

UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Tecnología de la Construcción

Monografía

ESTUDIO HIDROTÉCNICO PARA EL DISEÑO DEL PUENTE VEHICULAR EN EL BARRIO JAVIER CUADRA, DISTRITO DOS DE MANAGUA.

Para optar al título de Ingeniero Civil

Elaborado por

Br. Álvaro José Rivera Caldera Br. Orlando Antonio Espinoza Peralta

Tutor

M.Sc. Ing. José Ángel Baltodano.

Managua, Enero 2019

DEDICATORIA

Este logro es para el más importante de todo Dios, el creador del universo.

A mi mama Laura Caldera López quien me ha animado en todo momento, me ha dado su amor y cariño.

A mi hermano Roberto Rivera Caldera quien me ha apoyado en todo momento sin pedir nada a cambio.

A mi papa Pedro Pablo Rivera Victor quien me cuido en mi infancia y ya está en otro plano de vida.

Álvaro Rivera.

DEDICATORIA

A Dios Padre todo poderoso.

Con todo el amor del mundo a mi Mamá Olivia Peralta que ha estado a mi lado apoyándome, dándome fortaleza en esta ardua tarea de lograr mis metas en la vida que se logran con mucho esfuerzo, dedicación y trabajo arduo.

A mi Papa Orlando Espinoza que con su ejemplo de trabajo, honrado y buenos valores transmitidos a lo largo de mi vida siempre a salir adelante.

A mi hijo Orlando Espinoza que ha sido un pilar fundamental para salir adelante en mis metas y propósitos de vida.

A mis Abuelos que siempre desearon lo mejor de ellos para que nosotros fuéramos personas de bien.

Orlando Espinoza

AGRADECIMIENTO

A Dios Padre todo Poderoso por darnos la vida y la oportunidad de realizar esta ardua tarea.

A nuestros Padres por apoyarnos en todos los momentos de nuestra vida.

A nuestro tutor, Ing. José Ángel Baltodano, por su ayuda y por la de transmitirnos sus conocimientos y tiempo para la realización de este documento.

Al Dr. Néstor Lanzas y al Ing. Diego Ortiz por bridarnos sus consejos y su tiempo que fueron de gran ayuda.

A los Ingenieros Fredy Sarrias, Juan Carlos, Cinthia Miranda y Luis Huete de la de las áreas de drenaje y al Ingeniero Henry Mórales del Distrito 2 de la Alcaldía de Managua.

RESUMEN

Con el presente "Estudio Hidrotécnico para el diseño del puente vehicular en el Barrio Javier Cuadra ubicado en el Distrito Dos de Managua" se pretende eliminar los problemas de inundación que se dan en esta área y contar con una vía alterna que comunique la pista 17 Avenida con la Pista República de Chile.

Este estudio está compuesto en dos partes, un estudio Hidrológico y el otro Hidráulico. Para la realización del Estudio Hidrológico se utilizó el programa Arc GIS 10.3 con el cual se extrae las características de las cuencas por medio de un DEM (Modelo Digital de Elevación), posteriormente estos datos son exportados a HEC-HMS 3.5 donde se une la información de relieve y datos meteorológicos de la cuenca lo que permite calcular el caudal de diseño.

Luego de haber obtenido el caudal de diseño se utiliza el programa HEC-RAS 5.0.3 el que permite realizar simulaciones hidráulicas basadas en la geometría del cauce obtenida por medio de levantamiento topográfico con estación total.

Por medio de HEC-RAS 5.0.3 se evaluó la sección existente del cauce concluyendo su necesaria ampliación, según las simulaciones realizadas, la más conveniente indica una ampliación de un metro del ancho del cauce aguas arriba y 1.5 m aguas abajo. También se determinó un cambio de sección trapezoidal en las secciones cercanas al puente, lo que nos permite reducir en 0.88 m la rasante del puente con respecto a las calles debido al desnivel existente entre estas y las paredes del cauce.

ÍNDICE DE CONTENIDO

1. CAPÍTULO: GENERALIDADES	1
4.4 INTRODUCCIÓN	4
1.1 INTRODUCCIÓN 1.2 ANTECEDENTES	1
1.2 ANTECEDENTES 1.3 JUSTIFICACIÓN	3
1.4 OBJETIVOS	
1.4.1 OBJETIVOS 1.4.1 OBJETIVO GENERAL	4
1.4.2 OBJETIVO GENERAL 1.4.2 OBJETIVOS ESPECÍFICOS	4
1.4.2 Objetivos especificos	4
2 CAPÍTULO: DESCRIPCIÓN DEL ÁREA DE ESTUDIO	5
24 Leouzzeán	_
2.1 LOCALIZACIÓN	5
2.1.1 MACROLOCALIZACIÓN	5
2.1.2 MICROLOCALIZACIÓN	6 7
2.2 CLIMATOLOGÍA	
2.3 GEOMORFOLOGÍA	8
2.4 TIPO DE SUELO 2.5 USO DE SUELO	
2.5 USO DE SUELO	8
3 CAPÍTULO: MARCO TEÓRICO	9
	_
3.1 ESTUDIO HIDROLÓGICO	9
3.1.1 PARÁMETROS GEOMORFOMÉTRICOS DE UNA CUENCA	9
3.1.2 ANÁLISIS ESTADÍSTICO DE DATOS HIDROLÓGICOS DE PRECIPITACIÓN	17
3.1.3 MODELACIÓN HIDROLÓGICA Y TRANSITO DE AVENIDA	20
3.1.4 MODELACIÓN HIDRÁULICA	28
4 CAPÍTULO: DISEÑO METODOLÓGICO	43
4.1 TRABAJO DE CAMPO	43
A. VISITA DE CAMPO	43
B. LEVANTAMIENTO TOPOGRÁFICO	43
4.2 RECOLECCIÓN DE LA INFORMACIÓN EXISTENTE	44
4.3 ESTUDIO HIDROLÓGICO	44
4.3.1 CÁLCULOS DE PARÁMETROS MORFOMÉTRICOS	45
4.3.2 METODOLOGÍA DE SIMULACIÓN HIDROLÓGICA CON HEC-HMS 3.5	48
4.4 ESTUDIO HIDRÁULICO	51
4.4.1 ΜΕΤΟΡΟΙ ΟΘίΑ ΤΕ SIMULACIÓN HIDPÁULICA CON HEC-RAS 5.0.3	51

<u>5 CAPITULO: ANALISIS E INTERPRETACION DE RESULTADOS</u>	53
5.1 CARACTERÍSTICAS FÍSICAS DE LA CUENCA	54
5.1.1 RELIEVE	54
5.1.2 CARACTERÍSTICA DE LA RED HÍDRICA	58
5.2 ESTUDIO HIDROLÓGICO CON HEC-HMS 3.5	58
5.2.1 MODELO HIDROLÓGICO DE LA CUENCA	60
5.2.2 PARÁMETROS DEL TRÁNSITO DE MUSKINGUM	61
5.2.3 ABSTRACCIÓN INICIAL	62
5.2.4 MODELO METEOROLÓGICO	63
5.2.5 DATOS DE SERIES DE TIEMPOS	64
5.2.6 ESPECIFICACIONES DE CONTROL	67
5.2.7 MICROPRESAS EXISTENTES	67
5.2.8 RESULTADO DE LA SIMULACIÓN HIDROLÓGICA CON HEC-HMS 3.5	68
5.3 ESTUDIO HIDRÁULICO CON HEC-RAS 5.0.3	69
5.3.1 DATOS GEOMÉTRICOS	70
5.3.2 UBICACIÓN DEL PUENTE	71
5.3.3 PERFIL DE FLUJO PARA LA MODELACIÓN	72
5.3.4 RESULTADOS DE SIMULACIÓN HIDRÁULICA EN LAS ESTRUCTURAS EXIS	TENTES. 73
5.3.5 SIMULACIÓN HIDRÁULICA CON MICROPRESA PROPUESTA	74
5.3.6 SIMULACIÓN HIDRÁULICA SIN MICROPRESA PROPUESTA	79
CONCLUSIONES	82
RECOMENDACIONES	83
BIBLIOGRAFÍA	84

ANEXOS

ÍNDICE DE TABLAS

Tabla 1 Valores del tamaño de Cuencas	10
Tabla 2 Valores de Forma	12
Tabla 3 Valores de Masividad	12
Tabla 4 Clasificación de Densidades de Drenaje	12
Tabla 5 Valores de Compacidad	13
Tabla 6 Clasificación de Pendiente	14
Tabla 7 Clases de Desnivel	16
Tabla 8 Clasificación de orden de corriente	16
Tabla 9 Clasificación de longitudes de cauce	17
Tabla 10 Valores de Deltas Críticos para Distintos TR y Alfas	19
Tabla 11 Periodos de retorno	20
Tabla 12 Valores de CN para distintos tipos de suelo	
Tabla 13 Coeficientes de Contracción y Expansión en Flujo Subcritico	34
Tabla 14 Características físicas de la cuenca	54
Tabla 15 Pendiente Media de la cuenca	55
Tabla 16 Elevaciones de la cuenca	56
Tabla 17 Ríos del cauce principal	58
Tabla 18 Características de la red hídrica	58
Tabla 19 Datos de la Tabla de atributos de la cuenca	59
Tabla 20 Tabla de atributos de la capa shepe Rivers556	
Tabla 21 Cálculo de precipitación TR25	65
Tabla 22 Distintos periodos de retorno	75

ÍNDICE DE FIGURAS

Figura 1 Macrolocalización	5
Figura 2 Subcuencas de la cuenca sur de Managua	6
Figura 3 Ubicación de microcuenca "c" en subcuenca II	7
Figura 4 Cuenca Hidrográfica	11
Figura 5 Curva Hipsométrica	
Figura 6 Infiltración y exceso de precipitación	23
Figura 7 Esquema de rio	
Figura 8 Secciones del Rio	
Figura 9 Sección transversal	
Figura 10 Planicie de Inundación	32
Figura 11 Áreas Inefectivas de Flujo	33
Figura 12 Ubicación de las secciones del puente en perfil	35
Figura 13 Ubicación geométrica del tablero del puente	36
Figura 14 Editor para los diferentes perfiles de flujo	37
Figura 15 Condiciones de contorno	38
Figura 16 Plan de análisis de flujo uniforme	39
Figura 17 Modelo Digital de Elevación (DEM)	53
Figura 18 Curva Hipsométrica	
Figura 19 Distribución de frecuencia de elevaciones	57
Figura 20 Modelo de la cuenca	
Figura 21 Parámetros de Muskingum en HEC-HMS 3.5	62
Figura 22 Abstracción inicial	
Figura 23 Modelo meteorológico	64
Figura 24 Gage de las subcuencas	
Figura 25 Hietograma de diseño (Bloques alternos)	65
Figura 26 Datos de series de tiempo	
Figura 27 Hietrograma de diseño	
Figura 28 Especificaciones de control	
Figura 29 Datos de tubería de descarga en micropresa	
Figura 30 Resultado en punto de cierre TR10	
Figura 31 Resultados en punto de cierre TR25	
Figura 32 Resultado en punto de cierre TR50	
Figura 33 Esquema de la geometría del cauce Javier Cuadra	70
Figura 34 Ventana bridge designe	
Figura 35 Ventana de perfil de flujo	72
Figura 36 Ventana de condiciones de contorno	
Figura 37 Simulación estructura existente TR10	
Figura 38 Ubicación de micropresa propuesta	
Figura 39 Resultado en punto de cierre con micropresa propuesta	
Figura 40 Simulación de estructuras existentes con micropresa propuesta TR	25
Figura 41 Diseño en Hoanales V 3.0 para el tramo aguas arriba	77

Figura 42 Diseño en Hcanales V 3.0 para las secciones bajo el puente	77
Figura 43 Simulación con ampliación y desbordamiento	78
Figura 44 Sección aguas arriba del puente	78
Figura 45 Simulación sin desbordamiento	79
Figura 46 Diseño en Hcanales V 3.0 para el tramo aguas arriba, sin micropresa	ì
	80
Figura 47 Diseño en Hcanales V 3.0, para la sección bajo el puente, sin	
micropresa	80
Figura 48 Simulación de sección ampliada, sin micropresa	81

1. CAPÍTULO: GENERALIDADES

1.1 INTRODUCCIÓN

Managua es una ciudad que ha crecido desordenadamente y con una población en rápido crecimiento y una baja inversión en su infraestructura, lo que la convierte en una ciudad muy vulnerable a los fenómenos naturales. Provocando el colapso de carreteras, puentes, cauces y líneas de abastecimiento de agua.

Las urbanizaciones de las partes altas de la cuenca sur del lago de Managua ha causado la impermeabilización de las zonas que servían de infiltración de las aguas y por ende el aumento de la escorrentía superficial a las partes bajas de la cuenca. Teniendo como consecuencia el desborde de cauces con lluvias moderadas poniendo en riesgo la vida de miles de ciudadanos que habitan cerca de cauces y avenidas, así como las pérdidas y daños en sus propiedades.

Otra problemática de la ciudad de Managua es el crecimiento exponencial del parque vehicular, un crecimiento que no es acorde a la ampliación de la red vial, lo que causa congestionamientos y pérdida de tiempo.

Con el presente "Estudio hidrotécnico para el diseño del puente vehicular, en el barrio Javier Cuadra, distrito dos de Managua" se pretende eliminar los problemas de inundaciones en la población aledaña y disminuir el descongestionamiento vial en la zona.

Para la ejecución de este estudio se utilizaron los programas especializados: ArcGIS 10.3, HEC-HMS 3.5, HEC-RAS 5.0.3 y Hcanales V 3.0, con los cuales se determinó las dimensiones óptimas del cauce y elevaciones del puente para los caudales de diseño.

1.2 ANTECEDENTES

Managua no fue transformada en una ciudad moderna, adecuada al terreno en que está asentada, relieve que pasa desde los 40 metros sobre el nivel del mar, a orillas del lago Xolotlán, hasta llegar a unos 947 metros de altura en la parte más alta de El Crucero.

Estas diferencias de altura en su relieve, sumado al crecimiento desordenado de la cuenca sur del lago de Managua en la década de los 90 y 2000, y a un acelerado cambio climático que provoca intensas lluvias en cortos periodos de tiempo ha causado el colapso de las estructuras de desagüe en la capital.

En la última década la administración actual de la alcaldía de Managua ha abordado la problemática con obras de defensa como mini presas, utilización de gaviones para la protección de taludes y revestimiento de cauces naturales, entre otras cosas. La tarea aunque es sumamente dura, con recursos insuficientes para enfrentarla en toda su magnitud, con estas obras de mitigación se ha logrado preservar la vida y bienes materiales de los más necesitados.

En 1985 se realizó el Estudio de Manejo del Sistema de Drenaje Pluvial de Managua utilizando el programa computacional HYMO, donde se determina la ampliación del cauce Occidental para un caudal de Diseño de 158 m³/s.

En la actualidad para el diseño de obras hidráulicas se cuenta con herramientas informáticas como: ArcGIS 10.3, HEC-HMS 3.5 y HEC-RAS 5.0.3 los que se han utilizado en una gran variedad de estudios hidrotécnico de los cuales podemos mencionar las siguientes Monografías "Estudio Hidrotécnico del puente vehicular tierra prometida, en el Distrito III del Municipio de Managua. 2015" y en el "Diseño Hidráulico para extensión del cauce las Américas IV en el Distrito 6 de la Ciudad de Managua 2013", entre muchos otros.

1.3 JUSTIFICACIÓN

El colapso de las estructuras de drenaje en la capital ha provocado daños en cientos de viviendas y la reubicación de miles de damnificados por las lluvias, así como el cierre de vías.

Esta situación tiende a empeorar con los efectos del cambio climático que más que una teoría es una realidad y por ende las autoridades municipales tiene que tratar de mitigar los daños causados a la población más vulnerable asentada a orillas de cauces y avenidas.

En los últimos años la Alcaldía de Managua ha destinado C\$ 30, 000, 000 por año como un fondo de emergencia para cubrir las afectaciones provocadas por los fenómenos naturales. Parte de estos fondos son utilizados para construcción de paredes con gaviones en taludes naturales, reparaciones en revestimiento de cauces, reubicación de viviendas anegadas, reemplazo de tuberías, daños en la carpeta de rodamiento.

Con el presente: "Estudio hidrotécnico para el diseño del puente vehicular en el Barrio Javier Cuadra, distrito dos de Managua", se pretende sentar las bases para el mejoramiento de la calidad de vida de familias afectadas por las lluvias, así como la circulación vial y peatonal fluida durante los meses de invierno.

Con la puesta en marcha de este estudio se estima la reducción de los daños ocasionados por desborde del cauce beneficiando a más de 500 familias afectadas por las inundaciones.

1.4 OBJETIVOS

1.4.1 Objetivo General

Realizar estudio hidrotécnico para el diseño del puente vehicular en el barrio Javier Cuadra, distrito dos de Managua.

1.4.2 Objetivos específicos

- 1. Realizar un estudio hidrológico en la cuenca de estudio con la finalidad de conocer el caudal de diseño que deberá evacuar las obras de cruce propuestas.
- 2. Evaluar las estructuras de drenaje existentes, condiciones físicas actuales, dimensiones y capacidad de trasporte de caudales.
- 3. Determinar, por medio de un estudio hidráulico, las dimensiones óptimas de las obras de drenaje para los caudales de diseño, tomando en cuenta las características de la zona y el trazado de la vía.
- 4. Proponer las obras de desagüe complementarias a las obras a diseñar.

2 CAPÍTULO: DESCRIPCIÓN DEL ÁREA DE ESTUDIO¹

En este capítulo se hace una breve descripción de las principales características físicas naturales del área de estudio como: localización, relieve, clima, tipo y uso de suelo.

2.1 Localización

2.1.1 Macrolocalización

El área de estudio se encuentra ubicada en la cuenca sur del lago de Managua.

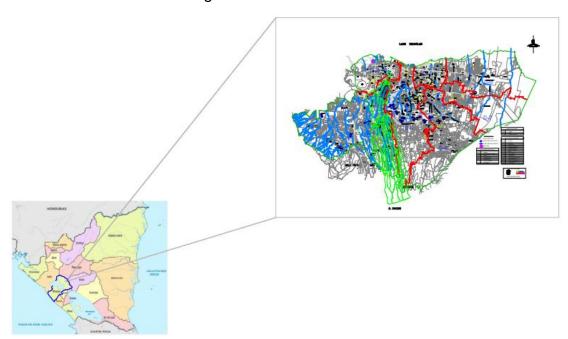


Figura 1 Macrolocalización

Fuente: Elaboración propia

5

¹ IRENA, diagnostico preliminar microcuenca "c", 1992

Forma parte de la subcuenca II que a su vez, junto con las subcuencas I, III y IV, pertenecen a la cuenca 69 del gran lago Cocibolca y del Rio San Juan.

Figura 2 Subcuencas de la cuenca sur de Managua

Fuente: INTERCONSULT 2002.

2.1.2 Microlocalización

El área de estudio forma parte de la microcuenca "c" de la subcuenca II de la cuenca sur del lago de Managua. Comprende un área de 37.54 Km² lo que corresponde al 93.85% del área de la microcuenca de 40Km².

Abarca parte de los distritos uno, dos, tres y partes del municipio El Crucero.

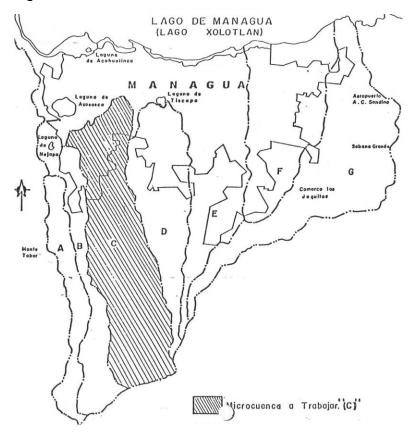


Figura 3 Ubicación de microcuenca "c" en subcuenca II

Fuente: IRENA, diagnostico preliminar microcuenca "c", 1992

2.2 Climatología

De acuerdo a la clasificación de Köppen, el clima de la cuenca Sur es tropical de sabana, con transiciones a sub-tropical semi-húmedo. La precipitación varía de 600 mm a 1,800 mm/año, siendo la media anual de 1,350 mm/año.

Existe una marcada época seca durante seis meses del año (de noviembre a abril). Durante la época seca, el promedio de lluvias es de 0 a 3 mm.

Los meses de febrero y marzo son los meses más secos. Los de mayor precipitación son los de septiembre y octubre que reciben un promedio de 200 a 250 mm de lluvia. De acuerdo a registros pluviográficos, la máxima intensidad de lluvia es de 180 mm/hora; tiene una probabilidad de ocurrencia del 4% anual.

2.3 Geomorfología

La microcuenca "c" está inmersa en dos provincias fisiográficas: volcánicas del pacifico y la depresión nicaragüense. Presenta la forma de un abanico fluvial que nace en el parte aguas El Crucero y las Nubes por el sur, extendiéndose hacia el norte hasta desembocar en el lago de Managua, en este trayecto el relieve esta surcado por sistemas de cañadas, cuestas, crestas, taludes, cárcavas, lechos de inundaciones y de sedimentación.

Las inundaciones en la parte baja de la cuenca se deben principalmente a que a una distancia de 22 Km aproximadamente, la diferencia de altura entre El Crucero y Managua es de unos 900 mts, las pendientes oscilan entre 15 y 75%. De acuerdo a las formas del relieve y a los pisos altitudinales, en la microcuenca se separaron tres paisajes que son: montaña, pie de montaña y planicie volcánica.

2.4 Tipo de suelo

Según el levantamiento de suelo de la región pacífica de Nicaragua (1971), los suelos de la microcuenca "c" pertenecen a la serie Nejapa (NJ), Asociación Sinaloa – San Marcos (SAM) y tierras escarpadas (Qf).

2.5 Uso de suelo²

En la parte alta de la cuenca el principal uso de suelo es para el café con sombra y un área reducida a los cultivos anuales. La parte media está dominada por tacotales, pastizales, bosque latifoliados abiertos y en una creciente área humanizada. El área baja de la microcuenca es un área poblada.

² INETER. Archivo Agroecológico.

3 CAPÍTULO: MARCO TEÓRICO

3.1 Estudio Hidrológico³

Según Linsley, Kohler y Paulhus (1985), la hidrología es la ciencia que trata del

agua, su ocurrencia, su circulación, distribución, sus propiedades y su relación con

el ambiente y los seres vivos.

La hidrología aporta los elementos técnicos y científicos que le permitirán conocer

adecuadamente el ciclo del agua y realizar estudios y obras para la regulación y

ordenamiento de las cuencas hidrográficas.

3.1.1 Parámetros Geomorfométricos de una cuenca

Las características morfométricas corresponden a la aplicación de procedimientos

que a través del estudio de la morfología y geomorfología caracterizan de manera

cuantitativa los rasgos propios de la superficie terrestre en valores numéricos los

cuales permiten comparar en forma exacta una parte de la superficie terrestre con

otra.

Las formas de la superficie terrestre, y en particular su situación en altitud, tienen

influencia decisiva sobre los más importante factores condicionantes del régimen

hidrológicos, como precipitación, escorrentía, infiltración y formación de aluviones

y sedimentos.

Aun que las relaciones establecidas entre las variables morfométricas y el carácter

hidrológico, son más de tipo cualitativo que cuantitativo, tienen gran influencia en

el comportamiento hidrológico de las corrientes.

³Legarda Burbano, L & Viveros Zarama, M. Importancia de la Hidrología en el Manejo de la Cuenca Hidrográfica. Revista de Ciencias Agrícolas 1996.

9

3.1.1.1 Características del Relieve⁴

A. Área

Área drenaje de la cuenca se define como la superficie, en proyección horizontal, delimitada por el Parteaguas. Toda cuenca de drenaje está rodeada prácticamente por una divisoria o parteadas. Se calcula haciendo uso de ArcGIS 10.3 el que calcula el parte aguas de la cuenca por medio del DEM (Modelo Digital de Elevación).

Tabla 1 Valores del tamaño de Cuencas

Clases de tamaño de cuencas (km²).		
Rangos de áreas	Clases de tamaño	
Menos de 25	Muy Pequeña	
25 a 250	Pequeña	
250 a 500	Intermedia Pequeña	
500 a 2500	Intermedia Grande	
2500 a 5000	Grande	
Más de 5000	Muy Grande	

Fuente: Cap.2, Cuenca Hidrográfica NELAME

B. Perímetro

El perímetro de la cuenca es la misma longitud del parte agua o contorno de la cuenca.

⁴ Dr. Néstor Lanzas, Hidrología para ingenieros civiles, capitulo dos: cuenca hidrográfica, 2012.

C. Rectángulo Equivalente

Este índice es introducido para poder comparar la influencia de las características de la cuenca sobre la escorrentía. La característica más importante del rectángulo equivalente es que tiene igual distribución de alturas que la curva hipsométrica original de la cuenca.

Se construye un rectángulo equivalente de área igual a la de la cuenca, tal que el lado menor sea "I" y el lado mayor "L". Se sitúan las curvas de nivel paralelas a "I", respetando la hipsometría natural de la cuenca.

El perímetro y el área de la cuenca deberán ser igual al perímetro y área del rectángulo equivalente.

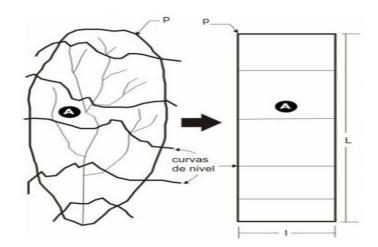


Figura 4 Cuenca Hidrográfica

Fuente: https://www.slideshae.net/ghandihuamanimendoza/semana-1-hidrologia-2016

D. Factor de Forma

La forma de la cuenca de drenaje determina, principalmente, la proporción en que el agua pasa a la corriente principal, al seguir esta su curso desde las cabeceras a la desembocadura (punto de cierre).

Tabla 2 Valores de Forma

1 2112 121 = 1 2112 122 212 1 211112		
Clases de valores de Forma		
Rangos de Kf	Clases de Compacidad	
0.01-0.18	Muy poca achatada	
0.18-0.36	Ligeramente achatada	
0.36-0.54	Moderadamente achatada	

Fuente: Cap.2, Cuenca Hidrográfica NELAME

E. Coeficiente de Masividad

Este coeficiente representa la relación entre la elevación media de la cuenca y la superficie de la cuenca.

Tabla 3 Valores de Masividad

Table o Valoreo de Maeimaa		
Clases de valores de Masividad		
Rangos de Km	Clase de Masividad	
0 - 35	Muy montañosas	
35 – 70	Montañosas	
70 - 105	Moderadamente montañosa	

Fuente: Cap.2, Cuenca Hidrográfica NELAME

F. Densidad de Drenaje

Es otro indicador útil del grado de bifurcación de una cuenca, que se define como la relación entre la longitud total del canal o corriente, por el área total de la cuenca.

Tabla 4 Clasificación de Densidades de Drenaje

Densidades de Drenaje		
Rangos de Densidad	Clases	
0.1 – 1.8	Baja	
1.9 - 3.6	Moderada	
3.7 – 5.	Alta	

Fuente: Cap.2, Cuenca Hidrográfica NELAME

G. Índice de Gravelius o Compacidad

Es la relación que existe entre el perímetro de la cuenca y el perímetro de una circunferencia, cuanto más irregular sea la cuenca mayor será su coeficiente de compacidad.

Una cuenca circular posee el índice de compacidad mínimo, igual a uno. Hay mayor tendencia a las crecientes en la medida en que este número sea próximo a la unidad.

Tabla 5 Valores de Compacidad

Clases de valores de Compacidad	
Rangos de Ic	Clases de Compacidad
-1.25	Redonda a Oval redonda
-1.25-1.50	De Oval redonda a Oval Oblonga
1.50-1.75	De Oval Oblonga a Rectangular
	Oblonga

Fuente: Cap.2, Cuenca Hidrográfica NELAME

H. Cotas Máximas y Mínimas

La cota máxima se define como la elevación máxima de la cuenca en msnm de igual manera las cotas mínimas son elevaciones mínimas de cada punto de control para las subcuencas.

I. Centroide

Estos se calculan directamente por ArcGIS 10.3 a través de la generación de nuevos archivos proporcionados por datos de la cuenca.

J. Pendiente Media de la Cuenca

La pendiente controla en buena parte la velocidad con que se da la escorrentía superficial en cada subcuenca, la cual se logra mediante un mapeo de pendiente del drenaje no canalizado y afecta, por lo tanto, el tiempo que lleva el agua de la lluvia para concentrarse en los canales fluviales que constituyen la red de drenaje de las cuencas. Este valor influye en la determinación del coeficiente de escorrentía de cada subcuenca.

Está pendiente media se calcula por medio de ArcGIS a través de un mapa reclasificado de pendiente que presenta valores de pendientes máximas y mínimas para distintos intervalos de área establecidos por el usuario del programa.

Tabla 6 Clasificación de Pendiente

Clase	Rangos	Descripción
Α	0-8	Plano o Moderadamente ondulado/inclinado
В	8-15	Fuertemente ondulado/inclinado
С	15-30	Moderadamente escarpado/colinado
D	30-50	Escarpado
Е	50-75	Muy escarpado
F	> 75	Precipicio-acantilado

Fuente: Texto Atlas Uso Potencial de la tierra.

K. Curva Hipsométrica

Es la representación gráfica de relieve de una cuenca, o sea, es el estudio de la variación de la elevación de los varios terrenos de la cuenca con referencia al nivel medio del mar (msnm).

Esta variación puede ser indicada por medio de un gráfico que muestre el porcentaje de área de drenaje que existe por encima o por debajo de varias elevaciones.

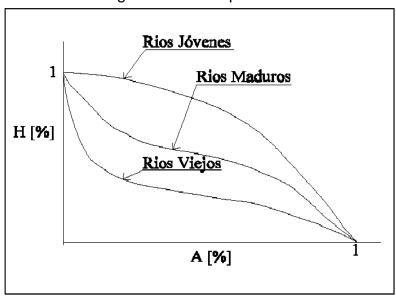


Figura 5 Curva Hipsométrica

Fuente: https://es.slidesshare.net/mobile/pucllas/capitulo-i-hidrologia-parametrosgeomorfologicos-de-la-cuenca

L. Distribución de frecuencia de Elevación

Es la proporción en porcentaje de la superficie total de la cuenca comprendida entre secciones o rangos de elevación.

M. Altitud Media

Valor promedio de elevación en la cuenca. Y se calcula con los resultados obtenidos de un mapa de altitudes. Se debe tomar en que la altitud y la elevación media de una cuenca son, también importantes por la influencia que ejercen sobre la precipitación, por diferencias de temperatura resultantes, ejerce efecto sobre las pérdidas de agua, todas ellas de naturaleza evaporativa y de transpiración y, consecuentemente, sobre el caudal medio.

Tabla 7 Clases de Desnivel

1 6.6.6.1		
Clases de desnivel altitudinal (msnm)		
Rangos de elevación en msnm	Clases de elevación	
600-1220	Bajo	
1221-1841	Mediano	
1842-2462	Alto	

Fuente: Cap. 2 Cuenca Hidrográfica NELAME

3.1.1.2 Características de la Red Hídrica

A. Orden de la Red Hídrica⁵

La Orden de Corrientes es un indicador del grado de bifurcación en la cuenca, o sea, toda corriente grande tiene afluentes importantes, cada uno de los cuales cuenta con sus propios afluentes, y así sucesivamente, hasta que finalmente se llega a los últimos ramales que no tienen afluentes. Por regla general, cuanto mayor es la corriente, tanto mayor es el número de ramificaciones o bifurcaciones. Es conveniente clasificar las corrientes según el número de bifurcaciones de los afluentes. Clasificándose de la siguiente manera:

Tabla 8 Clasificación de orden de corriente

Clase de orden de Corriente				
Rango de Ordenes	Clases de Orden			
1-2	Bajo			
2-4	Medio			
4-6	Alto			

Fuente: Cap.2, Cuenca Hidrográfica NELAME

⁵ Dr. Néstor Lanzas, Hidrología para ingenieros civiles, capitulo dos: cuenca hidrográfica, 2012.

B. Longitud Total de la Red Hídrica

Es la suma de longitudes de cada tramo de rio que cubren la red principal y se calcula sumando las longitudes de los tramos que se obtienen a través de ArcGIS10.3.

Tabla 9 Clasificación de longitudes de cauce

Clases de valores de longitudes del cauce principal				
Rangos de longitud en Km	Clases de longitud del cauce			
6.9 - 10.9	Corto			
11.0 - 15.0	Mediano			
15.1 - 19.1	Largo			

Fuente: Cap.2, Cuenca Hidrográfica NELAME

C. Pendiente media del Cause Principal

Relación que existe entre la altura del cauce principal (cota máxima menos cota mínima) y la longitud del mismo.

3.1.2 Análisis Estadístico de datos hidrológicos de Precipitación

3.1.2.1 Curva de intensidad duración y frecuencia

Son una relación matemática empírica entre la intensidad de una precipitación, su duración y la frecuencia con la que se observa. La relación entre estas tres variables se puede presentar en una sola gráfica, interpretar correctamente estas curvas de parámetros para proyectar obras de ingeniería que están influenciadas directamente con factores climáticos.

Es de vital importancia conocer los siguientes términos:

Intensidad: Es la tasa promedio de lluvia en pulgadas por horas para una cuenca o subcuenca de drenaje particular.⁶

Duración: Tiempo de caída de una precipitación sobre un área determinada.

Frecuencia: Es la relación entre la magnitud de un evento y su periodo de retorno. Este fenómeno depende de la ubicación geográfica y de las características físicas y meteorológicas del lugar. Puede expresarse en una gráfica como la distribución de Gumbel.

a. Ajuste de los datos con una función de Distribución de Probabilidad

Para el cálculo de las curvas IDF con periodos de retorno de 5, 10, 25, 50, 100 años se necesita un registro de valores de intensidad máxima anual puede ser estaciones pluviométricas de cada país.

Con esto se pude ajustar dichos valores a la función de distribución de Probabilidad de valor extremo tipo 1 como la función Gumbel.

b. Test de Kolmogorov- Smirnov

Este test de bondad de ajuste está basado en un estadístico que mide la desviación de la frecuencia observada acumulada con relación a la frecuencia teórica acumulada. Este test es válido para distribuciones continuas. Sin embargo sirve tanto para muestras grandes como muestras pequeñas.

Se utiliza la TABLA de valores críticos de Dt en la prueba de bondad de ajuste de K- Smirnov; considerando el tamaño de la muestra n, se establece lo siguiente:

⁶Chow, V, Maidment, D & Mays, I (1998) Hidrología Aplicada Editorial Colombiana NOMOS S.A.

Si el valor de Dt>D, entonces se acepta el ajuste de lo contrario no es adecuado.

Tabla 10 Valores de Deltas Críticos para Distintos TR y Alfas

	10 Valored ac B	011010 01111000 po		7 111 010		
N	α					
	0.2	0.1	0.05	0.01		
5	1.45	0.51	0.56	0.67		
10	0.32	0.37	0.41	0.49		
15	0.27	0.30	0.34	0.40		
20	0.23	0.26	0.29	0.36		
25	0.21	0.24	0.27	0.32		
30	0.19	0.22	0.24	0.29		
35	0.18	0.20	0.23	0.27		
40	0.17	0.19	0.21	0.25		
45	0.16	0.18	0.20	0.24		
50	0.15	0.17	0.19	0.23		

Fuente: Cap.2, Cuenca Hidrográfica NELAME

3.1.2.2 Periodo de retorno⁷

El periodo de retorno es el intervalo en años, en que determinada precipitación se espera que ocurra, o bien que este evento una vez cada N años, no necesariamente significa que el evento suceda a intervalos constantes de cada N años, más bien existe 1/N de probabilidades que la crecida de N años ocurra dentro de cualquier periodo.

En la elección del periodo de retorno, frecuencia o probabilidad a utilizar en el diseño de una obra, es necesario considerar la relación existente entre la probabilidad de excedencia de un evento, la vida útil de la estructura y el riesgo de

⁷ Dr. Néstor Lanzas, Hidrología para ingenieros civiles, capitulo dos: cuenca hidrográfica, 2012.

falla aceptable, dependiendo, este último, de factores económicos, sociales, ambientales, técnicos y otros.

Tabla 11 Periodos de retorno.

Puentes y Alcantarillas L > 6 m				
Pasajes y otros	5-10 años			
Locales	25-10 años			
Colectoras	50 años			
Arterias	100 años			

Fuente: Cap.2, Análisis hidrológico NELAME

3.1.3 Modelación Hidrológica y Transito de Avenida⁸

El modelo HEC-HMS (Hydrologic Modeling System) es un modelo lluviaescorrentía, desarrollado por el Hydrologic Engineering Center (HEC) del U.S. Army Corps of Engineers (USACE), que está diseñado para simular el hidrograma de escorrentía que se produce en un determinado punto de la red fluvial como consecuencia de un periodo de lluvia.

La simulación de la red de drenaje de una cuenca constituye la base del modelo. Todas las demás opciones están desarrolladas sobre la capacidad de cálculo de hidrogramas en cualquier punto de la cuenca (Viessman, 1996).

Los componentes del modelo se basan en relaciones matemáticas simples que tratan de representar los procesos que intervienen en la generación y circulación de los hidrogramas de escorrentía: pérdidas, transformación del exceso de lluvia en caudal de salida de la cuenca, adición del flujo base, circulación del hidrograma por el cauce, etc.

⁸Acevedo, Jerson. Monografía" Evaluación Hidrotecnica del puente la Trinidad, Tramo empalme la Trinidad- San Rafael del Sur "

3.1.3.1 Componentes de HEC-HMS 3.59

Para simular la repuesta hidrológica de una cuenca HEC-HMS 3.5 utiliza los siguientes componentes: Modelos de Cuenca, Modelos meteorológicos, especificaciones de control y datos de entrada.

A. Modelos de Cuenca

Un modelo de cuenca (cuenca o cuenca de río) es un grupo de abstracciones matemáticas que describen fases relevantes del ciclo hidrológico, con el objetivo de simular la conversión de la precipitación en escurrimiento.

En principio, las técnicas de modelación de cuencas son aplicables a cuencas de cualquier tamaño, ya sean pequeñas (pocas hectáreas), de tamaño medio (cientos de kilómetros cuadrados) o grandes (miles de kilómetros cuadrados).

En la práctica, sin embargo, las aplicaciones de la modelación son generalmente confinadas al análisis de cuencas para el cuales la descripción de variaciones espaciales temporales y/o variaciones espaciales de precipitación está garantizada.

B. Modelo de la cuenca (Basin Model)

Este modelo consiste en representar de manera física la estructura hidrológica de la cuenca, el cual cuenta con los siguientes elementos:

- Subcuencas
- Tramo de cauce

⁹ Acevedo, Jerson. Monografía " Evaluación Hidrotecnica del puente la Trinidad, Tramo empalme la Trinidad- San Rafael del Sur "

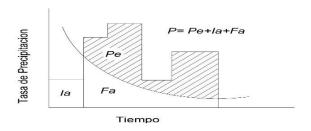
- Uniones
- Reservorios
- Embalses
- Punto de cierre
- Derivaciones

En el modelo de la cuenca se especifica la información morfométrica de cada subcuenca, el método seleccionado para el cálculo de pérdidas por infiltración, así mismo para la transformación de lluvia en escorrentía y suma de caudales base en el cauce de análisis de ríos.

C. Modelo Meteorológico

El modelo meteorológico calcula la entrada de precipitación requerida por un elemento subcuenca. El programa puede usar datos de lluvia puntual o en malla y puede modelar lluvia congelada o líquida junto con evapotranspiración. Incluye varios métodos de precipitación (tormenta frecuente, medidores de lluvia, precipitación en malla, distancia inversa y otros).

D. Método de cálculo de pérdidas (Loss Method)


Este realiza el cálculo de pérdidas por infiltración separando la precipitación efectiva de la precipitación total y estimando así la precipitación que se convierte en escorrentía directa. El método de SCS para perdidas por infiltración es el más utilizado.

Método de SCS para pérdidas por filtración

Las abstracciones incluyen la intercepción de precipitación por la vegetación del terreno, el almacenamiento en depresiones en la superficie del suelo a medida que el agua se acumula en hundimientos en la superficie e infiltración de aguas en el suelo.

El U.S Soil Conservation Service desarrollo un método para calcular las abstracciones de la precipitación de una tormenta, para la tormenta como un todo. La profundidad de exceso de precipitación total (P); de manera similar después de que la escorrentía se inicia, la profundidad adicional del agua retenida en la cuenca (Fa) es menor o igual a alguna retención potencial máxima (S). Existe una cierta precipitación (Ia) (Abstracción inicial antes de encharcamiento) para lo cual no ocurrirá escorrentía, luego escorrentía potencial es (P-Ia)

Figura 6 Infiltración y exceso de precipitación.

Fuente: Monografía, Evaluación Hidrotécnico del puente la trinidad.

Al representar en graficas la información de P y Pe, para diversas cuencas, el S.C.S encontró curvas. Para estandarizar estas curvas se define un numero adimensional de curva CN, tal que $0 \le CN \le 100$ para superficies de impermeables y superficies de agua CN=100; para superficies naturales CN<100.

Los números de curva han sido tabulados por S.C.S con base en el tipo de suelo y uso de la tierra define 4 grupos hidrológicos del suelo:

E. Grupo A: Arena Profunda, suelos profundos depositados por el viento, limos agregados.

F. Grupo B: Suelos poco profundo depositados por el viento, Marga Arenosa.

- G. Grupo C: Marga arcillosa, Marga arenosa poco profundas, suelos bajos de contenido orgánico y con alto contenido de arcilla.
- H. Grupo D: Suelos que se expanden significativamente cuando se mojan arcillas altamente plásticas y ciertos suelos salinos.

Para una curva con varios tipos de suelo y usos variados de la tierra se puede calcular un valor de CN compuesto.

Tabla 12 Valores de CN para distintos tipos de suelo

Numero de curva de escur (condiciones antecedente		nto para usos selectos de tierra umedad II, I _a =0.2S	agrícola	, subur	bana y	urbana
Descripción del uso de la tierra		Grupo Hidrológico del suelo				
-			Α	В	С	D
Tierra cutiva	ada¹	Sin tratamiento	72	81	88	91
		Con tratamiento	62	71	78	81
Pastizales		Condiciones pobres	68	79	86	89
		Condiciones optimas	39	61	74	80
Vegas de río	os Cor	ndiciones optimas	30	58	71	78
Bosques Troncos Delga	dos	Cubierta pobre, sin hierbas	45	66	77	83
		Cubierta buena²	25	55	70	77
etc.		campos de golf, cementerios,				
Óptimas condiciones: cubierta de pasto en el 75% o más.		39	61	74	80	
Condiciones Aceptables: cubierta de pasto en el 50% al 75%.		49	69	79	84	
Áreas comerciales de negocio (85% impermeables)		89	92	94	95	
Distritos industriales (72% impermeables)		81	88	91	93	
Residencial ³ :						l.
Tamaño promedio del lote	Pord	centaje promedio impermeable ⁴				
1/8 acre o menos		65	77	85	90	92
1/4 acre		38	61	75	83	87
1/3 acre		30	57	72	81	86
1/2 acre		25	54	70	80	85
1 acre		20	51	68	79	84
Parqueaderos pavimentados, techos, accesos, etc.		98	98	98	98	
Calles y carreteras	-					
Pavimentos con cunetas y alcantarillados⁵		98	98	98	98	
Grava		76	85	89	91	
Tierra		72	82	87	89	

Fuente: Chow, V, Maidment, D & Mays, I (1998) Hidrología Aplicada Editorial Colombiana NOMOS S.A.

A. Método de transformación de lluvia en escorrentía (Transform Method)

HEC-HMS 3.5 dispone de los principales métodos de transformación más conocidos y para este caso se utilizó el Hidrograma Unitario Sintético del S.C.S.

• Hidrógrafa unitario Triangular Sintético

Es una gráfica que mide el gasto o caudal que pasa durante un determinado tiempo por una sección transversal cualquiera de un rio. Hidrograma unitario como grama de escurrimiento directo que se produce por una lluvia efectiva o en exceso de lámina unitaria duración y repartidamente en la cuenca.

Para cuencas donde no se han hecho mediciones de caudales es necesario determinar los hidrogramas unitarios con datos de características generales de la cuenca, los hidrogramas unitarios así obtenidos se denominan sintéticos.

B. Especificaciones de Control

En las especificaciones de control se fija el lapso de tiempo de una corrida de simulación. Se establece la fecha y hora de inicio de la lluvia y el término de la misma con un intervalo de tiempo que puede variar según nuestra conveniencia.

3.1.3.2 Tiempo de Concentración¹⁰

Es el tiempo transcurrido entre el final del hietograma de excesos y el final del escurrimiento directo, siendo ésta la definición que aparece reseñada en la literatura con mayor frecuencia. Sin embargo, otros autores reportan el Tc como el

¹⁰ MTI , Corea y Asociados S.A. (CORASCO), Manual para la revisión de Estudios Hidrotécnicos de Drenaje Mayor

25

tiempo comprendido entre el centroide del hietograma de excesos y el punto de inflexión sobre la curva de recesión del hidrograma de escurrimiento directo. Además se puede definir como el tiempo que demora en viajar una partícula de agua desde el punto más remoto hasta el punto de interés. Corresponde al lapso entre el final de la lluvia y el momento en que cesa el escurrimiento superficial.

Existen una serie de fórmulas que permiten el cálculo de este tiempo desarrolladas por diversos autores. Para el caso de cuencas pequeñas, en Nicaragua se ha venido aplicando, la formula propuesto por el Ing. Eduardo Basso, el método del Proyecto Hidrometeorológico Centroamericano (PHCA)

3.1.3.3 Tránsito de avenida (Método de Muskingum)¹¹

Es la simulación de la variación de un hidrograma al recorrer un tramo de cauce. El método del tránsito avenida constituye todos los procedimientos con los cuales se pueden determinar el tiempo y la magnitud de una avenida en un punto del cauce.

A. Calculo de los parámetros del transito

Longitud de transito

Distancia que se mide desde un punto de control a otro punto de control consecutivo sobre el rio principal.

¹¹ Chow, V, Maidment, D & Mays, I (1998) Hidrologia Aplicada Editorial Colombiana NOMOS S.A.

Velocidad de transito

Para el primer transito que se realice este valor de velocidad de transito es igual a velocidad del flujo.

• Tiempo de retardo(k)

Es el tiempo de viaje del pico de la avenida a lo largo del tramo.

3.1.3.4 Hietogramas de Diseño (Método de Bloques Alternos)

Los Hietogramas representan la distribución temporal de la lluvia. El método del bloque alterno es una forma simple para desarrollar un histograma de diseño utilizando una curva de intensidad duración frecuencia.

El hietrograma de diseño producido por este método especifica la profundidad de precipitación que ocurre en n intervalos de tiempo sucesivos de duración Δt sobre una duración total de Td=n Δt .

Después de seleccionar el periodo de retorno de diseño la intensidad es leída en una curva IDF para cada una de las duraciones y la profundidad de precipitación correspondiente se encuentra al multiplicar la intensidad y la duración.

Tomando diferencia entre valores sucesivos de profundidad de precipitación, se encuentra la cantidad de precipitación que debe añadirse por cada unidad adicional de tiempo Δt .

Estos incrementos o bloques se redondean en una secuencia temporal de modo que la intensidad máxima ocurra en el centro de la duración requerida Td y que los demás bloques queden en orden descendente alternativamente hacia la derecha y hacia la izquierda del bloque central para formar el hietograma de diseño.

3.1.4 Modelación Hidráulica¹²

El programa HEC-RAS 5.0.3 fue desarrollado por el Centro de Ingeniería Hidrológica del Cuerpo de Ingenieros Militares de los Estados Unidos (HydrologicEngineering Center), para realizar análisis de sistemas de ríos (RiverAnalysisSystem).

El principal objetivo de HEC-RAS es el cálculo de los perfiles de flujo en todos los puntos de interés para obtener un conjunto de datos (simulación del flujo uniforme), o por una metodología hidrológica a través de un sistema de flujo no uniforme.

3.1.4.1 Componentes de Datos Geométricos

Los datos geométricos consisten en establecer una conectividad del sistema de ríos (esquema del sistema de ríos); datos de la sección transversal, la longitud del tramo, los coeficientes de energía de pérdidas (perdidas por fricción, perdidas por contracción y expansión) y la información de las conexiones de flujo en los tramos del rio o cauce. Datos de la estructura de hidráulica (puentes, alcantarillas, caídas hidráulicas, presa, etc.) que estén localizados en el tramo del rio o cauce.

A. Sistema esquemático del rio o Cauce

El sistema esquemático del rio es requerido para cualquier conjunto de datos geométricos con el sistema de HEC-RAS 5.0.3. El sistema esquemático del rio es desarrollado por un dibujo y conectados por varios tramos.

28

¹² Dr. Néstor Lanzas, Hidrología para ingenieros civiles, capitulo ocho: Manual de Hec-Ras, 2012.

Para comenzar a trabajar con HEC-RAS 5.0.3 es necesario crear una ventana el esquema del rio o cauce de tramo a tramo, para definir el extremo de aguas arriba como el extremo de aguas debajo de esta forma introducir los datos geométricos de las secciones que conforman el cauce o el rio.

La conectividad de los tramos es muy importante en el orden para el modelo comprenda el sistema de drenaje, así como los cálculos de un tramo a otro. Es necesario que el dibujo del tramo sea de aguas arribas hacia aguas abajo, dando así la dirección del flujo.

La conexión de los tramos se hace a través de una unión, esta solamente establece un punto localizado, donde uno más flujo convergen o se dividen. Un ejemplo de un esquema de rio seria (Figura. 7)

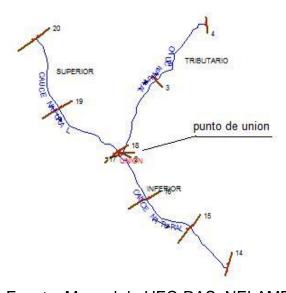


Figura 7 Esquema de rio

Fuente: Manual de HEC-RAS, NELAME.

HEC-RAS reconoce los datos geométricos de los tramos que fundamentalmente son diversas secciones transversales a lo largo del cauce o cauces considerados, se puede considerar unas 10 secciones a cada 100 m aguas arriba y unas 5 secciones a cada 100 m agua abajo referente a una estructura hidráulica.

Dichas secciones transversales se introducen mediantes la cota del terreno de varios puntos; de este modo, mediante la cota de dos secciones contiguas, separadas por una distancia conocida, el modelo calcula la pendiente del tramo.

El sistema numérico para cada sección debe ser consistente, HEC-RAS asume que los valores altos, son los correspondientes a secciones aguas arriba y los números más bajo son los de secciones aguas abajo, como se ve en la Figura. 8

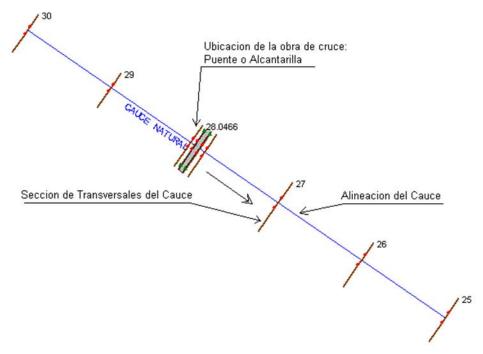


Figura 8 Secciones del Rio

Fuente: Manual de HEC-RAS, NELAME.

B. Secciones Transversales del Cauce

Las condiciones geométricas para el análisis de flujo en corrientes naturales son especificadas en términos de la superficie del terreno de la sección transversal y las distancia entre ellas. Las secciones transversales son localizadas a intervalos largos en dependencia de la caracterización de la corriente (perfiles de flujo), tomando en cuenta el flujo central del cauce y las planicies de inundación.

La sección transversal es descrita introduciendo la estación y la elevación como pares ordenados, o sea (x, y) de izquierda a derecha, en sentido aguas abajo formando una columna de datos. En la primera columna, se introduce la distancia desde el margen izquierdo y en la segunda columna, la cota del terreno de fondo del cauce en ese punto (ver Figura. 9).

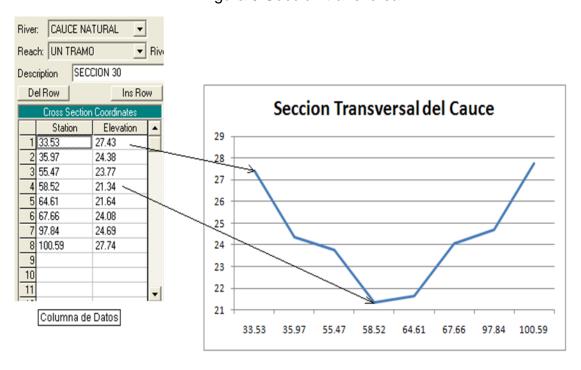


Figura 9 Sección transversal.

Fuente: Manual de HEC-RAS, NELAME.

Lógicamente HEC-RAS es un modelo hidráulico, por lo tanto hace falta considerar las condiciones hidráulicas de cada sección por ejemplo: las distancias de las márgenes, tanto izquierda como derecha y la distancia a lo largo del centro del cauce con respecto a la sección aguas abajo inmediata, así como los valores del coeficiente de Manning en las márgenes y al centro del cauce, para esta valoración se utilizará el método de Cowan o tablas con valores preestablecidos.

El HEC-RAS necesita conocer los puntos donde inicia la planicie de inundación, los cuales acotaran el canal principal, (ver Figura.10). La sección es una presentación localizada a través de la corriente del tramo, donde puede ocurrir un

cambio en la descarga, de pendiente, de la forma de la sección o de la rugosidad del cauce, en localidades que se ubican diques, puentes o estructuras de control como vertederos.

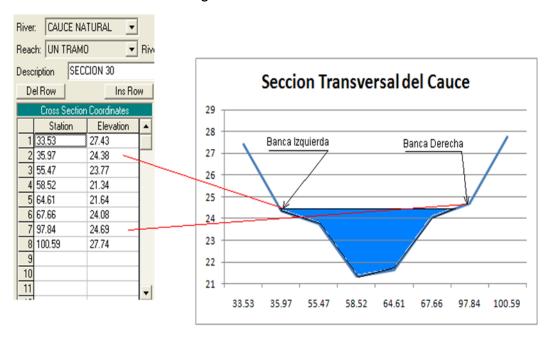


Figura 10 Planicie de Inundación

Fuente: Manual de HEC-RAS, NELAME.

C. Secciones transversales con Flujo Inefectivo

Esta definición permite determinar áreas de la sección transversal con elevaciones más bajas que las bancas del cauce o rio, que no contribuyen efectivamente a transportar el agua en la sección transversal del cauce o rio, es decir, zonas de la sección donde el agua se estanca, esto ocurre donde la elevación de la banca es mayor que el nivel del agua en el cauce adyacente o poza.

Esta opción es usada cuando la superficie del agua está por debajo de las elevaciones inefectivas que se establecen; las áreas a la izquierda de la banca izquierda y las áreas a la derecha de la banca derecha son consideradas como inefectivas, (Ver Figura.11).

Para evitar un error en la altura de la superficie del agua, se deben de seleccionar y aplicar la corrección a las secciones que presentan estas características, sino HEC RAS asume que en esta porción de sección existe transporte de agua.

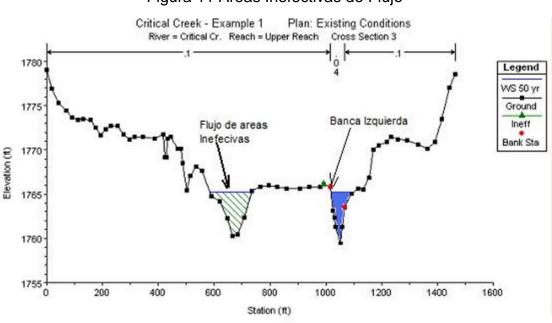


Figura 11 Áreas Inefectivas de Flujo

Fuente: Manual de HEC-RAS, NELAME.

Como se observa, en la margen izquierda, el punto más alto del cauce en estudio es el que a la izquierda del señalado como la banca izquierda, por lo tanto se indica este punto como límite para que una vez que el agua sobrepase este punto ya pueda llenar el espacio que antes aparecía con agua.

D. Coeficientes de Contracción y Expansión

HEC-RAS utiliza los coeficientes de contracción y expansión para determinar las pérdidas de energía entre las secciones contiguas debido a su cambio de sección, esto se aplica más cuando tiene secciones irregulares del cauce.

HEC-RAS, asume que la contracción ocurre cuando la carga de velocidad aguas abajo es grande con respecto a la carga de velocidad aguas arriba, por lo contrario asume una expansión.

Cuando el cambio de sección en cauce es pequeño y el flujo es subcritico los coeficientes de contracción y de expansión pueden andar en el orden de 0.1 y 0.3 respectivamente.

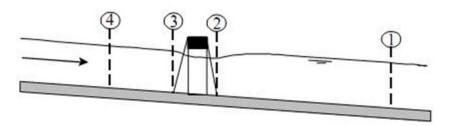
Cuando el cambio es abrupto como el caso de los puentes, los coeficientes de contracción y de expansión con frecuencia se usan de 0.3 y 0.5. En ocasión, los coeficientes de contracción y expansión respecto a los puentes y alcantarillas puede ser más alto, como 0.6 y 0.8 respectivamente.

Estos valores pueden ser cambiados en cualquier sección. Valores típicos para los coeficientes de contracción y expansión para flujo subcritico, son mostrados en la Tabla 13.

Tabla 13 Coeficientes de Contracción y Expansión en Flujo Subcritico

	_		
	Cor	ntracción	Expansión
No hay pérdidas en transición		0	0
Transición Gradual		0.1	0.3
Secciones Típicas en Puentes		0.3	0.5
Transiciones Abruptas		0.6	0.8

Fuente: Manual de HEC-RAS, NELAME.


3.1.4.2 Datos geométricos del puente

A. Tablero del Puente y Geometría de la vía (deck/Roadway)

El tablero del puente estará a una distancia de 1 m aguas abajo inmediatamente de la sección (3-3) y el ancho del tablero será el ancho de la calzada de la vía. En

el caso que el tablero funcionara hidráulicamente como un vertedero (caso de flujo alto), el coeficiente de descarga del vertedero será de 1.4.

Figura 12 Ubicación de las secciones del puente en perfil

Fuente: Manual de HEC-RAS, NELAME.

Para los datos de la geometría de la vía (Deck/Roadway), estos se ingresaran a través de columnas para ingresar la estación, elevaciones superiores (highchord) e inferiores (lowchord) del tablero, en los extremos de aguas arriba y aguas debajo de este.

Estos datos determinan el área entre la cuerda superior e inferior de la estructura del puente. El estacionamiento del lado de aguas arriba del tablero está basado en el estacionamiento de la sección transversal localizada inmediatamente aguas arriba, sección (3-3).

De la misma manera, el estacionamiento del lado aguas abajo del tablero, está basado en el estacionamiento de la sección transversal localizada inmediatamente aguas abajo, sección (2-2).

Si las elevaciones de las cuerdas inferiores coinciden con la elevación del terreno base, estas se dejan en blanco. HEC RAS asume directamente que dichas elevaciones (en blanco) adoptan los valores del terreno y asume que el terraplén va desde la cuerda superior hasta el terreno base. (Ver Figura 13).

Description | Table |

Figura 13 Ubicación geométrica del tablero del puente

Fuente: Manual de HEC-RAS, NELAME.

En el caso de los taludes del terraplén aguas arriba y aguas abajo es necesario indicar la relación de inclinación de estos como una relación de la horizontal con una vertical, estos valores son utilizado para la representación gráfica en el ploteo del perfil de flujo en la simulación para flujo bajos.

3.1.4.3 Componentes de datos hidráulicos

HEC RAS necesita información de los caudales que corresponda a los perfiles de flujo a calcular y las condiciones de contorno en cada tramo.

HEC RAS puede simular 25000 perfiles de flujo correspondientes a caudales hidrológicos con diferentes periodos de retorno a un riesgo de falla en la estructura del puente, o sea que para una misma o diferente datos geométricos y datos de flujo uniforme se puede analizar o predecir los riesgos hidráulicos de una estructura de un puente.

Los datos de caudales son ingresados para cada periodo de retorno, desde aguas arriba hacia aguas abajo. En la Figura 14 muestra una ventana del editor para los diferentes perfiles de flujo.

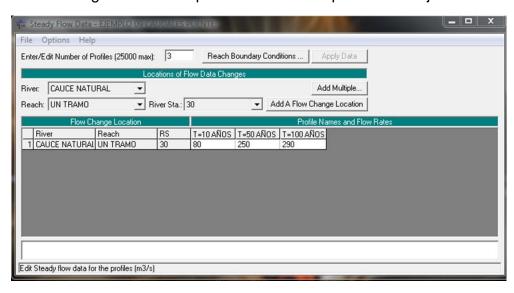


Figura 14 Editor para los diferentes perfiles de flujo

Fuente: Manual de HEC-RAS, NELAME.

La información sobre las condiciones de contorno que ocurrirá en un perfil de flujo, es necesaria establecerla en cada tramo, para indicar el nivel del agua inicial en ambos extremos del tramo del cauce: aguas arriba y/o aguas abajo.

En un régimen subcrítico (pendiente pequeña), las condiciones de contorno solo necesita en el extremo de aguas abajo del tramo inferior del cauce natural; en régimen supercrítico (pendiente considerable), solo es necesario en el extremo de aguas arriba, y si se va a calcular en un régimen mixto, se necesita en ambos extremos del tramo. Las condiciones de contorno que se admiten son:

A. Nivel de agua conocido (Knownw.s)

Es adecuado si se conoce un nivel de agua en alguna sección transversal, o sea la profundidad de flujo más la cota más baja de la sección (caso de una presa reguladora de avenida).

B. Profundidad crítica (Criticaldepth)

Es adecuado si existe sección de control (caso de un vertedero). HEC RAS calcula la profundidad critica para cado uno de los perfiles y la utiliza como condición de contorno.

C. Profundidad normal (Norma depth)

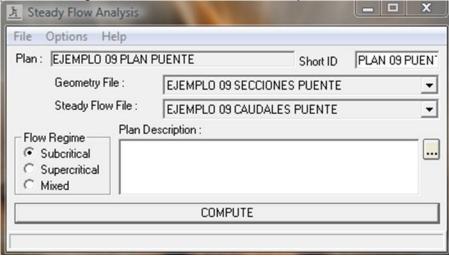
Es adecuado para situaciones donde el flujo se aproxime al flujo uniforme. Hay que introducir la pendiente del tramo de influencia, en decimales.

D. Curva de caudal (rating curve)

Es adecuado si existe alguna sección de control con relación entre el tirante y el caudal (caso de un embalse de una presa).

Steady Flow Boundary Conditions Set boundary for all profiles Set boundary for one profile at a time Critical Depth Normal Depth Delete Known W.S. Rating Curve cted Boundary Condition Locations and Typ Upstream Downstream CAUCE NATURAL UN TRAMO all Steady Flow Reach-Storage Area Optimization OK Cancel Help Enter to accept data changes.

Figura 15 Condiciones de contorno


Fuente: Manual de HEC-RAS.

3.1.4.4 Plan y ejecución del modelo para flujo uniforme

Para la realización de la simulación hidráulica del cauce, es necesario crear un plan. Para HEC RAS un plan es un conjunto de condiciones elegidas para ejecutar los cálculos, como son la geometría (secciones del cauce y geometría del puente),

datos hidráulicos (caudales) y tipo de régimen (lo que debe estar de acuerdo con las condiciones de contorno especificadas).

Figura 16 Plan de análisis de flujo uniforme.

Fuente: Manual de HEC-RAS, NELAME.

Si se hubiera introducido varios archivos de geometría (secciones) y varios archivos de caudales, en esta ventana se puede elegir con cuáles de ellos se van ejecutar los cálculos. Por defecto HEC RAS muestra los últimos archivos trabajados.

De acuerdo con las condiciones de contorno especificadas, se trabajara el tipo de régimen. Para ejecutar la simulación, hacer clic en el botón compute y si no se tiene mensajes de error, ya se está en la disposición de ver los resultados selección de la propuesta del modelo hidráulico a través del puente.

Existen algunas disposiciones para la selección de método de cálculo en los perfiles de superficie de agua a través del puente. Para flujos bajos (superficie del agua por debajo de la elevación máxima de la cuerda inferior del tablero del puente), se puede seleccionar cualquiera u otros métodos disponibles. Para flujos altos, el uso mejor entre otros métodos basados en energía o flujos a presión o de vertedero.

La siguiente metódica está provista de una guía básica en la selección apropiada de los métodos para situaciones varias.

A. Método de flujo bajo

Para las condiciones de flujo bajo (la superficie del agua por debajo del punto más alto en la cuerda inferior de la apertura del puente), los métodos de energía y de Momentum son los mejores basados físicamente, y en general son aplicados en un amplio rango de tipos de puentes y situaciones de flujo.

Ambos métodos toman en cuenta las pérdidas por fricción y cambios en la geometría a través del puente. El método de energía toma en cuenta las pérdidas adicionales debido a los flujos de transición y turbulentos a través de las pérdidas de contracción y expansión.

Sin embargo, el método de la energía no cuenta las pérdidas asociadas con la forma de las pilas y de los estribos. El método de Momentum, si puede contar las pérdidas adicionales debido a la erosión en las pilas.

Una debilidad del método de Momentum es que la fuerza del peso es calculada con un promedio de la pendiente del lecho a través del puente, la cual es puede ser muy difícil determinarla en cauces naturales.

3.1.4.5 Coeficiente de Rugosidad de Manning¹³

La ecuación de Manning es el resultado del proceso de un ajuste de curvas, y por tanto es completamente empírica en su naturaleza. Debido a su simplicidad de forma y a los resultados satisfactorios que arroja para aplicaciones prácticas, la

¹³ http://fluidos.eia.edu.co/hidraulica/articuloses/flujoencanales/manning/manning.html

fórmula Manning se ha hecho la más usada de todas las fórmulas de flujo uniforme para cálculos de escurrimiento en canal abierto.

A. Conceptos aplicados

El valor n es muy variable y depende de una cantidad de factores. Al seleccionar un valor adecuado de n para diferentes condiciones de diseño, un conocimiento básico de estos factores debe ser considerado de gran utilidad.

☐ Rugosidad de la superficie

Se representa por el tamaño y la forma de los granos del material que forma el perímetro mojado y que producen un efecto retardante sobre el flujo. En general, los granos finos resultan en un valor relativamente bajo de n y los granos gruesos dan lugar a un valor alto de n.

□ Vegetación

Puede ser vista como una clase de rugosidad superficial. Este efecto depende principalmente de la altura, densidad, distribución y tipo de vegetación, y es muy importante en el diseño de canales pequeños de drenaje, ya que por lo común éstos no reciben mantenimiento regular.

□ Irregularidad del canal

Se refiere a las variaciones en las secciones transversales de los canales, su forma y su perímetro mojado a lo largo de su eje longitudinal. En general, un cambio gradual y uniforme en la sección transversal o en su tamaño y forma no produce efectos apreciables en el valor de n, pero cambios abruptos o alteraciones de secciones pequeñas y grandes requieren el uso de un valor grande de n.

☐ Alineamiento del canal

Curvas suaves con radios grandes producirán valores de n relativamente bajos, en tanto que curvas bruscas con meandros severos incrementarán la n

□ Sedimentación y erosión

En general la sedimentación y erosión activa, dan variaciones al canal que ocasionan un incremento en el valor de n. Urquhart (1975) señaló que es importante considerar si estos dos procesos están activos y si es probable que permanezcan activos en el futuro.

☐ Obstrucción

La presencia de obstrucciones tales como troncos de árbol, deshechos de flujos, atascamientos, pueden tener un impacto significativo sobre el valor de n. El grado de los efectos de tale obstrucciones dependen del número y tamaño de ellas.

B. Determinación del Coeficiente de Rugosidad Manning

Aplicando la fórmula Manning, la más grande dificultad reside en la determinación del coeficiente de rugosidad n pues no hay un método exacto de seleccionar un diferentes individuos obtendrán resultados diferentes.

El coeficiente de rugosidad de Manning puede determinarse por fórmulas matemáticas o por tablas de valores predeterminados.

4 CAPÍTULO: DISEÑO METODOLÓGICO

En el diseño metodológico se hace referencia a los métodos y ecuaciones utilizadas en el estudio, con la finalidad de cumplir los objetivos planteados.

4.1 Trabajo de campo

El trabajo de campo se divide en dos etapas: visita de campo y levantamiento topográfico.

a. Visita de campo

Un punto importante en la realización del estudio es la revisión del área de estudio, de las condices actuales previas a la ejecución de la obra. En esta parte se hace una descripción de las condiciones actuales de las estructuras existentes y entrevistas a pobladores cercanos sobre posibles desbordamientos e inundaciones.

b. Levantamiento topográfico

Para el levantamiento del área de estudio se utilizó una estación total, para una mayor exactitud y agilidad en la obtención de los datos. Se realizó levantamiento de secciones trasversales del cauce cada 10 m, 200 m aguas arriba y 200 m aguas abajo de la ubicación de la obra de cruce vehicular, como estipulan los manuales de HEC-RAS para simulaciones hidráulicas en puentes, y de las calles adyacentes.

Es importante mencionar que el levantamiento topográfico se realizó con fondos propios, debido a que las cuadrillas de topografía de la alcaldía de Managua estaban ocupadas en otros proyectos, se contrató un topógrafo y su equipo para la ejecución de la actividad.

4.2 Recolección de la información existente

Se realiza la recolección de información existente, necesaria para el desarrollo del estudio hidrotécnico, en instituciones públicas o privadas. En este caso se realizó visitas al Instituto Nicaragüense de Estudios Territorial (INETER) y Alcaldía de Managua (ALMA).

En el Instituto de Estudios Territoriales se obtuvo la siguiente información:

- Modelo digital de elevación o DEM por sus siglas en ingles.
- Uso de suelo del área de estudio en formato shepe file.
- Tipo de suelo del área de estudio en formato shepe file, con el nombre de agroecológico.
- Registros de intensidad de precipitación, estación meteorológica en el aeropuerto internacional Augusto C. Sandino.
- Hoja topografía 2953_3

En la alcaldía de Managua:

- Planos de micropresas existentes.
- Estudio del manejo del sistema de drenaje pluvial de Managua 1985.
- Programa manejo de la cuenca del lago de Managua 1995.

4.3 Estudio hidrológico

Para realizar el estudio hidrológico se utilizaron los programas ArcGIS 10.3 y HEC – HMS 3.5. Con el primer programa se determinan los límites de la cuenca y los valores para el cálculo de los parámetros morfométricos; con el segundo se determina el caudal de diseño para distintos tiempos de retorno.

4.3.1 Cálculos de parámetros morfométricos

ArcGIS 10.3 delimita la cuenca en estudio, haciendo uso del modelo digital de

elevación y de las coordenadas del puente como punto de cierre, obtenido en

Google Earth.

A través de las distintas modificaciones que va sufriendo el DEM es posible extraer

información importante que permite calcular los parámetros morfométricos de la

cuenca, algunos directamente como el perímetro, área y longitud de los tramos de

ríos y otros haciendo uso de sus respectivas formulas.

a. Rectángulo equivalente.

$$L = \frac{\frac{P}{2} \pm \sqrt{\left(\frac{P^2}{4}\right) - 4A}}{2} \to \frac{P^2}{4} - 4A > 0 \to P > 4\sqrt{A}$$

Donde:

P: Perímetro de la cuenca.

A: Área de la cuenca.

b. Factor de Forma.

$$Kf = \frac{B}{L} = \frac{A}{L^2}$$

Donde:

Kf= Factor de Forma

A= Área de la Cuenca

L=Longitud Axial o Longitud del rectángulo equivalente

45

c. Coeficiente de masividad

$$Km = \frac{hm}{A}$$

Donde:

Km= Coeficiente de masividad

hm= Elevación media de la cuenca

A= Área de la cuenca

d. Densidad de drenaje

$$Dd = \frac{\sum Li}{A}$$

Donde:

Dd: Densidad de drenaje

Li: Longitud enésima de los ríos de la cuenca

A: Área de la cuenca

e. Índice de compacidad

$$Ic = 0.282 \frac{P}{\sqrt{A}}$$

Donde:

Ic: Índice de Compacidad

P: Perímetro de la cuenca

A: Área de la cuenca

f. Cota máxima y cota mínima

Por medio de un mapa de altitudes es posible conocer la cota máxima y la cota mínima de la cuenca al extraer, del mapa, una tabla estadística.

g. Centroide x y y

A través de la tabla de atributos de una capa shepe file de la cuenca es posible

calcular el centroide en x y y.

h. Pendiente media

La pendiente media se calcula elaborando un mapa reclasificado de pendientes,

del cual se extrae el área entre intervalos de pendientes conocidos, en este caso

10 intervalos.

i. Curva hipsométrica

Los datos para la elaboración de la curva hipsométrica se obtienen del mapa

reclasificado de altitudes, donde se conoce el área comprendida entre intervalos

conocidos. Nos permite calcular la elevación media.

$$E_p = \frac{H_i \times A_i}{A}$$

Ep: Elevación Media

Hi: Promedio de elevaciones

Ai: Área entre elevaciones

j. Distribución de frecuencia de elevación

Los datos para la elaboración del grafico de frecuencia de elevación se obtienen

del mapa reclasificado de pendientes.

47

k. Características de la red hídrica

Las características de la red hídrica se obtiene de la capa shape river556 que nos proporciona la longitud de los tramos de cada subcuenca y su pendiente.

4.3.2 Metodología de simulación hidrológica con HEC-HMS 3.5

Una vez delimitada la cuenca, definido las subcuencas y seleccionado el método de tránsito, en este caso Muskingum, se crea una archivo con toda esta información con el nombre de modelo base, que es utilizado por HEC-HMS para ejecutar las simulaciones.

Otros datos importantes para la ejecución de la simulación tienen que ser digitados manualmente en el programa, estos son:

1. Abstracción inicial

$$P_0 = \frac{5080}{CN} - 50.8$$

Donde:

 P_0 = Abstracción inicial.

CN = Número de la curva

2. Factores k y x de Muskingum

El tiempo de retardo (K) se calcula con la siguiente expresión.

$$K = \frac{L_t}{V_t}$$

Donde:

K = Tiempo de retardo

 L_t = Longitud del cauce donde se hará el transita.

V_t= Velocidad del tránsito.

La velocidad de transito se calcula con la ecuación de velocidad.

$$V = \frac{L}{T_c}$$

Donde:

V = Velocidad del flujo.

L = Longitud del cauce.

T_C = Tiempo de concentración.

El tiempo de concentración se calcula con la fórmula del proyecto Centroamericano del Ingeniero Eduardo Basso

$$T_c = 0.0041 \left(\frac{3.28L}{\sqrt{S}}\right)^{0.77}$$

Donde:

T_c = tiempo de concentración (min)

L = Longitud del cauce (m)

S = pendiente (m/m)

3. Hietogramas unitarios para distintos periodos de retorno

Para la elaboración de los hidrogramas es indispensable la construcción de la curvas de Intensidad, Duración y Frecuencia (IDF).

Para construir las curvas se sigue el procedimiento siguiente:

- Ordenar los datos de intensidad en orden decreciente.
- ullet Calcular la media aritmética X y la desviación estándar S_x de los datos de intensidades.
- Calcular los parámetros α y β de la distribución de Gumbel con:

$$\alpha = \frac{1.281}{S_r}$$

$$\beta = X - 0.4506 S_r$$

Calcular la distribución empírica P(x)y la distribución teórica F(x)

$$P(x) = \frac{m}{n+1}$$

Para el cálculo de la distribución teórica se utiliza la función de Gumbel, donde x es la intensidad.

$$F(x) = \left(1 - \frac{1}{TR}\right) = e^{-e^{-\alpha(x-\beta)}}$$

 Calcular la desviación máxima Δmax entre la probabilidad empírica y la teórica con:

$$\Delta = F(x) - P(x)$$

- Para cada duración de lluvia "d", solo hay una Δ max, la cual se compara con Δ o crítico de Smirnov-Kolmogorov. Si Δ max $\leq \Delta$ o crítico se acepta el ajuste.
- Posteriormente se calcula la intensidad para cada duración de lluvia y periodo de retorno.

$$I = \beta - \left[\ln(-\ln\left(1 - \frac{1}{TR}\right)) \right] / \alpha$$

• Se grafican las curvas para los periodos de retorno correspondientes.

Una vez terminadas las curvas IDF se procede a la construcción de los Hietogramas de diseño, por el método de bloques alternos, con una duración máxima de 2 horas en intervalos de 10 minutos.

4. Datos de micropresas existentes

Los datos necesarios para la simulación de las micropresas se obtienen principalmente de los planos de las mismas, con excepción de la presa San Isidro Libertador cuyos planos no se encontraron.

Los principales datos a considerar son los diámetros, cantidad y cotas de las tuberías de descarga. Otro dato importante son las curvas de volumen elevación de las micropresas.

4.4 Estudio Hidráulico

Para la elaboración del estudio hidráulico se utilizó el programa Hec-Ras4.2.1 que permite realizar simulaciones del comportamiento de las estructuras hidráulicas sometidas a los caudales de diseño.

4.4.1 Metodología de simulación hidráulica con HEC-RAS 5.0.3

El primer paso necesario para iniciar con las simulaciones es importar a HEC-RAS las secciones del cauce que previamente fueron generadas en Civil 3D. Automáticamente se generaría en el programa el componente geométrico.

Posteriormente es necesario agregarle al componente geométrico: la geometría del puente y los valores del coeficiente de rugosidad de Manning para cada una

de las secciones, en este caso se usa un coeficiente de rugosidad de 0.017 recomendado por los diseñadores del área de drenaje, de la Alcaldía de Managua, para canales revestidos.

Posteriormente se agrega en el perfil de flujo el caudal de diseño y las condiciones de contorno, tanto para aguas arriba como para aguas abajo.

5 CAPÍTULO: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

Por medio de un modelo digital de elevación (DEM), la ubicación del puente como punto de cierre y con el uso del programa ArcGIS 10.3 y su extensión ArcHydro Tools se extrajeron las características físicas de la cuenca en estudio.

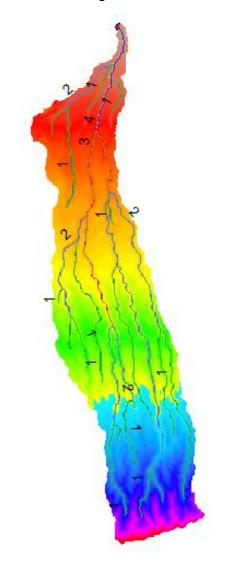


Figura 17 Modelo Digital de Elevación (DEM)

Fuente: Elaboración propia

5.1 Características físicas de la cuenca

5.1.1 Relieve

Tabla 14 Características físicas de la cuenca

PARÁMETRO	UNIDADES	RESULTADO	CLASIFICACIÓN
ÁREA	KM ²	37.54	PEQUEÑA
PERÍMETRO	KM	48.12	

Fuente: Elaboración propia

La cuenca es de área pequeña.

Rectángulo equivalente

$$L = \frac{\frac{48.12}{2} \pm \sqrt{\left(\frac{48.12^2}{4}\right) - 4(37.54)}}{2}$$
$$L = 22.38km$$

I. Factor de forma

$$Kf = \frac{37.54}{22.38^2}$$

$$Kf = 0.075$$

La forma de la cuenca va a ser muy poco achatada lo que indica pocas concentraciones de agua.

m. Densidad de drenaje

$$Dd = \frac{80.79}{37.54}$$

$$Dd = 2.15$$

La cuenca tiene una densidad de drenaje moderada, suelos erosionables y con poca cobertura vegetal.

n. Índice de compacidad

$$Ic = 0.282 \frac{48.12}{\sqrt{37.54}}$$

$$Ic = 2.2$$

Con este resultado se indica que la cuenca tiene una compacidad Rectangular oblonga con un drenaje más rápido.

5.1.1.1 Cálculo de pendiente media

La pendiente media se calcula en ArcGIS 10.3 por medio de un mapa reclasificado de pendiente (ver anexo II Mapa 1).

Tabla 15 Pendiente Media de la cuenca.

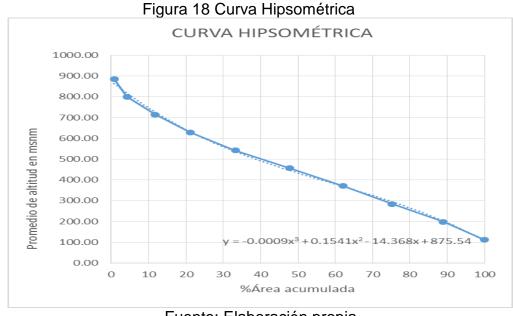
Valor	MIN	MAX	PROM(1)	AREA(KM2)(2)	(1)*(2)		
1	0.00	8.34	4.17	17.5276	73.08		
2	8.39	16.68	12.53	7.3968	92.69		
3	16.77	25.03	20.90	4.6584	97.36		
4	25.12	33.41	29.27	3.5016	102.49		
5	33.46	41.78	37.62	2.3596	88.76		
6	41.80	50.13	45.97	1.3096	60.20		
7	50.14	58.45	54.30	0.5636	30.60		
8	58.50	66.83	62.67	0.1848	11.58		
9	66.86	74.38	70.62	0.0384	2.71		
10	76.90	83.56	80.23	0.0044	0.35		
				37.54	559.83		
				P.MEDIA %	14.91		

Fuente: Elaboración propia

Tal como se observa la pendiente media de la cuenca es fuertemente ondulada e inclinada (ver tabla 6).

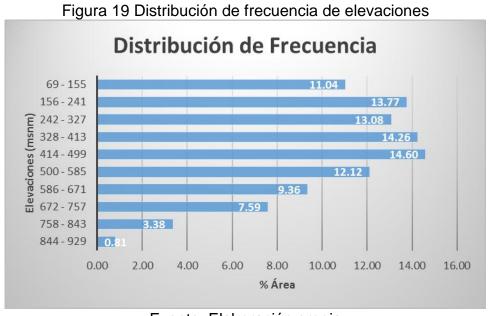
5.1.1.2 Curva hipsométrica

La curva hipsométrica se obtuvo de información proporcionada por ArcGIS 10.3 por medio de un mapa reclasificado de diez intervalos de las elevaciones de la cuenca con su respectiva área entre curvas (ver Anexo II Mapa 2).


Tabla 16 Elevaciones de la cuenca.

	AL	TITUDES(msn	m)	ÁREAS(km2)				
n	MIN	MAX	PROM(Hi)	AREA(Ai)	Acum	%AREA	%ACUM	Hi x Ai
1	69	155	112.00	4.15	37.54	11.0438729	100	464.40
2	156	241	198.50	5.17	33.40	13.7659543	88.9561271	1025.93
3	242	327	284.50	4.91	28.23	13.075579	75.1901728	1396.67
4	328	413	370.50	5.35	23.32	14.2613624	62.1145938	1983.81
5	414	499	456.50	5.48	17.97	14.5990923	47.8532313	2502.17
6	500	585	542.50	4.55	12.49	12.1188553	33.2541391	2468.38
7	586	671	628.50	3.51	7.94	9.35735441	21.1352837	2208.05
8	672	757	714.50	2.85	4.42	7.59306216	11.7779293	2036.90
9	758	843	800.50	1.27	1.57	3.3751678	4.18486715	1014.39
10	844	929	886.50	0.30	0.30	0.80969935	0.80969935	269.50
		TOTALES	4994.50	37.54		100		15370.17

Fuente: Elaboración propia


$$E_p = \frac{15370.17}{37.54}$$

$$E_p = 409.43$$

Fuente: Elaboración propia

En base a este resultado, las características que indica la gráfica, es que la cuenca es de edad madura ya que la elevación promedio se aproxima al 50% del área acumulada.

Fuente: Elaboración propia

5.1.2 Característica de la red hídrica

La información de la red hídrica es obtenida por medio de la Tabla de atributos de la capa shepe Rios556 de la cuenca en estudio.

Tabla 17 Ríos del cauce principal

rabia ir itios asi saass piirisipai						
Rios	Rios del cauce principal					
Rios	Longitud	Pendiente				
R370	1.703969696	0.07511871				
R330	7.332691193	0.04336743				
R170	2.333380951	0.03385645				
R100	0.228284271	0				
R90	2.376812409	0.02734755				
R70	1.733969696	0.02825886				
R30	0.52627417	0.0152012				
R10	1.295685425	0.0200666				
Total	17.53106781	0.2432168				

Fuente: Elaboración propia

Tabla 18 Características de la red hídrica.

Caracteristicas de la red hidrica	Clasificación				
Longitud del cauce principal(KM)	17.5310678 Mediano				
Longitud total de la red hidrica(Km)	80.7847799				
Pendiente media del cauce principal	0.03	Suave			
Clase de orden de corriente	4	Medio			
Dencidad de drenaje	2.15	Moderada			

Fuente: Elaboración propia

5.2 Estudio hidrológico con HEC-HMS 3.5

Para la elaboración del modelo hidrológico se utilizó la extensión Hec-Geo HMS de ArcGIS10.3. Esta extensión delimita la cuenca y la divide en subcuencas. También calcula los parámetros necesarios para la ejecución de las simulaciones y las presenta en forma de gráficos y Tablas para su posterior exportación a HEC-HMS 3.5.

En la siguiente Tabla se muestra parte de la información contenida en la capa de subcuencas (Ver Anexo I Tabla I) generas por la extensión HEC-GeoHMS.

Tabla 19 Datos de la Tabla de atributos de la cuenca.

Name	BasinSlope	LossMet	TransMet	Area_HMS
W380	9.31909847260	SCS	SCS	0.47120000000
W390	12.59160423280	SCS	SCS	0.0080000000
W400	9.28810596466	SCS	SCS	0.81600000000
W410	13.28102016450	SCS	SCS	0.10320000000
W420	11.16618728640	SCS	SCS	0.76880000000
W430	11.07560539250	SCS	SCS	0.78480000000
W440	10.74672794340	SCS	SCS	0.52760000000
W450	7.86695480347	SCS	SCS	1.34720000000
W460	6.97690677643	SCS	SCS	2.66800000000
W470	11.96732425690	SCS	SCS	1.05520000000
W480	11.67094039920	SCS	SCS	0.84840000000
W490	11.59732341770	SCS	SCS	2.08360000000
W500	16.55242347720	SCS	SCS	0.06720000000
W510	17.63081550600	SCS	SCS	0.66560000000
W520	11.08528709410	SCS	SCS	0.54600000000
W530	11.51236057280	SCS	SCS	0.29440000000
W540	11.28930950160	SCS	SCS	0.19480000000
W550	20.75460243230	SCS	SCS	1.32640000000

Fuente: Elaboración propia.

En la Tabla anterior se puede observar como ArcGIS 10.3 le asigna nombre y área a cada cuenca, así como el método de pérdidas y trasformación de lluvia en escorrentía.

También calcula, la pendiente, el tiempo de retardo y el número de la curva para cada subcuenca. Para calcular el número de la curva es necesario elaborar un mapa de número de curva y para ello es necesario contar con la capas de uso y tipo de suelo de la cuenca en estudio. Al combinar estas capas el programa ArcGIS 10.3 es capaz de asignar un valor de número de curva por cada subcuenca.

ArcGIS 10.3 también calcula y presenta la longitud de cada tramo de cauce o rio, así como sus pendientes, uniones y método de tránsito. En la siguiente Tabla se

puede observar parte de la información calculada. (Para ver información completa en Anexo I Tabla II).

Tabla 20 Tabla de atributos de la capa shepe Rivers556

Name	Slp(pendiente)	RivLen(longitud)	RouteMet
R10	0.02006659911	1295.68542495000	Muskingum
R20	0.02071067812	48.28427124750	Muskingum
R30	0.01520120207	526.27416998000	Muskingum
R40	0.01516388253	2176.22366364000	Muskingum
R50	0.02318697947	1768.23376491000	Muskingum
R60	0.03061400149	1372.25396744000	Muskingum
R70	0.02825885603	1733.96969620000	Muskingum
R80	0.03850269929	1090.83261121000	Muskingum
R90	0.02734755160	2376.81240867000	Muskingum
R100	0.00000000000	228.28427124700	Muskingum
R110	0.03788766229	3404.80230740000	Muskingum
R120	0.02946988039	2918.23376491000	Muskingum
R130	0.04896051633	816.98484809800	Muskingum
R140	0.03226827838	464.85281374200	Muskingum
R150	0.24143944587	82.42640687120	Muskingum
R160	0.02211743305	904.26406871200	Muskingum
R170	0.03385645193	2333.38095117000	Muskingum
R180	0.04251553308	1881.66522241000	Muskingum

Fuente: Elaboración propia.

La información anteriormente presentada en las Tablas es utilizada por ArcGIS 10.3 para elaborar el modelo hidrológico de la cuenca y su exportación a HEC-HMS 3.5.

5.2.1 Modelo hidrológico de la cuenca

Una vez cargado el modelo de la cuenca en HEC-HMS 3.5 se presenta de la siguiente manera.

Fuente: Elaboración propia.

Es necesario incorporar al modelo base los componentes necesarios para realizar las simulaciones como son: el componente meteorológico, especificaciones de control y los datos de series de tiempo. Así como los parámetros k y x del tránsito de Muskingum y la abstracción inicial.

5.2.2 Parámetros del tránsito de Muskingum

Los parámetros del tránsito de Muskingum son introducidos de forma manual al programa por medio de la pestaña parameters – Routing – Muskingum y a continuación se despliega una Tabla donde se digitan los datos (Ver parámetros de Muskingum Anexo I Tabla III).

Figura 21 Parámetros de Muskingum en HEC-HMS 3.5

Muskingum Routing [Cuenca_PJC]					
Show Elements: All Elements 🔻					
Reach	Muskingum K (HR)	Muskingum X	Number of Subreaches		
R330	0.62	0.2	2		
R170	0.18	0.2	2		
R100	0.02	0.2	2		
R220	0.38	0.2	2		
R90	0.26	0.2	2		
R260	0.27	0.2	2		
R290	0.30	0.2	2		
R210	0.31	0.2	2		
R140	0.05	0.2	2		
R200	0.11	0.2	2		
R 180	0.21	0.2	2		
R160	0.08	0.2	2		
R120	0.34	0.2	2		
R70	0.19	0.2	2		
R30	0.06	0.2	2		
R40	0.23	0.2	2		
R20	0.02	0.2	2		
R10	0.21	0.2	2		

Fuente: Elaboración propia.

5.2.3 Abstracción inicial

Al igual que los parámetros del tránsito, la abstracción inicial se introduce de forma manual al programa en parameters–Loss–CSC curve number. (Ver Anexo I Tabla IV)

Figura 22 Abstracción inicial

Ucurve Number Loss [Cuenca_PJC]							
Show Elements: All Elements 🔻							
Subbasin	Initial Abstraction (MM)	Curve Number	Impervious (%)				
W600	14.54	77.745	0				
W590	12.93	79.699	0				
W740	13.28	79.271	0				
W730	14.36	77.958	0				
W520	12.25	80.569	0				
W510	8.94	85.026	0				
W680	13.46	79.043	0				
W670	18.22	73.594	0				
W500	6.56	88.5625	0				
W490	9.80	83.821	0				
W660	14.21	78.133	0				
W650	14.39	77.923	0				
W700	22.95	68.879	0				
W690	21.14	70.61	0				
W720	21.53	70.227	0				
W710	14.08	78.296	0				
W550	10.59	82.742	0				
W560	4.70	91.522	0				
W620	7.15	87.65	0				
W610	8.82	85.195	0				
WE40	14 01	77 307	n				

5.2.4 Modelo meteorológico

Se crean tres modelos meteorologico uno para cada periodo de retorno a simular, esto se hace con la intension de no estar cambiando constantemente el Gage de cada subcuenca. Y la precĺpitacion a simular es por hietrograma especifico.

Figura 23 Modelo meteorológico.

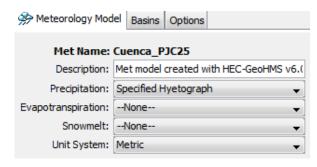
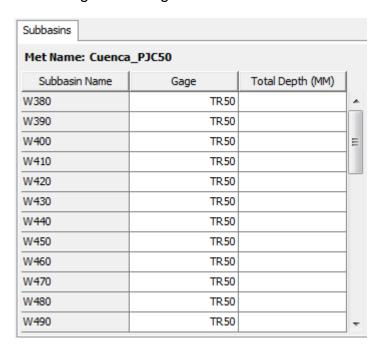



Figura 24 Gage de las subcuencas

Fuente: Elaboración propia.

5.2.5 Datos de series de tiempos

En este componente se introducen los datos de precipitación, en este caso los hidrogramas resultantes de las curvas IDF para los periodos de retorno de 10, 25 y 50 años(Ver Anexo I Tablas XV, XVI y XVII). Estos tiene una duración de dos horas con incremento de tiempo de diez minutos.

Tabla 21 Cálculo de precipitación TR25

	Bloques alternos (periodo de Retorno 25 años)								
duracion(min)	INT(mm/h)	prof acum(mm)	prof(mm)	tiempo inicial	tiempo final	precipitacion (mm)			
10	181.82	30.3	30.3	0	10	5.14			
20	130.54	43.51	13.21	10	20	5.68			
30	107.54	53.77	10.26	20	30	6.46			
40	93.72	62.48	8.71	30	40	7.72			
50	84.24	70.2	7.72	40	50	10.26			
60	77.21	77.21	7.01	50	60	30.3			
70	71.72	83.67	6.46	60	70	13.21			
80	67.29	89.72	6.05	70	80	8.71			
90	63.6	95.4	5.68	80	90	7.01			
100	60.48	100.8	5.4	90	100	6.05			
110	57.79	105.94	5.14	100	110	5.4			
120	55.43	110.86	4.92	110	120	4.92			

Figura 25 Hietograma de diseño (Bloques alternos). **TR25** 35 30 Precipitación(mm) 25 20 15 ■TR25 10 5 10 20 30 50 60 70 80 90 100 110 120 40 duración(mm)

La entrada para estos datos es manual y completando la siguiente información como sigue.

Figura 26 Datos de series de tiempo

Name: TR10

Description: 10AÑOS

Data Source: Manual Entry

Units: Incremental Millimeters

Time Interval: 10 Minutes

Latitude Degrees:

Latitude Seconds:

Longitude Minutes:

Longitude Seconds:

Longitude Seconds:

Seguidamente se ingresa el inicio y finalización de la tormente de diseño y se ingresan los datos de los hietrogramas.

Figura 27 Hietrograma de diseño

i igura z <i>i</i>	riictiogi	airia	ic dis	CITO	
Time-Series Gage Ti	me Window	Table	Graph		
Time (ddMMMYYYY, HH	l:mm)	Pr	ecipitati	on (MM)	
01ene2000, 00:00					
01ene2000, 00:10					3.98
01ene2000, 00:20					4.43
01ene2000, 00:30					5.08
01ene2000, 00:40					6.14
01ene2000, 00:50					8.32
01ene2000, 01:00					27.01
01ene2000, 01:10					10.90
01ene2000, 01:20					6.98
01ene2000, 01:30					5.53
01ene2000, 01:40					4.72
01ene2000, 01:50					4.17
01ene2000, 02:00					3.80

5.2.6 Especificaciones de control

En este componente se introduce la fecha de inicio y finalización de la simulación. Es importante recordar que el tiempo de la simulación debe ser mayor que el hietrograma, en este caso el hietrograma tiene una duración de dos horas, por lo que la duración de la tormenta será de ocho horas.

Name: TR25

Description:

*Start Date (ddMMMYYYY) 01ene2000

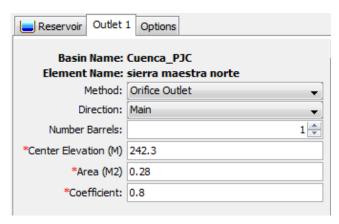
*Start Time (HH:mm) 00:00

*End Date (ddMMMYYYY) 01ene2000

*End Time (HH:mm) 08:00

Time Interval: 10 Minutes

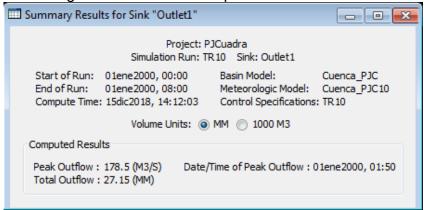
Figura 28 Especificaciones de control


Fuente: Elaboración propia.

5.2.7 Micropresas existentes

Las micropresas se adicionan directamente en el modelo base en los rios o uniones que les corresponde. En el modelo se adicionaron cuatro micropresas existentes. (Sierra Maestra Norte, Sierra Maestra Sur, Los Ladinos y San Isidro). Ver en Anexo I, Tablas de Elevación - almacenaje y en Anexo III, planos de micropresas.

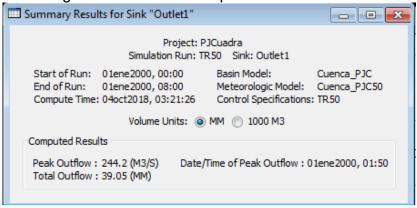
En los datos de las micropresas se requieren las elevacion y áreas de las tuberias de descarga y de alivio. Tambien es necesario agregar un factor de descargar igual a 0.8.


Figura 29 Datos de tubería de descarga en micropresa

5.2.8 Resultado de la simulación hidrológica con HEC-HMS 3.5

Los resultados en el punto de cierre para los periodos de retorno de 10,25 y 50 años fueron los siguientes.

Figura 30 Resultado en punto de cierre TR10


Summary Results for Sink "Outlet1" - - X Project: PJCuadra Simulation Run: TR25 Sink: Outlet1
 Start of Run:
 01ene2000, 00:00
 Basin Model:

 End of Run:
 01ene2000, 08:00
 Meteorologic I
 Cuenca_PJC Meteorologic Model: Cuenca_PJC25 Compute Time: 27abr2018, 00:52:27 Control Specifications: TR25 Volume Units: (a) MM (b) 1000 M3 Computed Results Peak Outflow: 216.2 (M3/S) Date/Time of Peak Outflow: 01ene2000, 01:50 Total Outflow: 34.08 (MM)

Figura 31 Resultados en punto de cierre TR25

Fuente: Elaboración propia

Figura 32 Resultado en punto de cierre TR50

Fuente: Elaboración propia.

Estudio hidráulico con HEC-RAS 5.0.3

Una vez que ya se ha determinado el caudal de diseño se procede a realizar las simulaciones correspondientes a las estructuras existentes y las propuestas. Para el caso de puentes en zonas urbanas el caudal de diseño corresponde a un periodo de retorno de 25 años.

Antes de realizar las simulaciones es necesario preparar el modelo con los datos recolectados en campo.

5.3.1 Datos geométricos

Los datos geométricos del cauce se tomaron en campo con el uso de estación total y abarco una distancia de 230 m aguas arriba y 200 m aguas abajo. Por medio de Civil3D se definieron las secciones trasversales y eje central del cauce que posteriormente fueron exportadas a HEC-RAS 5.0.3.

La siguiente figura muestra la geometría del cauce en HEC-RAS 5.0.3 ya con la ubicación del puente vehicular Javier Cuadra.



Figura 33 Esquema de la geometría del cauce Javier Cuadra.

Un punto muy importante a tomar en cuenta al momento de exportar las secciones a HEC-RAS es que el programa toma las secciones de mayor valor como de aguas arriba y las de menor valor como de aguas abajo.

5.3.2 Ubicación del puente

El puente está ubicado entre las secciones 210 y 200. Se puede esquematizar en el programa por medio de la ventana bridge/culvert data editor de puentes y alcantarillas. En la ventana Bridge Design se le asigna el valor de la cuerda inferior y superior al tablero del puente. Ver figura 34

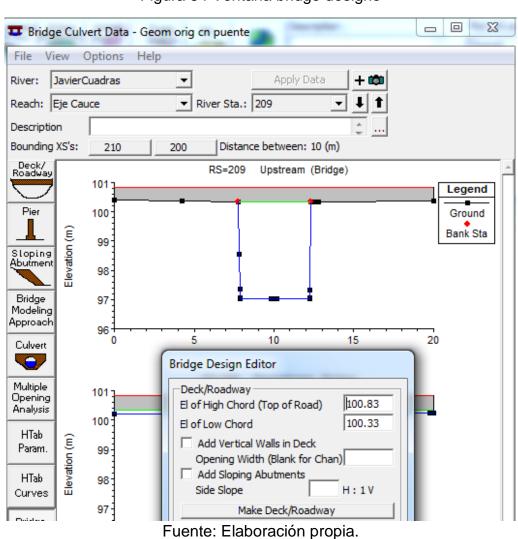


Figura 34 Ventana bridge designe

En este caso el puente esta sobre el borde del cauce y no contiene pilas ni estribos que interfieran con el flujo de agua.

5.3.3 Perfil de flujo para la modelación

Para el perfil de flujo se introducen los caudales de diseño en la estación aguas arriba(Ver figura 31) y las condiciones de contorno se toman normales con un tirante aguas abajo igual a la pendiente del último tramo y con un tirante aguas arriba igual a la pendiente del primer tramo (Ver figura 35). En este caso los dos tirantes son de 0.013.

$$P_{aguas\;arriba} = \frac{secci\'n430 - secci\'n210}{distancia} = \frac{99.83m - 97.02m}{220m} = 0.013m/m$$

$$P_{aguas\;abajo} = \frac{secci\'n200 - seccion0}{distancia} = \frac{96.89m - 94.22m}{200m} = 0.013m/m$$

Figura 35 Ventana de perfil de flujo

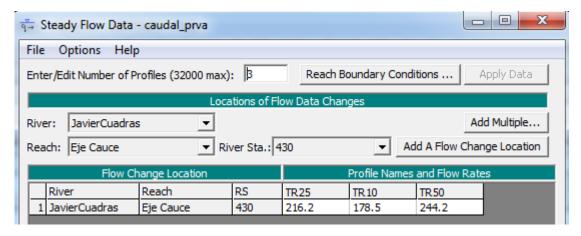
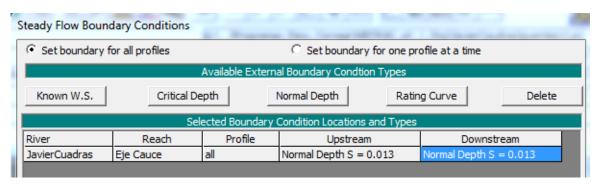
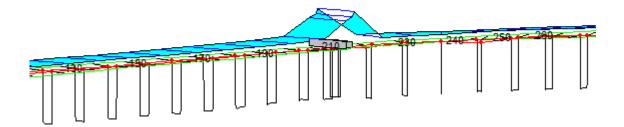



Figura 36 Ventana de condiciones de contorno



5.3.4 Resultados de simulación hidráulica en las estructuras existentes.

Según las simulaciones realizadas se puede observar que las dimensiones de las secciones existentes del cauce son insuficientes para drenar los caudales de diseño resultantes del estudio hidrológico.

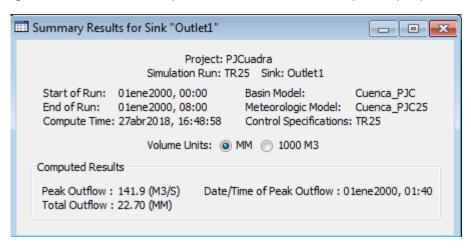
En todas las simulaciones, para los periodos de retorno de 10, 25 y 50 años, ocurre un desbordamiento desde aguas arriba, hasta aguas abajo (ver figura 37).

Figura 37 Simulación estructura existente TR10

5.3.5 Simulación hidráulica con micropresa propuesta

Debido a que el caudal de diseño, para un periodo de retorno de 25 años de 216.2 m³/s, es un caudal elevado para la sección existente (3.5m de alto x 4.6m de ancho) se pretende reducir el caudal con la construcción de una micropresa aguas abajo de las existentes y que no esté conectada con las anteriores.

La micropresa propuesta estaría ubicada en la unión del cauce Belmonte y el cauce del mercado Bóer. En esta zona se encuentra un área despejada que podría usarse para su construcción.


Figura 38 Ubicación de micropresa propuesta

Fuente: Mapa de micropresas y cauces. ALMA

Se realizó la simulación de la micropresa propuesta utilizando la curva elevación – almacenamiento y diámetro de tuberías de la micropresa cierra maestra sur. Las elevaciones de la curva de almacenamiento fueron ajustadas tomando la elevación de un punto del área de posible ubicación de la micropresa.

Al realizar la simulación hidrológica se obtuvieron los siguientes resultados en el punto de cierre.

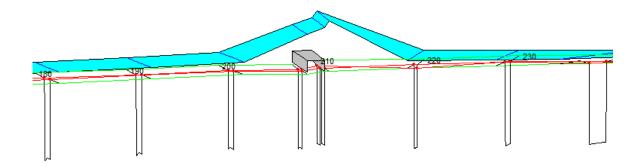
Figura 39 Resultado en punto de cierre con micropresa propuesta.

Fuente: Elaboración propia.

Lo que se puede ver es una considerable reducción del caudal en el punto de cierre. Lo que lo hace más manejable para trabajar. Por lo que este será el caudal de diseño para un periodo de retorno de 25 años.

Tabla 22 Distintos periodos de retorno

Tiempo de retorno	Q(m3/s)
TR10	117.9
TR25	141.9
TR50	160


Fuente: Elaboración propia

5.3.5.1 Simulación Hidráulica de las estructuras existentes con micropresa propuesta

Al realizar la simulación hidráulica de las estructuras existentes, con el nuevo caudal de diseño de 141.9 m3/s, da como resultado un desbordamiento completo del cauce llegando a sobrepasar el nivel del puente peatonal que existe en la actualidad (ver figura 40).

Por lo que la ampliación del canal es inminente aun con la construcción de la micropresa propuesta.

Figura 40 Simulación de estructuras existentes con micropresa propuesta TR25

Fuente: Elaboración propia

5.3.5.2 Simulación hidráulica con ampliación de canal, puente vehicular y micropresa propuesta

Para la simulación hidráulica se ampliaron las dimensiones de las secciones del canal de 4.6 m por 3.5 m a 5.5 m por 3.5 m aguas arriba y se cambia a una sección trapezoidal, en las zonas próximas al puente, de 6.5 m por 3.5 m por 8.5 m de corona, lo que permite, según H canales, un borde libre de 0.5 m y una reducción en la altura del puente vehicular de 0.7 m con la sección trapezoidal.

Figura 41 Diseño en Hcanales V 3.0 para el tramo aguas arriba

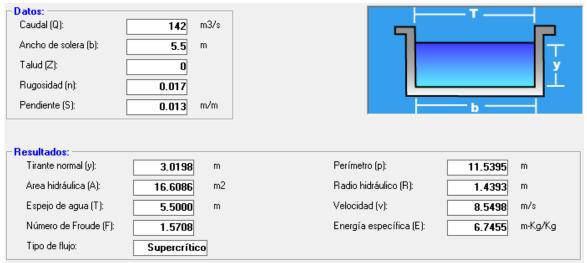
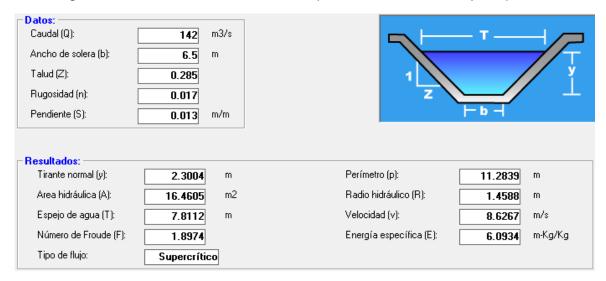
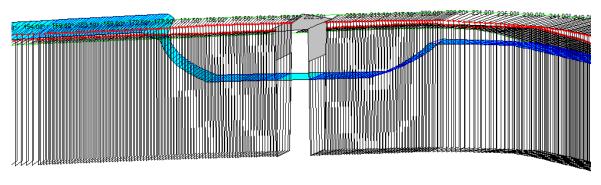



Figura 42 Diseño en Hcanales V 3.0 para las secciones bajo el puente



Fuente: Elaboración propia

Al realizar las simulaciones, en HEC-RAS 5.0.3, con las nuevas secciones propuestas se obtuvieron los resultados siguientes:

En la sección cuadrada aguas arriba se registra un borde libre de más 0.5 m en las primeras secciones de aguas arriba e iguales a 0.5 en las secciones próximas a las secciones trapezoidales (ver figura 43).

Figura 43 Simulación con ampliación y desbordamiento

En la sección aguas arriba del puente se presenta un tirante normal de 2.12 m, aproximado a los 2.30 m calculados por Hcanales V 3.0, lo que permitiría bajar la altura de la cuerda inferior del puente en 0.88m y manteniendo un borde libre de 0.5 m (ver figura 40).

▼ River Sta.: 208.9 BR U Reach: Eje Cauce ModifUltimo Plan: Plan 06 16/12/2018 Legend 103 EG TR50 102 EG TR25 Elevation (m) 101 Crit TR50 Crit TR25 100 99 WS TR25 WS TR25 (9.47, 98.89) 98 Ground 97 Bank Sta

Figura 44 Sección aguas arriba del puente

Fuente: Elaboración propia

96-

La reducción en la altura del puente nos permitirá compensar un poco el desnivel existente entre las dos calles, que unirá el puente vehicular Javier Cuadra (ver Anexo III, plano 3), trazando una rasante más suave.

20

Aguas abajo del puente al salir de la transición en la sección 181 se presenta un desbordamiento que se mantiene hasta llegar a la última sección. Esto se debe a la perdida de energía causada por el cambio de sección.

Para solucionar el desbordamiento aguas abajo se amplió la sección en 0.5 m al salir de la transición. Al realizar la simulación no solo se evita el desbordamiento, también se logra mantener un borde libre de 0.5 m a lo largo del cauce (ver Figura 45).

Figura 45 Simulación sin desbordamiento

Fuente: Elaboración propia

Se registran velocidad de 9.7 m/s aguas arriba, en la sección trapezoidal de 9.4 m/s y en la sección cuadrada de aguas abajo velocidades de 8.7 m/s, en las primeras secciones después de la transición, a 8 m/s en el resto del cauce.

5.3.6 Simulación hidráulica sin micropresa propuesta

Para la simulación sin micropresa se diseñó el canal para un caudal de 216.2 m3/s obteniendo una sección de 7.6 m de ancho por 3.5 m de alto.

Debajo del puente se colocó una sección de 8.6 m de ancho por 3.5 m de alto con 10.6 m de corona.

Figura 46 Diseño en Hcanales V 3.0 para el tramo aguas arriba, sin micropresa

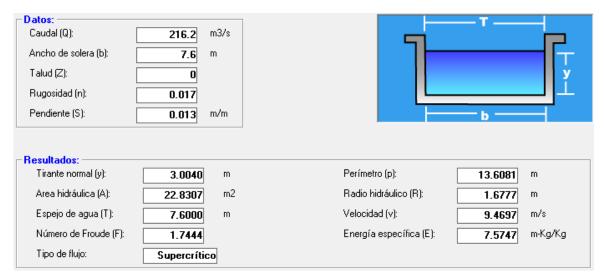
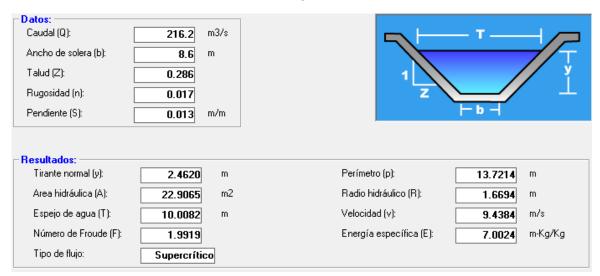
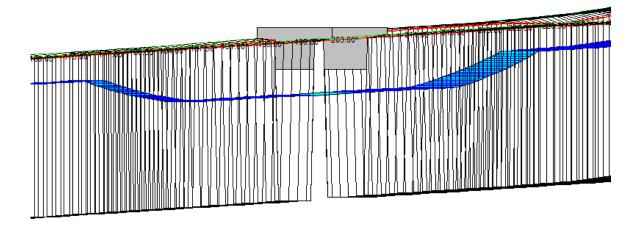



Figura 47 Diseño en Hcanales V 3.0, para la sección bajo el puente, sin micropresa



Fuente: Elaboración propia

Al realizar la simulación, con HEC-RAS 5.0.3, se observa que con el caudal de 216.2 m³/s la sección cuadrada aguas arriba mantiene un borde libre de 0.5 m y en la sección bajo el puente un borde libre de 0.49 m. Aguas abajo al salir de la transición se presentó un desbordamiento, que se resolvió con la ampliación de la

sección cuadrada en 0.5 m y nos permite mantener un borde libre próximo a 0.5 m.

Figura 48 Simulación de sección ampliada, sin micropresa

Fuente: Elaboración propia

Se registran velocidades de 9.6 m/s aguas arriba, de 10 m/s en la sección trapezoidal bajo el puente y de 9.05 m/s aguas abajo.

CONCLUSIONES

- 1. Con la realización del estudio hidrológico se logró determinar el caudal de diseño para el periodo de retorno de 25 años de 216.2 m³/s.
- 2. Al realizar la evaluación de las estructuras existentes en su condición actual se demostró que esta no cuenta con la capacidad de drenaje para ninguno de los periodos de retorno evaluados.
- 3. Se determinó por medio del estudio hidráulico que la mejor alternativa de diseño es con la construcción de la micropresa propuesta debido a que:
- Las dimensiones de la sección del cauce serían menores con la micropresa propuesta, porque se pasaría de un caudal de 216.2 m³/s a 141.9 m³/s
- La obra propuesta incrementaría la vida útil de la estructura a diseñar en dependencia del periodo de retorno de la micropresa y de igual forma existiría un mayor control de las avenidas.
- Se disminuiría la altura del puente en 0.86 m, mejorando la rasante entre la calles a unir.
- La velocidad de la corriente también tendría una reducción significativa ya que aguas abajo disminuiría de 9 m³/s a 8 m³/s.

RECOMENDACIONES

- 1. Protección de la parte media y alta de la cuenca de la impermeabilización de los suelos evitando el despale y la construcción de urbanizaciones.
- 2. Construcción de obras que reduzcan la escorrentía superficial y aumenten la infiltración de agua en el suelo.
- 3. Ampliación de toda la red hidráulica de la ciudad de Managua. Recomendación que ya fue realizada en 1985 por el estudio del manejo del sistema de drenaje pluvial de Managua (Atb), el cual hace un análisis de toda la red de drenaje de la ciudad de Managua haciendo uso del programa de análisis hidráulico Hymo.
- 4. Debido a que las calles de la parte oeste del cauce próximas al puente tienen su inclinación en dirección al cauce se recomienda la colocación de tragantes que eviten la acumulación de agua en el sector y que estas sean drenadas al cauce (ver Anexo V Foto 5 y Anexo III Plano 7 detalles de tragantes).
- 5. Realizar estudio estructural para determinar con exactitud el espesor de la viga del puente.

BIBLIOGRAFÍA

- 1. Atb, Estudio del manejo del sistema del drenaje pluvial de Managua, 1985
- 2. AtbassociatesInc, Análisis del rompimiento de la micropresa Sierra Maestra Sur, Marzo 2000
- 3. ACEVEDO, Jerson; MENDOZA, Víctor. Monografía "Evaluación hidrotécnica del puente la trinidad, tramo empalme la trinidad San Rafael del sur. UNI, 2015.
- 4. CHOW, Ven Te; MAIDMENT, David R; MAYS, Larry W. Hidrología Aplicada. McGraw-Hill, 1994.
- 5. Dr. Néstor Lanzas, Hidrología para ingenieros civiles, capitulo dos: cuenca hidrográfica, 2012.
- 6. Dr. Néstor Lanzas, Hidrología para ingenieros civiles, capitulo ocho: Manual de Hec-Ras, 2012.
- 7. GONZALEZ, Elías. Monografía "Metodología para realización de un estudio hidrológico con Hec-Hms3.5". UNI, 2015.
- 8. IRENA. Diagnostico preliminar de la Microcuenca "C" Managua Junio 1992.
- 9. Legarda Burbano, L & Viveros Zarama, M. Importancia de la Hidrología en el Manejo de la Cuenca Hidrográfica. Revista de Ciencias Agrícolas 1996.
- 10. MTI; Corasco. Manual para la revisión de estudios hidrotécnicos de drenaje mayor. 2008

ANEXO I TABLAS

Tabla I Presentación tabla de atributos capa subbassain556

Name	BasinSlope	LossMet	TransMet	BasinCN	LagMethod	BasinLag	Area_HMS
W380	9.319	SCS	SCS	98.000	CNLag	0.202	0.471
W390	12.592	SCS	SCS	98.000	CNLag	0.023	0.008
W400	9.288	SCS	SCS	98.000	CNLag	0.317	0.816
W410	13.281	SCS	SCS	98.000	CNLag	0.074	0.103
W420	11.166	SCS	SCS	98.000	CNLag	0.296	0.769
W430	11.076	SCS	SCS	98.000	CNLag	0.269	0.785
W440	10.747	SCS	SCS	98.000	CNLag	0.204	0.528
W450	7.867	SCS	SCS	98.000	CNLag	0.325	1.347
W460	6.977	SCS	SCS	97.940	CNLag	0.515	2.668
W470	11.967	SCS	SCS	97.988	CNLag	0.284	1.055
W480	11.671	SCS	SCS	97.990	CNLag	0.240	0.848
W490	11.597	SCS	SCS	83.821	CNLag	0.857	2.084
W500	16.552	SCS	SCS	88.563	CNLag	0.089	0.067
W510	17.631	SCS	SCS	85.026	CNLag	0.346	0.666
W520	11.085	SCS	SCS	80.569	CNLag	0.544	0.546
W530	11.512	SCS	SCS	97.543	CNLag	0.131	0.294
W540	11.289	SCS	SCS	97.526	CNLag	0.096	0.195
W550	20.755	SCS	SCS	82.742	CNLag	0.466	1.326
W560	6.451	SCS	SCS	91.522	CNLag	0.369	0.431
W570	13.833	SCS	SCS	90.453	CNLag	0.305	0.794
W580	11.747	SCS	SCS	79.953	CNLag	1.099	2.400
W590	14.127	SCS	SCS	79.699	CNLag	1.019	1.880
W600	29.735	SCS	SCS	77.745	CNLag	0.870	2.934
W610	8.928	SCS	SCS	85.195	CNLag	0.449	0.504
W620	11.791	SCS	SCS	87.650	CNLag	0.238	0.449
W630	9.864	SCS	SCS	78.120	CNLag	0.586	0.789
W640	19.557	SCS	SCS	77.307	CNLag	0.532	1.048
W650	28.707	SCS	SCS	77.923	CNLag	0.441	0.995
W660	27.333	SCS	SCS	78.133	CNLag	0.385	0.752
W670	17.589	SCS	SCS	73.594	CNLag	0.851	1.350
W680	24.443	SCS	SCS	79.043	CNLag	0.800	2.822
W690	17.604	SCS	SCS	70.610	CNLag	0.695	1.112
W700	14.889	SCS	SCS	68.879	CNLag	0.421	0.549
W710	31.525	SCS	SCS	78.296	CNLag	0.474	1.594
W720	15.752	SCS	SCS	70.227	CNLag	0.490	0.520
W730	36.378	SCS	SCS	77.958	CNLag	0.308	1.273
W740	36.016	SCS	SCS	79.271	CNLag	0.261	0.774

Tabla II Presentación tabla de atributos capa Rivers556.

Name	RouteMet	ElevUP_HMS	ElevDS_HMS	RivLen_HMS
R10	Muskingum	77.000	51.000	1295.685
R20	Muskingum	78.000	77.000	48.284
R30	Muskingum	85.000	77.000	526.274
R40	Muskingum	111.000	78.000	2176.224
R50	Muskingum	119.000	78.000	1768.234
R60	Muskingum	127.010	85.000	1372.254
R70	Muskingum	134.000	85.000	1733.970
R80	Muskingum	153.000	111.000	1090.833
R90	Muskingum	199.000	134.000	2376.812
R100	Muskingum	199.000	199.000	228.284
R110	Muskingum	240.000	111.000	3404.802
R120	Muskingum	220.000	134.000	2918.234
R130	Muskingum	239.000	199.000	816.985
R140	Muskingum	235.000	220.000	464.853
R150	Muskingum	254.901	235.000	82.426
R160	Muskingum	240.000	220.000	904.264
R170	Muskingum	278.000	199.000	2333.381
R180	Muskingum	320.000	240.000	1881.665
R190	Muskingum	359.000	320.000	519.706
R200	Muskingum	377.000	320.000	992.548
R210	Muskingum	351.000	235.000	3495.635
R220	Muskingum	393.000	199.000	4992.447
R230	Muskingum	424.000	377.000	1059.706
R240	Muskingum	439.000	377.000	1906.812
R250	Muskingum	494.000	240.000	4991.909
R260	Muskingum	499.000	351.000	2643.087
R270	Muskingum	518.000	499.000	247.279
R280	Muskingum	560.000	278.000	5278.183
R290	Muskingum	519.000	351.000	3404.508
R300	Muskingum	576.000	393.000	3624.802
R310	Muskingum	581.000	519.000	604.558
R320	Muskingum	630.000	499.000	2298.528
R330	Muskingum	596.000	278.000	7332.691
R340	Muskingum	695.000	393.000	5969.310
R350	Muskingum	697.000	596.000	1190.833
R360	Muskingum	697.000	519.000	3104.802
R370	Muskingum	724.000	596.000	1703.970

Tabla III Parámetros de Muskingum

Name	RivLen	ElevUP	ElevDS	Slp	Tc(hr)	Vc	Vt	K(hr)	Χ	n	
R10	1295.69	77.00	51.00	2.01%	0.19	1.88	1.71	0.21	0.2	2	R20,R30
R20	48.28	78.00	77.00	2.07%	0.02	0.89	2.23	0.01	0.2	2	R40,R50
R30	526.27	85.00	77.00	1.52%	0.11	1.37	2.34	0.06	0.2	2	R60,R70
R40	2176.22	111.00	78.00	1.52%	0.32	1.90	2.66	0.23	0.2	2	R80,R110
R50	1768.23	119.00	78.00	2.32%	0.23	2.13	2.13	0.23	0.2		0
R60	1372.25	127.01	85.00	3.06%	0.17	2.24	2.24	0.17	0.2		0
R70	1733.97	134.00	85.00	2.83%	0.21	2.29	2.48	0.19	0.2	2	R120,R90
R80	1090.83	153.00	111.00	3.85%	0.13	2.32	2.32	0.13	0.2		0
R90	2376.81	199.00	134.00	2.73%	0.27	2.44	2.50	0.26	0.2	2	R100,R220
R100	228.28	199.05	199.00	0.02%	0.29	0.22	2.87	0.02	0.2	2	R130,R170
R110	3404.80	240.00	111.00	3.79%	0.32	3.00	3.00	0.32	0.2		0
R120	2918.23	220.00	134.00	2.95%	0.31	2.63	2.36	0.34	0.2	2	R140,R160
R130	816.98	239.00	199.00	4.90%	0.10	2.38	2.38	0.10	0.2		0
R140	464.85	235.00	220.00	3.23%	0.07	1.78	2.86	0.05	0.2	2	R150,R210
R150	82.43	254.90	235.00	24.14%	0.01	2.60	2.60	0.01	0.2		0
R160	904.26	240.00	220.00	2.21%	0.14	1.80	2.98	0.08	0.2	2	R180,R250
R170	2333.38	278.00	199.00	3.39%	0.25	2.63	3.61	0.18	0.2	2	R280,R330
R180	1881.67	320.00	240.00	4.25%	0.19	2.74	2.55	0.21	0.2	2	R190,R200
R190	519.71	359.00	320.00	7.50%	0.06	2.53	2.53	0.06	0.2		0
R200	992.55	377.00	320.00	5.74%	0.10	2.65	2.46	0.11	0.2	2	R230,R240
R210	3495.63	351.00	235.00	3.32%	0.34	2.87	3.12	0.31	0.2	2	R290,R260
R220	4992.45	393.00	199.00	3.89%	0.42	3.31	3.61	0.38	0.2	2	R300,R340
R230	1059.71	424.00	377.00	4.44%	0.12	2.44	2.44	0.12	0.2		0
R240	1906.81	439.00	377.00	3.25%	0.21	2.47	2.47	0.21	0.2		0
R250	4991.91	494.00	240.00	5.09%	0.38	3.67	3.67	0.38	0.2		0
R260	2643.09	499.00	351.00	5.60%	0.22	3.29	2.68	0.27	0.2	2	R270,R320
R270	247.28	518.00	499.00	7.68%	0.03	2.15	2.15	0.03	0.2		0
R280	5278.18	560.00	278.00	5.34%	0.39	3.79	3.79	0.39	0.2		0
R290	3404.51	519.00	351.00	4.93%	0.28	3.32	3.20	0.30	0.2	2	R310,R360
R300	3624.80	576.00	393.00	5.05%	0.30	3.40	3.40	0.30	0.2		0
R310	604.56	581.00	519.00	10.26%	0.06	2.96	2.96	0.06	0.2		0
R320	2298.53	630.00	499.00	5.70%	0.20	3.21	3.21	0.20	0.2		0
R330	7332.69	596.00	278.00	4.34%	0.54	3.77	3.27	0.62	0.2	2	R350,R370
R340	5969.31	695.00	393.00	5.06%	0.43	3.81	3.81	0.43	0.2		0
R350	1190.83	697.00	596.00	8.48%	0.10	3.21	3.21	0.10	0.2		0
R360	3104.80	697.00	519.00	5.73%	0.25	3.44	3.44	0.25	0.2		0
R370	1703.97	724.00	596.00	7.51%	0.14	3.33	3.33	0.14	0.2		0

Tabla IV Abstracción inicial.

OBJECTID	Name	BasinSlope	BasinCN	BasinLag	Area_HMS	InitAbst
37	W740	36.02	79.27	0.26	0.77	13.28
36	W730	36.38	77.96	0.31	1.27	14.36
35	W720	15.75	70.23	0.49	0.52	21.53
34	W710	31.52	78.30	0.47	1.59	14.08
33	W700	14.89	68.88	0.42	0.55	22.95
32	W690	17.60	70.61	0.70	1.11	21.14
31	W680	24.44	79.04	0.80	2.82	13.46
30	W670	17.59	73.59	0.85	1.35	18.22
29	W660	27.33	78.13	0.39	0.75	14.21
28	W650	28.71	77.92	0.44	0.99	14.39
27	W640	19.56	77.31	0.53	1.05	14.91
26	W630	9.86	78.12	0.59	0.79	14.22
25	W620	11.79	87.65	0.24	0.45	7.15
24	W610	8.93	85.20	0.45	0.50	8.82
23	W600	29.73	77.75	0.87	2.93	14.54
22	W590	14.13	79.70	1.02	1.88	12.93
21	W580	11.75	79.95	1.10	2.40	12.73
20	W570	13.83	90.45	0.31	0.79	5.36
19	W560	6.45	91.52	0.37	0.43	4.70
18	W550	20.75	82.74	0.47	1.33	10.59
17	W540	11.29	97.53	0.10	0.19	1.28
16	W530	11.51	97.54	0.13	0.29	1.27
15	W520	11.09	80.57	0.54	0.55	12.25
14	W510	17.63	85.03	0.35	0.67	8.94
13	W500	16.55	88.56	0.09	0.07	6.56
12	W490	11.60	83.82	0.86	2.08	9.80
11	W480	11.67	97.99	0.24	0.85	1.04
10	W470	11.97	97.99	0.28	1.06	1.04
9	W460	6.98	97.94	0.52	2.67	1.06
8	W450	7.87	98.00	0.32	1.35	1.03
7	W440	10.75	98.00	0.20	0.53	1.03
6	W430	11.08	98.00	0.27	0.78	1.03
5	W420	11.17	98.00	0.30	0.77	1.03
4	W410	13.28	98.00	0.07	0.10	1.03
3	W400	9.29	98.00	0.32	0.82	1.03
2	W390	12.59	98.00	0.02	0.01	1.03
1	W380	9.32	98.00	0.20	0.47	1.03

Tabla V Datos meteorológicos.

INTENSIDADES DE PRECIPITACIÓN MAXIMAS ANUALES ESTACION METEOROLÓGICA: MANAGUA PERIODO: 1971-2008

PERIODO: 1971-2008							
AÑOS		DURAC	IÓN DE IN	TENSIDAD	DES EN MI	NUTOS	
	5	10	15	30	60	120	360
1971	199.2	112.8	106.4	69.4	41.7	30.2	15.6
1972	212.4	123.6	86.8	58.8	29.5	18.1	11.0
1973	200.4	137.4	121.2	89.2	77.7	44.7	11.2
1974	198.0	115.2	84.0	59.0	44.4	30.9	6.3
1975	126.0	125.4	118.4	100.0	90.0	65.6	8.6
1976	123.6	118.2	113.6	72.4	41.6	22.8	7.0
1977	187.2	142.2	118.4	79.2	52.1	29.2	2.1
1978	126	125.6	90.8	77.0	49.0	30.2	6.3
1979	121.2	111.6	92.8	57.8	42.4	26.8	10.2
1980	180.0	178.2	158.4	99.0	63.8	37.3	13.5
1981	153.6	109.2	104.8	59.6	36.7	23.0	5.8
1982	155.6	122.4	95.6	68.0	57.7	33.6	23.7
1983	133.2	102.0	80.8	55.8	35.4	18.1	8.8
1984	151.2	150.0	123.2	112.8	63.2	32.7	10.1
1985	150.0	134.4	109.6	106.4	77.3	67.9	52.8
1986	158.4	103.8	88.0	54.4	28.5	8.9	7.0
1987	200.4	151.8	119.2	84.4	47.1	17.4	7.1
1988	212.4	168.8	134.4	93.2	64.2	21.2	7.2
1989	150.1	120.7	98.0	36.4	25.2	14.8	6.1
1990	106.2	86.4	72.4	62.5	36.9	14.8	6.0
1991	238.8	204.0	159.6	82.2	33.8	23.0	9.1
1992	123.6	111.0	98.0	69.0	39.3	21.5	6.1
1993	150.0	111.0	87.2	66.0	49.3	29.1	11.1
1994	122.4	108.6	90.0	60.6	54.3	32.8	18.7
1995	115.2	114.0	113.0	76.0	76.0	45.8	6.0
1996	124.8	121.8	120.0	69.6	43.5	23.3	11.6
1997	120.0	120.0	80.0	64.0	33.4	14.9	10.7
1998	230.4	141.6	110.4	76.6	43.1	24.5	7.2
1999	126	109.8	84.0	62.4	32.6	22.7	6.5
2000	124.8	116.4	125.2	89.2	51.2	19.8	6.0
2001	230.4	164.0	119.2	76.8	46.0	30.6	9.9
2002	126.0	120.0	114.0	90.0	66.5	62.7	27.0
2003	165.6	130.8	120.8	110.0	95.1	58.9	4.6
2004	132.0	104.4	82.0	64.0	36.4	17.3	5.3
2005	132.0	120.0	108.0	88.0	77.0	42.7	19.0
2006	110.4	108.0	74.8	53.4	41.8	11.0	4.6
2007	142.8	118.8	94.4	62.8	47.0	27.1	10.6
2008	177.6	172.8	153.6	101.6	69.8	39.5	8.3

Fuente: INETER

Tabla I Cálculo de la media aritmética y desviación estándar.

	INTENSIDA	DES DE PI	RECIPITA	CIÓN MAX	IMAS AN	JALES	INTENSIDADES DE PRECIPITACIÓN MAXIMAS ANUALES						
	ESTACION METEOROLÓGICA: MANAGUA												
			RIODO: 19										
AÑOS		DURACIÓ	N DE INT	ENSIDADE	S EN MIN	UTOS							
	5	10	15	30	60	120	360						
1	106.2	86.4	72.4	36.4	25.2	8.9	2.1						
2	110.4	102.0	74.8	53.4	28.5	11.0	4.6						
3	115.2	103.8	80.0	54.4	29.5	14.8	4.6						
4	120.0	104.4	80.8	55.8	32.6	14.8	5.3						
5	121.2	108.0	82.0	57.8	33.4	14.9	5.8						
6	122.4	108.6	84.0	58.8	33.8	17.3	6.0						
7	123.6	109.2	84.0	59.0	35.4	17.4	6.0						
8	123.6	109.8	86.8	59.6	36.4	18.1	6.0						
9	124.8	111.0	87.2	60.6	36.7	18.1	6.1						
10 11	124.8 126.0	111.0 111.6	88.0 90.0	62.4 62.5	36.9 39.3	19.8 21.2	6.1 6.3						
12	126.0	111.8	90.0	62.8	39.3 41.6	21.2	6.3						
13	126.0	114.0	90.8	64.0	41.7	22.7	6.5						
14	126.0	115.2	94.4	64.0	41.7	22.7	7.0						
15	132.0	116.4	95.6	66.0	42.4	23.0	7.0						
16	132.0	118.2	98.0	68.0	43.1	23.0	7.0						
17	133.2	118.8	98.0	69.0	43.5	23.3	7.1						
18	142.8	120.0	104.8	69.4	44.4	24.5	7.2						
19	150.0	120.0	104.6	69.6	46.0	26.8	8.3						
20	150.0	120.0	108.0	72.4	47.0	27.1	8.6						
21	150.1	120.7	109.6	76.0	47.1	29.1	8.8						
22	151.2	121.8	110.4	76.6	49.0	29.2	9.1						
23	153.6	122.4	113.0	76.8	49.3	30.2	9.9						
24	155.6	123.6	113.6	77.0	51.2	30.2	10.1						
25	158.4	125.4	114.0	79.2	52.1	30.6	10.2						
26	165.6	125.6	118.4	82.2	54.3	30.9	10.6						
27	177.6	130.8	118.4	84.4	57.7	32.7	10.7						
28	180.0	134.4	119.2	88.0	63.2	32.8	11.0						
29	187.2	137.4	119.2	89.2	63.8	33.6	11.1						
30	198.0	141.6	120.0	89.2	64.2	37.3	11.2						
31	199.2	142.2	120.8	90.0	66.5	39.5	11.6						
32	200.4	150.0	121.2	93.2	69.8	42.7	13.5						
33	200.4	151.8	123.2	99.0	76.0	44.7	15.6						
34	212.4	164.0	125.2	100.0	77.0	45.8	18.7						
35	212.4	168.8	134.4	101.6	77.3	58.9	19.0						
36	230.4	172.8	153.6	106.4	77.7	62.7	23.7						
37	230.4	178.2	158.4	110.0	90.0	65.6	27.0						
38	238.8	204.0	159.6	112.8	95.1	67.9	52.8						
	450 551	40= 000	100.007		= 4.000	20.5=5	40 ===						
Xmedia	156.261	127.282	106.605	75.197	51.066	29.879	10.755						
Desv.Stand	38.012	24.345	21.988	17.852	17.586	14.759	8.733						
n=	38	38	38 . Elabora	38	38	38	38						

Tabla II Desviación máxima para intensidades anuales de 10 min

IN	INTENSIDADES DE PRECIPITACIÓN MAXIMAS ANUALES							
	ESTAC	ON METEORO	LÓGICA: MA	NAGUA				
		PERIODO:						
AÑOS	IN ⁻	TENSIDADES I	DE 10 MINUT	os				
	Intensidad	Distribución	Distribución	Desviación	Desviación			
	(mm/h)	Empírica	Teórica F(x)		Absoluta			
1	86.4	0.025641	0.00802151	-0.017620	0.017620			
2	102.0	0.051282		0.068327	0.068327			
3	103.8	0.076923		0.067988	0.067988			
4	104.4	0.102564		0.051313	0.051313			
5	108.0	0.128205		0.084336	0.084336			
6	108.6	0.153846		0.069174	0.069174			
7	109.2	0.179487	0.23366689	0.054180	0.054180			
8	109.8	0.205128	0.24446696	0.039339	0.039339			
9	111.0	0.230769	0.26647443	0.035705	0.035705			
10	111.0	0.256410	0.26647443	0.010064	0.010064			
11	111.6	0.282051	0.27765484	-0.004396	0.004396			
12	112.8	0.307692	0.30030162	-0.007391	0.007391			
13	114.0	0.333333	0.32324097	-0.010092	0.010092			
14	115.2	0.358974	0.34636893	-0.012605	0.012605			
15	116.4	0.384615	0.36958554	-0.015030	0.015030			
16	118.2	0.410256	0.40437056	-0.005886	0.005886			
17	118.8	0.435897	0.41591079	-0.019987	0.019987			
18	120.0	0.461538	0.43884779	-0.022691	0.022691			
19	120.0	0.487179	0.43884779	-0.048332	0.048332			
20	120.0	0.512821	0.43884779	-0.073973	0.073973			
21	120.7	0.538462	0.45211515	-0.086346	0.086346			
22	121.8 122.4	0.564103	0.47275611	-0.091346	0.091346			
23		0.589744		-0.105851 -0.109514	0.105851			
24 25	123.6 125.4	0.615385			0.109514			
<u> 25</u> 26	125.4	0.641026 0.666667	0.53800295 0.54150565	-0.103023 -0.125161	0.103023 0.125161			
27	130.8	0.692308		-0.125161	0.065156			
28	134.4	0.717949		-0.003130	0.003130			
29	137.4							
30	141.6	0.769231	0.76773776	-0.024434	0.024434			
31	141.0	0.794872	0.77407011	-0.001493	0.001493			
32	150.0	0.820513	0.84376359	0.023251	0.020002			
33	151.8	0.846154	0.85681692	0.023231	0.023231			
34	164.0	0.871795	0.92189507	0.050100	0.050100			
35	168.8	0.897436	0.93878165	0.030100	0.030100			
36	172.8	0.923077	0.95010564	0.027029	0.027029			
37	178.2	0.948718	0.96220994	0.013492	0.013492			
38	204.0	0.974359	0.99013773	0.015779	0.015779			
-								
Xmedia	127.282		Desviación	Máxima	0.125161			
Desv.Stand	24.022							
n	38							

Tabla III Desviación máxima para intensidades anuales de 15 min

IN	TENSIDADES	DE PRECIPI	TACIÓN MAX	IMAS ANUAL	ES			
	FSTACI	ON METEOR	OLÓGICA: MA	NAGUA				
			1971-2008					
AÑOS	INT	ENSIDADES	DE 15 MINUT	os				
	Intensidad	Distribución	Distribución	Desviación	Desviación			
	(mm/h)	Empírica	Teórica F(x)		Absoluta			
1	72.4	0.025641	0.01626278	-0.009378	0.009378			
2	74.8	0.051282		-0.023446	0.023446			
3	80.0	0.076923		-0.005943	0.005943			
4	80.8	0.102564		-0.022497	0.022497			
5	82.0	0.128205		-0.033254	0.033254			
6	84.0	0.153846		-0.030830	0.030830			
7	84.0	0.179487		-0.056471	0.056471			
8	86.8	0.205128		-0.036497	0.036497			
9	87.2	0.230769		-0.055080	0.055080			
10	88.0	0.256410		-0.066242	0.066242			
11	90.0	0.282051	0.22825714	-0.053794	0.053794			
12	90.8	0.307692		-0.063551	0.063551			
13	92.8	0.333333		-0.048236	0.048236			
14	94.4			-0.040188	0.040188			
15	95.6			-0.040245	0.040245			
16	98.0	0.410256		-0.014490	0.014490			
17	98.0			-0.040131	0.040131			
18	104.8	0.461538		0.074405	0.074405			
19	106.4			0.079358	0.079358			
20	108.0	0.512821	0.59592550	0.083105	0.083105			
21	109.6	0.538462		0.085562	0.085562			
22 23	110.4			0.073466	0.073466			
24	113.0 113.6	0.589744 0.615385		0.089465 0.072909	0.089465			
25	114.0	0.641026		0.072909	0.072909 0.053216			
26	118.4	0.666667		0.033210	0.033210			
27	118.4			0.067293	0.067293			
28	119.2	0.092308		0.001034	0.061034			
29	119.2	0.717949		0.043772	0.043772			
30	120.0				0.003922			
31	120.8			-0.012607	0.012607			
32	121.2	0.820513		-0.033811	0.033811			
33	123.2			-0.038417	0.038417			
34	125.2	0.871795		-0.044864	0.044864			
35	134.4	0.897436		-0.002665	0.002665			
36	153.6		0.96432275	0.041246				
37	158.4			0.024189				
38	159.6			0.000354				
-								
Xmedia	106.605		Desviación	Máxima	0.089465			
Desv.Stand	21.696							
n	38							

Tabla IV Desviación máxima para intensidades anuales de 60 min

INTENSIDADES DE PRECIPITACIÓN MAXIMAS ANUALES										
	ESTACION METEOROLÓGICA: MANAGUA									
	PERIODO: 1971-2008									
AÑOS	INT	ENSIDADES	DE 60 MINUT	os						
	Intensidad	Distribución	Distribución	Desviación	Desviación					
	(mm/h)	Empírica	Teórica F(x)		Absoluta					
1	25.2	0.025641		-0.000788	0.000788					
2	28.5				0.003450					
3	29.5	0.076923		-0.009798	0.009798					
4	32.6	0.102564		0.013316	0.013316					
5	33.4	0.128205		0.002712	0.002712					
6	33.8	0.153846		-0.015058	0.015058					
7	35.4	0.179487		-0.007021	0.007021					
8	36.4	0.205128		-0.009996	0.009996					
9	36.7	0.230769		-0.028621	0.028621					
10	36.9	0.256410			0.049534					
11	39.3				0.015693					
12	41.6	0.307692			0.018965					
13	41.7	0.333333		-0.004013						
14	41.8	0.358974								
15	42.4			-0.036600	0.036600					
16	43.1	0.410256		-0.043492	0.043492					
17	43.5	0.435897		-0.058416	0.058416					
18	44.4	0.461538		-0.059984	0.059984					
19	46.0	0.487179		-0.043226	0.043226					
20	47.0	0.512821		-0.042804	0.042804					
21	47.1	0.538462		-0.065862	0.065862					
22	49.0	0.564103		-0.043429	0.043429					
23	49.3 51.2	0.589744			0.061673					
24 25	52.1	0.615385 0.641026			0.041884					
26	54.3			-0.046930	0.046930					
27	57.7	0.666667		-0.024952	0.024952					
28	63.2	0.692308 0.717949			0.014998 0.075014					
29	63.8			0.073014	0.073014					
30	64.2			0.037279	0.037279					
31	66.5			0.038787	0.038787					
32	69.8			0.045864	0.035367					
33	76.0			0.066581	0.066581					
34	77.0	0.871795		0.046814	0.046814					
35	77.3			0.022860	0.022860					
36	77.7			-0.000583	0.000583					
37	90.0			0.018886	0.018886					
38	95.1	0.974359		0.003184	0.003184					
Xmedia	51.066		Desviación	Máxima	0.075014					
Desv.Stand	17.353									
n	38									

Tabla V Desviación máxima para intensidades anuales de 120 min

IN	INTENSIDADES DE PRECIPITACIÓN MAXIMAS ANUALES									
ESTACION METEOROLÓGICA: MANAGUA										
	PERIODO: 1971-2008									
	1 ENGS - 10/1 2000									
AÑOS	INT	FNSIDADES I	DE 120 MINUT	ros						
Altoo			Distribución		Desviación					
	(mm/h)	Empírica	Teórica F(x)		Absoluta					
	(contract)		(1)							
1	8.9	0.025641	0.03116843	0.005527	0.005527					
2	11.0	0.051282			0.004270					
3	14.8	0.076923			0.048212					
4	14.8	0.102564			0.022571					
5	14.9	0.128205			0.000802					
6	17.3	0.153846	0.18769243	0.033846	0.033846					
7	17.4	0.179487	0.19042576		0.010939					
8	18.1	0.205128	0.20998334		0.004855					
9	18.1	0.230769	0.20998334	-0.020786	0.020786					
10	19.8	0.256410	0.26011793	0.003708	0.003708					
11	21.2	0.282051	0.30345045	0.021399	0.021399					
12	21.5	0.307692	0.31289571	0.005203	0.005203					
13	22.7	0.333333	0.35100407	0.017671	0.017671					
14	22.8	0.358974	0.35419433	-0.004780	0.004780					
15	23.0	0.384615	0.36057775	-0.024038	0.024038					
16	23.0	0.410256	0.36057775	-0.049679	0.049679					
17	23.3	0.435897	0.37015644	-0.065741	0.065741					
18	24.5	0.461538	0.40839318	-0.053145	0.053145					
19	26.8	0.487179	0.48024263	-0.006937	0.006937					
20	27.1	0.512821	0.48938209	-0.023438	0.023438					
21	29.1	0.538462	0.54841084	0.009949	0.009949					
22	29.2	0.564103	0.55126535	-0.012837	0.012837					
23	30.2	0.589744	0.57924595	-0.010498	0.010498					
24	30.2	0.615385	0.57924595	-0.036139	0.036139					
25	30.6	0.641026			0.050886					
26	30.9	0.666667	0.59819378	-0.068473	0.068473					
27	32.7	0.692308		-0.047961	0.047961					
28	32.8	0.717949	0.64679882	-0.071150	0.071150					
29	33.6	0.743590	0.66598286	-0.077607	0.077607					
30	37.3		0.74465444		0.024576					
31	39.5		0.78381326		0.011059					
32	42.7		0.83150984		0.010997					
33	44.7	0.846154	0.85632258		0.010169					
34	45.8		0.86850321	-0.003292	0.003292					
35	58.9		0.95578399	0.058348	0.058348					
36	62.7		0.96800524	0.044928	0.044928					
37	65.6		0.97503529		0.026317					
38	67.9	0.974359	0.97950645	0.005147	0.005147					
Xmedia	29.879		Desviación	Máxima	0.077607					
Desv.Stand	14.563		200.140.011		3.3.7007					
n	38									
	 									

Tabla VI Desviación máxima para intensidades anuales de 360 min.

INTENSIDADES DE PRECIPITACIÓN MAXIMAS ANUALES										
	ESTACION METEOROLÓGICA: MANAGUA									
	PERIODO: 1971-2008									
AÑOS			DE 360 MINU							
	Intensidad		Distribución	Desviación	Desviación					
	(mm/h)	Empírica	Teórica F(x)		Absoluta					
1	2.1	0.025641			0.109912					
2	4.6		0.25034438		0.199062					
3	4.6				0.173421					
4	5.3									
5	5.8		0.31304849							
6	6.0	0.153846								
7	6.0	0.179487								
8	6.0	0.205128								
9	6.1	0.230769								
10	6.1	0.256410								
11	6.3	0.282051			1					
12	6.3	0.307692			0.032152					
13	6.5	0.333333			0.017282					
14	7.0	0.358974								
15	7.0	0.384615								
16	7.1	0.410256		-0.027276	0.027276					
17	7.2	0.435897		-0.047527	0.047527					
18	7.2	0.461538		-0.073168	0.073168					
19	8.3	0.487179		-0.040032	0.040032					
20	8.6	0.512821		-0.049908						
21	8.8	0.538462		-0.065126	0.065126					
22	9.1	0.564103		-0.075278	0.075278					
23	9.9	0.589744		-0.060603	0.060603					
24	10.1	0.615385		-0.076417	0.076417					
25	10.2	0.641026		-0.097186	0.097186					
26	10.6	0.666667			0.103619					
27	10.7	0.692308		-0.124531	0.124531					
28	11.0	0.717949			0.136167					
29	11.1									
30	11.2	0.769231	0.59096377	-0.178267	0.178267					
31	11.6	0.794872	0.60894533	-0.185926	0.185926					
32	13.5	0.820513	0.68702882	-0.133484	0.133484					
33	15.6	0.846154	0.75891646	-0.087237	0.087237					
34	18.7	0.871795	0.83939682	-0.032398	0.032398					
35	19.0	0.897436	0.84574713	-0.051689	0.051689					
36	23.7	0.923077	0.91935596	-0.003721	0.003721					
37	27.0	0.948718	0.94950132	0.000783	0.000783					
38	52.8	0.974359	0.99882321	0.024464	0.024464					
Xmedia	9.136		Desviación	Mávima	0.199062					
Desv.Stand	8.618		Desviacion	IVIANIIIA	0.199002					
n	38									
11	J0									

Tabla I Ajuste Smirnof Kolmogorov.

COI	MPARACIONE	S ENTRE DE	SV. MAXIMA Y	EL VALOR C	RITICO DE KO	DLMOGOROV	(KV)
	PARA EL	AJUSTE AN	ALITICO A LA	DISTRIBUCIO	N DE GUMBE	LL TIPO I	
		DURACION	DESV.	VALOR	SE ACEPTA		
		MINUTOS	MAXIMA ($\Delta_{máx}$)	CRITICO (Δ ₀)	EL AJUSTE?		
			F(x) -P(x)	KOLMOGOROV			
		5	0.148142	0.23	SI		
		10	0.125161	0.23	SI		
		15	0.089465	0.23	SI		
		30	0.081329	0.23	SI		
		60	0.075014	0.23	SI		
		120	0.077607	0.23	SI		
		360	0.199062	0.23	SI		
Se acepta	el ajuste si Δ	_{máx} < Δ ₀ , para	a n =38 y una s	significancia d	del 0.05		
			ontrario si ∆ _{má}				
			III				
	INTENSID	ADES DE LL	UVIA PARA DII	FERENTES PE	RIODOS DE I	RETORNO	
		Y OBTENIO	AS A TRAVES	DEL AJUSTE	ANALITICO		
AÑOS		D	URACIÓN DE I	NTENSIDADES	S EN MINUTO	S	
	5	10	15	30	60	120	360
2	150.0	123.3	103.0	72.3	48.2	27.5	9.3
5	183.6	144.8	122.4	88.1	63.7	40.5	17.0
10	205.9	159.1	135.3	98.5	74.0	49.2	22.2
25	234.0	177.1	151.6	111.7	87.1	60.1	28.6
50	254.9	190.5	163.7	121.5	96.7	68.2	33.4
100	275.6	203.7	175.7	131.3	106.3	76.2	38.2

Tabla II Parámetros de ajuste para las ecuaciones de la forma I = A/(t+d)b

T: Años	r	Α	d	b
2	-0.9989	2748.41	16.0	0.9490
5	-0.9987	1389.036	11.0	0.7359
10	-0.9981	1053.474	8.0	0.6442
25	-0.9966	775.5063	4.0	0.5457
50	-0.9959	731.9879	3.0	0.5092
100	-0.9944	640.4943	1.0	0.4609

Tabla III Intensidad en (mm/h) obtenidas del ajuste estación Managua.

				Tiempo e	n Mínuto		
	5	10	15	30	60	120	360
2 años	152.9	124.8	105.6	72.6	45.1	26.0	9.9
5 años	180.6	147.8	126.3	90.4	60.3	38.4	17.9
10 años	201.9	163.7	139.8	101.2	69.5	46.3	23.4
25 años	233.8	183.7	155.5	113.2	80.2	55.9	31.0
50 años	253.9	198.3	168.0	123.4	88.8	63.1	36.4
100años	280.4	212.1	178.4	131.6	96.3	70.2	42.4

Tabla IV Hidrograma resultante para periodo de retorno de 10 Años

	bloques alternos (periodo de Retorno 10 años)									
duracion(mi n)	INT(mm/h)	prof acum(mm)	prof(mm)	tiempo inicial	tiempo final	precipitacio n(mm)				
10	162.09	27.01	27.01	0	10	3.98				
20	113.75	37.91	10.9	10	20	4.43				
30	92.46	46.23	8.32	20	30	5.08				
40	79.82	53.21	6.98	30	40	6.14				
50	71.22	59.35	6.14	40	50	8.32				
60	64.88	64.88	5.53	50	60	27.01				
70	59.97	69.96	5.08	60	70	10.9				
80	56.01	74.68	4.72	70	80	6.98				
90	52.74	79.11	4.43	80	90	5.53				
100	49.97	83.28	4.17	90	100	4.72				
110	47.6	87.26	3.98	100	110	4.17				
120	45.53	91.06	3.8	110	120	3.8				

Tabla V Hidrograma resultante para periodo de retorno de 25 Años

bloques alternos (periodo de Retorno 25 años)						
duracion(mi n)	INT(mm/h)	prof acum(mm)	prof(mm)	tiempo inicial	tiempo final	precipitacio n(mm)
10	181.82	30.3	30.3	0	10	5.14
20	130.54	43.51	13.21	10	20	5.68
30	107.54	53.77	10.26	20	30	6.46
40	93.72	62.48	8.71	30	40	7.72
50	84.24	70.2	7.72	40	50	10.26
60	77.21	77.21	7.01	50	60	30.3
70	71.72	83.67	6.46	60	70	13.21
80	67.29	89.72	6.05	70	80	8.71
90	63.6	95.4	5.68	80	90	7.01
100	60.48	100.8	5.4	90	100	6.05
110	57.79	105.94	5.14	100	110	5.4
120	55.43	110.86	4.92	110	120	4.92

Tabla VI Hidrograma resultante para periodo de retorno de 50 Años

bloques alternos (periodo de Retorno 50 años)						
duracion(min)	INT(mm/h)	prof acum(mm)	prof(mm)	tiempo inicial	tiempo final	precipitacion(mm)
10	196.53	32.75	32.75	0	10	6.01
20	142.97	47.65	14.9	10	20	6.64
30	118.69	59.34	11.69	20	30	7.5
40	104.01	69.34	10	30	40	8.89
50	93.88	78.23	8.89	40	50	11.69
60	86.35	86.35	8.12	50	60	32.75
70	80.45	93.85	7.5	60	70	14.9
80	75.66	100.88	7.03	70	80	10
90	71.68	107.52	6.64	80	90	8.12
100	68.3	113.83	6.31	90	100	7.03
110	65.37	119.84	6.01	100	110	6.31
120	62.81	125.62	5.78	110	120	5.78

Tabla VII Tabla de Elevación – Almacenamiento. Sierra Maestra sur.

Elevación(m)	Almacenamiento(m3)
258.5	0
259	2107.96
259.5	5043.25
260	8700.11
260.5	12941.16
261	17573.37
261.5	22558.18
262	27955.86
262.5	33804.65
263	40036.38
263.5	46612.85
264	53545.75
264.5	60871.93
265	68671.31
265.5	77192.57
266	86827.7
266.5	97787.89
267	110289.7

Fuente: Informe análisis de rompimiento de la micropresa sierra maestra sur.

Abt associates inc.

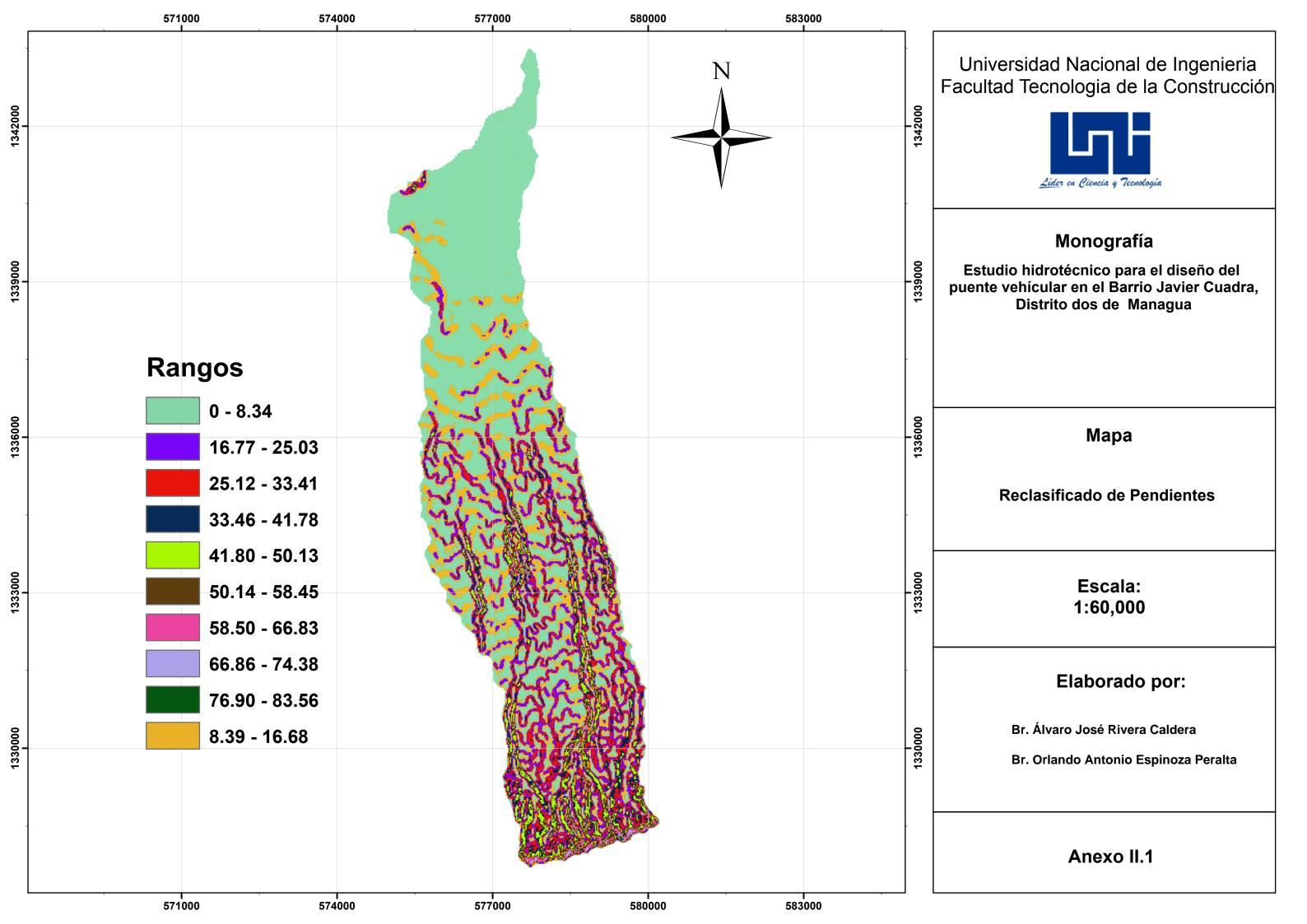
Tabla VIII Tabla de Elevación – Almacenamiento. Sierra Maestra Norte.

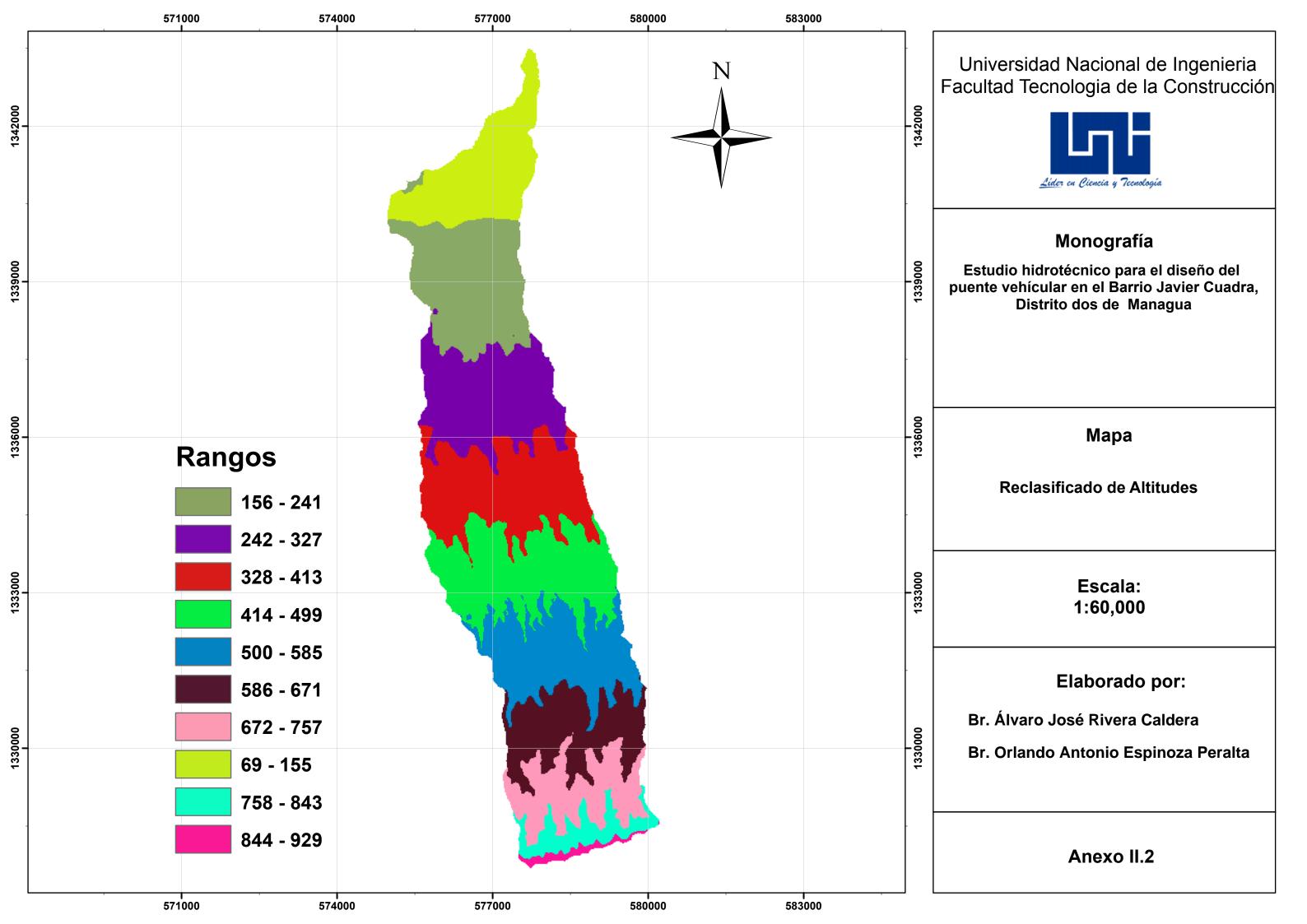
Elevación(m)	Almacenamiento(m3)
241	0
247.5	110000

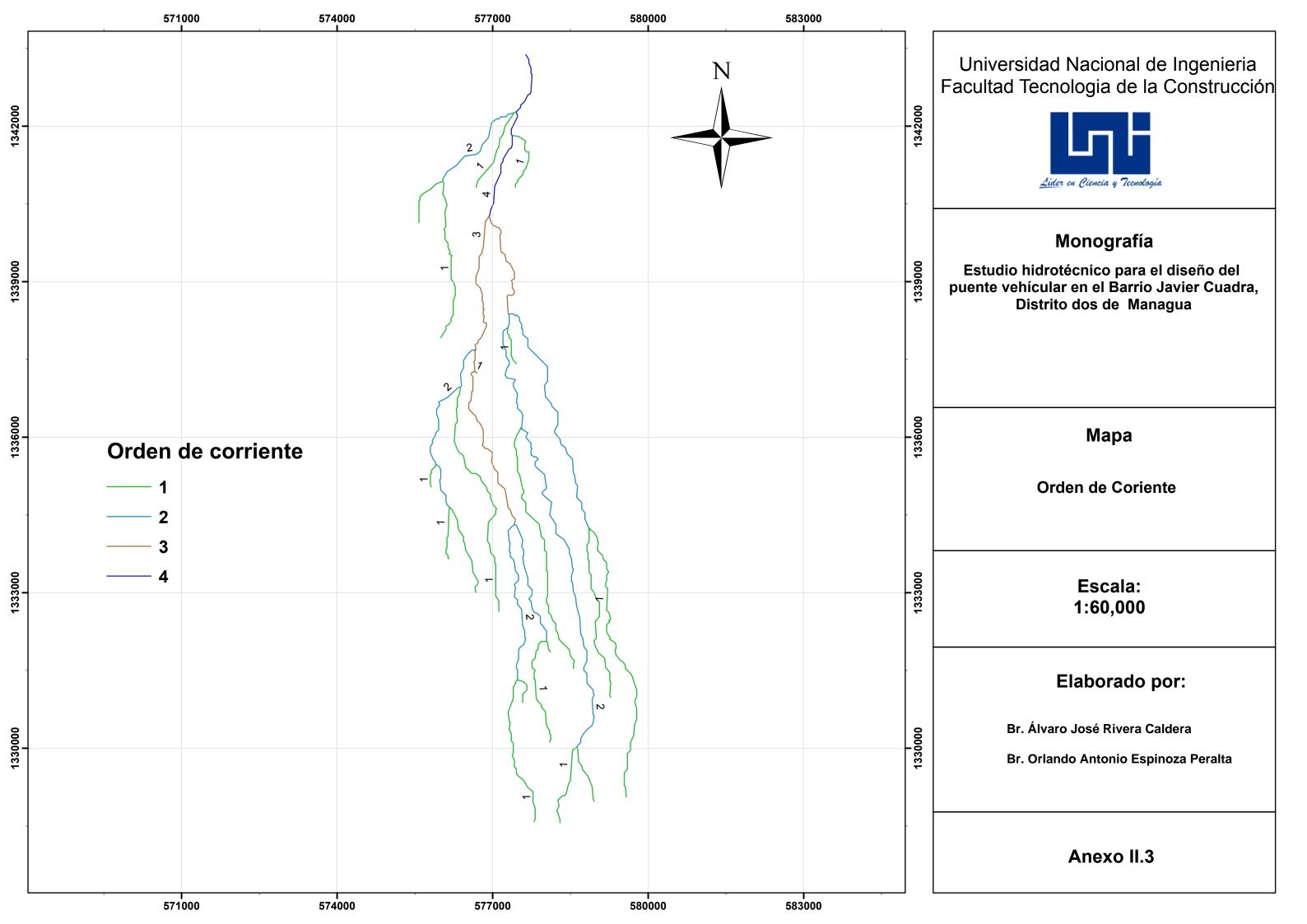
Fuente Planos micropresas.

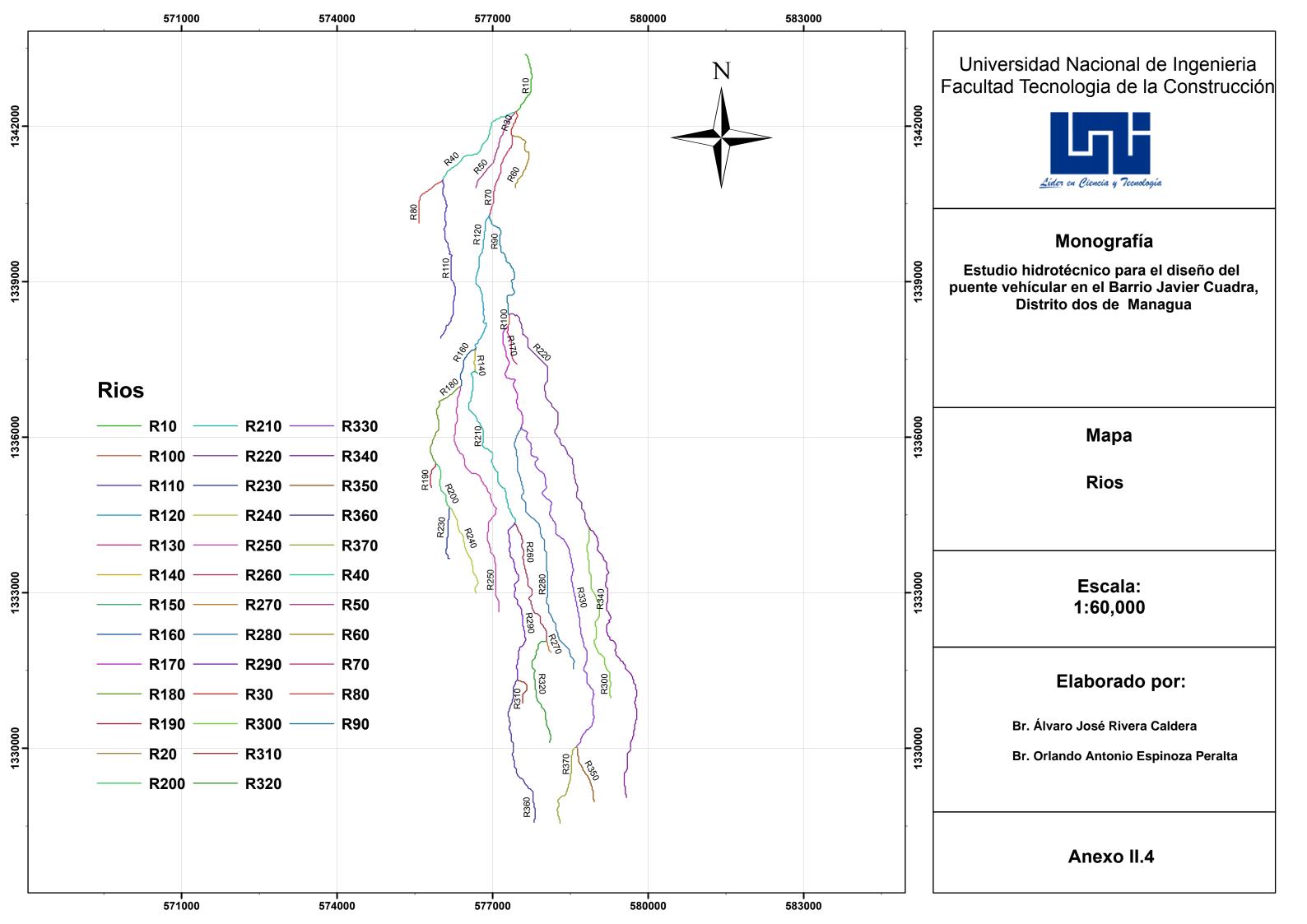
Tabla IX Elevación – Almacenamiento. Los ladinos.

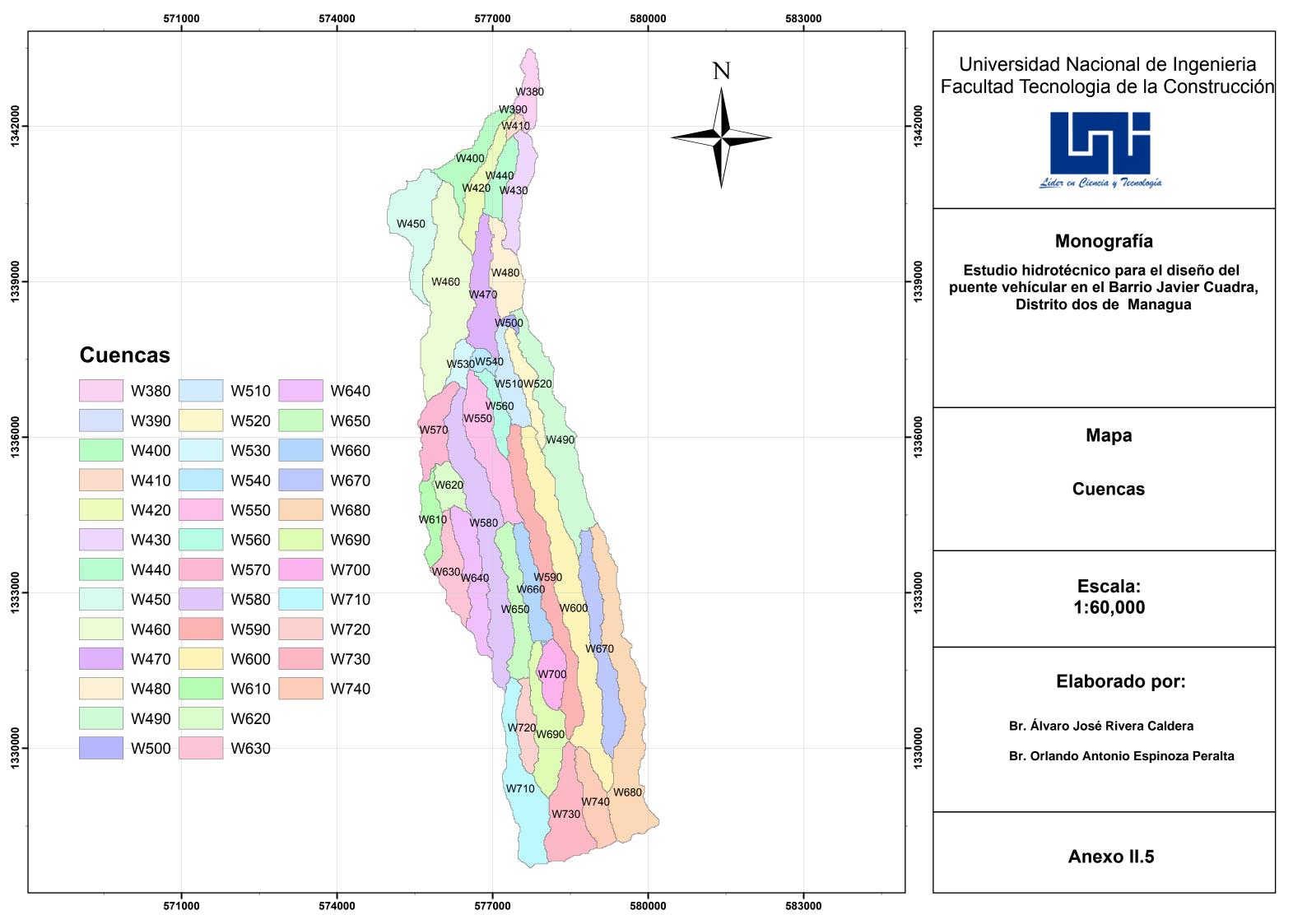
Elevación(m)	Almacenamiento(m3)
80	0
87.71	108006.67

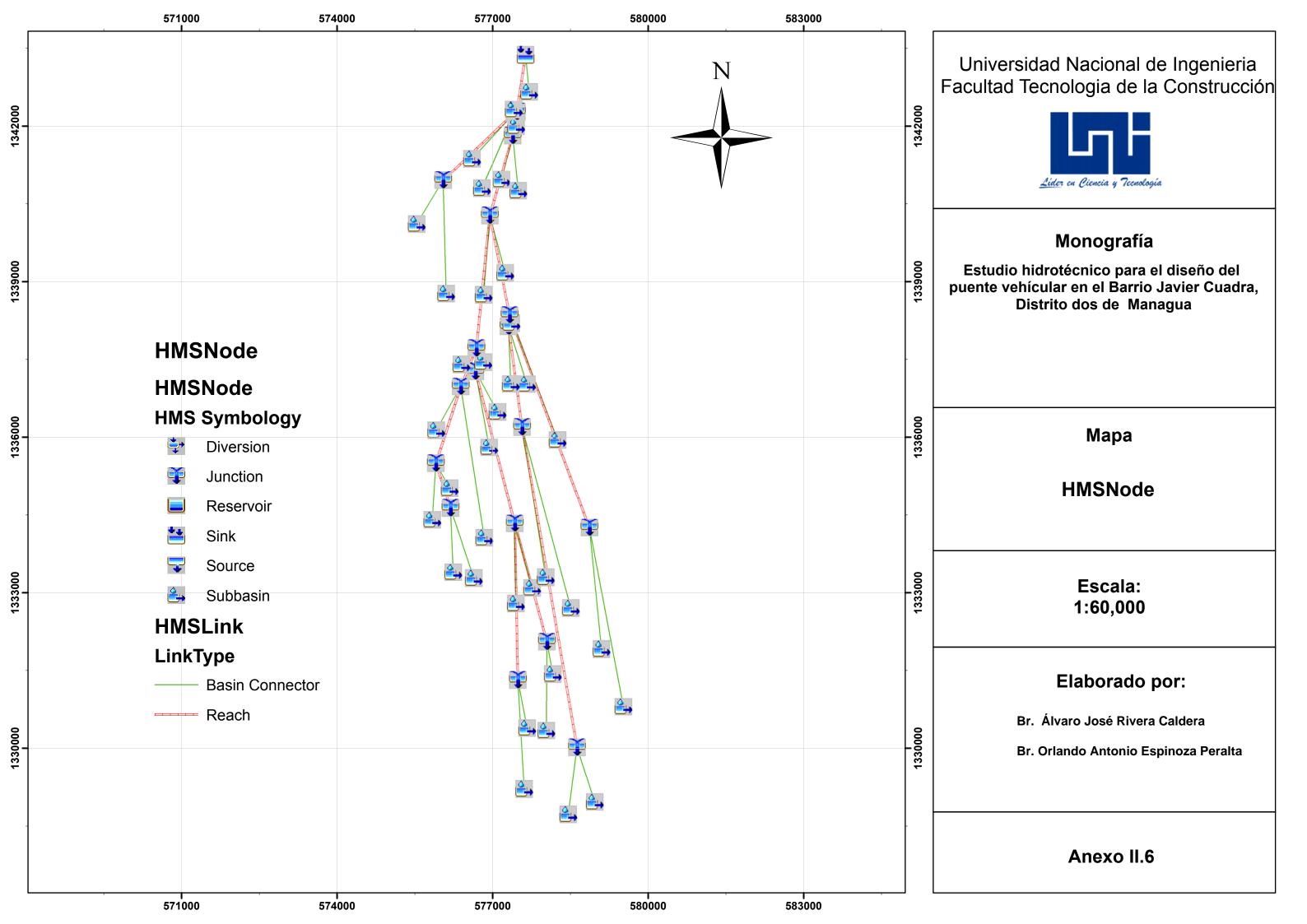

Fuente. Planos de Micropresas.

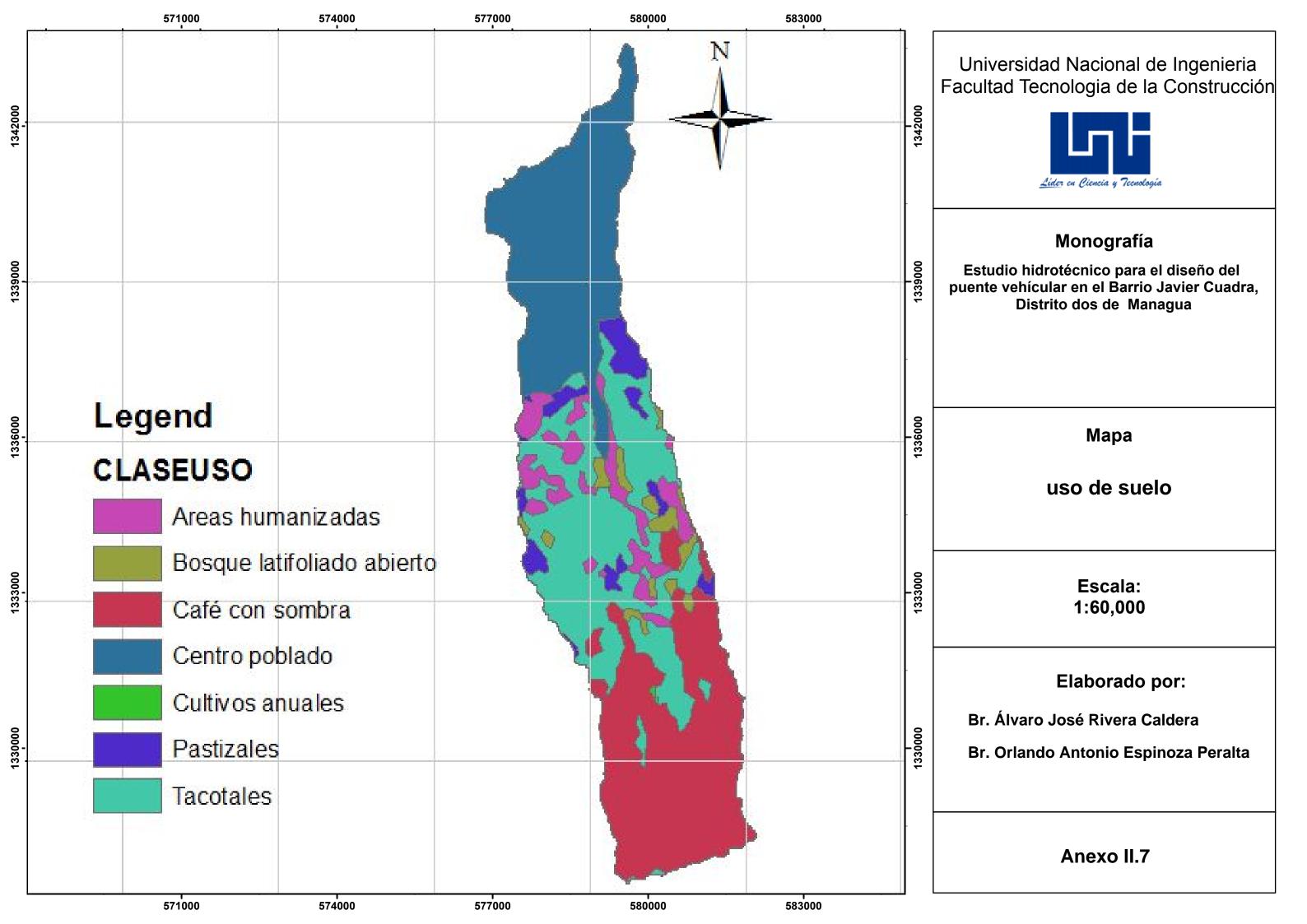

Tabla X Elevación – Almacenamiento. San Isidro.

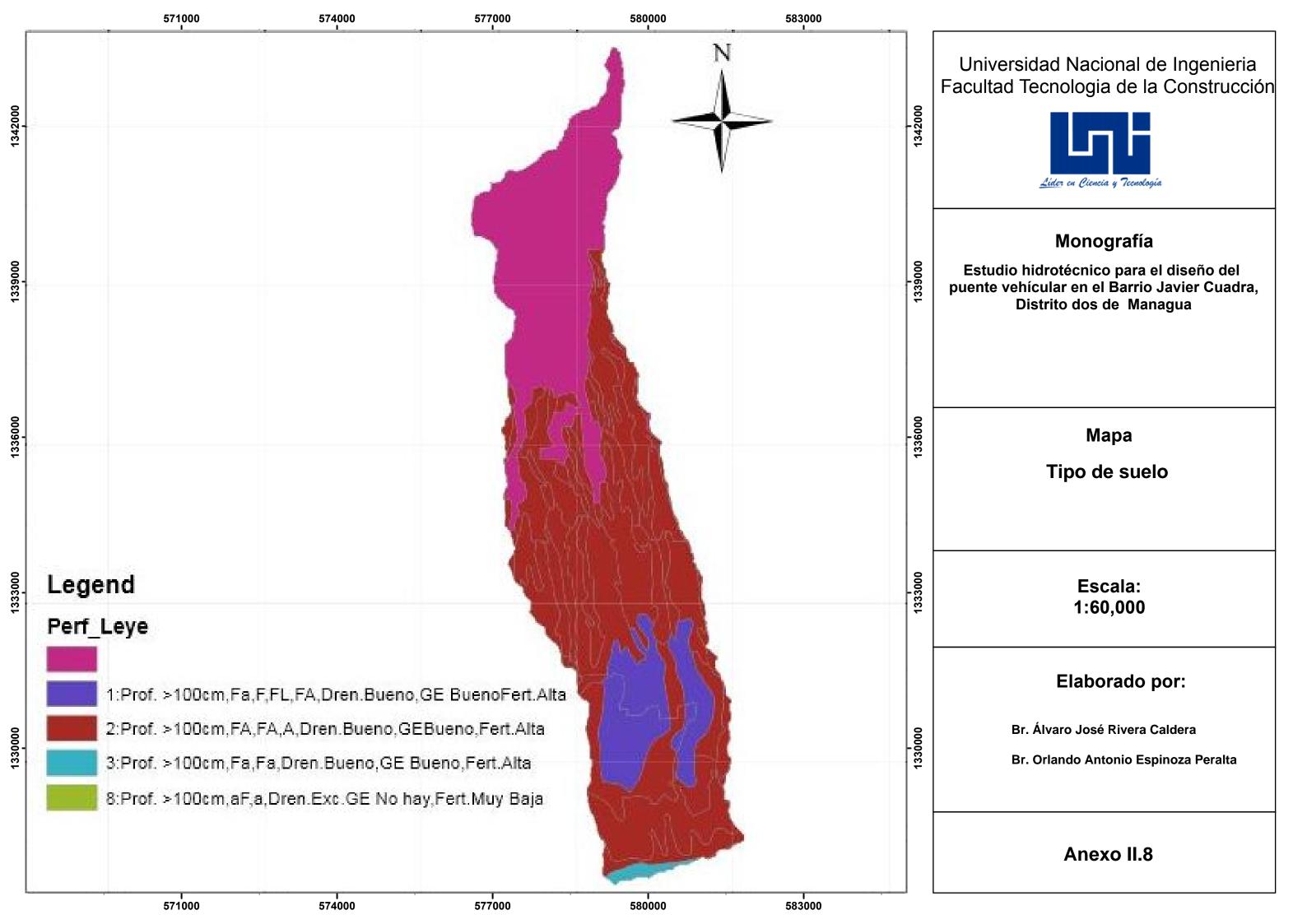

Elevación(m)	Almacenamiento(m3)
274	0
281.7	85625.87

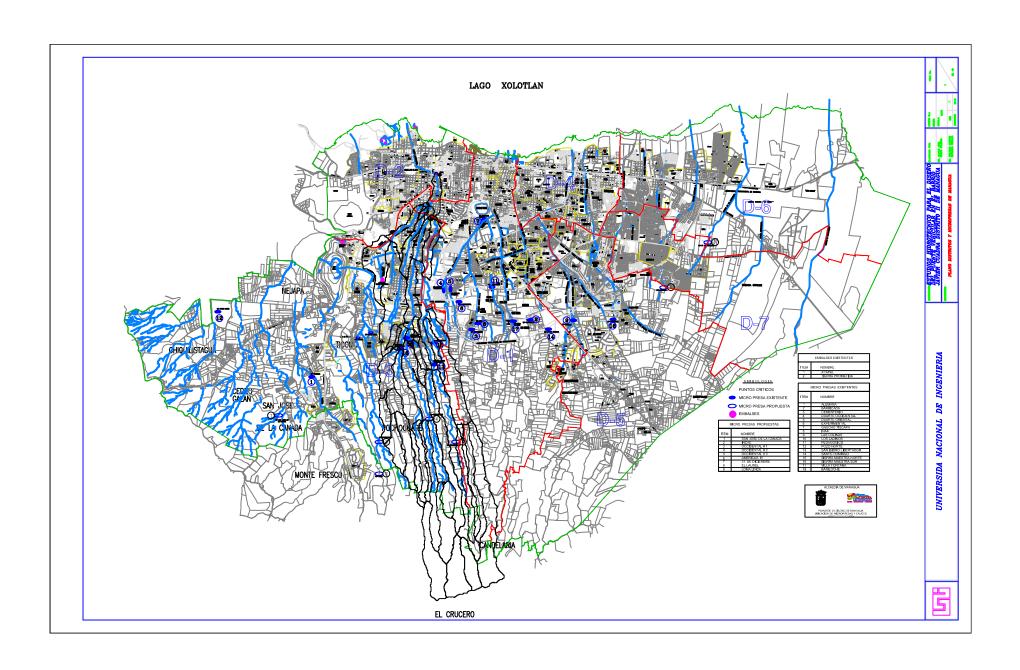

Fuente. Informe de impacto ambiental, Abt 2000.

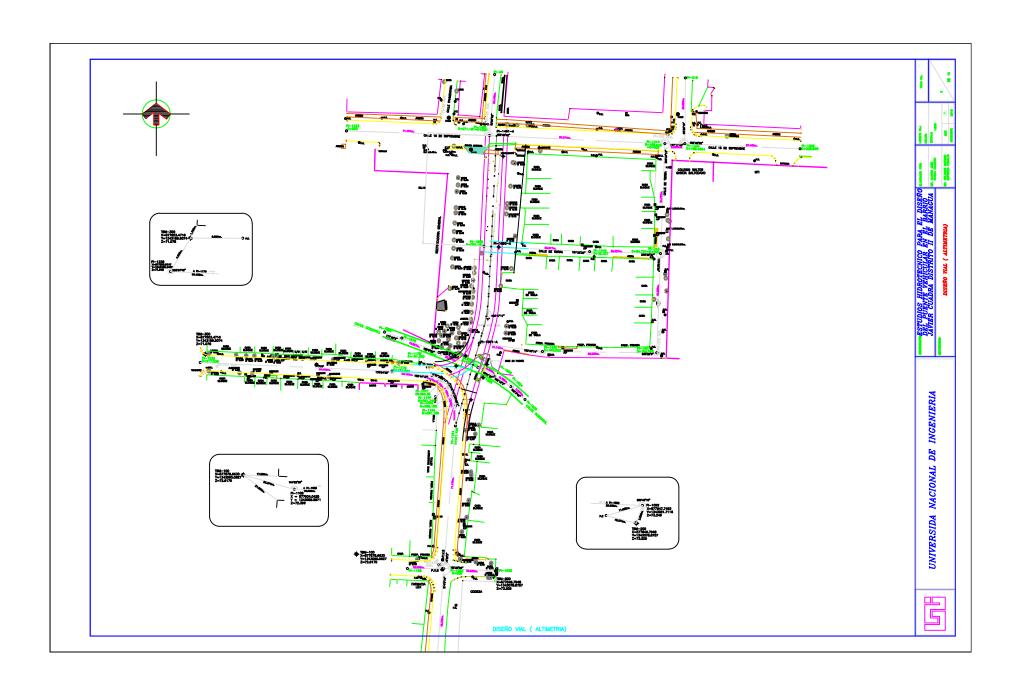

ANEXO II MAPAS

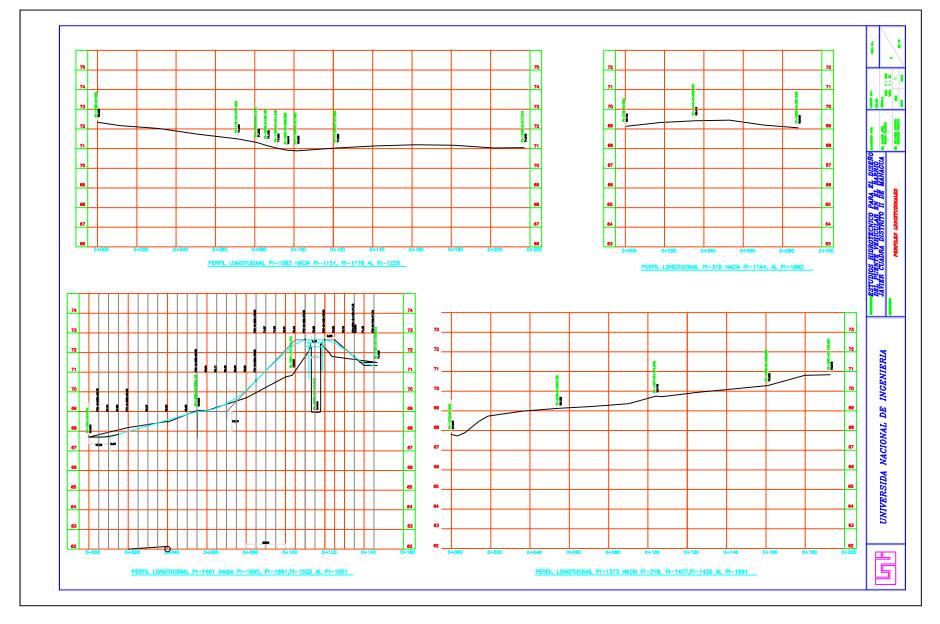


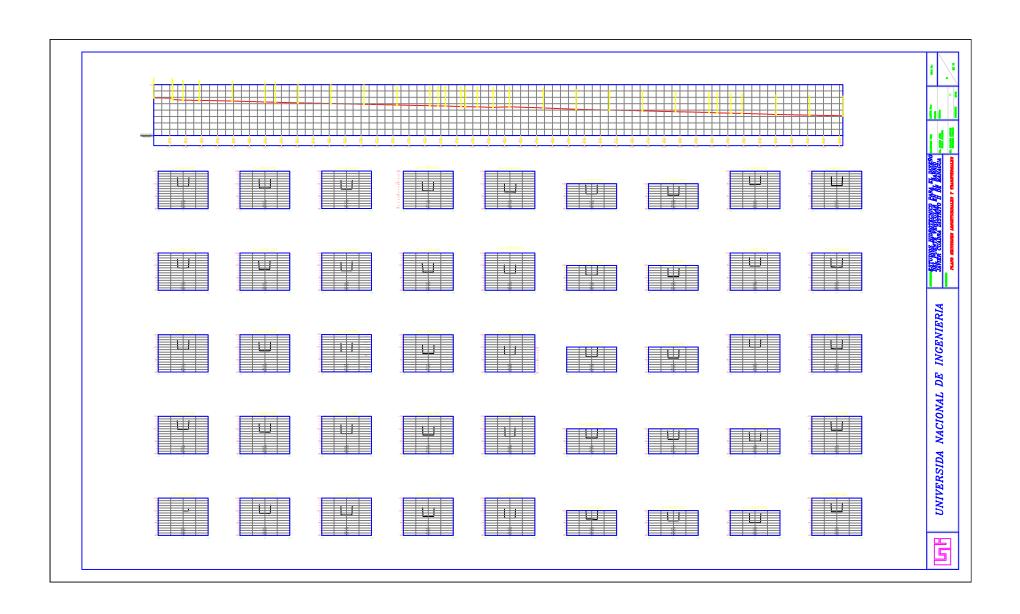


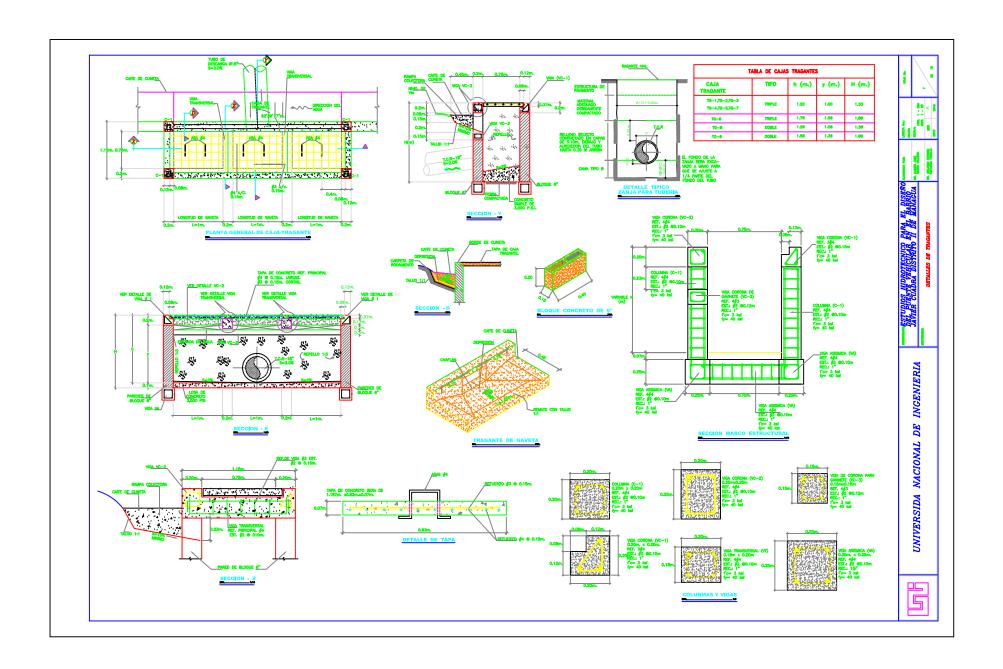










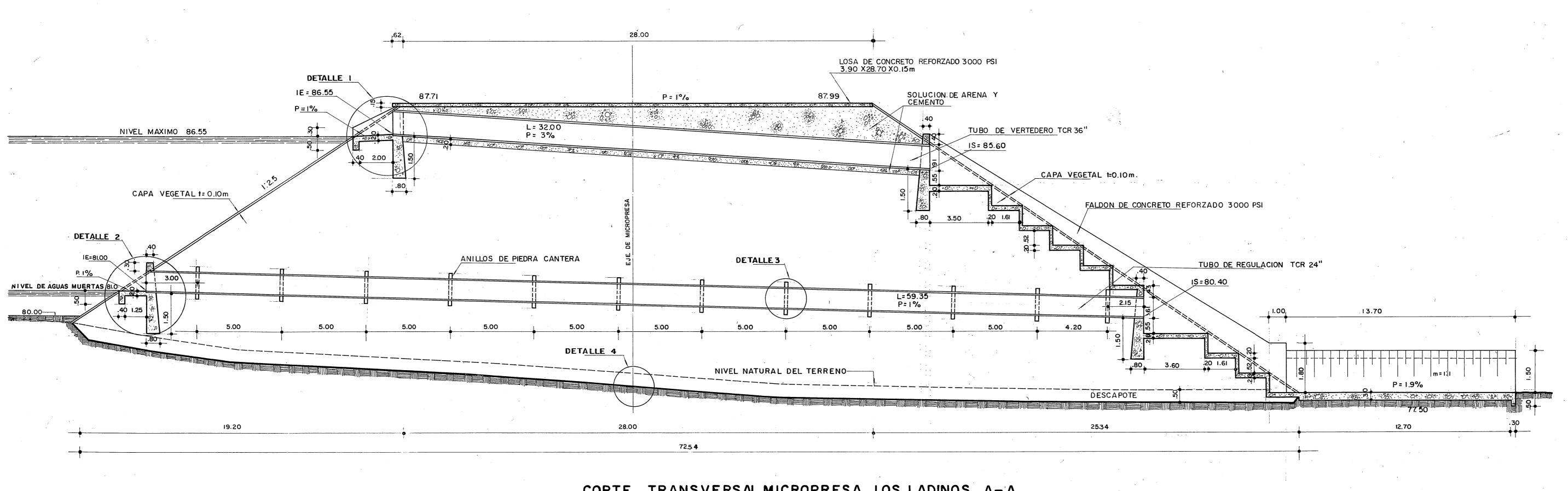

ANEXO III PLANOS

PERFIL LONGITUDINAL DE CIERRE MICROPRESA LOS LADINOS

ESCALA VERTICAL
ESCALA HORIZONTAL

1:400

COTA CORONA MICROPRESA 87 99

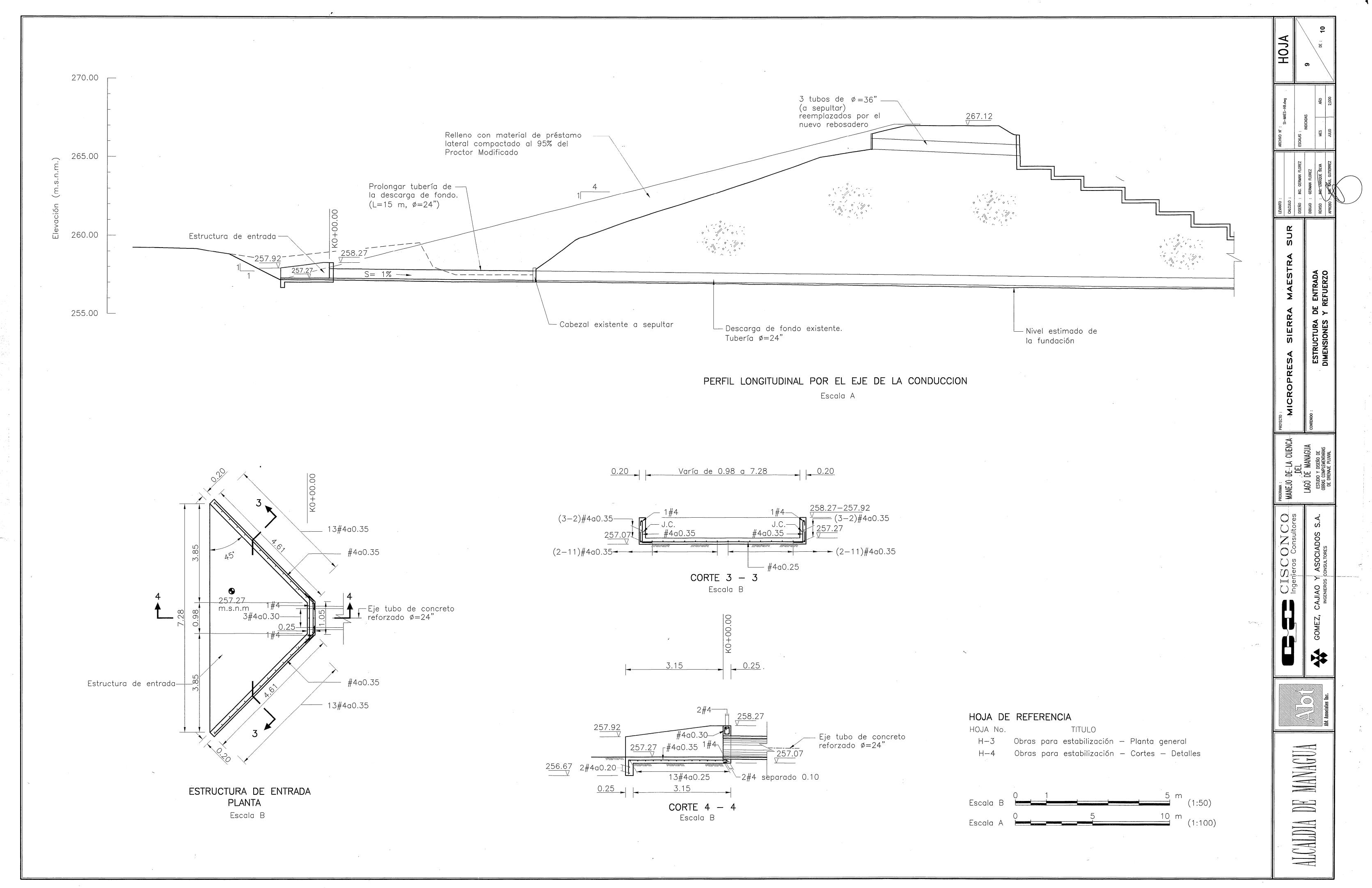

2-TCR 36"

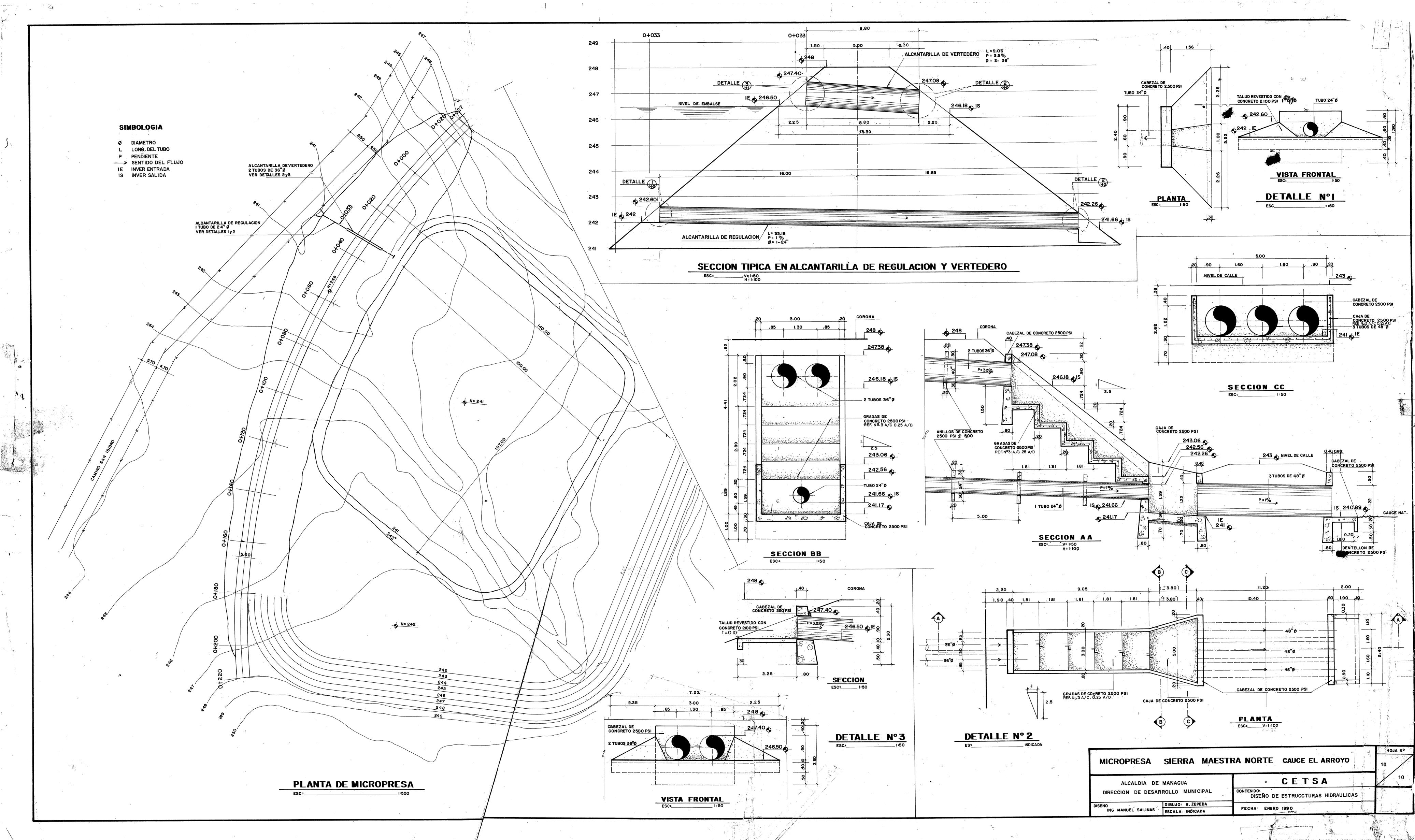
2-TCR 36"

GRADAS DE CONCRETO 3000 PSI
REF. # 4 9/c 25cm.

FALDON DE CONCRETO REFORZADO 3000 PSI
TCR 24"

TCR 24"


CORTE TRANSVERSAL MICROPRESA LOS LADINOS A-A
ESCALA VERTICAL
ESCALA HORIZONTAL


1:75
ESCALA HORIZONTAL

VER DETALLES EN HOJA 3

D P T O. RE-INVERSION

LMA

ANEXO IV GRÁFICOS

Gráfico 1 Curvas Intensidad – Duración – Frecuencia.

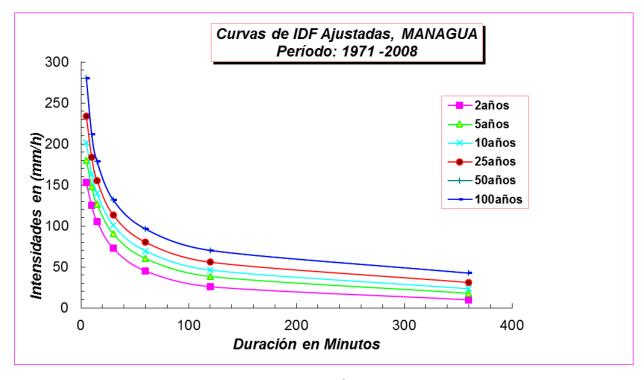


Gráfico 2 Curva IDF para un periodo de retorno de 10 años

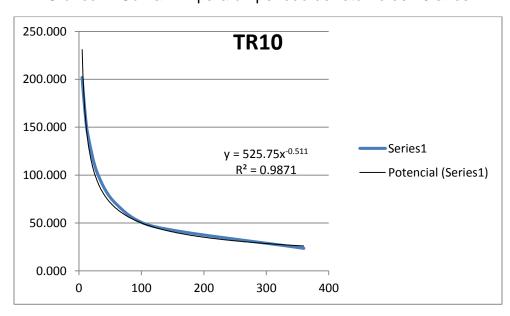


Gráfico 3 Curva IDF para un periodo de retorno de 25 años

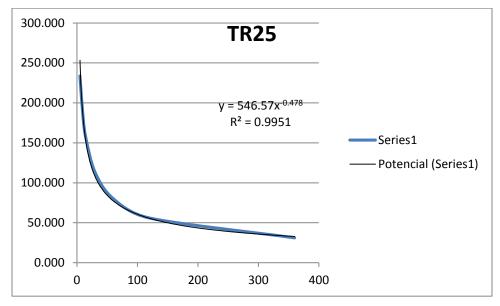


Gráfico 4 Curva IDF para un periodo de retorno de 50 años

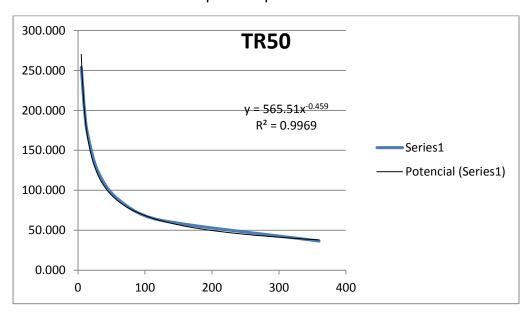


Gráfico 5 Bloques alternos (periodo de retorno 10 Años)

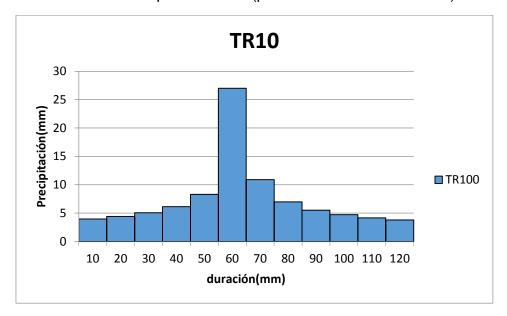


Gráfico 6 Bloques alternos (periodo de retorno 25 Años)

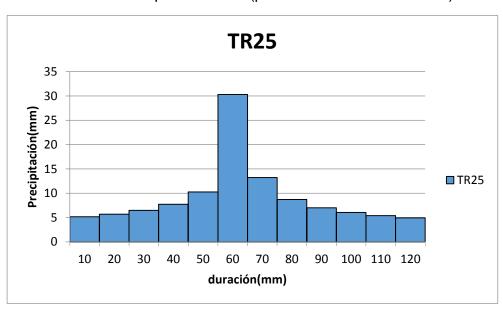
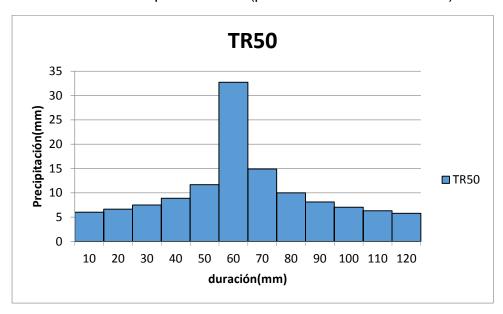



Gráfico 7 Bloques alternos (periodo de retorno 50 Años)

ANEXO V FOTOS

Foto 1 Puente Peatonal existente

Foto 2 Aguas arriba del puente peatonal

Foto 3 Ubicación de casas a orillas del cauce

Foto 4 Desnivel de la calle al este del cauce

Foto 5 Tragante existente en calle al oeste del cauce

Foto 6 Levantamiento topográfico aguas abajo.

Foto 7 Levantamiento topográfico aguas arriba

