE LEVAN	AMIEN TO DE				~	gpan	
	Files of type:	All Files (".")					¥	Cancel	_

Figura No. 23: Creación de grupo de puntos.

Fuente: Elaboración Propia.

Figura No. 24: Visualización del Grupo de Puntos Importados.

Fuente: Elaboración Propia.

Figura No. 25: Creación de Grupo de Puntos.

Fuente: Elaboración Propia.

Figura No. 26: Incluir y Editar Grupo de Puntos LINEA CENTRAL.

			Active Drawing View	€
A	Point Group Properties - LINEA CENTRAL – 🗖 🗙		🖃 📄 DISEÑO SOMOTILLO-	SAN ^ 🖁 📃 📿 📿
Information Point Groups Raw D	Desc Matching Include Exclude Query Builder Overrides Point List Summary		Points	
With numbers matching:			🖃 🗇 Point Groups	\square
	Selection Set in Drawing >> Project Points in Window >>		🕒 🚱 LINEA CENTRAL	V MA
With elevations matching:			[] SOMOTILL	Properties
With names matching:			. [♣] _All Points	Edit Points
With raw descriptions matching	g: 1		- 🐵 Point Clouds	Lock Points
With full descriptions matching	g:	N N	- 🖉 Surfaces	Unlock Points
			⊕ 😳 Alignments	Export Points
			↓ Feature Lines	Delete Points
			📲 Sites	Apply Description Keys
Include all points		, ,	- 📴 Catchments	
			🕀 🎢 Pipe Networks	Сору
	Aceptar Cancelar Apply Ayuda		🖓 Pressure Netw	Show Changes
			- 🔊 Corridors	Update
			🕀 🛱 Assemblies	D.()
			Intersections	Ketresh

Fuente: Elaboración Propia.

Figura No. 27: Creación de Superficies.

		_	Ą	Cre	ate	Surface
Active Drawing View	ctor 🗸		Тур	e:		Surface layer:
📮 📄 DISEÑO SOM	IOTILLO-SAN 🔨 🖉		TIN	l surface	~	с-торо 🥩
💿 💠 Points	Provide a second se		Pr	operties		Value
🕀 🐵 Point Grou	ins			Information		
				Name		TERRENO NATURAL S-ST
📄 👘 🐵 Point Clou	ıds 🛛 👘 🖉			Description		TOPOGRAFIA DEL TERRENO
				Style		Contours 2m and 10m (Background)
Dy Sunaces	0.000			Render Material		Contours 2m and 10m (Background)
😟 🗇 🗇 Aligni	Create Surface			_		
ー.ナ Featur	Create Surface From DEM			A		Select Surface Style
Sites	Create Surface from TIN					ontours and Triangles 🗸 💽 🗸 💽
- 📴 Catch	Show Preview				-	OK Cancel Help
🐵 🎢 Pipe N	Refresh	-		Selecting OK will create a new su		
) Pressi	Encon E		Ť			OK Cancel Help

Fuente: Elaboración Propia.

Figura No. 28: Creación de Superficies.

		Create Surf	face
ype:	:	Surfa	ace layer:
TIN s	surface	✓ C-T	OPO (2000)
Pro	perties		Value
Ξ.	Information		
	Name		TERRENO NATURAL S-ST
	Description		TOPOGRAFIA DEL TERRENO
	Style		Contours and Triangles
	Render Material		Sitework.Planting.Grass.Thick
•	Selecting OK will create a new		Relect Render Material
Ŷ			OK Cancel Help

Figura No. 29: Superficie TIN Creada.

Fuente: Elaboración Propia

Figura No. 30: Propiedades de la Superficie.

Fuente: Elaboración Propia.

adori Derridori Anarysis Statistics				
Definition Options	Value	^	Definition Options	Value
Maximum angle between adjacent TIN lines	90.0000 (d)		Maximum angle between adjacent TIN lines	90.0000 (d)
Use maximum triangle length	No		Use maximum triangle length	Yes
Maximum triangle length	No		Maximum triangle length	40.000m
Convert proximity breaklines to standard	Yes		Convert proximity breaklines to standard	Yes
Allow crossing breaklines	No		Allow crossing breaklines	No
Elevation to use	Use average breakline elevation	n at intersection	Elevation to use	Use average breakline elevati
Data operations			Data operations	
			<	
Operation Type	Parameters		Operation Type	Parameters
Point Group	Name: SOMOTILLO-SANTA TERESA		→ Point Group	Name: SOMOTILLO-SANTA TERESA
			1	
			₽.	
			之	

Figura No. 31: Modificación de Propiedades de la Superficie.

Fuente: Elaboración Propia.

Figura No. 32: Superficie TIN Modificada.

Fuente: Elaboración Propia

Figura No. 33: Edición de superficie.

Fuente: Elaboración Propia.

Figura No. 34: Crear Breakline.

Fuente: Elaboración Propia.

Figura No. 35: Configuración de Estilo de Superficie.

Surface Properties - TERRENO NATURAL S-ST	- 🗆 🗙				
nformation Definition Analysis Statistics		8	Surface S	ityle - CM@2.5m Y CS@0.5r	n –
Name:		Infe	ormation Borders Contours Grid Points	Triangles Watersheds Analysis [Isplay Summary
TERRENO NATURAL S-ST		N	ame:	Created by:	Date created:
Description			CM@2.5m Y CS@0.5m	Autodesk, Inc.	22/03/2006 11:26:03
TOPOGRAFIA DEL TERRENO		D	escription:	Last modified by:	Date modified:
			CURIVAS DE NEVEL	A yeral305	22/10/2019 11:17:21
Default styles				v	
Surface style:					
Contours and Triangles 🗸 🚺					
Render Material: Effective Create New					
ByLayer Copy Current Selection					
Image: Image					
Eick from Drawing					
Object locked					
V Show tooltion					
Carow comps		_			
				Aceptar Ca	ncelar Apply
Aceptar Cancelar	Apply Ayuda				

Fuente: Elaboración Propia.

Figura No. 36: Configuración de Estilo de Curvas de Nivel.

Properties		Value	^
Base Elevation		0.000m	
Minor Interval		0.500m	
Major Interval		2.500m	
E Contour Depressio	ns		
Contour Smoothing	9		
Smooth Contours		True	
Smoothing Type		Add vertices	~
Smoothing Type		Add vertices	> [×]
Smoothing Type < Number	Major Display	Add vertices Minor Display	> ^v
Smoothing Type C Number 1	Major Display Continuous	Add vertices Minor Display Minor Display	>
Smoothing Type Number 1 B (Major Display Continuous I RA PARA ASUABIZ	Add vertices Minor Display Minor Display Minor Display Minor Display AR CURVAS DE NIVEL	>

Figura No. 37: Apagar la superficie creada.

Name:				
TERRENO NATURAL S-ST				
Description:		_		
TOPOGRAFIA DEL TERRENO				
		_		
Default styles		_		
Surface style:				
No Display	~ 	- 🖪		
Render Material:		-		
ByLayer		✓ ■		
alcontrated.				
UDject locked				

Fuente: Elaboración Propia.

Figura No. 38: Creando Polilineas

Figura No. 39: Herramienta para Crear Alineamiento.

Fuente: Elaboración Propia.

Figura No. 40: Configuración para crear Alineamiento.

Create Alignment - Layout	×	Apps BIM 360	A		Alignment	Style - Prop	oosed		
Name: ALINEAMIENTO SOMOTILLO - SANTA TERESA Type: """" Centerline Description: LINEA CENTRAL	×	O -≁ +	Information [Design]Me Wew Directon: Plan Component display: Component Type Une Curve	rkers Display Sum	Layer C-ROAD C-ROAD	Color L magenta B magenta B	Linetype LT yLayer 1.0 yLayer 1.0	Scale Linewe 000 ByLayer 000 ByLayer	III Plot Style Byblock Byblock Byblock
General Design Criteria Starting station:	0+000.00m		Arrow Line Extensions Curve Extensions Tangent Extensions Warning Symbol	9 9 9 9 9 9 9 9 9 9 9 9	C-ROAD-L C-ROAD-L C-ROAD-L 0 0	BYLAYER BY BYLAYER BY BYLAYER BY BYLAYER D BYLAYER D	yLayer 1.0 yLayer 1.0 yLayer 1.0 yLayer 1.0 ASHED2 1.0 yBlock 1.0	000 ByLayer 000 ByLayer 000 ByLayer 000 ByLayer 000 ByLayer	ByBlock ByBlock ByBlock ByBlock ByBlock ByBlock
Alignment style:	Create <u>Copy Create Copy Create Copy Create Copy Create Copy Create Copy Create Create</u>	New urrent Selection rrent Selection m Drawing				Aceptar	Cance	lar Apply	Ayuda

Fuente: Elaboración Propia.

Figura No. 41: Configuración para crear Alineamiento.

General Design Criteria	Starting station: 0+000.00m							
Starting design speed:								
70 km/h								
✓ Use criteria-based design								
✓ Use design criteria file								
C:\ProgramData\Autodesk\C	3D 2017\enu\Data\Corridor							
Default criteria:								
Property	Value							
Minimum Radius Table	AASHTO 2004 Metric eMax 4%							
Transition Length Table	2 Lane							
Attainment Method	AASHTO 2004 Crowned Roa							
Use design check set	✓ Use design check set							
ОК	Cancel Help							

Fuente: Elaboración Propia.

Figura No. 42: Herramientas para crear Alineamiento.

Figura No. 43: Visualización de una Tangente que Forma el Alineamiento horizontal.

Fuente: Elaboración Propia

Figura No. 44: Visualización Primer Curva Circular Simple Creada.

Fuente: Elaboración Propia

Fuente: Elaboración Propia

Figura No. 46: Visualización Tercer Curva Circular Simple Creada.

Figura No. 47: Visualización Cuarta Curva Circular Simple Creada.

Fuente: Elaboración Propia.

Figura No. 48: Visualización de Curva con Espiral Compuesta Creada.

Figura No. 49: Crear contador.

Add Labels	<i> </i>
Feature:	
Alignment	~
Label type:	
Single Segment	✓ IS
Line label style:	
≪ ^{P'} _□ Ninguno	v 🏹 🗖 🖂
Curve label style:	
⊘ NUEVO ESTILO DE CUR'	✓ □
Spiral label style:	
	✓ <a>Image: Image: Image:
Table Tag Numbe	ering
Reference text object prompt m	nethod:
Command Line	~
Add Close	Help

Fuente: Elaboración Propia.

Figura No. 50: Calculo de Súper elevación.

A	Calculate Superelevation - Roadway Type	×
Roadway Type Lanes Shoulder Control Attainment	Undwided Crowned O Undwided Pla Proot Method Center Baseline V	nar
	O Divided Growned with Median O Divided Planar	with Median
	< Back Next > Finish Cz	ancel Help

Fuente: Elaboración Propia.

A	Calculate Superelevation - Lanes	×
Roadway Type Lanes Shoulder Control Attainment	Type: Undivided, Crowned Pivot: Center Baseline Symmetric Roadway Number of lanes left: 1 V	
	Normal lane width: 6.000m Normal lane slope: 2.00% 1.200%	*
	< Back Next > Finish Cancel Help	

Figura No. 51: Configuración de Súper elevación.

Fuente: Elaboración Propia.

	Inside median shoulders		Outside edge s	houlders	
anes	Calculate				
noulder Control	Normal shoulder width:	1.500m	Normal sho	oulder width:	0.600m
	Normal shoulder slope:	-5.00%	Normal sho	oulder slope:	-2.00%
<u>ttainment</u>	Shoulder slope treatment:	Shoulder slope treatment: Low side: Breakover removal V		Shoulder slope treatment:	
	Low side: Breakover re			Match lane	slopes 🗸
	High side: Match lane slopes 🗸		High side:	Match lane	slopes 🗸
	Maximum shoulder rollo	ver:	Maximum	shoulder rollo	ver:
	8.00%		8.00%		
					*

Figura No. 52: Configuración de Súper elevación.

Fuente: Elaboración Propia.

Figura No. 53: Configuración de Súper elevación.

A	Calculate Superelevation - Attainment
Roadway Type Lanes Shoulder Control Attainment	Design criteria file: C:\ProgramData\Autodesk\C3D 2017\enu\Data\Corr Superelevation rate table: AASHTO 2004 Metric eMax 8% V Transition length table: 2 Lane V Attainment method: AASHTO 2004 Crowned Roadway V
	Transition formula for superelevation runoff % on tangent for tangent-curve: 66.67% % on spiral for spiral-curve: 100.00%
	Curve smoothing Image: Apply curve smoothing Curve length: 20.000m Image: A tomatically resolve overlap Image: A tomatically resolve overlap
	<pre></pre>

Create Offset Alignments	A		Alignme	ent Style - C	offsets			- • • ×
Alignment to offset from:	Information Design Marker	s Display Sum	mary					
Offsets name template: <[Parent Alignment Name(CP)]>-<[Side]>-<[Offset Distance]	View Direction:							
Station range	Plan	~						
From start To end	Component display:						_	
0+000.00m -12 2+775.22m -12	Component Type	Visible	Layer	Color	Linetype	LT Scale	Linewei	Plot Style
No. of offsets on left: No. of offsets on right:	Line	P	0	yellow	ByBlock ByBlock	1.0000	ByLayer ByLayer	ByBlock ByBlock
	Spiral	Ő	0	vellow	ByBlock	1 0000	ByLaver	ByBlock
Incremental offset on left: Incremental offset on right: 3.300m 3.300m	Arrow	9	0	BYLAYER	ByBlock	1.0000	ByLayer	ByBlock
General Widening Criteria	Line Extensions	9	0	BYLAYER	ByBlock	1.0000	ByLayer	ByBlock
Citer	Curve Extensions	9	0	BYLAYER	ByBlock	1.0000	ByLayer	ByBlock
Site:	Tangent Extensions	9	0	BYLAYER	DASHED2	1.0000	ByLayer	ByBlock
	Warning Symbol	9	0	BYLAYER	ByBlock	1.0000	ByLayer	ByBlock
Alignment style:								
Alignment layer:								
C-ROAD								
Alignment label set:								
Kabels V 💽 🗸								
OK Cancel Help				Acept	ar (Cancelar	Apply	Ayuda

Figura No. 54: Crear Sobre anchos en Curvas.

Fuente: Elaboración Propia.

Figura No. 55: Sobre anchos en Creado.

Figura No. 56: Diseño de Rasante.

Create Profile - Draw New	Create Profile - Draw New
Alignment: Description:	Alignment: CALINEAMIENTO SOMOTILLO - SANTA TERESA V C. Name: RASANTE S-ST Description:
General Design Criteria Profile style: Image: Criteria Image: Criteria Image: Criteria CROAD-PROF Image: Criteria Profile label set: Image: Criteria	General Design Criteria Use criteria-based design Use design criteria file C: \ProgramData\Autodesk\C3D 2017\enu\Data\Corridor I Default criteria: Property Value Minimum K Table AASHTO 2011 Standard
OK Cancel Help	Use design check set

Fuente: Elaboración Propia.

Figura No. 57: Barra de Herramientas de la Rasante.

Profile Layout Tools - RASANTE S-ST (3)	<u>्र</u> ४ <mark>×</mark>
₩ ▾ 🖏 🕺 छं ८ ▾ ७ ▾ 🏹 🗎 छे छे 🐺	🛧 🕫 🔳 🎼 🧏 🦓 🗸
Select a command from the layout tools	PVI based

Fuente: Elaboración Propia.

Figura No. 58: Rasante Creada.

Figura No. 59: Creación de Assambly.

A Create Assembly	×
Name: SECCIONTIPICA S-ST	IJ
Description:	_
Assembly Type:	
Other	1
Assembly style:	
🖶 Basic 🗸 🗸	1
Code set style:	
🗄 All Codes 🗸 🗸 🔽	a,
Assembly layer:	
C-ROAD-ASSM	NA
OK Cancel Help	

Fuente: Elaboración Propia.

Figura No. 60: Assambly Creado.

Figura No. 61: Corredor Creado.

Fuente: Elaboración Propia.

Figura No. 62: Creación de Superficies Top y Datum.

A				Corridor Surfaces - C	ORREDOR S-ST			×
Surfac	ces Boundaries	1						
		Add data						
		Data type:			Specify code:			5
Ľ	N (1992) - 1972	E Links		*	Datum		Y	
N	ame		Surface Style	Render Material	Add as Breakline	Overhang Correction	Description	
Ę	🖻 🍙 🔽 🔽 CC	RREDOR S-ST SUPERIOIR	CM@2.5m Y CS@0.5m 🔗	Sitework.Planting.Gravel.C 🤅	•	Top Links		
			CHORE V COOL			B. H. 17.1		
		RREDOR S-ST INFERIOR	CM@2.5m Y CS@0.5m	Sitework.Planting.Gravel.C 🥹		Bottom Links		
						Aceptar Cance	elar Apply	Ayuda

Figura No. 63: Líneas de muestreo creadas

Fuente: Elaboración Propia.

Figura No. 64: Configuración para el Cálculo de Materiales.

Ą	Select a Sample Line Group	×
Sele	ect alignment:	
⇒	ALINEAMIENTO SOMOTILLO - SA 🗸	Č,
Sele	ct sample line group:	
[=]	COJUNTO DE LINEAS DE MUEST 🗸	r.
	OK Cancel Help	

Fuente: Elaboración Propia.

Figura No. 65: Creación de Múltiples Secciones.

Ą	Create Section View - General	×
General	Select alignment: Sample line group name:	
Offset Range	Sample line: Station: 	
Section Display Options	Section view name: VISTA SST	
Data Bands Section View Tables	Description:	
	C-ROAD-SCTN-VIEW	
	Section view style:	
	< Back Next > Create Section View Cancel Help	

Figura No. 66: Configuración para Múltiples Secciones.

Data Bands Section View Tables Section View Tables Section View Tables Section View Tables Section View Tables Sectin View Tables Sectin View Tables Section View Tables Section View	General	Create Sec	tion View	- Section Dis	play Option	S set "clip to higi	hest section"
Bernards Name Draw Clip Grid Label Set Style Override Data Bands Section View Tables Image: Correct or Sectio	Onsechange	Select sections to draw:					
Section Disolary Options Data Bands Section View Tables Section View Tables Part Bands Section View Tables SubBase <tr< td=""><td>Elevation Range</td><td>Name</td><td>Draw</td><td>Clip Grid</td><td>Label Set</td><td>Style</td><td>Override</td></tr<>	Elevation Range	Name	Draw	Clip Grid	Label Set	Style	Override
Data Bands Image: Correction View Tables Image: C	Section Display Options	CORREDOR S		•	_No Labels	Existing Gr Basic	Not <not< p=""></not<>
Section Wew Tables	Data Bands		· 🔽	0	_No Labels	Existing Gr	Not
	Section View Tables	- 문급 COREE 문급 RELLENO 문급 Pavement 문급 Base - 문급 SubBase			_NO Labels	Custing Gr. Cut Mater Fill Material Pave Base SubBase	<pre> <not <="" <not="" pre=""></not></pre>

Fuente: Elaboración Propia.

Figura No. 67: Configuración para Múltiples Secciones.

A	Create Section View - Data Bands	×
<u>General</u> <u>Offset Range</u> <u>Elevation Range</u>	Select band set: The offsets Only The section view(s) include data bands. Please select the source surface(s) for the data band for units on.	
Section Display Options Data Bands Section View Tables	Let of bands Location: Bottom of section view	
	Band Type Style Suface 1 Suface 2 Band Type Style Suface 1 Suface 2 Section Data EG Bevations TERRENO NATURA CORREDOR 5-ST C	
	< Back Next > Create Section View Cancel Help	

Figura No. 68: Configuración para Múltiples Secciones.

A	Create Section View - Section View Tables
<u>General</u>	The section view(s) include volume tables. Please select volume table type(s) to draw.
Offset Range	Type: Select table style:
Elevation Range	Total Volume V 🔄 Basic V 📝 V 🔩 Add>>
Section Display Options	List of volume tables
Data Bands	De Style Material list Materials Layer Split Gap Reactivity
Section View Tables	
	()
	Position of table(s) relative to section view
	Section view anchor: Middle Right V
	Table anchor: Table layout:
	X offset: Y offset:

Fuente: Elaboración Propia.

Tabla No. 62: Reportes de Volúmenes.

Volume Report

Project: C:\Users\Ing. Noel Hernandez\Desktop\Documentos UNI\MONOGRAFIA 2019\SECCIONES TRANSVERSALES.dwg

Alignment: ALINEAMIENTO SOMOTILLO - SANTA TERESA 1 Sample Line Group: CONJUNTO DE LINEAS DE MUESTREO 1 Start Sta: 0+000.000 End Sta: 1+455.823

<u>Station</u>	<u>Cut</u> <u>Area</u> (Sg.m.)	<u>Cut</u> <u>Volume</u> (Cu.m.)	Reusable Volume (Cu.m.)	Fill <u>Area</u> (Sq.m.)	Fill <u>Volume</u> (Cu.m.)	<u>Cum.</u> <u>Cut</u> <u>Vol.</u> (Cu.m.)	<u>Cum.</u> Reusable Vol. (Cu.m.)	<u>Cum.</u> <u>Fill Vol.</u> (Cu.m.)	<u>Cum.</u> <u>Net Vol.</u> (Cu.m.)
0+000.000	1.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0+020.000	0.11	16.67	16.67	1.42	14.16	16.67	16.67	14.16	2.51
0+040.000	0.00	1.12	1.12	8.82	102.59	17.79	17.79	116.76	-98.97
0+060.000	0.00	0.00	0.00	9.66	185.00	17.79	17.79	301.76	-283.97
0+080.000	0.00	0.00	0.00	9.61	192.71	17.79	17.79	494.47	-476.68
0+100.000	0.00	0.00	0.00	8.39	180.07	17.79	17.79	674.54	-656.75
0+120.000	0.00	0.00	0.00	8.73	171.25	17.79	17.79	845.79	-828.01
0+140.000	0.00	0.00	0.00	9.34	180.75	17.79	17.79	1026.54	-1008.76
0+160.000	0.00	0.00	0.00	9.20	185.40	17.79	17.79	1211.95	-1194.16
0+180.000	0.00	0.00	0.00	8.75	179.42	17.79	17.79	1391.36	-1373.58
0+200.000	0.00	0.00	0.00	8.35	170.96	17.79	17.79	1562.32	-1544.54
0+220.000	0.00	0.00	0.00	8.00	163.50	17.79	17.79	1725.83	-1708.04
0+240.000	0.00	0.00	0.00	7.74	157.43	17.79	17.79	1883.25	-1865.47
0+260.000	0.00	0.00	0.00	7.26	150.05	17.79	17.79	2033.30	-2015.51
0+280.000	0.00	0.00	0.00	6.70	139.70	17.79	17.79	2173.00	-2155.22
0+300.000	0.00	0.00	0.00	5.17	119.12	17.79	17.79	2292.12	-2274.34
0+320.000	0.00	0.00	0.00	3.00	81.80	17.79	17.79	2373.93	-2356.14
0+340.000	0.00	0.00	0.00	1.75	47.44	17.79	17.79	2421.37	-2403.58
0+360.000	0.00	0.00	0.00	0.53	22.74	17.79	17.79	2444.11	-2426.32
0+380.000	0.05	0.51	0.51	0.04	5.69	18.29	18.29	2449.80	-2431.50
0+400.000	0.09	1.42	1.42	0.00	0.43	19.71	19.71	2450.22	-2430.51
0+420.000	0.51	6.05	6.05	0.00	0.00	25.76	25.76	2450.22	-2424.46
0+440.000	1.60	21.09	21.09	0.00	0.00	46.85	46.85	2450.22	-2403.37
0+460.000	2.83	44.12	44.12	0.00	0.00	90.97	90.97	2450.22	-2359.25
0+480.000	3.81	66.29	66.29	0.00	0.00	157.26	157.26	2450.22	-2292.96
0+500.000	5.22	90.23	90.23	0.00	0.00	247.49	247.49	2450.22	-2202.73
0+520.000	7.17	123.75	123.75	0.00	0.00	371.25	371.25	2450.22	-2078.98
0+540.000	8.41	155.70	155.70	0.00	0.00	526.95	526.95	2450.22	-1923.27
0+560.000	9.72	181.27	181.27	0.00	0.00	708.22	708.22	2450.22	-1742.00

		-	-	-	-	-	-	-	-
0+600.000	11.09	218.34	218.34	0.00	0.00	1131.97	1131.97	2450.22	-1318.26
0+620.000	11.28	222.56	222.56	0.00	0.00	1354.53	1354.53	2450.22	-1095.70
0+640.000	10.86	220.65	220.65	0.00	0.00	1575.18	1575.18	2450.22	-875.05
0+660.000	9.25	200.71	200.71	0.00	0.00	1775.89	1775.89	2450.22	-674.33
0+680.000	8.56	178.08	178.08	0.00	0.00	1953.97	1953.97	2450.22	-496.25
0+700.000	8.51	170.72	170.72	0.00	0.00	2124.69	2124.69	2450.22	-325.53
0+720.000	5.95	144.65	144.65	0.00	0.00	2269.34	2269.34	2450.22	-180.89
0+740.000	3.48	94.30	94.30	0.00	0.00	2363.64	2363.64	2450.22	-86.59
0+760.000	2.49	59.58	59.58	0.00	0.00	2423.21	2423.21	2450.22	-27.01
0+780.000	1.61	40.84	40.84	0.05	0.52	2464.05	2464.05	2450.74	13.31
0+800.000	0.74	23.36	23.36	0.57	6.25	2487.41	2487.41	2456.99	30.42
0+820.000	0.30	10.36	10.36	0.78	13.66	2497.78	2497.78	2470.65	27.13
0+840.000	0.03	3.34	3.34	0.93	17.27	2501.12	2501.12	2487.92	13.20
0+860.000	0.01	0.49	0.49	1.55	25.00	2501.60	2501.60	2512.92	-11.32
0+880.000	0.00	0.15	0.15	2.21	38.01	2501.75	2501.75	2550.93	-49.18
0+900.000	0.00	0.00	0.00	3.79	60.51	2501.76	2501.76	2611.44	-109.68
0+920.000	0.00	0.00	0.00	6.60	104.66	2501.76	2501.76	2716.10	-214.34
0+940.000	0.00	0.00	0.00	5.94	126.04	2501.76	2501.76	2842.14	-340.38
0+960.000	0.00	0.00	0.00	6.36	123.17	2501.76	2501.76	2965.31	-463.55
0+980.000	0.00	0.00	0.00	5.44	118.13	2501.76	2501.76	3083.44	-581.68
1+000.000	0.00	0.00	0.00	4.91	103.56	2501.76	2501.76	3187.00	-685.24
1+020.000	0.00	0.00	0.00	3.93	88.49	2501.76	2501.76	3275.49	-773.73
1+040.000	0.02	0.16	0.16	1.34	52.95	2501.92	2501.92	3328.45	-826.53
1+060.000	0.70	7.32	7.32	0.30	16.55	2509.24	2509.24	3345.00	-835.76
1+080.000	1.31	20.42	20.42	0.00	3.13	2529.65	2529.65	3348.13	-818.48
1+100.000	0.72	20.35	20.35	0.00	0.07	2550.00	2550.00	3348.20	-798.20
1+120.000	1.97	26.50	26.50	0.00	0.00	2576.50	2576.50	3348.20	-771.70
1+140.000	3.04	49.50	49.50	0.00	0.00	2626.00	2626.00	3348.20	-722.21
1+160.000	1.11	41.07	41.07	0.00	0.00	2667.07	2667.07	3348.20	-681.13
1+180.000	0.06	11.54	11.54	0.04	0.40	2678.61	2678.61	3348.60	-669.99
1+200.000	0.00	0.56	0.56	1.19	12.39	2679.17	2679.17	3360.99	-681.82
1+220.000	0.00	0.00	0.00	3.08	42.78	2679.17	2679.17	3403.77	-724.60
1+240.000	0.00	0.00	0.00	5.40	84.87	2679.17	2679.17	3488.64	-809.47
1+260.000	0.00	0.00	0.00	8.26	136.60	2679.17	2679.17	3625.24	-946.07
1+280.000	0.00	0.00	0.00	9.94	181.98	2679.17	2679.17	3807.22	-1128.05
1+300.000	0.00	0.05	0.05	8.79	188.68	2679.23	2679.23	3995.90	-1316.67
1+320.000	0.76	7.41	7.41	7.49	164.39	2686.64	2686.64	4160.29	-1473.65
1+340.000	0.39	11.11	11.11	8.18	158.11	2697.75	2697.75	4318.40	-1620.65
1+360.000	0.00	3.76	3.76	8.94	172.10	2701.51	2701.51	4490.50	-1788.99
1+380.000	0.00	0.00	0.00	9.43	184.38	2701.51	2701.51	4674.88	-1973.37

Volume Report

Project: C:\Users\Ing. Noel Hernandez\Desktop\Documentos UNI\MONOGRAFIA 2019\SECCIONES TRANSVERSALES.dwg

Alignment: ALINEAMIENTO SOMOTILLO - SANTA TERESA 2 Sample Line Group: CONJUNTO DE LINEAS DE MUESTREO 2 Start Sta: 1+420.000 End Sta: 2+779.062

<u>Station</u>	<u>Cut</u> <u>Area</u> (Sq.m.)	<u>Cut</u> Volume (Cu.m.)	<u>Reusable</u> <u>Volume</u> <u>(Cu.m.)</u>	<u>Fill</u> <u>Area</u> (Sq.m.)	<u>Fill</u> <u>Volume</u> (Cu.m.)	<u>Cum.</u> Cut Vol. (Cu.m.)	<u>Cum.</u> <u>Reusable</u> <u>Vol.</u> <u>(Cu.m.)</u>	<u>Cum.</u> Fill Vol. (Cu.m.)	<u>Cum.</u> Net Vol. (Cu.m.)
1+420.000	0.00	0.00	0.00	3.98	0.00	0.00	0.00	0.00	0.00
1+440.000	0.00	0.00	0.00	10.69	146.73	0.00	0.00	146.73	-146.73
1+460.000	0.00	0.00	0.00	8.11	188.03	0.00	0.00	334.75	-334.75
1+480.000	0.87	8.77	8.77	2.61	107.13	8.77	8.77	441.89	-433.12
1+500.000	1.47	23.52	23.52	0.00	26.08	32.29	32.29	467.97	-435.68
1+520.000	6.13	76.09	76.09	0.00	0.00	108.37	108.37	467.97	-359.60
1+540.000	9.28	154.16	154.16	0.00	0.00	262.53	262.53	467.97	-205.44
1+560.000	11.51	207.92	207.92	0.00	0.00	470.45	470.45	467.97	2.48
1+580.000	16.94	281.77	281.77	0.00	0.00	752.22	752.22	467.97	284.25
1+600.000	23.36	398.84	398.84	0.00	0.00	1151.06	1151.06	467.97	683.09
1+620.000	26.49	494.38	494.38	0.00	0.00	1645.43	1645.43	467.97	1177.46
1+640.000	17.49	439.80	439.80	0.00	0.00	2085.23	2085.23	467.97	1617.26
1+660.000	17.04	345.70	345.70	0.00	0.00	2430.93	2430.93	467.97	1962.96
1+680.000	9.33	262.14	262.14	0.00	0.00	2693.08	2693.08	467.97	2225.11
1+700.000	0.00	92.19	92.19	5.61	56.85	2785.27	2785.27	524.82	2260.45
1+720.000	0.00	0.00	0.00	22.72	283.89	2785.27	2785.27	808.71	1976.56
1+740.000	0.00	0.00	0.00	23.88	465.94	2785.27	2785.27	1274.64	1510.63
1+760.000	0.00	0.00	0.00	21.77	456.53	2785.27	2785.27	1731.17	1054.10
1+780.000	0.00	0.00	0.00	16.23	380.02	2785.27	2785.27	2111.19	674.08
1+800.000	0.00	0.00	0.00	9.24	254.66	2785.27	2785.27	2365.85	419.42
1+820.000	0.00	0.00	0.00	3.41	126.44	2785.27	2785.27	2492.29	292.97
1+840.000	1.04	10.41	10.41	0.90	43.10	2795.68	2795.68	2535.39	260.29
1+860.000	0.09	11.31	11.31	0.90	18.00	2806.99	2806.99	2553.40	253.59
1+880.000	0.12	2.12	2.12	2.65	35.43	2809.11	2809.11	2588.83	220.28
1+900.000	0.00	1.30	1.30	4.30	68.96	2810.41	2810.41	2657.78	152.63
1+920.000	0.01	0.15	0.15	8.87	130.76	2810.56	2810.56	2788.55	22.01
1+940.000	0.00	0.12	0.12	19.52	284.14	2810.68	2810.68	3072.68	-262.00
1+960.000	0.00	0.00	0.00	24.59	441.07	2810.68	2810.68	3513.75	-703.07
1+980.000	0.03	0.32	0.32	14.86	395.65	2810.99	2810.99	3909.40	-1098.41

2+020.000	0.00	21.43	21.43	13.30	229.05	2854.16	2854.16	4385.65	-1531.48
2+040.000	0.00	0.00	0.00	6.69	199.78	2854.16	2854.16	4585.43	-1731.26
2+060.000	0.00	0.00	0.00	3.47	101.07	2854.16	2854.16	4686.50	-1832.34
2+080.000	0.75	7.52	7.52	0.00	34.72	2861.69	2861.69	4721.22	-1859.53
2+100.000	3.46	42.08	42.08	0.00	0.00	2903.77	2903.77	4721.22	-1817.45
2+120.000	6.01	94.70	94.70	0.00	0.00	2998.47	2998.47	4721.22	-1722.75
2+140.000	7.88	137.35	137.35	0.00	0.00	3135.82	3135.82	4721.22	-1585.40
2+160.000	9.21	168.00	168.00	0.00	0.00	3303.82	3303.82	4721.22	-1417.40
2+180.000	11.86	209.12	209.12	0.00	0.00	3512.94	3512.94	4721.22	-1208.28
2+200.000	13.73	255.92	255.92	0.00	0.00	3768.86	3768.86	4721.22	-952.36
2+220.000	19.05	327.58	327.58	0.00	0.00	4096.43	4096.43	4721.22	-624.78
2+240.000	19.40	385.90	385.90	0.00	0.00	4482.33	4482.33	4721.22	-238.89
2+260.000	20.05	395.82	395.82	0.00	0.00	4878.15	4878.15	4721.22	156.93
2+280.000	9.86	298.95	298.95	0.00	0.00	5177.10	5177.10	4721.22	455.88
2+300.000	4.12	139.27	139.27	0.00	0.00	5316.37	5316.37	4721.22	595.15
2+320.000	1.56	55.60	55.60	0.00	0.03	5371.96	5371.96	4721.25	650.71
2+340.000	0.07	15.66	15.66	1.81	18.20	5387.63	5387.63	4739.45	648.17
2+360.000	0.00	0.69	0.69	9.32	111.06	5388.31	5388.31	4850.51	537.80
2+380.000	0.00	0.00	0.00	16.77	263.40	5388.31	5388.31	5113.91	274.40
2+400.000	0.00	0.00	0.00	11.72	286.44	5388.31	5388.31	5400.35	-12.03
2+420.000	0.00	0.00	0.00	1.21	129.07	5388.31	5388.31	5529.42	-141.11
2+440.000	3.55	35.40	35.40	0.00	12.11	5423.72	5423.72	5541.53	-117.81
2+460.000	10.59	141.41	141.41	0.00	0.00	5565.13	5565.13	5541.53	23.60
2+480.000	16.35	269.39	269.39	0.00	0.00	5834.52	5834.52	5541.53	292.98
2+500.000	17.37	337.13	337.13	0.00	0.00	6171.64	6171.64	5541.53	630.11
2+520.000	16.01	333.80	333.80	0.00	0.00	6505.45	6505.45	5541.53	963.92
2+540.000	12.31	283.21	283.21	0.00	0.00	6788.66	6788.66	5541.53	1247.12
2+560.000	10.53	228.34	228.34	0.00	0.00	7017.00	7017.00	5541.53	1475.47
2+580.000	10.20	207.32	207.32	0.00	0.00	7224.32	7224.32	5541.53	1682.79
2+600.000	11.22	214.25	214.25	0.00	0.00	7438.57	7438.57	5541.53	1897.03
2+620.000	14.93	261.25	261.25	0.00	0.00	7699.81	7699.81	5541.53	2158.28
2+640.000	18.75	336.05	336.05	0.00	0.00	8035.86	8035.86	5541.53	2494.33
2+660.000	21.17	398.48	398.48	0.00	0.00	8434.35	8434.35	5541.53	2892.81
2+680.000	25.01	464.81	464.81	0.00	0.00	8899.15	8899.15	5541.53	3357.62
2+700.000	32.06	575.50	575.50	0.00	0.00	9474.65	9474.65	5541.53	3933.12
2+720.000	24.18	563.08	563.08	0.00	0.00	10037.74	10037.74	5541.53	4496.20
2+740.000	22.03	460.90	460.90	0.00	0.00	10498.64	10498.64	5541.53	4957.11
2+760.000	9.27	312.65	312.65	0.00	0.00	10811.29	10811.29	5541.53	5269.75
2+779.062	0.49	92.89	92.89	0.00	0.00	10904.18	10904.18	5541.53	5362.65

Carga por eje			SN	pulg	(mm)		
(Kips)	(KN)	1.0(25.4)	2.0(50.8)	3.0(76.2)	4.0(101.6)	5.0(127.0)	6.0(152.4)
2	8.9	0.0002	0.0002	0.0002	0.0000	0.0000	0.0000
4	17.8	0.002	0.003	0.002	0.0002	0.0002	0.0002
6	26.7	0.009	0.012	0.011	0.1	0.009	0.009
8	35.6	0.03	0.035	0.036	0.033	0.031	0.029
10	44.5	0.075	0.085	0.09	0.085	0.079	0.076
12	53.4	0.165	0.177	0.189	0.183	0.174	0.168
14	62.3	0.325	0.338	0.354	0.35	0.338	0.331
16	71.2	0.589	0.598	0.613	0.612	0.603	0.596
18	80	1	1	1	1	1	1
20	89	1.61	1.59	1.56	1.55	1.57	1.59
22	97.9	2.49	2.44	2.35	2.31	2.35	2.41

Tabla No. 63: Factores Equivalentes de Cargas para Ejes Simples.

Fuente: Libro de diseño de pavimentos AASHTO 93

Tabla No. 64: Factores equivalentes de cargas para ejes dobles.

Carga	por eje		SN	pulg	(mm)		
(Kips)	(KN)	1.0(25.4)	2.0(50.8)	3.0(76.2)	4.0(101.6)	5.0(127.0)	6.0(152.4)
2	8.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	17.8	0.0003	0.0003	0.0003	0.0002	0.0002	0.0002
6	26.7	0.001	0.001	0.001	0.001	0.001	0.001
8	35.6	0.003	0.003	0.003	0.003	0.003	0.002
10	44.5	0.007	0.008	0.008	0.007	0.006	0.006
12	53.4	0.013	0.016	0.016	0.014	0.013	0.012
14	62.3	0.024	0.029	0.029	0.026	0.024	0.023
16	71.2	0.041	0.048	0.05	0.046	0.042	0.04
18	80	0.066	0.077	0.081	0.075	0.069	0.066
20	89	0.103	0.117	0.124	0.117	0.109	0.105
22	97.9	0.156	0.171	0.183	0.174	0.164	0.158
24	106.8	0.227	0.244	0.26	0.252	0.239	0.231
26	115.7	0.322	0.34	0.36	0.353	0.338	0.329
28	124.6	0.447	0.465	0.487	0.481	0.466	0.455
30	133.5	0.607	0.623	0.646	0.643	0.627	0.617
32	142.4	0.81	0.823	0.843	0.842	0.829	0.819
34	151.3	1.06	1.07	1.08	1.08	1.08	1.07
36	160	1.38	1.38	1.38	1.38	1.38	1.38

Fuente: Libro de diseño de pavimentos AASHTO 93.

Fuente: Guía para Diseño de Pavimentos AASHTO 1993.

Fuente: Guía para Diseño de Pavimentos AASHTO 1993.

Figura No. 71: Determinación del SN Usando el Programa Ecuación AASHTO 1993.

는 Ecuación AASHTO 93	- 🗆 X
CÁLCULO DE LAS ECUAC	IONES AASHTO 1993 (2.0)
Desarrollado por: Luis Ricardo Vásquez	/arela. Ingeniero Civil. Manizales, 2004.
Tipo de Pavimento	Confiabilidad (R) y Desviación estándar (So)
Pavimento flexible	80 % Zr=-0.841 ▼ So 0.45
Serviciabilidad inicial y final	Módulo resiliente de la subrasante
PSI inicial 4.2 PSI final 2	Mr 12750 psi
Información adicional para pavimentos rígidos	
Módulo de elasticidad del concreto - Ec (psi)	Coeficiente de transmisión de carga - (J)
Módulo de rotura del concreto - Sc (psi)	Coeficiente de drenaje - (Cd)
Tipo de Análisis	Número Estructural
• Calcular SN W18 = 1176572	SN = 2.64
O Calcular W18	
Observaciones	
Calcular	Salir

0+240 0+260 0+280 0+300 0+320 0+340 0+360 0+380 0+400 0+420 0+440 0+460 0+	480 0+500 0+520 0+540
RICO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KM DE CARRETERA	DIBUJÓ: Br. Eddys Br. José N Br. Jasser
TILLO - SANTA TENESA AFLICANDO LE SOLTIVANE CIVIL 3D 2016	UBICACIÓN: Somo
PLANTA PERFIL 000.00 HASTA 0+750.00	TRAMO: Somotillo 2,779.0

RICO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KM DE CARRETERA FILLO - SANTA TERESA APLICANDO EL SOFTWARE CIVIL 3D 2018	DIBUJÓ: Br. Eddys Br. José N Br. Jasser
	UBICACIÓN: Somot
PLANTA PERFIL 750.00 HASTA 1+455.82	TRAMO: Somotillo 2,779.0

68.656	70.31 68.242	69.64 67.623	68.36 66.798	66.71 65.769	64.20 64.534	61.66 63.093	60.49 61.450	58.88 58.881	57.52 57.518	56.65	55.94 55.936	55.37 55.370	54.58 54.583	53.75 53.749	53.16 53.157	
600	1+620	1+640	1+660	1+680	1+700	1+720	1+740	1+760	1+780	1+800	1+820	1+840	1+860	1+880	1+900	1
RIC TIL	:0 Y E .LO - S	STRU		A DE ESA A	PAVIN PLICA		O DE 2 EL SC	2.8 KN DFTW	1 DE C Are C	CARRE	ETERA D 201	۹ 8	DIBI	UJÓ:	Br. Edd Br. Jose Br. Jase	ys ≽ N ≩er
												_	UBI	CACIÓN	: Som	not
															3011	ιοι

	RE	FERENCIAC	NON BM-1	6		REFER		I BM-17						0 + 0 7		
	GL	ANACASTE	10 10 10 10 10 10 10 10 10 10 10 10 10 1			GUASIMO 12 e3 r	NEEM PEBM- PEBM- PEBM- PEBM-	DERECHO DE VA					PC: PT: 2 R. ENT	2+632 <u>2+600</u> +648. A=73 RADA: 009+0	2.32 0.24 24 .648 . INFIN 72.000 9	
3.371 Y: 1044 2'43" 8.411 Y: 1038 23.425 Y: 105 A CURVA : 143.338 m - 27.282 m	COO 41.194 89.427 18.696	RDENADAS X: 1,234. Y: 10,529 COTA: 5	UTM WGS 726 9.886 4.082	-84 NA BON SALEST	DEO 2+C		DERECHO DE VU NADAS UT 1,226.586 10,659.90 OTA: 60.7	M WGS-84	alt-17 LINEA (PD)	76: 35 48°F. GITUR 177.699 m	DERECHO I I IIII DEREC	DE VIA 20).00 m. + CF A 20.00	n.	2+2	
Sa: 1.315 m N: 10.038 m CC+2 C+2 C+2 C+2 C+2 C+2 C+2 C+2 C+2 C+		COORDE	ERENCIAC	CION BM-15		ST.: 2+389 C: 2+354 T: 2+422 R: T: Vd LT e=	.510 X: .32 X: .55 X: DATOS 113.00 m :60 Km/H :44.379 r =7.96%	PI:15 1237.247 .54.35.56" 1224.523 1229.089 DE LA CUF L: 68. L: 68. Sa: 1. N: 10.	Y: 105 Y: 105 Y: 1058 VA 236 m 54 m 315 m 038 m	54.340 21.527 38.576					EST.: 2 PC: 2 PT: 2	$\frac{2+6}{2+6}$
BVCS: Z+Z8Z10 BVCS: Z+Z8Z10 BVCE: 56.95				STA: 23+52. TELEV: 55.7 STA: 2+376.57 ELEV: 53.72 K: 20.62 VC: 188.93					EVCS: 2+471.03 V EVCE: 59.13	BVCS: 2+505.00 BVCS: 2+506.00 BVCE: 61.08						
								# 12 +00.0C	5.737							
57.024 55.97 56.417 56.417 56.417	02:320 2+320	92+340	2+360	69 ² 2 2+380	2+400	6 6 5 5 5 2 + 420	67.29 2+440	08.85 62 2+460	2+480	2+500	2+520	2+540	e3.230 63.230 2+260	05.50 2+	63.624	2-
RICO Y E TILLO - S	STRU SANTA	ICTUR A TERI	RA DE ESA A	PAVIN APLICA	/ENT	O DE EL S	2.8 K OFTW	M DE (/ARE (CARR CIVIL (ETER/ 3D 201	A 18	DIE	BUJÓ: ICACIÓI	Br. Br. Br.	Eddy José Jass Som	/s N er

PLANO PLANTA PERFIL ESTACION 2+100 HASTA 2+779.06 TRAMO: 2,779.06 m lineales

Somotillo - Sa

0+36	50.00	60
		00
		58
		56

0+34	40.00	6 O
		00
 ATTICATION		 58
		56

0+32	20.00	<u>с</u> 0
		50
		 58
		FC
		 30

0+30)0.00	<u>60</u>
		50
		58
		56

0+28	30.00	6 O
		00
 		58
		I
		56

0+26	60.00	60
		00
		58
		¹ 56

án Rodríguez Pineda I Hernández Vallecillo aul Torrez Solis	Revisó: Ing. Beatriz de los Ángeles Torrez Rodríguez	PLANO No
o, Chinandega	FECHA: SEPTIEMBRE 2020	05
Santa Teresa m lineales	ESCALA: H= 1:1 V= 1:10	12

Somotillo, Somotillo - Sa 2,779.06 m

0+72	20.00	60
		ΟZ
		60
		58

0+680.00	6.2
	60 58

0+66	60.00	<u>с</u> 2
		 60 58
		00

0+64	40.00	60
		02
		 60
		58

0+62	20.00		62
			ΟZ
		7	60
			58

in Rodríguez Pineda l Hernández Vallecillo iul Torrez Solis	Revisó: Ing. Beatriz de los Ángeles Torrez Rodríguez	PLANO No
, Chinandega	FECHA: SEPTIEMBRE 2020	06
anta Teresa n lineales	ESCALA: H= 1:1 V= 1:10	12

CO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KM DE CARRETERA	DIBUJÓ: Br. Eddys Iván Rodríguez Pineda Br. José Noel Hernández Vallecillo Br. Jasser Paul Torrez Solis	Revisó: Ing. Beatriz de los Ángeles Torrez Rodríguez	PLANO No
D - SANTA TERESA APLICANDO EL SOFTWARE CIVIL 3D 2018	UBICACIÓN: Somotillo, Chinandega	FECHA: SEPTIEMBRE 2020	07
ES TRANSVERSALES +740 HASTA 1+080	TRAMO: Somotillo - Santa Teresa 2,779.06 m lineales	ESCALA: H= 1:1 V= 1:10	12

1+06	50.00	61
		04
		62
		02
		\sim
	I	60

O Y ESTRUCTURA DE PAVIMENTO DE 2.8 KM DE CARRETERA	DIBUJÓ: Br. Eddys Ivár Br. José Noel Br. Jasser Pau
LO - SANTA TERESA APLICANDO EL SOFTWARE CIVIL 3D 2018	UBICACIÓN: Somotillo,
ES TRANSVERSALES 100 HASTA 1+440	TRAMO: Somotillo - Sa 2,779.06 n

CO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KM DE CARRETERA	DIBUJO: Br. Eddys Iva Br. José Noel Br. Jasser Pa
LLO - SANTA TERESA APLICANDO EL SOFTWARE CIVIL 3D 2018	UBICACIÓN: Somotillo
ES TRANSVERSALES +420 HASTA 1+760	TRAMO: Somotillo - S 2,779.06 r

án Rodríguez Pineda I Hernández Vallecillo aul Torrez Solis	Revisó: Ing. Beatriz de los Ángeles Torrez Rodríguez	PLANO No
o, Chinandega	FECHA: SEPTIEMBRE 2020	09
Santa Teresa m lineales	ESCALA: H= 1:1 V= 1:10	12

2+12	20.00		60
			58
I	I	1	36

2+10)0.00		60
			00
And the second s		-	52
Allixindi ganaanina anaanina anaanina a			00
			56
·			$\mathcal{O}\mathcal{O}$

2+06	60.00	E	<u> </u>
			50
		Ę	56
		۲	54

2+04	40.00	1	БQ
			00
			56
			54

án Rodríguez Pineda I Hernández Vallecillo aul Torrez Solis	Revisó: Ing. Beatriz de los Ángeles Torrez Rodríguez	PLANO No
o, Chinandega	FECHA: SEPTIEMBRE 2020	10
Santa Teresa m lineales	ESCALA: H= 1:1 V= 1:10	12

CO Y ESTRUCTURA DE PAVIMENTO DE 2.8 KM DE CARRETERA LLO - SANTA TERESA APLICANDO EL SOFTWARE CIVIL 3D 2018 ES TRANSVERSALES	DIBUJÓ: Br. Eddys Iván Rodríguez Pineda Br. José Noel Hernández Vallecillo Br. Jasser Paul Torrez Solis Br. Jasser Paul Torrez Solis		PLANO No	
LLO - SANTA TERESA APLICANDO EL SOFTWARE CIVIL 3D 2018	UBICACIÓN: Somotillo, Chinandega	FECHA: SEPTIEMBRE 2020		
ES TRANSVERSALES +140 HASTA 2+480	TRAMO: Somotillo - Santa Teresa 2,779.06 m lineales	ESCALA: H= 1:1 V= 1:10	12	

2+440.00					
				00	
				58	
		alamaannin kinikanistaanset		FC	
		1	1	'30	

2+38	30.00		
			56
			54
1		·	22

án Rodríguez Pineda I Hernández Vallecillo aul Torrez Solis	Revisó: Ing. Beatriz de los Ángeles Torrez Rodríguez	PLANO No
o, Chinandega	FECHA: SEPTIEMBRE 2020	12
Santa Teresa m lineales	ESCALA: H= 1:1 V= 1:10	12

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN

SECRETARÍA DE FACULTAD

F-8:CARTA DE EGRESADO

El Suscrito Secretario de la **FACULTAD DE TECNOLOGIA DE LA** CONSTRUCCION hace constar que:

RODRÍGUEZ PINEDA EDDYS IVÁN

Carne: 2013-61873 Turno Diurno Plan de Estudios 97-15 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente **CARTA DE EGRESADO**, a solicitud del interesado en la ciudad de Managua, a los siete días del mes de octubre del año dos mil veinte.

maliung Atentame Dr. Francisco Efraín Chamorro Blandón Secretario de Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN

SECRETARÍA DE FACULTAD

F-8:CARTA DE EGRESADO

El Suscrito Secretario de la **FACULTAD DE TECNOLOGIA DE LA** CONSTRUCCION hace constar que:

HERNÁNDEZ VALLECILLO JOSÉ NOEL

Carne: 2013-61822 Turno Diurno Plan de Estudios 97-15 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente **CARTA DE EGRESADO**, a solicitud del interesado en la ciudad de Managua, a los seis días del mes de octubre del año dos mil veinte.

NALIWRAL DE IS nata do la Co Atenta Dr. Francisco Efraín Chamorro Blandón Secretario de /Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN

SECRETARÍA DE FACULTAD

F-8:CARTA DE EGRESADO

El Suscrito Secretario de la **FACULTAD DE TECNOLOGIA DE LA** CONSTRUCCION hace constar que:

TORREZ SOLIS JASSER PAUL

Carne: 2013-61721 Turno Diurno Plan de Estudios 97-15 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente **CARTA DE EGRESADO**, a solicitud del interesado en la ciudad de Managua, a los seis días del mes de octubre del año dos mil veinte.

Atentamente Managa Dr. Francisco Efraín/Chamorro Blandón Secretario de Facultad

4.00

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2020

No.	No. Recibo 339 No. Inscripción 1073								
NOME	RES Y APELLI	DOS: Eddys Iván R	odríguez Pineda						
CARR	ERA: INGENIER		CAR	NET: 2013-6	1873	TU	IRNO:		
PLAN	DE ESTUDIO:	97-15	SEM	ESTRE : SEG 2020	GUNDO SEME)	STRE FE	CHA: 07/1	0/2020	
No.	1 Ale Trigge	ASIGNAT	URA		GRUPO	AULA	CRED.	F	R
1			ULTIN	AA LINEA					
				NACION Tecnologia	AL DE TROOT				
F:Fred	cuencia de Inscripcione ISOZA	s de Aslgnatura R: Retiro de	e Asignatura. — 😚 📽	Hatal	DENICA *				
	GRABADO	DR	FIRMA	Y SELLO	DEL	2	FIRM	A DEI	A
cc:C	RIGINAL:ESTUDIAN	TE - COPIA:EXPEDIE	FUN	CIONARIC			ESTU	DIANT	2

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 07-oct.-2020

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2020

No. Recibo 410 No. Inscripción 1071										
NOMBRES Y APELLIDOS: José Noel Hernández Vallecillo										
CARRERA: INGENIERIA CIVIL CARNET: 2013-61822 TURNO:										
PLAN	AN DE ESTUDIO: 97-15 SEMESTRE: SEGUNDO SEMESTRE FECHA: 06/10/2020 2020									
No.		ASIGNATURA		GRUPO	AULA	CRED.	F	R		
1										
			ULTIMA LINEA							
							J.			
			Belles Same							
			tecnologia do la Co	Sec.						
		10	Tomat (A)	ALC: NO						
ElEror	uencia de inscrinciones de A	signatura R: Retiro de Asignatur		D St.						
F:Frecuencia de inscripciones de Asignatura K: Ketiro de Asignatutar SECRETARIA ACADENICA										
	AJIMENEZ									
ĵ.	GRABADOR	E	TIRMA Y SELLO	DEL	FIRMA DEL					
						ESTUDIANTE				
IMP	IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 07-oct2020									

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2020

NOMBRES Y APELLIDOS: Jasser Paul Torrez Solis TURNO: CARRERA: INGENIERIA CIVIL CARNET: 2013-61721 TURNO: PLAN DE ESTUDIO: 97-15 SEMESTRE: SEGUNDO SEMESTRE FECHA: 06/10/2020 2020 2020 No. ASIGNATURA GRUPO AULA CRED. F R 1 ULTIMA LINEA ULTIMA LINEA I I I	No. Recibo 409 No. Inscripción 1072									
CARRERA: INGENIERIA CIVIL CARNET: 2013-61721 TURNO: PLAN DE ESTUDIO: 97-15 SEMESTRE: SEGUNDO SEMESTRE FECHA: 06/10/2020 2020 No. ASIGNATURA GRUPO AULA CRED. F R 1 ULTIMA LINEA ULTIMA LINEA	NOMBRES Y APELLIDOS: Jasser Paul Torrez Solis									
PLAN DE ESTUDIO: 97-15 SEMESTRE: SEGUNDO SEMESTRE FECHA: 06/10/2020 No. ASIGNATURA GRUPO AULA CRED. F R 1	CARRERA: INGENIERIA CIVIL CARNET: 2013-61721 TURNO:									
No. ASIGNATURA GRUPO AULA CRED. F R 1	PLAN	LAN DE ESTUDIO: 97-15 SEMESTRE: SEGUNDO SEMESTRE FECHA: 06/10/2020 2020								
1 ULTIMA LINEA	No.		ASIGNATURA	1 w 2 - 1 1 (1	GRUPO	AULA	CRED.	F	R	
	1			-ULTIMA LINEA						
tecnologia do to Contra da			Tor the for	chologia do la Ca						
F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.										
AJIMENEZ		AJIMENEZ	* SECRE	FRIA CADENIQA						
GRABADOR FIRMA Y SELLO DEL FIRMA DEL		GRABADOR FIRMA Y SELLO			DEL FIRMA DEL					
cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.										