TÍTULO

Diseño de sistema de recuperación del condensado de 10 unidades Manejadoras de aire para ser utilizado en el mantenimiento de la planta GILDAN del parque industrial zona francas "Las Palmeras" en km 45 1/2 Carretera San Marcos- Masatepe.

AUTORES

Br. Kenneth Elías Espinoza García

Br. Edwin Javier Leiva Ortiz

TUTOR

Ing. Donald Pérez Palma

Managua, 03 de Diciembre de 2021

Dedicatoria

Dedicamos este trabajo principalmente a Dios todo poderoso que nos dió la oportunidad de culminar nuestros estudios universitarios.

Con mucho amor y cariño, a nuestros abuelos: Sra. Blanca Dolores Muñoz Ruiz (Q.E.P.D), Sr. José Trinidad García Hernández (Q.E.P.D) y el Sr. David Ortiz (Q.E.P.D.), por tantos años de amor y compresión, por haber dado lo mejor de su parte para inculcarnos siempre buenos valores. Así mismo, de haber sido un ejemplo digno de admirar, responsable, honesto y dedicación para cada una de nuestras familias.

A cada uno de nuestros familiares, que se vieron involucrados en este proceso, siempre animándonos a que siguiéramos adelante y que nunca desertáramos.

Br. Kenneth Elías Espinoza García

Br. Edwin Javier Leiva Ortiz

Agradecimiento

Agradecemos primeramente a Dios, por permitirnos culminar nuestra carrera universitaria. Por habernos conocido y terminar esta etapa de nuestras vidas como compañeros de clases y amigos Kenneth y Edwin.

Gracias a nuestros padres, por ser pilar fundamental para nuestro crecimiento e inculcarnos el ser mejor cada día hasta llegar a coronar nuestros estudios superiores.

Gracias al Ing. Donal Pérez Palma por ser nuestro tutor, por el conocimiento compartido y la paciencia a lo largo de este trabajo, así mismo por habernos brindado los medios suficientes para la culminación. De igual manera agradecemos al Ing. Rufo Casco por compartir su experiencia y conocimientos en materia de construcciones hidráulicas, las cuales fueron oportuna para la conclusión de nuestro trabajo monográfico.

Al Ing. Luis López, Ing. Edy Castellano, por habernos permitido poder desarrollar este trabajo monográfico en tan prestigiosa empresa como lo es GILDAN y poder obtener parámetros que eran necesarios para la culminación.

A todos aquellos que indirectamente tuvieron participación de este logro.

Resumen ejecutivo

Se presenta el diseño de sistema de recuperación del condensado de 10 unidades manejadoras de aire para ser utilizado en el mantenimiento de la planta GILDAN.

La tubería de recolección es por gravedad, utilizando la ecuación de Manning se determinó que esta debe ser tubería PVC de 2". El almacenamiento para 11.5horas es de 7.608m³, proponiéndose un tanque de almacenamiento de 10m³ marca Durman (compra en el mercado local).

El sistema de riego consiste en una bomba hidroneumática HIDR-1/2x50P la cual tiene una CTD de 18mca la cual es mayor que la actuante de 17.36mca generada por las 4 llaves de riego. La tubería a presión (tubería de riego) se determinó por el método de Hazen-William en PVC de diámetro de ¾", cumpliendo con la presión residual mínima de 2mca en el último aparato y siendo las pérdidas totales en 13.5mca.

Se determinaron las cantidades totales de obra y por costos unitarios de cada ítem se obtuvo que el presupuesto final es de 5,131.62\$ y un ahorro en la factura de agua de 2,776.98m³ de agua menos en facturación.

INDICE

1	Introdu	ucción	1
2	Antece	edentes	3
3	Objetiv	vo general	4
4	Objetiv	vos Específicos	4
5	Justific	cación	5
6	Marco	teórico	7
	6.1 Ma	arco conceptual	7
	6.1.1	Diseño hidráulico	7
	6.1.2	Fluido hidráulico	7
	6.1.3	Mecánica	7
	6.1.4	Presión	7
	6.1.5	Flujo Laminar.	8
	6.1.6	Flujo Turbulento	8
	6.1.7	Flujo Volumétrico	8
	6.1.8	Liquido Condensado	8
	6.1.9	Peso Específico	g
	6.2 Tu	ıbería por gravedad	g
	6.2.1	Manning	9
	6.2.2	Radio Hidráulico	. 10
	6.2.3	Continuidad	. 11
	6.2.4	Coeficiente de Maning	. 11
	6.3 Tu	ıbería a presión	. 12
	6.3.1	Pérdidas por Fricción	. 12
	6.3.2	Coeficiente de Hazen-Williams	. 13
	6.3.3	Perdidas debido a accesorios	. 13
	6.3.4	Sistema de tuberías en serie	. 14
	6.4 Pc	oblación beneficiada por el proyecto y el consumo de agua potable	. 15
	6.4.1	Proyección de población	. 15
	6.4.2	Gastos por artefacto	. 15

	6.4	.3	Método de Hunter para determinar el coeficiente de simultanedad	. 16
	6.5	Во	mba	. 18
	6.5	.1	Pérdidas en la Columna	. 18
	6.5	.2	Pérdidas en la Descarga	. 18
	6.5	.3	Carga Total Dinámica (CTD)	. 19
	6.5	.4	Potencia hidráulica de la bomba	. 19
	6.5	.5	Línea de Conducción	. 20
	6.5	.6	Golpe de Ariete	. 20
7	Dis	eño	Metodológico	. 21
	7.1	Tip	oo de estudio	. 21
	7.2	Cri	terios de Inclusión	. 21
	7.3	Ub	icación geográfica del proyecto	. 21
	7.4	Tip	oo de investigación	. 21
	7.5	Dis	seño de la investigación	. 22
	7.6	Tip	oo de población	. 22
	7.7	Mé	etodo de investigación	. 22
	7.8		etodo inductivo	
	7.9		etodo deductivo	
	7.10		Método de investigación mixta	
	7.11		Γécnicas e Instrumentalización de redacción de datos	
	7.12		Γécnicas para el procesamiento de información	
	7.13		Consideraciones Éticas	
8			ria Técnica	
	8.1		tudios técnicos	
	8.1		Recopilación de datos para recaudación de caudales	
	8.1		Cálculos de caudales y velocidades.	
	8.2		macenamiento	
		.1	·	
	8.3		seño tubería por gravedad (desagüe)	
	8.4 8.5		seño de tubería a presión, cálculo de pérdidas y bomba mba	
			esiones en la red	
	U.U	_ T t	zəiuiidə dii id idu	. U I

9 Costo	del proyecto
10 Co	nclusiones53
11 Re	comendaciones54
12 Bib	liografía55
13 AN	EXOS56
13.1	Anexo 1: Resultado de tirantes por H-Canales56
13.2	Anexo 2: Tabla de tirante para tubería de drenaje65
13.3	Anexo 3: Fichas técnicas de bombas
13.4 ecuaciones	Anexo 4: Método de Newton-Raphson y bisección para resolver 70
13.5	Anexo 5: Análisis por EPANET79
13.6	Anexo 6: Manual de diagnóstico de fallas en bomba
13.7	Anexo 7: Ficha técnica de tanque93
13.8	Anexo 8: Ficha técnica tubería95
13.9	Anexo 9: Planos96

INDICE DE TABLAS

	Tabla 1: Radio Hidráulico para distintas figuras	10
	Tabla 2: Valores del coeficiente de Maning (Azevedo, Acosta, 1976)	. 11
	Tabla 3: Coeficiente Hazen-Williams	. 13
	Tabla 4: Longitud Equivalente de los accesorios.	. 14
	Tabla 5: Gastos de artefactos, método Building Code	. 16
	Tabla 6: Factor de simultainedad	. 17
	Tabla 7: Medición de condensado generado en una hora	. 27
	Tabla 8: Velocidad de descarga	. 31
	Tabla 9: Caudales de manejadoras	. 32
	Tabla 10: Tabla de capacidad de tanques y dimensiones	. 34
	Tabla 11: perdidas la red	. 49
	Tabla 12: Costos del proyecto por costo unitario	. 52
	Tabla 13: El motor no arranca	. 84
	Tabla 14: El motor arranca frecuentemente	. 85
	Tabla 15: El motor funciona en forma continua	. 85
	Tabla 16: El motor funciona pero el protector contra sobrecarga se activa	. 87
	Tabla 17: Guía para resolver problemas de bombas cuando los fusibles o flipor	nes
se dis	paran cuando se arranca el motor	. 87
	Tabla 18: La bomba funciona pero envía poco o nada de agua	. 89

INDICE DE FIGURAS

Figura 1: liquido condensado	9
Figura 2: Tubería en Serie, Mecánica de Fluidos, 2003	15
Figura 3: Macrolocalización del sitio	23
Figura 4: Tanque Durman (Figura de referencia)	33
Figura 5: idealizacion del sistema y medidas	36
Figura 6: Curva de rendimiento bombas HIDR-1/2x50, HIDRA-1/2x24	50
Figura 7: Presiones residuales en la red, modelo EPANET	51
Figura 8: Modelo EPANET, nodos y dirección de flujo	79
Figura 9: unidades de trabajo	79
Figura 10: Cota (m) y demanda base (LPS) por nodo	80
Figura 11: Longitud (m), diámetro (mm) y coeficiente de perdida HW por tramo	. 80
Figura 12: Determinar curva de demanda de bomba y nivel de tanque	81
Figura 13: niveles de tanque	82
Figura 14: Velocidades en la red	83
Figura 15: Presiones y demanda por nodo en la red	83
Figura 16: Maneiadoras v drenaie del sitio	92

1 Introducción.

Las Zonas Francas es el área geográfica delimitada dentro de un territorio nacional, en donde desarrollan actividades industriales de bienes y servicio, o actividades comerciales, bajo una normativa especial en materia tributaria, aduanera y comercio exterior.

El presente documento monográfico está referido a la planta GILDAN situada en la zona franca "Las Palmeras" ubicada en km 45 ½ carretera San Marcos- Masatepe, el cual consiste en diseñar un sistema hidráulico que recupere el agua condensada que es generada por el evaporador de las unidades de aires acondicionados industriales que en la actualidad existe en la planta. El objetivo del documento es el ahorro de agua potable para la sociedad y a la vez sea una herramienta para futuros proyectos en el ámbito del ahorro de agua potable.

El agua que sale a través del dreno de los aires acondicionados es producto de un intercambio de temperaturas, sin nutrientes y normalmente viene acompañada con residuos de los químicos con los que se hace mantenimiento a las unidades de aires acondicionados, así que no es agua potable para la vida humana ni para los animales. Es necesario mencionar que el uso del agua condensada es únicamente para actividades como el área de aseo, limpieza de área de los comedores externos y el área de mantenimiento de las unidades de aires.

Para describir un poco éste sistema hidráulico cabe resaltar que vendrá a subsidiar el consumo de agua que se requiere para mantener limpio, la rejilla de retorno de aire que va hacia el evaporador, los filtros del evaporador, el mismo evaporador que es afectado por agentes contaminantes (polvo, hebras de hilo, pelusa que se desprenden de las telas) que obstruyen las aletas del evaporador y el condensador que a la misma vez se ve afectado por los agentes contaminantes mencionados anteriormente.

El sistema de tuberías a implementar en el proyecto es de tipo PVC, un sistema de tuberías típico incluye tuberías de diferentes diámetros, unidas entre sí mediante varias uniones o codos para dirigir el fluido, válvulas para controlar la razón de flujo y bombas

para presurizar el fluido. Para realizar esta limpieza en las unidades de aires acondicionados se utiliza dos hidrolavadora.

Una vez el agua se recupere en el tanque que va socavado se procederá a la instalación de una bomba hidroneumática con la suficiente capacidad de mantener la presión en la tubería de distribución, compuestas con llaves de paso donde quedan a la espera para que conecte la manguera de jardín con se alimentan las hidrolavadora que son utilizadas para la limpieza correspondientes y de esta manera se cumpla con un ciclo de reciclaje del agua y la auto sostenibilidad de la limpieza de las unidades de aires acondicionados.

El impacto del presente documento sería positivo porque el alcance del sistema de recuperación de agua, es proponiendo una solución a la planta GILDAN para ahorrar agua potable, la cual puede ser luego distribuida a las comunidades cercanas.

2 Antecedentes.

Actualmente en las unidades centrales de aires acondicionados sólo se realizan mantenimientos preventivos, el cual consiste en dar limpieza a filtros de evaporador, condensador por dentro y por fuera, el ducto de retorno y la base de la unidad. Para llevar a cabo esta limpieza se requiere de una cantidad de agua considerable, esto a la vez resulta costoso y poco responsable con el medio ambiente ya que prácticamente el agua se termina desperdiciando.

Aparte de ser una práctica poco responsable con el medio ambiente se deberá resolver el actual consumo y desperdicio de agua que genera el actual mantenimiento de limpieza que se aplica a filtros, evaporador y condensador de las unidades manejadoras, debido a que se obstruyen de tamo (pelusa) que se genera dentro de la planta.

El estudio de este trabajo es concebido como una investigación de campo de tipo descriptiva, porque se concentra en mayor medida en el almacenaje de agua condensada que produce el evaporador, donde se reutilizará y su principal ocupación será dar limpieza a las unidades de aires acondicionados.

Para resolver esta problemática se implementa este diseño hidráulico, de manera que podremos darle otro fin al agua condensada proveniente del evaporador que es recuperarla en un pozo de agua para luego usarla en el mantenimiento de limpieza que se les aplica a las unidades. Dicha limpieza se hace con una hidrolavadora que utiliza agua que proviene del pozo de agua del parque industrial zona franca "Las Palmeras".

En la planta GILDAN se carece de estudios previos al que se pretende implementar y tampoco investigación alguna acerca del área en donde se pretende implementar el plan, de igual manera en nuestra casa de estudio no encontramos estudios similares al que pretendemos desarrollar. Es por ello que este trabajo se establece de manera oportuna en este sector de la planta donde será idóneo dicho diseño hidráulico.

.

3 Objetivo general.

Proponer diseño hidráulico de recuperación de condensado para el ahorro de agua en planta GILDAN.

4 Objetivos Específicos.

- Calcular los caudales de agua condensada en las unidades manejadoras según los principios de mecánica de fluidos.
- Dimensionar el diseño del sistema hidráulico a fin de recuperar la mayor cantidad de condensado posible.
- Analizar el costo beneficio de la propuesta de diseño del sistema hidráulico para la empresa GILDAN.

5 Justificación.

La presente investigación de este diseño hidráulico estará enfocado en la importancia que debe tener el ahorro de agua en todas las opciones posible, dado que éste recurso natural se ha visto afectado por diversos factores tales como: cambios climáticos, la erradicación de bosques para fines de agricultura o la creación de nuevas urbanizaciones cerca de ríos o lagos facilitando así sequía en tiempo de verano; para la alimentación de ganado en pie y la contaminación de la misma por la influencia humana en su mayoría.

La creación de este diseño hidráulico será de gran importancia ya que por medio del mismo se logra satisfacer el ahorro de agua, así este trabajo permitirá mostrar que la implementación de dicho diseño vendrá a contribuir al ahorro de agua potable.

Además, este diseño vendrá a reducir el consumo de agua potable lo que a su vez disminuirá los costos por el uso de este recurso, ya que gran parte es utilizado para dar mantenimiento a las 10 unidades manejadoras de aires acondicionados con que cuenta la planta GILDAN.

Dentro del trabajo se precisa que sea tomado como referencia por parte del sector textil, para la implementación de nuevos aportes en materia del ahorro de agua potable y contribuir a la conservación y protección de un recurso de vital importancia.

Nomenclatura

G.A Golpe de Ariete

GPM Galones por Minuto

H.G. Hierro galvanizado

Hf Perdidas por Fricción

hl Pérdidas localizadas.

Hmáx: Altura máxima

Hmin: Altura mínima

HP Horsepower

INAA Instituto Nicaragüense de Acueductos y Alcantarillado

Sanitario

L/s Litros por segundo

m Metros

m.c.a Metros columna de agua

m² Metros cuadrados

m³ Metros cúbicos

mm Milímetro

msnm Metros sobre el nivel del mar

PB Potencia de la bomba

Pulg. Pulgadas

PVC Polyvinyl Chloride

SAAP Sistema de abastecimiento de agua potable

6 | Página

6 Marco teórico.

6.1 Marco conceptual

6.1.1 Diseño hidráulico.

El autor menciona que "Es responsabilidad del diseñador especificar los ductos y tubería para una aplicación en particular, ya que esto tiene una influencia significativa en el costo, duración, seguridad y rendimiento del sistema" (Robert L. Mott, 2006).

El diseño hidráulico para suministros de tuberías de agua potable establece todos los componentes, dimensiones y diversas normalizaciones que se puedan realizar en las tuberías tales como de especificar los tamaños finales del ducto para lograr un rendimiento razonable teniendo en cuenta las pérdidas de energía, las presiones en puntos críticos del sistema y el costo del ciclo de vida.

6.1.2 Fluido hidráulico.

Es un líquido transmisor de potencia que se utiliza para transformar, controlar y transmitir los esfuerzos mecánicos a través de una variación de presión o de flujo. (Quiminet, 2007)

6.1.3 Mecánica.

(Cengel, 2006,) El autor menciona que "La **mecánica** es la ciencia física más antigua que trata tanto de los cuerpos en reposo, así como de aquellos en movimiento bajo la influencia de fuerzas..."

6.1.4 Presión.

(Mott, 2006,) El autor menciona que "Presión: La presión se define como la cantidad de fuerza que se ejerce sobre una unidad de área de una sustancia, o sobre una superficie. Se enuncia por medio de la ecuación:

7 | Página

$$PX\frac{F}{A}$$
 Ecuación 1

6.1.5 Flujo Laminar.

"El movimiento intensamente ordenado de un fluido, caracterizado por capas noalteradas de éste se menciona como laminar. La palabra laminar proviene del movimiento de partículas juntas adyacentes del fluido, **en "láminas"."** (Cengel, 2006)

6.1.6 Flujo Turbulento.

"El movimiento intensamente desordenado de un fluido, que es común se presente a velocidades altas y se caracteriza por fluctuaciones en la velocidad se **llama turbulento**." (Cengel, 2006)

6.1.7 Flujo Volumétrico.

"El volumen del fluido que fluye a través de una sección transversal por unidad de tiempo se llama razón de flujo volumétrico o gasto volumétrico o simplemente flujo volumétrico V." (Cengel, 2006)

6.1.8 Liquido Condensado.

Condensado es el líquido formado cuando el vapor pasa de fase gas a fase líquida. En un proceso de calentamiento, el condensado es el resultado del vapor que transfirió parte de su energía calorífica, conocida como calor latente, al producto, línea o equipo que debe ser calentado¹.

¹ https://www.tlv.com/global/LA/steam-theory/introduction-to-condensate-recovery.html)

8 | Página

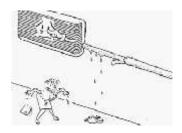


Figura 1: liquido condensado

6.1.9 Peso Específico.

El peso específico ω de una sustancia es el peso de la unidad de volumen de dicha sustancia. En los líquidos ω puede considerarse constantes para las variaciones ordinarias de presión. El peso específico del agua para las temperaturas más comunes es de 1000 kg/m³. (Giles, 2007)

6.2 Tubería por gravedad

Con los caudales calculados en cada tramo, se calcularon los diámetros de las tuberías aplicando la fórmula de la continuidad y Mannig de tuberías parcialmente llenas (tubería por gravedad) con las fórmulas siguientes:

6.2.1 Manning.

$$v X \frac{1}{n} R^{2/3} s^{1/2}$$
 Ecuación 2

Donde:

V: Velocidad de flujo (m/s).

R: Radio hidráulico

s: Pendiente.

n: Coeficiente de rugosidad (0.01 para tubos de PVC)

Se tomaron en cuenta las pendientes del terreno para que dicha tubería sea paralela al terreno. La velocidad mínima para caudal a tubo lleno se consideró de 0.60 m/s y para el caudal de diseño de 0.30 m/s y la velocidad máxima de 3 m/s.

9 | Página

6.2.2 Radio Hidráulico

El radio hidráulico, es un parámetro importante en el dimensionado de canales, tubos y otros componentes de las obras hidráulicas, generalmente es representado por la letra R, y expresado en m es la relación entre:

$$R \times \frac{A}{P}$$
 Ecuación 3

Donde:

R: Radio hidráulico

A: Área mojada (m2)

P: Perímetro mojado (m)

Tipo de sección	Área A (m2)	Perímetro mojado P (m)	Radio hidráulico Rh (m)	Espejo de agua T (m)
y 	by	b+2y	by b+2y	b
T y Y Trapezoidal	(b+zy)y	b+2y√1+z²	(b+zy)y b+2y√1+z²	b + 2zy
Triangular	zy ²	2y√1+z²		2zy
Circular	<u>(θ-senθ)D</u> ² 8	<u>θ D</u> 2	(1- sen θ) D/4	$(\operatorname{sen} \frac{\theta}{2}) D$ δ $2\sqrt{y(D-y)}$
Parabólica	2 <i>1</i> 3 Ty	T + 8y ² /3 T	$\frac{2 T^2 y}{3 T^2 + 8 y^2}$	3 A 2 y

Tabla 1: Radio Hidráulico para distintas figuras

6.2.3 Continuidad.

QXV A Ecuación 4

Donde:

Q: Caudal a tubo lleno en m³/s

A: Área hidráulica, (m²).

6.2.4 Coeficiente de Maning

El coeficiente de Maning depende del tipo de recubrimiento del cual está hecho el canal/drenaje/tubo, para dichos valores se recomiendan los siguientes:

Tabla 2: Valores del coeficiente de Maning (Azevedo, Acosta, 1976)

Descripción	N
Mampostería de piedra bruta	0.02
Mampostería de piedras rectangulares	0.017
Mampostería de ladrillos, sin revestimiento	0.015
Mampostería de ladrillo, revestida	0.012
Canales de concreto, terminación ordinaria	0.014
Canales de concreto, con revestimiento liso	0.012
Canales con revestimiento muy liso	0.01
Canales de tierra en buenas condiciones	0.025
Canales de tierra con plantas acuáticas	0.035
Canales irregulares y muy mal conservados	0.04
Conductor de madera cepillada	0.011
Barro (vitrificado)	0.013
Tubos de acero soldado	0.011
Tubos de concreto	0.013
Tubos de hierro fundido	0.012
Tubos de asbesto cemento	0.011
Tubos PVC	0.01

^{11 |} Página

6.3 Tuberia a presión

6.3.1 Pérdidas por Fricción

La ecuación de Hazen William² se utiliza para calcular la pérdida de energía debido a la fricción en secciones rectilíneas y largas de tubos redondos.

$$v \times X0.85 CR^{0.63} s_t^{0.54}$$
 Ecuación 5

v Velocidad del flujo (m/s)

C Coeficiente de Hazen-Williams (adimensional)

R Radio Hidráulico (a tubo lleno, ver Tabla 1: Radio Hidráulico para distintas figuras)

$$S_f$$
 Relación $\frac{H_f}{L}$ (m/m)

 H_f Perdida de energía (m)

L Longitud de tubería (m)

Sabiendo que $RX = \frac{A}{X} = \frac{A}{4} = \frac{D^2}{4} = \frac{D}{4}$, $SX = \frac{H}{L}$, sustituyendo dichos valores en

 $v \times X0.85 CR^{0.63} s_t^{-0.54}$ Ecuación 5 y usando la ecuación de continuidad de caudal, obtenemos:

$$v \times \frac{Q}{A} \times \underbrace{\frac{Q}{D^{2}}}_{4} \times 0.85C \xrightarrow{\frac{D}{4}} \underbrace{\frac{H}{L}}_{0.54}^{0.63} \underbrace{\frac{H}{D^{2}}}_{0.54} \times \underbrace{\frac{0.85}{4}CD^{0.63}}_{0.63} \xrightarrow{\frac{H}{f}}_{0.54}^{0.54}$$

$$\frac{1.2732365Q}{D^{2}} \times 0.355CD^{0.63} \xrightarrow{\frac{H}{f}}_{0.54} \begin{vmatrix} 0.54 \\ 1 \\ 1 \end{vmatrix}$$

$$\underbrace{\frac{H}{D^{2}}}_{0.54} \times \underbrace{\frac{1.2732365Q}{D^{2}(0.355CD^{0.63})}}_{0.63} \times \underbrace{\frac{3.5865816Q}{CD^{2.63}}}_{0.54}$$

12 | Página

 $^{^{\}rm 2}$ Mecanica de Fluidos, Robert Mott, 6ta edición, página 243.

$$\frac{H_f}{L} \times \frac{3.5865816Q}{3.5865816Q} = \frac{1.85}{1.85} \times \frac{3.5865816Q}{L \times 10.67Q^{1.85}} = \frac{1.85}{1.85} \times \frac{3.5865816^{1.85}Q^{1.85}}{L \times 10.67Q^{1.85}} = \frac{10.67Q^{1.85}}{L \times 10.6Q^{1.85}} = \frac{10.6Q^{1.85}}{L \times 10.6Q^{1.85}} = \frac{10.6Q^{1.85}}{L \times 10.6Q^{1.$$

$$H_f \ {
m X} \frac{10.67 Q^{1.85}}{C^{1.85} D^{4.87}} L$$
 Ecuación 6

6.3.2 Coeficiente de Hazen-Williams

El coeficiente C solo depende de la condición de la superficie de la tubería o conducto, La tabla adjunta proporciona valores comunes

Tabla 3: Coeficiente Hazen-Williams

Tipo de tubo	С
Acero, hierro dúctil o fundido con aplicación centrifuga de cemento o revestimiento bituminoso	140
Plástico. Cobre, latón, vidrio	130
Acero, hierro fundido, sin recubrimiento	100
Concreto	100
Acero corrugado	60

6.3.3 Perdidas debido a accesorios

En la construcción es necesario el uso de accesorios, tales como codos, Tee o válvulas, estas generan pérdidas en el sistema diferentes a las de fricción, para tal fin se usan longitudes equivalentes a utilizar en la fórmula de Hazen-Williams, las cual se describen a continuación.

Tabla 4: Longitud Equivalente de los accesorios.

	mm	13	19	25	32	38	50	63	76	100	125	150	200	250	300	350
Elemento	plg	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2	3	4	5	6	8	10	12	14
Codo 90																
Radio Largo		0.3	0.4	0.5	0.7	0.9	1.1	1.3	1.6	2.1	2.7	3.4	4.3	5.5	6.1	7.3
Radio medio		0.4	0.6	0.7	0.9	1.1	1.4	1.7	2.1	2.8	3.7	4.3	5.5	6.7	7.9	9.5
Radio medio		0.5	0.7	0.8	1.1	1.3	1.7	2	2.5	3.4	4.5	4.9	6.4	7.9	9.5	10.5
Codo 45		0.2	0.3	0.4	0.5	0.6	0.8	0.9	1.2	1.5	1.9	2.3	3	3.8	4.6	5.3
Curva 90																
R/D:1 1/2		0.2	0.3	0.3	0.4	0.5	0.6	0.8	1	1.3	1.6	1.9	2.4	3	3.6	4.4
R/D:1 1/2		0.3	0.4	0.5	0.6	0.7	0.9	1	1.3	1.6	2.1	2.5	3.3	4.1	4.8	5.4
Curva 45		0.2	0.2	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.9	1.1	1.5	1.8	2.2	2.5
Entrada																
Normal		0.2	0.2	0.3	0.4	0.5	0.7	0.9	1.1	1.6	2	2.5	3.5	4.5	5.5	6.2
De boca		0.4	0.5	0.7	0.9	1	1.5	1.9	2.2	3.2	4	5	6	7.5	9	11
Valvula																
Compuerta		0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.7	0.9	1.1	1.4	1.7	2.1	2.4
globo		4.9	6.7	8.2	11.3	13.4	17.4	21	26	34	45.3	51	67	85	102	120
angulo		2.6	3.6	4.6	5.6	6.7	8.5	10	13	17	21	26	34	43	51	60
de pie		3.6	5.6	7.3	10	11.6	14	17	20	23	31	39	52	65	78	90
Retencion																
T. liviano		1.1	1.6	2.1	2.7	3.2	4.2	5.2	6.3	6.4	10.4	12.5	16	20	24	38
T. pesado		1.6	2.4	3.2	4	4.8	6.4	8.1	9.7	12.9	16.1	19.3	25	32	38	45
Te de paso																
Directo		0.3	0.4	0.5	0.7	0.9	1.1	1.3	1.6	2.1	2.7	3.4	4.3	5.5	6.1	7.3
Lateral		1	1.4	1.7	2.3	2.8	3.5	4.3	5.2	6.7	8.4	10	13	16	19	22
Te salida																
Bilateral		1	1.4	1.7	2.3	2.8	3.5	4.3	5.2	6.7	8.4	10	13	16	19	22
Salida de tuberia		0.4	0.5	0.7	0.9	1	1.5	1.9	2.2	3.2	4	5	6	7.5	9	11

Fuente: López, R. A. (1999). Diseño de acueductos y alcantarillados. Segunda edición. Bogotá, Colombia: Editorial Alfa y Omega.

6.3.4 Sistema de tuberías en serie.

Las tuberías en serie se usan cuando se quiere cambiar los diámetros de tuberías o el material por cada tramo de longitud. Cada vez que se va a realizar una reducción o ampliación se tiene que tomar en cuenta la pérdida o ganancia de presión que se obtendrá. A continuación, se presentará un ejemplo acerca de cómo funcionan las tuberías en serie.

14 | Página

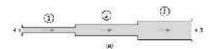


Figura 2: Tubería en Serie, Mecánica de Fluidos, 2003

6.4 Población beneficiada por el proyecto y el consumo de agua potable.

6.4.1 Proyección de población.

Dado que el consumo será meramente para riego, no es necesario calcular población beneficiada, a diferencia que si utilizara para uso de consumo humano si es necesario proyectar la población a futuro según el crecimiento del parque industrial "Las Palmeras".

6.4.2 Gastos por artefacto.

Dado que es una red abierta, y esta tiene artefactos, se determinará los caudales de los artefactos utilizando los valores por Building Code, tomando en cuenta que todos los artefactos de la red trabajan en forma simultánea y por lo tanto se considera el "Factor de uso o Coeficiente de Simultaneidad" (% del gasto en los tramos de distribución) del método de Building Code.

Con la demanda de agua se determina qué sistema hidroneumático, que equipo de Bombeo y los diámetros de tubería de la red de distribución.

Tabla 5: Gastos de artefactos, método Building Code³

Tipos de Artefactos	United States Deparment Of Commerce, Building Code (gpm)
lavamanos	5
urinario	3
inodoro	5
lavador de cocina corriente	5
Llaves jardín	3
Ducha	4

6.4.3 Método de Hunter para determinar el coeficiente de simultanedad

Para el dimensionamiento de las tuberías se tiene en cuenta que todos los aparatos instalados no funcionan simultáneamente; por esta razón se deben distinguir varios tipos de caudal

El método pretende evaluar el caudal máximo probable y se basa en el concepto de que únicamente unos pocos aparatos, de todos los que están conectados al sistema, entrarán en operación simultánea en un instante dado. El efecto de cada aparato que forma parte de un grupo numeroso de elementos similares, depende de:

J	Caudal del aparato, o sea la rata de flujo que deja pasar el servicio (q).
J	Frecuencia de uso: tiempo entre usos sucesivos (T).
J	Duración de uso: tiempo que el agua fluye para atender la demanda del aparato (t)

³ Código de instalaciones hidráulicas y sanitarias en edificaciones del colegio federado de arquitectos y de ingenieros de Costa Rica.

El método es aplicable a grandes grupos de elementos, ya que la carga de diseño es tal que tiene cierta probabilidad de no ser excedida (aunque lo puede ser en pocas ocasiones).

La determinación del porcentaje de utilización de los aparatos es hecha por cálculos matemáticos de probabilidades que establecen una fórmula aproximada del porcentaje del número de aparatos que se deben considerar funcionando simultáneamente, en función del número total de ramales que sirve.

Existen diferentes formas de aplicación del método de probabilidades habiéndose, inclusive, preparado curvas de probabilidades y tablas diversas, por lo que se recomienda usar, como un primer tanteo o estimativa, la tabla de probabilidades de uso de los aparatos sanitarios bajo condiciones normales preparada por el U.S. Department of Comerce Building Code, debiéndose reiterar que cuanto mayor es el número de aparatos, existe menos probabilidad de uso.

Tabla 6: Factor de simultainedad

No	1	2	3	
de aparatos (n)	FACTOR DE SIMULTANEIDAD			
()	Predominio	Predominio	Comunes, en	
	comunes	Fluxometro	Vivienda	
1	1.00	1.00	1.00	
2	1.00	1.00	1.00	
3	0.80	0.65	0.70	
4	0.68	0.50	0.57	
5	0.62	0.42	0.50	
6	0.58	0.38	0.44	
7	0.56	0.35	0.40	
8	0.53	0.31	0.37	
9	0.51	0.29	0.35	
10	0.50	0.27	0.33	
12	0.48	0.24	0.30	
14	0.45	0.20	0.27	

17 | Página

No	1	2	3	
de aparatos (n)	FACTOR DE SIMULTANEIDAD			
	Predominio	Predominio	Comunes, en	
	comunes	Fluxometro	Vivienda	
16	0.44	0.19	0.25	
18	0.43	0.17	0.24	
20	0.42	0.16	0.23	
25	0.40	0.13	0.20	

Nota: La diferencia entre aparatos comunes y de fluxometro, obedece a que en estos últimos, la descarga de las válvulas de fluxometro, hacen menos probable su coincidencia en el tiempo. Por ello, a igualdad de n, es menor F para los aparatos de fluxómetro.

6.5 Bomba

6.5.1 Pérdidas en la Columna

Las NTON 09001-99, establecen que las pérdidas por fricción en la columna de bombeo se consideran igual al 5% de su longitud.

$$hf = 5\% L \text{ (ec. 10)}$$

Lc = NDA + Sumergencia de la Bomba (ec. 11)

Lc = Longitud de la columna NDA = Nivel Dinámico del Acuífero

*Nota: Según normativas el NTON establece que el mínimo de sumergencia de la bomba es de 40 pies por debajo del Nivel Dinámico del Acuífero.

6.5.2 Pérdidas en la Descarga

Para determinar las pérdidas en la descarga se necesita conocer las pérdidas localizadas en los accesorios como longitud equivalente de tubería (Le), estas serán tomadas del autor: (López, 1999, p. 35). L = L + L (ec. 12)

18 | Página

Para el cálculo de las perdidas por longitud, descarga y de succión aplicaremos el método de Hazen Williams., ya descrito anteriormente.

6.5.3 Carga Total Dinámica (CTD)

$$C = N + \Delta + \sum hf$$
 (ec. 14)

Donde; CTD = Carga total dinámica (pies).

NDA = Nivel Dinámico del Acuífero (m)

 ΔZ = Diferencial de Elevación entre el NDA y Altura Máxima del Tanque (m)

Σhf = Sumatoria de Perdidas (Perdidas en Columna, Tubería, Accesorios)

6.5.4 Potencia hidráulica de la bomba

$$PB = Q * C / 3960 * E * E$$
 (ec. 15)

Pmotor = 1.15 PB (ec. 16)

Dónde:

PB = Potencia de la bomba (HP).

Pmotor = Potencia del motor (HP).

Q = Caudal (gpm).

CTD = Carga total dinámica (pies).

Eb = Eficiencia de la bomba (para efectos del cálculo teórico se estima en un 75%).

Em = Eficiencia del motor (para efectos del cálculo teórico se estima en un 90%).

19 | Página

6.5.5 Línea de Conducción

La línea de conducción es el conjunto de ductos, y accesorios destinados a transportar el agua procedente de la fuente de abastecimiento, desde la captación hasta las comunidades, formando el enlace entre la obra de captación y la red de distribución. Para su dimensionamiento deberá considerarse los siguientes aspectos:

- 1) Se dimensionará para la condición del consumo de máximo día al final del período de diseño (CMD = 1.5CPDT).
- 2) La tubería de descarga deberá ser seleccionada para resistir las presiones altas, y deberán ser protegidas contra el golpe de ariete instalando válvulas aliviadoras de presión en las vecindades de las descargas de las bombas.

√ Velocidad

La velocidad en la línea de conducción será calculada a partir de la fórmula de continuidad, que se expresa como sigue:

$$V = 4Q/\pi \emptyset 2$$

0.6m s/ < V < 1.5m s/, (0.6 m/s para evitar sedimentos y 1.5 m/s para evitar ruptura por los golpes en las paredes).

Dónde:

Q = Caudal (m3/s)

 \emptyset = Diámetro (m)

V = Velocidad (m/s)

6.5.6 Golpe de Ariete

No requiere cálculo de golpe de ariete al existir una bomba que detecta los cambios de presión en la red.

20 | Página

7 Diseño Metodológico.

7.1 Tipo de estudio:

Descriptivo transversal

7.2 Criterios de Inclusión:

Personal del área de condensación de GILDAN del parque industrial zonas francas
 "Las Palmeras"

Ingenieros activos dirigentes y capacitados del área de condensación.

Técnicos activos encargados y capacitado del área de condensación.

7.3 Ubicación geográfica del proyecto.

El área de estudio se realizará en zona franca las palmeras ubicada el parque industrial "Las Palmeras", con dirección: km 45 ½ carretera San Marcos- Masatepe.

7.4 Tipo de investigación.

El tipo de investigación a realizar será el de tipo descriptivo y correlacionar dado a que se pretende estudiar y describir la relación entre las variables del planteamiento del problema, ya que está dirigido al problema del alto consumo de agua que tiene la empresa.

"Los estudios descriptivos buscan especificar las propiedades importantes de personas, grupos, comunidades o cualquier otro fenómeno que sea sometido a análisis" (Hernández, Fernández y Baptista, 2003, p.60).

Los estudios correlaciónales tienen un valor explicativo, aunque parcial, ya que el hecho de saber que dos conceptos o variables se relacionan aporta cierta información explicativa. (Sampieri 2014)

7.5 Diseño de la investigación.

Frente a lo que ocurre con la investigación experimental, en la no experimental las variables estudiadas no se manipulan de forma deliberada. La manera de proceder es observar los fenómenos a analizar tal y como se presentan en su contexto natural.

"El diseño no experimental es el que se realiza sin manipular en forma deliberada ninguna variable" (Palella, Martins, 2010, p.87).

7.6 Tipo de población.

La muestra de la población en general, mayoritariamente son operarios de máquinas de coser industriales, seguidamente están los trabajadores de los distintos sectores que se encargan de que la empresa funcione en óptimas condiciones y personas de la sociedad que realizan diligencias.

7.7 Método de investigación.

El método empleado en nuestro estudio fue inductivo-deductivo, con un tratamiento de los datos y un enfoque mixto.

7.8 Método inductivo

El método inductivo se trata del método científico más usual, en el que pueden distinguirse cuatro pasos esenciales: la observación de los hechos para su registro; la clasificación y el estudio de estos hechos; la derivación inductiva que parte de los hechos y permite llegar a una generalización; y la contrastación.

Esto supone que, tras una primera etapa de observación, análisis y clasificación de los hechos, se logra postular una hipótesis que brinda una solución al problema planteado. Una forma de llevar a cabo el método inductivo es proponer, mediante diversas

observaciones de los sucesos u objetos en estado natural, una conclusión que resulte general para todos los eventos de la misma clase.

7.9 Método deductivo.

El método deductivo se refiere a una forma específica de pensamiento o razonamiento, que extrae conclusiones lógicas y válidas a partir de un conjunto dado de premisas o proposiciones. Es, dicho de otra forma, un modo de pensamiento que va de lo más general (como leyes y principios) a lo más específico (hechos concretos).

Figura 3: Macrolocalización del sitio

El método deductivo puede emplearse de dos maneras:

- Directa. En este caso se parte de una única premisa que no es contrastada con otras a su alrededor.
- Indirecta. En este caso se parte de un par de premisas: la primera contiene una afirmación universal y la segunda una particular; de la comparación de ambas se obtiene la conclusión.

23 | Página

7.10 Método de investigación mixta

La investigación de métodos mixtos (investigación mixta es un sinónimo) es el complemento natural de la investigación tradicional cualitativa y cuantitativa. Los métodos de investigación mixta ofrecen una gran promesa para la práctica de la investigación. La investigación de métodos mixtos es formalmente definida aquí como la búsqueda donde el investigador mezcla o combina métodos cuantitativos y cualitativos, filosóficamente es la "tercera ola". Una característica clave de la investigación de métodos mixtos es su pluralismo metodológico o eclecticismo, que a menudo resulta en la investigación superior.

7.11 Técnicas e Instrumentalización de redacción de datos.

Para desarrollar el presente trabajo investigativo, se realizará dos tipos de procedimientos para llevar a cabo la recopilación de información por tanto; primeramente estudiaremos el lugar y el comportamiento de la población y en base a la recolección de datos visuales, proseguiremos con la elaboración de una encuesta diseñada para saber la opinión de los operarios y personal encargado de la planta en general para saber si están de acuerdo con el diseño hidráulico para satisfacer el ahorro de agua potable.

7.12 Técnicas para el procesamiento de información.

Una vez recopilada la información a través de las encuestas y la observación del lugar se procederá a realizar los análisis estadísticos de todos los datos obtenidos. Posterior a esto los datos serán tabulados, analizados y representados en tablas y graficas de distribución de frecuencia con el auxilio del programa Microsoft Excel.

Los datos obtenidos de los trabajadores del parque zona franca "Las palmeras" en el área de condensación (GILDAN) serán introducidos en el programa de Excel versión 2017, un paquete estadístico computarizado que permite facilitar el procedimiento de datos cuantitativos y elaboración de datos.

A partir de los datos obtenidos de la encuesta al personal del servicio; se obtendrán medidas de resumen Media, Mediana, Moda, Desviación estándar, Varianza.

Se aplicarán además las pruebas estadísticas según el tipo de variable para las cuantitativas: Análisis de varianza factorial (ANOVA), así como riesgo relativo y sus respectivos intervalos de confianza. Y para las variables cualitativas se aplicarán Ji cuadrada o Chi cuadrada y Anderson

7.13 Consideraciones Éticas.

Se solicitará autorización por escrito a Dirección Administrativa y Recursos Humanos de la zona franca "Las palmeras" y de esta manera se hará uso de la información obtenida de las encuestas personales. Esta información será través de la encuesta personal previamente realizada a los trabajadores donde no se incluye los datos personales.

Este estudio está comprometido a respetar la integridad personal y seguridad humana y a no representar daño a la población estudiada; se compromete a evitar exponerlos a efectos secundarios atribuibles y proveyéndoles la oportunidad de conocer los resultados finales.

La información se utilizará y manejará únicamente por los autores del estudio con absoluta confidencialidad y únicamente para fines educativos, dicha información posterior a su uso será archivada bajo serias reglas de seguridad por un periodo no mayor a 2 años.

8 Memoria Técnica

8.1 Estudios técnicos.

8.1.1 Recopilación de datos para recaudación de caudales.

En este proceso de recopilación se procedió a lo que lleva por nombre de la realización de mediciones de caudales para determinar la cantidad condensado que es generado a través de los evaporadores de las 10 unidades manejadoras que existen en la planta GILDAN.

Para efectuar la medición de caudal utilizamos el método volumétrico, que consiste en medir el tiempo en que se llena un galón de agua por minutos dando como resultado que un galón de agua se llena en cinco minutos, una vez obtenido ese dato necesitamos saber cuántos galones por hora genera una sola unidad por lo que se hace un cálculo de conversión y estimación de galones generados por hora:

$$1 \text{ gal} = 5 \text{ min}$$

60 min = 1 hora

Por lo tanto, tenemos que:
$$x = \frac{60 \text{ min}}{5 \text{ min}} = 12 \frac{g}{hr}$$

En la planta se determinó que el horario laboral de los trabajadores dentro de la planta es de 12 horas con 30 minutos, en los cuales 11 horas con 30 minutos se mantienen en operación las maquinas manejadoras de aire lo que nos lleva a calcular el total de condensado generado por una unidad manejadora en un día laboral:

$$x = (g g e 60 m) * (ho o d u m)$$

$$x = 12 g * 11.30 hr = 1 g$$

Para determinar qué cantidad de condensado es generado por cada unidad realiza el mismo procedimiento, midiendo el caudal de condensado en cada unidad manejadora con que cuenta la planta lo que nos conlleva a la siguiente tabla de cálculos de caudales de las 10 unidades manejadoras:

Tabla 7: Medición de condensado generado en una hora.

Unidad #1	20 gal/hr
Unidad #2	8.2 gal/hr
Unidad #3	25 gal/hr
Unidad #4	22.14 gal/hr
Unidad #5	24.8 gal/hr
Unidad #6	22.05 gal/hr
Unidad #7	8.5 gal/hr
Unidad #8	12.98 gal/hr
Unidad #9	15.62 gal/hr
Unidad #10	15.5 gal/hr
Total generado por hora =	174.79 gal/hora

Para determinar el caudal total generado por las 10 unidades manejadora en un día de operación tenemos la siguiente ecuación:

$$x = (t_1 \quad d \quad c \quad g \quad e \quad u \quad ho)$$

$$* (ho \quad d \quad o \quad d \quad u \quad m \quad)$$

$$X = (1 \quad .7 \quad \frac{g}{h}) * (1 \quad .5 \quad h \quad) = 2,0 \quad .0 \quad g$$

Este resultado nos demuestra la cantidad de galones que se generan en un día de operación de las 10 unidades manejadoras de la planta GILDAN, para que este valor sea válido ante la entidad competente como lo es la Empresa Nicaragüense de Acueductos y Alcantarillados (ENACAL), se realiza la conversión de galón (Gal) a metros cúbicos (m³)

como lo establece la normativa del Instituto Nicaragüense de acueductos y Alcantarillados (INAA)⁴

Obteniendo como resultado el siguiente resultado:

$$1 g = 0.003785 m^3$$

2,010.08 $g = 7.6 m^3$

Por consiguiente, tenemos que en un día de operación de 11 horas con 30 minutos las 10 unidades manejadoras de aire es necesario de un almacenamiento de <u>7. 608 m³</u>

8.1.2 Cálculos de caudales y velocidades.

$$Q_1 = 20 \frac{G}{hr} \left(\frac{1m^3}{264 g}\right) = 0.0757 \frac{m^3}{hr} \left(\frac{1 hr}{3600 s}\right)$$

$$Q_1 = 2.10 \quad 10^{-5} \frac{m^3}{s}$$

$$A = \pi \quad r^2 = 3.1416 \quad 0.390625$$

$$A = 1.22 \text{ is } ^2 \quad 7.87 \quad 10^{-4} \text{m}^2$$

$$V_1 = \frac{Q_1}{A} = \frac{2.10 \quad 10^{-5} \frac{m^3}{s}}{7.87 \quad 10^{-4} \text{m}^2}$$

$$V_1 = 0.0266 \frac{m}{s}$$

$$Q_2 = 8.2 \frac{G}{hr} \left(\frac{1m^3}{264 a}\right) = 0.0310 \frac{m^3}{hr} \left(\frac{1hr}{3600 \text{ s}}\right)$$

28 | Página

⁴ Reglamento de servicios al usuario. Pág. 5. Definiciones aplicables. Ley orgánica del INAA y sus reformas, enero 1998

$$Q_{2} = 8.611 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V^{2} = \frac{Q_{2}}{A} = \frac{8.611 \quad 10^{-4} m^{3}}{7.87 \quad 10^{-4} m^{3}}$$

$$V_{2} = 0.0109 \frac{m}{s}$$

$$V_{3} = 25 \frac{G}{hr} \left(\frac{1m^{3}}{264 g} \right) = 0.0946 \frac{m^{3}}{hr} \left(\frac{1h r}{3600 s} \right)$$

$$Q_{3} = 2.62 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V^{3} = \frac{Q_{3}}{A} = \frac{2.62 \quad 10^{-5} m^{3}}{7.87 \quad 10^{-4} m^{52}}$$

$$V_{3} = 0.0332 \frac{m}{s}$$

$$Q_{4} = 22.14 \frac{G}{hr} \left(\frac{1m^{3}}{264 g} \right) = 0.0838 \frac{m^{3}}{hr} \left(\frac{1hr}{3600 s} \right)$$

$$Q_{4} = 2.32 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V^{4} = \frac{Q_{4}}{A} = \frac{2.32 \quad 10^{-5} m^{3}}{7.87 \quad 10^{-4} m^{52}}$$

$$V_{4} = 0.02947 \frac{m}{s}$$

$$Q_{5} = 2.60 \quad 10^{-5} \frac{m^{3}}{s}$$

$$Q_{5} = 2.60 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V_{5} = \frac{Q_{5}}{A} = \frac{2.6 \quad 10^{-5} m^{3}}{7.87 \quad 10^{-4} m^{2}}$$

$$V_{5} = 0.3303 \frac{m}{s}$$

$$Q_{6} = 22.5 \frac{G}{hr} \left(\frac{1m^{3}}{264 g}\right) = 0.0851 \frac{m^{3}}{hr} \left(\frac{1h r}{3600 s}\right)$$

$$Q_{6} = 2.36 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V_{6} = \frac{Q_{6}}{A} = \frac{2.36}{7.87} \frac{10^{-4}m^{2}}{10^{-4}m^{2}}$$

$$V_{6} = 0.0299 \frac{m}{s}$$

$$Q_{7} = 8.5 \frac{G}{hr} \left(\frac{1m^{3}}{264 g}\right) = 0.0321 \frac{m^{3}}{hr} \left(\frac{1h r}{3600 s}\right)$$

$$Q_{7} = 8.91 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V_{7} = \frac{Q_{7}}{A} = \frac{8.91}{7.87} \frac{10^{-4}m^{2}}{10^{-4}m^{2}}$$

$$V_{7} = 0.0113 \frac{m}{s}$$

$$Q_{8} = 12.98 \frac{G}{hr} \left(\frac{1m^{3}}{264 g}\right) = 0.0491 \frac{m^{3}}{hr} \left(\frac{1 hr}{3600 s}\right)$$

$$Q_{8} = 1.36 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V_{8} = \frac{Q_{8}}{A} = \frac{7.87}{7.87} \frac{10^{-4}m^{2}}{10^{-4}m^{2}}$$

$$V_{8} = 0.0172 \frac{m}{s}$$

$$Q_{9} = 15.92 \frac{G}{hr} \left(\frac{1m^{3}}{264 g}\right) = 0.0602 \frac{m^{3}}{hr} \left(\frac{1 hr}{3600 s}\right)$$

$$Q_{9} = 1.67 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V^{9} = Q_{9} / A = \frac{1.67 - 10}{7.87 - 10^{-4} m^{2}}$$

$$V_{9} = 0.0212 \frac{m}{s}$$

$$Q_{10} = 15.5 \frac{G}{hr} \left(\frac{1m^{3}}{264 g}\right) = 0.0586 \frac{m^{3}}{hr} \left(\frac{1 hr}{3600 s}\right)$$

$$Q_{10} = 1.62 \quad 10^{-5} \frac{m^{3}}{s}$$

$$V^{10} = Q_{10} / A = \frac{1.62 - 10}{7.87 - 10^{-4} m^{2}}$$

$$V_{10} = 0.0205 \frac{m}{s}$$

Tabla 8: Velocidad de descarga

TABI	TABLA DE VELOCIDADES								
V1	0.0266 m/s								
V2	0.0109 m/s								
V3	0.0323 m/s								
V4	0.0294 m/s								
V5	0.0330 m/s								
V6	0.0299 m/s								
V7	0.0113 m/s								
V8	0.0172 m/s								
V9	0.0212 m/s								
V10	0.0205 m/s								

Tabla 9: Caudales de manejadoras

Q1	2.1	$1^{-5} \frac{m^3}{s}$
Q2	8.611	10 ⁻⁵ $\frac{m^3}{5}$
Q3	2.62	$10^{-5} \frac{m^3}{s}$
Q4	2.32	$10^{-5} \frac{m^3}{s}$
Q5	2.60	$10^{-5} \frac{m^3}{5}$
Q6	2.36	$10^{-5} \frac{m^3}{5}$
Q7	8.91	$10^{-5} \frac{m^3}{5}$
Q8	1.36	$10^{-5} \frac{m^3}{5}$
Q9	1.67	$10^{-5} \frac{m^3}{5}$
Q10	1.62	$10^{-5} \frac{m^3}{5}$

8.2 Almacenamiento

El almacenamiento se hace una evaluación de costos y la logística necesaria para lograr el diseño y la fabricación de la estructura que compone el almacenamiento.

Figura 4: Tanque Durman⁵ (Figura de referencia)

En el mercado existe una gran diversidad de tanques, esto incluye las distintas formas que pueda tener, entre las más comunes están, los tanques con forma cilíndrica o tanques cuadrados. Entre las marcas más reconocidas esta DURMAN y Rotoplas

⁵https://www.durman.com

8.2.1 Capacidad del Tanque

Tomando en cuenta que se determinó que el almacenamiento para 11.50 horas es de 7.608m3, tomando una proyección adicional del 20% para otros gastos (limpieza de calle, andenes, cunetas).

Basados en la ficha técnica de Durman, Tabla 10: Tabla de capacidad de tanques y dimensiones, se elige el tanque de 10,000 litros (10m3), con diámetro de 2.22m y altura de 3m.

Tanques para Agua									
	Capacidad d	le Trabajo	Características						
Litros	Galones	Barriles = toneles = estañones	Diámetro (cm)	Altura (cm)	Personas				
450	119	2.16	84	108	2				
750	198	3.59	97	131	3				
1,100	291	5,27	107	146	5				
1,700	449	8.14	136	158	8				
2,500	661	11.97	154	168	10				
5,000	1321	31.44	200	210	20				
10,000	2270	62.89	222	300	40				

Tabla 10: Tabla de capacidad de tanques y dimensiones

Altura del Depósito

La altura del tanque depende de consideraciones:

- ✓ Entrada de la tubería de drenaje al punto 1.06m (ver plano 2)
- ✓ Altura de tanque, 3m

Teniendo en cuenta esas consideraciones la altura para excavar y colocar el tanque es de 3m+1.06m=4.06m, este valor considerarlo en la carga total dinámica.

8.3 Diseño tubería por gravedad (desagüe)

J Tramo Manejadora 2 - Tanque (ver Figura 5)

Tomando $v \times \frac{1}{n} R^{2/3} s^{1/2}$ Ecuación 2 y $Q \times V A$ Ecuación 4, obtenemos que:

$$Q X \frac{1}{n} R^{2/3} s^{1/2} A$$

Sabiendo que el caudal acumulado es $Q \times 0.00032071 \frac{m^3}{s}$, la pendiente $s \times 0.2\% \times 0.002m / m$, $D \times 0.05m$ (diámetro de 2"), el valor de A y R se obtienen de la Tabla 1: Radio Hidráulico para distintas figuras.

Entonces:

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

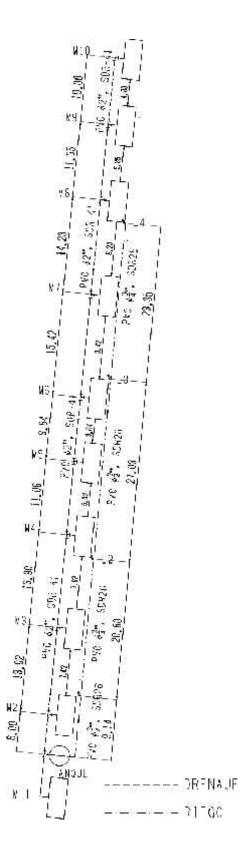


Figura 5: idealizacion del sistema y medidas

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.030182m$$

El tubo de 2" ira a una capacidad de $\frac{0.030182}{0.05}$ X 60.37%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Igualmente se hace una tabla por tramo (Anexo 2)

Tramo Manejadora 10 - Manejadora 9 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es $Q \times Q_{M10} \times 0.0000162 \frac{m^3}{s}$

Entonces:

$$13285.00244Q \ X13285.00244(0.0000162) \ X0.215217 \ X \ 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.006334m$$

El tubo de 2" ira a una capacidad de $\frac{0.006334}{0.05}$ X12.67%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Br. Espinoza Kenneth, Br. Leiva Edwin

Igualmente se hace una tabla por tramo (Anexo 2)

Tramo Manejadora 9 - Manejadora 8 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} \stackrel{^{2/3}}{\mid} (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es $Q X Q_{M10} \Gamma Q_{M9} X 0.0000329 \frac{m^3}{s}$

Entonces:

$$13285.00244Q X13285.00244(0.0000329) X0.437 X 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

$$\forall X1.7453 rad$$

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.008930m$$

El tubo de 2" ira a una capacidad de
$$\frac{0.008930}{0.05}$$
X17.86%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Tramo Manejadora 8 - Manejadora 7 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es $Q X Q_{M10} \Gamma Q_{M9} \Gamma Q_{M8} X 0.0000465 \frac{m^3}{s}$

Entonces:

$$13285.00244Q~\textrm{X}13285.00244(0.0000465)~\textrm{X}0.617752~\textrm{X}~1\textrm{Z} \underbrace{\begin{array}{c} sen \forall \\ \forall \end{array}}^{2/3} |~(\forall \, Zsen \forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.01058m$$

El tubo de 2" ira a una capacidad de
$$\frac{0.01058}{0.05}$$
 X21.18%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Tramo Manejadora 7 - Manejadora 6 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es $Q X Q_{M10} \Gamma Q_{M9} \Gamma Q_{M8} \Gamma Q_{M7} X 0.0001356 \frac{m^3}{s}$

Entonces:

$$13285.00244Q~X13285.00244(0.0001356)~X1.8014~X~1Z \underbrace{\begin{array}{c} sen \forall \\ \hline \forall \end{array} \begin{array}{c} ^{2/3} \\ \hline \end{array} (\forall~Zsen \forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.01832m$$

El tubo de 2" ira a una capacidad de $\frac{0.01832}{0.05}$ X36.65%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Tramo Manejadora 6 - Manejadora 5 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es $Q X Q_{M10} \Gamma Q_{M9} \Gamma Q_{M8} \Gamma Q_{M7} \Gamma Q_{M6} X 0.0001592 \frac{m^3}{s}$

Entonces:

$$13285.00244Q~X13285.00244(0.0001592)~X2.11497~X~1Z \underbrace{\begin{array}{c} sen \forall \\ \hline \forall \end{array} \begin{array}{c} ^{2/3} \\ \hline \end{array} (\forall Zsen \forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.01998m$$

El tubo de 2" ira a una capacidad de $\frac{0.01998}{0.05}$ X39.98%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Tramo Manejadora 5 - Manejadora 4 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es

$$Q X Q_{M10} \Gamma Q_{M9} \Gamma Q_{M8} \Gamma Q_{M7} \Gamma Q_{M6} \Gamma Q_{M5} X 0.0001852 \frac{m^3}{s}$$

Entonces:

$$13285.00244Q~X13285.00244(0.0001852)~X2.4603~X~1Z \frac{sen\forall}{\forall} \stackrel{^{2/3}}{\mid} (\forall Zsen\forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

Teniendo como tirante de aqua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.02173m$$

El tubo de 2" ira a una capacidad de $\frac{0.02173}{0.05}$ X 43.46%

Estos valores se corroboran con el programa H-canales (Anexo 1)

Tramo Manejadora 4 - Manejadora 3 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es

$$Q X Q_{M10} \Gamma Q_{M9} \Gamma Q_{M8} \Gamma Q_{M7} \Gamma Q_{M6} \Gamma Q_{M5} \Gamma Q_{M4} X 0.0002084 \frac{m^3}{s}$$

Entonces:

$$13285.00244Q \ X13285.00244(0.0002084) \ X2.7685 \ X \ 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

∀ X3*rad* ∀ X171.887*

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.02323m$$

El tubo de 2" ira a una capacidad de $\frac{0.02323}{0.05}$ X 46.46%

Estos valores se corroboran con el programa H-canales (Anexo 1)

J Tramo Manejadora 3 - Manejadora 2 (ver Figura 5)

Tomando 13285.00244
$$Q \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall)$$

Sabiendo que el caudal acumulado es

$$Q X Q_{M10} \Gamma Q_{M9} \Gamma Q_{M8} \Gamma Q_{M7} \Gamma Q_{M6} \Gamma Q_{M5} \Gamma Q_{M4} \Gamma Q_{M3} X 0.0002346 \frac{m^3}{s}$$

Entonces:

$$13285.00244Q~X13285.00244(0.0002346)~X3.1166~X~1Z \frac{sen\forall}{\forall} \stackrel{^{2/3}}{\mid} (\forall~Zsen\forall)$$

Resolviendo por el método de Newton-Raphson/bisección (Anexo 4) obtenemos que:

∀ X3.1322*rad* ∀ X179.461*

Teniendo como tirante de agua:

$$T \times \frac{D}{2} \times \frac{D}{2} \cos \frac{\forall}{2} \times 0.02488m$$

El tubo de 2" ira a una capacidad de $\frac{0.02488}{0.05}$ X 49.77%

Estos valores se corroboran con el programa H-canales (Anexo 1)

8.4 Diseño de tubería a presión, cálculo de pérdidas y bomba

Perdidas tramo L4-L3 (ver Figura 5)

Utilizando $H_f \ {
m X} \frac{10.67 Q^{1.85}}{C^{1.85} D^{4.87}} L$ Ecuación 6, conociendo los caudales a partir de

Tabla 5: Gastos de artefactos, método Building Code, $Q \times 3gpm \times 0.189lps \times 0.000189 \frac{m^3}{s}$

El coefiente de Hazen-Williams C=130 a partir de la Tabla 3: Coeficiente Hazen-Williams,

Longitud del tramo = 23.35

Longitud equivalente de codo de 90 de ¾ = 0.7m

Longitud total = 24.05

Factor de simultanedad para 1 artefacto FS = 1

Caudal total = $Q_T XFS Q X1 0.000189 \frac{m^3}{s} X0.000189 \frac{m^3}{s}$

 $H_f \times \frac{10.67 Q^{1.85}}{C^{1.85} D^{4.87}} L \times \frac{10.67 (0.000189)^{1.85}}{130^{1.85} (0.01905)^{4.87}} (24.05) \times 0.973$

Perdidas tramo L3-L2 (ver Figura 5)

Utilizando H_f X $\frac{10.67Q^{1.85}}{C^{1.85}D^{4.87}}L$ Ecuación 6, conociendo los caudales a partir de

Tabla 5: Gastos de artefactos, método Building Code, $Q \times 3gpm \times 0.189lps \times 0.000189 \frac{m^3}{s}$

El coefiente de Hazen-Williams C=130 a partir de la Tabla 3: Coeficiente Hazen-Williams,

Longitud del tramo = 27.03

Longitud equivalente de Tee de ¾ = 1.40m

Longitud total = 28.4

Factor de simultanedad para 2 artefactos FS = 1

Caudal total = $Q_T XFS Q X1 2x0.000189 \frac{m^3}{s} X0.000379 \frac{m^3}{s}$

 $H_f X \frac{10.67 Q^{1.85}}{C^{1.85} D^{4.87}} L X \frac{10.67 (0.000379)^{1.85}}{130^{1.85} (0.01905)^{4.87}} (28.40) X 4.14$

J Perdidas tramo L2-L1 (ver Figura 5)

Utilizando H_f X $\frac{10.67Q^{1.85}}{C^{1.85}D^{4.87}}L$ Ecuación 6, conociendo los caudales a partir de

Tabla 5: Gastos de artefactos, método Building Code, $Q \times 3gpm \times 0.189lps \times 0.000189 \frac{m^3}{s}$

El coefiente de Hazen-Williams C=130 a partir de la Tabla 3: Coeficiente Hazen-Williams,

Longitud del tramo = 20.60

Longitud equivalente de Tee de ¾ = 1.40m

Longitud total = 22

Factor de simultanedad para 3 artefactos FS = 0.80

Caudal total = $Q_T XFS Q X0.80 3x0.000189 \frac{m^3}{s} X0.000454 \frac{m^3}{s}$

 $H_f X \frac{10.67 Q^{1.85}}{C^{1.85} D^{4.87}} L X \frac{10.67 (0.000454)^{1.85}}{130^{1.85} (0.01905)^{4.87}} (22) X 4.49$

Perdidas tramo L1-Tanque (ver Figura 5)

Utilizando H_f X $\frac{10.67Q^{1.85}}{C^{1.85}D^{4.87}}L$ Ecuación 6, conociendo los caudales a partir de

Tabla 5: Gastos de artefactos, método Building Code, $Q \times 3gpm \times 0.189lps \times 0.000189 \frac{m^3}{s}$

El coefiente de Hazen-Williams C=130 a partir de la Tabla 3: Coeficiente Hazen-Williams,

Longitud del tramo = 9.14

Longitud equivalente de Codo de 90 de ¾ = 0.70m

Longitud total = 9.84

Factor de simultanedad para 4 artefacto FS = 0.68

Caudal total = $Q_T XFS Q X0.68 4x0.000189 \frac{m^3}{s} X0.000515 \frac{m^3}{s}$

 $H_f X \frac{10.67 Q^{1.85}}{C^{1.85} D^{4.87}} L X \frac{10.67 (0.000515)^{1.85}}{130^{1.85} (0.01905)^{4.87}} (9.84) X 2.53$

Se presenta la siguiente tabla resumen en Excel:

Tabla 11: perdidas la red

	Artefacto	No. De unid.	Accesorios	Long. Equiv		70		Τ_		(sc							
Tramo				No de	Long.	total	Factor de Simultaneidad	Qu (gpm)	Qmáx (gpm)	Qq (lps)	Qdagua fría (lps)	D (pulg)	D (m)	၁	Sf (m/m)	V (m/s)	Hf (m)
	Llave jardin	1	C90 de 3/4"	1	0.7	0.7		3									
L4-L3			tub de Ø 3/4"	1	23.35	23.4											
	total	1				24.1	1	3	3	0.189	0.189	0.75	0.02	130	0.04	0.673	0.97
	Llave jardin	2	Tee de 3/4"	1	1.4	1.4		6									
L3-L2			tub de Ø 3/4"	1	27.03	27											
	total	2				28.4	1	6	6	0.379	0.38	0.75	0.02	130	0.15	1.346	4.14
	Llave jardin	3	Tee de 3/4"	1	1.4	1.4		9									
L2-L1			tub de Ø 3/4"	1	20.60	20.6											
	total	3				22	0.8	9	7.2	0.454	0.45	0.75	0.02	130	0.2	1.614	4.49
	Llave jardin	4	C90 de 3/4"	1	0.7	0.7		12									
L1-			tub de Ø 3/4"	1	9.14	9.14											
TANQUE																	
	total	4				9.84	0.68	12	8.16	0.515	0.51	0.75	0.02	130	0.26	1.829	2.53
	suma de perdidas 12								12.1								
	Altura de llave									1							
														va	Ivulas	Ø 3/4"	0.4
														PERD	DIDA T	OTAL	13.5

8.5 Bomba

Sabiendo que el caudal es

Q X8.16*gpm* X0.515*lps*

CTD Xhf Γh_{bomba} X13.5m Γ 3.86m X17.36m X24.68psi

OPCION 1: Bombas HIDR-1/2x24P, HIDR-1/2x50P

Para este caso con un caudal de 0.515lps, la altura es de $18m \, \Psi CTD \, X17.36m \,$ **CUMPLE**

OPCION 2: Bombas HIDR-1/2x24, HIDR-1/2x50

Para este caso con un caudal de 0.515lps, la altura es de $28m \ \Psi CTD \ X17.36m$ **CUMPLE, SOBREDISEÑADO**

Se selecciona la bomba HIDR-1/2x50P

49 | Página

Br. Espinoza Kenneth, Br. Leiva Edwin

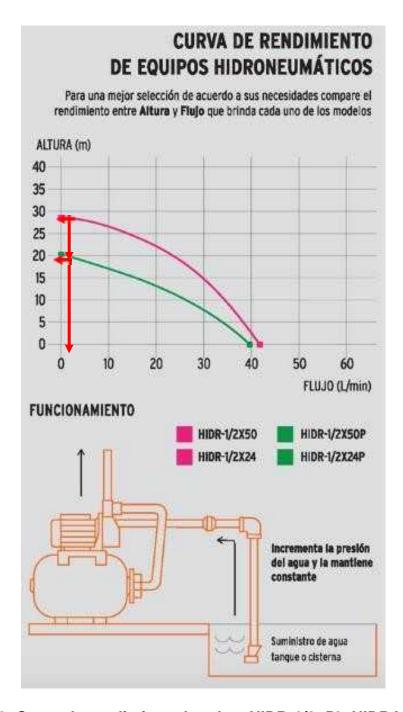


Figura 6: Curva de rendimiento bombas HIDR-1/2x50, HIDRA-1/2x246

⁶https://www.truper.com/CatVigente/Equipos-Hidroneumaticos-Residencial-TRUPER-47.html#button-2, página oficial de la marca TRUPER

8.6 Presiones en la red

Se hizo el modelo en el programa EPANET, para obtener las presiones en la red, y garantizar que el ultimo artefacto tenga la presión mínima requerida de 2mca, dando como resultado en los nodos según la Figura 7: Presiones residuales en la red, modelo EPANET:

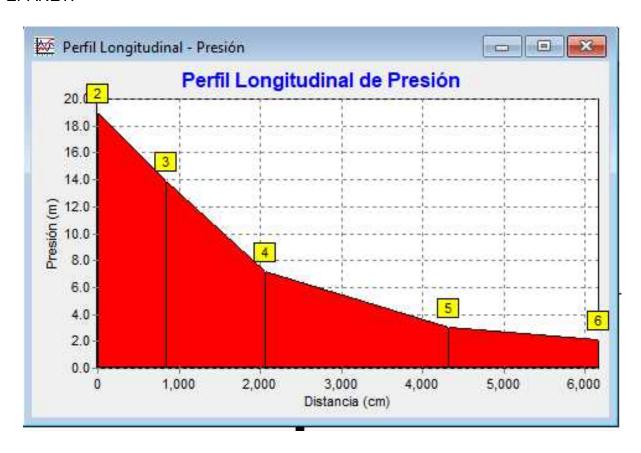


Figura 7: Presiones residuales en la red, modelo EPANET

Los datos y análisis en EPANET se presentan en el Anexo 5: Análisis por EPANET. El nodo 6 presenta una presión residual de 2.11mca, el cual es mayor que la presión requerida de 2mca, esto garantiza su buen funcionamiento.

51 | Página

Br. Espinoza Kenneth, Br. Leiva Edwin

9 Costo del proyecto.

Tabla 12: Costos del proyecto por costo unitario

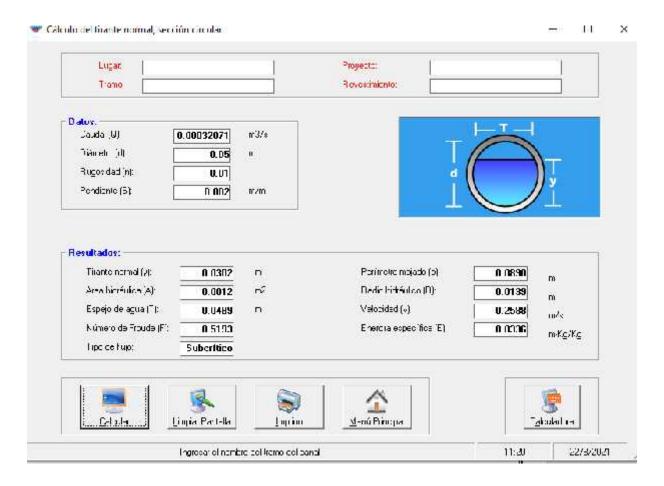
Descripción	Unidad	Cantidad	Costo unitario (\$)	Total (\$)
Tubería PVC 2" SDR41 para drenaje por gravedad de agua de manejadoras	m	139.43	\$6.50	\$906.30
Excavación de tubería de drenaje de manejadoras	m3	26.62	\$8.50	\$226.30
Relleno y compactación de tubería de drenaje de manejadoras	m3	26.41	\$7.20	\$190.13
Tubería PVC 3/4" SDR26 para riego exterior	m	88.61	\$2.50	\$221.53
Excavación de tubería de riego	m3	19.23	\$8.50	\$163.42
Relleno y compactación de tubería de riego	m3	19.20	\$7.20	\$138.27
Cisterna de 4,000 gln	c/u	1.00	\$756.34	\$756.34
Excavación de cisterna	m3	20.00	\$8.50	\$170.00
Relleno de cisterna	m3	6.00	\$7.20	\$43.20
Bomba HIDR-1/2x50P	c/u	1.00	\$996.40	\$996.40
Sistema electrico, 20m de tuberia conduit, gabinete y control, breaker 20amp, 1 polo, 4 cajas de registro 4x4	global	1.00	\$650.40	\$650.40
	SUBTOTAL	\$4,462.28		
			IVA	\$669.34
	TOTAL	\$5,131.62		

10 Conclusiones.

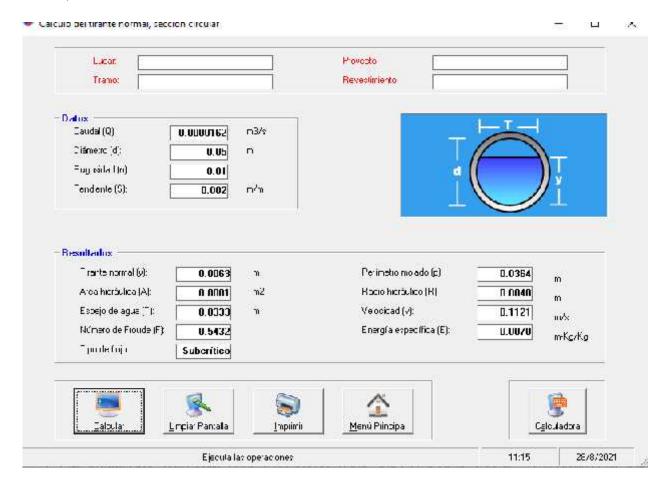
- Se propuso diseño de drenaje por gravedad para almacenar el agua producida por el condensado de las manejadoras en la planta GILDAN, siendo esta distribuida en forma de riego por tubería a presión en uso para ahorro de la misma.
- Se obtuvieron los caudales por manejadora mediante medición insitu, basados en principios de mecánica de fluidos, siendo un total de 2010GPM, siendo una acumulación anual de 2,776.98m³ de agua menos en facturación.
- Se dimensionó el diseño del sistema hidráulico siendo la captación del condensado por gravedad, almacenado en un tanque con capacidad de almacenamiento de 11.5horas y siendo distribuido en 4 tomas de riego.
- Para corroboración de cálculos se compararon cálculos manuales vs cálculos con software como EPANET para las presiones y H-canales para los cálculos en gravedad.
- Se propuso manual de diagnóstico de errores y fallas de la bomba para su debido mantenimiento.
- El presupuesto final presentado a la planta GILDAN para beneficio y buen manejado de las manejadoras, considerando el ahorro en la factura de agua y con la selección del sistema más eficiente se determinó la bomba hidroneumática HIDR-1/2x50P, siendo el costo final incluyendo excavaciones, tuberías, bomba y almacenamiento en \$5,131.62 USD

11 Recomendaciones

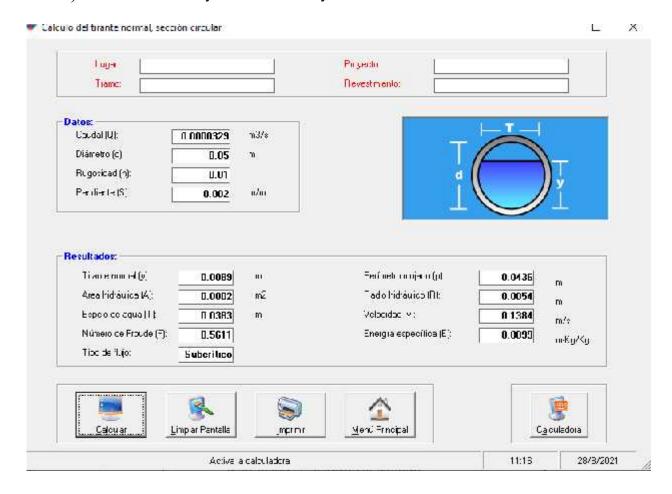
- Determinar y realizar estudios para el dimensionamiento del almacenamiento para proveer de agua a artefactos sanitarios (inodoros y lavamanos) de la zona franca estudiada.
- Establecer un sistema de malla alrededor de la zona franca y determinar los caudales y perdidas de la red con el método de Hardy-Cross.
- Acumular las aguas pluviales y el agua de las condensadoras y ampliar la red de riego del complejo de zona franca.

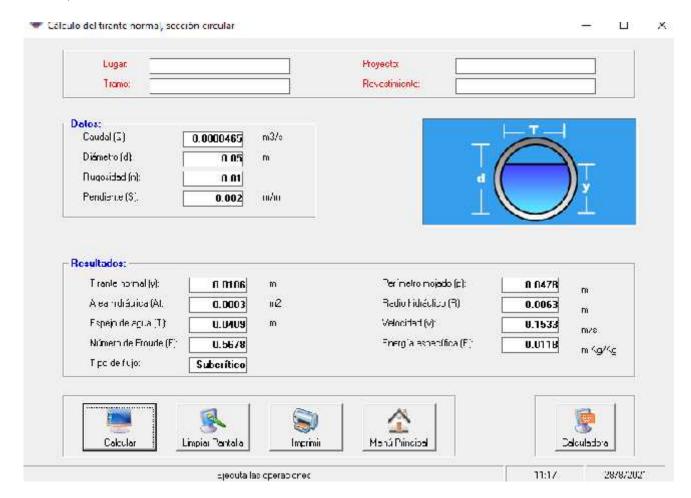

12 Bibliografía

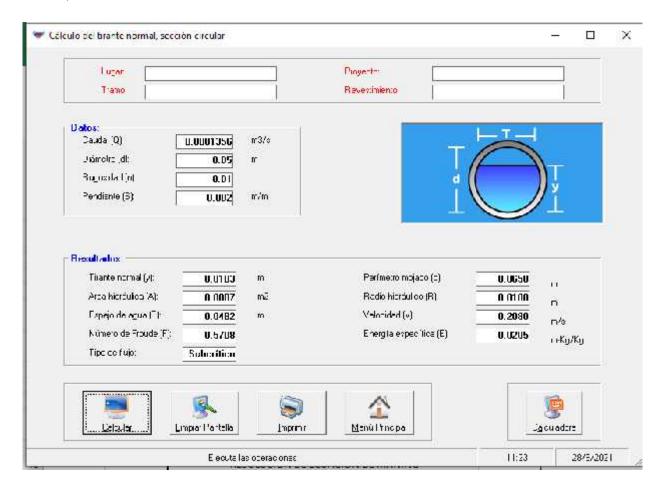
- Hernandez Sampieri, R., Fernandez Collado, C., & Baptistas Lucio, P. (2003).
 Metodologia de la investigación. Mexico D,f: McGraw Hill Interamericana.
- Frank M. White (2004). Mecánica de Fluidos. España: McGraw-Hill INTERAMERICANA DE ESPAÑA. S.A.U.
- De "Mecánica de Fluidos" (p. 359) Por Robert L. Mott, 2006, Lugar de la publicación: México, Compañía Editorial PEARSON EDUCACION. Copyright 2006 por la Compañía PEARSON EDUCACION.
- Yunus Cengel. Tubería en Serie, Mecánica de Fluidos, 2003. McGraw-Hill

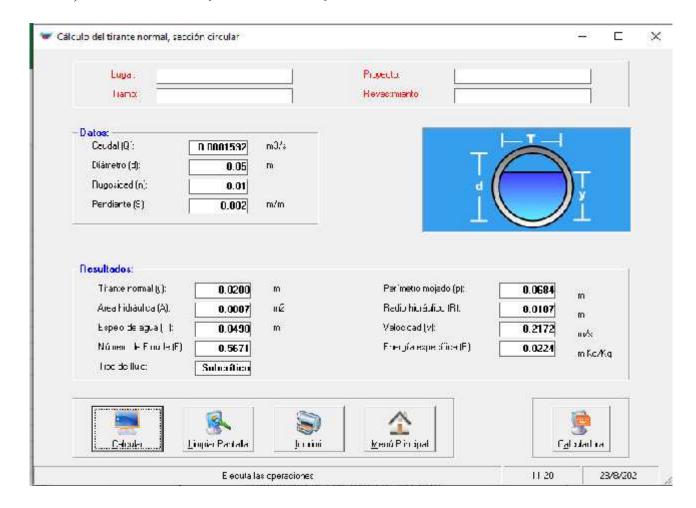

13 ANEXOS

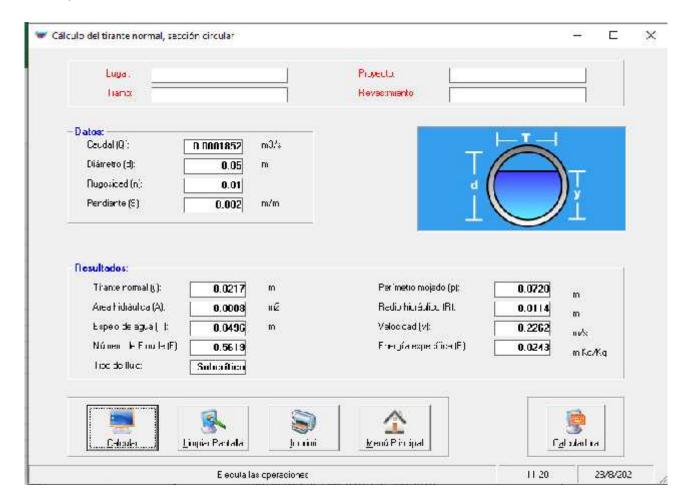
13.1 Anexo 1: Resultado de tirantes por H-Canales

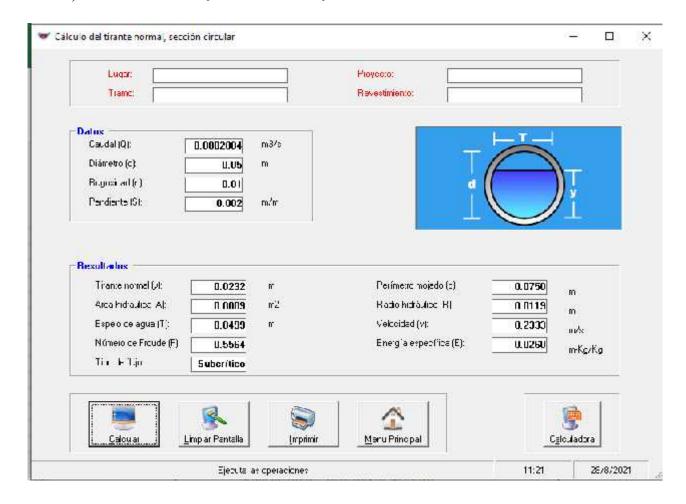

Tramo de manejadora 2 a tanque

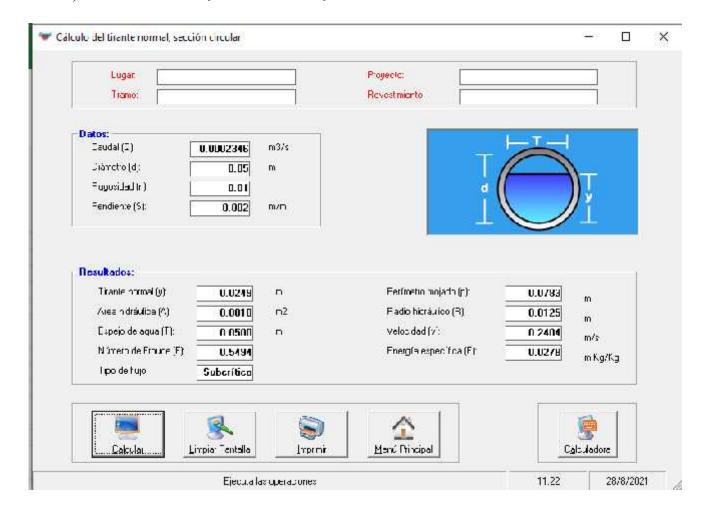

Tramo de manejadora 10 a manejadora 9


Tramo de manejadora 9 a manejadora 8

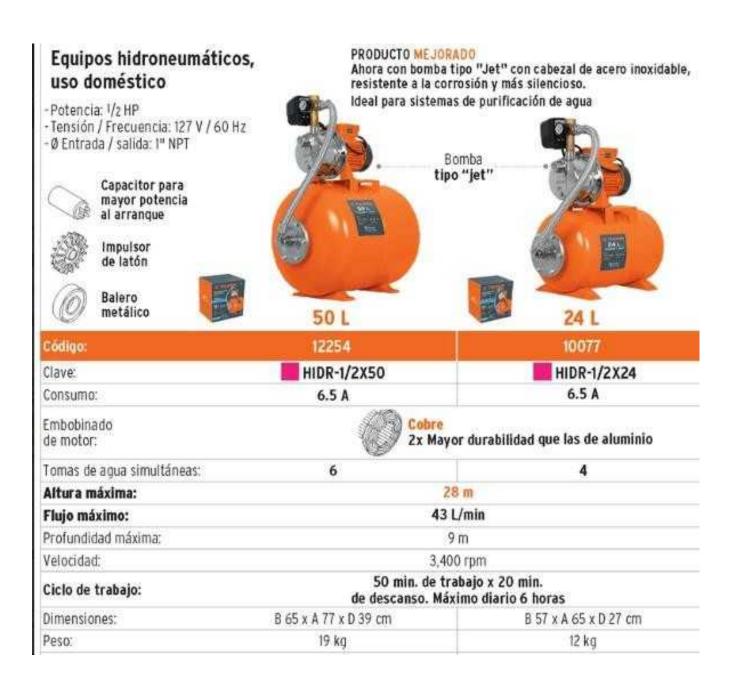

Tramo de manejadora 8 a manejadora 7


Tramo de manejadora 7 a manejadora 6


) Tramo de manejadora 6 a manejadora 5


Tramo de manejadora 5 a manejadora 4

Tramo de manejadora 4 a manejadora 3


J Tramo de manejadora 3 a manejadora 2

ı	PVS	Long (n	itud n)	Q _{MANEJA} D	Q_{dis}	Diám de Tu	o netro Ibería m)	n	Pendi (%		Q _{LL}	V _{LL}	elemen	iciones de t mente l	tubos Ileno	V m/s	Y (Tirante)
Del	Al	Propia	umula	lps	lps	alculac	opues	PVC	erren	uberi	lps	m/s		Tabla	Tabla		mm
M10	M9	10		0.0162	0.016	14.11	50.00	0.010	0.20	0.20	0.4730	0.2409	0.0343	0.4570	0.1230	0.110	6.15
M9	M8	11.35	21.35	0.0167	0.033	18.40	50.00	0.010	0.20	0.20	0.4730	0.2409	0.0696	0.5697	0.1760	0.137	8.80
M8	M7	14.23	25.58	0.0136	0.047	20.95	50.00	0.010	0.20	0.20	0.4730	0.2409	0.0983	0.6349	0.2110	0.153	10.55
M7	M6	15.42	29.65	0.0891	0.136	31.30	50.00	0.010	0.20	0.20	0.4730	0.2409	0.2867	0.8554	0.3600	0.206	18.00
M6	M5	9.64	25.06	0.0236	0.159	33.24	50.00	0.010	0.20	0.20	0.4730	0.2409	0.3366	0.8954	0.3940	0.216	19.70
M5	M4	11.06	20.70	0.0260	0.185	35.18	50.00	0.010	0.20	0.20	0.4730	0.2409	0.3916	0.9374	0.4330	0.226	21.65
M4	M3	13.9	24.96	0.0232	0.208	36.77	50.00	0.010	0.20	0.20	0.4730	0.2409	0.4406	0.9678	0.4640	0.233	23.20
M3	M2	13.02	26.92	0.0262	0.235	38.44	50.00	0.010	0.20	0.20	0.4730	0.2409	0.4960	0.9949	0.4940	0.240	24.70
M2	TANQUE	6.00	19.02	0.0861	0.321	43.22	50.00	0.010	0.20	0.20	0.4730	0.2409	0.6781	1.0724	0.6000	0.258	30.00

13.2 Anexo 2: Tabla de tirante para tuberia de drenaje

13.3 Anexo 3: Fichas técnicas de bombas

Equipos hidroneumáticos, MARGENDE uso doméstico, Pretul

Aluminio

6	4
2	0 m
40	L/min
	8 m
3,4	50 rpm
30 min. de t de descanso. Má	rabajo x 20 min. ximo diario 6 horas
B 63 x A 61 x D 38 cm	8 52 x A 50 x D 28 cm
14 kg	10 kg

TRUPER

Certificaciones y garantías

Cumple con la norma NOM-003-SCFI

CÓDIGO: 12254 CLAVE: HIDR-1/2X50

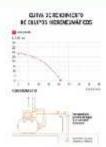
Bomba hidroneumática 1/2 HP, 50 litros

- Bomba tipo "jet", motor con bobinas de cobre
- Manômetro instalado para una revisión continua del desempeño
- Manguera interconexión bomba tanque.
- Capacitor para mayor potencia al arranque

Capacitor para mayor potencia al arrangue

atón

Balero metálico


Bubinas ce cobre 2x Mayor durab lidad cue los de

Especificaciones

ITRUPER'

Potencia	1/2 HP (375 W)
Tensión	127 V
Frecuencia	60 Hz
Velocidad	3,400 r/min
Dlámetro de entrada / salida	1" NPT
Flujo máximo	43 L/min
Altura máxima	28 m
Máxima profundidad	9 m
Capacidad del tanque	50 L
Tomas de agua simultáneas	6
Ciclo de trabajo	50 minutos de trabajo por 20 minutos de descanso
Máximo diario	6 Horas
Dimensiones	B 65 x A 77 x D 39 cm
Peso	19 kg
Empaque individual	Caja
Master	H.
Inner	1
Pallet	8

Imagenes complementarias

D.M. U Truper S.A. de C.V. 2021 | Tedes les dereches reservedos.

Prohibida su reproducción o divalgación total o partial así como so eso o aprovechamiento sio nutralesción escrito de Truper, S.A.de C.V.

13.4 Anexo 4: Método de Newton-Raphson y bisección para resolver ecuaciones

Manejadora 2 a tanque

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z4.260633$$

$$f'(\forall) \times 1Z \frac{sen \forall}{\forall} | (1Z\cos \forall) \Gamma \frac{2}{3} | 1Z \frac{sen \forall}{\forall} | \frac{Zsen \forall \Gamma \forall \cos \forall}{\forall} | (1Z\cos \forall)$$

Método Newton-Raphson							
n	f()	$f'(\)$	$_{n+1}= _{n}\text{-}f()/f'()$				
4	1.07867732	1.73532567	3.378400646				
3.37840065	-0.48224908	1.71886421	3.658963284				
3.65896328	0.25926579	1.79436993	3.514474802				
3.5144748	-0.11824485	1.76914436	3.581312111				
3.58131211	0.05790748	1.78450172	3.548861887				
3.54886189	-0.02733159	1.77783111	3.564235446				
3.56423545	0.0131227	1.78117711	3.556868013				
3.55686801	-0.00624853	1.77961525	3.560379182				
3.56037918	0.00298704	1.78036917	3.558701419				
3.55870142	-0.00142523	1.7800111	3.559502106				
3.55950211	0.00068064	1.78018248	3.559119761				
3.55911976	-0.00032491	1.78010075	3.559302286				
3.55930229	0.00015513	1.78013979	3.559215139				
3.55921514	-7.4063E-05	1.78012116	3.559256745				
3.55925674	3.536E-05	1.78013006	3.559236881				
3.55923688	-1.6882E-05	1.78012581	3.559246365				
3.55924636	8.0599E-06	1.78012784	3.559241837				

Manejadora 10 a Manejadora 9

M10

$$f(\forall) \times 1Z \frac{sen\forall}{\forall} \mid (\forall Zsen\forall) Z0.215217$$

M9

Método bisección **(-)** 1 f(1)f(2)f(m)(+) 2 1.5 2 0.02716838 1 -0.16878177 0.5128263 -0.09870402 1 1.5 -0.16878177 0.02716838 1.25 1.25 1.5 -0.09870402 0.02716838 1.375 -0.04389167 1.375 1.5 -0.04389167 0.02716838 1.4375 -0.01053123 1.4375 1.5 -0.01053123 0.02716838 1.46875 0.00775941 1.4375 1.46875 -0.01053123 0.00775941 1.453125 -0.00152363 0.0030832 1.453125 1.46875 -0.00152363 0.00775941 1.4609375 1.453125 1.4609375 -0.00152363 1.45703125 0.00077114 0.0030832 1.453125 1.45703125 -0.00152363 0.00077114 1.45507813 -0.0003784 1.45507813 1.45703125 -0.0003784 0.00077114 1.45605469 0.00019583 1.45507813 1.45605469 -0.0003784 0.00019583 1.45556641 -9.1419E-05 1.45556641 1.45605469 1.45581055 5.2173E-05 -9.1419E-05 0.00019583 1.45556641 1.45581055 -9.1419E-05 5.2173E-05 1.45568848 -1.9632E-05

5.2173E-05

1.6268E-05

1.6268E-05

7.2929E-06

2.8053E-06

5.6148E-07

5.6148E-07

1.45574951

1.45571899

1.45573425

1.45572662

1.45572281

1.4557209

1.45572186

1.6268E-05

-1.6823E-06

7.2929E-06

2.8053E-06

5.6148E-07

-5.6041E-07

5.354E-10

-1.9632E-05

-1.9632E-05

-1.6823E-06

-1.6823E-06

-1.6823E-06

-1.6823E-06

-5.6041E-07

1.45568848

1.45568848

1.45571899

1.45571899

1.45571899

1.45571899

1.45581055

1.45574951

1.45574951

1.45573425

1.45572662

1.45572281

1.4557209 | 1.45572281

Manejadora 9 a Manejadora 8

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z0.43707$$

M9 M8

1	סועו פועו							
	Método bisección							
(-) 1	(+) 2	f(1)	f(2)	m	f(m)			
1	2	-0.39064131	0.29096676	1.5	-0.19469116			
1.5	2	-0.19469116	0.29096676	1.75	0.00453033			
1.5	1.75	-0.19469116	0.00453033	1.625	-0.10523561			
1.625	1.75	-0.10523561	0.00453033	1.6875	-0.05299956			
1.6875	1.75	-0.05299956	0.00453033	1.71875	-0.02490868			
1.71875	1.75	-0.02490868	0.00453033	1.734375	-0.01035916			
1.734375	1.75	-0.01035916	0.00453033	1.7421875	-0.00295708			
1.7421875	1.75	-0.00295708	0.00453033	1.74609375	0.00077593			
1.7421875	1.74609375	-0.00295708	0.00077593	1.74414063	-0.00109325			
1.74414063	1.74609375	-0.00109325	0.00077593	1.74511719	-0.00015932			
1.74511719	1.74609375	-0.00015932	0.00077593	1.74560547	0.00030814			
1.74511719	1.74560547	-0.00015932	0.00030814	1.74536133	7.4365E-05			
1.74511719	1.74536133	-0.00015932	7.4365E-05	1.74523926	-4.249E-05			
1.74523926	1.74536133	-4.249E-05	7.4365E-05	1.74530029	1.5935E-05			
1.74523926	1.74530029	-4.249E-05	1.5935E-05	1.74526978	-1.3278E-05			
1.74526978	1.74530029	-1.3278E-05	1.5935E-05	1.74528503	1.3287E-06			
1.74526978	1.74528503	-1.3278E-05	1.3287E-06	1.7452774	-5.9746E-06			
1.7452774	1.74528503	-5.9746E-06	1.3287E-06	1.74528122	-2.323E-06			
1.74528122	1.74528503	-2.323E-06	1.3287E-06	1.74528313	-4.9716E-07			
1.74528313	1.74528503	-4.9716E-07	1.3287E-06	1.74528408	4.1575E-07			

Manejadora 8 a Manejadora 7

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z0.61775$$

M8 M7

IVIO IVI7									
	Método bisección								
(-) 1	(+) 2	f(1)	f(2)	m	f(m)				
1	2	-0.57131735	0.11029072	1.5	-0.37536719				
1.5	2	-0.37536719	0.11029072	1.75	-0.1761457				
1.75	2	-0.1761457	0.11029072	1.875	-0.0444757				
1.875	2	-0.0444757	0.11029072	1.9375	0.02996357				
1.875	1.9375	-0.0444757	0.02996357	1.90625	-0.00798611				
1.90625	1.9375	-0.00798611	0.02996357	1.921875	0.0108054				
1.90625	1.921875	-0.00798611	0.0108054	1.9140625	0.00136391				
1.90625	1.9140625	-0.00798611	0.00136391	1.91015625	-0.00332252				
1.91015625	1.9140625	-0.00332252	0.00136391	1.91210938	-0.00098216				
1.91210938	1.9140625	-0.00098216	0.00136391	1.91308594	0.00019016				
1.91210938	1.91308594	-0.00098216	0.00019016	1.91259766	-0.00039618				
1.91259766	1.91308594	-0.00039618	0.00019016	1.9128418	-0.00010306				
1.9128418	1.91308594	-0.00010306	0.00019016	1.91296387	4.354E-05				
1.9128418	1.91296387	-0.00010306	4.354E-05	1.91290283	-2.9761E-05				
1.91290283	1.91296387	-2.9761E-05	4.354E-05	1.91293335	6.889E-06				
1.91290283	1.91293335	-2.9761E-05	6.889E-06	1.91291809	-1.1436E-05				
1.91291809	1.91293335	-1.1436E-05	6.889E-06	1.91292572	-2.2736E-06				
1.91292572	1.91293335	-2.2736E-06	6.889E-06	1.91292953	2.3077E-06				
1.91292572	1.91292953	-2.2736E-06	2.3077E-06	1.91292763	1.706E-08				
1.91292572	1.91292763	-2.2736E-06	1.706E-08	1.91292667	-1.1283E-06				

Manejadora 7 a Manejadora 6

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z1.80144$$

M7 M6

IVI7 IVIO								
	Método bisección							
(-) 1	(+) 2	f(1)	f(2)	m	f(m)			
1	3	-1.75501107	0.96706118	2	-1.07340299			
2	3	-1.07340299	0.96706118	2.5	-0.21699898			
2.5	3	-0.21699898	0.96706118	2.75	0.34235557			
2.5	2.75	-0.21699898	0.34235557	2.625	0.05313813			
2.5	2.625	-0.21699898	0.05313813	2.5625	-0.08445935			
2.5625	2.625	-0.08445935	0.05313813	2.59375	-0.01627617			
2.59375	2.625	-0.01627617	0.05313813	2.609375	0.01827929			
2.59375	2.609375	-0.01627617	0.01827929	2.6015625	0.00096336			
2.59375	2.6015625	-0.01627617	0.00096336	2.59765625	-0.00766599			
2.59765625	2.6015625	-0.00766599	0.00096336	2.59960938	-0.00335371			
2.59960938	2.6015625	-0.00335371	0.00096336	2.60058594	-0.00119577			
2.60058594	2.6015625	-0.00119577	0.00096336	2.60107422	-0.00011636			
2.60107422	2.6015625	-0.00011636	0.00096336	2.60131836	0.00042346			
2.60107422	2.60131836	-0.00011636	0.00042346	2.60119629	0.00015354			
2.60107422	2.60119629	-0.00011636	0.00015354	2.60113525	1.8591E-05			
2.60107422	2.60113525	-0.00011636	1.8591E-05	2.60110474	-4.8884E-05			
2.60110474	2.60113525	-4.8884E-05	1.8591E-05	2.60112	-1.5146E-05			
2.60112	2.60113525	-1.5146E-05	1.8591E-05	2.60112762	1.7222E-06			
2.60112	2.60112762	-1.5146E-05	1.7222E-06	2.60112381	-6.7121E-06			
2.60112381	2.60112762	-6.7121E-06	1.7222E-06	2.60112572	-2.495E-06			

Manejadora 6 a Manejadora 5

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z2.11497$$

M6 M5

	Método bisección							
(-) 1	(+) 2	f(1)	f(2)	m	f(m)			
1	3	-2.06853712	0.65353512	2	-1.38692905			
2	3	-1.38692905	0.65353512	2.5	-0.53052503			
2.5	3	-0.53052503	0.65353512	2.75	0.02882951			
2.5	2.75	-0.53052503	0.02882951	2.625	-0.26038793			
2.625	2.75	-0.26038793	0.02882951	2.6875	-0.11801208			
2.6875	2.75	-0.11801208	0.02882951	2.71875	-0.04512871			
2.71875	2.75	-0.04512871	0.02882951	2.734375	-0.00828125			
2.734375	2.75	-0.00828125	0.02882951	2.7421875	0.01024156			
2.734375	2.7421875	-0.00828125	0.01024156	2.73828125	0.00097197			
2.734375	2.73828125	-0.00828125	0.00097197	2.73632813	-0.00365669			
2.73632813	2.73828125	-0.00365669	0.00097197	2.73730469	-0.00134287			
2.73730469	2.73828125	-0.00134287	0.00097197	2.73779297	-0.00018558			
2.73779297	2.73828125	-0.00018558	0.00097197	2.73803711	0.00039316			
2.73779297	2.73803711	-0.00018558	0.00039316	2.73791504	0.00010378			
2.73779297	2.73791504	-0.00018558	0.00010378	2.737854	-4.0899E-05			
2.737854	2.73791504	-4.0899E-05	0.00010378	2.73788452	3.1442E-05			
2.737854	2.73788452	-4.0899E-05	3.1442E-05	2.73786926	-4.7284E-06			
2.73786926	2.73788452	-4.7284E-06	3.1442E-05	2.73787689	1.3357E-05			
2.73786926	2.73787689	-4.7284E-06	1.3357E-05	2.73787308	4.3143E-06			
2.73786926	2.73787308	-4.7284E-06	4.3143E-06	2.73787117	-2.0708E-07			

Manejadora 5 a Manejadora 4

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z2.46038$$

M5 M4

IVID IVIT								
	Método bisección							
(-) 1	(+) 2	f(1)	f(2)	m	f(m)			
2	3	-1.73233911	0.30812506	2.5	-0.8759351			
2.5	3	-0.8759351	0.30812506	2.75	-0.31658055			
2.75	3	-0.31658055	0.30812506	2.875	-0.01090684			
2.875	3	-0.01090684	0.30812506	2.9375	0.14714966			
2.875	2.9375	-0.01090684	0.14714966	2.90625	0.06772929			
2.875	2.90625	-0.01090684	0.06772929	2.890625	0.02830987			
2.875	2.890625	-0.01090684	0.02830987	2.8828125	0.00867577			
2.875	2.8828125	-0.01090684	0.00867577	2.87890625	-0.00112203			
2.87890625	2.8828125	-0.00112203	0.00867577	2.88085938	0.00377526			
2.87890625	2.88085938	-0.00112203	0.00377526	2.87988281	0.00132621			
2.87890625	2.87988281	-0.00112203	0.00132621	2.87939453	0.00010199			
2.87890625	2.87939453	-0.00112203	0.00010199	2.87915039	-0.00051004			
2.87915039	2.87939453	-0.00051004	0.00010199	2.87927246	-0.00020403			
2.87927246	2.87939453	-0.00020403	0.00010199	2.8793335	-5.1022E-05			
2.8793335	2.87939453	-5.1022E-05	0.00010199	2.87936401	2.5484E-05			
2.8793335	2.87936401	-5.1022E-05	2.5484E-05	2.87934875	-1.2769E-05			
2.87934875	2.87936401	-1.2769E-05	2.5484E-05	2.87935638	6.3577E-06			
2.87934875	2.87935638	-1.2769E-05	6.3577E-06	2.87935257	-3.2056E-06			
2.87935257	2.87935638	-3.2056E-06	6.3577E-06	2.87935448	1.5761E-06			
2.87935257	2.87935448	-3.2056E-06	1.5761E-06	2.87935352	-8.1476E-07			

Manejadora 4 a Manejadora 3

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z2.76859$$

M4 M3

Método bisección							
(-) 1	(+) 2	f(1)	f(2)	m	f(m)		
2	4	-2.04055117	2.57071633	3	-8.7001E-05		
3	4	-8.7001E-05	2.57071633	3.5	1.33536521		
3	3.5	-8.7001E-05	1.33536521	3.25	0.66372445		
3	3.25	-8.7001E-05	0.66372445	3.125	0.32880131		
3	3.125	-8.7001E-05	0.32880131	3.0625	0.16335752		
3	3.0625	-8.7001E-05	0.16335752	3.03125	0.08135555		
3	3.03125	-8.7001E-05	0.08135555	3.015625	0.04056068		
3	3.015625	-8.7001E-05	0.04056068	3.0078125	0.02021799		
3	3.0078125	-8.7001E-05	0.02021799	3.00390625	0.01006072		
3	3.00390625	-8.7001E-05	0.01006072	3.00195313	0.00498566		
3	3.00195313	-8.7001E-05	0.00498566	3.00097656	0.00244903		
3	3.00097656	-8.7001E-05	0.00244903	3.00048828	0.00118094		
3	3.00048828	-8.7001E-05	0.00118094	3.00024414	0.00054695		
3	3.00024414	-8.7001E-05	0.00054695	3.00012207	0.00022997		
3	3.00012207	-8.7001E-05	0.00022997	3.00006104	7.1483E-05		
3	3.00006104	-8.7001E-05	7.1483E-05	3.00003052	-7.759E-06		
3.00003052	3.00006104	-7.759E-06	7.1483E-05	3.00004578	3.1862E-05		
3.00003052	3.00004578	-7.759E-06	3.1862E-05	3.00003815	1.2052E-05		
3.00003052	3.00003815	-7.759E-06	1.2052E-05	3.00003433	2.1463E-06		
3.00003052	3.00003433	-7.759E-06	2.1463E-06	3.00003242	-2.8064E-06		

Manejadora 3 a Manejadora 2

$$f(\forall) \times 1Z \frac{sen \forall}{\forall} | (\forall Zsen \forall) Z3.11666$$

M3 M2

1013 1012								
	Método bisección							
(-) 1	(+) 2	f(1)	f(2)	m	f(m)			
2	4	-2.38861823	2.22264927	3	-0.34815406			
3	4	-0.34815406	2.22264927	3.5	0.98729815			
3	3.5	-0.34815406	0.98729815	3.25	0.31565739			
3	3.25	-0.34815406	0.31565739	3.125	-0.01926576			
3.125	3.25	-0.01926576	0.31565739	3.1875	0.14769027			
3.125	3.1875	-0.01926576	0.14769027	3.15625	0.06405426			
3.125	3.15625	-0.01926576	0.06405426	3.140625	0.02235084			
3.125	3.140625	-0.01926576	0.02235084	3.1328125	0.0015312			
3.125	3.1328125	-0.01926576	0.0015312	3.12890625	-0.00887017			
3.12890625	3.1328125	-0.00887017	0.0015312	3.13085938	-0.0036702			
3.13085938	3.1328125	-0.0036702	0.0015312	3.13183594	-0.00106968			
3.13183594	3.1328125	-0.00106968	0.0015312	3.13232422	0.00023072			
3.13183594	3.13232422	-0.00106968	0.00023072	3.13208008	-0.00041949			
3.13208008	3.13232422	-0.00041949	0.00023072	3.13220215	-9.439E-05			
3.13220215	3.13232422	-9.439E-05	0.00023072	3.13226318	6.8162E-05			
3.13220215	3.13226318	-9.439E-05	6.8162E-05	3.13223267	-1.3114E-05			
3.13223267	3.13226318	-1.3114E-05	6.8162E-05	3.13224792	2.7524E-05			
3.13223267	3.13224792	-1.3114E-05	2.7524E-05	3.1322403	7.205E-06			
3.13223267	3.1322403	-1.3114E-05	7.205E-06	3.13223648	-2.9546E-06			
3.13223648	3.1322403	-2.9546E-06	7.205E-06	3.13223839	2.1252E-06			

13.5 Anexo 5: Análisis por EPANET

Paso 1: se determina el modelo bidimensional con nodos (establecer geometría)

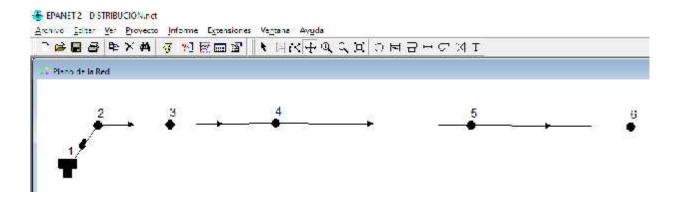


Figura 8: Modelo EPANET, nodos y dirección de flujo

Paso 2: En proyecto>Valores por defecto>Opciones hidráulicas, seleccionar LPS para utilizar SI y perdidas H-W, Hazen William.

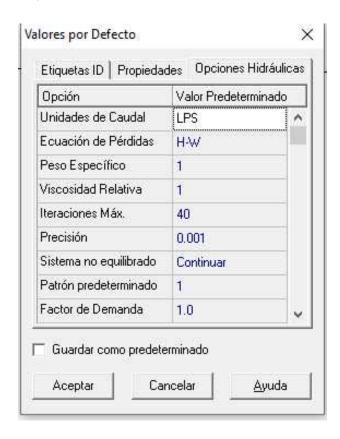


Figura 9: unidades de trabajo

Paso 3: se colocan las cotas de referencia (m), demanda de caudal (LPS) de cada nodo y coeficiente de rugosidad de Hazen-William (adimensional), diámetro de tubería (mm) y longitud (m) por tramo

Figura 10: Cota (m) y demanda base (LPS) por nodo

Figura 11: Longitud (m), diámetro (mm) y coeficiente de perdida HW por tramo

Paso 4: En visor seleccionar Datos>Curvas, en caudal ubicar el caudal total y en altura ubicar la presión requerida de CTD

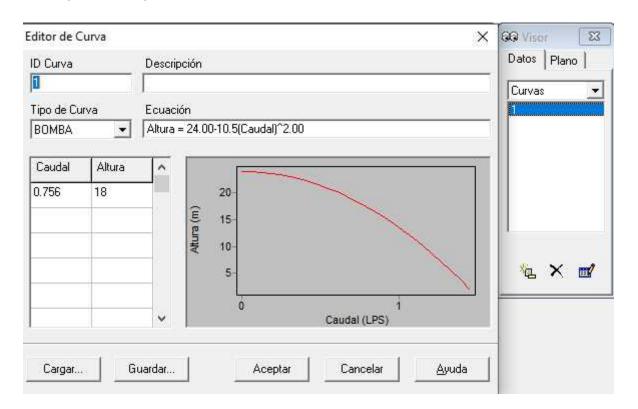


Figura 12: Determinar curva de demanda de bomba y nivel de tanque

En cota ubicar la misma cota que el resto de nodos (todo el sistema tiene la misma cota), nivel mínimo de 1m, nivel máximo 2m y diámetro del tanque 1.5m

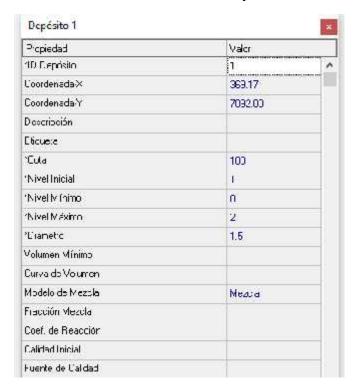


Figura 13: niveles de tanque

Una vez con los elementos ya en el programa se procede a correrlo:

Figura 14: Velocidades en la red

Figura 15: Presiones y demanda por nodo en la red

13.6 Anexo 6: Manual de diagnóstico de fallas en bomba

Tabla 13: El motor no arranca

Causa del problema	Como revisar	Solución
No hay energía eléctrica,		Consultar a empresa
el voltaje es incorrecto o		eléctrica o cambiar fusible
fusibles quemados		
Flipones desconectados	Revisar que el tamaño de los	Reemplazar los fusibles o
	fusibles sea el correcto o	reconectar los flipones
	conexiones sueltas. Revisar	
	los flipones están	
	desconectados	
Interruptor de presión	Comprobar estado de los	Reemplazar interruptores
defectuoso	platinos	de contacto o limpiar
		platinos
Mal funcionamiento de la	Llevar a cabo revisión de la	
caja de control	caja de control	
Cableado defectuoso	Revisar si hay conexiones	Corregir las conexiones
	sueltas o corroídas.	defectuosas
	Comprobar si hay corriente con	
	un multímetro	
Bomba trabada	Esto puede deberse a una	Cuando está atascada con
	mala Alineación entre la bomba	arena, algunas veces
	y el motor. El amperaje es de	Puede corregirse
	tres a seis veces más de lo	invirtiendo temporalmente
	normal.	la rotación del motor
Cable o motor	Cambiar cable o motor	
defectuoso		

84 | Página Br. Espinoza Kenneth, Br. Leiva Edwin

Tabla 14: El motor arranca frecuentemente

Causa del problema	Como revisar	Solución
Interruptor de presión	Comprobar el ajuste del	Ajustar o reemplazar el
	Interruptor y examinar si	interruptor
	hay defectos	
Válvula de retención	La válvula de retención	Reemplazar si está
pegada o abierta	dañada o defectuosa no	defectuosa
	retiene la presión	
Tanque anegado en	Revisar si el control de	
agua	volumen	

Tabla 15: El motor funciona en forma continua

Causa del problema	Como revisar	Solución
Fugas en el sistema	Revisar el sistema en	Reemplazar tuberías
	busca de fugas	dañadas o reparar
		fugas
Interruptor de presión	Los platinos del	
	interruptor pueden estar	
	"soldados" en posición	
	cerrada. El interruptor de	
	presión puede estar muy	
	ajustado	
Pozo de bajo nivel	La bomba excede la	Acelerar el rendimiento
	capacidad del pozo.	de la bomba o
		posicionar la bomba a
		un nivel más bajo. No
		bajarla si la arena
		pudiera atascarla

Causa del problema	Como revisar	Solución
Fugas en el sistema	Revisar si hay fugas en el	Reemplazar tuberías
	sistema	dañadas o reparar
		fugas
Bomba desgastada	Las causas del problema de	Extraer la bomba y cambiar
	que la bomba está	el propulsor u otras piezas
	desgastada son similares a	de conexión desgastadas.
	las fugas en el tubo de	
	bajada. Reducir el ajuste de	
	interruptor de presión, si la	
	bomba se apaga culpa	
	puede ser de las piezas	
	desgastadas.	
Eje de motor suelto o	Saldrá muy poca o nada	Revisar y reemplazar
Roto	de agua si el acoplamiento	
	entre el eje del motor y la	
	bomba está suelto o si la	
	bomba atascada ha	
	causado el corte del eje	
Rejilla de la bomba	La restricción de flujo	Limpiar la rejilla y
pegada o cerrada	puede indicar que la	posicionarla a menos
	rejilla de entrada está	profundidad.
	obstruida. La bomba	Podría ser necesario
	puede estar en lodo o	limpiar el pozo
	arena	
Válvula de retención	No saldrá agua si está	Reemplazarla si está
Cerrada Mal	cerrada la válvula de	Defectuosa revisar y/o
funcionamiento de la caja	retención.	reemplazar
de control		

Tabla 16: El motor funciona pero el protector contra sobrecarga se activa

Causa del problema	Como revisar	Solución	
Voltaje incorrecto	Comprobar con un	En caso incorrecto	
	voltímetro la tensión	consultar a la empresa	
	existente	eléctrica	
Protectores recalentados	La luz solar puede incidir	Colocar la caja a la	
	en el recalentamiento de la	sombra, suministrar	
	caja de control, causando	ventilación o alejarla de	
	la desconexión de los	cualquier fuente de	
	protectores	calor	
Caja de control	Comprobar estado de	Cambiar en caso	
Defectuosa	trabajo	necesario	
Motor o cable	Verificar su estado	Cambiar en caso	
defectuoso		necesario	
Bomba o motor	Verificar su estado	Cambiar en caso	
Desgastado		necesario	

Tabla 17: Guía para resolver problemas de bombas cuando los fusibles o flipones se disparan cuando se arranca el motor.

Causa del problema	Como revisar	Solución		
Voltaje incorrecto	Revisar el voltaje de	Sí el voltaje está		
	terminales en la caja de	incorrecto, chequear		
	control con un voltímetro.	acometida eléctrica. De		
	Asegurarseque la tensión	empresa eléctrica		
	este dentro de rangos			
	prescritos por el fabricante.			

Causa del problema	Como revisar	Solución
Cajas de control o	Revisar el motor y	Rebobinar todo el
Defectuoso	alambrado en la caja de	circuito incorrecto.
	control de acuerdo al	Apretar conexiones,
	diagrama dentro de la caja.	reemplazar alambre
	Ver todas las conexiones	dañados
	apretadas	
Capacitor de arranque	Comprobar el estado del	Reemplazar el
Defectuoso	capacitor con el óhmetro	capacitor defectuoso
Relé defectuoso	Usando el óhmetro	Si la resistencia de la
	chequear bobina de relé. Si	bobina está mala o los
	la resistencia está como	contactos están malos,
	especifica el Fabricante;	hay que reemplazar el
	chequear la lectura a	relé
	través del capacitor de	,
	arranque. Con buen	
	capacitor, al no moverse la	
	lectura, indica que los	
	contactos del relé están	
	malos.	
Interruptor de presión	Chequear la tensión a	Limpiar los contactos
Defectuoso	través de los contactos	del interruptor o
	del interruptor ya que	reemplazarlo
	podría haber falso	
	contacto	
Bomba en pozo mal	Si ha sido mal fabricado	Si la bomba no rota
Fabricado	el pozo, tanto la bomba	libremente se debe de
	como el motor pueden	extraer y el pozo debe
	estar mal Alineados, lo que	de corregirse.
	provoca que se trabe el	
	rotor	

Como revisar	Solución	
Pruebe las líneas a tierra	Inspeccionar el cable	
con el óhmetro. Si	dañado. Si esta bien,	
marcacon cualquiera de las	significa que el motor	
terminales esto significa	está a tierra.	
que una de ellas está a		
tierra.		
(Pruebe las líneas a tierra con el óhmetro. Si marcacon cualquiera de las terminales esto significa que una de ellas está a	

Tabla 18: La bomba funciona pero envía poco o nada de agua

Causa del problema	Como revisar	Solución			
Bomba podría estar	Parar o arrancar la bomba				
bloqueada de aire	varias veces, esperando				
	entre cada ciclo alrededor				
	de un minuto. Si la bomba				
	comienza a enviar aire,				
	entonces una bolsa de aire				
El nivel del agua dentro	La capacidad del pozo	Si la restricción parcial			
del pozo o tanque es	puede ser muy bajo para la	corrige el problema, dejar la			
demasiado bajo	capacidad de la bomba.	válvula en esa forma. De			
	Restringir el flujo de la	otra forma bajar la bomba si			
	salida del agua, esperar	la profundidad del pozo es			
	que suba el nivel y	suficiente. No bajarla si se			
	arrancar la bomba. Puede	puede producir obstrucción			
	ser necesario llenar el	a causa de arena.			
	tanque				

Causa del problema	Como revisar	Solución
La válvula de cheque en	Examinar la válvula	corrige el problema, si
la línea de descarga está	cheque en la línea de	es necesario.
instalada al revés	descarga para estar segura	
	que la flecha indica la	
	dirección del flujo en la	
	dirección correcta	
Fuga en el tubo de	Levantar la tubería y	Reemplazar la sección
bajada	revisar por fugas	dañada de la tubería de
		bajada
La válvula de cheque de	Extraer la bomba,	Desenroscar la tubería
la bomba apretada por el	examinar el tubo de bajada	y cortarle una parte de
tubo de bajada	a la salida de la bomba, si	la rosca del tubo de
	la rosca del tubo de bajada	bajada.
	ha sido demasiada roscada	
	podría estar apretando la	
	válvula cheque de la	
	bomba estando en posición	
	cerrada.	

Causa del problema	Como revisar	Solución
Partes gastadas de la	La presencia de abrasivos	Sacar la bomba y
bomba	en el agua podrían resultar	cambiar las partes
	en problemas sobre el	gastadas.
	impulsor, carcasa y otras	
	partes de cierre de la	
	bomba. Antes de extraer la	
	bomba, reducir la	
	calibración de ajuste del	
	interruptor de presión para	
	ver si la bomba se apaga.	
	Si es así, las partes	
	gastadas son el origen de	
	la falla.	
El eje del motor flojo	El acople entre el eje del	Apretar todas las
	motor y la bomba puede	conexiones, colocar
	aflojarse con el trabajo.	tornillos, etc.
	Inspeccionar, al extraer	
	la bomba, y ver por	
	posibilidades de	
	desgaste.	

Figura 166: Manejadoras y drenaje del sitio

92 | Página Br. Espinoza Kenneth, Br. Leiva Edwin

13.7 Anexo 7: Ficha técnica de tanque

TANQUES CISTERNA

Cisterna

- Fácil instalación y limpieza.
- Recubrimiento antibacterial y capa aislante de rayos solares.
- Capa negra cue mpide el paso de rayos UV, lo que evita la formación de honos y algas.
- Diseñado para instalarse aéreo, a nivel y subterráneo
- y subterráneo.

 Equipado con todos los acceserios necesarios para su funcionamiento.

Tabla de Capacidades

Capacidad de Trabajo Canacteristicas	Tunquini pora Agua								
### ##################################	Capccistant de								
750 158 3.59 97 131 1.100 901 8.27 107 148 1.700 449 8.14 136 158 2.500 661 11.97 154 168 15.000 1321 31.44 200 210 2	139	Libra							
1,100 941 8.27 107 146 1,700 449 8.14 136 158 2,500 661 11.97 154 168 1 5,000 1321 31.44 208 210		450							
1,700 449 8.14 136 158 2,500 661 11.97 154 168 1 5,000 1321 31.44 200 210		750							
2,500 661 11.97 154 168 1 5,000 1321 31.44 208 210		1,100							
5,000 1321 31.44 208 210 4		1,700							
		2,500							
10 000 2270 2770 2770 200		5,000							
10,000 2270 62.89 222 300 4		0.000							

ACCESORIOS INCLUIDOS

Accesorios disponibles

- Filtro Sedimentos reutilizable: ahorro en mantenimiento, llenaco rápido y mejor filtrado.
- Entrada y salida de ¾", larga vida útil. Trabaja desde 0°C hasta 140°C.
- Utiliza una tecnología de littración de anillos, que permite retener todos los materiales sólidos que contiene el agua, permitiendo una limpieza constante de ésta.
- Reduce la cantidad de sarro acumulado en las tuberlas, pilas de lavaceros, piletas, duchas, etc.

13.8 Anexo 8: Ficha técnica tubería

Descripción

Tuberia de PVC para conducción de agua potable.

Presentación

Tuberia PVC

Diámetros de 1/2 a 18 pulgadas

Empaque Rieber incorporado o campana cementada

La presión de trabajo varia de acuerdo al SDR

Norma de referencia ASTM D 2241

Aplicaciones y consideraciones básicas

- Este producto es utilizado solamente para sistemas de distribución agua.
- No es apto para la distribución de gases o aire comprimido.

Normas de producto

- Norma ASTM D 2241
- NSF STD 14-61 (si el cliente lo requiere)

Características generales

- Fácil instalación
- Quimicamente inerte
- No produce olores ni sabores
- Libres de plomo
- Apariencia uniforme.

Especificaciones tubería PVC ASTM D 2241

Diam. Nom.	Diametre Promedic Externa	(Toler	gs4 Tiecc abns		o de pared () nie al 6% de		rimo
П	(mm)	SDR 41	5DR 32,5	50R 26	50R 21	SDR17	SDR 13,5
12	21,31_0,10	100	P. C.	#15		277	1.57+0.00
1A	26,57_0,10		***		1,52+0,00	1,57+0,00	1.58:0.1
25	33,40-0,13	480	100	1,52+0,09	1,60+0,10	1,96+0,12	2,46+0.10
21	42,16 <u>-</u> 0,13	1,18+0;07	1,5240.09	1,6340,10	2,01+0,12	2,4940,15	3.1243.18
38	48,26 <u>+</u> 0,15	1,18+0,07	1,52+0,09	1,85+0,11	2,29+0,14	2,84+0,17	3.58+3.2
50	60,32 <u>+</u> 0,15	1,47+0,09	1,85+0,11	2,01+0,14	2,67+0,17	0,56+0,21	4.47+0.27
62	73,32 <u>±</u> 0,18	1,78+0,11	2,24+0,13	2,79+0,17	3,48+0,21	4,29+0,26	541+03
75	88,00_0,20	2,16:0,13	2,74 (0,16	2,43+0,21	4,24 (0,28	5,23+0,21	6.58:0.2
100	114,00±0,23	2,79+0,17	5,51+0,21	4,39+0,26	5,44+0,03	6,75+0,40	0.4G+0.5
150	168,28±0,28	4,1 +0,25	5.(8+C.3)	6,48+0,39	8,03+0,48	9,91+0,59	2,47+0,7
206	219,08 <u>+</u> 0,38	5,33+0,32	€,73+0,46	8,4340,51	10,41+0,52	12,20-0,77	340
250	273,05 <u>+</u> 0,38	6,65 0,40	8,41 (C,50	10,49+0,63	12,93 0,73	16,05 0,06	-
300	323,65+0.38	7,90+0,47	5,96+C,60	12,45+0,75	15,39+0,92	19,05-1,14	-21
1/5	344(£)7H17J	9,47+0,57	11,96+0.72	14,444,90	18,44+1,11		
450	457,20 <u>+</u> 0.48	11,15+0,67	11,07+0.84	17,58+1,05	21,77+1,31	26,30-1,61	-

Presión nominal de trabajo a 23 °C

	SOR 41	SOR 325	5DH 25		SUR17	SUR 13,5
ESI	100	125	160	200	250	315
Kuruni	1,03	8,93	11,25	14,06	1/.58	22,15
к2а	590	562	1103	1379	1724	2172

13.9 Anexo 9: Planos