

Tésis monográfica para optar al título de ingeniero eléctrico

Título

"Flujo de potencia trifásico en redes de distribución radial, utilizando el método escalonado y el método exacto Newton Raphson"

Autores:

Br. Engels Ismael Téllez Paladino. Carné 2011-37138

Br. René David Vega Pérez. Carné 2007-22146

Tutor:

Ing. Carlos Abraham Pérez Méndez.

Resumen

El trabajo desarrollado bajo esta investigación comprende un análisis comparativo del método de cálculo para flujos de potencia en una red de distribución radial, utilizando dos métodos de cálculo como son el método aproximado (escalonado o escalera) y el método exacto de Newton Raphson, para redes de distribución radial en media tensión. En este caso se realiza una valoración cuantitativa de los resultados obtenidos considerando los resultados de magnitudes de voltaje por nodo, ángulo, pérdidas de potencia en las líneas y valoración de la cargabilidad de las líneas.

También se evaluaron las ventajas y desventajas técnicas de la implementación de ambos métodos de cálculo para redes eléctricas de distribución radial en media tensión.

Durante el proceso de desarrollo de esta investigación, se expresan las evidencias de todas las habilidades y conocimientos adquiridas durante el período de preparación académica de la carrera de ingeniería eléctrica.

Tabla de contenido

Introdu	Introducción1			
Antecedentes 6				
Justificación9				
Objetivos 12				
Marco	Marco teórico			
Metodo	Metodología de desarrollo de la investigación2			
Capítulo 1Características generales de los sistemas eléctricos de				
distribución2				
1.1 Tip	os de sistemas de distribución	24		
1.1.1 Sistema radial2				
1.1.2 Sistema Anillo				
Capítulo 2Métodos de solución para el cálculo de flujos de potencia, en				
una red de distribución eléctrica 2				
2.1 Consideraciones generales				
2.2 Modelo escalonado (escalera) 3				
2.3 Método de Newton-Raphson				
2.4 Procedimiento del método de Newton-Raphson 3				
Capítul	lo 3 Sistema de distribución radial modelado y cálculos realizado	s.		
		38		
3.1	Modelo general de un sistema de distribución radial			
3.2	Premisas asumidas en el modelo	40		
3.3	Datos de conductores y valores característicos	40		
3.4	Evaluación de un sistema de distribución radial de cuatro (4) nodos	41		
3.5	Evaluación de un sistema de distribución radial de diez (10) nodos	50		
3.6	Evaluación del sistema de distribución radial IEEE33	60		

Capítulo 4 Resultados obtenidos de la aplicación de	los dos modelos de
cálculo	71
Conclusiones y Recomendaciones	81
Bibliografía	84
Anexo I	86
Anexo II	92
Anexo III	99

Dedicatoria

Primeramente, quiero dedicar y agradecerle a Dios por ser mí guía en todos los momentos de mi vida, iluminando mi camino y dándome fortaleza en todo momento de mi vida.

A mis padres, esposa y hermano por el apoyo incondicional, sus consejos, sus esfuerzos y sacrificios que son parte importante en esta meta de alcanzar el título universitario.

A mi mejor amigo que, aunque no esté físicamente conmigo, este momento sé que está orgulloso de mi, en memoria a mi abuelo.

A todos los profesores y personal de la Universidad Nacional de Ingeniería, quienes compartieron sus experiencias y conocimientos, para formar un profesional y a un ser humano que pueda contribuir al avance de la nación.

Br, Engels Téllez

Dedicatoria

"Nadie alcanza el éxito, sin la ayuda de los demás"

Alfred North Whitehead.

Primeramente, quiero dedicar y agradecer a Dios por el trabajo realizado, por ser mí guía en todos los momentos de mi vida, iluminando mi camino y dándome fortaleza ante cualquier objetivo o meta que se me presenta.

A mis padres Genrrys Vega y Aura Pérez por el apoyo incondicional, sus consejos, sus esfuerzos y sacrificios por formarme a mí y a mis hermanos, fueron mis pilares y es el mejor ejemplo de vida que puedo valorar.

A mi mejor amiga, mi dúo, mi amor, mi brazo derecho e izquierdo María Montiel que, con su amor, cariño, ternura, paciencia, consejos y muchas cosas lindas fueron de gran apoyo para seguir adelante y poder llegar al camino que pronto culmina.

A mi familia y a cada persona que han formado parte de mi vida, que siempre me dieron muchas palabras de aliento y estuvieron apoyándome con una actitud muy positiva, gracias por todo.

A mis compañeros de clase y amigos, que con sus apoyos, bromas y risas hicieron más fácil mi tiempo en la Universidad.

A todos los profesores y personal de la Universidad Nacional de Ingeniería, quienes compartieron sus experiencias y conocimientos, para formar un profesional y a un ser humano que pueda contribuir al avance de la nación.

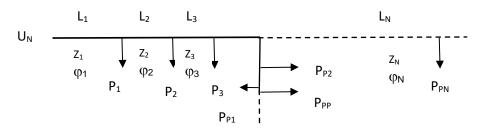
Introducción

Los avances en la tecnología y el uso de técnicas computacionales en todas las ramas de la ciencia y en este caso particular de la ingeniería eléctrica, permiten diseñar, calcular e implementar sistemas eléctricos con mayores indicadores de confiabilidad, calidad y continuidad del servicio eléctrico.

Actualmente en Nicaragua implementan ecuaciones de cálculos aproximados en las redes eléctricas (sin utilizar técnicas computacionales modernas), careciendo de datos específicos que contienen las variables eléctricas a nivel particular de un tramo de red eléctrica (caídas de tensión, pérdidas de potencia y energía, etc.) en un punto de la red, por esta razón los resultados obtenidos corresponden a resultados generalizados de la red en cuanto a sus parámetros eléctricos.

Las empresas distribuidoras de electricidad (DISNORTE/DISSUR) y los diseñadores de redes eléctricas de distribución en media tensión, no utilizan programas computacionales especializados para el cálculo de los flujos de potencia en las redes de distribución radial, utilizan métodos simplificados, para la ubicación equipos de protección en media tensión, basados en consideraciones prácticas del diseñador eléctrico o la empresa distribuidora.

Podemos referirnos específicamente al documento Memoria de Cálculo para redes de distribución en media tensión de Disnorte/Dissur¹, encontramos las fórmulas aproximadas para los cálculos eléctricos, tema del cual referimos para esta investigación por ser un método aproximado.


En dicha memoria de cálculo se describen las ecuaciones aproximadas como la del cálculo de caída de tensión indicada en la figura 1, utilizando un diagrama concentrado para una red de distribución radial.

1

¹ https://www.disnorte-dissur.com.ni/images/normas-procesos/distribucion/auditoriatecnica/normalizacion-y-procedimientos/normas/1Normas/1-1/memoria/MEMORIA LAMT v7.pdf

Figura 1. Red radial concentrada

Fuente: Memoria de Cálculo Disnorte-Dissur.

"2.1.4 Caída de Tensión:

Dadas las características particulares de distribución será necesario tener en cuenta la caída de tensión que se produce en la línea, debido a las cargas que estén conectadas a lo largo de esta. (DISNORTE/DISSUR (2000). Memoria de Cálculo para redes, s.f.).

Los cálculos serán aplicables a un tramo de línea, siendo la caída total de tensión la suma de las caídas en cado uno de los tramos intermedios".

Donde:

- UN: Caída de Tensión (V)

- LN: Longitud del Tramo de línea (km)

- ZN: Impedancia por fase y por km de línea (Ω /km)

- PN: Intensidad (amp)

Esta investigación realiza un análisis comparativo del cálculo de flujo de potencia trifásico en un modelo de red de distribución de media tensión radial, entre el método de cálculo aproximado (escalonado) y el método exacto de Newton Raphson aplicado mediante el software Digsilent, versión V15.1 (Digsilent GmBH, 1998), que permita mostrar las grandes ventajas que tiene el método exacto versus el método tradicional de cálculo aproximado, en la práctica lo que se desea es acotar el error de cálculo, conocer las variables del sistema eléctrico a nivel particular en un tramo o sección de la red y no a nivel global, a fin de garantizar la confiabilidad, calidad y continuidad del servicio eléctrico a los usuarios finales del servicio eléctrico.

Para realizar el análisis comparativo de flujo de potencia trifásico en una red de distribución de media tensión radial, entre el método aproximado (escalonado) y el método exacto de Newton Raphson, realizamos una simulación de un circuito real, utilizando el programa computacional Digsilent y se compararán los resultados con los establecidos del método aproximado propuesto en la Memoria de Cálculo de Disnorte/Dissur.

Los parámetros que se compararán para ambos métodos serán:

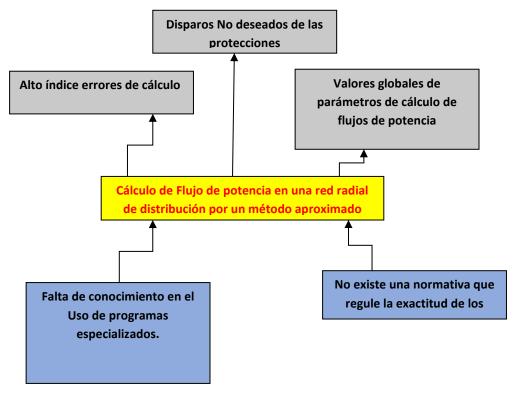
- ✓ Los valores de tensión en los puntos de la red de distribución de media tensión radial.
- ✓ Los valores de corrientes en cada tramo de la red.
- ✓ Las pérdidas de potencia y flujos de potencia en cada nodo y tramos de la red.

Durante la etapa de análisis comparativo de los cálculos realizados para una red eléctrica de distribución radial, entre el método aproximado (escalonado) y el método exacto de Newton Raphson, pusimos en evidencia los conocimientos y habilidades adquiridas durante nuestra formación profesional en la carrera de ingeniería eléctrica.

Identificación del problema a resolver mediante esta investigación:

Mediante esta investigación logramos demostrar que la utilización de un método aproximado para el cálculo de flujo de potencia trifásico en una red de distribución radial, en primer lugar, trae consigo errores de cálculo donde sólo se calculan valores globales de caídas de voltaje, pérdidas de potencia, etc. Sin conocer nodos específicos de la red, o tramos de línea particulares donde deban implementarse mejoras de infraestructura eléctrica de la red. También remarcamos que cuando se realizan estudios de flujo de potencia en redes de distribución de media tensión radiales, usando métodos simplificados, pueden con llevar a la toma de decisiones que pueden provocar mala calidad del servicio eléctrico a los usuarios finales del servicio, pérdidas económicas y daños tanto a los equipos de las empresas distribuidoras de como a los usuarios.

Un valor agregado en el desarrollo de esta investigación, es el poder divulgar a los estudiantes de la carrera de ingeniería eléctrica, una herramienta tecnológica que pueden ellos utilizar, para agilizar los resultados de los cálculos eléctricos en conjunto con la teoría empleada con las asignaturas de la carrera de ingeniería eléctrica, como son: Circuitos Eléctricos, Redes de Distribución, Sistemas Eléctricos de Potencia, mediante el uso y la aplicación del programa computacional Digsilent, para el cálculo de flujos de potencia en redes de distribución.


A continuación, presentamos de forma sencilla y clara la identificación el problema que dio origen a nuestro tema de investigación, mediante un diagrama de causa-efecto:²

_

² Fuente Propia

Figura 2 Diagrama de Causa Efecto

Fuente: Propia

Antecedentes

Los orígenes de las distribuidoras en Nicaragua datan de 1945 operadas por empresas privadas y estatales, posterior desde 1948 el Estado de Nicaragua comenzó a adquirirlas por medio de la empresa privada Central American Power y en 1955 se constituyó la empresa Nacional de Luz y Fuerza (ENALUF). En 1979 INE adquiere el control de la distribución hasta 1994 con la creación de ENEL, en todo este tiempo las empresas distribuidoras ocuparon técnicos que visitaban el sitio para tomar mediciones y valorar el cálculo de flujo de potencia.

ENEL al adquirir la distribución elaboro un manual y empezó a utilizar el método escalonado y a sus técnicos para el cálculo de flujo de potencia.

En 1999 adquiere la distribución eléctrica las empresas DISNORTE/DISSUR por medio de UNION FENOSA (en la actualidad pertenece al estado y TSK-Melfosur) en el centro y pacifico del país, ENEL opera la región Norte y hasta la actualidad las empresas continúan operando con el método escalonado.

La referencia histórica al problema objeto de esta investigación, se pone en evidencia en primer lugar cuando hablamos de la evolución de las pérdidas técnicas de energía que hasta la fecha posee las empresas distribuidoras de electricidad DISNORTE/DISSUR.

A continuación, referimos un dato del porcentaje de pérdidas técnicas en el sistema de distribución de Nicaragua.:

Por su parte el INE detalló que el promedio de las pérdidas eléctricas por distribución hasta marzo 2019 alcanzó un 20.75 por ciento, cuando en el 2017 antes de la crisis sociopolítica era de 18.83 por ciento, sin embargo, en la región el promedio de pérdidas no supera el 12 por ciento (INE, 2012)^{3.}

El método aproximado de cálculo de flujos de potencia en una red de distribución radial sólo permite conocer valores globales de pérdidas y caídas de tensión y no es posible obtener información exacta de un punto específico.

Los estudios más importantes realizados en un sistema eléctrico de transmisión o distribución, lo constituye el cálculo de condiciones en régimen permanente, donde determinan las tensiones en los diferentes puntos de la red; los flujos de potencia activa y reactiva en todas las líneas; las pérdidas de potencia tanto en las líneas como en los transformadores.

La exactitud de un flujo de potencia en un sistema de distribución eléctrico como en un sistema de transmisión conlleva a una solución óptima y de mínimo costo, para repotenciar líneas de distribución, reducir kilómetros de líneas innecesarios, mejorar la compensación de energía reactiva, etc. Es decir, conlleva a una acertada toma de decisiones para una red óptima en un punto de equilibrio usuario-empresa distribuidora de electricidad, evitando pérdidas de potencia.

Es por esta razón que nuestra investigación realiza una comparación para el cálculo del flujo de potencia trifásico en una red de distribución radial, comparando el método simplificado y el método exacto de Newton Raphson (Telenema, 2019), utilizando una herramienta tecnológica como lo es el programa computacional Digsilent.

_

³ Media, D. (22 de Marzo de 2010). *Digital Media*. Obtenido de www.tunota.com: https://www.tunota.com/perdidas-electricas-en-nicaragua-crecieron-146-7.

A nivel internacional referimos la tesis documental general, titulada:

"FLUJO DE POTENCIA TRIFASICO PARA SISTEMAS DE DISTRIBUCION"4

Que refiere de manera particular un software propio para realizar estos cálculos en redes de distribución radial.

A nivel de país Nicaragua, en lo que se refiere a una tesis monográfica vinculada con este tema de flujo de potencia en una red de distribución evaluada comparativamente entre un método aproximado y un método exacto hasta la fecha no existe documentación.

⁴ Bustos, J. (15 de Febrero de 1989). http://hrudnick.sitios.ing.uc.cl/paperspdf/munoz.pdf. Obtenido de http://hrudnick.sitios.ing.uc.cl/paperspdf/munoz.pdf:

8

Justificación

Los sistemas de distribución en media tensión son parte fundamental del sistema de la cadena de abastecimiento del suministro de la energía eléctrica⁵.

Sistema de transmisión

Generación Subestación Transmisión Subestación Relimentadores Consumidor residencial 220 V

Figura 3. Cadena de abastecimiento de la energía eléctrica.

Fuente: https://es.wikipedia.org/wiki/Sistema_de_suministro_el%C3%A9ctrico

Como vemos en la figura No.3, al final de la cadena de abastecimiento se encuentran los usuarios finales de la energía eléctrica, donde la calidad de su suministro de la energía eléctrica asociada a los parámetros de:

- 1. Regulación de voltaje
- 2. Compensación de energía reactiva
- Pérdidas de potencia en las líneas de distribución y centros de transformación.

 $https://www.google.com/search?q=generacion+transmision+y+distribucion+de+energia+electrica \\ a\&tbm=isch\&ved=2ahUKEwjb6b6F4_7nAhWHh1MKHXhnA9cQ2-$

 $c CegQIABAA\&oq=generacion+transmision+\&gs_l=img.1.0.0l5j0i8i30l2j0i24l3.138729.145424..148230...0.0..0.208.2790.0j22j.$

⁵ Lizana, J. (13 de Julio de 2002).

Afectan directamente a sus usuarios finales, quienes pueden recibir una mala calidad del servicio eléctrico sino se realiza una evaluación de cálculo de flujo de potencia en la red de media tensión, considerando el modelo exacto de la red.

En Nicaragua una red radial de distribución en media tensión puede tener una longitud no lineal, es decir considerando todas sus derivaciones, de más de 10 kilómetros.

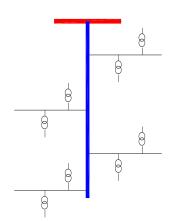


Figura 4. Topología de una red de media tensión⁶

Fuente: Redes de Distribución. Samuel Ramírez

Por lo tanto, si se modela esta red radial de distribución en media tensión por un método aproximado, que no considere todas derivaciones de la red, no se podrá identificar exactamente los puntos críticos de la red y sus tramos, con: mala

https://www.google.com/search?q=topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-

cCegQIABAA&oq=topologia+de+una+red+radial+de+distribucion+con+transformadores&gs_l=im g.3...40807.44671..45444.. Obtenido de

https://www.google.com/search?q=topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+una+red+radial+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNvL6f6P7nAhVGGIMKHUPDC-IQ2-topologia+de+distribucion+con+transformadores&tbm=isch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ahUKEwjNch&ved=2ah

 $c CegQIABAA\&oq=topologia+de+una+red+radial+de+distribucion+con+transformadores\&gs_l=im~g.3...40807.44671..45444..:$

⁶ JS, E. (15 de Agosto de 2019).

regulación de voltaje, altas pérdidas de potencia, requerimientos de compensación de energía de la red, etc. Es decir, no será posible evaluar dicha red bajo un modelo óptimo técnico-económico.

En el contexto nacional esta investigación evalúa comparativamente la obtención de parámetros de un flujo de potencia de una red radial de distribución bajo un método simplificado y otro exacto, en segundo lugar, pretende popularizar a los egresados de la carrera de ingeniería eléctrica el uso de las tecnologías aplicables para el cálculo de flujo de potencia en una red de distribución radial en media tensión.

Y en tercer lugar se muestra la posibilidad de solucionar el problema de flujos de potencia aplicando las características radiales de los sistemas eléctricos de distribución y con los resultados obtenidos se llegará a discernir qué metodologías de las mostradas son aceptables y acertadas para la solución de redes de distribución.

<u>Objetivos</u>

Objetivo General:

• Realizar un análisis comparativo entre el método de cálculo aproximado (escalonado) y el método exacto de Newton Raphson, para el flujo de potencia trifásico en una red de distribución radial de media tensión, que permita mostrar las grandes ventajas que tiene el método exacto versus el método de cálculo aproximado, para identificar puntos críticos de la red eléctrica en relación con sus parámetros eléctricos.

Objetivos específicos:

- Modelar los elementos de la red de distribución en media tensión radial, para la realización del estudio de flujo de potencia, por ambos métodos.
- Realizar los cálculos de flujo de Potencia con el método aproximado.
- Realizar la simulación del método de flujo de potencia exacto de Newton-Raphson, utilizando el programa computacional Digsilent.
- Evaluar técnicamente los resultados obtenidos en el cálculo de flujo de potencia, por ambos métodos y establecer sus ventajas y desventajas

Marco teórico

Los métodos propuestos en esta investigación parten de aplicaciones prácticas y tienen la finalidad de lograr experiencia sobre las ventajas y desventajas de las metodologías de solución tanto por el método aproximado como por el método exacto para el cálculo de flujos de potencia en una red de distribución radial.

En el caso del cálculo de flujo escalonado, las ecuaciones que se aplicarán son sencillas empleando conceptos básicos de circuitos. Y en el caso del método de Newton-Raphson, utilizamos las competencias vistas en la asignatura de Sistemas Eléctricos de Potencia.

Los estudios de flujos de potencia son de gran importancia en la planeación y en el diseño de la expansión futura de los sistemas eléctricos de distribución, así como en la determinación de las mejores condiciones de operación de los sistemas existentes. La información que se obtiene de un estudio de flujos de potencia es la magnitud y el ángulo de fase del voltaje en cada nodo, las potencias reales y reactivas que fluyen en cada elemento del sistema, así como las pérdidas por elemento o las pérdidas totales. En esta investigación asociamos el concepto de método:

<u>Método escalonado:</u> ⁷ al que resuelve la red "aguas arriba" (en dirección al nodo fuente), suponiendo previamente un perfil de voltaje, aplicando directamente las leyes de corriente y voltaje de Kirchhoff hasta llegar al nodo fuente. De esta manera es posible calcular un voltaje del nodo fuente (Mikle, 1994).

⁷ EPN. (12 de Febrero de 2018). https://bibdigital.epn.edu.ec/bitstream/15000/8176/3/CD-5714.pdf. Obtenido de

https://bibdigital.epn.edu.ec/bitstream/15000/8176/3/CD-5714.pdf: https://bibdigital.epn.edu.ec/bitstream/15000/8176/3/CD-5714.pdf

5714.pdf

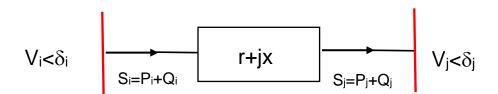
<u>Método Newton-Raphson:</u> El método de Newton-Raphson se utiliza para calcular el flujo de potencia en una red eléctrica. Este método, es una técnica iterativa para resolver un conjunto de varias ecuaciones no lineales con igual número de variables desconocidas (Telenema, 2019).

El método de Newton-Raphson se utiliza para calcular el flujo de potencia en una red eléctrica. Este método, es una técnica iterativa para resolver un conjunto de varias ecuaciones no lineales con igual número de variables desconocidas. Existen dos métodos de solución para el flujo de potencia usando el método de Newton-Raphson, el primer método utiliza las coordenadas rectangulares para las variables, en cambio el segundo método utiliza las coordenadas polares. De manera tradicional el uso del método utilizando las coordenadas polares es el más ampliamente utilizado en la solución de flujos de potencia.

Métodos exactos (tradicionales) de cálculo de flujo de potencia:

Los métodos exactos tradicionales para resolver flujos de potencia son en base a la teoría de Sistemas Eléctricos de Potencia: Gauss-Seidel y Newton-Raphson. El método Gauss-Seidel ⁸indirecto se caracteriza por ser relativamente insensible a los voltajes iniciales estimados, su poco requerimiento de memoria computacional (la Matriz de Admitancia nodal Y es muy porosa debido a la configuración radial del sistema en estudio) y su simple programación (Stevenson, 1983). Sin embargo, su lenta convergencia, acentuada en los sistemas radiales, lo hace poco atractivo.

⁸ Stevenso, William D. (1990). Sistemas Eléctricos de Potencia. En W. D. Stevenso, *Sistemas Eléctricos de Potencia* (pág. 450). México: Mc Graw.

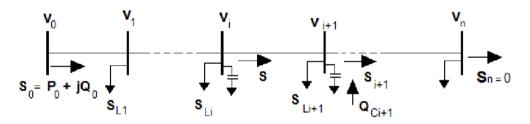


En cambio, el método de Newton-Raphson completo y las versiones desacopladas son ampliamente conocidos por sus excelentes características de convergencia, sobre todo en las versiones desacopladas.

MÉTODO DE FLUJO DE CARGA (ESCALONADO) 9

Un simple modelo de circuito de una línea de distribución y sus ecuaciones de voltaje recursivas asociadas son presentadas a continuación. Se asume que el Sistema de Distribución Radial (SDR) es balanceado y puede ser representado por un diagrama unifilar básico (Mikle, 1994). Los elementos capacitivos a tierra de la línea en el nivel de voltaje de distribución son pequeños y entonces no son considerados. El modelo de la línea es mostrado en la Figura No.5.

Figura 5 Modelo de Red Radial


Fuente: S. Sivanagaraju. A novel load Flow tecnique for radial distribuction system.

La línea que conecta esos dos segmentos tiene una impedancia (Z=r+jx). El flujo de potencia en el nodo de envío (Si=Pi+jQi) es diferente para el flujo de potencia en el nodo de recepción (Sj=Pj+jQj). Los valores de magnitud de voltaje y ángulo de fase asociados con cada nodo, corresponde a: Vi, δ i, Vj, δ j

⁹ Stevenso, William D. (1990). Sistemas Eléctricos de Potencia. En W. D. Stevenso, Sistemas Eléctricos de Potencia (pág. 450). México: Mc Graw.

En un sistema de distribución con un alimentador radial. Cuyo diagrama unifilar de este alimentador con n ramas/nodos (barras) es mostrado en la Figura No 6.

Figura 6. Alimentador Radial

Fuente: William D. Stevenson. Sistemas Eléctricos de Potencia.

Dado que se conoce por medición la potencia entregada en la barra de media tensión de la subestación, la potencia y el voltaje del nodo (barra) aguas abajo también lo serán. Así, se obtienen las siguientes fórmulas para cada rama del alimentador.

$$P_{i+1} = \frac{P_i - r_{i+1}(P_i^2 + Q_i^2)}{V_i^2 - P_{L_{i+1}}}$$
 (1)

$$Q_{i+1} = \frac{Q_i - x_{i+1}(P_i^2 + Q_i^2)}{V_i^2 - Q_{Li+1} + Q_{Ci+1}}$$
 (2)

$$V_{i+1}^2 = -\frac{2(r_{i+1}P_i + X_{i+1}Q_i) + (r_{i+1}^2 + X_{i+1}^2)(P_i^2 + Q_i^2)}{V_i^2}$$
(3)

Siendo,

ri: resistencia de la línea "aguas arriba" del nodo i;

Xi: reactancia de la línea "aguas arriba" del nodo i;

Pi y Qi: flujos de potencia activa y reactiva en el ramal "aguas arriba" del ramal i+1 que conecta el nodo i con el nodo i+1;

PLi y QLi: flujos de potencia activa y reactiva de la carga en el nodo i;

Vi: valor del voltaje del nodo i; y

Qci inyección de potencia reactiva del capacitor en el nodo i.

De manera particular en el acápite 2.1.4 de esta memoria de cálculo (DISNORTE/DISSUR) encontramos la fórmula aproximada que se propone para el cálculo de la caída de voltaje (DISNORTE/DISSUR (2000). Memoria de Cálculo para redes, s.f.):

Podemos expresar la caída de tensión en una línea trifásica como:

$$\Delta U = \sqrt{3}I Z L \quad (V) \tag{4}$$

Siendo:

 ΔU : Caída de tensión compuesta (V).

I: intensidad (A).

Z: Impedancia por fase y por kilómetro de línea (Ω /km).

L: Longitud del tramo de línea (km).

Para una línea monofásica la caída de tensión se obtendrá mediante la siguiente expresión:

$$\Delta U = I(Z_c L + Z_N L) = IL(Z_c + Z_N) \quad (V)$$
 (5)

Ecuación aproximada:

$$\Delta U = \frac{PZL}{1000Ucos\varphi} = \frac{P(Rcos\varphi + Xsen\varphi)L}{1000Ucos\varphi} (kV)$$
 (6)

Siendo:

R: Resistencia de la línea por fase y por kilómetro (Ω /km).

X: Reactancia de la línea por fase y por kilómetro (Ω /km).

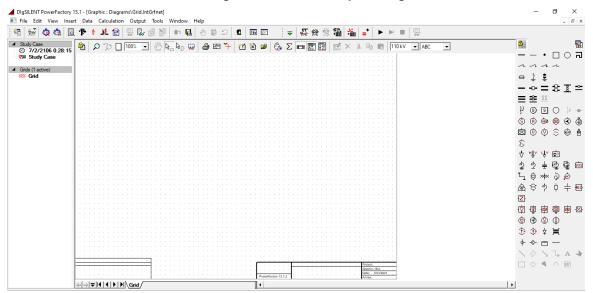
Se simplifica la ecuación (6), definiendo las variables:

$$\psi = R + Xtg\varphi \tag{2/km}$$

Por lo tanto, la expresión resultante será:

$$\Delta U = \frac{PL\psi}{1000U} \quad (kV) \tag{8}$$

En el documento de memoria de cálculo de Disnorte/Dissur, se propone en términos de la potencia, voltaje, resistencia y reactancia. Como observamos no se incentiva el método computacional exacto, solamente el método aproximado.


Un concepto muy importante que se pone en evidencia en esta investigación es la herramienta computacional para el cálculo de flujos de potencia en redes de distribución, como lo es el programa Digsilent.

El programa de cálculo DIgSILENT es una herramienta computarizada avanzada de diseño asistido en ingeniería para el análisis de sistemas eléctricos de potencias comerciales, industriales y a gran escala. Ha sido diseñado como un avanzado, integrado e interactivo paquete computacional dedicado a los sistemas de potencia para lograr los objetivos principales de planificación y operación.

DIGSILENT ha fijado estándares y tendencias en el modelado, análisis y simulación de sistemas de potencia por más de 25 años. Las ventajas comprobadas del software PowerFactory son su integración funcional, su aplicabilidad al modelado de redes de generación, transmisión, distribución e industriales, y el análisis de las interacciones de estas redes. DIgSILENT GmbH, fue desarrollado por Martin Schmieg en 1985, en Alemania.

Figura 7. Pantalla Principal de Digsilent

Fuente: PowerFactory. Digsilent.

Metodología de desarrollo de la investigación

El estudio realizado fue del tipo teórico-analítico e investigativo, que dio inicio con la investigación teórica sobre los métodos de cálculo de flujo para redes de distribución radial en media tensión, sus teorías aplicables sus ventajas y desventaja.

Luego se modelarán los dos sistemas propuestos de cálculo de flujo para una red de distribución radial, el método escalonado y el método de Newton Raphson, analizados para una red real de distribución, estableciendo sus ventajas y desventajas, conforme los resultados obtenidos.

Como tercer elemento de estudio se modeló un circuito particular de distribución radial y se integró su base de datos para el análisis, en el software Digsilent, versión V15.1.

Como parte del procedimiento analítico se calcularán y analizarán los valores de tensión en los puntos de la red de distribución de media tensión radial, así como los valores de corrientes en cada tramo de la red, las pérdidas de potencia, la compensación de energía reactiva y la regulación de voltaje.

Determinándose los puntos críticos de la red, que requieren ser mejorados.

Finalmente se analizarán y presentarán los resultados con el método aproximado y el método exacto de las simulaciones realizadas en el software emitiendo los resultados obtenidos de ambas comparaciones para un sistema de media tensión radial.

Capítulo 1.-Características generales de los sistemas eléctricos de distribución.

Los sistemas eléctricos de distribución son parte fundamental de la cadena de abastecimiento del suministro de la energía eléctrica a los usuarios finales. Estos se encuentran entre la subestación de distribución y el transformador de distribución, y se conoce como sistema primario o alimentador principal (Juárez, 1995).

Se puede tener más de un alimentador principal, para el caso de Nicaragua y otros países centroamericanos, estos son circuitos trifásicos de cuatro hilos, cuya configuración en radial.

De los alimentadores principales se derivan alimentadores secundarios llamados ramales o laterales, los cuales pueden llegar a otro transformador de distribución o al consumidor final (Chen, 1991).

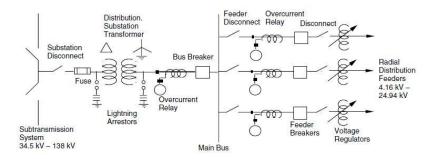


Figura 7 Sistema Eléctrico de distribución¹⁰

Fuente: Chen, M.C. Distribution system power flow analysis a rigid approach.

10

Chen, M. C. (1991). Distribution system power flow analysis a rigid approach.

Debido al crecimiento de la demanda y su continuo dinamismo, continuamente se registran en las redes eléctricas de distribución, problemas operativos, razón por la cual las empresas distribuidoras de electricidad deben contar con técnicas apropiadas de análisis para resolver de manera eficiente cada problemática presentada.

Esto apunta a que se deben mejorarse las técnicas de análisis de las redes eléctricas de distribución. De tal manera, que las nuevas técnicas de análisis para los sistemas de distribución deben proveer:

- a) Alternativas para la toma de decisiones de manera rápida y económicamente viables.
- b) Una evaluación de decisiones sobre bases económicas y técnicas que involucren diferentes estrategias, mediante estudios periódicos.

Los estudios y el análisis de los sistemas eléctricos de distribución se emplean, entre otros fines para:

- a) Optimizar la longitud de los alimentadores primarios y secundarios.
- b) La solución al problema de flujos de potencia y energía en la red eléctrica de distribución.
- c) Resolver una localización adecuada y eficiente de transformadores y bancos de capacitores.
- d) Análisis de fallas y coordinación de protecciones.

De acuerdo con la Normativa de Calidad del Servicio Eléctrico de Nicaragua (arto. NCS 2.1.1), el sistema eléctrico de distribución debe proveer el servicio a los usuarios finales, con un mínimo de variaciones de tensión y el mínimo de interrupciones, debe ser flexible para permitir expansiones en pequeños incrementos, así como para reconocer cambios en las condiciones de carga con un mínimo de modificaciones y gastos.

1.1 Tipos de sistemas de distribución.

Existen tres tipos de sistemas básicos de distribución, los cuales son:

- Sistema radial
- Sistema anillo

Estos tipos de sistemas son los más comúnmente utilizados.

1.1.1 Sistema radial

Es aquel que cuenta con una trayectoria entre la fuente y la carga, proporcionando el servicio de energía eléctrica. Un sistema radial es aquel que tiene un simple camino sin regreso sobre el cual pasa la corriente, parte desde una subestación y se distribuye por forma de "rama", como se ve en la siguiente figura No.8.

Figura 8 Sistema Radial¹¹

Fuente: Chen, M.C. Distribution system power flow analysis a rigid approach.

Este tipo de sistema es el más simple y el más económico debido a que es el arreglo que utiliza menor cantidad de equipo, sin embargo, tiene varias desventajas por su forma de operar:

- ➤ El mantenimiento de los interruptores se complica debido a que hay que dejar fuera parte de la red.
- Son los menos confiables ya que una falla sobre el alimentador primario principal afecta a la carga.

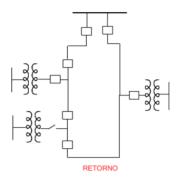
Este tipo de sistemas es instalado de manera aérea y/o subterránea. Para el caso de la red de distribución primaria de Nicaragua, esta es predominantemente de tendido aéreo. Razón por la cual nos centraremos en el análisis de este tipo de red de distribución primaria.

A continuación, se explicará cada una de estas formas ya que tienen características particulares.

11

Chen, M. C. (1991). Distribution system power flow analysis a rigid approach.

Sistema de distribución primario aéreo:


Los sistemas de distribución radiales aéreos se usan generalmente en las zonas urbanas y rurales. Los alimentadores primarios que parten de la subestación de distribución están constituidos por líneas aéreas sobre postes y alimentan los transformadores de distribución, que están también montados sobre postes.

La principal razón para la construcción de los sistemas radiales aéreos radica en su diseño de pocos componentes, y por ende su bajo costo de instalación, aunque puede llegar a tener problemas de continuidad de servicio.

1.1.2 Sistema Anillo

Es aquel que cuenta con más de una trayectoria entre la fuente o fuentes y la carga para proporcionar el servicio de energía eléctrica. Este sistema comienza en la estación central o subestación y hace un "ciclo" completo por el área a abastecer y regresa al punto de donde partió. Lo cual provoca que el área sea abastecida de ambos extremos, permitiendo aislar ciertas secciones en caso de alguna falla.

Figura 9 Sistema en anillo

Fuente: Chen, M.C. Distribution system power flow analysis a rigid approach.

Cualquier variante del sistema en anillo, normalmente provee de dos caminos de alimentación a los transformadores de distribución o subestaciones secundarias. En general, la continuidad del servicio y la regulación de tensión que ofrece este sistema son mejor que la que nos da el sistema radial. La variación en la calidad del servicio que ofrecen ambos sistemas depende de las formas particulares en que se comparen. Regularmente, el sistema anillo tiene un costo inicial mayor y puede tener más problemas de crecimiento que el sistema radial, particularmente en las formas utilizadas para abastecer grandes cargas. Esto es principalmente porque dos circuitos deben ponerse en marcha por cada nueva subestación secundaria, para conectarla dentro del anillo.

A continuación, mostramos las ventajas en operación de este sistema:

- Son los más confiables ya que cada carga en teoría se puede alimentar por dos trayectorias.
- Permiten la continuidad de servicio, aunque no exista el servicio en algún transformador de línea.
- Al salir de servicio cualquier circuito por motivo de una falla, se abren los dos interruptores adyacentes, se cierran los interruptores de enlace y queda restablecido el servicio instantáneamente. Si falla un transformador o una línea la carga se pasa al otro transformador o línea o se reparte entre los dos adyacentes.
- Si el mantenimiento se efectúa en uno de los interruptores normalmente cerrados, al dejarlo desenergizado, el alimentador respectivo se transfiere al circuito vecino, previo cierre automático del interruptor de amarre.

Capítulo 2.-Métodos de solución para el cálculo de flujos de potencia, en una red de distribución eléctrica.

Los estudios de flujos de potencia son de gran importancia en la planeación y en el diseño de la expansión futura de los sistemas eléctricos, así como en la determinación de las mejores condiciones de operación de los sistemas existentes. La información que se obtiene de un estudio de flujos de potencia es la magnitud y el ángulo de fase del voltaje en cada nodo, las potencias reales y reactivas que fluyen en cada elemento del sistema, así como las pérdidas por elemento o las pérdidas totales (Telenema, 2019). Además, es importante tener un registro impreso de los resultados para su análisis y comparación; aunque en ocasiones se puede tener un vaciado automático en diagramas. En este capítulo se analizan conceptos y métodos que han sido propuestos para la solución del problema de flujos de potencia, de manera particular aplicados a una red de distribución eléctrica primaria.

Los métodos analizados han sido considerados, de acuerdo con la norma nacional, expuesta en la memoria de cálculo de la empresa distribuidora de electricidad (DISNORTE/DISSUR), y lo publicado en la literatura básica de ingeniería eléctrica.

A partir de ello, y tratando de cumplir con el objetivo de esta investigación, nos centraremos en el método de cálculo aproximado para flujos de potencia (método escalonado) y en el método exacto propuesto por Newton Raphson.

2.1 Consideraciones generales.

Para el análisis de flujos de potencia, la red de distribución eléctrica es modelada a partir de un conjunto de nodos, conectados entre sí por medio de líneas y transformadores.

Además, se cuenta con una fuente general de alimentación, la cual está localizada en la subestación y el sistema eléctrico de potencia hasta la subestación puede ser representado por un equivalente de Thévenin. También se cuenta con la información sobre las cargas conectadas en los nodos del sistema. En general las cargas inyectan o toman potencia compleja ($S_i = P_i + Q_i$) en los nodos.

2.2 Modelo escalonado (escalera).

Para el análisis de flujos de potencia, la red de distribución eléctrica es modelada a partir de un conjunto de nodos, conectados entre sí por medio de líneas y transformadores.

Los métodos de flujo de potencia para sistemas eléctricos de distribución radial han sido mejorados y su principal característica es el aprovechamiento de la topología radial de los sistemas de distribución.

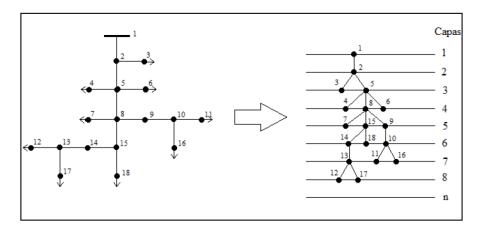
En nuestro estudio de la presente investigación hemos trabajado comparativamente los resultados de los métodos:

- ✓ Método Escalonado o método escalera
- ✓ Método de Newton- Raphson.

Primeramente, definiremos el método escalonado.

El método escalonado: Este método, también es conocido como método Forward and Backward sweeps debido a la secuencia necesaria para el análisis de la red. Este método, resuelve el flujo de potencia de una red de distribución radial, "aguas arriba" (en dirección al nodo fuente), suponiendo previamente un perfil de voltaje, aplicando directamente las leyes de corriente y voltaje de Kirchhoff hasta llegar al nodo fuente. De esta manera es posible calcular un voltaje del nodo fuente (Mikle, 1994). El error obtenido entre este valor y el especificado será sumado al perfil de

voltaje previamente supuesto de tal modo que se obtenga un nuevo perfil de voltaje para la próxima iteración. La convergencia es alcanzada cuando el voltaje resultante del nodo fuente es el especificado


En el caso del Método Escalonado tiene como principal desventaja el hecho de limitar la profundidad de los sub-alimentadores (ramas laterales) del sistema, pues cada uno de ellos necesita de sub-iteraciones. Además, su característica de convergencia no es buena para sistemas cargados. Por estas razones este método no es el más atractivo.

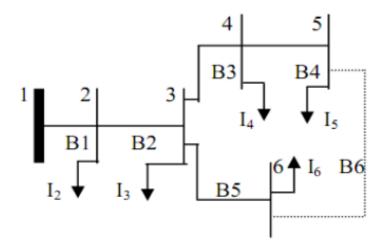
Comúnmente los datos conocidos para cualquier sistema de distribución son los voltajes de la subestación, la potencia activa y reactiva de las cargas y el tipo de carga, pero pueden conseguirse los datos nominales de los segmentos de líneas, los transformadores, generadores distribuidos y reguladores de voltaje.

La formulación de este método surge, básicamente de la aplicaciones de las leyes de Kirchoff en dos barridos consecutivos a la red, su origen es el método de red en escalera para el análisis de circuitos eléctricos lineales (por eso se le llama también ladder iterative technique), aunque debido a la presencia de cargas de potencia constante y generadores no es posible aplicar directamente las leyes desarrolladas para sistemas lineales, lo que lo vuelve un método iterativo para el análisis de redes no lineales, de forma que cada corriente y voltaje calculado con estas ecuaciones es una aproximación lineal a los valores reales.

La aplicación de este método inicia realizando un reordenamiento del sistema de distribución. Se ordenan los nodos según su distancia con el alimentador, cada segmento de red representa un nivel o capa más lejos del alimentador (figura 10). El reordenamiento de los nodos permite realizar de una manera secuencial el análisis de la red, ya que posibilita trabajar por capas, independientemente de la configuración del sistema.

Figura 10 Reordenamiento de Nodos por capas

Fuente: S. Sivanagaraju. A novel load Flow for radial distribution system.


El método se puede dividir en tres pasos:

- 1. Primero: hallar la corriente que consume o inyecta cada nodo,
- 2. Segundo: llamado backward sweep, comenzando en el nivel o capa más alejado del alimentador (capa 8 en la figura 10)
- 3. Tercero: llamado forward sweep, inicia en el nodo inicial o alimentador.

Teniendo el voltaje del alimentador se asume un arranque plano para todos los nodos del sistema y el algoritmo de solución sigue los pasos mencionados anteriormente:

Veamos un ejemplo en un diagrama simplificado de red de distribución radial.

Figura 11Red radial

Fuente: S. Sivanagaraju. A novel load Flow for radial distribution system.

De acuerdo con dibujo de la figura No.11, podemos desarrollar las siguientes ecuaciones para las corrientes en cada tramo de este circuito.

Tramo 1-2.

$$I_{12} = I_2 + I_3 + I_4 + I_5 + I_6 \tag{9}$$

Tramo 2-3.

$$I_{23} = I_3 + I_4 + I_5 + I_6 \tag{10}$$

Tramo 3-4.

$$|_{34} = |_{4} + |_{5} \tag{11}$$

Tramo 3-6.

$$I_{36} = I_6$$
 (12)

Que se expresa de forma matricial como sigue:

$$\begin{bmatrix} I_{12} \\ I_{23} \\ I_{34} \\ I_{36} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix}$$

2.3 Método de Newton-Raphson.

El modelado del cálculo de flujo de potencia por el método de Newton-Raphson, consta de dos conjuntos de ecuaciones (Telenema, 2019). El primer conjunto de ecuaciones describe la inyección de corriente de la carga al sistema.

Se dividen en una parte real y una parte imaginaria como se indica a continuación.

$$S_i = P_i + Q_i = V_i \sum_{k=1}^{n} V_{ik} V_k$$
 (13)

$$S_i = \sum_{k=1}^{n} \frac{V_i V_k Y_{ik}}{(\delta_i - \delta_k - \theta_{ik})} \tag{14}$$

$$P_i = \sum_{k=1}^{n} (V_i V_k Y_{ik}) \cos \left(\delta_i - \delta_k - \theta_{ik}\right) \tag{15}$$

$$Q_i = \sum_{k=1}^{n} (V_i V_k Y_{ik}) sen \left(\delta_i - \delta_k - \theta_{ik}\right)$$
(16)

Todas estas ecuaciones pueden ser reescritas en la forma siguiente:

$$P_{i} = V_{i}V_{i}Y_{ii}Cos\theta_{ii} + \sum_{k=1,k\neq1}^{n} (V_{i}V_{k}Y_{ik})cos\left(\delta_{i} - \delta_{k} - \theta_{ik}\right)$$

$$\tag{17}$$

$$Q_{i} = -V_{i}V_{i}Y_{ii}Cos\theta_{ii} + \sum_{k=1,k\neq1}^{n} (V_{i}V_{k}Y_{ik})sen\left(\delta_{i} - \delta_{k} - \theta_{ik}\right)$$

$$\tag{18}$$

Para las cuales, el cálculo del error para la potencia activa Pi, entre el valor especificado(sp) y el valor calculado (cal), se obtiene:

$$\Delta P_i = Pi_{(sp)} - Pi_{(cal)} \tag{19}$$

De igual manera se calcula el error para la potencia reactiva Q:

$$\Delta Q_i = Qi_{(sp)} - Qi_{(cal)} \tag{20}$$

Donde:

i = 1,2,...n $i \neq nodo de equilibrio. <math>i \neq nodo PV$.

Las ecuaciones (17) y (18), pueden ser reescritas como:

$$\left(\begin{array}{c}
\Delta P \\
\Delta Q
\end{array}\right) = \left(\begin{array}{c}
H & N \\
M & L
\end{array}\right) \left(\begin{array}{c}
\Delta \delta \\
\Delta V
\end{array}\right)$$
(21)

Los elementos diagonales de la matriz (18), H, N, M y L se obtienen diferenciando las ecuaciones (12) y (13), con respecto a δ y |V|.

Por la complejidad en el cálculo iterativo de este método, a medida que la cantidad de nodos y elementos del sistema de distribución aumenta, se debe realizar bajo la ayuda de un programa computacional, en nuestro caso utilizaremos el programa Digsilent V15.1

2.4 Procedimiento del método de Newton-Raphson.

Los pasos por realizarse para el desarrollo del método de Newton-Raphson, cuyos parámetros están expresados en coordenadas polares, son los siguientes (Telenema, 2019):

- 1. Obtención de la matriz de admitancia Ybus.
- 2. Asumir como valores iniciales para se utiliza para los voltajes de nodo $|Vi|^0$ y su ángulo de fase δ^0 para i= 1,2,...n.
- Calcular Pi y Qi para cada nodo de carga, de acuerdo con las ecuaciones (17) y (18).
- 4. Calcular los errores para ΔPi y ΔQi , de acuerdo con las ecuaciones (19) y (20), para i = 1,2...n.
- 5. Calcule los elementos de la matriz Jacobiana.

$$\left(\begin{array}{c}
H & N \\
M & L
\end{array}\right)$$
(22)

6. Calcule el valor para $\Delta \delta$ y $\Delta | Vi$, mediante la siguiente ecuación:

$$\left(\begin{array}{c}
\Delta P \\
\Delta Q
\right) = \left(\begin{array}{c}
H & N \\
M & L
\end{array}\right) \left(\begin{array}{c}
\Delta \delta \\
\underline{\Delta V} \\
V
\end{array}\right) (23)$$

7. Utilizando los valores calculados en el paso anterior para $\Delta\delta$ y $\Delta|Vi$, modifique la magnitud del voltaje y ángulo de fase de todos los nodos, mediante las siguientes ecuaciones:

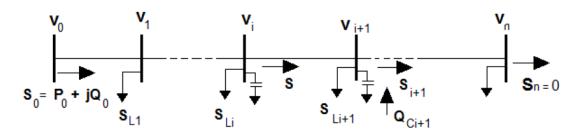
$$\delta_{i}^{(r+1)} = \delta_{i}^{(r)} + \Delta \delta_{i}^{(r)}$$
 (25)

- 8. Realice la siguiente nueva iteración a partir del paso 2, con los nuevos valores obtenidos para |Vi| y δi .
- Continúe el procedimiento hasta que los valores calculados estén dentro del valor de tolerancia especificado ε.

$$\Delta P_i^{(r)} < \varepsilon$$
 , $\Delta Q_i^{(r)} < \varepsilon$ (26)

Capítulo 3.- Sistema de distribución radial modelado y cálculos realizados.

En este capítulo se hace la aplicación práctica de los cálculos de flujos de potencia utilizando los dos métodos descritos en el capítulo No.2.


Se refiere que el voltaje normado para el sistema eléctrico de distribución primario de Nicaragua está establecido en el artículo NSE 8.1.2 de la Normativa de Servicio Eléctrico.

- √ Voltaje monofásico 7.6 kV o 14.4 kV, dos conductores o cualquier otro voltaje de distribución que la distribuidora emplee en esa área.
- ✓ Voltaje trifásico 13.2 kV o 24.9 kV, o cualquier otro voltaje de distribución que la distribuidora emplee en esa área, cuatro conductores.

3.1 Modelo general de un sistema de distribución radial

El sistema de distribución eléctrica de Nicaragua consiste en un alimentador radial. En el siguiente diagrama unifilar mostramos un alimentador con n ramas/nodos (barras).

Figura 12 Unifilar de Red de distribución Radial

Fuente: Turan Gonen. Sistemas Eléctricos de Distribución.

Los elementos que forman parte de esta red de distribución son:

- 1. Resistencia óhmica del calibre de conductor, por unidad de longitud (Ω /km)
- 2. Reactancia óhmica del calibre de conductor, por unidad de longitud (Ω /km)
- 3. Carga por nodo, descrita mediante la potencia activa P (kW) y la Potencia reactiva Q (kVAr).

4. Longitud de cada rama entre nodos (km).

5. Magnitud de Voltaje por nodo Vi y su ángulo δi .

3.2 Premisas asumidas en el modelo

Se asume que el Sistema de Distribución Radial SDR es balanceado y puede ser representado por un diagrama unifilar básico, como el presentado en la figura No.12.

Los elementos capacitivos a tierra de la línea en el nivel de voltaje de distribución son pequeños y entonces no son considerados.

Como parámetros conocidos, se establece que la magnitud del voltaje Vs y su δ s ángulo en el punto de conexión a la salida de la subestación de distribución, para el circuito de distribución radial tienen el valor por unidad de Vs = 1.0 p. u y δ s = 0° Grados.

3.3 Datos de conductores y valores característicos

Los datos para la resistencia y reactancia óhmica de los conductores eléctricos se establecen en la siguiente tabla, donde utilizaremos como conductor para la red de distribución el conductor calibre Merlin 336.4 MCM, con valores de:

 $R = 0.205 \Omega/km$ $X = 0.287 \Omega/km$

j) CAPACIDADES DE CONDUCCIÓN DE CORRIENTE DE LOS CABLES DE ALUMINIO CON ALMA DE ACERO (ACSR)

				DAD DE CO RRIENTE * (RESIST	TENCIA C	hms/km		ICIA A 60hz SPACIAMIENTO
CÓDIGO MUNDIAL	CALIBRE AWG/Kcmil	CABLEADO AL/ACERO	SOL NO VIENTO	NO SOL NO VIENTO	SOL VIENTO	NO SOL VIENTO	20°C C.C.	25℃ C.A.	75℃ C.A.	INDUCTIVA Ohm/km	CAPACITIVA Mohm-km
Turkey	6	6/1	60	70	105	110	2.105 9	2.141 1	2.684 4	0.482 2	0.088 2
Swan	4	6/1	80	95	140	145	1.322 9	1.350 1	1.715 0	0.449 3	0.083 9
Swanate	4	7/1	85	95	140	145	1.309 9	1.3348	1.739 9	0.462 3	0.083 9
Sparrow	2	6/1	110	130	185	195	0.831 4	0.8500	1.106 1	0.416 3	0.0802
Sparate	2	7/1	115	130	185	195	0.822 1	0.840 1	1.1185	0.423 2	0.079 5
Robin	1	6/1	130	150	210	225	0.659 9	0.673 6	0.888 6	0.400 2	0.077 7
Raven	1/0	6/1	155	175	240	255	0.522 6	0.5363	0.714 6	0.387 1	0.075 8
Quail	2/0	6/1	175	205	275	295	0.415 0	0.425 5	0.581 0	0.373 5	0.0733
Pigeon	3/0	6/1	205	235	315	340	0.329 1	0.3366	0.469 1	0.360 4	0.071 5
Penguin	4/0	6/1	240	275	360	385	0.260 9	0.2688	0.334 0	0.344 2	0.0690
Waxwing	266.8	18/1	300	345	450	480	0.211 1	0.2161	0.258 5	0.296 4	0.067 7
Partridge	266.8	26/7	305	355	455	490	0.209 0	0.2138	0.255 4	0.288 9	0.066 5
Ostrich	300.0	26/7	330	385	490	530	0.186 0	0.1899	0.227 4	0.284 6	0.065 9
Merlin	336.4	18/1	350	410	520	560	0.167 3	0.1713	0.205 1	0.287 7	0.0659
Linnet	336.4	26/7	360	420	530	570	0.166 0	0.1693	0.203 2	0.280 2	0.0646

Fuente: https://es.slideshare.net/ismaelcayoapaza/manual-electrico-viakon-capitulo-2

3.4 Evaluación de un sistema de distribución radial de cuatro (4) nodos

Vamos a calcular los flujos de potencia en un sistema de distribución radial, en un nivel de voltaje de 7.6/13.2 kV, considerando que a menor voltaje mayores pérdidas de potencia y energía, por eso se selecciona este nivel de voltaje. Los cálculos serán realizados tanto para el método escalonado como para el método de Newton-Raphson.

Figura 13Unifilar red radial de 4 nodos

Fuente: Propia.

Los cálculos fueron realizados a conductor ACSR, calibre 336.4 MCM y se tomaron en consideración las siguientes cargas por nodo:

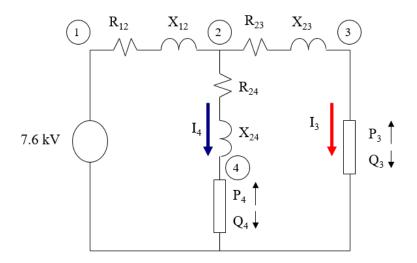
Nodo 3

Carga P = 42.5 kW; Q = 26.34 kVAr.

Nodo 4

Carga P = 31.87 kW; Q = 19.70 kVAr.

Método Escalonado:


En el siguiente diagrama de circuito se muestra la red eléctrica equivalente, cuyos parámetros son los siguientes:

$$R = 0.205 \Omega/km$$

$$X = 0.287 \Omega / km$$

Figura 14 Circuito Equivalente 4 Nodos

Fuente: Propia.

Tabla de parámetros del circuito:

NODO	NODO	TRAMO	LONGITUD(km)	$R_{12}(\Omega)$	$X_{12}(\Omega)$
1	2	1-2	0.005	0.001025	0.001435
2	3	2-3	12	2.46	3.44
2	4	2-4	15	3.08	4.31

El método escalonado consiste en resolver el circuito de la figura No. 14, a partir de las cargas hacia la fuente, en este caso.

Por lo tanto, se inicia el cálculo a partir del nodo No.3, se asume como primera aproximación que el nodo 3, recibe el voltaje cuya magnitud es $7.6 \text{ kV} < 0^{\circ}$.

Y se obtiene la corriente l₃, mediante la ecuación:

$$I_3 = \left(\frac{S_3}{V_3}\right)^* \tag{27}$$

El ángulo de la corriente lo establece el factor de potencia, el cual corresponde a fp = 0.85 en atraso. θ = 31.80

$$I_{3} = \left(\frac{50 \, kVA}{7.6 \, kV}\right) \left(\frac{-31.8^{\circ}}{4}\right) A = 6.58 \left(\frac{-31.8^{\circ}}{4}\right) A$$

$$I_{3} = 5.59 - j \, 3.47 \, \text{Amp}$$
(28)

Las pérdidas de potencia activa y reactiva en el tramo 2-3, se calculan como:

$$\Delta P_{23} = I_3^2 x R_{23} \tag{29}$$

$$\Delta Q_{23} = I_3^2 x X_{23} \tag{30}$$

Que equivalen a:

 $\Delta P = 0.106 \text{ kW}$

 $\Delta Q = 0.148 \text{ kVAr}$

Asociado al nodo 2, tendremos unas potencias de:

$$P_2 = \Delta P_{23} + P_3 \tag{31}$$

Que equivale a:

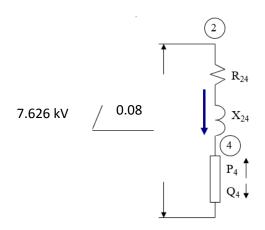
 $P_2 = 0.106 \text{ kW} + 42.5 \text{ kW} = 42.606 \text{ kW}.$

 $Q_2 = 0.148 \text{ kVAr} + 26.34 \text{ kVAr} = 26.487 \text{ kVAr}.$

La caída de voltaje en el tramo 2-3 se calcula como:

$$\Delta V_{23} = I_3 (R_{23} + jR_{23}) \tag{32}$$

Que equivale a:


$$\Delta V_{23} = 6.58 < -31.87 \text{ x } (2.46 + \text{j } 3.44) = 0.0278 \text{ kV } < 22.7^{\circ}$$
 (33)

Y el voltaje en el nodo 2, será:

$$V_2 = \Delta V_{23} + V_3 \tag{34}$$

$$V_2 = 0.0278 \text{ kV} < 22.7^0 + 7.6 \text{ kV} < 0^0 = 7.626 \text{ kV} < 0.08^0$$
 (35)

De acuerdo con el diagrama de la figura No.14, y conocido el voltaje V2, se calcula la corriente I4, como sigue:

Donde:

$$R_{24} = 3.08 \Omega$$
 $X_{24} = 4.31 \Omega$

$$P_4 = 31.9 \text{ kW}$$
 y $Q_4 = 19.75 \text{ kVAr}$

$$S_4 = 31.9 \text{ kW} + \text{j} \ 19.75 \text{ kVAr} = 37.5 \text{ kVA}$$
 (36)

Se calcula la impedancia asociada a la carga para la potencia S4, para un voltaje de carga de 7.6<00 kV.

Utilizando la ecuación:

$$Zc4 = \frac{V^2}{S4} = \frac{(7600)^2}{37.5x1000} = 1540.3 \ \Omega$$
 (37)

Siendo el ángulo de la carga θ = -31.80

Zc4 = 1540.3 <-31.8 = 1428.05 - j 577.14
$$\Omega$$
. (38)

Para una impedancia total:

$$Z2a = Z24+Zc4 = 3.08+j 4.31 + 1428.05 - j 577.14 = 1431.13 - j 572.83$$
 (39)

$$Z2a = 1541.15 < -21.8 \,^{0} \,\Omega$$
 (40)

Y se calcula la corriente l₄ mediante la ecuación =

$$I4 = \frac{V_{2}}{Z2a} \tag{41}$$

$$I4=rac{7.626 < 0.08^{
m 0}\,{
m kV}}{1541.15 < 0.08^{
m 0}\Omega}$$

$$I_4 = 4.95 < 21.9^0$$
 Amperios (43)

La caída de voltaje del nodo 4 se calcula como:

$$V_4 = I_4 \times Zc4 = 4.95 < 21.9^{\circ} A \times 1540.3 < -31.8^{\circ} \Omega = 7625.65 < -9.9 V$$
 (44)
= 7.625 < -9.9 kV

La corriente que circula por el tramo 1-2, se calcula como:

$$I_{12} = I_3 + I_4 = 6.58 < -31.8^{\circ} A + 4.95 < 21.9^{\circ} A = 10.3 < -9.025^{\circ} A.$$
 (45)

La caída de voltaje en el tramo 1-2 es igual a:

$$\Delta V12 = I_{12} \times (R_{12} + jX_{12}) = 10.3 < -9.025^{\circ} \times (0.001025 + j 0.001435)$$
 (46)

$$\Delta V12 = 0.0182 < 45.44^{\circ} V \tag{47}$$

El voltaje en el nodo 1 es igual a:

$$V_1 = V_2 + \Delta V_{12} = 7626 \text{ V} < 0.08^{\circ} + 0.0182 \text{ V} < 45.44^{\circ} = 7625.7 < 0.0805^{\circ} \text{ V}.$$
 (48)

Resumen

Tabla 1 Voltajes por nodo

NODO	V(kV)mag	V(kV)ang
1	7.62566	0.0805
2	7.62565	0.0804
3	7.62000	0.0000
4	7.62565	-9.9050

Tabla 2Pérdidas de potencia por tramo

TRA	MO			PÉRDIDAS
				DE
		CORRIENTE		POTENCIA
NODO	NODO	(A)	$R(\Omega)$	(W)
1	2	10.3	0.001025	0.109
2	3	6.58	2.46	106.509
2	4	4.95	3.075	75.345
			Total (W)	181.963

Método de Newton-Raphson:

Para realizar la comparación de resultados de cálculo entre el método escalonado y el método de Newton-Raphson, se resolvió el circuito radial de la figura No.14, utilizando el programa computacional Digsilent V15.1.

El esquema de simulación y los resultados obtenidos se resumen a continuación:

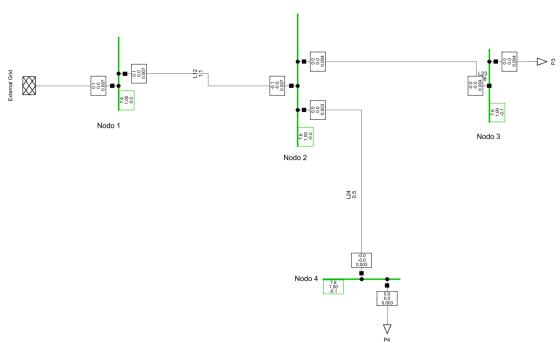


Figura 15 Esquema de Simulación

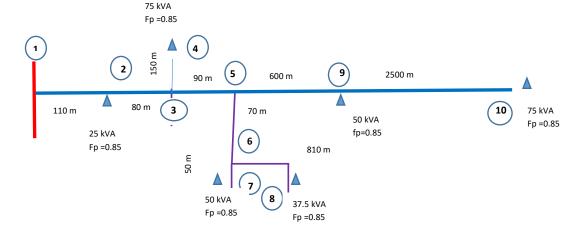
Fuente: Propia.

Resultados obtenidos

											D.T. O.T. D.V.						
											DIGSILENT PowerFactory	Proj					
											15.1.2	Date	: 3/1	/2021			
Load Flo	ow Calcul	ation					Comp	olete Syst	em Report	: Su	bstations, Vol	tage Pr	ofiles	, Gri	d Int	terchar	ige
	Load Flow										aptation for C		nce		1	No	
	omatic Ta sider Rea				S	No No		No	acceptabl des del Equat		ad Flow Error	ior				1.00 kV 0.10 %	/A
Grid: Cu	uatron		Syster	n Stage	: Cuatr	on		Study Case	: Study C	ase		Anne	x:			/	1
	rated Voltage [kV]		voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		tor Curren	t Loading [%]			Additio	nal Da	ta			
Nodo 1																	
Cub_1 Cub_2	7.62 /Xnet /Lne	1.00 Extern L12	7.62 al Grid	0.00	0.07	0.05 0.05	0.8		1.10	Sk" Pv:	: 10000.00 MVA 0.00 kW		-0.00	Mvar	L:	0.00) km
Nodo 2	7.62	1.00	7.62	-0.00													
Cub_1 Cub_2	/Lne	L12 L23	7.02	-0.00	-0.07 0.04	-0.05 0.03	-0.8		1.10	Pv:	0.00 kW 0.11 kW		-0.00			0.00	
Cub_3	/Lne	L24			0.03	0.02	0.8		0.47	Pv:	0.07 kW		0.00			15.00	
Nodo 3	7.62	1.00	7.59	-0.08													
Cub_2 Cub_1	/Lod /Lne	P3 L23	7.33	-0.00	0.04	0.03	0.8		0.63	Pl0 Pv:		Q10: cLod:	0.03	Mvar Mvar	L:	12.00) km
Nodo 4	7.62	1.00	7.60	-0.08													
Cub_2 Cub_1	/Lod	P4 L24	7.00	0.00	0.03	0.02 -0.02	0.8		0.47	Pl0 Pv:		Q10: cLod:	0.02	Mvar Mvar	L:	15.00) km
											DIGSILENT	Proje	ect:				
											PowerFactory 15.1.2	Date	: 3/1	/2021			
Load Flo	ow Calcul	ation					Comr	olata Svet	m Renort	. 511	bstations, Vol	tage Pr	nfiles	Grid	1 Int	terchar	200
	Load Flow		d nosit	1170 00	mience		COM				aptation for C			, 0110		No	ige
Auto	omatic Ta	p Adjust	of Trans	sformer	s	No No		Max. No		e Lo	ad Flow Error				1	1.00 kV	7A
Grid: Cu	uatron		Syster	n Stage	: Cuatr	on	5	Study Case	: Study C	ase		Anne	к:				2
		rtd.V		ıs - vo		1		-10	_	-	Voltage - D				+10		
Nodo 1		[kV]	[p.u.]	ı L	kV] [d	ed1		-10		J	U		+5		-10		_
Nodo 1		7.62	1.000) 7	.62 0	.00											
Nodo 3		7.62	1.000) 7	.62 -0	.00											
Nodo 4		7.62	0.99	7	.59 -0	.08											
1,000 4		7.62	0.99	7	.60 -0	.08											

NODO	V(kV)mag	V(kV)ang
1	7.62000	0.0000
2	7.62000	0.0000
3	7.59000	-0.0800
4	7.60000	-0.0800

Ver resultados en anexo 1.

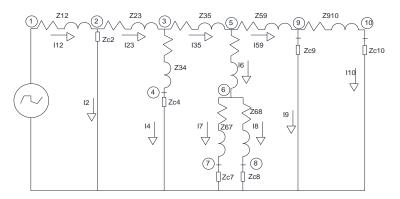

3.5 Evaluación de un sistema de distribución radial de diez (10) nodos

Cálculo de los flujos de potencia en un sistema de distribución radial, en un nivel de voltaje de 7.6/13.2 kV por método escalonado y método de Newton-Raphson. Parámetros de la red:

$$R = 0.205 \Omega/km$$
 $X = 0.287 \Omega/km$

Figura 16 Red de 10 nodos

Diagrama:



Cargas por nodos

Tabla 3Cargas por nodo

NODO	kVA	kW	KVAr
1			
2	25	21.3	13.2
3			
4	75	63.8	39.5
5			
6			
7	50	42.5	26.3
8	37.5	31.9	19.8
9	50	42.5	26.3
10	75	63.8	39.5

Diagrama de Red:

Fuente: Propia.

Se calcularon las impedancias de carga utilizando la ecuación:

$$Zcarga = \frac{V^2}{S} \tag{49}$$

Los valores se dan por nodo, en la siguiente tabla:

Tabla 4 Tabla de Impedancias por nodo de carga

NODO	kVA	V(V)	Zc(Ω)
1			
2	25	7620	2322.6
3			
4	75	7620	774.2
5			
6			
7	50	7620	1161.3
8	37.5	7620	1548.4
9	50	7620	1161.3
10	75	7620	774.2

El ángulo de la impedancia corresponde al ángulo del factor de potencia considerado fp = 0.85 en atraso, θ = -31.8 0 .

Tabla de valores para Zcarga en magnitud y ángulo.

Tabla 5 Zcarga en magnitud y ángulo

NODO	Zc
2	2322.6<-31.8
4	774.2<-31.8
7	1161.3<-31.8
8	1548.4<-31.8
9	1161.3<-31.8
10	774.2<-31.8

En la siguiente tabla se determinan los valores de impedancia de las líneas en cada tramo del circuito, en magnitud y ángulo.

Tabla 6 De impedancias por tramo

NODO	NODO	LONGITUD (km)	$R(\Omega)$	$X(\Omega)$	$Z(\Omega)$
1	2	0.110	0.02255	0.03157	0.02255+0.03157i
2	3	0.080	0.0164	0.02296	0.0164+0.02296i
3	4	0.150	0.03075	0.04305	0.03075+0.04305i
3	5	0.090	0.01845	0.02583	0.01845+0.02583i
5	6	0.070	0.01435	0.02009	0.01435+0.02009i
5	9	0.600	0.12300	0.17220	0.123+0.1722i
6	7	0.050	0.01025	0.01435	0.01025+0.01435i
6	8	0.810	0.16605	0.23247	0.16605+0.23247i
9	10	2.500	0.51250	0.7175	0.5125+0.7175i

Para el primer paso, iniciamos a partir de la carga del nodo 10, donde se calcula la corriente de carga mediante la siguiente ecuación, para un voltaje inicial V10 = $7620 \text{ V} < 0^{\circ}$.

$$I10 = \frac{V10}{Zc10} = \frac{7620 < 0}{774.2 < -31.8} = 9.85 A < 31.8 \tag{50}$$

El voltaje del nodo 9 se calcula como:

$$V9 = 110 \times Z910 + V10$$
 (51)

$$V9 = 9.85 < 31.8 \times (0.5125 + j 0.7125) + 7620 < 0$$
(52)

$$V9 = 7620.6 < 0.065 V.$$
 (53)

La corriente 19 se calcula como:

$$I9 = \frac{V9}{Zc9} = \frac{7620.6 < 0.065}{1161.3 < -31.8} = 6.56 A < 31.85$$
 (54)

Y la corriente circulante en el tramo 5-9, es la suma de las corrientes:

$$159 = 19 + 110 = 6.56 < 31.85 \text{ A} + 9.85 < 31.8 \text{ A} = 16.4 \text{ A} < 31.84$$
 (55)

La caída de voltaje en la línea 5-9 se calcula como:

$$\Delta V59 = 159 \times Z59 = 16.4 \text{ A} < 31.84 \text{ A} \times (0.123 + \text{j} \ 0.1722) \Omega = 3.472 \text{ V} < 86.3$$
 (56)

El voltaje del nodo 5 se calcula como:

$$V5 = V9 + \Delta V59 = 7620.6 < 0.065 V + 3.472 V < 86.3 = 7620.8 < 0.09 V.$$
 (57)

Utilizamos el voltaje V5, para calcular las corrientes I6, I7 e I8, en este caso simplificaremos las impedancias de esta rama como:

$$Ztotal5 = Z56 + ((Z67 + Zc7)//(Z68 + Zc8)) =$$
 (58)

Ztotal5 =
$$663.6 < -31.8 \Omega$$
.

La corriente 16 se calcula como:

$$I6 = \frac{V5}{Ztotal5} = \frac{7620.8 < 0.09 \, V}{663.6 < -31.8} = 11.5 \, A < 31.88 \tag{62}$$

(61)

Definimos como Zequ678 =
$$(Z67+Zc7)/(Z68+Zc8) = 663.6 \Omega < -31.8$$
 (63)

$$Z68 + Zc8 = 1548.4 \Omega < -31.8$$
 (64)

$$Z67 + Zc7 = 1161.3 \Omega < -31.8 \tag{65}$$

Calculamos la caída de voltaje en la línea 56, como:

$$\Delta V56 = 16 \times Z56 = 11.56 \text{ A} < 31.88 \times (0.01435 + j0.02009) = 0.2835 \text{ V} < 86.3$$
 (66)

Y los voltajes de las derivaciones 6-7 al nodo de referencia y 6-8 al nodo de referencia están en paralelo son iguales a:

$$\Delta V6-7 = \Delta V6-8 = V5 - \Delta V56 = 7620.8 < 0.09 \text{ V} - 0.2835 \text{ V} < 86.3 = 7620.78 < 0.09 \text{ V}$$

Y las corrientes I7 e I8 se calculan como:

$$I7 = \frac{7620.78 < 0.09}{1161.3 < -31.8} = 6.56 A < 31.8 \tag{69}$$

$$I8 = \frac{7620.78 < 0.09}{1548.4 < -31.8} = 4.92 A < 31.8 \tag{70}$$

Y los voltajes de los nodos 7 y se calculan como:

$$V7 = 17 \times Zc7 = 6.56 < 31.8 \times 1161.3 < -31.8 = 7620.77 < 0.088 V$$
 (71)

$$V8 = 18 *Zc8 = 4.92 < 31.8 \times 1548.4 < -31.8 = 7620.69 < 0.079 V$$
 (72)

El voltaje del nodo 6

La corriente en el tramo 3-5 es igual a:

$$135 = 16 + 159 = 11.5 < 31.88 \text{ A} + 16.4 \text{ A} < 31.84 = 27.89 \text{ A} < 31.85$$
 (73)

El voltaje del nodo 3, será la suma de: (74)

V3 = AV35 + V5.

Se calcula $\Delta V35$ como:

$$\Delta V35 = 135 \times Z35 = 27.89 \text{ A} < 31.85 \times (0.01845 + j \ 0.02583) = 0.89 \text{ V} < 86.31$$
 (75)

$$V3 = \Delta V35 + V5. = 0.89 < 86.31 + 7620.8 < 0.09 V = 7620.86 V < 0.098$$
 (76)

La corriente 14 se calcula como:

$$I4 = \frac{V3}{Z34 + Zc4} = \frac{7620.86 \, V < 86.31}{0.03075 + j \, 0.04305 + 657.98 - j \, 407.96} = 9.84 \, A < 31.89 \tag{77}$$

El voltaje del nodo 4 se calcula como:

$$V4 = 14 \times Zc4 = 9.84 A < 31.89 \times 774.2 < -31.8 = 7620.82 V < 0.094$$
 (78)

La corriente l23 se calcula como:

$$123 = 14 + 135 = 9.84 A < 31.89 + 27.89 A < 31.85 = 37.73 A < 31.86$$
 (79)

La caída de voltaje en el tramo 2-3, se calcula como:

$$\Delta V23 = I23 \times Z23 = 37.73 \text{ A} < 31.86 \times (0.0164 + j0.02296) = 1.06 \text{V} < 86.324$$
 (80)

El voltaje V2 es igual a:

$$V2 = DV23 + V3 = 1.06V < 86.324 + 7620.86 V < 0.098 = 7620.93 V < 0.106$$
 (81)

La corriente l2 se calcula como:

$$I2 = \frac{V2}{ZC2} = \frac{7620.93 \, V < 0.106}{2322.6 < 31.8} = 3.28 \, A < 31.9 \tag{82}$$

La corriente I12 se calcula como:

$$112 = 12 + 123 = 3.28 A < 31.9 + 37.73 A < 31.86 = 41.01 A < 31.87$$
 (83)

La caída de voltaje en el tramo 1-2 se calcula como:

$$\Delta V12 = I12 \times Z12 = 41.01 \text{ A} < 31.87 \times (0.02255 + j0.03157) = 1.59 \text{ V} < 86.33$$
 (84)

Y el voltaje V1 =
$$\Delta$$
V12 + V2 = 1.59 V<86.33 + 7620.93 V <0.106 = 7621.03 V <0.19 (85)

Las pérdidas de potencia por tramo, calculadas mediante la ecuación $I^2 \times R$, se resumen en la siguiente tabla:

Tabla 7Pérdidas de Potencia por tramo

				Pérdidas de
				Potencia
NODO	NODO	Corriente (A)	Resistencia (Ω)	(Watts)
1	2	41.01	0.02255	37.9250
2	3	37.73	0.01640	23.3463
3	4	9.84	0.03075	2.9774
3	5	27.89	0.01845	14.3514
5	6	11.5	0.01435	1.8978
5	9	16.4	0.12300	33.0821
6	7	6.56	0.01025	0.4411
6	8	4.92	0.16605	4.0195
9	10	9.85	0.51250	49.7240
			Total kW=	0.1678

Fuente: Propia.

Los voltajes por nodo se reflejan en la siguiente tabla:

Tabla 8De voltajes por nodo

NODO	V(V)	Ángulo
1	7621.03	0.118
2	7620.93	0.106
3	7620.86	0.098
4	7620.82	0.094
5	7620.80	0.091
6	7620.78	0.089
7	7620.77	0.088
8	7620.69	0.079
9	7620.57	0.065
10	7620.00	0.000

Método de Newton-Raphson:

Para realizar la comparación de resultados de cálculo entre el método escalonado y el método de Newton-Raphson, se resolvió el circuito radial de la figura No.16, utilizando el programa computacional Digsilent V15.1.

El esquema de simulación y los resultados obtenidos se resumen a continuación:

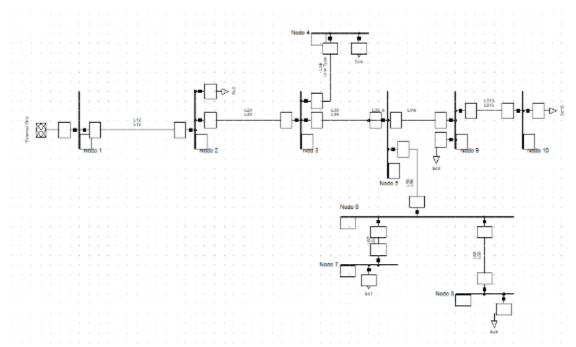
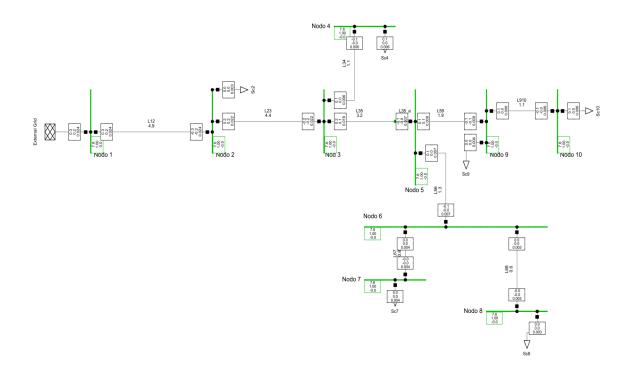



Figura 17 Esquema de Simulación

Fuente: Propia, Modelado en Digsilent. V15.1

En el anexo 2, se muestran los resultados finales.

A continuación, un resumen de los resultados

Tabla 9 De voltajes por nodo

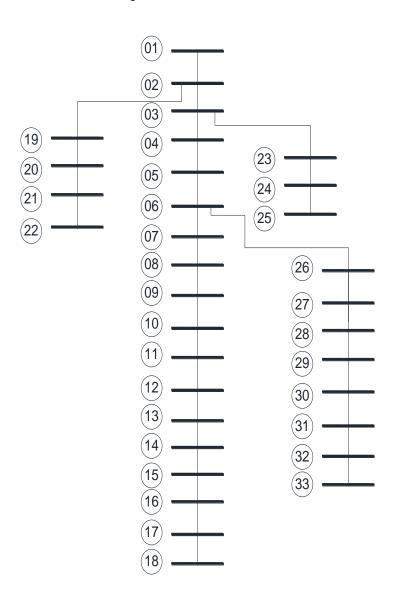
NODO	V(V)	Ángulo
1	7620.00	0.000
2	7620.00	0.000
3	7620.00	-0.010
4	7620.00	-0.010
5	7620.00	-0.010
6	7620.00	-0.010
7	7620.00	-0.010
8	7620.00	-0.010
9	7610.00	-0.020
10	7610.00	-0.040

Tabla 10 Pérdidas de Potencia por tramo, red radial 10 nodos

				Pérdidas de	
				Potencia	
NODO	NODO	Corriente (A)	Resistencia (Ω)	(Watts)	
1	2	41.01	0.02255	37.9250	
2	3	37.73	0.01640	23.3463	
3	4	9.84	0.03075	2.9774	
3	5	27.89	0.01845	14.3514	
5	6	11.5	0.01435	1.8978	
5	9	16.4	0.12300	33.0821	
6	7	6.56	0.01025	0.4411	
6	8	4.92	0.16605	4.0195	
9	10	9.85	0.51250	49.7240	
			Escalonado	167.7645	Watts

											DIGSILENT PowerFactory	Proj	ect:				
											15.1.2	Date	: 3/1	/2021			
Load Flo	w Calcul	lation					Comple	te Syster	n Report	: Sub	stations, Vol	tage Pr	ofiles	, Gri	d In	tercha	nge
Auto	matic Ta	, balance np Adjust nctive Pow	of Tran	sformer		No No		Max. Ac Node	cceptable	e Loa	ptation for C d Flow Error		nce			No 1.00 k' 0.10 %	VA
Grid: T1	.0n		Syste	m Stage	: T10n		Stu	dy Case:	Study Ca	ase		Anne	x:			/	1
	rated Voltage [kV]	Bus-	-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		or Current Loading Additional Data									
Nodo 2 Cub_3 Cub_1 Cub_2	7.62 /Lod /Lne /Lne	1.00 Sc2 L12 L23	7.62	-0.00	0.02 -0.27 0.24	0.03 -0.18 0.15	0.56 -0.82 0.85	0.00 0.02 0.02	4.89 4.36	P10: Pv: Pv:	0.02 MW 0.04 kW 0.02 kW		0.03 -0.00 0.00				1 km 8 km
Nodo 1 Cub_1 Cub_2	7.62 /Xnet /Lne	1.00 Exterr L12	7.62 nal Grid	0.00	0.27 0.27	0.18 0.18	0.82 0.82	0.02	4.89	Sk": Pv:	10000.00 MVA 0.04 kW	cLod:	-0.00	Mvar	L:	0.1	l km
Nod 3 Cub_1 Cub_2 Cub_3	7.62 /Lne /Lne /Lne	1.00 L23 L35 L34	7.62	-0.01	-0.24 0.18 0.06	-0.15 0.11 0.04	-0.85 0.85 0.85	0.02 0.02 0.01	4.36 3.22 1.14	Pv: Pv: Pv:	0.02 kW 0.01 kW 0.00 kW	cLod: cLod: cLod:	0.00	Mvar Mvar Mvar	L:	0.0	8 km 5 km 5 km
Nodo 4 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc4 L34	7.62	-0.01	0.06	0.04 -0.04	0.85 -0.85	0.01	1.14	P10: Pv:	0.06 MW 0.00 kW	Q10: cLod:		Mvar Mvar	L:	0.1	5 km
Nodo 5 Cub_3 Cub_1	7.62 /Lne /Lne	1.00 L56 L35_a	7.62	-0.01	0.07 -0.07	0.05 -0.05	0.85 -0.85	0.01	1.33 1.33	Pv:	0.00 kW 0.00 kW	cLod:		Mvar Mvar			7 km 5 km
Nodo 9 Cub_4 Cub_2 Cub_3	7.62 /Lod /Lne /Lne	1.00 Sc9 L910 L59	7.61	-0.02	0.04 0.06 -0.11	0.03 0.04 -0.07	0.85 0.85 -0.85	0.00 0.01 0.01	1.14 1.89	P10: Pv: Pv:	0.04 MW 0.05 kW 0.03 kW	Q10: cLod: cLod:	0.00	Mvar Mvar Mvar			0 km 0 km

Grid: T1	0n		Syste	m Stage	: T10n		Stu	dy Case:	Study C	ase		Annex	:		/	2
	rated Voltag [kV]	e Bus	-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		Ac	ddition	al Data			
Nodo 6 Cub_1 Cub_2 Cub_3	7.62 /Lne /Lne /Lne	1.00 L56 L67 L68	7.62	-0.01	-0.07 0.04 0.03	-0.05 0.03 0.02	-0.85 0.85 0.85	0.01 0.00 0.00	1.33 0.76 0.57	Pv: Pv: Pv:	0.00 kW 0.00 kW 0.00 kW	cLod: cLod: cLod:	0.00 Mva 0.00 Mva	r L:	0.07 0.05 0.81	km
Nodo 7 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc7 L67	7.62	-0.01	0.04	0.03 -0.03	0.85 -0.85	0.00	0.76	P10: Pv:	0.04 MW 0.00 kW	Q10: cLod:	0.03 Mva		0.05	km
Nodo 8 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc8 L68	7.62	-0.01	0.03	0.02 -0.02	0.85	0.00	0.57	P10: Pv:	0.03 MW 0.00 kW	Q10: cLod:	0.02 Mva 0.00 Mva		0.81	. km
Nodo 10 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc10 L910	7.61	-0.04	0.06	0.04	0.85 -0.85	0.01	1.14	P10: Pv:	0.06 MW 0.05 kW	Q10: cLod:	0.04 Mva 0.00 Mva		2.50	km


3.6 Evaluación del sistema de distribución radial IEEE33

A continuación, se realizan los cálculos de flujo de potencia utilizando tanto el método escalera como el método de Newton-Raphson, para el sistema de 33 nodos de la IEEE obtenido de [3].

El subcomité del área de Distribución de la IEEE ha desarrollado varios sistemas de redes radiales de distribución eléctrica para pruebas, en este caso se utiliza el sistema de distribución radial de 33 nodos, con un nivel de voltaje de 14.4/24.9 kV, 60 Hz, con cargas distribuidas a lo largo del alimentador principal.

Diagrama Unifilar

Figura 18 Red radial IEEE33

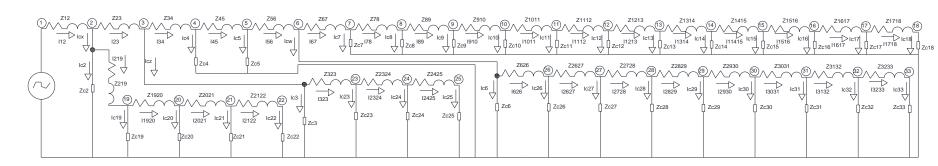
Fuente: Khaled Ras Guerriche. Maximal Loading point in distribution system.

Los parámetros de la red de distribución, así como sus datos de carga se dan en las siguientes tablas:

Tabla 11Cargas por Nodo

NODO	kVA	kW	KVAr
1	116.62	100.0	60.0
2	98.49	90.0	40.0
3			
	144.22	120.0	80.0
4	67.08	60.0	30.0
5	63.25	60.0	20.0
6	223.61	200.0	100.0
7	223.61	200.0	100.0
8	63.25	60.0	20.0
9	63.25	60.0	20.0
10	54.08	45.0	30.0
11	69.46	60.0	35.0
12	69.46	60.0	35.0
13	144.22	120.0	80.0
14	60.83	60.0	10.0
15	63.25	60.0	20.0
16	63.25	60.0	20.0
17	98.49	90.0	40.0
18	98.49	90.0	40.0
19	98.49	90.0	40.0
20	98.49	90.0	40.0
21	98.49	90.0	40.0
22	98.49	90.0	40.0
23	465.19	420.0	200.0
24	465.19	420.0	200.0
25	65.00	60.0	25.0
26	65.00	60.0	25.0
27	63.25	60.0	20.0
28	138.92	120.0	70.0
29	632.46	200.0	600.0
30	165.53	150.0	70.0
31	232.59	210.0	100.0
32	72.11	60.0	40.0
33	72.11	60.0	40.0
	/ 2.11	00.0	40.0

62


Tabla 12 Impedancias por tramo

NODO	NODO	$R(\Omega)$	X(Ω)	Ζ(Ω)	MAGNITUD (Ω)	ÁNGULO
1	2	0.0922	0.047	0.0922+0.047i	0.1035	27.01
2	3	0.493	0.2511	0.493+0.2511i	0.5533	26.99
3	4	0.366	0.1864	0.366+0.1864i	0.4107	26.99
4	5	0.3811	0.1941	0.3811+0.1941i	0.4277	26.99
5	6	0.819	0.707	0.819+0.707i	1.0819	40.80
6	7	0.1872	0.6188	0.1872+0.6188i	0.6465	73.17
7	8	0.7114	0.2351	0.7114+0.2351i	0.7492	18.29
8	9	1.03	0.74	1.03+0.74i	1.2683	35.70
9	10	1.044	0.74	1.044+0.74i	1.2797	35.33
10	11	0.1966	0.065	0.1966+0.065i	0.2071	18.29
11	12	0.3744	0.1298	0.3744+0.1298i	0.3963	19.12
12	13	1.468	1.155	1.468+1.155i	1.8679	38.20
13	14	0.5416	0.7129	0.5416+0.7129i	0.8953	52.78
14	15	0.591	0.526	0.591+0.526i	0.7912	41.67
15	16	0.7463	0.545	0.7463+0.545i	0.9241	36.14
16	17	1.289	1.721	1.289+1.721i	2.1502	53.17
17	18	0.732	0.574	0.732+0.574i	0.9302	38.10
2	19	0.164	1.565	0.164+1.565i	1.5736	84.02
19	20	1.5042	1.3554	1.5042+1.3554i	2.0248	42.02
20	21	0.4095	0.4784	0.4095+0.4784i	0.6297	49.44
21	22	0.7089	0.9373	0.7089+0.9373i	1.1752	52.90
3	23	0.4512	0.3083	0.4512+0.3083i	0.5465	34.34
23	24	0.898	0.7091	0.898+0.7091i	1.1442	38.30
24	25	0.896	0.7011	0.896+0.7011i	1.1377	38.04
6	26	0.203	0.1034	0.203+0.1034i	0.2278	26.99
26	27	0.2842	0.1447	0.2842+0.1447i	0.3189	26.98
27	28	1.059	0.9337	1.059+0.9337i	1.4118	41.40
28	29	0.8042	0.7006	0.8042+0.7006i	1.0666	41.06
29	30	0.5075	0.2585	0.5075+0.2585i	0.5695	26.99
30	31	0.9744	0.963	0.9744+0.963i	1.3700	44.66
31	32	0.3105	0.3619	0.3105+0.3619i	0.4768	49.37
32	33	0.341	0.5302	0.341+0.5302i	0.6304	57.25

Método Escalonado.

Diagrama de solución

(87)

El cálculo inicia en el nodo 18, donde el voltaje inicial es 14400 V<0.

Se calcula la corriente de carga Ic18 como:

$$Ic18^* = \frac{Sc18}{V} = \frac{90 + j40 \ kVA}{14.4 < 0 \ kV} = 0.00684 \ A < 23.96$$
 (86)

La caída de voltaje en el tramo 17-18 se calcula como:

$$\Delta$$
V1718 = Ic18 x Z1718 = 0.00684 A <-23.96 x (0.732+j 0.574) = 0.00636 V <62.064 (88)

El voltaje del nodo 17 es igual a:

$$V17 = \Delta V1718 + V18 = 0.00636 \text{ V} < 62.064 + 14400 \text{ V} < 0 = 14400.003 \text{ V} < 0.000006$$

La corriente Ic17 se calcula como:

$$Ic17^* = \frac{Sc17}{V17} = \frac{90 + j40 \, kVA}{14.400003 < 0 \, kV} = 0.00684 \, A < 23.96$$
(89)

$$lc17 = 0.00684 A < -23.96 \tag{90}$$

La corriente l1617 es igual a:

$$11617 = 1c17 + 1c18 = 0.00684 A < -23.96 + 0.00684 A < -23.96 = 0.0137 A < -23.962$$
 (91)

La caída de voltaje en el tramo 16-17 es igual a:

$$\Delta$$
V1617 = I1617 x Z1617 = 0.0137 A <-23.962 x (1.289+j1.721) = 0.0294 V <29.204 (92)

El voltaje del nodo 16 es igual a:

$$V16 = \Delta V1617 + V17 = 0.0294 V < 29.204 + 14400.003V < 0.000006 = 14400.0318V < 0.000063$$
(93)

La corriente lc16 se calcula como:

$$Ic16^* = \frac{Sc16}{V16} = \frac{60 + j20 \, kVA}{14.400003 < 0.000006 \, kV} = 0.0044 \, A < 18.44 \tag{94}$$

(95)

Ic16 = 0.0044 A < -18.44

La corriente I1516 es igual a:

$$0.0137 \text{ A} < -23.962 = 0.0181 \text{ A} < -22.62$$
 (97)

La caída de voltaje en el tramo 1516 es igual:

$$\Delta V1516 = I1516 \times Z1516 = 0.0181 \text{ A} < -22.62 \times (0.7463 + j0.545) = 0.0167 \text{V} < 13.52$$
 (98)

El voltaje del nodo 15 es igual a:

$$V15 = \Lambda V1516 + V16 = 0.0167 V < 13.52 + 14400.0318 V < 0.000063$$
 (99)

$$V15 = 14400.0481 \ V < 0.000079 \tag{100}$$

La corriente lc15 se calcula como:

$$Ic15^* = \frac{Sc15}{V15} = \frac{60 + j20 \, kVA}{14.4000481 < 0.000079 \, kV} = 0.0044 \, A < 18.44 \tag{101}$$

(102)

lc15 = 0.0044 A < -18.44

La corriente del tramo 14-15 es igual a:

$$11415 = 1c15 + 11516 = 0.0044 A < -18.44 + 0.0181 A < -22.62$$
 (103)

$$11415 = 0.0216 \text{ A} < -14.93 \tag{104}$$

La caída de voltaje en el tramo 1415 se calcula como:

$$\Delta V1415 = I1415 \times Z1415 = 0.0216 \text{ A} < -14.93 \times (0.591 + j0.526) = 0.0171 \text{ V} < 26.74$$
 (105)

El voltaje del nodo V1 4 es igual a:

$$V14 = \Delta V1415 + V15 = 0.0171 \text{ V} < 26.74 + 14400.0481 \text{ V} < 0.000079$$
 (106)

$$V14 = 14400.0633 \ V < 0.00019$$
 (107)

La corriente Ic14 se calcula como:

$$Ic14^* = \frac{Sc14}{V14} = \frac{60 + j10 \, kVA}{14.4000663 < 0.00019 \, kV} = 0.0042 \, A < 9.46$$
 (108)

(109)

$$Ic14 = 0.0042 A < -9.46$$

La corriente I1314 se calcula como:

$$I1314 = Ic14 + I1415 = 0.0042 \text{ A} < -9.46 + 0.0216 \text{ A} < -14.93$$

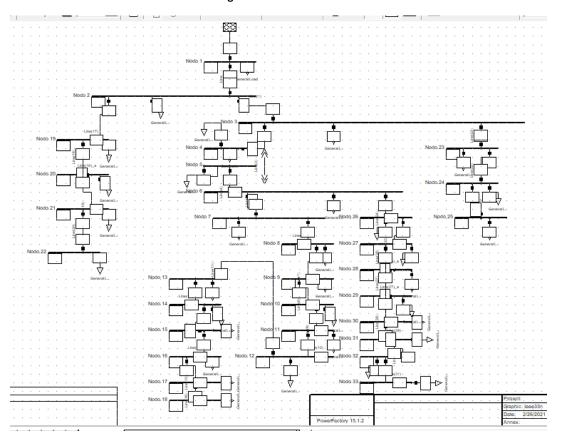
= 0.0255A<-11.0036

Este procedimiento se aplica al resto de nodos y tramos, por lo tanto, los resultados finales se resumen en las siguientes tablas:

Tabla 13 Voltajes en cada nodo

NODO	VOLTAJE (V)	ANGULO(0)
1	14400.880	0.000466
2	14400.850	0.000475
3	14400.704	0.000525
4	14400.629	0.000564
5	14400.552	0.000604
6	14400.362	0.000526
7	14400.333	0.000381
8	14400.290	0.000388
9	14400.226	0.000321
10	14400.166	0.000261
11	14400.157	0.000262
12	14400.141	0.000262
13	14400.080	0.000170
14	14400.063	0.000109
15	14400.048	0.000079
16	14400.032	0.000063
17	14400.006	0.000006
18	14400.000	0.000000
19	14400.828	0.000326
20	14400.789	0.000275
21	14400.781	0.000260
22	14400.774	0.000245
23	14400.667	0.000501
24	14400.626	0.000463
25	14400.621	0.000458
26	14400.342	0.000554
27	14400.323	0.000582
28	14400.205	0.000645
29	14400.125	0.000702
30	14400.104	0.000703
31	14400.070	0.000663
32	14400.065	0.000658
33	14400.063	0.000656

Tabla 14 Pérdidas de Potencia por tramo


			CORRIENTE DOD	PÉRDIDAS DE
NODO	NODO	R(Ω)	CORRIENTE POR TRAMO (A)	POTENCIA POR TRAMO (W)
1	2	0.0922	0.29781	0.0081770
2	3	0.4930	0.26390	0.0343337
3	4	0.3660	0.18539	0.0125795
4	5	0.3811	0.18078	0.0124545
5	6	0.8190	0.17656	0.0255315
6	7	0.1872	0.07228	0.0009780
7	8	0.7114	0.05681	0.0022963
8	9	1.0300	0.05243	0.0028309
9	10	1.0440	0.04804	0.0024092
10	11	0.1966	0.04438	0.0003872
11	12	0.3744	0.03964	0.0005883
12	13	1.4680	0.03492	0.0017904
13	14	0.5416	0.02547	0.0003513
14	15	0.5910	0.02156	0.0002748
15	16	0.7463	0.01806	0.0002433
16	17	1.2890	0.01368	0.0002412
17	18	0.7320	0.00684	0.0000342
2	19	0.1640	0.02736	0.0001228
19	20	1.5042	0.02052	0.0006333
20	21	0.4095	0.01368	0.0000766
21	22	0.7089	0.00684	0.0000332
3	23	0.4512	0.06912	0.0021557
23	24	0.8980	0.03682	0.0012171
24	25	0.8960	0.00451	0.0000183
6	26	0.2030	0.09259	0.0017403
26	27	0.2842	0.08848	0.0022247
27	28	1.0590	0.08467	0.0075912
28	29	0.8042	0.07559	0.0045954
29	30	0.5075	0.03758	0.0007169
30	31	0.9744	0.02610	0.0006640
31	32	0.3105	0.01002	0.0000311
32	33	0.3410	0.00501	0.0000086
			Total kW	0.1273

Método de Newton-Raphson, circuito radial IEEE33:

Unifilar para el cálculo:

Figura 19 Unifilar 33 nodos IEEE

Capítulo 4.- Resultados obtenidos de la aplicación de los dos modelos de cálculo.

En este capítulo se resumen los resultados de las simulaciones y cálculos de los flujos de potencia en tres redes de distribución radial de media tensión, aplicadas a una red de cuatros nodos, una red de 10 nodos y al modelo de red de distribución radial de la IEEE de 33 nodos.

Los métodos utilizados para el cálculo de flujo de potencia en estas redes de distribución corresponden al método escalonado y al método de Newton-Raphson.

Los resultados obtenidos se evalúan técnicamente para cada modelo de red, de acuerdo con los resultados obtenidos para los voltajes en cada nodo y de las pérdidas de potencia por tramo.

También evaluamos el procesamiento de la información con respecto a cada uno de los métodos.

Los resultados son los siguientes:

- 1. En lo concerniente al método escalonado, este es un método paso a paso y laborioso, ya que se modela mecánicamente los datos y se resuelven las mallas involucradas en el modelo de red simulada, lo cual implica la introducción de posibles errores de cálculo.
- 2. Otra desventaja del método escalonado es que asume con voltaje inicial en el nodo de partida del cálculo, como valor de referencia con ángulo cero, lo cual no corresponde con la realidad, ya que en un sistema radial de distribución el voltaje de referencia se aplica al nodo de salida de la red de distribución.
- 3. Comparando los valores técnicos obtenidos en los tres modelos de red analizados, obtenemos los siguientes resultados comparativos de voltajes, ángulos y pérdidas totales de potencia. (Para el caso de software Digsilent, estos resultados se pueden validar en los anexos I, II y III),

Comparación de resultados red radial de cuatro nodos:

Tabla 15 Comparación de resultados red 4 nodos

	Método E	scalonado	alonado Método Newt		
NODO	V(kV)mag	V(kV)ang	V(kV)mag	V(kV)ang	
1	7.62566	0.08054	7.62000	0.00000	
2	7.62565	0.08044	7.62000	0.00000	
3	7.62000	0.00000	7.59000	-0.08000	
4	7.62565	-9.90495	7.60000	-0.08000	

En esta tabla podemos observar que para la red de distribución de cuatros nodos, en cuanto a la magnitud de voltajes por ambos métodos hay discrepancia de valores y de magnitudes, sin embargo, observamos que en el método de Newton Raphson el valor del voltaje de referencia se aplica al nodo de conexión en el primer punto de la red, lo cual es lo correcto, al igual que el ángulo del voltaje corresponde al primer nodo de la red. También se observa que para el método de Newton-Raphson hay correspondencia para la regulación de voltaje por nodo, es decir el voltaje desde el nodo inicial hasta el nodo final va disminuyendo progresivamente.

Veamos el caso de las pérdidas de potencia en cada caso.

Por el método escalonado se obtuvo un valor de pérdidas totales de potencia de 0.182 kW), y en el caso del método de Newton-Raphson se obtuvo un valor de 0.201 kW.

Gráfica Comparativa de Magnitudes de Voltaje y ángulos Red 4 nodos

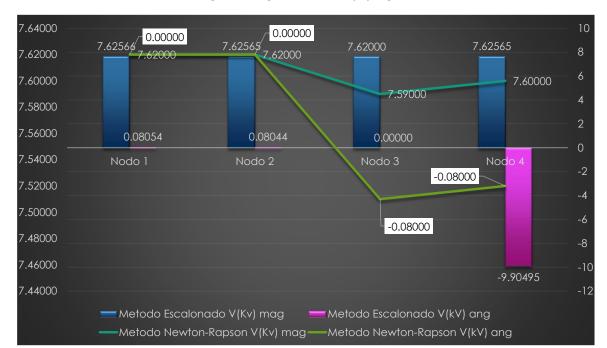


Figura 20 Magnitudes de Voltaje y ángulo

En esta gráfica No. 20, podemos observar que para la red de distribución de cuatros nodos, en cuanto a la magnitud de voltajes por ambos métodos hay discrepancia de valores y de magnitudes, sin embargo, observamos que en el método de Newton Raphson el valor del voltaje de referencia se aplica al nodo de conexión en el primer punto de la red, lo cual es lo correcto, al igual que el ángulo del voltaje corresponde al primer nodo de la red. También se observa que para el método de Newton-Raphson hay correspondencia para la regulación de voltaje por nodo, es decir el voltaje desde el nodo inicial hasta el nodo final va disminuvendo progresivamente

Comparación de resultados red radial de diez nodos:

Tabla 16 Comparación resultados red radial 10 nodos

	Método Esc	alonado	Método New	ton Raphson
NODO	V(V)	Ángulo	V(V)	Ángulo
1	7621.03	0.118	7620.00	0.000
2	7620.93	0.106	7620.00	0.000
3	7620.86	0.098	7620.00	-0.010
4	7620.82	0.094	7620.00	-0.010
5	7620.80	0.091	7620.00	-0.010
6	7620.78	0.089	7620.00	-0.010
7	7620.77	0.088	7620.00	-0.010
8	7620.69	0.079	7620.00	-0.010
9	7620.57	0.065	7610.00	-0.020
10	7620.00	0.000	7610.00	-0.040

Al igual que los resultados para la red de distribución de cuatros nodos, en el caso de la red radial de 10 nodos obtenemos la misma analogía, entre la magnitud de voltajes por ambos métodos con la misma discrepancia de valores y de magnitudes, sin embargo, observamos que en el método de Newton Raphson el valor del voltaje de referencia se aplica al nodo de conexión en el primer punto de la red, lo cual es lo correcto, al igual que el ángulo del voltaje corresponde al primer nodo de la red. También se observa que para el método de Newton-Raphson hay correspondencia para la regulación de voltaje por nodo, es decir el voltaje desde el nodo inicial hasta el nodo final va disminuyendo progresivamente.

Veamos el caso de las pérdidas de potencia en cada caso.

Por el método escalonado se obtuvo un valor de pérdidas totales de potencia de 0.168 kW, y en el caso del método de Newton-Raphson se obtuvo un valor de 0.270 kW.

Gráfica Comparativa de Magnitudes de Voltaje y ángulos Red 10 nodos

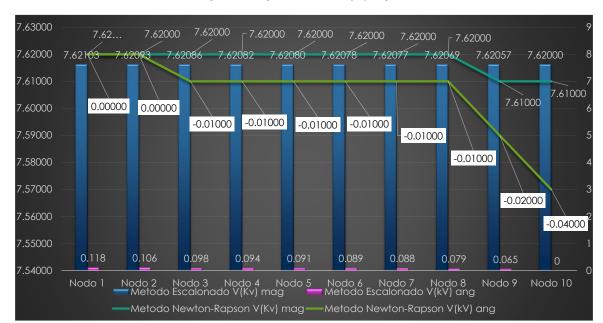


Figura 21 Magnitudes de voltaje y ángulo

Al igual que los resultados para la red de distribución de cuatros nodos, en el caso de la red radial de 10 nodos obtenemos la misma analogía, entre la magnitud de voltajes por ambos métodos con la misma discrepancia de valores y de magnitudes, sin embargo, observamos que en el método de Newton Raphson el valor del voltaje de referencia se aplica al nodo de conexión en el primer punto de la red, lo cual es lo correcto, al igual que el ángulo del voltaje corresponde al primer nodo de la red.

Comparación de resultados red radial IEEE33 nodos:

Tabla 17 Comparación de Resultados red radial IEEE33 nodos

	Método Es	scalonado	Método Ne	wton Raphson
NODO	VOLTAJE (V)	ANGULO(0)	VOLTAJE (V)	ANGULO(0)
1	14400.880	0.000466	14400.000	0.000
2	14400.850	0.000475	14370.000	0.010
3	14400.704	0.000525	14220.000	0.070
4	14400.629	0.000564	14130.000	0.120
5	14400.552	0.000604	14050.000	0.170
6	14400.362	0.000526	13850.000	0.100
7	14400.333	0.000381	13820.000	-0.050
8	14400.290	0.000388	13770.000	-0.030
9	14400.226	0.000321	13700.000	-0.090
10	14400.166	0.000261	13630.000	-0.130
11	14400.157	0.000262	13620.000	-0.130
12	14400.141	0.000262	13600.000	-0.120
13	14400.080	0.000170	13530.000	-0.200
14	14400.063	0.000109	13510.000	-0.260
15	14400.048	0.000079	13490.000	-0.280
16	14400.032	0.000063	13480.000	-0.300
17	14400.006	0.000006	13450.000	-0.370
18	14400.000	0.000000	13440.000	-0.370
19	14400.828	0.000326	14350.000	-0.100
20	14400.789	0.000275	14400.000	0.000
21	14400.781	0.000260	14330.000	-0.130
22	14400.774	0.000245	14320.000	-0.150
23	14400.667	0.000501	14180.000	0.050
24	14400.626	0.000463	14140.000	0.010
25	14400.621	0.000458	14130.000	0.000
26	14400.342	0.000554	13830.000	0.130
27	14400.323	0.000582	13800.000	0.180
28	14400.205	0.000645	13670.000	0.250
29	14400.125	0.000702	13590.000	0.310
30	14400.104	0.000703	13570.000	0.310
31	14400.070	0.000663	13530.000	0.270
32	14400.065	0.000658	13530.000	0.260
33	14400.063	0.000656	13520.000	0.250

Al igual que en los dos casos de la redes de distribución radial, para cuatro y diez nodos, en el caso de la red radial IEEE 33 nodos los resultados esta red de distribución obtenemos la misma analogía, entre la magnitud de voltajes por ambos métodos con la misma discrepancia de valores y de magnitudes, sin embargo, observamos que en el método de Newton Raphson el valor del voltaje de referencia se aplica al nodo de conexión en el primer punto de la red, lo cual es lo correcto, al igual que el ángulo del voltaje corresponde al primer nodo de la red. También se observa que para el método de Newton-Raphson hay correspondencia para la regulación de voltaje por nodo, es decir el voltaje desde el nodo inicial hasta el nodo final va disminuyendo progresivamente.

Veamos el caso de las pérdidas de potencia en cada caso.

Por el método escalonado se obtuvo un valor de pérdidas totales de potencia de 0.127 kW, y en el caso del método de Newton-Raphson se obtuvo un valor de 0.140 kW.

Gráfica Comparativa de Magnitudes de Voltaje y ángulos Red 33 nodos



Figura 22 Magnitud de voltaje y ángulo

- 4. El cálculo de flujo de carga en un sistema eléctrico, y en este caso para redes de distribución radial, nos permite conocer:
 - Voltaje y ángulo de todas las barras del circuito radial.
 - Flujos de potencia activa y reactiva en líneas y nodos de la red.
 - Potencia activa y reactiva en el nodo de conexión de salida de la barra de media tensión de la subestación de distribución.
 - Potencia activa de determinado nodo para compensar las pérdidas de potencia en la red de distribución.
 - Pérdidas de potencia activa y reactiva en toda la red de distribución.
- 5. El método numérico de Newton-Raphson es un algoritmo iterativo para resolver simultáneamente un conjunto de ecuaciones no lineales para un mismo número de variables desconocidas. Como este se realiza mediante programas computacionales, nos permite ahorrar tiempo y realizar variaciones de los parámetros de la simulación a realizar.

79

Este método ha sido ampliamente usado en todo el mundo por su característica de convergencia y velocidad de cálculo. Sus principales características son:

VENTAJAS	DESVENTAJAS
Razón de convergencia cuadrática	La convergencia se afectada por los estimados iniciales de las variables.
El tiempo de cálculo crece linealmente con el tamaño del sistema.	Maneja una gran cantidad de información lo que le aumenta los requerimientos de almacenamiento.
Puede resolver sistemas fuertemente cargados incluso con desfasajes superior a los 90°.	Se necesita recalcular la jacobiana en cada iteración
La solución no es perturbada por sistemas mal condicionados ni es critica la localización del nodo de balance.	La rugosidad de la función en la región de interés puede demorar la convergencia, fallar totalmente o conducir a una solución no útil

Fuente:

https://dspace.uclv.edu.cu/bitstream/handle/123456789/8004/Alberto%20Javier%20Leiva%20V% C3%A1zquez.pdf?sequence=1&isAllowed=y

Queremos enfatizar que en el desarrollo de esta investigación se utilizó el programa Digsilent, para aplicarlo como forma de validación del método de solución de cálculo de flujo de potencia por el método de Newton-Raphson, por ser el programa computacional que se tuvo a la mano y el cual manejamos de manera práctica, sin embargo existen otros programas computacionales como el ETAP: Electrical Transient and Analysis Program (ETAP), de la empresa ETAP® que también puede ser utilizado para validar el cálculo de flujo de potencia por el método de Newton-Raphson, también de manera práctica y más elaborada existe la posibilidad de que estudiantes con amplios conocimiento de programación puedan realizar una aplicación de solución por el método de Newton-Raphson para el cálculo de flujos de potencia.

Conclusiones y Recomendaciones.

Conclusiones

Concluimos que al comparar los métodos de solución: Método escalera y método de Newton Raphson, lo siguiente:

- 1. En el caso del método escalera para la solución de circuitos de distribución radial, es un método sencillo pero laborioso de implementar manualmente, la desventaja comparativa con relación al método de Newton- Raphson es que este asume el voltaje de referencia en un nodo final de la red y a partir de este se calculan los voltajes hacia la fuente.
- En relación con los ángulos de voltaje en cada nodo, el método escalera tiene divergencias con los valores obtenidos por el método de Newton-Raphson al igual que las pérdidas de potencia en la línea.
- 3. El método escalera es un método directo, pero conlleva inherentemente la posibilidad de introducir errores de cálculos.
- 4. En cuanto a la determinación de puntos críticos en la red de distribución, el método escalera se basa en un criterio analítico de resultados, en cambio el método de Newton Raphson presenta gráficamente los porcentajes de cargabilidad de las líneas.
- 5. Desde el punto de vista de inversión, el método escalera se puede realizar a bajo costo las simulaciones, utilizando el programa computacional EXCEL, en cambio el método de Newton-Raphson necesita la compra del programa computacional y ciertos requerimientos de la computadora donde se instala, tales como la capacidad de almacenamiento y la velocidad del procesador, de acuerdo con el simulador a instalarse.

- 6. Para el caso del Digsilent, este tiene los siguientes requerimientos: Sistemas operativos soportados:
- Windows XP 32 y 64 bits
- Windows Vista 32 y 64 bits
- Windows 7 32 y 64 bits
- Windows 8 32 y 64 bits
- Windows 8.1 32 y 64 bits
- Windows 10 32 y 64 bits

Requisitos mínimos de hardware recomendados:

- Procesador: Intel/AMD CPU with 2.0 GHz o superior

- Memoria RAM: 3GB o superior

- Especio disponible en disco: 1GB

- Resolución de monitor: 1280×1024 píxel

Resumen Comparativo

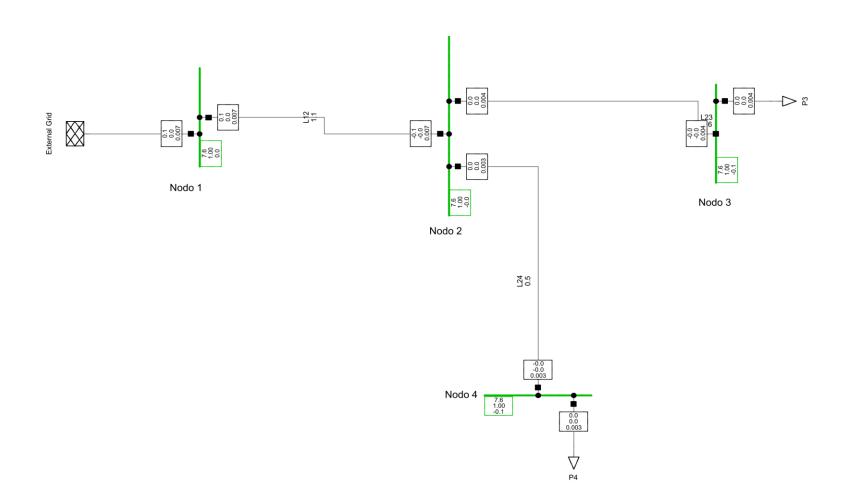
Descripción	Método Escalonado	Método Newton-Raphson
Factibilidad de Uso	Si	Si
Nivel de complejidad	Altamente Laborioso en sus cálculos	Rapidez de cálculos con software
Probabilidad de errores de cálculo.	Alta	Mínima
Referencia de ángulos	Se asigna al último nodo	Son valores reales
Determinación de puntos críticos de cargabilidad	Es analítico determinado por el evaluador.	Se ve gráficamente
Costo de Inversión para su realización	Bajo, uso de una hoja Excel	Mayor a los U\$ 4,000

Recomendaciones

- 1. Dar a conocer la aplicación de ambos métodos de cálculo para redes eléctricas de distribución radial, en las asignaturas de especialización de la carrera de ingeniería eléctrica. Esto implicaría destinar horas prácticas de laboratorio a la solución de flujos de potencia en redes de distribución, aplicando al menos dos métodos de solución. El valor agregado de esta investigación realizada permite al conocer los parámetros de voltaje, ángulo, corriente, pérdidas de potencia, cargabilidad de líneas, poder realizar una correcta planeación de redes y mejorar la calidad y continuidad del servicio eléctrico a los usuarios finales.
- 2. Incentivar y dar a conocer las grandes ventajas que tiene la simulación de flujos de potencia, ya sea por el método de Newton-Raphson u otro método de cálculo para redes eléctricas, utilizando una herramienta computacional, la cual ahorra tiempo y permite variar los parámetros de cálculo, obteniendo así nuevos escenarios de cálculo. Utilizar las horas prácticas del laboratorio.
- 3. Que se ponga a disposición de la comunidad educativa, profesionales y cualquier persona interesada en este tema, de los resultados de esta investigación. Para ello se propone subir a un sitio web de la UNI de su campo virtual educativo.

Bibliografía

- 1. Chen, M. C. (1991). Distribution system power flow analysis a rigid approach.
- Digsilent GmBH. (1998). Retrieved from https://es.linkedin.com/company/digsilent-gmbh
- DISNORTE/DISSUR (2000). Memoria de Cálculo para redes. (n.d.).
 Retrieved from https://www.disnorte-dissur.com.ni/images/normasprocesos/distribucion/auditoria-tecnica/normalizacion-yprocedimientos/normas/1Normas/1-1/memoria/MEMORIA_LAMT_v7.pdf
- 4. Haque, M. H. (2000). A general load flow method for distribution system.
- 5. IEEE. (n.d.). Retrieved from https://www.researchgate.net/figure/IEEE-33-bus-radial-distribution-test-feeder_fig1_283776325
- INE. (2012). Instituto Nicaraguense de Energía-INE. Retrieved from https://www.ine.gob.ni/index.php/electricidad/indicadores-de-calidad-delsuministro/
- 7. Juárez, J. D. (1995). Sistemas de Distribución de Energía Eléctrica. México, México.
- 8. Mikle, V. E. (1994). The Ladder Load-flow method extended to distribution network. Virginia, Estados Unidos.
- 9. P. Garcia, J. P. (2000). Three-phase power flow calculations using the current injection method.
- 10. S. Ghazali, K. N.-a. (2009). Parallel sequence decoupled full newton-raphson three phase power flow.
- 11. Srihari Mandava *, R. V. (n.d.). *IEEE*. Retrieved from https://ieeexplore.ieee.org/document/6838529


- 12. Srinivas, M. S. (2005). Distribution load flows: a brief review.
- 13. Stevenson, W. (1983). Sistemas Eléctricos de Potencia. México.
- 14. Telenema, E. R. (2019). SIMULACIÓN DE FLUJOS DE POTENCIA EN SISTEMAS ELÉCTRICOS DESACOPLADOS. QUITO, ECUADOR.
- 15. W. H. Kersting. (2002.). W. H. Kersting, "Distribution System Modeling and Analysis. New York, 2002.:" CRC Press.

Anexo I

Unifilar Red radial cuatro (4) nodos.

	DIGSILENT PowerFactory	Project:
	15.1.2	Date: 3/1/2021

Load Flow Calculation	Com	nplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Cu	uatron		Syster	n Stage	: Cuatro	on	Stu	dy Case:	Study C	ase		Annex	:	/ 1
	rated Voltage [kV]		-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		A	ddition	al Data	
Nodo 1 Cub_1 Cub_2	7.62 /Xnet /Lne	1.00 Extern L12	7.62 nal Grid	0.00	0.07	0.05 0.05	0.85 0.85	0.01	1.10	Sk": Pv:	10000.00 MVA 0.00 kW	cLod:	-0.00 Mvar L:	0.00 km
Nodo 2 Cub_1 Cub_2 Cub_3	7.62 /Lne /Lne /Lne	1.00 L12 L23 L24	7.62	-0.00	-0.07 0.04 0.03	-0.05 0.03 0.02	-0.85 0.85 0.85	0.01 0.00 0.00	1.10 0.63 0.47	Pv: Pv: Pv:	0.00 kW 0.11 kW 0.07 kW	cLod: cLod: cLod:	-0.00 Mvar L: 0.00 Mvar L: 0.00 Mvar L:	0.00 km 12.00 km 15.00 km
Nodo 3 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 P3 L23	7.59	-0.08	0.04 -0.04	0.03 -0.03	0.85 -0.85	0.00	0.63	P10: Pv:	0.04 MW 0.11 kW	Q10: cLod:	0.03 Mvar 0.00 Mvar L:	12.00 km
Nodo 4 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 P4 L24	7.60	-0.08	0.03	0.02 -0.02	0.85 -0.85	0.00	0.47	P10: Pv:	0.03 MW 0.07 kW	Q10: cLod:	0.02 Mvar 0.00 Mvar L:	15.00 km

	DIGSILENT PowerFactory	Project:
	15.1.2	Date: 3/1/2021

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Cuatron		System S	tage: Cu	atron	Study Case: Stu	ıdy Case		Annex:		/ 2
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - De	viation [%] +5	+10	
Nodo 1	7.62	1.000	7.62	0.00						
Nodo 2 Nodo 3	7.62	1.000	7.62	-0.00						
Nodo 4	7.62	0.997	7.59	-0.08						
T ODON	7.62	0.997	7.60	-0.08			•			

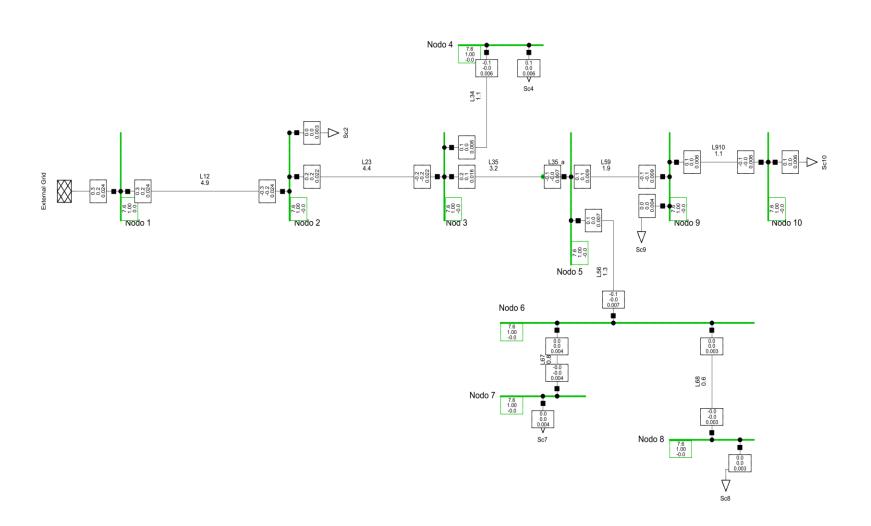
	DIGSILENT PowerFactory	Project:
	15.1.2	Date: 3/1/2021

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: C	uatron	S	ystem Stag	e: Cuatror	ı	Study Case: St	udy Case		Annex:	/ 3	
Volt. Level	Generation [MW]/ [Mvar]	Motor Load [MW]/ [Mvar]	Load [MW]/ [Mvar]	Compen- sation [MW]/ [Mvar]	External Infeed [MW]/ [Mvar]	Interchange to	Power Interchange [MW]/ [Mvar]	Total Losses [MW]/ [Mvar]	Load Losses [MW]/ [Mvar]	Noload Losses [MW]/ [Mvar]	
7.62	0.00	0.00	0.07 0.05	0.00	0.07 0.05			0.00	0.00	0.00	
Total:	0.00	0.00	0.07 0.05	0.00	0.07 0.05		0.00	0.00	0.00	0.00	

	DIGSILENT PowerFactorv	Project:
		Date: 3/1/2021

Load Flow Calculation	Com	mplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %


Total System Summa	ry				Study Case: Study Case	Annex:	/ 4		
Generation [MW]/ [Mvar]	Motor Load [MW]/ [Mvar]	Load [MW]/ [Mvar]	Compen- sation [MW]/ [Mvar]	External Infeed [MW]/ [Mvar]	Inter Area Flow [MW]/ [Mvar]	Total Losses [MW]/ [Mvar]	Load Losses [MW]/ [Mvar]	Noload Losses [MW]/ [Mvar]	
\Admin\Tesis4nodos 0.00 0.00	Network N 0.00 0.00	Model\Netwo 0.07 0.05	0.00 0.00	0.07 0.05	0.00 0.00	0.00	0.00	0.00	
Total: 0.00 0.00	0.00	0.07 0.05	0.00	0.07		0.00	0.00	0.00	

Anexo II

Unifilar Red radial diez (10) nodos.

	DIGSILENT PowerFactory	Project:
	15.1.2	Date: 3/1/2021

Load Flow Calculation	Cor	mplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: T1	0n		Syster	m Stage	: T10n		Stu	dy Case:	Study C	ase		Annex	:	/ 1
	rated Voltage [kV]	Bus	-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		A	dditior	nal Data	
Nodo 2 Cub_3 Cub_1 Cub_2	7.62 /Lod /Lne /Lne	1.00 Sc2 L12 L23	7.62	-0.00	0.02 -0.27 0.24	0.03 -0.18 0.15	0.56 -0.82 0.85	0.00 0.02 0.02	4.89 4.36	Pl0: Pv: Pv:	0.02 MW 0.04 kW 0.02 kW	Q10: cLod: cLod:	0.03 Mvar -0.00 Mvar L: 0.00 Mvar L:	0.11 km 0.08 km
Nodo 1 Cub_1 Cub_2	7.62 /Xnet /Lne	1.00 Exter L12	7.62 cnal Grid	0.00	0.27 0.27	0.18 0.18	0.82 0.82	0.02	4.89	Sk": Pv:	10000.00 MVA 0.04 kW	cLod:	-0.00 Mvar L:	0.11 km
Nod 3 Cub_1 Cub_2 Cub_3	7.62 /Lne /Lne /Lne	1.00 L23 L35 L34	7.62	-0.01	-0.24 0.18 0.06	-0.15 0.11 0.04	-0.85 0.85 0.85	0.02 0.02 0.01	4.36 3.22 1.14	Pv: Pv: Pv:	0.02 kW 0.01 kW 0.00 kW	cLod: cLod: cLod:	0.00 Mvar L: 0.00 Mvar L: 0.00 Mvar L:	0.08 km 0.05 km 0.15 km
Nodo 4 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc4 L34	7.62	-0.01	0.06	0.04 -0.04	0.85 -0.85	0.01	1.14	Pl0: Pv:	0.06 MW 0.00 kW	Q10: cLod:	0.04 Mvar 0.00 Mvar L:	0.15 km
Nodo 5 Cub_3 Cub_1	7.62 /Lne /Lne	1.00 L56 L35_a	7.62	-0.01	0.07	0.05 -0.05	0.85	0.01	1.33	Pv: Pv:	0.00 kW 0.00 kW	cLod:	0.00 Mvar L: 0.00 Mvar L:	0.07 km 0.05 km
Nodo 9 Cub_4 Cub_2 Cub_3	7.62 /Lod /Lne /Lne	1.00 Sc9 L910 L59	7.61	-0.02	0.04 0.06 -0.11	0.03 0.04 -0.07	0.85 0.85 -0.85	0.00 0.01 0.01	1.14 1.89	Pl0: Pv: Pv:	0.04 MW 0.05 kW 0.03 kW	Q10: cLod: cLod:	0.03 Mvar 0.00 Mvar L: 0.00 Mvar L:	2.50 km 0.60 km

Grid: T1	l0n		Syste	m Stage	: T10n		Stu	dy Case:	Study Ca	ase		Annex	:	/ 2
	rated Voltag [kV]		-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]	Additional Data				
Nodo 6 Cub_1 Cub_2 Cub_3	7.62 /Lne /Lne /Lne	1.00 L56 L67 L68	7.62	-0.01	-0.07 0.04 0.03	-0.05 0.03 0.02	-0.85 0.85 0.85	0.01 0.00 0.00	1.33 0.76 0.57	Pv: Pv: Pv:	0.00 kW 0.00 kW 0.00 kW	cLod: cLod: cLod:	0.00 Mvar L: 0.00 Mvar L: 0.00 Mvar L:	0.07 km 0.05 km 0.81 km
Nodo 7 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc7 L67	7.62	-0.01	0.04	0.03	0.85 -0.85	0.00	0.76	P10: Pv:	0.04 MW 0.00 kW	Q10: cLod:	0.03 Mvar 0.00 Mvar L:	0.05 km
Nodo 8 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc8 L68	7.62	-0.01	0.03	0.02 -0.02	0.85 -0.85	0.00	0.57	P10: Pv:	0.03 MW 0.00 kW	Q10: cLod:	0.02 Mvar 0.00 Mvar L:	0.81 km
Nodo 10 Cub_2 Cub_1	7.62 /Lod /Lne	1.00 Sc10 L910	7.61	-0.04	0.06	0.04	0.85 -0.85	0.01	1.14	P10: Pv:	0.06 MW 0.05 kW	Q10: cLod:	0.04 Mvar 0.00 Mvar L:	2.50 km

	DIGSILENT	Project:
	15.1.2	Date: 3/1/2021

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: T10n		System S	tage: T1	0n	Study Case:	Study Case	Annex:		/ 3	
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - D	eviation [%] +5	+10	
Nodo 2	7.62	1.000	7.62	-0.00						
Nodo 1	7.62	1.000		0.00						
Nod 3	7.62	1.000	7.62	-0.01						
Nodo 4 Nodo 5	7.62	1.000	7.62	-0.01						
Nodo 9	7.62	1.000	7.62	-0.01						
Nodo 6	7.62	0.999		-0.02			1			
Nodo 7	7.62	1.000		-0.01						
Nodo 8	7.62 7.62	1.000		-0.01 -0.01			1			
Nodo 10	7.62	0.998		-0.01			i			

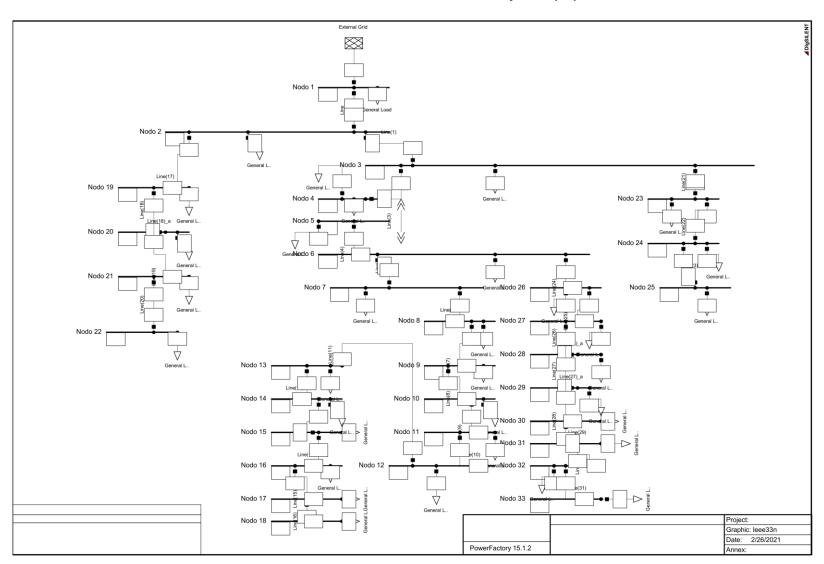
DIGSILENT	Project:
15.1.2	Date: 3/1/2021

Load Flow Calculation	Comp	plete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: T	Grid: T10n System Stage: T10n						udy Case	Annex:	/ 4		
Volt. Level [kV]	Generation [MW]/ [Mvar]	Motor Load [MW]/ [Mvar]	Load [MW]/ [Mvar]	Compen- sation [MW]/ [Mvar]	External Infeed [MW]/ [Mvar]	Interchange to	Power Interchange [MW]/ [Mvar]	Total Losses [MW]/ [Mvar]	Load Losses [MW]/ [Mvar]	Noload Losses [MW]/ [Mvar]	
7.62	0.00	0.00	0.27 0.18	0.00	0.27 0.18			0.00	0.00	0.00	
Total:	0.00	0.00	0.27 0.18	0.00	0.27 0.18		0.00	0.00	0.00	0.00	

	DIGSILENT PowerFactory	Project:		
	15.1.2	Date: 3/1/2021		

Load Flow Calculation	Con	mplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %


Total	System Summar	У				Study Case: Study Case	Annex:	/ 5		
Generation [MW]/ [Mvar]		Motor Load Load [MW]/ [MW]/ [Mvar] [Mvar]		Compen- Externa sation Infeed [MW]/ [MW]/ [Mvar] [Mvar]		Inter Area Flow [MW]/ [Mvar]	Total Losses [MW]/ [Mvar]	Load Losses [MW]/ [Mvar]	Noload Losses [MW]/ [Mvar]	
\Admin'	Tesis10 nodo 0.00 0.00	s\Network 0.00 0.00	Model\Net 0.27 0.18	work Data\ 0.00 0.00	T10n 0.27 0.18	0.00 0.00	0.00	0.00	0.00	
Total:	0.00	0.00	0.27 0.18	0.00	0.27 0.18		0.00	0.00	0.00	

<u>Anexo III</u>

Unifilar Red radial treinta y tres (33) nodos.

	DIGSILENT PowerFactory	Project:
	15.1.2	Date: 2/26/2021

Load Flow Calculation	Com	mplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Ie	rid: Ieee33n System Stage: Ieee33n						Stu	dy Case:	Study C	ase		Annex: / 1		
	rated Voltage [kV]	e Bus	s-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		A	dditional Data		
Nodo 1														
Cub_1 Cub_3 Cub_2	14.40 /Xnet /Lod /Lne	1.00 Exter Sc1 L12	14.40 cnal Grid	0.00	3.83 0.10 3.73	2.39 0.06 2.33	0.85 0.86 0.85	0.18 0.00 0.18	17.62	Sk": Pl0: Pv:	10000.00 MVA 0.10 MW 8.58 kW	Q10: 0.06 Mvar cLod: -0.00 Mvar L:	1.00 km	
Nodo 2														
Cub_4 Cub_1 Cub_2 Cub_3	14.40 /Lod /Lne /Lne /Lne	1.00 Sc2 L12 L23 L219	14.37	0.01	0.09 -3.72 3.36 0.27	0.04 -2.32 2.16 0.12	0.91 -0.85 0.84 0.91	0.00 0.18 0.16 0.01	17.62 16.05 1.19	Pl0: Pv: Pv: Pv:	0.09 MW 8.58 kW 38.08 kW 0.07 kW	Q10: 0.04 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km 1.00 km	
Nodo 3														
Cub_4 Cub_1 Cub_2 Cub_3	14.40 /Lod /Lne /Lne /Lne	0.99 Sc3 L23 L34 L323	14.22	0.07	0.12 -3.32 2.30 0.90	0.08 -2.14 1.63 0.43	0.83 -0.84 0.82 0.90	0.01 0.16 0.11 0.04	16.05 11.45 4.06	PlO: Pv: Pv: Pv:	0.12 MW 38.08 kW 14.39 kW 2.23 kW	Q10: 0.08 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km 1.00 km	
Nodo 4														
Cub_3 Cub_4 Cub_1 Cub_2	14.40 /Lod /Lod /Lne /Lne	0.98 Sc4 Gener L34 L45 Total	14.13	0.12	0.06 0.00 -2.28 2.22	0.03 0.00 -1.63 1.60	0.89 1.00 -0.81 0.81	0.00 0.00 0.11 0.11	11.45 11.18	Pl0: Pl0: Pv: Pv:	0.06 MW 0.00 MW 14.39 kW 14.28 kW	Q10: 0.03 Mvar Q10: 0.00 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km	
		Load:		_	0.06	0.03								

Grid: Ie	eee33n		System	m Stage	: Ieee3	3n	Stu	dy Case:	Study C	ase		Annex:		/ 2
	rated Voltage [kV]	Bus	-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		2	Additional Date	a	
Nodo 5 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.98 Sc5 L45 L56	14.05	0.17	0.06 -2.21 2.15	0.02 -1.59 1.57	0.95 -0.81 0.81	0.00 0.11 0.11	11.18 10.93	PlO: Pv: Pv:	0.06 MW 14.28 kW 29.35 kW	Q10: 0.02 cLod: -0.00 cLod: -0.00	Mvar L:	1.00 km
Nodo 6 Cub_4 Cub_1 Cub_2 Cub_3	14.40 /Lod /Lne /Lne /Lne	0.96 Sc6 L56 L67 L626	13.85	0.10	0.20 -2.12 0.98 0.94	0.10 -1.54 0.46 0.98	0.89 -0.81 0.90 0.69	0.01 0.11 0.05 0.06	10.93 4.52 5.66	Pl0: Pv: Pv: Pv:	0.20 MW 29.35 kW 1.15 kW 1.95 kW	Q10: 0.10 CLod: -0.00 CLod	Mvar L: Mvar L:	1.00 km 1.00 km 1.00 km
Nodo 7 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.96 Sc7 L67 L78	13.82	-0.05	0.20 -0.98 0.78	0.10 -0.46 0.36	0.89 -0.91 0.91	0.01 0.05 0.04	4.52 3.58	PlO: Pv: Pv:	0.20 MW 1.15 kW 2.74 kW	Q10: 0.10 cLod: -0.00 cLod: 0.00		1.00 km
Nodo 8 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.96 Sc8 L78 L89	13.77	-0.03	0.06 -0.78 0.72	0.02 -0.36 0.34	0.95 -0.91 0.90	0.00 0.04 0.03	3.58 3.32	PlO: Pv: Pv:	0.06 MW 2.74 kW 3.41 kW		Mvar Mvar L: Mvar L:	1.00 km
Nodo 9 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.95 Sc9 L89 L910	13.70	-0.09	0.06 -0.71 0.65	0.02 -0.34 0.32	0.95 -0.90 0.90	0.00 0.03 0.03	3.32 3.06	PlO: Pv: Pv:	0.06 MW 3.41 kW 2.92 kW		Mvar Mvar L: Mvar L:	1.00 km
Nodo 10 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.95 Sc10 L910 L1011	13.63	-0.13	0.04 -0.65 0.60	0.03 -0.31 0.28	0.83 -0.90 0.91	0.00 0.03 0.03	3.06 2.83	PlO: Pv: Pv:	0.05 MW 2.92 kW 0.47 kW		Mvar Mvar L: Mvar L:	1.00 km
Nodo 11 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.95 Sc11 L1011 Line1		-0.13	0.06 -0.60 0.54	0.03 -0.28 0.25	0.86 -0.91 0.91	0.00 0.03 0.03	2.83 2.54	Pl0: Pv: Pv:	0.06 MW 0.47 kW 0.72 kW		Mvar Mvar L: Mvar L:	1.00 km 1.00 km

Grid: Ie	eee33n		Syster	n Stage	: Ieee3	3n	Stu	dy Case:	Study Ca	ase		Annex	:	/ 3
	rated Voltage [kV]	Bus-	-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		А	ddition	al Data	
Nodo 12 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc12 Line1: L1213	13.60 112	-0.12	0.06 -0.54 0.48	0.03 -0.25 0.21	0.86 -0.91 0.92	0.00 0.03 0.02	2.54 2.24	PlO: Pv: Pv:	0.06 MW 0.72 kW 2.21 kW	Q10: cLod: cLod:	0.04 Mvar 0.00 Mvar L: 0.00 Mvar L:	1.00 km 1.00 km
Nodo 13 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc13 L1213 L1314	13.53	-0.20	0.12 -0.48 0.36	0.08 -0.21 0.13	0.83 -0.92 0.94	0.01 0.02 0.02	2.24	P10: Pv: Pv:	0.12 MW 2.21 kW 0.44 kW	Q10: cLod: cLod:	0.08 Mvar 0.00 Mvar L: 0.00 Mvar L:	1.00 km 1.00 km
Nodo 14 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc14 L1314 L1415	13.51	-0.26	0.06 -0.36 0.30	0.01 -0.13 0.12	0.99 -0.94 0.93	0.00 0.02 0.01	1.64 1.39	Pl0: Pv: Pv:	0.06 MW 0.44 kW 0.34 kW	Q10: cLod: cLod:	0.01 Mvar 0.00 Mvar L: 0.00 Mvar L:	1.00 km
Nodo 15 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc15 L1415 L1516	13.49	-0.28	0.06 -0.30 0.24	0.02 -0.12 0.10	0.95 -0.93 0.92	0.00 0.01 0.01	1.39 1.12	PlO: Pv: Pv:	0.06 MW 0.34 kW 0.28 kW	Q10: cLod: cLod:	0.02 Mvar 0.00 Mvar L: 0.00 Mvar L:	1.00 km 1.00 km
Nodo 16 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc16 L1516 1617	13.48	-0.30	0.06 -0.24 0.18	0.02 -0.10 0.08	0.95 -0.92 0.91	0.00 0.01 0.01	1.12 0.85	P10: Pv: Pv:	0.06 MW 0.28 kW 0.28 kW	Q10: cLod: cLod:	0.02 Mvar 0.00 Mvar L: 0.00 Mvar L:	1.00 km 1.00 km
Nodo 17 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.93 Sc17 1617 L1718	13.45	-0.37	0.09 -0.18 0.09	0.04 -0.08 0.04	0.91 -0.91 0.91	0.00 0.01 0.00	0.85 0.42	P10: Pv: Pv:	0.09 MW 0.28 kW 0.04 kW	Q10: cLod: cLod:	0.04 Mvar 0.00 Mvar L: 0.00 Mvar L:	1.00 km 1.00 km
Nodo 18 Cub_2 Cub_1	14.40 /Lod /Lne	0.93 Sc18 L1718	13.44	-0.37	0.09	0.04	0.91 -0.91	0.00	0.42	PlO: Pv:	0.09 MW 0.04 kW	Q10: cLod:	0.04 Mvar 0.00 Mvar L:	1.00 km

Grid: Ie	eee33n		System	n Stage	: Ieee3	3n	Stu	dy Case:	Study C	ase		Annex:	/ 4
	rated Voltage [kV]		-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		A	dditional Data	
Nodo 19 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	1.00 Sc19 L219 L1920	14.35	-0.10	0.09 -0.27 0.18	0.04 -0.12 0.08	0.91 -0.91 0.91	0.00 0.01 0.01	1.19	P10: Pv: Pv:	0.09 MW 0.07 kW 0.14 kW	Q10: 0.04 Mvar cLod: -0.00 Mvar L: cLod: 0.00 Mvar L:	1.00 km 0.50 km
Nodo 20 Cub_2	14.40 /Lod	0.00 Sc20	0.00	0.00	0.00	0.00	1.00	0.00		P10:	0.09 MW	Q10: 0.04 Mvar	
Nodo 21 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	1.00 Sc21 L2021 L2122	14.33	-0.13	0.09 -0.18 0.09	0.04 -0.08 0.04	0.91 -0.91 0.91	0.00 0.01 0.00	0.79	PlO: Pv: Pv:	0.09 MW 0.08 kW 0.03 kW	Q10: 0.04 Mvar cLod: 0.00 Mvar L: cLod: 0.00 Mvar L:	1.00 km 1.00 km
Nodo 22 Cub_2 Cub_1	14.40 /Lod /Lne	0.99 Sc22 L2122	14.32	-0.15	0.09	0.04 -0.04	0.91	0.00	0.40	P10: Pv:	0.09 MW 0.03 kW	Q10: 0.04 Mvar cLod: 0.00 Mvar L:	1.00 km
Nodo 23 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.98 Sc23 L323 L2324	14.18	0.05	0.42 -0.90 0.48	0.20 -0.43 0.23	0.90 -0.90 0.91	0.02 0.04 0.02	4.06 2.17	P10: Pv: Pv:	0.42 MW 2.23 kW 1.26 kW	Q10: 0.20 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 24 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.98 Sc24 L2324 L2425	14.14	0.01	0.42 -0.48 0.06	0.20 -0.23 0.03	0.90 -0.91 0.92	0.02 0.02 0.00	2.17 0.27	PlO: Pv: Pv:	0.42 MW 1.26 kW 0.02 kW	Q10: 0.20 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 25 Cub_2 Cub_1	14.40 /Lod /Lne	0.98 Sc25 L2425	14.13	0.00	0.06	0.02	0.92 -0.92	0.00	0.27	PlO: Pv:	0.06 MW 0.02 kW	Q10: 0.03 Mvar cLod: -0.00 Mvar L:	1.00 km
Nodo 26 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.96 Sc26 L626 L2627	13.83	0.13	0.06 -0.94 0.88	0.02 -0.98 0.95	0.92 -0.69 0.68	0.00 0.06 0.05	5.66 5.41	P10: Pv: Pv:	0.06 MW 1.95 kW 2.50 kW	Q10: 0.03 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km

Grid: Ie	eee33n		Syster	m Stage	: Ieee33	3n	Stu	dy Case:	Study C	ase		Annex:	/ 5
	rated Voltage [kV]	Bus	-voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]		Current [kA]	Loading [%]		А	dditional Data	
Nodo 27 Cub_3 Cub_1 Cub_4	14.40 /Lod /Lne /Lne	0.96 Sc27 L2627 L2728	13.80	0.18	0.06 -0.88 0.82	0.02 -0.95 0.93	0.95 -0.68 0.66	0.00 0.05 0.05	5.41 5.18	PlO: Pv: Pv:	0.06 MW 2.50 kW 8.54 kW	Q10: 0.02 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 28 Cub_2 Cub_3 Cub_4	14.40 /Lod /Lne /Lne	0.95 Sc28 L2728 L2829	13.67	0.25	0.12 -0.81 0.69	0.07 -0.93 0.86	0.86 -0.66 0.63	0.01 0.05 0.05	5.18 4.63	PlO: Pv: Pv:	0.12 MW 8.54 kW 5.18 kW	Q10: 0.07 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 29 Cub_2 Cub_3 Cub_4	14.40 /Lod /Lne /Lne	0.94 Sc29 L2829 L2930	13.59	0.31	0.20 -0.68 0.48	0.60 -0.85 0.25	0.32 -0.63 0.89	0.03 0.05 0.02	4.63 2.31	PlO: Pv: Pv:	0.20 MW 5.18 kW 0.81 kW	Q10: 0.60 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 30 Cub_3 Cub_4 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc30 L2930 L3031	13.57	0.31	0.15 -0.48 0.33	0.07 -0.25 0.18	0.91 -0.89 0.88	0.01 0.02 0.02	2.31	PlO: Pv: Pv:	0.15 MW 0.81 kW 0.75 kW	Q10: 0.07 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 31 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc31 L3031 L3132	13.53	0.27	0.21 -0.33 0.12	0.10 -0.18 0.08	0.90 -0.88 0.83	0.01 0.02 0.01	1.60 0.62	PlO: Pv: Pv:	0.21 MW 0.75 kW 0.04 kW	Q10: 0.10 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 32 Cub_3 Cub_1 Cub_2	14.40 /Lod /Lne /Lne	0.94 Sc32 L3132 L3233	13.53	0.26	0.06 -0.12 0.06	0.04 -0.08 0.04	0.83 -0.83 0.83	0.00 0.01 0.00	0.62 0.31	PlO: Pv: Pv:	0.06 MW 0.04 kW 0.01 kW	Q10: 0.04 Mvar cLod: -0.00 Mvar L: cLod: -0.00 Mvar L:	1.00 km 1.00 km
Nodo 33 Cub_2 Cub_1	14.40 /Lod /Lne	0.94 Sc33 L3233	13.52	0.25	0.06	0.04	0.83 -0.83	0.00	0.31	PlO: Pv:	0.06 MW 0.01 kW	Q10: 0.04 Mvar cLod: -0.00 Mvar L:	1.00 km

	DIGSILENT PowerFactory	Project:
	15.1.2	Date: 2/26/2021

Load Flow Calculation	Com	plete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: Ieee33n		System St	age: Ie	ee33n	Study	Case:	Study	Case		Annex:		/ 6
	rtd.V [kV]	Bus -	voltage [kV]	e [deg]		-10		- 5	Voltage - Dev 0	viation [%] +5	+10	
Nodo 1		4 000							1			
Nodo 2	14.40	1.000	14.40	0.00								
Nodo 3	14.40	0.998	14.37	0.01					1			
	14.40	0.987	14.22	0.07								
Nodo 4	14.40	0.982	14.13	0.12								
Nodo 5	14.40	0.976	14.05	0.17								
Nodo 6	14.40	0.962	13.85	0.10				_				
Nodo 7								_				
Nodo 8	14.40	0.959	13.82	-0.05				_				
Nodo 9	14.40	0.956	13.77	-0.03								
Nodo 10	14.40	0.951	13.70	-0.09								
	14.40	0.947	13.63	-0.13								
Nodo 11	14.40	0.946	13.62	-0.13								
Nodo 12	14.40	0.945	13.60									
Nodo 13												
Nodo 14	14.40	0.940	13.53									
Nodo 15	14.40	0.938	13.51	-0.26								
Nodo 16	14.40	0.937	13.49	-0.28								
	14.40	0.936	13.48	-0.30			-					
Nodo 17	14.40	0.934	13.45	-0.37								

Grid: Ieee33n		System S	tage: Ie	ee33n	Study Case: St	udy Case		Annex:		/ 7
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - I	Deviation [%] +5	+10	
Nodo 18										
Nodo 19	14.40	0.933	13.44	-0.37						
Nodo 20	14.40	0.997	14.35	-0.10						
	14.40	0.000	0.00	0.00		///////////////////////////////////////	V/////			
Nodo 21	14.40	0.995	14.33	-0.13						
Nodo 22										
Nodo 23	14.40	0.995	14.32	-0.15			•			
Nodo 24	14.40	0.985	14.18	0.05						
	14.40	0.982	14.14	0.01						
Nodo 25	14.40	0.981	14.13	0.00						
Nodo 26	14.40	0.960	13.83	0.13						
Nodo 27										
Nodo 28	14.40	0.958	13.80	0.18						
	14.40	0.950	13.67	0.25						
Nodo 29	14.40	0.944	13.59	0.31						
Nodo 30	14.40	0.942	13.57	0.31						
Nodo 31										
Nodo 32	14.40	0.940	13.53	0.27						
Nodo 33	14.40	0.939	13.53	0.26						
NOGO 33	14.40	0.939	13.52	0.25						

	DIgSILENT PowerFactorv	Project:
	15.1.2	Date: 2/26/2021

Load Flow Calculation	Com	nplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Grid: I	eee33n	S	ystem Stag	e: Ieee33r	1	Study Case: St	udy Case		Annex:		/ 8
Volt. Level [kV]	Generation [MW]/ [Mvar]	Motor Load [MW]/ [Mvar]	Load [MW]/ [Mvar]	Compen- sation [MW]/ [Mvar]	External Infeed [MW]/ [Mvar]	Interchange to	Power Interchange [MW]/ [Mvar]	Total Losses [MW]/ [Mvar]	Load Losses [MW]/ [Mvar]	Noload Losses [MW]/ [Mvar]	
14.40	0.00	0.00	3.68 2.29	0.00	3.83 2.39			0.14	0.14 0.10	0.00	
Total:	0.00	0.00	3.68 2.29	0.00	3.83 2.39		0.00	0.14	0.14	0.00	

	DIgSILENT PowerFactory	Project:
	15.1.2	Date: 2/26/2021

Load Flow Calculation	Com	mplete System Report: Substations, Voltage Profiles,	Grid Interchange
AC Load Flow, balanced, positive sequence Automatic Tap Adjust of Transformers	No	Automatic Model Adaptation for Convergence Max. Acceptable Load Flow Error for	No
Consider Reactive Power Limits	No	Nodes Model Equations	1.00 kVA 0.10 %

Total System Summary					Study Case: Study Case		Annex:		/ 9
Generatio [MW]/ [Mvar]	on Motor Load [MW]/ [Mvar]	Load [MW]/ [Mvar]	Compen- sation [MW]/ [Mvar]	External Infeed [MW]/ [Mvar]	Inter Area Flow [MW]/ [Mvar]	Total Losses [MW]/ [Mvar]	Load Losses [MW]/ [Mvar]	Noload Losses [MW]/ [Mvar]	
\Admin\Tesisieee	33\Network M	Model\Netwo	rk Data\Ie	ee33n					
0.00	0.00	3.68	0.00	3.83 2.39	0.00	0.14 0.10	0.14 0.10	0.00	
Total:									
0.00	0.00	3.68 2.29	0.00	3.83 2.39		0.14 0.10	0.14 0.10	0.00	