

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Tecnología de la Construcción

MONOGRAFÍA

EVALUACIÓN DEL COMPORTAMIENTO SÍSMICO ESTRUCTURAL DEL PUENTE SANTA FE, UBICADO EN EL MUNICIPIO DE SAN CARLOS, DEPARTAMENTO DE RÍO SAN JUAN, 2015.

Para optar al Título de Ingeniero Civil

Elaborado por

Br. Jackel Javier Dávila Gómez.

Br. Ricardo Enoc Hernández García.

Br. Yaoska del Socorro Zapata Santamaría.

Tutor

Msc. Ing. Yader Jarquín Montalván

Managua, Septiembre de 2016

DEDICATORIA

A Dios por darnos la sabiduría, paciencia e inteligencia necesaria para culminar con éxito nuestra carrera universitaria.

A mis padres, Milagros Gómez y Ramón Dávila por el apoyo incondicional, sin ellos nada de esto fuese posible.

A todos los retos futuros de nuestra carrera profesional, pues este es solo el primero de muchos.

Jackel Dávila Gómez

A Dios por darme sabiduría y fuerzas cada día para la realización de este trabajo. A mis padres, Alejandra García y Ramón Hernández porque nunca se rindieron conmigo para que llegara hasta aquí.

Ricardo Hernández García

DEDICATORIA

A mis padres,

María Auxiliadora Santamaría Zúniga y Manuel Rafael Zapata Arteaga, por su paciencia y por apoyarme incondicionalmente durante todos estos años, principalmente en la preparación de esta tesis, en especial a mi mamá, que siempre me ha motivado a seguir adelante superando cualquier obstáculo que se presente en el camino hacia mis metas. ¡Mamá! Eres fundamental en mi vida y la razón por la que he logrado esta meta.

A mis compañeros de trabajo monográfico,

Por brindarnos apoyo entre sí a pesar de las diversas dificultades que tuvimos durante el proceso de elaboración de este documento.

A las nuevas generaciones que se están abriendo camino en esta carrera, en especial en el campo de las estructuras,

Que se esfuercen al máximo en lo que de verdad les gusta, les atrae y apasiona. Tengan presente que "El delito no es ignorar las cosas, sino quedarte conforme con no descubrirlas".

Y por último, pero el más importante en mi vida, a Dios,

Porque él nos dio salud, inteligencia, perseverancia y nos guio durante todo el camino para que los tres lográramos nuestra meta. Pero en especial, por enseñarme que todo en la vida parte de él y por hacerme entender con amor y cariño que solo él sabe cuál es el momento justo para que ocurran las cosas y la razón por la que éstas suceden.

Yaoska del Socorro Zapata Santamaría

AGRADECIMIENTOS

Nuestro más sincero agradecimiento a nuestro tutor, el Ing. Yader Jarquín Montalván, por los conocimientos transferidos y el tiempo brindado para la realización de este trabajo.

Agradecemos la valiosa colaboración del Lic. Gilbert Andino, por obsequiarnos los planos para el desarrollo de esta tesis y creer que el apoyo a los jóvenes constituye parte importante del desarrollo de nuestro país.

Al Ing. Jorge Cabanillas porque a pesar de la distancia, no dudo en brindarnos su ayuda en el desarrollo del modelo de este puente con el software CSIBridge.

Al Ing. José Manzanarez por tener siempre la buena voluntad de apoyarnos en la realización de esta investigación.

Al Ing. Lupdones Cortéz por brindarnos su tiempo en un par de ocasiones y proporcionar información necesaria para el desarrollo del tema.

A todos los amigos y compañeros que de una u otra forma con sus palabras, información y recursos brindados, hicieron posible la culminación del programa de estudio y la realización de este proyecto de tesis.

RESUMEN

Este documento presenta la evaluación sísmica estructural del puente Santa Fe, ubicado en el departamento de Rio San Juan. El puente en estudio posee una longitud total de 362 m con un total de 10 claros desde 20 hasta 60 m y está clasificado como puente de viga, con viga T y vigas cajón de canto variable.

Esta evaluación está constituida por la revisión de las consideraciones de diseño que brinda la normativa AASHTO LRFD Bridge Design en conjunto con AASHTO Seismic Bridge Design Specifications para la revisión estructural de la superestructura y subestructura (solamente estribos y pilas del puente).

La superestructura fue evaluada bajo cargas de servicio; se revisó la flexión y el cortante en todas las secciones de viga utilizando hojas de cálculo para determinar si las secciones establecidas son eficientes.

La evaluación sísmica está enfocada en las pilas del puente que forman parte de la subestructura, mediante la revisión de deformaciones, ductilidades y resistencias; en esta investigación se omitió el diseño de la cimentación.

El diseño de las pilas requirió la aplicación del análisis estático no lineal "Pushover", el cual fue realizado con el software CSIBridge V18.1.0; pues la normativa exige este tipo de análisis para una estructura como el puente Santa Fe. El análisis estructural del puente también fue ejecutado con el software CSIBridge, mediante la realización de un modelo tridimensional.

El primer capítulo presenta las generalidades de la investigación y las principales características del puente en estudio, en el capítulo II se presentan los criterios básicos para el diseño sísmico recomendados, en el capítulo III se presenta el diseño convencional de la superestructura y en el capítulo IV se realizan las verificaciones sísmicas en las pilas del puente según lo establecido por la norma AASHTO Seismic Bridge Design Specifications.

ÍNDICE DE CONTENIDO

CAPÍTULO I	Ĺ
GENERALIDADES	L
1.1 INTRODUCCIÓN	2
1.2 ANTECEDENTES	3
1.3 JUSTIFICACIÓN	4
1.4 OBJETIVOS	5
1.4.1 Objetivo general	5
1.4.2 Objetivos específicos	5
1.5 Características generales del Puente Santa Fe	5
CAPÍTULO II	l
CRITERIOS DE ANÁLISIS Y DISEÑO SÍSMICO11	l
2.1 INTRODUCCIÓN12	2
2.2 Estados límites	3
2.2.1 Estado Límite de Servicio13	3
2.2.2 Estado Límite de Fatiga y Fractura13	3
2.2.3 Estado Límite de Resistencia13	3
2.2.4 Estados Límites correspondientes a Eventos Extremos	3
2.3 Cargas de diseño	3
2.4 Categoría de Diseño Sísmico (SCD)10	5
2.4.1 Selección de la categoría de Diseño sísmico (SCD)17	7
2.4.2 Sistemas resistentes a sismos	3
2.4.3 Procedimiento de análisis para determinar la demanda sísmica19)
2.4.4 Procedimientos de análisis)
2.5 Análisis y Diseño para puentes en la categoría SDC D	1
2.5.1 Determinar la Demanda-Capacidad de desplazamiento	1
2.5.2 Capacidad de desplazamiento local para SDC D	1
2.5.3 Rótulas Plásticas	1
CAPÍTULO III	5
DISEÑO DE LA SUPERESTRUCTURA	5
3.1 INTRODUCCIÓN	5
3.2 Datos generales	7

3.3 Diseño de superestructura A1P3-P8A2 (Vigas T)	
3.3.1 Propiedades de la sección	
3.3.2 Ubicación de los cables de pos tensado	
3.3.3 Determinación de las cargas actuantes	
3.3.4 Diseño por Flexión	32
3.3.5 Revisiones por cortante	57
3.4 Diseño de superestructura P3-P8 (Vigas Cajón)	64
3.4.1 Desarrollo de la sección típica	64
3.4.2 Requisitos complementarios para la Construcción por segmentos	66
3.4.3 Estructura del peralte	68
3.4.4 Espaciamiento entre vigas	68
3.4.5 Anchos de ala efectivos	68
3.4.6 Selección de los factores de resistencia	75
3.4.7 Combinaciones de carga y los factores de carga	76
3.4.8 Efectos de la fuerza por carga viva y carga permanente	76
3.4.9 Análisis estructural	76
3.4.10 Cálculo de los esfuerzos de diseño	
3.4.11 Desarrollo del perfil preliminar del tendón	
3.4.12 Pérdidas del presforzado	
3.4.13 Revisión de los esfuerzos límites	97
3.4.14 Diseño por flexión – Estado límite de resistencia I	
3.4.15 Cortante y Torsión para vigas cajón	
CAPÍTULO IV	
DISEÑO DE LA SUBESTRUCTURA Y REQUERIMIENTOS SISMICOS	
4.1 INTRODUCCIÓN	
4.2 Materiales y Propiedades	
4.3 Diseño del Estribo A1	
4.3.1 Dimensiones preliminares	110
4.3.2 Cálculo de los efectos de carga muerta	111
4.3.3 Cálculo de los efectos de carga viva	
4.3.4 Cargas debidas al empuje lateral del suelo	
4.3.5 Cargas debidas a sobrecarga viva	114
4.3.6 Cargas debidas a la deformación del elastómero	115

4.3.7 Combinación y análisis de fuerzas	116
4.3.8 Verificación de la estabilidad y requisitos de seguridad	
4.3.9 Diseño del muro de respaldo	
4.3.10 Diseño de Cuerpo del estribo	
4.4 Diseño de la viga Cabezal	
4.4.1 Diseño por flexión	
4.4.2 Chequeos por servicio	
4.4.3 Chequeo por fatiga	
4.4.4 Diseño por cortante de bent cap No integrales	
4.4.5 Refuerzo por cortante	
4.5 Diseño de Junta Pila – Superestructura (BENT CAP INTEGRAL)	
4.5.1 Proporcionamiento	
4.5.2 Refuerzo cortante mínimo en la junta	140
4.5.3 Diseño por cortante de juntas de bent cap integrales	141
4.5.4 Longitud de desarrollo mínima del acero de refuerzo	146
4.6. Chequeos sísmicos y diseño de las Columnas del puente	
4.6.1 Determinación de la categoría sísmica del Puente Santa Fe	147
4.6.2 Sistema resistente a sismos	147
4.6.3 Determinación del espectro de diseño	148
4.6.4 Análisis y procedimiento de Diseño	149
4.6.5 Longitud mínima de soporte	151
4.6.6 Chequeo de la rigidez balanceada	
4.6.7 Geometría de marco balanceada	154
4.6.8 Demanda sísmica	
4.6.9 Requerimientos de ductilidad en los miembros para SDC D	157
4.6.10 Relación demanda vs capacidad	161
4.6.11 Revisión de los efectos $\boldsymbol{P} - \Delta$	
4.6.12 Capacidad lateral mínima a flexión	
4.6.13 Revisiones por cortante	
CONCLUSIONES	174
RECOMENDACIONES	
REFERENCIAS BIBLIOGRÁFICAS	
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1. Descripción resumida de la obra	10
Tabla 2. Cargas a considerar según AASHTO LRFD	14
Tabla 3. Requerimientos de diseño para SDC A, B, C y D	17
Tabla 4. Valores de SD1 según la categoría	17
Tabla 5. Procedimientos de análisis	19
Tabla 6. Descripción de los procedimientos de análisis	19
Tabla 7. Propiedades de los materiales utilizados	27
Tabla 8. Propiedades de la sección T	30
Tabla 9. Factores de ductilidad, redundancia e importancia	33
Tabla 10. Pérdidas Totales A1P1	43
Tabla 11. Pérdidas Totales P1P2	44
Tabla 12. Pérdidas Totales P2P3	44
Tabla 13. Pérdidas Totales P8P9	44
Tabla 14. Pérdidas Totales P9A2	45
Tabla 15. Límites de esfuerzos en el concreto después de las pérdidas	46
Tabla 16. Momentos factorados A1P1	51
Tabla 17. Momentos factorados P1P2	51
Tabla 18. Momentos factorados P2P3	52
Tabla 19. Momentos factorados P8P9	52
Tabla 20. Momentos factorados P9A2	53
Tabla 21. Resistencia nominal a flexión A1P1	54
Tabla 23. Resistencia nominal a flexión P2P3	55
Tabla 25. Resistencia nominal a flexión P9A2	56
Tabla 26. Revisiones por cortante A1P1	62
Tabla 27. Revisiones por cortante P1P2	62
Tabla 28. Revisiones por cortante P2P3	63
Tabla 29. Revisiones por cortante P8P9	63
Tabla 30. Revisiones por cortante P9A2	64
Tabla 31. Dimensiones efectivas para las pilas P3 (P8)	70
Tabla 32. Dimensiones efectivas para las pilas P4 y P5	71
Tabla 33. Dimensiones efectivas para las pilas P6 y P7	72
Tabla 34. Dimensiones efectivas para la sección estándar con L= 35 m	73
Tabla 35. Dimensiones efectivas para la sección estándar con L= 60 m	74
Tabla 36. Momentos debidos a las cargas para el claro P3-P4	77
Tabla 37. Momentos debidos a las cargas para el claro P4-P5	78
Tabla 38. Momentos debidos a las cargas para el claro P5-P6	79
Tabla 39. Momentos debidos a las cargas para el claro P6-P7	80
Tabla 40. Momentos debidos a las cargas para el claro P7-P8	81
Tabla 41. Límite de esfuerzo para los tendones	82

Tabla 42. Propiedades de la sección cajón	84
Tabla 43. Excentricidad por tramo M (-)	85
Tabla 44. Excentricidad por tramo M (+)	86
Tabla 45. Pérdidas debidas al flujo plástico (fluencia lenta) del concreto (M-)	93
Tabla 46. Pérdidas para el momento máximo positivo (M+)	93
Tabla 47. Coeficientes para las pérdidas en el tiempo	94
Tabla 48. Pérdidas debidas al flujo plástico (fluencia lenta) del concreto (M+)	94
Tabla 49. Pérdidas totales dependientes del tiempo para cada claro M (-)	95
Tabla 50. Pérdidas totales dependientes del tiempo para cada claro M (+)	95
Tabla 51. Fuerza efectiva de presforzado para cada claro M (-)	96
Tabla 52. Fuerza efectiva de presforzado M (+)	96
Tabla 53. Resumen de las pérdidas totales M (-)	96
Tabla 54. Resumen de las pérdidas totales M (+)	97
Tabla 55. Límites de esfuerzos en el concreto después de las pérdidas M (-)	98
Tabla 56. Límites de esfuerzos en el concreto después de las pérdidas M (+)	99
Tabla 57. Momento de fisuración para el momento máximo negativo	99
Tabla 58. Momento de fisuración para el momento máximo positivo	100
Tabla 59. Momento nominal P3P4	100
Tabla 60. Momento nominal P4P5	101
Tabla 61. Momento nominal P5P6	101
Tabla 62. Momento nominal P6P7	102
Tabla 63. Momento nominal P7P8	102
Tabla 64. Resistencia a Cortante P3P4	104
Tabla 65. Resistencia a Cortante P4P5	105
Tabla 66. Resistencia a Cortante P5P6	105
Tabla 67. Resistencia a Cortante P6P7	105
Tabla 68. Resistencia a Cortante P7P8	106
Tabla 69. Propiedades del acero de refuerzo	109
Tabla 70. Dimensiones preliminares del estribo	110
Tabla 71. Propiedades usadas en el diseño del estribo	110
Tabla 72. Cortantes máximos en CSIbridge	112
Tabla 73. Datos para el cálculo del empuje lateral	112
Tabla 74. Fuerza activa Total	113
Tabla 75. Altura de suelo equivalente	114
Tabla 76. Cargas debidas a sobre carga viva	115
Tabla 77. Propiedades usadas para el cálculo de cargas por temperatura	115
Tabla 78. Propiedades del asiento	116
Tabla 79. Cargas por temperatura	116
Tabla 80. Efectos de fuerza en el muro de respaldo	117
Tabla 81. Efectos de Fuerza factoradas en el muro de respaldo	117
Tabla 82. Efectos de fuerza en el Cuerpo del Estribo	118

Tabla 83. Efectos de fuerza factorada en el cuerpo del estribo	118
Tabla 84. Fuerza Cortante en cada parte del estribo	122
Tabla 85. Momento máximo factorado BENT CAP 1	128
Tabla 86. Momento nominal BENT CAP1, BENT CAP 2, BENT CAP 9	129
Tabla 87. Momento nominal BENT CAP3, BENT CAP 8	129
Tabla 88. Separación máxima por agrietamiento	131
Tabla 89. Chequeos por fatiga	132
Tabla 90. Capacidad por cortante BENT CAP 1	133
Tabla 91. Capacidad por cortante BENT CAP 2	134
Tabla 92. Capacidad por cortante BENT CAP 3	134
Tabla 93. Capacidad por cortante BENT CAP 8	135
Tabla 94. Capacidad por cortante BENT CAP 9	135
Tabla 95. Refuerzo vertical fuera de la región de la junta	136
Tabla 96. Refuerzo vertical dentro de la región de la junta	136
Tabla 97. Refuerzo longitudinal adicional de la junta	137
Tabla 98. Esfuerzos en las juntas	139
Tabla 99. Refuerzo cortante de la columna mínimo en la junta	141
Tabla 100. Acero vertical mínimo T-Joint	142
Tabla 101. Área mínima de refuerzo horizontal T-joint	142
Tabla 102. Acero lateral en la junta P4-P7	143
Tabla 103. Acero horizontal mínimo Knee-Joint	144
Tabla 104. Fórmulas para el cálculo de Vs	147
Tabla 105. Aceros máximos y mínimos en las columnas	149
Tabla 106. Fuerza axial debido a carga muerta	153
Tabla 107. Chequeo de la rigidez balanceada	154
Tabla 108. Demanda de desplazamiento	157
Tabla 109. Demanda de ductilidad longitudinal	160
Tabla 110. Demanda de ductilidad Transversal	160
Tabla 111. Relación Demanda – Capacidad (D/C)	162
Tabla 112. Efectos P-Δ en la dirección transversal	163
Tabla 113. Efectos P-Δ en la dirección longitudinal	164
Tabla 114. Capacidad mínima a flexión	165
Tabla 115. Demanda de cortante	166
Tabla 116. Elemento columna o pila tipo muro	167
Tabla 117. Resistencia al corte del concreto en la dirección longitudinal	169
Tabla 118. Resistencia al corte del concreto en la dirección transversal	170
Tabla 119. Resistencia al corte del acero en la dirección longitudinal	171
Tabla 120. Resistencia al corte del acero en la dirección transversal	171
Tabla 121. Revisiones por cortante longitudinal	172
Tabla 122. Revisiones por cortante Transversal (columna)	172
Tabla 123. Revisiones por cortante Transversal (Pila tipo muro)	173

LISTA DE FIGURAS

Figura 1. Sección Cajón del puente Santa Fe	7
Figura 2. Utilización del carro de avance en la construcción del puente Santa Fe	9
Figura 3. Camión de diseño HL-93	15
Figura 4. Representación esquemática del método FEMA 356	24
Figura 5. Sección transversal viga T	29
Figura 6. Configuración de los cables de PC A1P1	30
Figura 7. Distribución de carga en CSIBridge	31
Figura 8. Efecto de carga viva CSIBridge	32
Figura 9. Cortantes Totales DC según CSIBridge	49
Figura 10. Momentos DC según CSIBridge	49
Figura 11. Chequeo por Flexión CSIBridge Tramo A1P3	56
Figura 12. Chequeo por Cortante CSIBridge Tramo A1P3	57
Figura 13. Diagrama del ancho de ala efectivo para el claro interior	70
Figura 14. Sección efectiva P3-P8	70
Figura 15. Diagrama del ancho de ala efectivo interior	71
Figura 16. Sección Efectiva P4 y P5	72
Figura 17. Sección efectiva P6 y P7	73
Figura 18. Sección efectiva Estándar 35 m	74
Figura 19. Sección efectiva Estándar 60 m	75
Figura 20. Sección transversal de viga cajón exterior	83
Figura 21. Configuración de los cables para PC de P3-P4	84
Figura 22. Modelo de pérdidas por acuñamiento del anclaje	87
Figura 23. Chequeo por flexión positiva Tramo P3P8	103
Figura 24. Chequeo por flexión negativa Tramo P3P8	103
Figura 25. Dimensiones del estribo A1	111
Figura 26. Sección transversal viga Cabezal	127
Figura 27. Vista lateral de la viga cabezal	127
Figura 28. Ancho efectivo de la junta	140
Figura 29. Refuerzo vertical por cortante en la Knee-Joint	145
Figura 30. Refuerzo por cortante en la knee-joint	146
Figura 31. Sistema resistente a sismos usado en el Puente Santa FE	148
Figura 32. Espectro de Diseño para Nicaragua (Suelo Tipo III)	148
Figura 33. Longitud de soporte proporcionada	152
Figura 34. Modelo Momento Curvatura	158
Figura 35. Diagrama Momento-Curvatura usando CSIBridge	159
Figura 36. Pushover longitudinal y transversal de la PILA 1	161
Figura 37. Curva Pushover Transversal PILA 1	162

SIMBOLOGÍA

A = Area de la sección (m²)

 $A_g = Area gruesa de la sección (m²)$

 $A_p = Area de la punta del pilote (m²)$

 $A_{ps} = Area del acero de presfuerzo (mm²)$

 $A_s = Area del reforzamiento no presforzado en tensión (m²)$

 $A'_{s} = A'_{rea}$ del reforzamiento a compresión (m²)

 $A_{st} = Area total del reforzamiento de la columna anclado en la junta (m²)$

 $A_{sp} = Area del reforzamiento de la espiral o aro (m²)$

 $A_v = Area del reforzamiento transversal encerrada dentro de una distancia S (m²)$

a = Profundidad del bloque rectangular equivalente esforzado (m)

 $b_e =$ Ancho de ala efectivo correspondiente a la posición particular de la sección (m)

 $B_{eff} =$ Ancho efectivo de la superestructura o bent cap (m)

 $b_v = -$ Ancho del alma ajustado para la presencia de ductos (m)

 $b_w =$ Ancho del alma (m)

c = Distancia desde la fibra extrema de compresión hasta el eje neutro (m)

c' = Cohesión del suelo que soporta la punta del pilote (kN/m²)

CR = Efectos de la fuerza debidos a la fluencia lenta

DC = Carga muerta de componentes estructurales y accesorios no estructurales

 $D_c = Diámetro o altura de la columna en la dirección de la carga (m)$

 $d_e =$ Altura efectiva de la fibra extrema de compresión al centroide de la fuerza de tensión en el reforzamiento no presforzado a tensión (m)

 $d_o = Altura de la viga (m)$

 d_p = Distancia de la fibra extrema de compresión al centroide de los tendones de presforzado (m)

 D_{S} = Altura de la viga sobre la sección de apoyo (m)

 $D_s = Altura de la superestructura en el bent cap o altura de la viga cabezal (m)$

 $d_s = Distancia de la fibra extrema de compresión al centroide del reforzamiento a tensión (m)$

- d'_s = Distancia de la fibra extrema de compresión al centroide del reforzamiento no presforzado a compresión (m)
- $d_v = Profundidad efectiva de cortante (m)$

DW = Carga muerta de la superficie de desgaste y utilidades

 $E_c = M \acute{o} dulo de elasticidad del concreto (MPa)$

E_{ci} = Módulo de elasticidad del concreto en el momento de la transferencia (MPa)

 $E_p = M dulo de elasticidad de los tendones de presforzado (MPa)$

 $E_s = M \dot{o} dulo de elasticidad de las barras de acero (MPa)$

e = Distancia entre los tendones de presforzado al centro de gravedad de la viga (m)

 e_{pg} = Excentricidad de la fuerza pretensora con respecto al centroide de la viga (m)

 f'_{c} = Resistencia a la compresión del concreto a utilizar en el diseño (MPa)

 f'_{ci} = Resistencia especificada a la compresión del concreto en el momento del presforzado para elementos pretensados (MPa)

 f_{cgp} = Suma de esfuerzos en el concreto en el centro de gravedad de los tendones de presforzado debidos a la fuerza de presforzado después del tensado y al peso propio del miembro en las secciones de máximo momento (MPa)

 $f_{cpe} = Esfuerzo de compresión en el concreto debido solamente a las fuerzas de$ presforzado efectivas (después de ocurridas todas las pérdidas de presforzado) enla fibra extrema de la sección donde el esfuerzo de tensión es causado por lascargas aplicadas

 f_{pj} = Esfuerzo en el acero de presforzado en el momento del tensado (MPa)

 f_{po} = Parámetro tomado como el módulo de elasticidad de los tendones de presforzado multiplicado por la diferencia en el esfuerzo entre los tendones de presforzado y el concreto que lo rodea (MPa)

 $f_{ps} = Esfuerzo promedio en el acero presforzado en el momento para el cual la resistencia nominal del miembro es requerida (MPa)$

 $f_{pu} =$ Resistencia a la tracción del acero de presforzado (MPa)

- $f_{py} =$ Resistencia de fluencia del acero de presforzado (MPa)
- $f_r = M \delta dulo de ruptura en el concreto (MPa)$
- $f_y = Esfuerzo de fluencia mínima especificada de las barras de acero (MPa)$
- f_{ve} = Resistencia a fluencia esperada (MPa)
- $f_{vh} = Esfuerzo de fluencia del reforzamiento del estribo (MPa)$
- G = Módulo de cizalladura (MPa)
- H = Altura total del estribo (m)
- $H_h = Altura de la parte superior de la zapata a la parte superior de la columna o la altura de la columna equivalente (m)$
- Hu = Fuerza total debido a la deformación del elastómero (kN/m)
- $h_c =$ Altura del cuerpo del estribo (m)

$$h_{eq} = Altura de suelo equivalente para carga vehicular (m)$$

- $h_f =$ Altura del ala a compresión (m)
- $I_c =$ Momento de inercia del núcleo de concreto (m⁴)
- i = Ángulo de la pendiente del relleno (grados)
- k = Coeficiente de fricción por desviación de la vaina de presforzado (por mm del tendón)
- k_{AE} = Coeficiente de la presión de tierra activa sísmica (adimensional)
- K_f = Factor por el efecto de resistencia del concreto
- K_{hc} = Factor de humedad para fluencia
- K_{hs} = Factor de humedad por contracción
- K_{pe} = Coeficiente de presión pasiva
- K_s = Factor por el efecto de la relación volumen-superficie del componente
- $\mathbf{k}_{\mathrm{h}}=-$ Coeficiente de aceleración sísmica horizontal (adimensional)
- ${\bf k_i}^e$ = Rigidez de la columna efectiva más pequeña (kN/m)
- $k_i^{e} =$ Rigidez de la columna efectiva más grande (kN/m)
- $k_v = -$ Coeficiente de aceleración sísmica vertical (adimensional)
- L = Longitud del claro (m)

- L = Long. de la col. del punto de momento máximo al punto de contra flexión (m)
- LL = Carga viva vehicular
- $L_p = Longitud analítica de la rótula plástica equivalente (m)$
- $L_{PA} = Longitud influenciada por el acuñamiento del anclaje (m)$
- $L_{PF}=$ Longitud para un punto donde la pérdida Δf_{pF} es conocida (m)
- LS = Sobrecarga viva
- l_{ac} = Longitud del refuerzo de la columna embebido dentro del bent cap o zapata (m)
- M_{Cr} = Momento de fisuración (kN.m)
- $M_{dnc} = Momento total no mayorado debido a la carga permanente que actúa sobre la sección monolítica o no compuesta (kN·m)$

$$M_h = Momento de volteo (kN.m/m)$$

- $M_n = Resistencia nominal a la flexión (kN.m)$
- $M_{ne} = Capacidad de momento nominal de un miembro de concreto reforzado basado sobre las propiedades de los materiales esperadas.$
- M_p = Capacidad de momento plástico idealizada de un miembro de concreto reforzado basado en las propiedades esperadas del material (kN.m)
- M_{po} = Capacidad de momento plástico sobre resistente (kN.m)
- $M_r = Resistencia a la flexión factorada de una sección en flexión (kN.m)$

$$M_v = Momento estabilizador (kN.m/m)$$

- $m_i = M$ asa tributaria de la columna o bent i
- m_j = Masa tributaria de la columna o bent j
- N = Longitud de soporte mínima, medida normal a la línea central del apoyo (m)
- $\eta_i =$ Factor de carga modificado relacionado con la ductilidad, redundancia e importancia operacional
- $P_{AE} = Presión dinámica horizontal (kN/m)$
- P_c = Fuerza axial de la columna incluyendo los efectos de vuelco (kN)
- $P_{dl} = Carga muerta no factorada actuando sobre la columna (kN)$

Pg =	Perímetro del grupo de pilotes (n	n)
1g —	i crimetto del grupo de pilotes (il	11

$$P_j = Fuerza$$
 aplicada por los gatos en el tensado (kN)

$$P_p = Presión pasiva sísmica (kN/m)$$

$$Q_{ep} =$$
 Resistencia pasiva nominal del suelo disponible durante la totalidad de la vida
de diseño de la estructura (kN)

$$Q_r = Resistencia mayorada contra la falla por resbalamiento (kN)$$

Qs = Resistencia por fricción del pilote (kN)

 $Q_t = Resistencia nominal al corte entre el suelo y la fundación (kN)$

$$Qu(g) = Capacidad del grupo de pilotes (kN)$$

$$R_d = R_d$$
 Factor de magnificación tomado en cuenta para estructuras de período corto

RLL = Reacción debido a la carga viva
$$\binom{kN}{m}$$

$$R_{LS} = Carga lateral debido a sobrecarga viva (kN/m)$$

$$T_c =$$
 Fuerza de tensión de la columna asociada con el momento sobre resistente de
la rótula plástica de la columna, Mpo (kN)

$$T_j = Período natural del marco más flexible (seg)$$

$$T_s =$$
 Periodo en el final del tramo constante en el espectro de diseño (seg)

$$V_c =$$
 Resistencia del cortante nominal del concreto (kN)

$$V_n =$$
 Capacidad del cortante nominal (kN)

$$V_p = Componente en la dirección del cortante aplicado de la fuerza de presforzado efectiva (kN)$$

$$V_{po} = Cortante sobre resistente asociado con el momento sobre resistente Mpo (kN)$$

 $V_s =$ Resistencia del cortante nominal provisto por el acero transversal (kN)

- $V_u = Cortante último factorado (kN)$
- $v_c = Capacidad de esfuerzo cortante del concreto (kN/m²)$
- y_{bs} = Distancia de la fibra inferior de la viga al centroide los cables de presforzado (m)
- $\alpha' =$ Factor de ajuste del esfuerzo cortante del concreto
- $\Delta_{\rm D}$ = Demanda global de desplazamiento sísmico (m)
- $\Delta f_{cd} = Cambio del esfuerzo en el concreto en el centroide del acero de presforzado debido a las pérdidas dependientes del tiempo entre la transferencia y la colocación del tablero cuando se encuentran actuando el peso propio y las cargas súper impuestas (MPa)$
- Δ_p = Empuje horizontal de tierra constante debido a la sobrecarga uniforme (MPa)
- $\Delta_{pd} = Demanda de desplazamiento plástica (m)$
- $\Delta_{yi} =$ Desplazamiento de fluencia idealizado (m)
- ϵ_{bdf} = Deformación debido a la contracción del concreto de la viga entre el tiempo de colocación del tablero y el tiempo final
- $\mu_D =$ Demanda de ductilidad del máximo desplazamiento local del miembro
- $\lambda_{mo} =$ Factor de sobre resistencia
- p_w = Cuantía de refuerzo lateral para columnas rectangulares
- $\rho_{\rm h}$ = Relación del reforzamiento horizontal en la pila tipo muro (pier Wall)
- $\theta_p =$ Rotación plástica determinada usando la ecuación 8.14.1-1 (LRFD SEISMIC) (radianes)
- δ = Ángulo de fricción interna entre muro y el relleno (grados)
- Ø = Factor de resistencia
- $\phi_t = Factor de resistencia para la resistencia al corte entre el suelo y la fundación$
- $\phi_{ep} =$ Factor de resistencia para la resistencia pasiva
- $\phi_s =$ Factor de resistencia para cortante en concreto reforzado
- $\phi_{pd} =$ Curvatura plástica de la columna (1/m)
- $\phi_{yi} =$ Curvatura de fluencia idealizada (1/m)

CAPÍTULO I

GENERALIDADES

1.1 INTRODUCCIÓN

El Ministerio de Transporte e Infraestructura (MTI) registra que en Nicaragua existen actualmente cerca de 2,802 estructuras de puentes, de los cuales 533 son estructuras de concreto. Una de estas obras y la más relevante hasta el momento en cuanto a diseño y ejecución, es el puente Santa Fe, ubicado en el Municipio de San Carlos, Departamento de Rio San Juan, construido en el periodo comprendido entre junio de 2011 hasta abril de 2014.

Esta estructura es de gran relevancia debido al sistema utilizado en su ejecución, pues fue realizada mediante "Voladizos sucesivos hormigonados In situ". Cuenta con vigas pos-tensadas, a su vez, es uno de los puentes más largos donados por Japón en Centroamérica y el de mayor longitud en Nicaragua.

Actualmente no se cuenta con una evaluación sísmica de la estructura que sea de carácter público en el ámbito estructural, por lo que no se conoce su comportamiento ante sismos de gran magnitud. Esto se debe a su reciente ejecución, a la falta de interés, al poco conocimiento de los sistemas estructurales donde se usa el pos-tensado y a la falta de aplicación de normas sísmicas en el diseño de puentes en Nicaragua.

Un aporte valioso es realizar la evaluación sísmica del puente, para asegurar su correcto funcionamiento ante los acontecimientos que suelen ocurrir en un país sísmico como Nicaragua, presentando recomendaciones relacionadas al diseño en caso de presentarse alguna falla en el mismo y contribuir a la seguridad de la población mediante la verificación del diseño sísmico del puente.

El presente documento se enfocó en realizar la evaluación sísmica del puente Santa Fe, la cual abarcó el análisis dinámico, la verificación del diseño del puente y el análisis estático no lineal "Pushover". Esta evaluación fue basada en las normas norteamericanas AASHTO LRFD Seismic Bridge Design 2011.

La inexistencia de un análisis ante movimientos telúricos, provoca limitantes en el diseño de obras eficientes que cumplan todos los rigores que un país sísmico como Nicaragua requiere.

1.2 ANTECEDENTES

El primer puente construido por voladizos sucesivos fue el de Santa Catalina, sobre el Rio Peixe, cerca de Herval, en Brasil, en el año 1931 por el Ing. Baumgarten. Es un puente de hormigón armado con dintel continuo de tres vanos con una luz central de 68 metros.

Veinte años después el Ing. Ulrich Finsterwalder recupera el procedimiento para aplicarlo al puente de Balduinstein sobre el Lahn, Alemania, con un tramo de 62.10 metros de luz libre, en el cual quedan fijas las características del avance por carro. El sistema tuvo mucho éxito puesto que el pretensado permitía cortar por juntas verticales, para la época se consideró como una novedad. A partir de la década de los años sesenta se empezó a aplicar este sistema constructivo en otros lugares del mundo, en cambio en otros países como España las realizaciones de puentes con dovelas no eran muy abundantes hasta finales de los años 80's.

En el año 2008 se inicia en Colombia el auge de construcción de los puentes en voladizos sucesivos muy apropiados para salvar las depresiones propias de la topografía Colombiana, destacándose los construidos sobre el corredor Bogotá– Buenaventura y recientemente en el 2014, se construyó un puente sobre el rio Chico, ubicado en Panamá donde también se utilizó el método antes mencionado.

El ingeniero francés Eugène Freyssinet, fue quien convirtió en realidad la idea de pretensar los elementos de hormigón. Sin embargo, no fue hasta después de 1945 cuando los puentes viga de hormigón pretensado adquirieron toda su potencia y desarrollo.

En Nicaragua tenemos puentes con vigas postensadas como el puente la Tonga y las banderas construidos sobre la carretera Managua-El Rama y el primer puente construido por voladizos sucesivos es el puente Santa Fe.

1.3 JUSTIFICACIÓN

En Nicaragua se puede observar el avance tecnológico en la construcción de puentes mediante los proyectos donados por otros países, especialmente Japón. Según registros del Ministerio de Transporte e infraestructura (MTI) hasta el 2014, en Nicaragua, de los 533 puentes de concreto existentes, 24 utilizan sistemas postensado y han sido donados por el país asiático antes citado. De estos, 21 se han construido con vigas T, 2 con viga cajón y el puente santa Fe, combinando viga-T y viga cajón.

Nicaragua es un país sísmico que ha sufrido terremotos de gran magnitud, como el ocurrido en 1972 que arrasó completamente el centro de Managua, entre otros. Por esta razón, es imprescindible realizar un análisis del comportamiento que presentará el Puente Santa Fe ante posibles manifestaciones sísmicas, siendo importante que la estructura tenga un buen rendimiento antisísmico para evitar el deterioro provocado por terremotos que puedan impedir las actividades básicas de la sociedad.

El presente estudio plantea la necesidad de verificar que el diseño sísmico del puente Santa Fe cumpla con todos los parámetros establecidos por la norma AASHTO LRFD Seismic Bridge Design 2nd Edition. La evaluación sísmica del puente Santa Fe, permitirá conocer la respuesta de la estructura ante un movimiento telúrico, de esta forma se podrán establecer medidas preventivas en caso de encontrarse fallas estructurales, mejorar las características de diseño en futuras edificaciones y reducir los posibles daños al momento de un sismo.

Esta investigación servirá de base para futuros estudios que se deseen llevar a cabo en este campo, generando una nueva fuente de información, beneficiando a los estudiantes de ingeniería civil, profesionales afines y a todo el público interesado en la temática, sirviendo así de referencia bibliográfica.

1.4 OBJETIVOS

1.4.1 Objetivo general

Evaluar el comportamiento sísmico del puente Santa Fe, para verificar su funcionamiento ante movimientos telúricos, a fin de constatar la calidad del diseño.

1.4.2 Objetivos específicos

- Determinar los esfuerzos máximos a los que está sometido el puente Santa Fe a través del análisis sísmico estructural, utilizando el software CSI BRIDGE 2016 v18.1.0
- Verificar que las vigas y los estribos del puente Santa Fe cumplan con los requisitos establecidos por la norma AASHTO LRFD Bridge Design Specifications 2012, a través del diseño convencional bajo cargas de servicio.
- Comprobar que las pilas del puente Santa Fe cumplan con los requerimientos sísmicos establecidos en la norma AASHTO Guide Specifications for LRFD Seismic Bridge Design 2011 mediante la revisión de desplazamientos, ductilidades, flexión y corte.

1.5 Características generales del Puente Santa Fe

El puente Santa Fe se encuentra ubicado en el municipio de San Carlos, departamento Rio San Juan sobre la carretera Acoyapa-San Carlos, estación 12+680 en el tramo denominado Argentina-San Pancho.

Se construyó con el propósito de contribuir a la circulación del tráfico y al intercambio entre Nicaragua y los países vecinos, lograr el funcionamiento de la carretera troncal internacional y contribuir al desarrollo económico regional.

1.5.1 Superestructura

Es una estructura de concreto presforzado de 362 m de longitud, de los cuales 250 m constituyen el cruce principal del río y 112 m (72 m por el lado de San Carlos y 40 m por el lado de Costa Rica) de los puentes elevados en los extremos, siendo así el puente más largo del país.

El ancho del tablero es de 11.8 m, con dos carriles de 3.6 m, hombros de 0.9 m, aceras de 1 m y bordillos de 0.4 m. La planta del puente es recta y el perfil longitudinal tiene una pendiente variable entre el 2.8% y el 3.5 %. Transversalmente el tablero posee un bombeo del 2%.

Al considerar la necesidad de evitar el desplazamiento lateral del suelo por la construcción del terraplén y de evitar el asentamiento después que se iniciara el uso del puente, concluyeron que el método más viable era el del puente elevado en los extremos, por ser la opción más económica y la de menor impacto ambiental.

Por lo tanto la superestructura del puente elevado está compuesta por seis vigas T pos-tensadas de 3 claros (3@24.0 = 72 m) y dos claros (2@20.0 = 40 m) lado de San Carlos y Costa Rica respectivamente, por otra parte el puente principal cuenta con 5 claros continuos de cajón de marco rígido (35.0 + 3@60 + 35 = 250 m) con sección transversal de cajón unicelular de canto variable entre 3.8 m sobre pilas y 2.0 m en el centro del claro.

Figura 1. Sección Cajón del puente Santa Fe

El núcleo de la viga cajón tiene 6.5 m de ancho con voladizos de 2.45 m y 3.45 m (pila P6 y P7, sección ampliada) de longitud, el espesor de las almas varía entre 0.4 y 0.8 m, la losa superior posee un espesor de 0.3 m, la losa inferior tiene un espesor que varía entre 0.25 m en la parte estándar y 0.5 m en el apoyo.

Las vigas T tienen una altura uniforme de 1.6 m (A1P3) y 1.4 m (P8A2), el espesor de las almas varía entre 0.34 m en la parte estándar y 0.5 m en la zona de los apoyos mientras el espesor de la losa superior se mantiene constante con un valor de 0.2 m.

El puente Santa Fe posee diafragmas de concreto sólido ubicados en los centros de los claros de los puentes elevados de 0.35 m de espesor y 1.2 m de altura, mientras que en la zona de los apoyos poseen 1.7 m de espesor.

El pos-tensado fue realizado mediante el sistema internacional DYWIDAG con un total de 734 cables transversales y 382 longitudinales en toda su extensión con longitudes variables entre 11.4 - 13.4; 11.8 - 56.8 respectivamente.

1.5.2 Subestructura

El tablero es soportado en pilas intermedias mediante apoyos elastométricos de goma en los tramos A1-P3 y P8-A2, mientras que en los demás claros la pila está empotrada.

La subestructura está conformada por estribos tipo T invertido de 8.5 m y 12.5 m de altura. Las pilas son de forma ovalada, apropiadas para un puente con pilas altas y de gran fuerza externa con longitudes desde 2.8 m hasta 19 m; en el caso de los tramos con vigas T se construyó un cabezal en forma de V; posee 5 estructuras con cimentaciones profundas, A1, P1, P2, P8 y P9 con un total de 26 pilotes in situ no ademados de 1.2 m de diámetro; y 6 con fundación directa sobre zapatas de espesor de 1.8, 1.9 y 3 m.

1.5.3 Proceso Constructivo

La construcción del puente inició el 23 de junio de 2011 y finalizó el 30 de abril de 2014 con una duración total de 34 meses ejecutada por la empresa constructora Hazama Ando Corporation y supervisada por la empresa Central Consultan Inc.

La construcción de las pilas y cimientos fue realizada mediante métodos convencionales de excavación y encofrado con la utilización de tablestacas para evitar el paso de agua en la zona de construcción de las pilas en el cruce del río.

El avance por voladizos sucesivos o "Balanced Cantilever" consiste en la construcción de pequeñas piezas de concreto llamadas dovelas usando el postensado para formar el sistema estructural del puente. Estos segmentos comienzan a ser construidos en la pila (dovela cero) hacia el centro del claro, como se muestra en la figura 2.

En el diseño de puentes segmentales es crítico determinar los métodos de construcción antes de proceder con el diseño. El método de construcción afectará el resultado del diseño y la disposición de tendones, a diferencia de cualquier otro tipo de estructura.

Una de la secciones más utilizadas en este método constructivo es la viga tipo cajón debido a que se aplica perfectamente para distintos tipos de puentes, por ejemplo los de vigas, rectos o curvos convencionales, puentes pórtico, puentes atirantados, puentes en arco, entre otros.

Este tipo de vigas son rígidas a torsión y por ello pueden apoyarse sobre pilares individuales y emplearse para puentes curvos. Además de lo anterior también permite tener mayor esbeltez porque pueden absorber grandes esfuerzos tanto en la losa superior como inferior y presenta ventajas como su buen comportamiento estructural y menor peso.

La construcción de los tramos de la superestructura del puente Santa Fe conformados por vigas cajón se realizó mediante el sistema de voladizos sucesivos hormigonados in situ utilizando el carro de avance o carro WAGEN, con un total de siete dovelas por voladizo con longitudes de 3 m y 3.5 m.

Figura 2. Utilización del carro de avance en la construcción del puente Santa Fe

Componentes			Tipos, Especificaciones			
Ubic	ación del pue	nte	28 m aguas debajo de los embarcaderos			
Ancho	Puente		Ancho de rodamiento = 3.6 mx2 = 7.2 m			
			Ancho del hombro = 0.9 m x2 = 1.8			
			Ancho de la acera = 1mx2= 2m			
			Total = 11 m (ancho efectivo)			
			Vereda = 0.4 mx 2= 0.8 m			
			Total = 11.8 m (ancho total)			
Tipo de puente	Puente	Sección	Puente con vigas continuas de cajón de marco			
	principal	principal del	rígido de PC de 5 claros			
		puente	(35 + 3@60+35=250 m)			
	Puente	Por el lado de	Puente con vigas T continuas pos-tensadas de PC			
	elevado	San Carlos	de 3 claros (3@24=72 m)			
		Por el lado de	Puente con vigas T continuas pos-tensada de PC de			
		Costa Rica	2 claros (2 @ 20 = 40 m)			
Estribo A1 por	Тіро		Estribo de T invertido			
el lado de San	Altura de la	estructura	8.5 m			
Carlos	Cimentación	1	Fundación de pilotes (pilotes fundido en el sitio,			
			$\phi = 1.2 \text{ m}$			
Estribo A2 por	Тіро		Estribo de T invertido			
el lado de	Altura de la estructura		12.5 m			
Costa Rica	Cimentación	l	Cimentación directa			
Pilas P1,P2	Тіро		Ovalada			
	Altura de la estructura		P1 = 4.1 m P2 = 4.9			
	Cimentación		Fundación de pilotes (pilotes fundido en el sitio,			
			Ø = 1.2 m			
Pilas P3,P4	Тіро		Ovalada			
	Altura de la	estructura	P3 = 9.1 m P4 = 14.5 m			
	Cimentación		Cimentación directa			
Pilas P5-7	Тіро		Pórtico			
	Altura de la	estructura	P5 = 16.5 m P6= 19 m P7= 19 m			
	Cimentación		Cimentación Directa			
Pilas P8,9	Тіро		Ovalada			
	Altura de la	estructura	P8= 10.8 m P9 = 10.5 m			
	Cimentación	I	Fundación de pilotes (pilotes fundido en el sitio,			
			Ø = 1.2 m			
Vías de Acceso	Longitud tot	al	Lado del estribo A1= 34 m			
			Lado del estribo A2 = 24 m Total = 58 m			
	Pavimentaci	ón	Pavimento Asfáltico= 8 cm			
Obras de	Margen izqu	ierda	64 Gaviones (Dimensiones de cada gavión= 2m de			
Protección de la ribera			longitud, 1m de ancho y 1m de altura)			

Tabla 1. Descripción resumida de la obra

CAPÍTULO II

CRITERIOS DE ANÁLISIS Y DISEÑO SÍSMICO

2.1 INTRODUCCIÓN

Los puentes dan la impresión de ser sistemas estructurales bastante simples pero realmente siempre han ocupado un lugar especial en las preocupaciones de los diseñadores estructurales debido a que su forma tiende a ser una expresión simple de su exigencia funcional.

Los puentes carreteros son sistemas estructurales complejos, aun así, su análisis por "carga de servicio" se ha convertido rutinario debido a la disponibilidad de programas sofisticados para el análisis estático, pero cuando las cargas son dinámicas como en un sismo, la situación cambia, en especial si el puente excede el límite elástico y su comportamiento se vuelve no lineal.

Bajo cargas de servicio, los miembros del puente son diseñados para quedarse dentro de su rango elástico, pero esto no es siempre económicamente factible durante cargas extremas como un terremoto; por lo tanto el rendimiento de las columnas es preferido a fluencia, por consiguiente están detalladas para sostener deformaciones plásticas grandes sin ruptura o alabeo del acero de refuerzo.

A pesar de esto, los puentes no se han desempeñado como se esperaba bajo el fenómeno sísmico, en especial aquellos construidos de concreto reforzado o presforzado. Este pobre desempeño puede en la mayoría de los casos ser atribuido a la filosofía de diseño adoptada acompañada a la falta de atención en los detalles.

Debido a la forma estructural comúnmente menos dirigida por la arquitectura, sino más bien a las consideraciones estructurales, el diseñador necesita estar consciente de las consecuencias de las decisiones tomadas acerca de su forma.

Citando a M.N.J Priestley recordemos que: "Los terremotos tienen el hábito de identificar las debilidades estructurales y concentrar el daño en ellas".

2.2 Estados límites

2.2.1 Estado Límite de Servicio

El Estado Límite de Servicio se debe considerar como restricciones impuestas a las tensiones, deformaciones y anchos de fisuras bajo condiciones de servicio regular. (LRFD Arto. 1.3.2.2).

2.2.2 Estado Límite de Fatiga y Fractura

El estado límite de fractura se debe considerar como un conjunto de requisitos sobre resistencia de materiales especificados en la AASHTO. La intención del Estado Límite de Fatiga es limitar el crecimiento de las fisuras bajo cargas repetitivas, a fin de impedir la fractura durante el período de diseño del puente. (LRFD C1.3.2.3).

2.2.3 Estado Límite de Resistencia

Se debe considerar el Estado Límite de Resistencia para garantizar que se provee resistencia y estabilidad, tanto local como global, para resistir las combinaciones de cargas significativas especificadas que el puente experimentará durante su período de diseño. (LRFD Arto.1.3.2.4).

2.2.4 Estados Límites correspondientes a Eventos Extremos

El estado límite de evento extremo se deberá considerar para asegurar la supervivencia estructural del puente durante un terremoto mayor, inundación, colisión de embarcaciones y/o vehículos (LRFD Arto. 1.3.2.5). Se considera que los estados límites extremos son ocurrencias únicas cuyo período de recurrencia puede ser significativamente mayor que el período de diseño del puente.

2.3 Cargas de diseño

La sección 3 de la Norma AASHTO LRFD específica requisitos mínimos para cargas y fuerzas, sus límites de aplicación, factores de cargas y combinaciones de cargas usadas para diseñar puentes nuevos. Los requisitos de carga también se pueden aplicar a la evaluación estructural de puentes existentes. Además de las cargas tradicionales, esta sección incluye las solicitaciones provocadas por colisiones, sismos, asentamiento y distorsión de la estructura (LRFD Arto. 3.1).

Las cargas a considerar son las siguientes: (LRFD Arto. 3.3.2)

CARGAS PERMANENTES			CARGAS TRANSITORIAS			
CR	Fluencia lenta	BL	BL Carga por LS Sol		Sobrecarga viva	
DD	Fricción negativa	BR	Fuerza de frenado	PL	Carga viva peatonal	
DC	Peso propio	CE	Fuerza centrifuga	SE	Efectos por asentamiento	
DW	Superficie de rodamiento	ст	Fuerza de choque vehicular	ΤG	Efectos por el gradiente de temperatura	
EH	Empuje horizontal de suelo	cv	Fuerza de choque de embarcaciones	τυ	Efectos por temperatura uniforme	
EL	Tensiones residuales del proceso constructivo	EQ	Sismo	WA	Carga de agua y presión de corriente	
ES	Sobrecarga de suelo	FR	Fricción	ws	Viento en la estructura	
EV	Presión vertical del relleno	IC	Carga de hielo	WL	Viento en la carga viva	
PS	Fuerzas secundarias de pos-tensado	IM	Incremento por carga dinámica			
SH	Contracción	LL	Carga viva vehicular			

Tabla 2. Cargas a considerar según AASHTO LRFD

2.3.1 Cargas permanentes DW, DC y EV

La carga muerta deberá incluir el peso de todos los componentes de la estructura, accesorios e instalaciones de servicio, cubierta de tierra, superficie de rodamiento, futuras sobre capas y ensanchamientos planeados.

2.3.2 Cargas transitorias

2.3.2.1 Carga viva vehicular de diseño

La carga viva vehicular en las autopistas de puentes, designada como HL-93, deberá consistir en una combinación de:

- ✓ Camión de diseño o tándem de diseño, y
- ✓ Carga del carril de diseño

Este modelo de sobrecarga, consistente en un camión o tándem en coincidencia con una carga uniformemente distribuida, fue desarrollado como una representación ideal del corte y momento producidos por un grupo de vehículos habitualmente permitidos en las carreteras de diferentes lugares de Estados Unidos. LRFD C3.6.1.2.1.

Los pesos y las separaciones entre los ejes y las ruedas del camión de diseño serán como se especifica en la figura 3. Se deberá considerar un incremento por carga dinámica como se especifica en el Artículo 3.6.2. LRFD.

Figura 3. Camión de diseño HL-93

El tándem de diseño consiste en un par de ejes de 110 kN con una separación de 1.20 m. La separación transversal de las ruedas debe ser tomada como 1.80 m y se considera un incremento por carga dinámica. La carga del carril de diseño consistirá en una carga de 9.3 kN/m, uniformemente distribuida en dirección longitudinal.

Transversalmente la carga del carril de diseño se supondrá uniformemente distribuida en un ancho de 3.00 m. Las solicitaciones debidas a la carga del carril de diseño no estarán sujetas a un incremento por carga dinámica.

2.3.2.2 Aplicación de Sobrecargas Vehiculares de Diseño

A menos que se especifique lo contrario, la solicitación extrema se deberá tomar como el mayor de los siguientes valores:

- La solicitación debida al tándem de diseño combinada con la solicitación debida a la carga del carril de diseño.
- La solicitación debida a un camión de diseño con la separación variable entre ejes, combinada con la solicitación debida a la carga del carril de diseño.
- ✓ 90 % de la solicitación debida a dos camiones de diseño separados como mínimo 15 m entre el eje delantero de un camión y el eje trasero del otro, combinada con 90% de la solicitación debida a la carga del carril de diseño. La distancia entre los ejes de 145 kN de cada camión se deberá tomar como 4.30 m.

2.3.2.3 Cargas Peatonales

Se deberá aplicar una carga peatonal de 3.6 kN/m^2 en todas las aceras de más de 0.6 m de ancho, y esta carga se deberá considerar simultáneamente con la sobrecarga vehicular de diseño.

2.4 Categoría de Diseño Sísmico (SCD)

La norma AASHTO LRFD Seismic Bridge Design (LRFD Seismic) establece cuatro categorías de diseño sísmico con los siguientes requerimientos en función del movimiento en la superficie del suelo.

La categoría de diseño sísmico refleja la variación en el nivel de peligro sísmico y es usada para especificar diferentes requerimientos para los métodos de análisis, longitud mínima de soporte, detalles de diseño de las columnas y procedimientos de diseño de la fundación y estribos.

Requerimientos	Α	В	С	D
Estrategia global		Recomendado	Requerido	Requerido
Identificación del ERS		Recomendado	Requerido	Requerido
Conexiones de soporte	Requerido	Requerido	Requerido	Requerido
Longitud de soporte	Requerido	Requerido	Requerido	Requerido
Análisis de demanda		Requerido	Requerido	Requerido
Capacidad implícita		Requerido	Requerido	
Capacidad pushover				Requerido
Detalle – Ductilidad		SDC B	SDC C	SDC D
Efectos P – Δ			Requerido	Requerido
Resistencia mínima lateral		Requerido	Requerido	Requerido

Tabla 3. Requerimientos de diseño para SDC A, B, C y D

2.4.1 Selección de la categoría de Diseño sísmico (SCD)

Todo puente deberá ser asignado a una de las cuatro categorías de diseño sísmico (SCD's) basadas en el coeficiente de aceleración espectral de diseño para el periodo de 1 segundo (S_{D1}) como es mostrado en la siguiente tabla.

Valor de S _{D1}	SDC
$S_{D1} < 0.15$	А
$0.15 \le S_{D1} < 0.30$	В
$0.30 \le S_{D1} < 0.50$	C
$0.50 \leq S_{D1}$	D

Tabla 4. Valores de SD1 según la categoría

2.4.2 Sistemas resistentes a sismos

(Earthquake-resisting systems, ERS)

Para las categorías C o D, todos los puentes y sus fundaciones deberán tener un sistema resistente a sismos claramente identificable, seleccionado para alcanzar el criterio de seguridad de vida.

El sistema resistente a sismos deberá proveer un camino de carga confiable e ininterrumpida, para transmitir las fuerzas sísmicamente inducidas en el suelo circundante y suficiente energía de disipación o restricción para controlar satisfactoriamente los desplazamientos inducidos sísmicamente.

Todos los elementos estructurales y la fundación del puente deberán ser capaces de alcanzar los desplazamientos esperados, consistentes con los requerimientos de la estrategia de diseño elegida. El diseño deberá ser basado en las siguientes tres estrategias globales de diseño sísmico.

2.4.2.1 TIPO 1

Subestructura dúctil con superestructura esencialmente elástica

Esta categoría incluye las rótulas plásticas convencionales en columnas, muros y estribos. La otra premisa clave de las provisiones es que los desplazamientos resultantes de la repuesta inelástica de un puente son aproximadamente iguales a los desplazamientos obtenidos de un análisis usando el espectro de respuesta elástico lineal.

2.4.2.2 TIPO 2

Subestructura esencialmente elástica con superestructura dúctil

Esta categoría aplica solo a superestructuras de acero. La ductilidad es alcanzada por la construcción de elementos dúctiles como parte del diafragma o un puente con vigas de acero. La capacidad de deformación de los diafragmas permite el desplazamiento lateral de la cubierta con respecto a la subestructura.
2.4.2.3 TIPO 3

Superestructura y subestructura elásticas con mecanismos entre ellos

Esta categoría comprende estructuras aisladas sísmicamente y estructuras en las cuales son usados dispositivos de disipación de energía a través de las articulaciones para proveer mecanismos que limiten la acumulación de energía y desplazamientos asociados durante un terremoto.

2.4.3 Selección del procedimiento de análisis para determinar la demanda sísmica.

Los requerimientos mínimos para la selección de un método de análisis de un puente particular deberán ser tomados como se especifica en las tabla 5. La aplicabilidad deberá ser tomada por la regularidad del puente, lo cual está en función del número de claros y la distribución de peso y rigidez.

Como puentes regulares pueden ser tomados aquellos que tienen menos de siete claros; no tienen cambios abruptos en su peso, rigidez y geometría; y que satisfacen los requerimientos de la tabla 4.2-3. LRFD Seismic. Cualquier puente que no satisfaga los requisitos de esa tabla se considerará "no regular".

Tabla 5. P	Procedimientos	de	análisis
------------	----------------	----	----------

Categoría de diseño Puentes regulares con 2 a 6 sísmico claros		Puentes no regulares con 2 o más claros		
А	No requerido	No requerido		
B,C o D	Usar procedimiento 1 o 2	Usar procedimiento 2		

Tabla 6. Descripción de los procedimientos de análisis

Número de procedimiento	Descripción
1	Análisis estático equivalente
2	Análisis dinámico elástico
3	Análisis no lineal tiempo historia

2.4.4 Procedimientos de análisis

El objetivo del análisis sísmico es evaluar las demandas de desplazamientos del puente y sus componentes individuales. El análisis estático equivalente y el análisis dinámico elástico lineal son las herramientas apropiadas para estimar las demandas de desplazamiento de puentes normales.

2.4.4.1 Análisis Estático equivalente (ESA)

El ESA debe ser usado para estimar las demandas de desplazamiento de estructuras donde análisis dinámicos más sofisticados no proveerán información adicional sobre el comportamiento.

El análisis estático equivalente deberá ser considerado como el más adecuado para estructuras de marcos individuales con claros bien balanceados y distribución uniforme de rigidez, donde la respuesta puede ser estimada por un modo de vibración predominante de traslación.

2.4.4.2 Análisis Dinámico Elástico (EDA)

El EDA deberá ser usado para la estimar las demandas de desplazamiento en estructuras donde el ESA no provea un nivel adecuado de sofisticación para estimar el comportamiento dinámico.

Un análisis espectral multimodal elástico lineal usando el espectro de respuesta apropiado deberá ser realizado. El número de grados de libertad y el número de modos a considerarse en el análisis deberán ser suficientes para capturar al menos el 90 por ciento de la masa participativa en ambas direcciones ortogonales.

2.4.4.3 Método no lineal Tiempo-Historia

Un análisis dinámico no lineal es un análisis más completo ya que el efecto del comportamiento inelástico es incluido en el análisis de demanda. Este requiere un conjunto de acelerogramas de terremotos representativos del riesgo y las condiciones del sitio.

2.5 Análisis y Diseño para puentes en la categoría SDC D

2.5.1 Determinar la Demanda-Capacidad de desplazamiento

El objetivo del análisis para verificar la capacidad de desplazamiento es determinar el desplazamiento en el cual los elementos (usualmente las pilas) logran su capacidad inelástica de deformación. Esta verificación es requerida para bents o pilares individuales. Para los puentes de clasificación B, C y D se deberá satisfacer la ecuación siguiente:

$$\Delta_D{}^L \leq \Delta_C{}^L$$

Donde:

 $\Delta_D{}^L$ = La demanda de desplazamiento llevada por el eje principal local del miembro dúctil.

La demanda de desplazamiento puede ser conservadoramente tomada como el desplazamiento del bent incluyendo la contribución de flexibilidad de las fundaciones, superestructura, o ambos.

 Δ_c^{L} = La capacidad de desplazamiento tomada a lo largo del eje principal local correspondiente a Δ_D^{L} del miembro dúctil

La ecuación deberá ser satisfactoria para cada uno de los ejes locales de cada bent. El eje local de un bent típicamente coincide con el eje principal de las columnas en ese bent.

2.5.2 Capacidad de desplazamiento local para SDC D

El Procedimiento Estático no Lineal (NSP), comúnmente llamado el análisis pushover, se usará para determinar las capacidades formales de desplazamiento de una estructura de acuerdo a su límite de estabilidad estructural.

2.5.2.1 Análisis Estático no Lineal (Pushover)

El análisis estático no lineal es un análisis incremental que capta el comportamiento no lineal de los elementos, empujándolos lateralmente para iniciar la acción plástica.

Cada incremento de carga empuja el marco lateralmente, a través de todas las etapas posibles, hasta que el mecanismo potencial de colapso es logrado. Este método de análisis provee información adicional en las demandas de deformación de columnas. También provee al diseñador de una mayor comprensión de la respuesta del puente.

Cuando la categoría de diseño sísmico de un puente es determinada como SDC D, el software CSIbridge usa un análisis pushover para determinar la capacidad de desplazamiento. Esto requiere que CSIbridge realice varios análisis pushover, dependiendo del número de bents que forman parte del sistema resistente a sismos (ERS). Cada pila o bent es analizado en la dirección longitudinal y transversal. Las cargas aplicadas a cada pila están basadas en las reacciones provenientes de la superestructura (Bridge design manual, pág. 65).

2.5.2.2 Desplazamiento objetivo

El desplazamiento objetivo es la demanda de desplazamiento del edificio en el nodo de control para el movimiento del terreno bajo consideración. Este es un parámetro muy importante ya que la respuesta (fuerzas y desplazamientos) del edificio en el desplazamiento objetivo es comparada con el estado límite de desempeño deseado para conocer el desempeño de la estructura. Por lo tanto el éxito del análisis pushover depende en gran medida de la exactitud del desplazamiento objetivo. Existen dos procedimientos para calcular dicho desplazamiento; el primer método será de nuestro interés.

- ✓ Método del coeficiente de desplazamiento (FEMA 356)
- ✓ Método de capacidad espectral (ATC 40)

2.5.2.3 Método del coeficiente de desplazamiento

Este método primeramente estima el desplazamiento elástico de un sistema de un solo grado de libertad (SDOF) asumiendo las propiedades lineales iniciales y el amortiguamiento para el movimiento del terreno bajo consideración.

Luego estima el desplazamiento inelástico de respuesta total de la estructura multiplicándolo por un conjunto de coeficientes de desplazamientos.

El procedimiento para la estimación de este desplazamiento es la aplicación de una serie de factores de modificación al espectro elástico en el primer modo. Estos factores son un intento de tomar en cuenta la contribución de los múltiples grados de libertad, diferencias entre los desplazamientos elásticos e inelásticos, efectos $P-\Delta$ y el efecto de las diferentes formas de histéresis.

El proceso inicia con la curva desplazamiento versus cortante figura 4(a). Un periodo equivalente (T_{eq}) es generado del periodo inicial (T_i) por un procedimiento gráfico. Este período equivalente representa la rigidez lineal equivalente del sistema de un solo grado de libertad.

El desplazamiento elástico espectral pico correspondiente a este periodo es calculado directamente del espectro de respuesta que representa el movimiento del terreno sísmico bajo consideración figura 4(b).

$$S_d = \frac{T_{eq}^2}{4\pi^2} S_a$$

Entonces el máximo desplazamiento esperado del edificio (desplazamiento objetivo) bajo el movimiento del terreno seleccionado puede expresarse como:

$$\delta_t = C_0 C_1 C_2 C_3 S_d = C_0 C_1 C_2 C_3 \frac{T_{eq}^2}{4\pi^2} S_a$$

Estos coeficientes son derivados empíricamente de estudios estadísticos de los análisis de historia de respuesta no lineal, de sistemas SDOF con periodos y rigideces variantes. Para un mayor entendimiento y el detalle de los coeficientes referirse a la sección 3.3.3.3 de FEMA 356.

Figura 4. Representación esquemática del método FEMA 356

2.5.3 Rótulas Plásticas

Las rotulas plásticas deberán formarse antes de cualquier otra falla debido al sobreesfuerzo o inestabilidad en toda la estructura y/o en la fundación. El momento M_{po} , de los miembros que forman parte del mecanismo primario para resistir cargas sísmicas deberá ser calculado como sigue (Arto 4.11.2 AASHTO Seismic).

$$M_{po} = \lambda_{mo} M_p$$

Donde:

 M_p = Capacidad de momento plástico de la columna

 λ_{mo} = Factor de sobre resistencia tomado como 1.2 para refuerzo ASTM A706 o 1.4 para ASTM A615 Grado 60 (Arto 8.5 AASHTO Seismic)

La capacidad de momento plástico M_p para columnas de concreto reforzado deberá ser determinada usando un análisis de sección momento-curvatura, tomando en cuenta la cantidad esperada de resistencia a fluencia de los materiales, las propiedades del concreto confinado y los efectos de endurecimiento por deformación del refuerzo longitudinal.

CAPÍTULO III

DISEÑO DE LA SUPERESTRUCTURA

3.1 INTRODUCCIÓN

En este capítulo se realizaron las verificaciones de la superestructura (vigas T y vigas cajón) según los requerimientos de la norma AASHTO LRFD 2012. Primero se hizo la revisión del dimensionamiento de las secciones transversales de las vigas en donde se comprobó si los espesores de las losas y de las almas cumplían con los espesores mínimos establecidos por la norma, las relaciones entre la altura y el ancho, si la profundidad estructural era correcta y se calcularon las dimensiones efectivas de las secciones.

Luego se establecieron los criterios básicos para el diseño como: la selección de los factores de resistencia, los factores de carga a utilizar en los estados límites que fueron tomados en cuenta en el diseño (Resistencia I, Servicio I y III) para después establecer las combinaciones de carga para los momentos no factorados por carga muerta, carga viva, carga peatonal y los momentos secundarios debidos al presforzado, a la fluencia y contracción. Cabe señalar que la distribución de la carga viva fue realizada por el software CSI Bridge a través de líneas y superficies de influencia.

Las pérdidas de los cables de presforzado no fueron tomadas del programa CSI Bridge, éstas fueron calculadas manualmente para propósitos explicativos. Después de esto se verificaron los esfuerzos límites para estos cables en el estado límite de servicio después de las pérdidas así como los esfuerzos límites para el concreto.

Para finalizar se hizo la revisión del diseño por flexión de las vigas T y de las vigas cajón verificando que el momento último fuera menor al momento nominal afectado por su factor de resistencia correspondiente para flexión. De esta misma manera se hizo la revisión del diseño por cortante. Con esto se comprobó que las dimensiones de la sección de diseño tanto para las vigas T como para las vigas cajón son adecuadas para resistir las solicitaciones de las cargas a las cuales serán sometidas en servicio.

3.2 Datos generales

Norma de diseño: AASHTO LRFD Bridge Design Specifications, 2012Carga Móvil: HL-93 (+ 25% estipulado por el MTI)Unidades a utilizar: Sistema Internacional de unidades (SI)Acero de Refuerzo: SD 345 (ASTM A-615)

Acero de pre esfuerzo: SWPR7BL (ASTM A-406)

Tabla 7. Propiedades de los materiales utilizados

CON	ICRETO	Concreto inicial $f'_{ci} = 28 \text{ MPa}$ $E_{ci} = 24,870 \text{ MPa}$ Concreto final $f'_{c} = 35 \text{ MPa}$	Peso específico 23.5 $\frac{kN}{m^3}$
		$E_c = 28,276.21 \text{ MPa}$	
		Acero de baja relajación; Grado	270
		Diámetro :	Ø = 12.7 mm
ACERO DE	Marca	Área por torón:	$A_{ps} = 98.71 \text{ mm}^2$
PRESFUERZO	SWPR7BL	Esfuerzo en el punto de fluencia	a: $f_{py} = 1600 \text{ MPa}$
	(ASTM A-406)	Resistencia a la tensión:	$f_{pu} = 1850 \text{ MPa}$
		Módulo de elasticidad:	$E_{\rm p} = 196, 552 \; { m MPa}$
ACERO DE	Clasificación	Esfuerzo en el punto de fluencia	a: $f_y = 345 \text{ Mpa}$
REFUERZO	SD 345	Resistencia a la tensión:	$f_{pu} = 490 \text{ MPa}$
	(ASTM A–615)	Módulo de elasticidad:	${\rm E_{s}}=200,000~{\rm MPa}$

3.3 Diseño de superestructura A1P3-P8A2 (Vigas T)

3.3.1 Propiedades de la sección

a. Peralte estructural Tabla 2.5.2.6.3-1 AASHTO LRFD

Para claros apoyados presforzados, la altura d mínima, se puede determinar usando la relación d/L de 0.045, entonces:

$$d = 0.045L$$

$$d = 0.045(24 m) = 1.08 < 1.6 m \text{ ok!}$$

$$d = 1.6 m$$

$$d = 0.045L$$

$$d = 0.045(20 m) = 0.9 < 1.4 m \text{ ok!}$$

$$d = 1.4 m$$

b. Espaciamiento entre vigas

Para proveer resistencia a la torsión y un suficiente número de vigas para el presforzado, el espaciamiento entre vigas no será mayor que dos veces su altura.

$$S_{max} < 2d$$

 $S_{max} = 1.98 \text{ m} < 2(1.6) = 3.2 \text{ m} \text{ ok!}$

 $S_{max} = 1.98 \text{ m} < 2(1.4) = 2.8 \text{ m} \text{ ok!}$

c. Ancho de ala efectivo

Para las vigas interiores el ancho de ala efectivo se puede tomar como el menor valor entre:

✓ Un cuarto de la longitud de tramo efectiva

$$L_4 = 24 m_4 = 6 m$$
; $L_4 = 20 m_4 = 5 m_4$

 ✓ 12,0 veces el espesor promedio de la losa, más el ancho del alma o el semi ancho del ala superior de la viga, cualquiera sea el valor que resulte mayor

$$12(0.20) + 0.34 = 2.74$$
 m

✓ La separación promedio de las vigas adyacentes.

$$S = 1.98 \text{ m}$$

✓ Ancho de la viga (según planos)

$$bf = 1.5 \text{ m}$$
 (Controla)

d. Espesor del ala y alma de la viga AASHTO LRFD Arto. 5.14.1.5.1

Ala superior

El espesor de los patines superiores que sirven como losas de tablero deberá ser:

- Como se requiera para el anclaje y recubrimiento para pre esfuerzo transversal
- No menor que 1/20 de la longitud libre entre chaflanes, acartelamientos o almas, a menos que se utilicen nervios transversales con una separación igual a la longitud libre o que se provea pretensado

$$B_{tmin} = 1040 \ mm/20 = 52 \ mm \ < 200 \ mm \ ok!$$

Alma

El espesor del alma deberá ser determinado por los requerimientos por cortante, torsión, recubrimiento del concreto.

Las dimensiones de la sección se muestran en la figura 5.

Figura 5. Sección transversal viga T

	SECCIÓN ESTÁNDAR			
PROPIEDAD	A1P3	P8P9		
AREA	0.806 m ²	0.738 m ²		
Yb	1.023 m	0.908 m		
Yt	0.577 m	0.492 m		
Ix	0.200 m ⁴	0.141 m ⁴		
S	0.196 m ³	0.155 m ³		
L	24.000 m	20.000 m		
PERALTE	1.600 m	1.400 m		
Bw	0.340 m	0.340 m		
BT	0.200 m	0.200 m		

Tabla 8. Propiedades de la sección T

3.3.2 Ubicación de los cables de pos tensado

La posición longitudinal del cable esta generalmente controlada por el momento máximo debido a la carga muerta y a la posición del gato hidráulico al final de la sección.

Las excentricidades máximas deberán ocurrir en los puntos de momento máximo y la menor excentricidad deberá estar presente en el final de la viga. En este tramo del puente Santa Fe los momentos máximos ocurren en el centro del claro.

Figura 6. Configuración de los cables de PC A1P1

3.3.3 Determinación de las cargas actuantes

✓ Peso de la viga

$$W = 23.5 \ \frac{\text{kN}}{\text{m}^3} * 0.806 \ \text{m}^2 = 18.941 \ \frac{\text{kN}}{\text{m}}$$

✓ Peso de la baranda

$$W = 4.806 \ \frac{\text{kN}}{\text{m}}$$

✓ Peso del asfalto

$$W = 22.02 \ \frac{\text{kN}}{\text{m}^3} * 0.08 \ \text{m} = 1.76 \ \frac{\text{kN}}{\text{m}^2}$$

✓ Peso de la acera

$$W = 23.5 \ \frac{\text{kN}}{\text{m}^3} * 0.33\text{m} * 1\text{m} = 7.76 \ \frac{\text{kN}}{\text{m}}$$

Las cargas debidas al peso de la baranda, el asfalto y la acera fueron distribuidas en la estructura en CSI Bridge como se muestra en la figura 7.

Figura 7. Distribución de carga en CSIBridge

✓ Efecto de carga viva

La distribución de carga viva fue realizada usando el software CSIBridge mediante las líneas y superficies de influencia según lo estipulado en CSI Analysis reference manual, como se muestra en la figura 8.

Figura 8. Efecto de carga viva CSIBridge

3.3.4 Diseño por Flexión

3.3.4.1 Factores de carga para los estados límites de resistencia y servicio La ecuación general del diseño es:

$$\sum n_i \gamma_i Q_i \leq \emptyset R_n = R_r$$

Donde:

 γ_i = Factor de carga

Ø = Factor de resistencia

 $\mathbf{Q}_i = \mathsf{Representa}$ el efecto de la fuerza

 $\mathbf{R}_{\mathbf{n}} = \mathsf{Resistencia}$ nominal

 $\mathbf{R_r} = \mathsf{Resistencia} \ \mathsf{factorada}$

 $\begin{array}{ll} n_i = & \mbox{Es el factor de carga modificado relacionado con la ductilidad, redundancia e importancia operacional y es definido como sigue cuando un valor máximo de <math display="inline">\gamma_i$ es usado: $n_i = n_D n_R n_I \geq 0.95$

3.3.4.1.1 Ductilidad (n_D)

Para el estado límite de Resistencia:

 $n_D \ge \begin{cases} 1.05 \text{ para componentes no dúctiles y conexiones} \\ = 1 \text{ para diseño y detalles convencionales} \\ \text{que cumplen con estas especificaciones} \\ 0.95 \text{ para componentes dúctiles y conexiones} \end{cases}$

Para todos los demás estados límites: $n_D = 1$

3.3.4.1.2 Redundancia (n_R)

Para el estado límite de Resistencia:

 $n_R \geq \begin{cases} 1.05 \text{ para miembros no redundantes} \\ 0.95 \text{ para miembros redundantes} \\ = 1 \text{ para niveles convencionales de redundancia} \end{cases}$

Para todos los demás estados límites: $n_R = 1$

3.3.4.1.3 Importancia operativa (n_I)

Para el estado límite de Resistencia:

 $n_{I} \geq \begin{cases} 1.05 \text{ para puentes críticos o escenciales} \\ 0.95 \text{ para puentes relativamente menos importantes} \\ = 1 \text{ para puentes típicos} \\ \text{Sólo aplica para los estados límites de resistencia y eventos extremos} \end{cases}$

Para todos los demás estados límites: $n_I = 1$

Los siguientes valores fueron asumidos:

rabia of rabiolog ag adolinada, roadinadiona o importantela	Tabla 9.	Factores	de ductilidad,	redundancia e	importancia
---	----------	----------	----------------	---------------	-------------

Estado límite	Ductilidad ղ _D	Redundancia n _R	Importancia η_I	η
resistencia	0.95	0.95	1.05	0.95
servicio	1.0	1.0	1.0	1.0

Combinaciones de carga

Estado límite de resistencia I: 1.25 (DC1 + DC2) + 1.5 DW + 1.75 (LL + IM)Estado límite de servicio I: DC1 + DC2 + DW + (LL + IM)Estado límite de servicio III: DC1 + DC2 + DW + 0.8 (LL + IM)Las cargas no factoradas pueden verse en el anexo B pág. xvii

3.3.4.2 Cálculo de la fuerza de presfuerzo

La fuerza preliminar de presfuerzo es usualmente determinada en base a la condición de carga al centro del claro en el estado límite de servicio III. La distancia entre el centro de gravedad de los tendones y la fibra inferior de la viga es:

 y_{bs} A1P3 = 0.198 mm, por lo tanto la excentricidad de los cables en la sección crítica de momento será: e = 1.023 - 0.198 = 0.825 m

De la misma forma y_{bs} P8A2 = 165 mm, e = 0.908 - 0.165 = 0.743 m

El esfuerzo en la fibra inferior se determina con la siguiente expresión

$$f_b = \frac{M_{DC}}{S} + \frac{M_{DW}}{S} + \frac{0.8(M_{LL+IM})}{S} - \frac{P_j}{A} - \frac{P_je}{S}$$
$$f_b = \frac{1687.6 + 95.194}{0.196 m^3} + \frac{94.466}{0.196 m^3} + \frac{0.8(606.265 + 30.322)}{0.196 m^3} - \frac{P_j}{0.806 m^2} - \frac{0.825P_j}{0.196 m^3}$$
$$f_{bA1P1} = 12,176.166 \frac{kN}{m^2} - \frac{5.450 P_j}{m^2}$$

El esfuerzo en fibra inferior de la viga debido al estado límite de servicio III no debe exceder el esfuerzo límite de tensión especificado en la tabla 5.9.4.2.2-1 LRFD

$$0.5\sqrt{f'_c} = 0.5\sqrt{35} = 2.958 \text{ MPA}$$

2,958.04 $\frac{\text{kN}}{\text{m}^2} = 13,053.994 \frac{\text{kN}}{\text{m}^2} - \frac{5.450 P_j}{\text{m}^2}$

La fuerza total mínima necesaria es

$$P_j A 1 P 1 = 1691.439 \text{ kN}$$

Realizando el mismo procedimiento para los otros claros obtenemos:

$$P_j P 1 P 2 = 1364.145 \text{ kN}$$
 $P_j P 8 P 9 = 1168.391 \text{ kN}$
 $P_j P 2 P 3 = 1594.570 \text{ kN}$ $P_j P 9 A 2 = 1247.451 \text{ kN}$

3.3.4.3 Cálculo de las pérdidas de presfuerzo Arto. 5.9.5.1 AASHTO LRFD

$$\Delta f_{pT} = \Delta f_{pF} + \Delta f_{pA} + \Delta f_{pES} + \Delta f_{pLT}$$

Donde:

 $\Delta f_{pT} = Pérdida total (MPa)$

 $\Delta \mathbf{f}_{\mathbf{pF}} = \mathsf{P}\acute{e}\mathsf{r}\mathsf{d}\mathsf{i}\mathsf{d}\mathsf{a}\mathsf{s}\mathsf{p}\mathsf{o}\mathsf{r}\mathsf{f}\mathsf{r}\mathsf{i}\mathsf{c}\mathsf{c}\mathsf{i}\acute{o}\mathsf{n}$ (MPa)

 $\Delta f_{pA} = P \acute{e} r didas por acuñamiento de los anclajes (MPa)$

 Δf_{pES} = Es la suma de todas las pérdidas debido al acortamiento elástico en el tiempo de aplicación del presforzado y/o cargas externas (MPa)

 Δf_{pLT} = Pérdidas debido a la contracción a largo plazo y a la fluencia lenta del concreto y a la relajación del acero (MPa)

3.3.4.3.1 Pérdidas por Fricción

$$\Delta f_{pF} = f_{pj} (1 - e^{-(kx + \mu\alpha)})$$

Donde:

 f_{pj} = Esfuerzo en el acero de presforzado en el momento del tensado (MPa)

k = Coeficiente de fricción por desviación de la vaina de presforzado (1/mm)

 \mathbf{x} = Longitud de un tendón de pretensado desde el extremo del gato hasta cualquier punto considerado (mm)

 $\mu = \text{Coeficiente de fricción}$

 α = Sumatoria de los valores absolutos de la variación angular de la trayectoria del acero de presfuerzo desde el extremo del gato (radianes)

$$f_{pj} = 0.7 f_{pu} = 0.7 * 1850 = 1295 \text{ MPA}$$

 $k = 0.0002 \frac{1}{ft} (6.6 \times 10^{-7} \text{ 1/mm}); \mu = 0.25$

Las pérdidas por fricción se encuentran en el anexo D pág. xlvi

3.3.4.3.2 Pérdida debida al acuñamiento del anclaje

Estas pérdidas pueden ser aproximadas asumiendo que la pérdida varía linealmente dentro de la longitud L_{PA} , el efecto del acuñamiento del anclaje en el esfuerzo del cable puede ser estimado por las siguientes formulas.

$$\Delta f_{PA} = \Delta f \left[1 - \frac{x}{L_{PA}} \right] \qquad \qquad L_{PA} = \sqrt{\frac{E(\Delta L)L_{PF}}{\Delta f_{PF}}} \qquad \qquad \Delta f = \frac{2\Delta f_{PF}L_{PA}}{L_{PF}}$$

Donde:

 $\Delta \mathbf{f} = \mathbf{E} \mathbf{I}$ cambio en el esfuerzo debido al acuñamiento del anclaje

 $\mathbf{x} = \mathbf{E}\mathbf{s}$ la distancia horizontal desde extremo de tensado hasta el punto considerado

 $L_{pA}=\mbox{Es}$ la longitud influenciada por el acuñamiento del anclaje

E = Es el módulo de elasticidad del acuñamiento del anclaje

 $\Delta L = Es$ el espesor del acuñamiento del anclaje (10 mm)

 L_{pF} = Es la longitud para un punto donde la pérdida Δf_{pF} es conocida

E = 29000 ksi (200,000 MPa)

$$L_{PA} = \sqrt{\frac{200,000 \text{ MPA}(0.01\text{m})(20.303\text{m})}{117.65 \text{ MPA}}} = 18.578 \text{ m}$$
$$\Delta f = \frac{2(117.65 \text{ MPA})18.578\text{m}}{20.303\text{m}} = 215.308 \text{ MPA}$$
$$\Delta f_{PA} = 215.308 \text{ MPA} \left[1 - \frac{0.5 * 24\text{m}}{18.578 \text{ m}}\right] = 76.235 \text{ MPA}$$

Las pérdidas por acuñamiento del anclaje se pueden ver en el anexo D pág. xlvi.

3.3.4.3.3 Pérdida por acortamiento elástico

La pérdida debido al acortamiento elástico en miembros pos tensado, diferentes a sistemas de losa, pueden ser calculados como sigue:

$$\Delta f_{pES} = \frac{N-1}{2N} \frac{E_P}{E_{Ci}} f_{cgp}$$

Donde:

N = Número de tendones de presforzado idénticos

 f_{cgp} = Suma de esfuerzos en el concreto en el centro de gravedad de los tendones debidos a la fuerza de presforzado después del tensado y al peso propio del miembro en las secciones de máximo momento (MPa)

 $\mathbf{E}_{\mathbf{P}} = \mathbf{M}$ ódulo de elasticidad de los tendones de presfuerzo (MPa)

 E_{ci} = Módulo de elasticidad del concreto en la transferencia (MPa)

Los valores de f_{cgp} se pueden calcular usando una tensión reducida por debajo del valor del inicial en un margen que depende de los efectos de acortamiento elástico, la relajación y fricción, este valor es calculado en el centro del claro de acuerdo Arto 5.9.5.2.3b LRDF; siendo:

N = 5 Y N = 4; e = 0.825 m y e = 0.743 m; Para A1P3 y P8P9 respectivamente.

$$f_{cgp} = \frac{P}{A} + \frac{Pe^2}{I} - \frac{M_{DC}e}{I}$$

Donde:

 $\mathbf{P} = \mathbf{F}$ uerza aplicada por los gatos (kN)

M_{DC} = Momento máximo debido al peso propio de la viga (kN.m)

A =Área de la sección de concreto (m²)

 $\mathbf{e} = \mathsf{Excentricidad} \ \mathsf{del} \ \mathsf{centroide} \ \mathsf{del} \ \mathsf{acero} \ \mathsf{de} \ \mathsf{presfuerzo} \ \mathsf{con} \ \mathsf{respecto} \ \mathsf{al} \ \mathsf{centroide} \ \mathsf{del} \ \mathsf{concreto} \ (\mathsf{m})$

I = Momento de inercia de la sección de concreto (m⁴)

$$P = P_0 - \Delta P_{PF} - \Delta P_{PA}$$

La fuerza P es igual a la fuerza inicial en el gato menos la pérdida por fricción y la en el anclaje. Se consideraron para este cálculo las pérdidas en el centro del claro.

$$P_{A1P1} = [1295 - 198.90 - 392.322] * 3.455 \times 10^{-3} * 1000 = 2431.567 \text{ kN}$$

$$P_{P1P2} = [1295 - 342.28 - 373.275] * 3.455 \times 10^{-3} * 1000 = 2001.971 \text{ kN}$$

$$P_{P2P3} = [1295 - 350.95 - 393.12] * 3.455 \times 10^{-3} * 1000 = 1903.477 \text{ kN}$$

$$P_{P8P9} = [1295 - 165.860 - 390.982] * 3.455 \times 10^{-3} * 1000 = 2040.279 \text{ kN}$$

$$P_{P9A2} = [1295 - 316.77 - 392.257] * 3.455 \times 10^{-3} * 1000 = 1619.638 \text{ kN}$$

Por lo tanto el valor de f_{cgp} es:

$$f_{cgp}$$
A1P1 = 3.940 MPA f_{cgp} P8P9 = 4.956 MPA f_{cgp} P1P2 = 2.683 MPA f_{cgp} P9A2 = 2.406 MPA f_{cgp} P2P3 = 1.872MPA

La pérdida por acortamiento elástico en cada tramo es:

$$\Delta f_{pES}A1P1 = \frac{5-1}{2*5} \frac{196552}{24870} * 3.940 = 12.456 \text{ MPA}$$

$$\Delta f_{pES}P1P2 = \frac{5-1}{2*5} \frac{196552}{24870} * 2.683 = 8.483 \text{ MPA}$$

$$\Delta f_{pES}P2P3 = \frac{5-1}{2*5} \frac{196552}{24870} * 1.872 = 5.917 \text{ MPA}$$

$$\Delta f_{pES}P8P9 = \frac{4-1}{2*4} \frac{196552}{24870} * 4.956 = 14.687 \text{ MPA}$$

$$\Delta f_{pES}P9A2 = \frac{4-1}{2*4} \frac{196552}{24870} * 2.406 = 7.132 \text{ MPA}$$

3.3.4.3.4 Estimación refinada de las pérdidas dependientes del tiempo

El cambio en el esfuerzo del acero de presfuerzo debido a las pérdidas dependientes del tiempo, deberá ser determinado como:

$$\Delta f_{pLT} = (\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1})_{id} + (\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} - \Delta f_{pSS})_{df}$$

Según el arto 5.9.5.4.5 LRFD, el término $(\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1})_{id}$, para nuestro caso puede ser tomado igual a cero.

Donde:

 Δf_{pSD} = pérdidas del presforzado debidas a la contracción del concreto de la viga entre el tiempo de colocación del tablero y el tiempo final (MPa)

 $\Delta f_{pCD} = pérdidas del presforzado debidas a la fluencia lenta del concreto de la viga entre el tiempo de colocación del tablero y el tiempo final (MPa)$

 $\Delta f_{pR2} = pérdidas del presforzado debidas a la relajación del acero de presforzado$ en la sección compuesta entre el tiempo de colocación del tablero y el tiempo final(MPa)

Pérdida por contracción de la viga Δf_{pSD}

$$\Delta f_{pSD} = \varepsilon_{bdf} E_p K_{df}$$

Donde:

 ε_{bdf} = Deformación debido a la contracción del concreto de la viga entre el tiempo de colocación del tablero y el tiempo final

 K_{df} = Coeficiente de la sección transformada que cuenta para la interacción dependiente del tiempo entre el concreto y el acero adherido en la sección

 $\mathbf{E}_{\mathbf{p}} = \mathsf{M}$ ódulo de elasticidad de los tendones de presforzado (MPa)

La deformación debido a la contracción del concreto de la viga entre el tiempo de colocación del tablero y el tiempo final se calcula:

$$\varepsilon_{bdf} = K_s * K_{hs} * K_f * K_{td} * 0.48 \times 10^{-3}$$
 (Ec.5.4.2.3.3-1 LRFD)

En la cual:

$$\begin{split} K_{s} &= 1.45 - 0.13 (V/S) \geq 1 & K_{hs} = 2.00 - 0.014 H \\ K_{f} &= \frac{5}{1 + f'_{ci}} & K_{td} = \frac{t}{61 - 4f'_{ci} + t} \end{split}$$

Donde:

 K_s = Factor por el efecto de la relación volumen-superficie del componente

 $K_{hs}=\mbox{Factor}$ de humedad por contracción

 K_f = Factor por el efecto de resistencia del concreto

 K_{td} = Factor del tiempo transcurrido

V/S = Relación de volumen - superficie (m)

H = Humedad relativa (%)

 $\mathbf{f'_{ci}}$ = Resistencia a la compresión especificada del concreto en el tiempo del presforzado para miembros pretensados. Si la edad del concreto en el tiempo de carga inicial es desconocida en el tiempo del diseño, $\mathbf{f'_{ci}}$ puede ser tomado como 0.8 $\mathbf{f'_c}$ (MPa)

 t = Madurez del concreto (días), definido como la edad del concreto entre el tiempo de carga para cálculos de fluencia lenta

$$k_{df} = \frac{1}{1 + \frac{E_p}{E_{ci}} \frac{A_{ps}}{A_g} \left[1 + \frac{A_g e_{pg}^2}{I_g} \right] \left[1 + 0.7\Psi_b(t_f, t_i) \right]}$$

Donde:

 \mathbf{e}_{pg} = Excentricidad de la fuerza pretensora con respecto al centroide de la viga, positiva en construcciones típicas donde la fuerza pretensora está por debajo del centroide de la viga (m)

 $A_g =$ Área gruesa de la sección (m²)

 I_g = Momento de inercia de la sección gruesa de concreto con respecto al eje centroidal (m⁴)

 $\Psi_b(t_f, t_i)$ = Coeficiente de fluencia de la viga en el tiempo final debido a la carga introducida en la transferencia por la Eq. 5.4.2.3.2-1 AASHTO LRFD

 K_{hc} = Factor de humedad para fluencia

 $t_f = E dad final (días)$

 $\mathbf{t_i} = \mathsf{E}\mathsf{d}\mathsf{a}\mathsf{d}$ en la transferencia (días)

Asumiendo t_i = 7 días $\ t_d$ = 120 dias , t_f = 36000 días

$$k_{hs} = 2.00 - 0.014H = 2.00 - 0.008 * 85 = 0.81$$

$$\frac{V}{S} = \frac{0.806 \ m^2}{6.04 \ m} = \frac{1249.3025 \ in^2}{237.7953 \ in} = 5.25 \ in \approx 0.133 \ m$$

 $k_s = 1.45 - 0.13(v/s) = k_s = 1.45 - 0.13(5.25) = 0.77 < 1.0 usar ks = 1.0$

 $k_{hc} = 1.56 - 0.008H = 1.56 - 0.014 * 85 = 0.88$

$$\boldsymbol{k}_{f} = \frac{5}{1 + f'_{ci}} = \frac{5}{1 + 4 \, ksi} = 1.0$$
$$\boldsymbol{k}_{td} = \left[\frac{t}{61 - 4f'_{ci} + t}\right] = \frac{36000 - 7}{61 - 4 * 4 + (36000 - 7)} = 0.998$$

$$\varepsilon_{bdf} = (1.00)(0.81)(1.00)(0.998)(0.48 \times 10^{-3}) = 0.0004$$

Calculando el coeficiente por fluencia lenta:

$$\boldsymbol{\Psi}_{\boldsymbol{b}}(\boldsymbol{t}_{\boldsymbol{f}}, \boldsymbol{t}_{\boldsymbol{i}}) = 1.9k_{hc} \, k_{f} \, k_{td} \, t \boldsymbol{i}^{-0.118}$$

$$\Psi_b(t_f, t_i) = 1.9(1.00)(1.00)(0.88)(0.998)(120^{-0.118}) = 1.326$$
$$k_{df} = \frac{1}{1 + \frac{196522}{24870} \cdot \frac{0.003455}{0.806} \left[1 + \frac{0.806 * 0.823^2}{0.199}\right] [1 + 0.7 * 1.326]} = 0.804$$
$$\Delta f_{pSR} = 0.0004 * 0.804 * 196552 = 17.05 \, ksi$$

 $\Delta f_{pSR} = 63.211 \text{ MPA}$

Pérdida por fluencia lenta del concreto Δf_{pCD}

$$\Delta f_{pCD} = \frac{E_p}{E_{ci}} f_{cgp} \left[\Psi_b(t_f, t_i) - \Psi_b(t_d, t_i) \right] k_{df} + \frac{E_p}{E_c} \Delta f_{cd} \Psi_b(t_f, t_d) k_{df}$$

Donde:

 $\Delta \mathbf{f}_{cd}$ = Cambio del esfuerzo en el concreto en el centroide del acero de presforzado debido a las pérdidas dependientes del tiempo entre la transferencia y la colocación del tablero cuando se encuentran actuando el peso propio y las cargas súper impuestas (MPa)

 $\Psi_b(t_f, t_d)$ = Coeficiente de fluencia de la viga en el tiempo final debido a la carga en la colocación del tablero por la ecuación 5.4.2.3.2-1 AASHTO LRFD.

$$\Delta f_{cd} \text{A1P1} = \frac{M_{DC}e}{I} + \frac{M_{DW}e}{I} = \frac{(1687.6 + 95.194) * 0.825}{0.200} + \frac{115.9223 * 0.825}{0.200}$$
$$\Delta f_{pcd} = 7.744 \text{ MPA}$$

De la misma forma para los siguientes tramos tenemos:

$$\Delta f_{pcd} P1P2 = 6.799 MPA$$
 $\Delta f_{pcd} P8P9 = 6.108 MPA$
 $\Delta f_{pcd} P2P3 = 7.349 MPA$ $\Delta f_{pcd} P9A2 = 6.465 MPA$

$$k_{td} = \frac{120 - 7}{61 - 4 * 4 + (120 - 7)} = 0.72$$
$$\Psi_b(t_d, t_i) = 1.9(1.00)(1.00)(0.88)(0.72)(7^{-0.118}) = 0.957$$
$$k_{td} = \frac{36000 - 120}{61 - 4 * 4 + (36000 - 120)} = 0.999$$
$$\Psi_b(t_f, t_d) = 1.9(1.00)(1.00)(0.88)(0.999)(120^{-0.118}) = 0.949$$

Como la pérdida depende del f_{cgp} , y este a su vez es distinto para cada tramo la pérdida por fluencia lenta del concreto será:

$\Delta f_{pCR} A 1 P 1 = 51.555 \text{ MPA}$	$\Delta f_{pCR} \mathbf{P8P9} = 45.090 \mathbf{MPA}$
$\Delta f_{pCR} P1P2 = 43.405 \text{ MPA}$	$\Delta f_{pCR} P9A2 = 40.926 MPA$

 $\Delta f_{pCR} P2P3 = 44.452 \text{ MPA}$

Pérdida por relajación del acero Δf_{pR2}

Ésta pérdida puede ser asumida igual a 1.2 ksi (8.28 MPA)

 $\Delta f_{pR1} = 8.28 \text{ MPA}$

Tabla 10. Pérdidas Totales A1P1

	A1P1								
CARLE	f_{pj}	INSTANTANEAS	CONTRACCIÓN	FLUENCIA	RELAJACIÓN		Pe	PÉRDIDA	
CABLE	(IVIPA)	(IMPA)	(IMPA)	(IVIPA)	(IMPA)	(IVIPA)	(KN)	%	
C1	1295	367.034	63.211	51.555	8.28	804.920	556.199	37.8	
C2	1295	340.366	63.211	51.555	8.28	831.588	574.627	35.8	
C3	1295	306.482	63.211	51.555	8.28	865.472	598.041	33.2	
C4	1295	287.696	63.211	51.555	8.28	884.258	611.022	31.7	
C5	1295	222.734	63.211	51.555	8.28	949.219	655.911	26.7	
Fuerza total aplicada 2995.800									

	P1P2								
CABLE	f _{pj} (МРА)	INSTANTANEAS (MPA)	CONTRACCIÓN (MPA)	FLUENCIA (MPA)	RELAJACIÓN (MPA)	Δ (MPA)	Pe (kN)	PÉRDIDA %	
C1	1295	432.869	63.211	43.405	8.28	747.235	516.339	42.3	
C2	1295	406.179	63.211	43.405	8.28	773.924	534.782	40.2	
C3	1295	359.305	63.211	43.405	8.28	820.799	567.172	36.6	
C4	1295	298.300	63.211	43.405	8.28	881.803	609.326	31.9	
C5	1295	200.325	63.211	43.405	8.28	979.779	677.027	24.3	
Fuerza total aplicada 2904.646									

Tabla 11. Pérdidas Totales P1P2

Tabla 12. Pérdidas Totales P2P3

	P2P3								
	f _{pj}	INSTANTANEAS	CONTRACCIÓN	FLUENCIA	RELAJACIÓN	Δ	Ре	PÉRDIDA	
CABLE	(MPA)	(MPA)	(MPA)	(MPA)	(MPA)	(MPA)	(KN)	%	
C1	1295	363.122	63.211	44.452	8.28	815.935	563.811	37.0	
C2	1295	337.587	63.211	44.452	8.28	841.470	581.456	35.0	
C3	1295	311.304	63.211	44.452	8.28	867.753	599.618	33.0	
C4	1295	277.189	63.211	44.452	8.28	901.868	623.191	30.4	
C5	1295	216.201	63.211	44.452	8.28	962.856	665.334	25.6	
Fuerza total aplicada 3033.409									

Tabla 13. Pérdidas Totales P8P9

	P8P9									
	f _{pj}	INSTANTANEAS	CONTRACCION	FLUENCIA	RELAJACION	Δ	Ре	PÉRDIDA		
CABLE	(MPA)	(MPA)	(MPA)	(MPA)	(MPA)	(MPA)	(kN)	%		
C1	1295	402.043	63.211	45.090	8.28	776.376	536.476	40.0		
C2	1295	377.267	63.211	45.090	8.28	801.152	553.596	38.1		
C3	1295	348.419	63.211	45.090	8.28	830.001	573.531	35.9		
C4	1295	290.613	63.211	45.090	8.28	887.807	613.474	31.4		
Fuerza total aplicada							2277.007			

	P9A2											
	f _{pj}	INSTANTANEAS	CONTRACCION	FLUENCIA	RELAJACION	Δ	Р	PÉRDIDA				
CABLE	(MPA)	(MPA)	(MPA)	(MPA)	(MPA)	(MPA)	(kN)	%				
C1	1295	395.770	63.211	40.926	8.28	786.812	543.687	39.2				
C2	1295	362.935	63.211	40.926	8.28	819.648	566.376	36.7				
C3	1295	335.647	63.211	40.926	8.28	846.935	585.232	34.6				
C4	1295	283.077	63.211	40.926	8.28	899.506	621.559	30.5				
	Fuerza total aplicada 2316.855											

Tabla 14. Pérdidas Totales P9A2

Como se observa en las tablas anteriores la fuerza total P, es mayor a la mínima requerida para todos los claros, calculada en la sección 3.3.4.2.

3.3.4.4 Revisión de los esfuerzos limites

 a) Esfuerzo límite del acero de presfuerzo en el estado límite de servicio después de todas las pérdidas.

$$f_{pe} \le 0.8 f_{py}$$

$$f_{pe}A1P1 = \frac{2995.800}{3.455} = 867.091 \text{ MPA} < 1280 \text{ MPA}$$

$$f_{pe}P1P2 = \frac{2904.646}{3.455} = 840.701 \text{ MPA} < 1280 \text{ MPA}$$

$$f_{pe}P2P3 = \frac{3033.409}{3.455} = 877.976 \text{ MPA} < 1280 \text{ MPA}$$

$$f_{pe}P8P9 = \frac{2277.007}{2.764} = 823.810 \text{ MPA} < 1280 \text{ MPA}$$

$$f_{pe}P9A2 = \frac{2316.855}{2.764} = 838.225 \text{ MPA} < 1280 \text{ MPA}$$

 b) Límites de compresión y Límites de Tensión en el concreto después de las pérdidas

La compresión será investigada usando el estado límite de servicio I AASHTO 5.9.4.2.1-1

$$Q = 1.00(DC + DW) + 1.00(LL + IM)$$

 $0.60f'_c = 21.00$ MPA (Carga permanente + carga viva)

 $0.45f'_c = 15.75$ MPA (Por carga permanente)

Los esfuerzos de tensión en miembros con tendones adheridos o no adheridos deberán ser investigados usando el estado límite de servicio III.

$$Q = 1.00(DC + DW) + 0.8(LL + IM)$$

La tensión no debe exceder de $0.5\sqrt{f'_c} = 2.958$ MPA

			Com	presión		Tensi	ón
Tramo	Elemento	SERVICIO I Sin carga viva	Limite	SERVICIO I Con carga viva	Limite	SERVICIO III	Limite
A1P1	Fibra superior	0.685	15.75	3.933	21		-2.958
	Fibra inferior	6.749	15.75	3.501	21	9.223	-2.958
P1P2	Fibra superior	-0.213	15.75	0.365	21		-2.958
	Fibra inferior	7.421	15.75	6.842	21	5.530	-2.958
P2P3	Fibra superior	0.085	15.75	3.283	21		-2.958
	Fibra inferior	7.442	15.75	4.390	21	5.001	-2.958
P8P9	Fibra superior	-0.352	15.75	2.847	21		-2.958
	Fibra inferior	6.523	15.75	3.324	21	3.964	-2.958
P9A2	Fibra superior	-0.051	15.75	0.595	21		-2.958
	Fibra inferior	6.330	15.75	5.684	21	3.731	-2.958

Tabla 15. Límites de esfuerzos en el concreto después de las pérdidas

Como se observa en la tabla 15 la fuerza de presfuerzo aplicada no origina esfuerzos mayores que los límites establecidos en 5.9.4.1 AASHTO LRFD Como la fibra inferior no presenta tensión se considera que cumple con el criterio establecido.

3.3.4.5 Cálculo del momento nominal

La resistencia factorada M_r deberá ser tomada como:

$$M_r = \emptyset M_n$$

Donde el momento nominal para secciones con patín es:

$$M_n = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right) + A_s f_s \left(d_s - \frac{a}{2} \right) - A'_s f'_s \left(d'_s - \frac{a}{2} \right) + 0.85 f'_c (b - b_w) h_f \left(\frac{a}{2} - \frac{h_f}{2} \right)$$

Los momentos nominales están calculados en la tabla 21 hasta la 25.

3.3.4.5.1 Límites para las Armaduras

Armadura Mínima

Las provisiones para refuerzo mínimo son proporcionadas para reducir la probabilidad de falla frágil proveyendo una capacidad de flexión mayor que el momento de fisuración (LRFD Arto. 5.7.3.3).

En cualquier sección de un componente a flexión no controlado por la compresión, la cantidad de refuerzo de tensión pre esforzado y no pre esforzado deberá ser adecuada para desarrollar una resistencia a la flexión factorada M_r al menos igual al menor de:

1.33 veces el momento factorado requerido en la combinación de carga de resistencia especificada en la tabla 3.4.1-1 AASHTO LRFD o el momento de fisuración calculado como sigue:

$$M_{Cr} = \gamma_3 \left[\left(\gamma_1 f_r + \gamma_2 f_{cpe} \right) S_c - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right]$$

Donde:

 M_{cr} = momento de fisuración (kN.m)

 $\mathbf{f_r}$ = Módulo de rotura en el concreto (Arto. 5.4.2.6 AASHTO LRFD)

 f_{cpe} = Esfuerzo de compresión en el concreto debida solamente a las fuerzas de presforzado efectivas en la fibra extrema de la sección (kN).

 M_{dnc} = Momento total no mayorado debido a la carga permanente que actúa sobre la sección monolítica o no compuesta (kN.m)

 S_c = Módulo de sección para la fibra extrema de la sección compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción (m³)

 S_{nc} = Módulo de sección para la fibra extrema de la sección monolítica o no compuesta (mm³)

Los siguientes factores deben ser usados:

 $\gamma_1 =$ Factor por agrietamiento por flexión

= 1.2 para estructuras segmentales prefabricadas

= 1.6 para todas las demás estructuras de concreto

 γ_2 = Factor de variabilidad del presforzado

= 1.1 para tendones adheridos

= 1 para tendones no adheridos

 γ_3 = Relación del límite elástico mínimo especificado y la resistencia a tensión última del reforzamiento

= 0.67 para A615, Grado 60 de refuerzo

= 0.75 para A706, Grado 60 de refuerzo

= 1 para estructuras de concreto presforzado

Si las vigas se diseñan de manera que la sección monolítica o no compuesta resista todas las cargas, en la expresión anterior para calcular Mcr se deberá sustituir Snc por Sc.

Los factores utilizados son: $\gamma_1 = 1.6 \ \gamma_2 = 1.1 \ \gamma_3 = 1.0$

 $f_r = 0.63\sqrt{f'_c} = 0.63\sqrt{35} = 3.727 \text{ MPA}$

f_{cpe} A1P1 = 16.327 MPA	M_{cr} A1P1 = 4688.875 kN. m
f_{cpe} P1P2 = 15.830 MPA	M_{Cr} P1P2 = 4581.769 kN. m
f_{cpe} P2P3 = 16.532 MPA	M_{Cr} P2P3 = 4733.065 kN. m
f_{cpe} P8P9 = 14.001 MPA	<i>M</i> _{<i>Cr</i>} P8P9 = 3311.456 kN. m
f_{cpe} P9A2 = 14.245 MPA	<i>M</i> _{<i>Cr</i>} P9A2 = 3353.156 kN. m

3.3.4.5.2 Cálculo del momento último

Los momentos y cortantes últimos debidas a la carga muerta, carga superpuesta y a la carga viva fueron obtenidos mediante el análisis estructural con CSIBridge como se muestra en la figura 9 y 10. Los momentos últimos son calculados en las tablas 16-20

Figura 9. Cortantes Totales DC según CSIBridge

El momento flexionante último para el Estado Límite de Resistencia I es:

 $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ M_u A1P1 = 3484.247 kN.m, $1.33M_u = 4634.008$ kN.m M_u P1P2 = 2921.726 kN.m, $1.33M_u = 3885.895$ kN.m M_u P2P3 = 3347.118 kN.m, $1.33M_u = 4451.667$ kN.m M_u P8P9 = 2366.884 kN.m, $1.33M_u = 3147.956$ kN.m M_u P9A2 = 2487.433 kN.m, $1.33M_u = 3308.286$ kN.m

3.3.4.6 Esfuerzo promedio en el acero de presfuerzo AASHTO 5.7.3.1.1

$$f_{ps} = f_{pu} \left(1 - k \frac{c}{d_p} \right)$$

$$k = 2\left(1.04 - \frac{f_{py}}{f_{pu}}\right) = 2\left(1.04 - \frac{1600}{1850}\right) = 0.350$$

Asumiendo que la viga se comporta como una sección rectangular, la profundidad del eje neutro en el centro del claro se calcula como sigue. La distancia de la fibra inferior de la viga al centroide los cables es $y_{bs} = 198$ mm

Entonces $d_p = d - y_{bs} = 1600 - 198 = 1402 \text{ mm}$

$$c = \frac{A_{ps}f_{pu} + A_{s}f_{s} - A'_{s}f'_{s}}{0.85f'_{c}\beta_{1}b + kA_{ps}\frac{f_{pu}}{d_{p}}} = \frac{3455(1850)}{0.85(35)(0.8)(1500) + 0.35(3455)\frac{1850}{1402}}$$
$$= 171.381 \text{ mm}$$

c < hf = 200 mm; Por lo tanto suposición del comportamiento rectangular es correcta y $a = c\beta_1 = 171.381 (0.8) = 137.105$ mm

$$f_{ps} = 1850 \left(1 - 0.350 \frac{171.381}{1402}\right) = 1770.849 \text{ MPA}$$

Entonces el momento nominal de la viga en el tramo de A1P3 será:

$$M_n = 3455x10^{-3}(1770.849)\left(1.402 - \frac{0.137105}{2}\right) = 8.158 \text{ MN. m}$$
$$= 8158.410 \text{ kN. M}$$

$$M_n = 8158.410 \text{ kN. m}$$

Dado que $\emptyset = 1$ para concreto presforzado, la resistencia a la flexión es igual a:

$$M_r = 8158.410 \text{ kN. m}$$

Al comparar con los momentos de fisuración concluimos que se cumple con el requisito para la armadura mínima.

3.3.4.7 Momentos factorados para la viga interior

	A1P1										
X/L	M _{DC1}	M _{DC2}	M _{DW}	M _{PL}	М	LL	<i>M_u</i> (+)	М _и (-)			
	kN.m	kN.m	kN.m	kN.m	(+) kN.m	(-) kN.m	kN.m	kN.m			
0.0	31.847	-74.527	-6.371	-17.711	64.468	-144.797	17.975	-329.929			
0.1	431.187	45.293	34.867	13.746	259.771	-11.070	1070.227	619.954			
0.2	972.021	176.944	85.717	48.187	596.066	-28.583	2557.613	1519.135			
0.3	1362.052	229.856	112.814	62.576	744.457	-46.105	3392.845	2078.534			
0.4	1601.104	206.150	115.922	57.588	736.669	-63.238	3631.757	2301.911			
0.5	1687.600	95.194	94.466	30.322	606.265	-79.668	3310.006	2169.643			
0.6	1564.789	137.310	73.870	38.227	574.702	-102.185	3145.502	2020.177			
0.7	1286.747	85.362	27.075	22.254	423.212	-127.513	2408.548	1492.967			
0.8	855.254	-55.171	-43.161	-15.923	214.639	-291.376	1218.961	377.711			
0.9	277.041	-284.865	-137.048	-76.865	43.186	-629.871	-260.574	-1379.532			
1.0	-1.167	-111.200	-180.214	-108.139	8.852	-832.064	-555.306	-1953.329			

Tabla 16. Momentos factorados A1P1

DC1: Carga muerta debida a los elementos, DC2: Carga muerta de la acera y baranda, DW: Carga debida a las superficie de desgaste, PL: Carga peatonal, LL: Carga viva debida a HL-93.

	P1P2											
X/L	M _{DC1}	M _{DC2}	M _{DW}	M _{PL}	M _{LL}		<i>M_u</i> (+)	<i>M_u</i> (-)				
	kN.m	kN.m	kN.m	kN.m	(+) kN.m	(-) kN.m	kN.m	kN.m				
0.0	-0.898	-110.669	-150.167	-94.385	123.616	-809.949	-297.878	-1849.929				
0.1	204.022	-243.012	-112.079	-64.986	109.868	-623.606	-131.396	-1350.798				
0.2	754.535	-45.886	-36.697	-13.374	255.398	-306.066	1191.591	258.157				
0.3	1160.364	64.147	15.072	16.079	429.257	-181.797	2215.957	1200.078				
0.4	1415.406	87.311	42.204	23.736	506.382	-142.551	2725.940	1647.087				
0.5	1517.322	86.319	44.552	22.564	463.349	-136.982	2775.639	1777.590				
0.6	1410.483	88.993	43.048	24.198	503.178	-139.653	2718.734	1650.027				
0.7	1148.513	66.866	16.512	16.846	424.400	-176.444	2200.364	1201.461				
0.8	734.083	-42.653	-34.857	-12.425	248.860	-304.151	1164.476	245.094				
0.9	174.013	-240.492	-110.277	-64.236	113.935	-620.162	-153.465	-1373.901				
1.0	-0.980	-105.677	-146.416	-92.062	128.504	-803.536	-274.713	-1824.229				

Tabla 17. Momentos factorados P1P2

	P2P3										
X/L	M _{DC1}	M _{DC2}	M _{DW}	M _{PL}	М	LL	<i>M_u</i> (+)	<i>M_u</i> (-)			
	kN.m	kN.m	kN.m	kN.m	(+) kN.m	(-) kN.m	kN.m	kN.m			
0.0	-1.058	-106.141	-175.072	-105.102	58.180	-344.758	-454.783	-1124.667			
0.1	295.299	-270.263	-130.407	-72.808	46.457	-607.941	-199.908	-1287.844			
0.2	844.224	-47.726	-38.398	-13.840	221.850	-273.694	1236.941	413.098			
0.3	1247.260	87.501	30.049	22.825	430.140	-125.089	2380.903	1457.836			
0.4	1498.901	135.232	73.767	37.547	575.662	-100.526	3065.111	1940.947			
0.5	1598.695	90.473	92.326	28.752	598.202	-80.119	3179.762	2052.054			
0.6	1485.199	195.046	109.699	54.371	712.650	-72.607	3426.784	2121.295			
0.7	1217.219	210.663	102.404	57.320	696.289	-65.551	3094.410	1827.850			
0.8	796.292	146.678	70.673	40.190	512.314	-59.626	2139.026	1188.176			
0.9	227.842	-3.270	15.391	1.626	152.384	-73.384	544.653	169.314			
1.0	-1.159	-0.371	0.000	-0.106	2.902	-0.831	2.831	-3.375			

Tabla 18. Momentos factorados P2P3

DC1: Carga muerta debida a los elementos, DC2: Carga muerta de la acera y baranda, DW: Carga debida a las superficie de desgaste, PL: Carga peatonal, LL: Carga viva debida a HL-93.

	P8P9										
X/L	M _{DC1}	M _{DC2}	M _{DW}	M _{PL}	M _{LL}		<i>M_u</i> (+)	М _и (-)			
	kN.m	kN.m	kN.m	kN.m	(+) kN.m	(-) kN.m	kN.m	kN.m			
0.0	1.263	-0.222	0.000	-0.072	43.031	-148.571	72.656	-245.882			
0.1	160.228	0.864	12.436	1.700	140.906	-67.071	446.101	100.340			
0.2	619.522	120.914	55.997	32.874	478.086	-74.320	1808.534	890.160			
0.3	895.090	132.982	65.135	36.325	537.339	-84.736	2267.368	1233.168			
0.4	913.074	143.041	71.589	39.130	580.190	-92.116	2385.769	1268.061			
0.5	1035.417	64.714	58.912	20.299	495.902	-111.033	2248.540	1239.511			
0.6	922.319	81.541	34.471	21.897	457.676	-152.970	2038.495	1023.296			
0.7	805.104	43.216	12.880	11.278	378.600	-175.219	1673.906	753.182			
0.8	639.034	-11.536	-17.963	-3.893	267.813	-206.295	1158.324	370.120			
0.9	190.395	-207.390	-110.387	-65.231	53.108	-477.255	-197.636	-1079.364			
1.0	1.250	-84.157	-133.094	-82.286	21.978	-229.778	-388.374	-806.918			

Tabla 19. Momentos factorados P8P9

	P9A2										
X/L	M _{DC1}	M _{DC2}	M _{DW}	M_{PL}	M _{LL}		<i>M</i> _{<i>u</i>} (+)	<i>М</i> _и (-)			
	kN.m	kN.m	kN.m	kN.m	(+) kN.m	(-) kN.m	kN.m	kN.m			
0.0	1.293	-84.173	-138.147	-83.342	21.088	-236.782	-398.778	-827.486			
0.1	194.876	-210.017	-101.106	-56.508	51.330	-486.642	-170.664	-1065.042			
0.2	663.037	-10.909	-17.599	11.999	261.048	-205.264	1203.264	428.020			
0.3	839.040	45.563	-27.139	35.404	374.940	-169.926	1693.989	788.149			
0.4	963.846	85.093	37.594	22.971	454.665	-145.190	2093.256	1095.998			
0.5	1090.699	72.523	63.646	22.054	503.550	-106.307	2345.838	1331.950			
0.6	1002.983	155.875	78.711	42.705	607.596	-77.762	2569.433	1430.026			
0.7	897.075	149.605	74.758	40.836	577.031	-65.311	2376.665	1308.772			
0.8	745.778	143.065	66.801	38.746	536.139	-47.414	2106.437	1136.282			
0.9	317.982	36.204	26.647	10.878	234.400	-16.704	866.343	448.884			
1.0	19.181	-61.191	-5.681	0.000	52.374	-124.047	29.090	-264.211			

Tabla 20. Momentos factorados P9A2

Los momentos últimos fueron calculados usando el estado límite de resistencia l 1.25 (DC1 + DC2) + 1.5 DW + 1.75 (LL + IM).

Debido a que la carga viva ocasiona momentos positivos y negativos, el momento último fue calculado usando ambos valores como Mu (+) y Mu (-) respectivamente. Se tomaron como más críticos los de mayor valor, esto se observa en los datos sombreados de las tablas 16-20.

La resistencia nominal a flexión de las vigas se calculó como se muestra en las tablas 21-25 usando el procedimiento estipulado en la sección 3.3.4.5 de este documento. Se debe cumplir que $\eta_i \gamma_i Q_i \leq \emptyset R_n = R_r$

				A1P1				
X/L	A _{ps}	d_p	b	С	fps	а	$ M_u $	ØM _n
	mm ²	m	mm	mm	MPA	mm	KN.m	kN.m
0.0	3455	0.750	500	429.472	1479.223	343.577	329.929	2955.073
0.1	3455	0.917	1500	167.591	1731.694	134.073	1070.227	5086.770
0.2	3455	1.096	1500	169.355	1749.919	135.484	2557.613	6214.881
0.3	3455	1.255	1500	170.525	1762.010	136.420	3392.845	7224.022
0.4	3455	1.365	1500	171.181	1768.785	136.945	3631.757	7921.810
0.5	3455	1.402	1500	171.381	1770.850	137.104	3310.006	8158.414
0.6	3455	1.383	1500	171.278	1769.787	137.022	3145.502	8035.147
0.7	3455	1.241	1500	170.435	1761.083	136.348	2408.548	7136.837
0.8	3455	1.021	1500	168.690	1743.053	134.952	1218.961	5744.284
0.9	3455	0.746	500	429.064	1477.818	343.251	1379.532	2935.025
1.0	3455	0.750	500	429.472	1479.223	343.577	1953.329	2955.073

Tabla 21. Resistencia nominal a flexión A1P1

El momento nominal es mayor al momento último en todas las secciones de la viga interior A1-P1, siendo la más crítica la ubicada en 0.4 con un valor de **3631.757 < 7921.810.**

	P1P2										
X/L	Aps	d _p	b	С	fps	а	$ M_u $	ØM _n			
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m			
0.0	3455	0.750	500	429.472	1479.223	343.577	1849.929	2955.073			
0.1	3455	0.748	500	429.242	1478.430	343.393	1350.798	2943.744			
0.2	3455	1.027	1500	168.741	1743.579	134.993	1191.591	5778.185			
0.3	3455	1.243	1500	170.449	1761.224	136.359	2215.957	7150.035			
0.4	3455	1.382	1500	171.277	1769.777	137.021	2725.940	8034.004			
0.5	3455	1.402	1500	171.381	1770.850	137.104	2775.639	8158.414			
0.6	3455	1.382	1500	171.274	1769.745	137.019	2718.734	8030.319			
0.7	3455	1.241	1500	170.433	1761.062	136.347	2200.364	7134.934			
0.8	3455	1.023	1500	168.702	1743.175	134.962	1164.476	5752.127			
0.9	3455	0.745	500	428.944	1477.403	343.155	1373.901	2929.138			
1.0	3455	0.750	500	429.472	1479.223	343.577	1824.229	2955.073			

Tabla 22. Resistencia nominal a flexión P1P2

El momento nominal es mayor al momento último en todas las secciones de la viga interior P1-P2, siendo la más crítica la ubicada en 0.5 con un valor de **2775.639 < 8158.414.**
	P2P3											
X/L	A _{ps}	d_p	b	С	fps	а	$ M_u $	ØM _n				
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m				
0.0	3455	0.750	500	429.472	1479.223	343.577	1124.667	2955.073				
0.1	3455	0.748	500	429.242	1478.430	343.393	1287.844	2943.744				
0.2	3455	1.026	1500	168.738	1743.548	134.991	1236.941	5776.161				
0.3	3455	1.243	1500	170.448	1761.218	136.359	2380.903	7149.400				
0.4	3455	1.382	1500	171.277	1769.777	137.021	3065.111	8034.004				
0.5	3455	1.402	1500	171.381	1770.850	137.104	3179.762	8158.414				
0.6	3455	1.364	1500	171.178	1768.757	136.942	3426.784	7918.761				
0.7	3455	1.253	1500	170.515	1761.903	136.412	3094.410	7213.869				
0.8	3455	1.093	1500	169.329	1749.655	135.463	2139.026	6195.630				
0.9	3455	0.927	1500	167.709	1732.917	134.168	544.653	5151.389				
1.0	3455	0.750	500	429.472	1479.223	343.577	0.000	2955.073				

Tabla 23. Resistencia nominal a flexión P2P3

El momento nominal es mayor al momento último en todas las secciones de la viga interior P2-P3, siendo la más crítica la ubicada en 0.6 con un valor de **3426.784 < 7918.761.**

				P8P9				
X/L	Aps	d_p	b	С	f _{ps}	а	$ M_u $	ØM _n
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m
0.0	2764	0.628	500.000	413.377	1423.787	330.702	245.882	2275.857
0.1	2764	0.862	1500.000	166.909	1724.650	133.528	446.101	4739.589
0.2	2764	1.059	1500.000	169.039	1746.660	135.232	1808.534	5983.620
0.3	2764	1.204	1500.000	170.186	1758.504	136.149	2267.368	6903.745
0.4	2764	1.235	1500.000	170.395	1760.663	136.316	2385.769	7098.008
0.5	2764	1.208	1500.000	170.208	1758.735	136.166	2248.540	6924.040
0.6	2764	1.011	1500.000	168.594	1742.055	134.875	2038.495	5680.920
0.7	2764	0.782	1500.000	165.756	1712.735	132.605	1673.906	4234.549
0.8	2764	0.775	1500.000	165.647	1711.605	132.518	1158.324	4191.208
0.9	2764	0.625	500.000	412.920	1422.215	330.336	1079.364	2259.500
1.0	2764	0.625	500.000	412.920	1422.215	330.336	806.918	2259.500

Tabla 24. Resistencia nominal a flexión P8P9

El momento nominal es mayor al momento último en todas las secciones de la viga interior P8-P9, siendo la más crítica la ubicada en 0.4 con un valor de **2385.769 < 7098.008.**

	P9A2											
X/L	Aps	d _p	b	С	f _{ps}	а	$ M_u $	ØM _n				
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m				
0.0	2764	0.625	500.000	412.920	1422.215	330.336	827.486	2259.500				
0.1	2764	0.618	500.000	411.842	1418.499	329.473	1065.042	2221.405				
0.2	2764	1.011	1500.000	168.590	1742.020	134.872	1203.264	5678.707				
0.3	2764	1.207	1500.000	170.207	1758.726	136.166	1693.989	6923.247				
0.4	2764	1.235	1500.000	170.395	1760.663	136.316	2093.256	7098.008				
0.5	2764	1.204	1500.000	170.185	1758.497	136.148	2345.838	6903.111				
0.6	2764	1.059	1500.000	169.038	1746.641	135.230	2569.433	5982.354				
0.70	2764	0.862	1500.000	166.907	1724.623	133.525	2376.665	4738.329				
0.80	2764	0.834	1500.000	166.528	1720.711	133.223	2106.437	4562.169				
0.90	2764	0.789	1500.000	165.867	1713.880	132.694	866.343	4279.158				
1.0	2764	0.625	500.000	412.920	1422.215	330.336	264.211	2259.500				

Tabla 25. Resistencia nominal a flexión P9A2

El momento nominal es mayor al momento último en todas las secciones de la viga interior P9-A2, siendo la más crítica la ubicada en 0.6 con un valor de **2569.433 < 5982.354.**

Por lo anterior se puede concluir que:

¡La sección es adecuada por flexión!

Lo anterior fue comprobado en CSIBridge, mediante la opción Design/Rating como se muestra en la figura 11.

Figura 11. Chequeo por Flexión CSIBridge Tramo A1P3

Figura 12. Chequeo por Cortante CSIBridge Tramo A1P3

La figura 11 comprueba que la sección establecida para las vigas T cumple los criterios por flexión positiva y negativa; en ella se muestra la envolvente de momentos (área sombreada en celeste) que representa la demanda por flexión y la capacidad de la viga mediante la línea naranja. Como se observa la capacidad es mayor a la demanda en todos los tramos.

La figura 12 muestra la demanda de cortante en viga, representada por la línea verde, la capacidad por corte de la viga se puede observar por la línea naranja; como se ve, la demanda es menor que la capacidad cumpliendo así los requerimientos por corte estipulados en la norma AASHTO LRFD. La verificación con hojas de cálculo se muestra a continuación.

3.3.5 Revisiones por cortante

3.3.5.1 Ubicación de la sección critica de cortante

La sección crítica de cortante está ubicada a la distancia d_v , desde la cara interna del soporte (AASHTO Art. 5.8.3.2). La profundidad efectiva de cortante es el valor mayor de:

$$d_{v} = \left[\begin{array}{c} d_{e} - \frac{a}{2} \\ 0.9 d_{e} \\ 0.72 h \end{array} \right]$$

Donde:

$$d_e = \frac{A_{ps}f_{ps}d_p + A_sf_{ps}d_s}{A_{ps}f_{ps} + A_sf_{ps}}$$

Como $A_s = 0$, $d_e = d_p$

$$d_e - \frac{a}{2} = 750 - 171.789 = 578.211 \text{ mm}$$

 $0.9d_e = 0.9(850) = 765 \text{ mm}$
 $0.72(1600) = 1152 \text{ mm} \quad X/I = 0.048$ (Control)

$$0.72h = 0.72(1600) = 1152 \text{ mm} X/L = 0.048$$
 (Controla para A1P3)

0.72h = 0.72(1400) = 1008 mm X/L = 0.050 (Controla para P8A2)

Por lo tanto la sección crítica de cortante está ubicada a 0.048L del apoyo de la pila 2 y a 0.050 de la pila P9 Las fuerzas factoradas para la sección crítica de cortante son:

$$V_u = -1030.076 \text{ kN}$$

 $M_u = -1584.248 \text{ kN. m}$
 $N_u = 0 \text{ kN}$
 $V_p = 74.063 \text{ kN}$

 M_u No debe ser menor de $|V_u - V_p|d_v$

1584.248 kN. m >
$$|-1030.076 - 74.063| * 1.152 = 115.397$$
 kN. m
 $M_u = -1584.248$ kN. m kN. m
 $f_{po} = 0.7 f_{pu} = 0.7(1850) = 1295$ MPA

3.3.5.2 Contribución del concreto a la resistencia nominal por cortante

La deformación por tensión longitudinal en el centroide del refuerzo de tensión es:

$$\varepsilon_s = \frac{\left(\frac{|M_u|}{d_v} + 0.5N_u + |V_u - V_p| - A_{ps}f_{po}\right)}{E_s A_s + E_p A_{ps}}$$

$$\varepsilon_s = \frac{\left(\frac{1584248 \text{kN.mm}}{1152 \text{ mm}} + |-1030.076 - 74.063| \text{kN} - 3.455 \text{mm}^2(1295 \text{ MPA})\right)}{196552 \text{ MPA}(3.455 \text{mm}^2)}$$

$$\varepsilon_{s} = -0.00396$$

Como ε_s es negativo se tomó igual a cero, $\varepsilon_s = 0$

$$\beta = \frac{4.8}{1 + 750\varepsilon_s} = 4.8$$
$$\theta = 29 + 3500\varepsilon_s = 29^\circ$$

La contribución del concreto será:

$$V_c = 0.083\beta \sqrt{f'_c} b_v d_v$$

El ancho b_v , se tomaron en cuenta los ductos de diámetro $\phi = 58 \text{ mm}$

$$V_c = 0.083(4.8)(\sqrt{35})(340 - 116)(1152) = 608,210.41 \text{ N} = 608.21 \text{ kN}$$

3.3.5.3 Requerimientos para el refuerzo por cortante

Revisar si $V_u \ge 0.5 \phi (V_c + V_p)$

$$0.5(0.9)(608.21 + 74.063) = 307.023 \text{ kN}$$

Por lo tanto refuerzo transversal es requerido en la sección, el refuerzo requerido será:

$$V_n = V_c + V_s + V_p$$

Sustituyendo $V_n = \frac{V_u}{\phi}$

 $V_s = \frac{V_u}{\phi} - V_c - V_p$, despejando tenemos:

$$V_{\rm s} = \frac{1030.076}{0.9} - 608.21 - 74.063 = 462.226 \,\mathrm{kN} \,\mathrm{(V_s \, requerido)}$$

$$V_s = \frac{A_v f_y d_v (\cot \theta + \cot \alpha) \sin \alpha}{s}$$

Despejando tenemos:

$$\frac{A_v}{s} = \frac{V_s}{f_y d_v (\cot \theta + \cot \alpha) \sin \alpha}$$

Donde $\theta = 29^{\circ}$, $\alpha = 90^{\circ}$

$$\frac{A_v}{s} = \frac{462.226 \text{ kN}}{345 \frac{\text{N}}{\text{mm}^2} (\frac{1.152 \text{ m}}{1000})(\cot 29^\circ + \cot 90^\circ) \sin 90^\circ} = 644.667 \frac{\text{mm}^2}{\text{m}}$$

Utilizando varillas N° 13 según los planos proporcionados A_{ν} , será:

 $A_v = 129 \text{ mm}^2 * 2 = 258 \text{ mm}^2$

3.3.5.4 Separación requerida

$$s = \frac{258 \text{ mm}^2}{644.667 \quad \frac{\text{mm}^2}{\text{m}}} * 1000 = 400 \text{ mm}$$

Proveyendo $A_v = 258 \text{ mm}^2$, con una separación s = 125 mm como se especifica en los planos

$$V_s = \frac{258 \text{ mm}^2 (345)(1152 \text{ mm})(\cot 29^\circ) \sin 90^\circ}{125 \text{ mm} (1000)} = 1479.890 \text{ kN} > 462.226 \text{ kN}$$

3.3.5.5 Chequeo del máximo espaciamiento

Esfuerzo de compresión en el concreto

$$\boldsymbol{v}_{u} = \frac{\left|\boldsymbol{V}_{u} - \boldsymbol{\emptyset}\boldsymbol{V}_{p}\right|}{\boldsymbol{\emptyset}\boldsymbol{b}_{v}\boldsymbol{d}_{v}}$$

$$v_u = \frac{|-1030.076 - (0.9)74.063|}{0.9(224)(1152)} * 1000$$
$$v_u = 4.148 \text{ MPA}$$
$$0.125f'_c = 4.375 \text{ MPA}$$

Se cumple que $v_u < 0.125 f'_c$, por tanto el espaciamiento máximo será:

$$s_{max} = 0.8d_v \le 600 \text{ mm}$$

$$s_{max} = 0.8(1152) = 921.6 \text{ mm} > 600 \text{ mm}$$

 $s_{max} = 600 \text{ mm}$

3.3.5.6 Refuerzo transversal mínimo

LRFD 5.8.2.5

$$A_{v} \ge 0.083 \sqrt{f'_{c}} \frac{b_{v}s}{f_{y}}$$
$$A_{v} \ge 0.083 \sqrt{35} \frac{224(125)}{345} = 39.852 \text{ mm}^{2}$$
$$A_{v} = 258 \text{ mm}^{2} > 39.852 \text{ mm}^{2}$$

3.3.5.7 Resistencia nominal al cortante

Según el arto LRFD 5.8.3.3 para asegurar que el alma de la viga no se aplastará antes de que el refuerzo transversal fluya la resistencia al corte deberá ser la menor de:

i)

$$V_n = V_c + V_s + V_p$$

 $V_n = 608.21 + 1479.890 + 74.063 = 2162.163$ kN (Controla)

ii)

$$V_n = 0.25 f'_c b_v d_v + V_p$$

 $V_n = 0.25(35)(224)(1.152) + 74.063 = 2331.983$ kN

El chequeo del cortante a lo largo de la sección de la viga para cada tramo se muestra de la tabla 26 hasta la 30.

Esta revisión también fue realizada usando el estado límite de resistencia l 1.25 (DC1 + DC2) + 1.5 DW + 1.75 (LL + IM).

				A1P1				
X/L	V _p kN	$d_v \ {\sf mm}$	M _u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN
0.0	0.000	1152	1029.569	608.210	125	1479.890	1879.290	893.723
0.048	184.475	1152	1197.782	608.210	125	1479.890	2045.317	855.266
0.1	184.475	1152	1145.018	608.210	125	1479.890	2045.317	809.464
0.2	184.475	1152	2557.613	608.210	125	1479.890	2045.317	588.306
0.3	167.253	1187	3392.845	626.504	250	762.201	1400.363	373.807
0.4	93.552	1296	3631.757	684.389	250	832.623	1449.507	174.597
0.5	0.000	1333	3310.006	704.008	250	856.491	1404.449	296.613
0.6	104.955	1314	3145.502	693.787	250	844.057	1478.518	335.037
0.7	242.839	1173	2408.548	619.269	250	753.399	1453.956	536.344
0.8	263.259	1152	1218.961	608.210	125	1479.890	2116.223	767.913
0.9	207.894	1152	-1379.532	608.210	125	1479.890	2066.395	1007.392
0.952	0.000	1152	-1703.904	608.210	125	1479.890	1879.290	1029.852
1.0	0.000	1152	-1953.329	608.210	125	1479.890	1879.290	553.992

Tabla 26. Revisiones por cortante A1P1

La capacidad a corte de la viga es mayor a la demanda en todas las secciones, siendo más crítica en 0.952 con un valor de **1029.852 kN < 1879.290 kN**.

	P1P2										
X/L	V _p kN	$d_v \ {\sf mm}$	M _u kN.m	V _c kN	S mm	V _s kN	$\emptyset V_n$ kN	V _u kN			
0.0	0.000	1152	-1849.929	608.210	125	1479.890	1879.290	622.364			
0.048	51.385	1152	-1635.093	608.210	125	1479.890	1925.536	973.665			
0.1	51.385	1152	-1350.798	608.210	125	1479.890	1925.536	906.748			
0.2	233.940	1152	1191.591	608.210	125	1479.890	2089.836	701.492			
0.3	206.322	1175	2215.957	620.364	250	754.731	1423.276	496.094			
0.4	64.140	1314	2725.940	693.692	250	843.941	1441.596	283.483			
0.5	0.000	1333	2751.974	704.008	250	856.491	1404.449	314.424			
0.6	74.465	1313	2718.734	693.387	250	843.569	1450.279	260.604			
0.7	206.772	1173	2200.364	619.111	250	753.206	1421.180	468.577			
0.8	255.017	1152	1164.476	608.210	125	1479.890	2108.806	704.051			
0.9	255.017	1152	-1373.901	608.210	125	1479.890	2108.806	941.474			
0.952	0.000	1152	-1673.585	608.210	125	1479.890	1879.290	976.766			
1.0	0.000	1152	-1824.229	608.210	125	1479.890	1879.290	617.372			

Tabla 27. Revisiones por cortante P1P2

La capacidad a corte de la viga es mayor a la demanda en todas las secciones, siendo más crítica en 0.952 con un valor de **976.766 kN < 2108.806 kN.**

	P2P3										
X/L	V _p kN	$d_v \ {\sf mm}$	M_u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN			
0.0	0.000	1152	-1124.667	608.210	125	1479.890	1879.290	625.794			
0.048	74.063	1152	-1584.248	608.210	125	1479.890	1945.947	1030.076			
0.1	74.063	1152	-1287.844	608.210	125	1479.890	1945.947	959.288			
0.2	245.710	1152	1236.941	608.210	125	1479.890	2100.429	749.639			
0.3	221.457	1175	2380.903	620.312	250	754.667	1436.792	549.338			
0.4	69.896	1314	3065.111	693.692	250	843.941	1446.777	339.677			
0.5	0.000	1333	3179.762	704.008	250	856.491	1404.449	264.752			
0.6	94.752	1296	3426.784	684.136	250	832.315	1450.082	179.859			
0.7	169.199	1185	3094.410	625.662	250	761.176	1400.433	378.874			
0.8	186.668	1152	2139.026	608.210	125	1479.890	2047.291	591.050			
0.9	186.668	1152	719.823	608.210	125	1479.890	2047.291	811.514			
0.952	186.668	1152	785.830	608.210	125	1479.890	2047.291	868.812			
1.0	186.668	1152	465.722	608.210	125	1479.890	2047.291	217.605			

Tabla 28. Revisiones por cortante P2P3

La capacidad a corte de la viga es mayor a la demanda en todas las secciones, siendo más crítica en 0.048 con un valor de **1030.076 kN < 1945.947 kN**

	P8P9										
X/L	V _p kN	$d_{v} \ {\sf mm}$	Μ _u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN			
0.0	156.303	1008	544.229	532.184	125	1294.903	1785.052	383.606			
0.055	156.303	1008	940.046	532.184	125	1294.903	1785.052	776.281			
0.1	156.303	1008	860.234	532.184	125	1294.903	1785.052	697.103			
0.2	134.881	1008	1808.534	532.184	250	647.452	1183.065	481.143			
0.3	51.418	1149	2267.368	606.823	250	738.256	1256.848	294.605			
0.4	0.000	1180	2385.769	622.963	250	757.892	1242.769	246.779			
0.5	108.740	1153	2248.540	608.509	250	740.308	1311.802	180.385			
0.6	202.094	1008	2038.495	532.184	250	647.452	1243.556	373.401			
0.7	26.709	1008	1673.906	532.184	250	647.452	1085.710	448.475			
0.8	0.000	1008	1158.324	532.184	250	647.452	1061.672	591.442			
0.9	0.000	1008	-1079.364	532.184	125	1294.903	1644.379	873.294			
0.945	0.000	1008	-1301.897	532.184	125	1294.903	1644.379	893.134			
1.0	0.000	1008	-806.918	532.184	125	1294.903	1644.379	556.036			

La capacidad a corte de la viga es mayor a la demanda en todas las secciones, siendo más crítica en 0.945 con un valor de **893.134 kN < 1644.379 kN.**

	P9A2										
X/L	V _p kN	$d_v \ {\sf mm}$	Μ _u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN			
0.0	0.000	1.008	-827.486	532.184	125	1294.903	1644.379	536.426			
0.055	129.933	1008	-1320.785	532.184	125	1294.903	1761.319	905.884			
0.1	129.933	1008	-1065.042	532.184	125	1294.903	1761.319	844.004			
0.2	205.878	1008	1203.264	532.184	250	647.452	1246.962	569.657			
0.3	75.749	1152	1693.989	608.443	250	740.228	1281.978	462.105			
0.4	0.000	1180	2093.256	622.963	250	757.892	1242.769	386.527			
0.5	74.458	1149	2345.838	606.770	250	738.192	1277.479	185.955			
0.6	159.096	1008	2569.433	532.184	250	647.452	1204.859	217.166			
0.7	159.096	1008	2376.665	532.184	250	647.452	1204.859	287.815			
0.8	159.096	1008	2106.437	532.184	250	647.452	1204.859	443.421			
0.9	159.096	1008	866.343	532.184	125	1294.903	1787.565	684.102			
0.945	159.096	1008	636.073	532.184	125	1294.903	1787.565	717.734			
1.0	159.096	1008	618.520	532.184	125	1294.903	1787.565	772.708			

Tabla 30. Revisiones por cortante P9A2

La capacidad a corte de la viga es mayor a la demanda en todas las secciones, siendo más crítica en 0.055 con un valor de **905.884 kN < 1761.319 kN**.

Por los resultados de las tablas anteriores se puede concluir que:

¡La sección es adecuada por cortante! (ver figura 12)

3.4 Diseño de superestructura P3-P8 (Vigas Cajón)

3.4.1 Desarrollo de la sección típica

a. Losa superior (5.14.1.3.1a LRFD)

El espesor de las alas superiores que trabajan como losas de tablero deberá ser:

✓ Como se determina en la Sección 9 AASHTO LRFD

Mínima Altura y Recubrimiento (Art.9.7.1.1)

$h_{mín} = 175 \ mm$

 Según lo requerido para anclaje y recubrimiento del pretensado transversal, si corresponde.

Losa más superficie de desgaste = (300 mm + 80 mm) = 380 mm

No menor que 1/20 de la longitud libre entre chaflanes, acartelamientos o almas, a menos que se utilicen nervios transversales con una separación igual a la longitud libre o que se provea pretensado transversal.

$$h_{\text{losa superior}} \ge \frac{1}{20} (\text{luz libre entre chaflanes})$$
$$h_{\text{losa superior}} > \frac{1}{20} [5700 \text{mm} - 1200 \text{ mm}(2)] = 165 \text{ mm}$$
$$h_{\text{losa superior}} > \frac{1}{20} [5700 \text{mm} - 200 \text{ mm}(2)] = 265 \text{ mm}$$

Probar con un espesor de losa superior de 300 mm

(Sin incluir la superficie de desgaste).

b. Losa inferior (Art. 5.14.1.3.1b LRFD)

El espesor de la losa inferior no deberá ser menor que:

- ✓ 140 mm
- ✓ 1/30 de la longitud libre entre chaflanes, acartelamientos o almas en el caso de vigas pretensadas, a menos que se utilicen nervios transversales con una separación igual a la longitud libre.

$$h_{\text{losa inferior}} \ge \frac{1}{30}$$
 (luz libre entre chaflanes)

 $h_{losa \ superior} > \frac{1}{30}(3300 \ mm) = 110 \ mm$, no crítico

Probar con un espesor de losa inferior de 250 mm

c. Almas (Art.5.14.1.3.1c LRFD)

Para poder colocar y compactar el concreto adecuadamente se requiere un espesor de alma mínimo de 300 mm para almas que sólo tienen vainas longitudinales o verticales. Para las vigas de más de aproximadamente 2400 mm de altura, estas dimensiones se deberían incrementar para compensar la mayor dificultad de colocación del concreto. C5.14.1.3.1c

Espesor mínimo para ductos (vainas) de presforzado = 300 mm

Probar con un espesor de alma de 400 mm

3.4.2 Requisitos complementarios para la Construcción por segmentos

a. Espesor mínimo de las losas (Art. 5.14.2.3.10 LRFD)

Los espesores de la losa superior e inferior no deberán ser menor que ninguno de los valores siguientes:

✓
$$h \ge \frac{1}{30}$$
 (longitud libre entre almas o acartalamientos)

$$h_{losa superior} = 0.3 \text{ m} > \frac{1}{30} (3.3 \text{ m}) = 0.11 \quad \mathbf{0k!}$$

$$h_{\text{losa inferior}} = 0.25 \text{ m} > \frac{1}{30} (5.3 \text{ m}) = 0.18$$
 Ok

✓ h_{losa superior} > 229 mm en las zonas de anclaje donde se usa postensado transversal ni menor que 203 mm fuera de las zonas de anclaje o para losas pretensadas.

$$h_{losa superior} = 300 \text{ mm} > 229 \text{ mm}$$
 Ok!

Si la luz libre entre almas o acartelamientos es mayor o igual que 4572 mm se deberá utilizar pos-tensado o pretensado transversal. El diámetro de los cables utilizados para el pretensado transversal deberá ser menor o igual que 12.7 mm.

5300 mm > 4572 mm

Usar pos-tensado transversal

 $\emptyset = 12.7 \text{ mm } \mathbf{0k!}$

b. Espesor mínimo de las almas (Art. 5.14.2.3.10b LRFD)

Se deberán aplicar los siguientes valores mínimos, con las excepciones aquí especificadas:

Almas con tendones de pos tensado longitudinal (o vertical) solamente:
 300 mm

Espesor del ala con pos-tensado longitudinal = 400 mm > 300 mm **Ok**!

c. Longitud en voladizo del ala superior (5.14.2.3.10c LRFD)

La longitud en voladizo del ala superior, medida a partir del eje del alma, preferentemente no debería ser mayor que 0,45 veces la longitud interior del ala superior medida entre los ejes de las almas.

$$2650 \text{ mm} \le 0.45(6100 \text{ mm}) = 2745 \text{ mm}$$
 Ok!

d. Dimensiones Globales de la Sección Transversal (Art.5.14.2.3.10d LRFD)

Utilizando una altura de viga y una separación de almas determinadas de acuerdo con los siguientes rangos de dimensiones, en general se obtendrán flechas satisfactorias:

• Viga de altura variable con acartelamientos rectos en el pilar:

$$\frac{1}{16} > \frac{d_0}{L} > \frac{1}{20}; \text{ Óptimo} \frac{1}{18}$$
$$\frac{1}{16} = 0.0625 > \frac{2}{35} = 0.057 > \frac{1}{20} = 0.05 \qquad \text{Ok!}$$
En el centro del tramo:
$$\frac{1}{22} < \frac{d_0}{L} > \frac{1}{28}; \text{ Óptimo} \frac{1}{24}$$
$$\frac{1}{22} = 0.045 < \frac{2}{35} = 0.057 > \frac{1}{28} = 0.036 \quad \text{Ok!}$$

e. Relación entre la altura y el ancho

Si $\frac{d_0}{b} \ge \frac{1}{6}$ preferentemente se debería utilizar un cajón de una sola celda.

$$\frac{2}{11.4} = 0.175 > \frac{1}{6} = 0.167$$

Usar viga cajón de una sola celda

Donde:

- **b** = ancho del ala superior
- d_0 = altura de la viga (mm)
- L = longitud de tramo entre apoyos (mm)

3.4.3 Estructura del peralte

Para vanos continuos presforzados, la profundidad estructural puede ser determinada usando una relación altura-vano (d/L) de 0.040 (Tabla 2.5.2.6.3-1 AASHTO LRFD 2012). Donde L es la longitud del claro en m.

d = 0.040L $d = 0.040(35 \text{ m}) = 1.4 \text{ m} < 2 \text{ m} \qquad \textbf{Ok!}$ Usar d = 2 m $d = 0.040(60 \text{ m}) = 2.4 \text{ m} < 3.8 \text{ m} \qquad \textbf{Ok!}$

Usar d = 3.8 m

3.4.4 Espaciamiento entre vigas

Para proveer resistencia torsional efectiva y un número suficiente de vigas para la trayectoria del presforzado, el espaciamiento de vigas no debe ser mayor que dos veces su altura.

$$S_{máx} < 2d$$

 $S_{max} = 6.1 \text{ m} > 2d = 2(2 \text{ m}) = 4m \text{ NO CUMPLE (Sección Estándar)}$

 $S_{máx} = 5.7 \text{ m} < 2d = 2(3.8 \text{ m}) = 7.6 \text{ m}$ CUMPLE (Sección Apoyo)

3.4.5 Anchos de ala efectivos

Para Vigas cajón de hormigón segmentales y vigas cajón de una sola célula hormigonadas in situ se tiene lo siguiente: (Art. 4.6.2.6.2)

Se puede asumir que el ancho de ala efectivo es igual al ancho real del ala si:

a)
$$b \le 0.1 l_i$$

b) $b \le 0.3 d_0$

En caso contrario, el ancho de ala efectivo de las alas que sobresalen se puede tomar como se especifica en las Figuras 4.6.2.6.2-1 hasta la 4.6.2.6.2-4 (AASHTO LRFD).

Donde:

d₀= profundidad de la superestructura (m)

b = ancho de ala real a cada lado del alma, b1, b2 y b3 (m)

 \mathbf{b}_{e} = ancho de ala efectivo correspondiente a la posición particular de la sección considerada en relación con el tramo (Figura 4.6.2.6.2-1 AASHTO LRFD) (m)

 \boldsymbol{b}_m = ancho de ala efectivo para porciones interiores de un tramo (m)

 \mathbf{b}_{s} = ancho de ala efectivo en apoyo interior o para un voladizo (m)

a = porción de tramo sujeto a una transición del ancho de ala efectivo (m) (Figura 4.6.2.6.2-3 AASHTO LRFD)

 l_i = longitud de tramo ideal (m)

Verificando si se cumplen las dos condiciones dadas al inicio:

En la parte estándar

 $d_0 = 2 \text{ m} \qquad b_1 = 2.45 \text{ m} \qquad b_2 = b_3 = 2.85 \text{ m}$ $b_1 = 2.450 \text{ m} > 0.3(2 \text{ m}) = 0.6 \text{ m} \qquad \text{NO CUMPLE}$ $b_2 = b_3 = 2.850 \text{ m} > 0.3(2 \text{ m}) = 0.6 \text{ m} \qquad \text{NO CUMPLE}$

Por lo tanto, el ancho de ala efectivo no se puede asumir igual al ancho de ala real y se debe calcular haciendo uso de las gráficas de la norma, de la siguiente manera:

Calculando el ancho de ala efectivo para:

A. Estructura completada

A.1 Claro Interior

Donde:

 \mathbf{b} = ancho físico a cada lado del alma $\mathbf{c} = \mathbf{0}$. $\mathbf{1L} = 0.1(35 \text{ m}) = 3.5 \text{ m}$

 $\mathbf{b_1} = \mathbf{b_2} = \mathbf{b_3} = 2.45 \text{ m}$ $\mathbf{l_i} = \mathbf{0.6L} = 0.6(35 \text{ m}) = 21 \text{ m}$

Figura 13. Diagrama del ancho de ala efectivo para el claro interior

Obtener las relaciones $\frac{b_s}{b}$ y $\frac{b_m}{b}$ de la figura 4.6.2.6.2-2 (AASHTO LRFD).

	b (m)	^b / _{li}	^b s∕b	^b m∕b	b _{se} (m)	b _{me} (m)
b ₁	2.45	0.12	0.622	0.887	1.52	2.17
b ₂	2.45	0.12	0.622	0.887	1.52	2.17
b ₃	2.45	0.12	0.622	0.887	1.52	2.17

Tabla 31. Dimensiones efectivas para las pilas P3 (P8)

Figura 14. Sección efectiva P3-P8

Ala efectiva:

 $b_{me1} = b_{me2} = b_{me3} = 2.17 \text{ m} \text{ (con reducción)}$

 $b_{se1} = b_{se2} = b_{se3} = 1.52 \text{ m} \text{ (con reducción)}$

A.2 Claro interior (Figura 15)

Figura 15. Diagrama del ancho de ala efectivo interior

Donde:

 $\mathbf{c} = 0.1$ L= 0.1(60 m) = 6 m

 $l_i = 0.6L = 0.6(60 \text{ m}) = 36 \text{ m}$

Tabla 32. Dimensiones efect	ivas para las pilas P4 y	P5
-----------------------------	--------------------------	-----------

	b(m)	^b / _{li}	b _{s/b}	^b m/b	b _{se} (m)	b _{me} (m)
b ₁	2.45	0.07	0.809	0.966	1.98	2.37
b ₂	2.45	0.07	0.809	0.966	1.98	2.37
b ₃	2.45	0.07	0.809	0.966	1.98	2.37

Ala efectiva:

 $b_{me1} = b_{me2} = b_{me3} = 2.37 \text{ m} \text{ (con reducción)}$

 $b_{se1} = b_{se2} = b_{se3} = 1.98 \text{ m} \text{ (con reducción)}$

Figura 16. Sección Efectiva P4 y P5

Tabla 33. Dimensiones efectivas para las pilas P6 y P7

	b(m)	^b / _{l_i}	b _{s/b}	^b m/b	b _{se} (m)	b _{me} (m)
b ₁	3.45	0.10	0.684	0.922	2.36	3.18
b ₂	2.45	0.07	0.809	0.966	1.98	2.37
b ₃	2.45	0.07	0.809	0.966	1.98	2.37

Ala efectiva:

 $\mathbf{b_{me1}} = 3.18 \text{m} \text{ (con reducción)}$

 $\mathbf{b_{me2}} = \mathbf{b_{me3}} = 2.37 \text{ m} \text{ (con reducción)}$

 $\mathbf{b_{se1}} = 2.36$ (con reducción)

 $\mathbf{b_{se2}} = \mathbf{b_{se3}} = 1.98 \text{ m} \text{ (con reducción)}$

Debido a que las dimensiones de la sección estándar (centro del claro) varían con respecto a las dimensiones de los apoyos, se calcularon las dimensiones efectivas correspondientes a esa sección.

PARTE ESTANDAR (centro del claro) para L=35 m

Figura 17. Sección efectiva P6 y P7

 $b_1 = 2.45 \text{ m}$ $b_2 = b_3 = 2.85 \text{ m}$

c = 0.1L = 0.1(35 m) = 3.5 m

 $l_i = 0.8L = 0.8(35 \text{ m}) = 28 \text{ m}$

Tabla 34. Dimensiones efectivas para la sección estándar con L= 35 m

	b(m)	^b / _{li}	b _{s∕b}	^b m/b	b _{se} (m)	b _{me} (m)
b ₁	2.45	0.088	0.732	0.936	1.79	2.29
b ₂	2.85	0.102	0.668	0.912	1.90	2.60
b ₃	2.85	0.102	0.668	0.912	1.90	2.60

Obtener las relaciones $\frac{b_s}{b}$ y $\frac{b_m}{b}$ de la norma AASHTO LRFD figura 4.6.2.6.2-2.

Ala efectiva:

 $\mathbf{b_{me1}} = 2.29 \text{ m} \text{ (con reducción)}$

 $\mathbf{b_{me2}} = \mathbf{b_{me3}} = 2.60 \text{ m} \text{ (con reducción)}$

 $\mathbf{b_{se1}} = 1.79 \text{ m} (\text{con reducción})$ $\mathbf{b_{se2}} = \mathbf{b_{se3}} = 1.90 \text{ m} (\text{con reducción})$

Figura 18. Sección efectiva Estándar 35 m

PARTE ESTANDAR (centro del claro) para L=60 m

c = 0.1L = 0.1(60 m) = 6 m

 $l_i = 0.6L = 0.6(60 \text{ m}) = 36 \text{ m}$

Tabla 35. Dimensiones efect	tivas para la sección	estándar con L= 60 m
-----------------------------	-----------------------	----------------------

	b (m)	^b / _{l_i}	b _{s/b}	^b m/b	b _{se} (m)	$\mathbf{b}_{\mathrm{me}}\left(\mathbf{m} ight)$
b ₁	2.45	0.068	0.83	0.968	2.03	2.37
b ₂	2.85	0.079	0.764	0.95	2.18	2.71
b ₃	2.85	0.079	0.764	0.95	2.18	2.71

Ala efectiva:

 $b_{me1} = 2.37 \text{ m} (\text{con reducción})$

 $b_{me2} = b_{me3} = 2.71 \text{ m} \text{ (con reducción)}$

 $b_{se1} = 2.03 \text{ m} (\text{con reducción})$

 $b_{se2} = b_{se3} = 2.18 \text{ m} (\text{con reducción})$

Figura 19. Sección efectiva Estándar 60 m

Las gráficas 13-19, representan la viga exterior equivalente de la sección cajón a ser analizada y diseñada, estas dimensiones fueran obtenidas utilizando el procedimiento descrito en AASHTO LRFD 4.6.2.6.2. Para mayor detalle referirse a este artículo de la norma.

3.4.6 Selección de los factores de resistencia

3.4.6.1 Construcción por segmentos

- 1. Para flexión, $\phi = 0.95$
- 2. Para flexión y tensión, esta variación Ø puede ser calculado para miembros presforzados no contralados por tensión, tal que:

$$0.75 \le \emptyset = 0.583 + 0.25 \left(\frac{d_t}{c} - 1\right) \le 1$$

3. Para cortante y torsión, $\phi = 0.90$

Donde:

c = distancia desde la fibra extrema de compresión hasta el eje neutro (m)

 $\mathbf{d}_{\mathbf{t}}$ = Distancia desde la fibra extrema de compresión hasta el centroide del acero en el extremo del elemento a tensión (m)

3.4.6.2 Factores de carga para los estados límites de resistencia y servicio (Art. 1.3.2)

3.4.7 Combinaciones de carga y los factores de carga

(Tabla 3.4.1-1 AASHTO LRFD)

Estado límite de resistencia l

 $\label{eq:Q} \begin{aligned} Q &= 0.95 \left[1.25 \left(DC + CR + SH \right) + 1.5 (DW) + 1.75 (LL + IM + PL) + PS \right] \\ \\ \mbox{Estado límite de servicio I} \qquad Q &= (DC + DW) + (LL + IM + PL) \\ \\ \mbox{Estado límite de servicio III} \qquad Q &= (DC + DW) + 0.8 (LL + IM + PL) \end{aligned}$

3.4.8 Efectos de la fuerza por carga viva y carga permanente

Los efectos por carga viva y cargas permanentes fueron distribuidos en las vigas con CSIBridge como se especifica en la sección 3.3.3 de este documento.

3.4.9 Análisis estructural

El análisis estructural del puente fue realizado con el software CSI bridge en donde se obtuvieron los efectos de la carga muerta no factorada y los efectos de la carga viva no factorada para dos carriles cargados.

Los momentos últimos factorados son calculados en base al estado límite de resistencia l.

 $\mathbf{Mu} = 0.95[1.25(M_{DC1} + M_{DC2} + M_{CR+SH}) + 1.5(M_{DW}) + 1.75(M_{LL+IM} + M_{PL}) + M_{PS}]$

Donde:

M_{SH} = Efectos de fuerzas debidas a la contracción

 M_{CR} = Efectos de fuerzas debidas a la fluencia lenta del concreto

 M_{PS} = Cargas debidas al momento secundario de presfuerzo.

Los demás términos fueron definidos anteriormente.

	CLARO P3-P4										
	M _{DC1}	M _{DC2}	M _{DW}	M _L	L+IM	PL	M _{PS}	M _{CR+SH}	$M_{u}(+)$	M _u (-)	
x/L	kN. m	kN. m	kN. m	(+) kN. m	(-) kN. m	kN. m	kN. m	kN. m	kN. m	kN. m	
0.0	0	-279.1474	-166.0293	117.722	-0.5049	-38.3721	0	0.0035	-209.272	-405.824	
0.1	2311.8154	133.5424	94.4909	1125.0772	-439.5308	38.9932	-2174.171	10.4478	2027.866	319.562	
0.2	3548.033	409.437	212.445	1753.4224	-599.9279	91.7905	-4697.899	8.0013	2126.325	-296.051	
0.3	4431.798	461.7897	302.9723	2314.4297	-751.6604	132.8391	-6829.561	14.2354	1963.775	-1257.098	
0.4	4266.8505	452.8949	298.7698	2495.8234	-941.1806	130.3798	-8957.909	26.6713	98.726	-3795.853	
0.5	3014.83	293.3055	199.9022	2357.3025	-1066.9726	84.8986	-9972.459	31.5591	-2434.799	-6855.786	
0.6	1034.5228	35.8434	39.3583	2027.9162	-1287.2097	11.4609	-11779.415	31.8018	-6833.323	-11946.467	
0.7	-4282.5321	-639.3087	-382.7643	1247.3034	-2007.5683	-181.173	-14800.611	27.5251	-16709.135	-24056.802	
0.8	-10578.9409	-1396.098	-856.5339	971.5359	-3267.6661	-397.1399	-17179.035	20.3845	-26115.289	-37829.536	
0.9	-15018.4444	-1903.4426	-1174.381	514.2956	-4172.2147	-541.9423	-18670.923	16.5157	-32962.612	-47323.284	
1.0	-24004.455	-2899.8452	-1798.862	418.6326	-5961.6211	-826.311	-20422.313	57.9316	-44143.405	-65129.576	

Tabla 36. Momentos debidos a las cargas para el claro P3-P4

En esta tabla se muestran los valores de los momentos causados por cada una de las cargas descritas anteriormente para la viga exterior derecha del tramo P3-P4; al igual que en las vigas T, se realizó el cálculo de Mu (+) y Mu (-), tomando como críticos los de mayor valor, estos valores se presentan en color azul en la tabla. Siendo estos de 1963.775 kN.m para momento positivo y 65129.576 kN.m para momento negativo.

		CLARO P4-P5										
	M _{DC1}	M _{DC2}	M _{DW}	M _L	L+IM	PL	M _{ps}	M _{CR+SH}	$M_{u}(+)$	M _u (-)		
x/L	kN. m	kN. m	kN. m	(+) kN. m	(-) kN. m	kN. m	kN. m	kN. m	kN. m	kN. m		
0.0	-32544.8926	-4090.1651	-2548.023	1086.9228	-8676.3444	-1166.2079	2115.385	12836.275	-30014.183	-46245.614		
0.1	-16601.3059	-2212.2006	-1368.627	956.2897	-4993.9491	-630.0843	5008.899	12108.745	-4611.427	-14503.699		
0.2	-5379.9569	-772.6592	-464.7338	1327.3821	-3622.3142	-219.1243	4826.903	11280.910	11855.640	3626.770		
0.3	1960.9502	241.3237	171.7306	1960.4103	-1675.0786	70.3351	4636.524	10145.157	22688.102	16644.102		
0.4	6405.3058	858.471	496.554	2649.7007	-509.0663	246.5057	4652.573	8634.630	28821.835	23570.384		
0.5	7069.354	954.07	618.8147	2844.4775	-458.0154	273.7848	3732.609	6758.218	27165.101	21674.707		
0.6	4561.1516	601.1364	396.7528	2467.7204	-824.9683	173.0057	3887.209	5455.529	21257.086	15782.991		
0.7	-52.8845	-48.2026	-11.3373	1900.365	-1334.0566	-12.3862	3092.675	3529.381	10131.749	4754.523		
0.8	-8411.3779	-1213.6947	-743.6677	1226.5328	-3016.2787	-345.1367	2789.769	2108.652	-5869.874	-12923.548		
0.9	-26271.7801	-2801.6028	-1741.383	740.8644	-6710.0445	-798.4899	2298.172	-2038.662	-37339.563	-49726.699		
1.0	-32674.0731	-4270.9746	-2664.624	729.2713	-8181.653	-1217.9862	-2575.841	-12041.421	-65228.058	-80042.470		

Tabla 37. Momentos debidos a las cargas para el claro P4-P5

La demanda de flexión para la viga exterior derecha del tramo P4-P5 es de 28821.835 kN.m para momento positivo y 80042.470 kN.m para momento negativo.

	CLARO P5-P6										
	M _{DC1}	M _{DC2}	M _{DW}	M _L	L+IM	PL	M _{ps}	M _{CR+SH}	M _u (+)	M _u (-)	
x/L	kN. m	kN. m	kN. m	(+) kN. m	(-) kN. m	kN. m	kN. m	kN. m	kN. m	kN. m	
0.0	-31531.3328	-4076.5226	-2541.4149	0.3925	-19.8333	-1162.3851	200.8187	-11239.199	-60993.428	-61027.054	
0.1	-19640.696	-2650.6555	-1645.769	832.839	-5432.3404	-755.3267	3712.7401	852.7781	-24147.559	-34563.420	
0.2	-7776.5506	-1120.2874	-684.3295	1228.7132	-4038.5901	-318.4167	4003.1139	2799.6254	-2899.283	-11656.175	
0.3	200.7768	-14.7553	12.4877	1882.4661	-2005.588	-2.812	4066.8325	4944.3281	13098.501	6634.611	
0.4	5375.2182	711.6195	466.2919	2650.3742	-778.5359	204.5527	4547.6358	5738.4671	23773.585	18073.022	
0.5	6461.0014	864.9819	562.5485	2911.473	-564.7992	248.3217	4110.5582	7478.892	27540.610	21761.307	
0.6	4745.3065	737.7184	409.961	2548.1848	-788.2252	178.9383	4689.7436	8991.9759	26762.356	21215.575	
0.7	669.8248	52.7882	52.4778	1982.29	-1203.9559	16.4347	4481.5816	9675.5512	20002.983	14705.849	
0.8	-7078.7997	-1028.4124	-626.5238	1301.9767	-2784.1564	-292.2421	3804.0448	10593.574	7352.285	559.088	
0.9	-23504.6149	-2533.2114	-1571.826	867.9113	-6207.8151	-721.8688	3276.0344	11464.1105	-16191.111	-27954.506	
1.0	-34983.7643	-4516.54	-2826.812	964.978	-8840.0338	-1288.1097	1080.7426	11981.2652	-36217.567	-52518.399	

 Tabla 38. Momentos debidos a las cargas para el claro P5-P6

La demanda de flexión para la viga exterior derecha del tramo P5-P6 es de 27540.610 kN.m para momento positivo y 61027.054 kN.m para momento negativo.

		CLARO P6-P7										
	M _{DC1}	M _{DC2}	M _{DW}	M _L	L+IM	PL	M _{ps}	M _{CR+SH}	$M_{u}(+)$	M _u (-)		
x/L	kN. m	kN. m	kN. m	(+) kN. m	(-) kN. m	kN. m	kN. m	kN.m	kN. m	kN. m		
0.0	-35766.0756	-4613.2085	-2888.2284	742.8371	-8870.4943	-1315.7329	-4201.729	5020.279	-51048.627	-67030.790		
0.1	-19017.6257	-2589.614	-1607.882	783.4931	-5166.4402	-821.7107	-3300.627	6432.026	-23510.931	-33402.695		
0.2	-7098.5752	-1042.7338	-636.0218	1310.1228	-3850.8911	-296.3442	-1718.624	7992.680	-1030.113	-9610.299		
0.3	931.075	79.4528	69.0065	2022.1514	-1901.7476	24.0402	1639.398	9723.309	17803.987	11280.505		
0.4	6166.0589	815.9694	531.9348	2747.1473	-776.9109	234.3275	2880.781	10988.461	29791.407	23932.660		
0.5	7309.5817	983.8661	637.6001	2930.5039	-461.1688	282.2725	3306.101	11795.828	33246.632	27607.976		
0.6	5642.1436	864.3861	492.6691	2508.4266	-506.3692	216.2943	4919.826	13072.684	33156.052	28143.954		
0.7	1617.6575	197.4009	144.1293	1932.045	-1014.5289	57.7731	5285.346	13672.609	26926.141	22027.461		
0.8	-6066.2558	-866.5538	-523.7977	1283.8762	-2610.6374	-245.9563	6116.273	14521.758	15801.466	9326.837		
0.9	-22394.2898	-2355.8503	-1458.967	896.6943	-6292.0812	-841.6223	7013.779	15383.216	-6447.604	-18398.943		
1.0	-31508.2943	-4061.8583	-2535.085	972.4879	-8395.051	-1158.0617	4928.910	11471.611	-27855.566	-43429.099		

Tabla 39. Momentos debidos a las cargas para el claro P6-P7

La demanda de flexión para la viga exterior derecha del tramo P6-P7 es de 33246.632 kN.m para momento positivo y 67030.790 kN.m para momento negativo.

						07 00				
					CLARO	P7-P8				
	M _{DC1}	M _{DC2}	M _{DW}	M _L	L+IM	PL	M _{ps}	M _{CR+SH}	$M_{u}(+)$	M _u (-)
x/L	kN. m	kN.m	kN. m	(+) kN. m	(-) kN. m	kN.m	kN. m	kN. m	kN.m	kN. m
0.0	-21994.6164	-2739.9819	-1701.046	423.785	-5608.0927	-780.579	-25813.0622	-3510.258	-61080.336	-71108.333
0.1	-14366.7469	-1405.2938	-997.1479	679.9388	-4127.2756	-529.9642	-18169.4205	8.328	-34756.950	-42748.944
0.2	-10467.8101	-331.95	-860.6514	783.291	-3324.8536	-399.7669	-16934.523	17.637	-29480.387	-36310.178
0.3	-1756.4257	43.232	-491.1623	1651.1755	-2327.5776	-231.1908	-15189.1006	39.522	-14756.313	-21370.990
0.4	1103.516	244.2177	44.507	2103.261	-1404.0043	13.5497	-11606.8529	44.460	-5790.660	-11621.488
0.5	3682.828	-1861.452	169.6136	2347.6795	-1225.3632	70.874	-10741.4563	44.816	-3725.736	-9665.919
0.6	4322.941	471.3123	309.9974	2534.7322	-1051.4062	135.5979	-9059.1703	46.910	2023.840	-3938.115
0.7	4483.247	485.2062	316.85	2326.7032	-750.0577	139.4733	-6722.7209	37.332	4109.315	-1005.800
0.8	3595.7231	346.7421	227.9304	1727.4694	-558.5977	99.8483	-4616.7287	5.664	3665.228	-135.358
0.9	2355.3497	160.2873	109.5878	1057.8244	-337.2509	46.5587	-2127.6556	10.950	2971.249	651.936
1.0	0	-251.864	0	354.6271	-892.2841	-71.1979	0	0.003	172.116	-1900.874

 Tabla 40. Momentos debidos a las cargas para el claro P7-P8

La demanda de flexión para la viga exterior derecha del tramo P7-P8 es de 4109.315 kN.m para momento positivo y 71108.333 kN.m para momento negativo.

3.4.10 Cálculo de los esfuerzos de diseño

3.4.10.1 Límites de esfuerzos para tendones de pos-Tensado

Usando AASHTO M203 (ASTM A416) cables sin revestimiento de siete alambres de baja relajación (Grado 270)

Diámetro = 12.7 mm Área = 98.71 mm²/torón

a) Propiedades del material

$$f_{pu} = 1850 \text{ MPa}$$
 $f_{py} = 1600 \text{ MPa}$ $E_p = 197,000 \text{ MPa}$

 b) Esfuerzos límites para los tendones de presforzado (Art.5.9.3-1 AASHTO LRFD)

Pos tensado	Límites de esfuerzos
En el tensado (f_{pj})	$0.8(f_{pu}) = 0.8(1850 \text{ MPa}) = 1480 \text{ MPa}$
En la transferencia (f_{pt}) en anclajes	$0.7(f_{pu}) = 0.7(1850 \text{ MPa}) = 1295 \text{ MPa}$
general	$0.74(f_{pu}) = 0.74(1850 \text{ MPa}) = 1369 \text{ MPa}$
En servicio después de las pérdidas (f_{pe})	$0.8(f_{py}) = 0.8(1600 \text{ MPa}) = 1280 \text{ MPa}$

Tabla 41. Límite de esfuerzo para los tendones

3.4.10.2 Límites de esfuerzos para el concreto

(Art.5.9.4 AASHTO LRFD 2012)

a) En el tensado y en la transferencia (antes de las pérdidas) Art. 5.9.4.1

Esfuerzo de compresión (DC solamente): $f_{ci} = 0.60 (f'_{ci})$

$$f'_{ci} = 0.60(28 \text{ MPa}) = 16.8 \text{ MPa}$$

Esfuerzo de tensión (DC solamente): $f_{ti} = 0.25\sqrt{f'_{ci}}$

$$f_{ti} = 0.25\sqrt{28} \text{ MPa} = 1.32 \text{ MPa}$$

b) En servicio (después de todas las pérdidas) Art.5.9.4.2

a) Esfuerzo de compresión [DC + DW + (LL + IM)]: $f_c = 0.6(f'_c)$ Usar el estado límite de servicio l

$$f_c = 0.6(35 \text{ MPa}) = 21 \text{ MPa}$$

Esfuerzo de compresión (DC + DW) : $f_c = 0.45(f'_c)$
 $f_c = 0.45(35 \text{ MPa}) = 15.75 \text{ MPa}$
b) Esfuerzo de tensión [DC + DW + 0.8(LL + IM)]: $f_t = 0.5\sqrt{f'_c}$

Usar el estado límite de servicio III

$$f_t = 0.5\sqrt{35} \text{ MPa} = 2.958 \text{ MPa} = 2,958.04 \frac{\text{kN}}{\text{m}^2}$$

Convención de signos para los esfuerzos en el concreto:

Compresión (+) Tensión (-)

3.4.11 Desarrollo del perfil preliminar del tendón

3.4.11.1 Propiedades de la sección cajón para la viga exterior crítica

Para una viga exterior, como se muestra en la figura 20, el ancho de ala efectivo b_e es tomado como el acho tributario del tablero de concreto.

Figura 20. Sección transversal de viga cajón exterior

	Ароуо	Ароуо	Ароуо	Estándar	Estándar
Propiedades	P3 (P8)	P4 y P5	P6 y P7	L=35 m	L=60 m
Área	3.769 m ²	5.507 m ²	5.649 m ²	2.656 m ²	2.900 m ²
$\text{Centroide}\left(y_{b}\right)$	1.126 m	2.051 m	2.090 m	1.253 m	1.260 m
Centroide (y _t)	0.874 m	1.749 m	1.710 m	0.747 m	0.740 m
Inercia (I_x)	1.754 m ⁴	10.561 m ⁴	10.899 m ⁴	1.382 m ⁴	1.531 m ⁴
Módulo de sección (S_b)	1.557 m ³	5.149 m ³	5.215 m ³	1.103 m ³	1.215 m ³

Tabla 42. Propiedades de la sección cajón

3.4.11.2 Perfil preliminar del presforzado

Una trayectoria del cable generalmente es controlada por los momentos máximos por carga muerta y la posición del gato en el final de la sección. Las excentricidades máximas deberían ocurrir en puntos de máximo momento por carga muerta y casi ninguna excentricidad debería estar presente en el tensado final de la sección.

Figura 21. Configuración de los cables para PC de P3-P4

3.4.11.3 Análisis preliminar - viga exterior crítica en el apoyo

Para asegurar que la tensión en la fibra inferior de la viga no exceda el límite especificado en la tabla 5.9.4.2.2-1 (AASHTO LRFD) en la sección bajo condiciones finales. Siguiendo el mismo procedimiento utilizado en las vigas T se obtienen los siguientes valores:

3.4.11.3.1 Para el momento máximo negativo (en el apoyo)

La distancia entre el centro de gravedad de los tendones y la fibra inferior de la viga es:

Claro	y _{bs promedio} (m)	$e_{promedio} = y_{bs} - y_b (m)$
P3-P4	3.531	1.480
P4-P5	3.531	1.480
P5-P6	3.531	1.441
P6-P7	3.531	1.441
P7-P8	3.531	1.441

Tabla 43. Excentricidad por tramo M (-)

Claro P3-P4

$$f_{b} = 19,527.581 \frac{kN}{m^{2}} - \frac{0.469 P_{j}}{m^{2}}$$

Esfuerzo límite: $f_{\text{tensión}} = 0.5\sqrt{f'_c} = 0.5\sqrt{35} \text{ MPa} = 2.958 \text{ MPa} = 2,958.04 \frac{\text{kN}}{\text{m}^2}$

Igualando:

2,958.04
$$\frac{\text{kN}}{\text{m}^2}$$
 = 6,629.153 $\frac{\text{kN}}{\text{m}^2} - \frac{0.469 \text{ P}_{\text{j}}}{\text{m}^2}$

Despejando la fuerza de presforzado en el tensado P_i, resulta:

$$P_{j \text{ mínimo}} = \frac{\left(6,629.153 \ \frac{\text{kN}}{\text{m}^2} - 2,958.04 \ \frac{\text{kN}}{\text{m}^2}\right) \text{m}^2}{0.469} = 7,827.173 \text{ kN}$$

Realizando el mismo procedimiento para los demás claros, se tiene:

Claro P4 - P5: $P_{j minimo} = 13, 201.854 \text{ kN}$ Claro P5 - P6: $P_{j minimo} = 14, 808.118 \text{ kN}$ Claro P6 - P7: $P_{j minimo} = 12, 782.098 \text{ kN}$ Claro P7 - P8: $P_{i minimo} = 6, 820.636 \text{ kN}$

3.4.11.3.2 Para el momento máximo positivo (en el centro del claro)

La distancia entre el centro de gravedad de los tendones y la fibra inferior de la viga es:

Claro	y _{bs promedio} (m)	$\mathbf{e}_{\text{promedio}} = \mathbf{y}_{\text{bs}} - \mathbf{y}_{\text{b}} (\mathbf{m})$
P3-P4	0.680	0.573
P4-P5	0.197	1.063
P5-P6	0.197	1.063
P6-P7	0.197	1.063
P7-P8	0.680	0.573

Tabla 44. Excentricidad por tramo M (+)

Claro P4 – P5:	$P_{j \ m(nimo} = 3,937.784 \ kN$
Claro P4 – P5:	$P_{j \ m(nimo} = 5,089.747 \ kN$
Claro P5 – P6:	$P_{j \ m(nimo} = 4, 603. 581 \ kN$
Claro P6 – P7:	$P_{j \ m(nimo} = 5,335.651 \ kN$
Claro P7 – P8:	$P_{j \ m(nimo} = 4,042.884 \ kN$

3.4.12 Pérdidas del presforzado

Para el cálculo de las pérdidas del presforzado en construcciones por segmentos se deberán aplicar los requisitos del artículo 5.9.5 (Art. 5.14.2.3.7 LRFD).

Para una viga cajón pos-tensada ejecutada in situ, dos tipos de pérdidas son significativas, las pérdidas instantáneas (fricción, acuñamiento del anclaje y acortamiento elástico) y las pérdidas dependientes del tiempo (fluencia lenta y contracción del concreto y la relajación del acero de presforzado).

Las pérdidas totales Δf_{pT} para miembros postensados segmentales se pueden tomar como:

$$\Delta \mathbf{f}_{\mathbf{pT}} = \Delta \mathbf{f}_{\mathbf{pA}} + \Delta \mathbf{f}_{\mathbf{pF}} + \Delta \mathbf{f}_{\mathbf{pES}} + \Delta \mathbf{f}_{\mathbf{pLT}}$$

Las definiciones de los términos de la ecuación anterior se encuentran en la sección 3.3.4.3.

3.4.12.1 Pérdidas instantáneas

3.4.12.1.1 Pérdidas por fricción (Δf_{pF}) Art.5.9.5.2.2b

Las pérdidas por fricción entre los tendones internos de presforzado y la pared del ducto se pueden tomar como:

Los valores de las perdidas pueden observarse en las tablas 53 y 54.

3.4.12.1.2 Pérdidas por acuñamiento del anclaje (Δf_{pA})

Las pérdidas por acuñamiento del anclaje pueden ser aproximadas asumiendo cambios lineales en ellas dentro de la longitud L_{pA} , como se muestra en la figura.

Figura 22. Modelo de pérdidas por acuñamiento del anclaje

Siguiendo el mismo procedimiento utilizado en la sección 3.3.4.3.2 de este documento se obtuvieron los valores especificados en las tablas 53 y 54.

3.4.12.1.3 Pérdidas debido al acortamiento elástico del concreto (Δf_{pES})

Las pérdidas debido al acortamiento elástico en miembros pos-tensados, a excepción de sistemas de losa, pueden ser tomadas como: (Art.5.9.5.2.3b)

$$\Delta f_{pES} = \frac{(N-1)}{2N} \frac{E_P}{E_{ci}} f_{cgp}$$

Para estructuras pos-tensadas con tendones adherentes, f_{cgp} puede ser tomado en la sección central del claro o, para construcciones continuas, en la sección de máximo momento.

La cantidad de tendones tomados son aquellos que pasan por el punto de apoyo considerado.

$$\mathbf{f}_{cgp} = \frac{\mathbf{P}_{j}}{\mathbf{A}} + \frac{\mathbf{P}_{j} * \mathbf{e}^{2}}{\mathbf{I}_{x}} - \frac{\mathbf{M}_{DC1} * \mathbf{e}}{\mathbf{I}_{x}}$$

 $A_{ps} = 98.71 \text{ mm}^2 * 12 \text{ torones} * \text{ cantidad de tendones}$

En el tensado: $P_j = f_{pj} * A_{ps}$

Los valores de las perdidas por acortamiento elástico se encuentran resumidas en las tablas 53 y 54.

3.4.12.2 Pérdidas dependientes del tiempo (Δf_{pLT})

Estimación refinada de las pérdidas dependientes del tiempo Arto 5.9.5.4 AASHTO LRFD.

3.4.12.2.1 Pérdidas debidas a la contracción del concreto (Δf_{pSD})

Las pérdidas debidas a la contracción del concreto de la viga entre el tiempo de colocación del tablero y el tiempo final, Δf_{pSD} , será determinado como se especifica en la sección 3.3.4.3.4.

Para el momento máximo negativo (en el apoyo)

Asumiendo $t_i = 28 \text{ dias}$ $t_d = 120 \text{ dias}$ $t_f = 36,000 \text{ dias}$

V/S = Generalmente se toma como el área bruta de la sección transversal del elemento de concreto dividida por su perímetro

Humedad promedio del sitio: H = 85%

Claro P3-P4

$$\frac{V}{S} = \frac{5.507 \text{ m}^2}{20.546 \text{ m}} = 0.268 \text{ m} = 10.55 \text{ in}$$

$$\begin{split} K_s &= 1.45 - 0.13(10.55 \text{ in}) = 0.079 \text{ in} < 1 \quad \text{Usar } K_s = 1 \\ K_{hs} &= 2.00 - 0.014(85) = 0.81 \\ K_{hc} &= 1.56 - 0.008(85) = 0.88 \\ K_f &= \frac{5}{1 + 4 \text{ ksi}} = 1 \\ K_{td} &= \frac{(36,000 \text{ dias} - 28 \text{ dias})}{61 - 4(4 \text{ ksi}) + (36,000 \text{ dias} - 28 \text{ dias})} = 0.999 \\ \epsilon_{bdf} &= 1 * 0.81 * 1 * 0.999 * 0.48 \times 10^{-3} = 0.0004 \end{split}$$

El coeficiente de fluencia de la viga en el tiempo final debido a la carga introducida en la transferencia es:

$$\begin{split} \Psi_{b}(t_{f},t_{i}) &= 1.9*1*0.88*1*0.999*(120\ dias)^{-0.118} = 0.949\\ K_{df} &= \frac{1}{1 + \frac{196,552}{24,870}*\frac{0.024875\ m^{2}}{5.507\ m^{2}}\Big(1 + \frac{5.507\ m^{2}\ (1.48\ m)^{2}}{10.561\ m^{4}}\Big)[1 + 0.7(0.949)]} = \\ K_{df} &= 0.887 \end{split}$$

$$\Delta f_{pSD} = 0.0004 * 196,552 \text{ MPa} * 0.887 = 69.737 \text{ MPa}$$

Claro P4-P5

En este tramo el punto de estudio se encuentra en el apoyo de la pila P5, la cual tiene las mismas dimensiones que la pila P4 (punto de estudio del tramo P3-P4), por lo tanto las pérdidas debidas a la contracción del concreto serán iguales que las del primer claro.

$$\Delta f_{pSD} = 69.737 \text{ MPa}$$

Claro P5-P6, P6-P7 y P7-P8

$$\frac{V}{S} = \frac{5.649 \text{ m}^2}{20.369 \text{ m}} = 0.277 \text{ m} = 10.906 \text{ in}$$
$$K_s = 1.45 - 0.13(10.906 \text{ in}) = 0.032 \text{ in} < 1 \quad \text{Usar } K_s = 1$$

$$\epsilon_{bdf} = 0.0004 \qquad \Psi_{b}(t_{f}, t_{i}) = 0.949$$

$$K_{df} = \frac{1}{1 + \frac{196,552}{24,870} * \frac{0.024875 \text{ m}^{2}}{5.649 \text{ m}^{2}} \left(1 + \frac{5.649 \text{ m}^{2} (1.441 \text{ m})^{2}}{10.899 \text{ m}^{4}}\right) [1 + 0.7(0.949)]} = K_{df} = 0.893$$

 $\Delta f_{pSD} = 0.0004 * 196{,}552 \text{ MPa} * 0.893 = 70.208 \text{ MPa}$

Para el momento máximo positivo (centro del claro)

Lo que varía son las dimensiones de la sección efectiva que cambian el área y el perímetro, por lo tanto:

Claro P3-P4 y P7-P8

$$\frac{V}{S} = \frac{2.656 \text{ m}^2}{15.447 \text{ m}} = 0.172 \text{ m} = 6.772 \text{ in}$$

$$K_s = 1.45 - 0.13(6.772 \text{ in}) = 0.57 \text{ in} < 1 \quad \text{Usar } K_s = 1$$

$$K_{hs} = 0.81 \qquad K_{hc} = 0.88 \qquad K_f = 1 \qquad K_{td} = 0.999$$

$$\epsilon_{bdf} = 1 * 0.81 * 1 * 0.999 * 0.48 \times 10^{-3} = 0.0004$$

$$\Psi_b(t_f, t_i) = 0.949$$

$$K_{df} = \frac{1}{1 + \frac{196,552}{24,870} * \frac{0.004738 \text{ m}^2}{2.656 \text{ m}^2} \left(1 + \frac{2.656 \text{ m}^2 (0.573 \text{ m})^2}{1.382 \text{ m}^4}\right) [1 + 0.7(0.949)]} = K_{df} = 0.963$$

$$\Delta f_{pSD} = 0.0004 * 196,552 \text{ MPa} * 0.963 = 75.712 \text{ MPa}$$

Claro P4-P5, P5-P6 y P6-P7

$$\frac{V}{S} = \frac{2.900 \text{ m}^2}{17.045 \text{ m}} = 0.170 \text{ m} = 6.693 \text{ in}$$
$$K_s = 1.45 - 0.13(6.693 \text{ in}) = 0.58 \text{ in} < 1 \quad \text{Usar } K_s = 1$$
$$K_{hs} = 0.81 \qquad K_{hc} = 0.88 \qquad K_f = 1 \qquad K_{td} = 0.999$$

90
$$\epsilon_{bdf} = 0.0004 \qquad \Psi_{b}(t_{f}, t_{i}) = 0.949$$

$$K_{df} = \frac{1}{1 + \frac{196,552}{24,870} * \frac{0.011845 \text{ m}^{2}}{2.900 \text{ m}^{2}} \left(1 + \frac{2.900 \text{ m}^{2} (1.063 \text{ m})^{2}}{1.531 \text{ m}^{4}}\right) [1 + 0.7(0.949)]} = K_{df} = 0.963$$

 $\Delta f_{pSD} = 0.0004 * 196,552 \text{ MPa} * 0.856 = 67.299 \text{ MPa}$

3.4.12.2.2 Pérdidas debidas al flujo plástico (fluencia lenta) del concreto (Δf_{pCD})

De una manera aproximada, para tomar en cuenta la reducción gradual de la fuerza pretensora a medida en que ocurren el flujo plástico (fluencia), la contracción y el relajamiento, se recomienda sustituir 0.9P_i en lugar de P_i en los cálculos del flujo plástico (Nilson pag.275). El esfuerzo inicial en el acero después de ocurridas todas las pérdidas instantáneas, pero antes de ocurridas las pérdidas dependientes del tiempo es igual a:

$$\mathbf{f_{pi}} = \mathbf{f_{pj}} - \Delta \mathbf{f_{pF}} - \Delta \mathbf{f_{pA}} - \Delta \mathbf{f_{pES}}$$

 $\mathbf{f_{pj}} = 1,480 \text{ MPa}$

Para el momento máximo negativo (en el apoyo)

Claro P3-P4

La pérdida para uno de los cables en el claro especificado, es ejemplificada a continuación: Cable P4-U8

$$f_{pi} = 1,480 \text{ MPa} - 37.803 \text{ MPa} - 30.724 \text{ MPa} - 1.777 \text{ MPa} = 1,409.696 \text{ MPa}$$

A este esfuerzo le corresponde una fuerza pretensora inicial igual a:

$$P_{i} = f_{pi} * A_{ps} = \frac{1,409.696 \text{ MPa} * 1,185 \text{ mm}^{2}}{1000} = 1,669.813 \text{ kN}$$
$$P_{i} = 0.9 * 1,669.813 \text{ kN} = 1,502.832 \text{ kN}$$

Momento debido a todas las cargas muertas: $M = M_{DC1} + M_{DC2} + M_{DW}$

$$M = 24,004.455 \text{ kN. m} + 2,899.845 \text{ kN. m} + 1,798.862 \text{ kN. m} = 28,703.162 \text{ kN. m}$$

$$f_{cgp} = \frac{1,505.336 \text{ kN}}{5.507 \text{ m}^2} + \frac{1,505.336 \text{ kN} (1.549 \text{ m})^2}{10.561 \text{ m}^4} - \frac{(28,703.162 \text{ kN. m})(1.549 \text{ m})}{10.561 \text{ m}^4}$$

$$f_{cgp} = -3,594.588 \frac{\text{kN}}{\text{m}^2} = -3.595 \text{ MPa}$$

$$\Delta f_{cd} = \frac{(M_{DC1} + M_{DC2}) * \text{e}}{I_c} + \frac{(M_{DW}) * \text{e}}{I_c}$$

$$\Delta f_{cd} = \frac{(24,004.455 \text{ kN. m} + 2,899.845 \text{ kN. m})(1.549 \text{ m})}{10.561 \text{ m}^4}$$

$$+ \frac{(1,798.862 \text{ kN. m})(1.549 \text{ m})}{10.561 \text{ m}^4}$$

$$\Delta f_{cd} = 4,209.942 \frac{kN}{m^2} = 4.210 \text{ MPa}$$

Coeficiente de fluencia calculado anteriormente:

$$\Psi_{\rm b}(t_{\rm f},t_{\rm i})=0.949$$

Para el cálculo del coeficiente de fluencia $\Psi_b(t_d\,,t_i)$

$$K_{td} = \frac{(120 \text{ dias} - 28 \text{ dias})}{61 - 4f'_{ci} + (120 \text{ dias} - 28 \text{ dias})} = 0.672$$
$$\Psi_b(t_d, t_i) = 1.9 * 1 * 0.88 * 1 * 0.672 * (28 \text{ dias})^{-0.118} = 0.758$$

Para el cálculo del coeficiente de fluencia $\Psi_b(t_f, t_d)$

$$K_{td} = \frac{(36,000 \text{ dias} - 120 \text{ dias})}{61 - 4f'_{ci} + (36,000 \text{ dias} - 120 \text{ dias})} = 0.999$$

$$\Psi_{b}(t_{f}, t_{d}) = 1.9 * 1 * 0.88 * 1 * 0.999 * (120 \text{ dias})^{-0.118} = 0.949$$

$$\Delta f_{pCD} = \frac{196,552}{24,870} (3.595 \text{ MPa})[0.949 - 0.758](0.924) + \frac{196,552}{27,806} * 4.210 \text{ MPa}$$

$$* (0.949)(0.924) = 31.110 \text{ MPa}$$

Los valores de las pérdidas se encuentran en las tablas 53 y 54.

Realizando el mismo procedimiento para los demás claros, se obtuvieron las siguientes pérdidas:

Tabla 45. Pérdidas debidas al flujo plástico (fluencia lenta) del concreto (M-)

	P3-P4	P4-P5	P5-P6	P6-P7	P7-P8
$\Delta \mathbf{f}_{pCD}$ (MPa)	624.994	868.781	849.985	897.056	542.245

Tabla 46. Pérdidas para el momento máximo positivo (M+)

	CLARO P3-P4												
Cable	e(m)	ΔfpF (MPa)	ΔfpA (MPa)	ΔfpES (MPa)	Total (MPa)	fpj (MPa)	fpi (MPa)	Aps (mm²)	Pi (kN)	0.9*Pi (kN)	fcgp (MPa)	Δfcd (MPa)	ΔfpCD (MPa)
P3P4-W11	0.473	48.257	82.900	3.364	134.521	1480	1345.480	1185	1593.747	1434.373	-1.006	1.779	12.966
P3P4-W12	0.473	48.257	82.900	3.364	134.521		1345.480	1185	1593.747	1434.373	-1.006	1.779	12.966
P3P4-W21	0.673	34.832	109.997	4.572	149.401		1330.600	1185	1576.122	1418.510	-1.532	2.531	18.593
P3P4-W22	0.673	34.832	109.997	4.572	149.401		1330.600	1185	1576.122	1418.510	-1.532	2.531	18.593
	Total	166.178	385.794	15.870	567.842		5352.158	4738	6339.738				63.118

Estas tablas muestran el cálculo de las pérdidas por fluencia lenta del concreto que experimentará el esfuerzo inicial en los cables de presfuerzo para momento positivo y negativo.

CLARO P3-P4								
Pto. de estudio	A (m²)	Coef.de fluencia	Kdf					
x/L= 0.3	2.656	$\Psi_{\rm b}(t_{\rm f},t_{\rm i})$						
		0.949	0.963					
MDC1 (kN.m)	lx (m⁴)	$\Psi_{\rm b}({\rm t_d},{\rm t_i})$						
4431.798	1.382	0.758	0.966					
MDC2 (kN.m)		$\Psi_{\rm b}({\rm t_f},{\rm t_d})$						
461.7897		0.949	0.963					
MDW (kN.m)								
302.972		Kdf prom	0.964					
Mt (kN.m)								
5,196.560								

Tabla 47. Coeficientes para las pérdidas en el tiempo

Realizando el mismo procedimiento para los demás claros, se obtuvieron las siguientes pérdidas:

Tabla 48. Pérdidas debidas al flujo plástico (fluencia lenta) del concreto (M+)

	P3-P4	P4-P5	P5-P6	P6-P7	P7-P8
$\Delta \mathbf{f}_{pCD}$ (MPa)	63.118	403.507	366.562	417.664	64.474

Los cálculos de las pérdidas por fluencia lenta para cada claro se realizaron siguiendo el mismo procedimiento, el resultado se observa en las tablas 53 y 54.

3.4.12.2.3 Pérdidas debidas a la relajación del acero de presforzado (Δf_{pR2}) Las pérdidas debidas a la relajación, Δf_{pR1} , pueden ser asumidas iguales a 1.2 ksi para acero de baja relajación (Art.5.9.5.4.2c AASHTO LRFD)

Por lo tanto $\Delta f_{pR2} = \Delta f_{pR1} = 1.2 \text{ ksi} = 8.28 \text{ MPa/cable}$

Claro	$\Delta \mathbf{f}_{\mathbf{pSD}} (\mathbf{MPa})$	$\Delta \mathbf{f}_{\mathbf{p}\mathbf{C}\mathbf{D}}$ (MPa)	$\Delta \mathbf{f}_{\mathbf{pR2}} (\mathbf{MPa})$	$\Delta \mathbf{f}_{\mathbf{pLT}} (\mathbf{MPa})$
P3-P4	1464.477	624.994	173.880	2263.351
P4-P5	1464.477	868.781	173.880	2507.138
P5-P6	1474.368	849.985	173.880	2498.233
P6-P7	1474.368	897.056	173.880	2545.304
P7-P8	1474.368	542.245	173.880	2190.493

Tabla 49. Pérdidas totales dependientes del tiempo para cada claro M (-)

Tabla 50. Pérdidas totales dependientes del tiempo para cada claro M (+)

Claro	$\Delta \mathbf{f}_{\mathbf{pSD}} (\mathbf{MPa})$	$\Delta \mathbf{f}_{\mathbf{pCD}} (\mathbf{MPa})$	$\Delta f_{pR2} (MPa)$	$\Delta \mathbf{f}_{\mathbf{pLT}} (\mathbf{MPa})$
P3-P4	302.848	63.118	33.120	399.086
P4-P5	672.990	403.507	82.800	1159.297
P5-P6	672.990	366.562	82.800	1122.352
P6-P7	672.990	417.664	82.800	1173.454
P7-P8	302.848	64.474	33.120	400.442

Después de ocurridas las pérdidas dependientes del tiempo, la fuerza inicial de presforzado, Pi, se reduce a un valor menor Pe, denominado fuerza efectiva de presforzado, que es la fuerza de los tendones en servicio.

El esfuerzo efectivo correspondiente a la fuerza Pe se calcula:

$$\mathbf{f}_{pe} = \mathbf{f}_{pi} - \Delta \mathbf{f}_{pLT} \qquad \qquad \mathbf{Pe} = \mathbf{f}_{pe} * \mathbf{A}_{ps}$$

Claro	fpi (MPa)	fpe (MPa)	Pe (kN)
P3-P4	28,515.003	26,251.652	31095.606
P4-P5	28,513.363	26,006.225	30804.893
P5-P6	27,403.570	24,905.337	29500.869
P6-P7	27,403.432	24,858.128	29444.949
P7-P8	27,383.274	25,192.782	29841.354

Tabla 51. Fuerza efectiva de presforzado para cada claro M (-)

Tabla 52. Fuerza efectiva de presforzado M (+)

Claro	Claro fpi (MPa)		Pe (kN)	
P3-P4	5,352.158	4,953.072	5867.013	
P4-P5	13,332.070	12,172.774	14418.894	
P5-P6	13,335.175	12,212.823	14466.333	
P6-P7	13,330.639	12,157.185	14400.429	
P7-P8	5,137.673	4,737.231	5611.345	

Como se observa en las tablas 51 y 52, la fuerza axial efectiva de presfuerzo es mayor a la mínima requerida calculada en la sección 3.4.11.3.1 y 3.4.11.3.2 de este documento; por lo tanto la fuerza de compresión en los cables compensará la tensión producida por las cargas.

	F	erdidas ins	stantánea	IS	Pérdidas dependientes del tiempo				Pérd.total
Clara	ΔfpF (MDa)	ΔfpA (MDa)	∆fpES (MDa)	Total	∆fpSD (MDa)	ΔfpCD	∆fpR2	ΔfpLT (MDa)	∆fpT (MDa)
Ciaro	(IVIPa)	(1916)	(IVIPa)	(IVIPa)	(IVIFa)	(IVIPa)	(IVIPa)	(IVIFa)	(IVIPa)
P3-P4	1278.775	1249.095	37.127	2564.997	1464.477	624.994	173.880	2263.351	4828.348
P4-P5	1278.779	1249.041	38.817	2566.637	1464.477	868.781	173.880	2507.138	5073.775
P5-P6	872.899	2766.533	36.979	3676.411	1474.368	849.985	173.880	2498.233	6174.644
P6-P7	872.899	2766.533	37.117	3676.549	1474.368	897.056	173.880	2545.304	6221.853
P7-P8	870.679	2791.409	34.638	3696.726	1474.368	542.245	173.880	2190.493	5887.219

Tabla 53. Resumen de las pérdidas totales M (-)

		Pérdidas i	nstantáne	as	Pérdidas dependientes del tiempo				Pérd.total
Claro	ΔfpF (MPa)	ΔfpA (MPa)	ΔfpES (MPa)	Total (MPa)	ΔfpSD (MPa)	∆fpCD (MPa)	ΔfpR2 (MPa)	ΔfpLT (MPa)	ΔfpT (MPa)
P3-P4	166.178	385.794	15.870	567.842	302.848	63.118	33.120	399.086	966.928
P4-P5	877.692	501.397	88.840	1467.930	672.990	403.507	82.800	1159.297	2627.226
P5-P6	877.279	501.694	85.852	1464.825	672.990	366.562	82.800	1122.352	2587.177
P6-P7	877.925	501.422	90.014	1469.361	672.990	417.664	82.800	1173.454	2642.815
P7-P8	297.402	468.971	15.954	782.327	302.848	64.474	33.120	400.442	1182.769

Tabla 54. Resumen de las pérdidas totales M (+)

La tabla 53 y 54 muestran el total de pérdidas que sufrirán los cables de presfuerzo por cada tramo. Estas pérdidas son usadas en el cálculo de la fuerza efectiva de compresión de los cables en la tabla 51 y 52.

3.4.13 Revisión de los esfuerzos límites

 a) Esfuerzo límite del acero de presfuerzo en el estado límite de servicio después de todas las pérdidas

$$f_{pe} \le 0.8(f_{py})$$

 $0.8(f_{py}) = 1280 \text{ MPa}$

Para el momento máximo negativo

Claro P3 – P4 f_{pe} = 26,251.652 MPa < 1280 MPa * 21 cables = 26,880 MPa **Ok**!

Claro P4 – P5 $f_{pe} = 26,006.225 \text{ MPa} < 26,880 \text{ MPa}$ **Ok**! Claro P5 – P6 $f_{pe} = 24,905.337 \text{ MPa} < 26,880 \text{ MPa}$ **Ok**!

Claro P7 – P8
$$f_{pe} = 25,192.782 \text{ MPa} < 26,880 \text{ MPa}$$
 Ok!

Para el momento máximo positivo

 b) Límites de tensión y límites de compresión en el concreto después de las pérdidas

Tabla 55. Límites de esfuerzos en	I concreto des	pués de las	pérdidas M ((-)
-----------------------------------	----------------	-------------	--------------	-----

			Compresión						
Claro	Elemento	SERVICIO I	Límito	SERVICIO I	Límito		Límite		
		Sin carga viva	Limite	Con carga viva	Limite	SERVICIO			
P3-P4	Fibra superior	9.008	15.75	7.691	21	7.954	-2.958		
	Fibra inferior	2.285	15.75	3.603	21				
P4-P5	Fibra superior	6.755	15.75	4.93	21	5.295	-2.958		
	Fibra inferior	4.433	15.75	6.257	21				
P5-P6	Fibra superior	5.258	15.75	3.315	21	3.704	-2.958		
	Fibra inferior	5.187	15.75	7.129	21				
P6-P7	Fibra superior	5.052	15.75	3.099	21	3.489	-2.958		
	Fibra inferior	5.373	15.75	7.326	21				
P7-P8	Fibra superior	8.459	15.75	7.234	21	7.479	-2.958		
	Fibra inferior	2.106	15.75	3.331	21				

			Com	presión		Tensić	ón
Claro	Elemento	SERVICIO I	Límito	SERVICIO I	Límito		Límito
		Sin carga viva	Limite	Con carga viva	Limite	SERVICIO	Limite
P3-P4	Fibra superior	3.872	15.75	6.091	21		
	Fibra inferior	0.546	15.75	-1.673	21	-1.229	-2.958
P4-P5	Fibra superior	-0.530	15.75	2.036	21		
	Fibra inferior	10.474	15.75	7.908	21	8.421	-2.958
P5-P6	Fibra superior	-1.176	15.75	1.425	21		
	Fibra inferior	11.152	15.75	8.552	21	9.072	-2.958
P6-P7	Fibra superior	-0.283	15.75	2.362	21		
	Fibra inferior	10.214	15.75	7.570	21	8.098	-2.958
P7-P8	Fibra superior	3.989	15.75	6.225	21		
	Fibra inferior	0.236	15.75	-2.000	21	-1.553	-2.958

Tabla 56. Límites de esfuerzos en el concreto después de las pérdidas M (+)

Como se observa en las tablas 55 y 56 la fuerza de presfuerzo aplicada (cables para momento positivo y negativo) no origina esfuerzos mayores que los límites establecidos en 5.9.4.1 AASHTO LRFD. Como la fibra inferior no presenta tensión se considera que cumple con el criterio establecido.

3.4.14 Diseño por flexión – Estado límite de resistencia I

La AASHTO requiere que para el estado límite de resistencia I se cumpla:

$$M_u \leq \emptyset M_n$$

Las demandas del momento factorado M_u para la viga exterior crítica en todos los claros fueron calculadas anteriormente.

Claro	f _{cpe} (MPa)	M _{cr} (kN.m)		
P3-P4	13.269	124,139.094		
P4-P5	13.144	123,315.153		
P5-P6	11.892	121,381.004		
P6-P7	11.869	121,222.967		
P7-P8	12.029	122,343.261		

Tabla 57. Momento de fisuración para el momento máximo negativo

Claro	f _{cpe} (MPa)	M _{cr} (kN.m)
P3-P4	5.257	12955.526
P4-P5	17.587	30750.422
P5-P6	17.645	30827.755
P6-P7	17.565	30720.321
P7-P8	5.028	12677.586

Tabla 58. Momento de fisuración para el momento máximo positivo

El procedimiento para el chequeo por flexión será el mismo especificado en la sección 3.3.4 de este documento.

					P3P4			
X/L	Aps	d _p	b	С	fps	а	$ M_u $	ØM _n
	mm ²	m	mm	mm	MPA	mm	KN.m	kN.m
0.0	4740	875.000	3480	101.573	1849.925	81.259	405.824	6950.484
0.1	4740	1067.700	5630	64.069	1849.961	51.255	2027.866	8680.855
0.2	7110	1016.000	5380	99.215	1849.937	79.372	2126.325	12199.430
0.3	10665	790.000	5390	143.992	1849.882	115.194	1963.775	13727.098
0.4	14220	1506.250	5450	193.686	1849.917	154.949	3795.853	35705.851
0.5	15405	1811.554	5510	208.565	1849.925	166.852	6855.786	46785.940
0.6	17775	2079.173	5570	238.113	1849.926	190.490	11946.467	61974.564
0.7	18960	2576.788	5630	252.785	1849.936	202.228	24056.802	82492.057
0.8	22515	2820.716	3350	824.684	1849.811	659.747	37829.536	120750.184
0.9	24885	3301.600	3420	964.649	1849.811	771.719	47323.284	162317.507
1.0	24885	3301.600	2540	1275.388	1849.750	1020.310	65129.576	160002.021

Tabla 59. Momento nominal P3P4

La demanda por flexión es menor que la capacidad de la viga P3-P4 en todas la secciones como se muestra. 65129.576 kN.m < 160002.021 kN.m

					P4P5			
X/L	A_{ps}	d_p	b	С	f _{ps}	а	$ M_u $	ØM _n
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m
0.0	24885	3531.429	3540	1087.098	1849.801	869.678	46245.614	135415.949
0.1	22515	2955.116	3460	1307.245	1849.714	1045.796	14503.699	90975.374
0.2	20145	637.424	5710	238.347	1849.758	190.677	11855.640	19189.913
0.3	18960	1049.675	5610	241.548	1849.851	193.238	22688.102	31755.363
0.4	17775	1323.000	5510	235.157	1849.885	188.126	28821.834	38389.071
0.5	11850	1805.000	5490	162.494	1849.942	129.995	27165.101	36236.803
0.6	17775	1323.000	5510	235.157	1849.885	188.126	21257.086	38389.072
0.7	18960	1049.675	5610	241.548	1849.851	193.238	10131.749	31755.364
0.8	20145	637.424	3360	508.722	1849.483	406.978	12923.548	48907.757
0.9	22515	2955.116	3460	1307.245	1849.714	1045.796	49726.699	122425.823
1.0	24885	3531.429	2850	1304.525	1849.761	1043.620	80042.470	180983.787

Tabla 60. Momento nominal P4P5

La demanda por flexión es menor que la capacidad de la viga P4-P5 en todas la secciones como se muestra. 80042.474 kN.m < 135415.949 kN.m.

					P5P6			
X/L	A_{ps}	d_p	b	С	f _{ps}	а	$ M_u $	ØM _n
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m
0.0	24885	3531.429	3540	1087.098	1849.801	869.678	61027.054	135415.949
0.1	22515	2955.116	3460	1307.245	1849.714	1045.796	34563.420	90975.374
0.2	20145	2034.576	5710	261.882	1849.917	209.506	11656.175	68322.009
0.3	18960	1049.675	5610	241.548	1849.851	193.238	13098.501	31755.363
0.4	17775	1323.000	5510	235.157	1849.885	188.126	23773.585	38389.072
0.5	11850	1805.000	5490	162.494	1849.942	129.995	27540.610	36236.803
0.6	17775	1323.000	5510	235.157	1849.885	188.126	26762.356	38389.072
0.7	18960	1049.675	5610	241.548	1849.851	193.238	20002.983	31755.364
0.8	20145	637.424	3360	508.722	1849.483	406.978	7352.285	48907.757
0.9	22515	2955.116	3460	1307.245	1849.714	1045.796	27954.506	122425.823
1.0	24885	3531.429	2850	1304.525	1849.761	1043.620	52518.399	180983.787

Tabla 61. Momento nominal P5P6

Г

La demanda por flexión es menor que la capacidad de la viga P5-P6 en todas la secciones como se muestra. 61027.054 kN.m < 135415.949 kN.m.

					P6P7			
X/L	A_{ps}	d_p	b	С	f_{ps}	а	$ M_u $	ØM _n
	mm²	m	mm	mm	MPA	mm	KN.m	kN.m
0.0	24885	3531.429	1840	1087.098	1849.801	869.678	67030.790	135415.949
0.1	22515	2955.116	5490	1307.245	1849.714	1045.796	33402.695	90975.375
0.2	20145	637.424	5490	238.347	1849.758	190.677	9610.299	19189.913
0.3	18960	1049.675	5490	241.548	1849.851	193.238	17803.987	31755.364
0.4	17775	1323.000	5490	235.157	1849.885	188.126	29791.407	38389.072
0.5	11850	1805.000	5490	162.494	1849.942	129.995	33246.632	36236.803
0.6	17775	1323.000	5490	235.157	1849.885	188.126	33156.052	38389.072
0.7	18960	1049.675	5490	241.548	1849.851	193.238	26926.140	31755.364
0.8	20145	637.424	2740	508.722	1849.483	406.978	15801.466	28993.850
0.9	22515	2955.116	2740	912.223	1849.800	729.779	18398.943	161138.352
1.0	24885	3531.429	1840	1304.525	1849.761	1043.620	43429.099	178771.512

Tabla 62. Momento nominal P6P7

La demanda por flexión es menor que la capacidad de la viga P6-P7 en todas la secciones como se muestra. 67030.790 kN.m < 135415.949 kN.m.

					P7P8				
X/L	A_{ps}	d_p	b	b c		а	$ M_u $	ØM _n	
	mm ²	m	mm	mm	MPA	mm	KN.m	kN.m	
0.0	24885	3301.600	2540	1383.590	1849.729	1106.872	71108.333	117589.213	
0.1	24885	3301.600	3420	1134.511	1849.778	907.608	42748.944	124534.472	
0.2	22515	2820.716	3350	1005.269	1849.769	804.215	36310.178	95692.656	
0.3	18960	2576.788	3300	759.434	1849.809	607.547	21370.990	75734.006	
0.4	17775	2079.173	3240	672.934	1849.790	538.347	11621.488	56537.198	
0.5	15405	1811.554	3180	485.088	1849.827	388.070	9665.919	43789.064	
0.6	14220	1506.250	3120	381.391	1849.836	305.113	3938.115	33828.034	
0.7	10665	790.000	5390	143.992	1849.882	115.194	4109.315	13727.098	
0.8	7110	1016.000	5380	99.215	1849.937	79.372	3665.228	43952.349	
0.9	4740	1067.700	5630	64.069	1849.961	51.255	2971.249	44768.026	
1.0	4740	1125.000	2540	138.794	1849.920	111.035	1900.874	39686.220	

La demanda por flexión es menor que la capacidad de la viga P7-P8 en todas la secciones como se muestra. 71108.333 kN.m < 117589.213 kN.m.

Figura 23. Chequeo por flexión positiva Tramo P3P8

Lo obtenido en las tablas 59 – 63 fue comprobado utilizando CSIBridge mediante la opción Design/Rating. La figura 23 muestra el chequeo por flexión positiva para las vigas cajón donde la demanda está representada por la línea azul y la capacidad por la línea naranja. Como se observa los momentos positivos últimos no superan la capacidad por lo que se puede concluir lo siguiente:

¡La sección es adecuada por flexión!

Figura 24. Chequeo por flexión negativa Tramo P3P8

La figura 24 muestra el chequeo por flexión negativa para las vigas cajón donde la demanda está representada por la línea azul y la capacidad por la línea naranja. Como se observa los momentos negativos últimos no superan la capacidad por lo que se puede concluir lo siguiente:

¡La sección es adecuada por flexión!

3.4.15 Cortante y Torsión para vigas cajón

El diseño por cortante y torsión deberá ser realizado con las combinaciones del estado límite de resistencia. (AASHTO LRFD 5.8.6.2) .Por inspección, la torsión no necesita ser investigada para este diseño. Debido a que el puente es recto, solo la carga viva causa torsión, la carga muerta y las otras cargas no causan este efecto en la superestructura, por lo tanto se utilizará el procedimiento descrito en la sección 5.8 AASHTO LRFD o 3.3.5 de este documento solo para el cálculo de la resistencia al cortante.

La componente de cortante del presfuerzo longitudinal efectivo primario actuando en la dirección del cortante examinado, Vp, deberá ser añadido a los efectos de carga con un factor de 1.0 Los efectos secundarios del presfuerzo deberán ser incluidos en la carga Ps.

				P3	P4				
X/L	V _p kN	d_v mm	M_u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN	D/C
0.0	145.687	1440	1342.733	2192.544	125	1849.862	3769.284	786.766	0.21
0.1	145.687	1440	2920.723	1683.440	125	1849.862	3311.090	1137.183	0.34
0.2	402.594	1440	3616.393	834.932	125	1849.862	2778.649	713.616	0.26
0.3	513.638	1469	3840.277	886.249	125	1886.859	2958.072	587.021	0.20
0.4	675.305	1542	-3795.853	1148.126	125	1980.277	3423.338	1263.690	0.37
0.5	265.621	1728	-6855.786	1531.500	125	2219.998	3615.407	1909.680	0.53
0.6	672.094	1984	-11946.467	2038.759	125	2548.606	4733.513	2479.524	0.52
0.7	491.117	2476	-24056.802	2894.199	125	3180.315	5909.069	3346.905	0.57
0.8	716.308	2539	-37829.536	3266.990	125	3261.209	6520.057	4036.317	0.62
0.9	0.000	2971	-47323.284	4314.207	125	3817.190	7318.258	4607.309	0.63
1.0	0.000	2971	-65129.576	4524.315	125	3817.190	7507.355	5665.669	0.75

Tabla 64. Resistencia a Cortante P3P4

Como se puede observar la demanda de cortante de la viga exterior derecha de la sección cajón en el tramo P3-P4 es menor que la capacidad en todas las secciones a lo largo de su longitud, siendo la más crítica en 1.0; **5665.669 kN < 7507.355 kN.**

				P4F	°5				
X/L	V _p kN	$d_v \ {\sf mm}$	M_u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN	D/C
0.0	0.000	3178	-46245.614	4839.258	125	4082.909	8029.951	5669.648	0.71
0.1	857.647	2660	-14503.699	3548.026	125	3416.598	7040.044	4372.541	0.62
0.2	460.929	1924	11855.640	2113.042	125	2471.416	4540.848	2808.785	0.62
0.3	0.000	1633	22688.102	1408.672	125	2097.743	3155.774	1792.760	0.57
0.4	256.731	1475	28821.835	924.931	125	1895.184	2769.161	757.106	0.27
0.5	0.000	1740	27165.101	1008.877	125	2235.253	2919.717	829.751	0.31
0.6	256.731	1475	21257.086	924.931	125	1895.184	2769.161	1921.449	0.69
0.7	0.000	1633	10131.749	1408.672	125	2097.743	3155.774	2580.252	0.82
0.8	460.929	1924	-12923.548	2113.042	125	2471.416	4540.848	3690.694	0.81
0.9	857.647	2660	-49726.699	3548.026	125	3416.598	7040.044	5172.162	0.73
1.0	0.000	3178	-80042.470	4839.258	125	4082.909	8029.951	4960.187	0.62

Tabla 65. Resistencia a Cortante P4P5

Como se puede observar la demanda de cortante de la viga exterior derecha de la sección cajón en el tramo P4-P5 es menor que la capacidad en todas las secciones a lo largo de su longitud, siendo la más crítica en 0.7; **2580.252 kN < 3155.774 kN.**

				P51	P6				
X/L	V _p kN	$d_v \ {\sf mm}$	Μ _u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN	D/C
0.0	0.000	3178	-61027.054	4839.258	125	4839.258	8029.951	6002.632	0.75
0.1	857.647	2660	-34563.420	3548.026	125	3548.026	7040.044	5090.971	0.72
0.2	460.929	1930	-11656.175	2119.614	125	2119.614	4553.681	3508.663	0.77
0.3	0.000	1633	13098.501	1408.672	125	1408.672	3155.774	2380.755	0.75
0.4	256.731	1475	23773.585	924.931	125	924.931	2769.161	1474.160	0.53
0.5	0.000	1740	27540.610	739.693	125	739.693	2919.717	647.975	0.24
0.6	256.731	1475	26762.356	924.931	125	924.931	2769.161	1098.259	0.40
0.7	0.000	1633	20002.983	1408.672	125	1408.672	3155.774	1890.765	0.60
0.8	460.929	1924	7352.285	2113.042	125	2113.042	4540.848	2962.596	0.65
0.9	857.647	2660	-27954.506	3548.026	125	3548.026	7040.044	4130.841	0.59
1.0	0.000	3178	-52518.399	4839.258	125	4839.258	8029.951	5891.867	0.73

Tabla 66. Resistencia a Cortante P5P6

Como se puede observar la demanda de cortante de la viga exterior derecha de la sección cajón en el tramo P5-P6 es menor que la capacidad en todas las secciones a lo largo de su longitud, siendo la más crítica en 0.0; **6002.632 kN < 8029.951 kN.**

	P6P7								
X/L	V _p kN	$d_v \ {\sf mm}$	M_u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	$ V_u $ kN	D/C
0.0	0.000	3178	-67030.790	4839.258	125	4082.909	8029.951	6518.138	0.81
0.1	857.647	2660	-33402.695	3802.107	125	3661.267	7488.919	5080.568	0.72
0.2	460.929	1930	-9610.299	2113.042	125	2471.416	4540.848	3758.921	0.83
0.3	0.000	1633	17803.987	1408.672	125	2097.743	3155.774	2566.012	0.81
0.4	256.731	1475	29791.407	924.931	125	1895.184	2769.161	1488.535	0.54
0.5	0.000	1740	33246.632	409.824	125	2235.253	2380.570	753.452	0.32
0.6	256.731	1475	33156.052	887.100	125	1895.184	2735.113	1025.044	0.38
0.7	0.000	1633	26926.141	1408.672	125	2097.743	3155.774	1891.369	0.60
0.8	460.929	1924	15801.466	2113.042	125	2471.416	4540.848	2898.762	0.64
0.9	857.647	2660	-18398.943	3548.026	125	3416.598	7040.044	4346.240	0.62
1.0	0.000	3178	-43429.099	4839.258	125	4082.909	8029.951	2284.316	0.28

 Tabla 67. Resistencia a Cortante P6P7

Como se puede observar la demanda de cortante de la viga exterior derecha de la sección cajón en el tramo P6-P7 es menor que la capacidad en todas las secciones a lo largo de su longitud, siendo la más crítica en 0.2; **3758.921 kN < 4540.848 kN.**

	P7P8								
X/L	V _p kN	$d_v \ {\sf mm}$	Μ _u kN.m	V _c kN	S mm	V _s kN	ØV _n kN	<i>V</i> _u kN	D/C
0.0	0.000	2971	-71108.333	4524.315	125	3817.190	7507.355	2830.628	0.38
0.1	0.000	2971	-42748.944	4314.207	125	3817.190	7318.258	4456.842	0.61
0.2	716.308	2539	-36310.178	3266.990	125	3261.209	6520.057	4163.523	0.64
0.3	491.117	2319	-21370.990	2711.166	125	2979.188	5563.324	3199.510	0.58
0.4	672.094	1871	-11621.488	1922.972	125	2403.865	4499.038	2493.473	0.55
0.5	265.621	1657	-9665.919	1468.217	125	2128.266	3475.894	1905.137	0.55
0.6	675.305	1542	-3938.115	1148.126	125	1980.277	3423.338	1235.148	0.36
0.7	513.638	1469	4109.315	886.249	125	1886.859	2958.072	605.259	0.20
0.8	402.594	1440	3665.228	834.932	125	1849.862	2778.649	730.309	0.26
0.9	145.687	1440	2971.249	1683.440	125	1849.862	3311.090	1161.130	0.35
1.0	145.687	1440	-1900.874	2192.544	125	1849.862	3769.284	216.963	0.06

Tabla 68. Resistencia a Cortante P7P8

Como se puede ver la demanda de cortante de la viga exterior derecha de la sección cajón en el tramo P7-P8 es menor que la capacidad en todas las secciones a lo largo de su longitud, siendo la más crítica en 0.2; **4163.523 kN < 6520.057 kN.**

CAPÍTULO IV

DISEÑO DE LA SUBESTRUCTURA Y REQUERIMIENTOS SISMICOS

4.1 INTRODUCCIÓN

En este capítulo se revisó el diseño de los elementos de la subestructura, excluyendo la cimentación (zapata y pilotes). Se revisaron los estribos, pilas, cabezales y juntas con los requerimientos establecidos en las normas utilizadas.

Los criterios de diseño sísmico están enfocados en revisar el comportamiento de las pilas mediante la revisión de resistencia, desplazamiento, ductilidad y formación de rotulas plásticas.

Los estribos son un tipo particular de muro de contención y como elemento del puente, proveen soporte vertical a la superestructura en los extremos del mismo, este conecta el puente con la losa de aproximación y a la vez contiene el terraplén.

Los estribos pueden ser: estribos de gravedad, estribos en U, estribos reforzados (voladizo), estribos de semi gravedad (parcialmente reforzados) o estribos de pantalla y contrafuerte.

Las cargas en el diseño del estribo usualmente incluyen cargas verticales y horizontales de la superestructura del puente, presiones verticales y laterales del suelo, cargas gravitatorias y sobrecarga viva en el material del relleno.

Los efectos de presión sísmica del suelo se calcularon usando el método Mononobe-okabe. Se revisó la estabilidad del estribo; excentricidad o volteo, resbalamiento, capacidad del suelo y su resistencia al cortante y al momento.

4.2 Materiales y Propiedades

Para estructuras en SDC D, las propiedades esperadas de los materiales deberán ser usadas para determinar la rigidez de la sección, la sobre resistencia y la capacidad de desplazamiento de los elementos verticales.

4.2.1 Concreto

La resistencia a la compresión esperada del concreto f'_{ce} , deberá ser tomada como la resistencia a largo plazo más probable basada en la experiencia y deberá ser tomada como sigue. LRFD Seismic 8.4.4.

$$f'_{ce} \geq 1.3f'_{c}$$

El concreto usado en la subestructura tiene una resistencia a la compresión de 24 MPa, por lo tanto la resistencia a la compresión esperada del concreto es:

$$f'_{ce} = 1.3(24) = 31.2 \text{ MPA}$$

4.2.2 Acero de refuerzo

Acero ASTM A615 Grado 60 es utilizado como refuerzo en las columnas. Algunas propiedades son dadas en la tabla 8.4.2-1 AASHTO LRFD Seismic.

PROPIEDAD	N° Barra	ASTM A615 Grado 60
Resistencia mínima a fluencia	#10 - #57	$f_y = 60 \ ksi \ (345 \ MPA)$
Resistencia a fluencia esperada	#10 - #57	$f_{ye} = 68 \ ksi \ (469 \ MPA)$
Resistencia a la tensión esperada	#10 - #57	$f_{ue} = 95 \ ksi \ (655 \ MPA)$
Deformación por fluencia esperada	#10 - #57	$\varepsilon_{ye} = 0.0023$
	#10 - #25	$\varepsilon_{sh} = 0.0150$
	#29	$\varepsilon_{sh} = 0.0125$
	#32 - #36	$\varepsilon_{sh} = 0.0115$
endurechmento	#43	$\varepsilon_{sh} = 0.0075$
	#57	$\varepsilon_{sh} = 0.0050$
Deformación por tonción última roducida	#13 - #32	$\varepsilon^{R}{}_{su} = 0.060$
	#36 - #57	$\varepsilon^{R}_{su} = 0.040$
Deformación por tonsión última	#13 - #32	$\varepsilon_{su} = 0.090$
	#36 - #57	$\varepsilon_{su} = 0.060$

 Tabla 69. Propiedades del acero de refuerzo

4.3 Diseño del Estribo A1

Se realizaron las revisiones de los estribos de concreto reforzado del puente Santa Fe, estas fueron realizadas con la norma ASSHTO LRFD 2012, basándose en el diseño convencional para asegurar que la estructura esté diseñada de forma eficiente. El estribo posee características de muro de semi-gravedad en voladizo, según la figura C11.6.1.1-1 LRFD.

4.3.1 Dimensiones preliminares

Teniendo la altura total de estribo H = 8.5 m

DIMENSION	VALOR	CRITERIO
	m	
b_0	0.50	> 0.30 m
t (espesor del cuerpo)	1.50	> 0.85 m
<i>t</i> ' (pie)	1.50	> 0.85 m
D (zapata)	1.90	> 0.85 m
B (zapata)	5.40	4.25 < 5.4 m < 5.95
h_0	1.53	
h_c (Altura del cuerpo)	4.79	
l'	0.924	
Longitud del estribo	11.8	
Longitud de la viga	23.814	

Tabla 70. Dimensiones preliminares del estribo

Los criterios de dimensionamiento de la tabla 70 fueron tomados de Braja. M. Das, Fundamentos de ingeniería de cimentaciones.

Datos generales:

Tabla 71. Pro	piedades	usadas ei	n el	diseño	del	estribo
---------------	----------	-----------	------	--------	-----	---------

PROPIEDAD	VALOR
Peso específico del concreto γ_c	2400 Kg/m ³
Peso específico del suelo de relleno	1700 Kg/m ³
Resistencia a la compresión del concreto f'_c	24 MPa
Esfuerzo de fluencia del acero f_y	345 MPa

Figura 25. Dimensiones del estribo A1

4.3.2 Cálculo de los efectos de carga muerta

Una vez determinada las dimensiones del estribo, se deberán calcular las cargas muertas actuantes. Estas cargas son calculadas por metro de base, usando CSI Bridge.

CM TOTAL = \sum CM/Lestribo = 129.194 kN/m

DW TOTAL = $\sum DW/Lestribo = 7.576 \text{ kN/m}$

- Carga muerta del muro de respaldo CM = 20.712 kN/m
- Apoyo o murete de la losa de transición CM = 6.472 kN/m
- Carga muerta del cuerpo del Estribo CM= 169.106 kN/m
- Carga muerta de la zapata
- Carga muerta del suelo de relleno CM = 226.516 kN/m
- Carga muerta del suelo sobre la punta CM = 35.459 kN/m

CM = 228.77 kN/m

4.3.3 Cálculo de los efectos de carga viva

4.3.3.1 Cálculo de fuerza en la parte trasera del muro de respaldo

RLL = 46.893 kN/m (Reacción debida a la carga viva)

Las siguientes cargas son obtenidas del programa CSI Bridge:

Tabla 72.	Cortantes	máximos	en	CSIbridge
-----------	-----------	---------	----	-----------

Cargas obtenidas en kN			
	Camión	Carril	
V máx.	183.865	120	
V mín.	54.709	120	

rLL = Vcamión + Vcarril(kN)

```
RLL = rLL * m * N^{\circ} carril (kN/m)
```

Las cargas vivas máximas y mínimas que controlan, son para dos carriles cargados. Las cargas son multiplicadas por el factor de presencia múltiple.

✓ Máxima carga viva sin factorar usada para el diseño del cuerpo de estribo

rll(máx) = 303.865 kN

Rll (max) = 51.503 kN/m

✓ Mínima carga viva sin factorar usada para el diseño del cuerpo de estribo

 $r_{II}(min) = 174.709 \text{ kN}$

Rll (mín) = 29.612 kN/m

4.3.4 Cargas debidas al empuje lateral del suelo

El ángulo de fricción, Φ , varía según el tipo de material y es obtenido de un estudio de suelos. Para efectos de cálculo se asumirá el valor.

GRUPO	A
LUGAR	San Carlos
ZONA SÍSMICA	В
ÁNGULO DE FRICCIÓN	35°

Tabla 73. I	Datos para e	l cálculo del	empuje	lateral
-------------	--------------	---------------	--------	---------

$$\theta = tan^{-1} \left(\frac{k_h}{1 - k_v} \right) \qquad \qquad k_h = 1.66As \left(\frac{As}{d} \right)^{0.25}$$

Donde:

d = Desplazamiento lateral del muro <math>d = 38 mm, Utilizando Kavazanjian

 $As = a_0 = M$ áximo coeficiente de aceleración sísmica

 θ = Inclinación del muro con respecto a la horizontal θ = 6.5°

- k_h = Coeficiente de aceleración sísmica horizontal k_h = 0.116
- k_v = Coeficiente de aceleración sísmica vertical k_v = 0.0
- β = Pendiente de la pared con respecto a la vertical $\beta = 0$
- i =Ángulo de la pendiente del relleno i = 0
- δ = Ángulo de fricción interna entre muro y el relleno δ = 3.03°

4.3.4.1 Presión activa sísmica

El coeficiente de presión activa sísmica se determinará como sigue:

$$k_{AE} = \frac{\cos^{2}(\phi - \theta - \beta)}{\cos\theta\cos^{2}\beta\cos(\delta + \beta + \theta)\left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\right]^{2}}$$

$$k_{AE} = 0.325$$

La fuerza activa total será como se muestra en la siguiente tabla:

Tabla 74. Fuerza activa Total

UBICACIÓN	H (m)	$P_{AE}(kN/m)$
Muro de respaldo	0.986	2.634
Cuerpo del Estribo	5.776	90.379
Base de la zapata	7.576	155.487

4.3.4.2 Presión pasiva sísmica

La altura de suelo es de 3.218 m aproximadamente. Para estimar el coeficiente de presión pasiva se utilizará "Figura A11.4-2" del anexo en la AASHTO LRFD con un valor de cohesión del suelo igual cero. El valor dado es: Kpe = 6.55

De acuerdo a la ecuación: "A11.4-3" de la AASHTO LRFD, la presión pasiva es:

$$P_p = 0.5 \gamma h^2 K_{pe}$$

Pp = 565.386 kN/m

4.3.5 Cargas debidas a sobrecarga viva

El empuje horizontal constante de tierra debido a la sobrecarga viva es:

$$\Delta_p = k \gamma_s h_{eq}$$

Donde:

 Δ_p = Empuje horizontal constante debido a la sobrecarga uniforme (MPa)

 γ_s = Densidad del suelo (kN/m³)

k = Coeficiente de empuje lateral del suelo

 h_{eq} = Altura de suelo equivalente para carga vehicular (mm) Tabla 3.11.6.4-1 ASSHTO LRFD.

Donde k=0.325; $\gamma_S = 16.671 \text{kN}/\text{m}^3$

Tabla 75. Altura de suelo equivalente

Altura del estribo (m)	heq (mm)
1.524	1219.2
3.048	914.4
> 6.096	609.6

La carga lateral debido a sobrecarga viva se determina con la siguiente expresión:

$$R_{LS} = \Delta_p * H * 10^{-3}$$

Empuje para	H (m)	Heq (mm)	Δp (Mpa)	RLS (kN/m)
Parapeto	1.76	1,172	6.350	11.176
Cuerpo	6.55	610	3.305	21.648
Zapata	8.35	610	3.305	27.597

Tabla 76. Cargas debidas a sobre carga viva

4.3.6 Cargas debidas a la deformación del elastómero

Para el diseño del estribo, dos cargas horizontales de temperatura necesitan ser calculadas: la carga debida al aumento de temperatura y la carga debida al descenso de temperatura. Tabla 3.12.2.1-1 AASHTO LRFD.

Cálculo de la expansión

$$\Delta_{exp} = \alpha \Delta_t L_{claro}$$

Calculo de la contracción

$$\Delta_{cont} = \alpha \Delta_t L_{claro}$$

Tabla 77. Propiedades usadas para el cálculo de cargas por temperatura

PROPIEDAD	VALOR
Módulo de cizalladura (G)	1 MPa
Dilatación térmica del concreto (α)	9.9x10 ⁻⁶ (1/°C)
Temperatura ambiente	26°C
Lalmohada	360 mm
Walmohada	360 mm
Lclaro	23.814 mm
N° de apoyos	6
$\Delta t = L$ ímite superior – T ambient	Δt = 27°C - 26°C = 1°C
Δexp	0.24 mm
$\Delta t = T$ ambiente – Límite inferior	Δt = 26°C – (-12°C) = 38°C
Δcontr	8.96 mm

Tabla 78. Propiedades del asiento

MATERIAL	N° DE PIEZAS	t (mm)
Goma Natural	4	16
Cubierta de goma	2	3

Cálculo de espesor total del elastómero

hrt = 4 * 16 mm + 2 * 3 mm = 70 mm (según los planos del puente)

Área del elastómero:

 $A = 360 \text{ mm} * 360 \text{ mm} = 129,600 \text{ mm}^2$

Fórmula a utilizar en el cálculo de la fuerza debido a la deformación del elastómero:

$$Hu = G * A * (\Delta claro / hrt)$$

Donde:

Hutotal = $Hu * N^{\circ} Apoyos/b [kN/m]$

Hu = Fuerza factorada debida a la deformación de un elemento elastomérico

G = Módulo de cortante del elastómero

A =Área del elemento elastomérico o apoyo

 Δ claro = Deformación de cortante factorado

hrt = Espesor total de elastómero

Tabla 79. Cargas por temperatura

	Δtemp	Δclaro (mm)	Hu (KN)	Hu total (kN/m)
Expansión	1 °C	0.24	0.444	0.226
Contracción	38 °C	8.96	16.59	8.435

4.3.7 Combinación y análisis de fuerzas

Se realizaron las combinaciones en dos partes críticas del estribo; la parte inferior del muro de respaldo y la parte inferior del cuerpo o parte superior de la zapata.

4.3.7.1 Parte Inferior del Muro de Respaldo

Los siguientes estados límites serán investigados para el análisis del muro de respaldo:

- ✓ Estado Límite de Resistencia I
- ✓ Estado Límite de Resistencia III
- ✓ Estado Límite de Resistencia V
- ✓ Estado Límite de Servicio I

Tabla 80. Efectos de fuerza en el muro de respaldo

Fuerzas	unidades	Resistencia I	Resistencia III	Resistencia V	Servicio I
Vertical	kN/m	116.043	33.980	97.286	74.077
Cortante Longitudinal	kN/m	23.509	3.951	19.039	13.810
Momento	kN.m/m	34.08	5.389	27.522	20.486

Las fuerzas deberán ser multiplicadas por el modificador de cargas:

Fuerzas	unidades	Resistencia I	Resistencia III	Resistencia V	Servicio I
Vertical	kN/m	127.937	37.463	107.258	74.077
Cortante Longitudinal	kN/m	25.919	4.356	20.99	13.810
Momento	kN.m/m	37.573	5.941	30.343	20.486

La máxima fuerza vertical factorada en el muro de respaldo, fuerza cortante, y momento para el Estado Límite de Resistencia es:

FvRespaldo = 127.937 kN/mVuRespaldo = 25.919 kN/m

MuRespaldo = 37.573 kN m/m

4.3.7.2 Parte Inferior del Cuerpo del Estribo

Los efectos de fuerza para el cuerpo serán combinados para los mismos Estados Límites que el muro de respaldo.

Fuerzas	unidades	Resistencia I	Resistencia III	Resistencia V	Servicio I
Vertical	kN/m	508.349	418.219	487.748	384.563
Cortante Longitudinal	kN/m	177.67	139.786	169.011	120.462
Momento	kN.m/m	581.449	456.855	552.970	409.772

Las fuerzas deberán ser multiplicadas por el modificador de cargas:

Tabla 83. Efectos de fuerza factorada en el cuerpo del estribo

Fuerzas	unidades	Resistencia I	Resistencia III	Resistencia V	Servicio I
Vertical	kN/m	560.455	461.086	537.742	384.563
Cortante Longitudinal	kN/m	195.881	154.114	186.335	120.462
Momento	kN.m/m	641.048	503.683	609.649	409.772

La máxima fuerza vertical factorada en el muro de respaldo, fuerza cortante, y momento para el Estado Límite de Resistencia es:

Fv Cuerpo = 560.455 kN/m Vu Cuerpo = 195.881 kN/m Mu Cuerpo = 641.048 kN m/m

4.3.8 Verificación de la estabilidad y requisitos de seguridad

Los estribos, pilas y muros de sostenimiento se deberán investigar para ver si ocurrirán desplazamientos verticales y laterales excesivos en el Estado Límite de Servicio; también se deberá verificar su estabilidad global en el Estado Límite de Servicio.

El resbalamiento y la excentricidad no serán investigadas en este estribo debido a la presencia de pilotes, ya que es necesario realizar un análisis con las curvas p-y y ese procedimiento esta fuera del alcance de esta investigación. Este procedimiento se realizó para el estribo A2 en el Anexo C pág. xxxvii, ya que éste no tiene pilotes en la zapata, utilizando las fórmulas siguientes.

4.3.8.1 Evaluación de la excentricidad

Usando las siguientes relaciones se compara la excentricidad actual con la excentricidad máxima.

$$e = \frac{B}{2} - x_r$$

$$x_r = \frac{M_v - M_h}{V}$$

Donde:

B = Ancho de la zapata (m)

 x_r = Distancia del borde de la zapata hasta la fuerza resultante (m)

V = Fuerza cortante (kN)

 M_v = Momento estabilizador (kN.m/m)

 M_h = Momento de volteo (kN.m/m)

4.3.8.2 Falla por resbalamiento o deslizamiento

Se deberá investigar la falla por resbalamiento en el caso de las zapatas que soportan cargas inclinadas y/o que están fundadas sobre una pendiente.

La falla por resbalamiento ocurre cuando las solicitaciones debidas a las cargas con componente horizontal superan el valor más crítico entre la resistencia al corte mayorada de los suelos o la resistencia al corte mayorada en la interfaz entre el suelo y la fundación. La resistencia mayorada contra la falla por resbalamiento, Qr, se puede tomar como:

$$\boldsymbol{Q}_r = \boldsymbol{\emptyset} \boldsymbol{Q}_n = \boldsymbol{\emptyset}_t \boldsymbol{Q}_t + \boldsymbol{\emptyset}_{ep} \boldsymbol{Q}_{ep}$$

Donde:

 ϕ_t = Factor de resistencia para la resistencia al corte entre el suelo y la fundación

 Q_t = Resistencia nominal al corte entre el suelo y la fundación (kN)

 ϕ_{ep} = Factor de resistencia para la resistencia pasiva

 Q_{ep} = Resistencia pasiva nominal del suelo disponible durante la totalidad de la vida de diseño de la estructura (kN)

4.3.8.3 Capacidad de soporte de carga axial última

Se utilizó el método simplificado de Braja Das, para obtener la capacidad del grupo de pilotes (Qu(g)), dependiendo del espaciamiento entre pilotes estos podrían actuar de forma individual.

Según "Braja Das" pág.617, Si el perímetro del grupo de pilotes es mayor que la suma del perímetro de todos los pilotes, entonces la capacidad es la suma de la capacidad de cada pilote individual sin el efecto del grupo.

Diámetro del pilote = 1.2 m

Pg = 29.6 m (Perímetro del grupo de pilote)

 $Pcp = 2 * \pi * (1.2 \text{ m/2}) * 6 = 22.6 \text{ m} (Perímetro de todos los pilotes)$

Como Pg = 29.6 m > Pcp = 22.6 m; entones: $Qu(g) = \sum Qu$.

$$\sum Qu = N * (Qp + Qs)$$

Donde:

N = Número total de pilotes

Qp = La capacidad en la punta del pilote (kN)

Qs = Resistencia por fricción (kN)

De la ecuación general de la capacidad de carga, para cimentaciones profundas y dado que el ancho del pilote "D" es relativamente pequeño entonces la capacidad de carga (q_u) se puede expresar de la siguiente manera:

$$q_u = q_p = c'N_C^* + q'N_q^*$$

Por lo tanto la capacidad en la punta del pilote es:

$$Qp = A_p q_p = A_p (c' N_c^* + q' N_q^*)$$

Sin embargo Qp no puede exceder el valor límite de Apql.

$$Qp \leq A_p q_l = A_p * (0.5 * p_a N_q^* tan \phi')$$

Donde:

 q_u = Capacidad de soporte de carga última del pilote (kN)

 q_p = Resistencia última por área unitaria desarrollada en la punta de un pilote (kN/m²)

c' = Cohesión del suelo que soporta la punta del pilote (kN/m²)

q' = Esfuerzo vertical efectivo al nivel de la punta del pilote (kN/m²)

 $N_{C}^{*} = N_{q}^{*} =$ Factores de capacidad de carga según Tabla 11.5 Braja Das pag.558

 $A_p =$ Área de la punta del pilote (m²)

 q_l = Resistencia de punta límite (kN)

 p_a = Presión atmosférica, 100 kN/m²

 ϕ' = Angulo de fricción efectivo del suelo del estrato de apoyo (°)

El estrato que soporta los pilotes es una toba menos alterada (Arena con poca arcilla). La arena arcillosa contiene por lo general del 70-90 % de arena, 0-30% de limo y 0-15 % de arcilla, de esto se puede asumir que la cohesión es cero (c' = 0). Los estratos que están por encima de la toba, son en su mayoría arenas arcillosas y por ende se asumirán iguales a la última capa de estrato.

Estimando el ángulo de fricción para la toba: 30°

Por lo tanto en base a la teoría de Meyerhof: $N_q^* = 56.7$

Densidad del suelo de soporte: 14 KN/m³

 $\phi' = 21.15^{\circ}$ Arto. 10.6.3.1.2b AASHTO LRFD

$$q' = \gamma * L = 147 \text{ kN}/m^2$$

Cálculo de la capacidad de la punta del estribo:

 $Qp = A_p q' N_q^* \le A_p * (0.5 * p_a N_q^* tan \varphi')$

Qu(g) = 6 * 2,480.86 KN = 14,885.16 kN

Elemento	Área (m²)	γ (kN/m ³)	V (kN/m)
Parapeto	0.88	23.536	28.543
Ap. De losa	0.275	23.536	8.92
Cuerpo del Estribo	7.185	23.536	233.049
Zapata	9.72	23.536	315.274
Suelo 1	13.9954	16.671	385.849
Suelo 2	4.1165	16.671	113.491

Tabla 84. Fuerza Cortante en cada parte del estribo

 $\sum v = 1085.13 \text{ kN/m}$

Vtotal = 1085.13 kN/m * 11.8 m = 12,804.5 kN

Como
$$Qu(g) = 14,885.16 \text{ KN} > \text{Vtotal} = 12,804.5 \text{ kN OK!}$$

Por lo tanto no es necesario tomar en cuenta la resistencia por fricción.

4.3.9 Diseño del muro de respaldo

Para el diseño del muro de respaldo se aplicará el método convencional basado en la resistencia de los materiales.

4.3.10.1 Diseño por flexión

Utilizando varilla D25; Diámetro = 25.4 mm; Área = 510 mm²

b = 1 m $I = 0.0104 m^4$

H = 0.5 m Y(t) = 0.25 m

Módulo de ruptura: fr = 3.037 MPa

1.33 * Mu = 49.972 KN m/m Controla

 $Mcr = \gamma 3(\gamma 1 * fr) * S = 135.436 \text{ kN m/m}$

Mu = 49.972 kN

Profundidad efectiva del elemento: de = 0.5 m - 0.15 m = 0.35 m

$$\operatorname{Rn} = \frac{M}{(\phi * b * de^2)}$$

Rn = 0.453 MPa; $\rho = 0.0013$

As = 0.0013 * 1000 mm * 350 mm = 455 mm²

N° Barras = As/Abarra = $455 \text{ mm}^2/510 \text{ mm}^2 = 0.9 \approx 1 \text{ Barras}$

Asumir 4 barras.

Espaciamiento = $b/(N^{\circ} Barras-1) = 1 m/(4-1) = 0.333 m = 333 mm$

$$\rho = \frac{0.85 * f'c}{fy} * \left(1 - \sqrt{1 - \frac{2 * Rn}{0.85 * f'c}}\right)$$

Espaciamiento mínimo:

- ✓ 1.5 * 32 mm = 48 mm **¡Controla!**
- \checkmark 1.5 * 20 mm = 40 mm
- ✓ 38.1 mm

Espaciamiento Máximo:

- ✓ 1.5 * 0.5 m = 0.75 m = 750 mm
- ✓ 457.2 mm
- ✓ Espaciamiento del cálculo del acero: 333 mm ¡Controla!

Se asumirá un espaciamiento de 250 mm (Según los planos) porque cumple con el espaciamiento mínimo y máximo.

Usar D25 @ 250 mm para el acero vertical

Determinar el refuerzo transversal mínimo:

Suponiendo un espaciamiento (s) de 250 mm [Según los planos]:

$$As \geq 0.083 * \sqrt{f'c} * \frac{bv * s}{fy}$$

$As \ \geq 295 \ mm^2$

Utilizando varillas D16 con un área de 199 mm² se calcula el número de varilla:

N° varilla = 147.5 mm²/199 mm² = 0.74 varillas \approx 1 varilla

 N° varilla = (1000 mm/250 mm) +1 = 5 varillas

Por lo tanto utilizar varilla D16@250 mm

4.3.10.2 Diseño por cortante

Vu = 25.919 kN/m (Calculado en la sección 4.3.8)

Definiendo las variables a utilizar en la resistencia a cortante nominal:

Utilizando el procedimiento simplificado

$$\beta = 2; \ \theta = 45^{\circ}; \ bv = 1m = 1,000 \ mm$$

Altura de corte efectiva, dv

$$\checkmark$$
 0.9 * de = 0.315 m

✓ b)
$$0.72 * H = 0.36 m$$
 ¡Controla!

✓ de – a/2 = 0.35 m – (0.0345 m)/2 = 0.333 m

dv = 0.36 m = 360 mm

Cálculo de la resistencia a corte nominal Vn, el cual será el menor de:

$$Vn = Vc + Vs$$
$$Vn = 0.25 * f'c * bv * dv$$

Donde:

 $Vc = 0.083 \beta \sqrt{f'c} bv dv$

$$Vc = 292.763 \text{ kN/m}$$

Vs = (Av fy dv)/S

Se utilizará la varilla con diámetro 15.9 mm con $Av = 199 \text{ mm}^2$

S = 250 mm

El ángulo de inclinación del refuerzo transversal:

$$\alpha = 90^{\circ}$$
$$\theta = 45^{\circ}$$
$$Vs = 98.366 \text{ kN/m}$$

Por lo tanto

Vn = 292.763 kN/m + 98. 366 kN/m = **391.129 kN/m** ;Controla!

 $Vn = 0.25 * 24 N/mm^2 * 1000 mm * 360 mm = 2,160,000 N/m = 2,160 kN/m$

 $Vr = \emptyset * Vn$

Vr = 352.016 kN/m > Vu = 25.919 kN/m Ok!

¡La sección es adecuada por cortante!

4.3.10 Diseño de Cuerpo del estribo

Siguiendo el procedimiento anterior tenemos:

4.3.11.1 Diseño por flexión

Utilizando varilla D22; Diámetro = 22.2 mm; Área = 387 mm²

Requerimientos mínimos:

b = 1 m $I = 0.2813 m^4$

H = 1.5 m Y (t) = 0.75 m

Módulo de ruptura: fr = $0.63 * \sqrt{24 \text{ MPa}} = 3.09 \text{ MPa}$

1.33 * Mu = 1.33 * 641.048 kN m/m = 852.594 kN m/m ¡Controla!

 $Mcr = \gamma 3(\gamma 1 * fr) * Sc$

Mu = 852.594 kN.m

Profundidad efectiva del elemento: de = 1.5 m - 0.15 m = 1.35 m

Rn = 0.52 MPa; $\rho = 0.0015$

As = 0.0015 * 1000 mm * 1350 mm = 2025 mm²

 N° Barras = 5.2 \approx 6 Barras

N° varilla = 5 varillas (Según espaciamiento supuesto)

Espaciamiento = 200 mm de acuerdo al nº de varilla.

Espaciamiento mínimo:

✓ 1.5 * 22.2 mm = 33 mm ¡**Controla!**

- ✓ 1.5 * 20 mm = 40 mm
- ✓ 38.1 mm

Espaciamiento Máximo:

- ✓ 1.5 * 1.5 m = 2.25 m = 2,250 mm
- ✓ 457.2 mm
- ✓ Espaciamiento del cálculo del acero: 333 mm ¡Controla!

Se asumirá un espaciamiento de 200 mm porque cumple con el espaciamiento mínimo y máximo.

Usar D22 @ 200 mm para el acero vertical

Determinar el refuerzo transversal mínimo:

Suponiendo un espaciamiento (s) de 250 mm [Según los planos]:

As
$$\geq 295 \text{ mm}^2$$

Por cada cara = $As/2 = 295 \text{ mm}^2/2 = 147.5 \text{ mm}^2$

Utilizando varillas D16 con un área de 198 mm^2 se calcula el número de varilla: N° varilla = $147.5 \text{ mm}^2/198 \text{ mm}^2 = 0.74 \text{ varillas} \approx 1 \text{ varilla}$ (Según área requerida) N° varilla = (1000 mm/250 mm) + 1 = 5 varillas (Según espaciamiento supuesto)

Por lo tanto utilizar varilla D16@250 mm

4.3.11.2 Diseño por cortante

Vu = 195.881 kN/m

Definiendo las variables a utilizar en la resistencia a cortante nominal:

$$bv = 1m = 1,000 mm$$

Altura de corte efectiva, dv se tomará como el mayor de:

- ✓ 0.9 * de = 1.215 m
- ✓ 0.72 * H = 1.08 m
- ✓ c) de -a/2 = = 1.331 m ¡Controla!

$$dv = 1.331 m = 1,331 mm$$

Cálculo de la resistencia a corte nominal Vn, el cual será el menor de:

$$Vc = 1,082.41 \text{ kN/m}$$

$$Vs = 236.944 \text{ kN/m}$$

$$Vn = 7,986 \text{ kN/m}$$

$$Vr = 1,187.419 \text{ kN/m}$$

$$Vr = 1,187.419 \text{ kN/m}$$

¡La sección es adecuada por cortante!

El diseño del estribo A2 se encuentra en el anexo C pág. xxvii.

Ok!
4.4 Diseño de la viga Cabezal

Figura 26. Sección transversal viga Cabezal

Figura 27. Vista lateral de la viga cabezal

4.4.1 Diseño por flexión

El cabezal se analizó como una viga de sección variable, bajo las cargas convencionales. Las cargas no factoradas pueden verse en al anexo B pág. xxii.

4.4.1.1 Momento máximo factorado

Los momentos últimos fueron calculados usando el Estado límite de resistencia I

×/I	Н	В	AREA	INERCIA	MU+	MU-	MU
X/L	m	m	m ²	m ⁴	kN. m	kN. m	kN. m
0.0	1.200	2	2.4	0.288	0.000	0.000	0.000
0.1	1.659	2	3.3	0.761	350.205	237.961	350.205
0.2	2.118	2	4.2	1.584	-364.368	-576.979	-576.979
0.3	2.500	2	5.0	2.604	420.333	119.297	420.333
0.4	2.500	2	5.0	2.604	-1486.488	-2494.538	-2494.538
0.5	2.500	2	5.0	2.604	-3816.595	-6496.781	-6496.781
0.6	2.500	2	5.0	2.604	-1485.710	-2493.019	-2493.019
0.7	2.500	2	5.0	2.604	421.062	120.312	421.062
0.8	2.118	2	4.2	1.584	-363.450	-575.409	-575.409
0.9	1.659	2	3.3	0.761	351.847	239.363	351.847
1.0	1.200	2	2.4	0.288	0.000	0.000	0.000

Tabla 85. Momento máximo factorado BENT CAP 1

La sección crítica de momento para la viga cabezal sobre la pila 1 se encuentra en 0.5, con Mu igual a 6496.781 kN.m. Los valores de los momentos debidos a las cargas fueron obtenidos con CSI Bridge.

Un proceso análogo fue realizado en los cabezales de la pila 2, 3, 8 y 9. Obteniéndose un momento ultimo igual a 6497.036 kN.m, 6165.419 kN.m, 3186.948 kN.m, 5855.400 kN.m en el centro de la viga respectivamente.

4.4.1.2 Cálculo del momento nominal

Los momentos resistentes a lo largo de la sección del cabezal fueron calculados siguiendo el procedimiento especificado en AASHTO LRFD 5.7, idéntico al realizado en la sección 3.3.4 de este documento.

Las tablas 86 y 87 muestran los momentos nominales para todas las vigas cabezales. Como es apreciable la capacidad a flexión de la viga es mayor que la demanda calculada anteriormente en la sección crítica (centro de la viga) por lo tanto la viga cabezal es adecuada por flexión.

v/i	DISTANCIA	ds	d's	A _s	A'_{s}	С	а	ØM _n
X/L	m	mm	mm	mm ²	mm ²	mm	mm	kN. m
0.0	0.0	1017	69	19656	6552	130	111	5839.111
0.1	1.2	1476	107	19656	6552	130	111	8563.168
0.2	2.4	1935	107	19656	6552	130	111	11364.531
0.3	3.5	2317	100	19656	6552	130	111	13710.190
0.4	4.7	2317	100	19656	6552	130	111	13710.190
0.5	5.9	2317	100	19656	6552	130	111	13710.190
0.6	7.1	2317	100	19656	6552	130	111	13710.190
0.7	8.3	2317	100	19656	6552	130	111	13710.190
0.8	9.4	1935	107	19656	6552	130	111	11364.531
0.9	10.6	1476	107	19656	6552	130	111	8563.168
1.0	11.8	1017	69	19656	6552	130	111	5839.111

Tabla 86. Momento nominal BENT CAP1, BENT CAP 2, BENT CAP 9

Tabla 87. Momento nominal BENT CAP3, BENT CAP 8

V/I	DISTANCIA	ds	d's	A _s	A'_s	С	а	Ø <i>M</i> _n
X/L	m	mm	mm	mm ²	mm ²	mm	mm	kN. m
0.0	0.0	1050	69	19656	6552	104	89	6087.636
0.1	1.2	1509	107	19656	6552	104	89	8811.692
0.2	2.4	1968	107	19656	6552	104	89	11613.055
0.3	3.5	2350	100	19656	6552	104	89	13958.714
0.4	4.7	2350	100	19656	6552	104	89	13958.714
0.5	5.9	2350	100	19656	6552	104	89	13958.714
0.6	7.1	2350	100	19656	6552	104	89	13958.714
0.7	8.3	2350	100	19656	6552	104	89	13958.714
0.8	9.4	1968	107	19656	6552	104	89	11613.055
0.9	10.6	1509	107	19656	6552	104	89	8811.692
1.0	11.8	1050	69	19656	6552	104	89	6087.636

Como se aprecia los momentos cumplen con la relación $M_u \leq \phi M_n$.

4.4.2 Chequeos por servicio

En los componentes de concreto el agrietamiento puede ocurrir debido a:

- ✓ Condiciones de carga
- ✓ Efectos térmicos
- ✓ Deformaciones

El agrietamiento ocurre cuando el esfuerzo de tensión en los miembros excede el módulo de ruptura del concreto. Las fisuras por flexión en los bent caps de concreto armado pueden ser controladas proveyendo capas de refuerzo óptimo y proporcionado un espaciamiento adecuado. Según AASHTO LRFD 5.7.3.4 el espaciamiento del refuerzo en la capa más cercana a la cara de tensión está dado por:

$$s \leq \frac{123000 \, \gamma_e}{\beta_s f_{ss}} - 2d_c$$

$$\beta_s = 1 + \frac{d_c}{0.7(h-d_c)}$$

Donde:

 d_c = Espesor de la cubierta de concreto medida desde la fibra extrema de tensión hasta el centro del refuerzo por flexión localizado en la cara más cercana (mm)

 γ_e = Factor de exposición

= 1.00 Condición de exposición clase 1

= 0.75 Condición de exposición clase 2 (aplica a las cubiertas de puentes)

 f_{ss} = Esfuerzo de tensión en el refuerzo en el estado límite de servicio (MPA) h = Altura del componente

$d_c = 250 \text{ mm}$ h = 2500 mm

Se revisó la separación máxima en la sección de momento máximo

 $M_u = DC + DW + LL$ Estado límite de servicio l

El esfuerzo de tensión en el acero puede ser determinado en base a la sección trasformada siguiendo el siguiente procedimiento válido para secciones rectangulares o con patín. (Caltrans sección 12)

$$f's = \frac{nM(x-d')}{I}$$

$$f's = \frac{nM(x-d')}{I}$$

$$f's = \frac{nM(d-x)}{I}$$

$$f's = \frac{nM(d-x)}{I}$$

$$h_s$$

$$B = \frac{1}{b_w} (h_f (b - b_w) + nA_s + (n - 1)A'_s)$$
$$B = \frac{2}{b_w} (h_f^2 (b - b_w)/2 + ndA_s + (n - 1)d'A'_s)$$
$$x = \sqrt{B^2 + C} - B \quad si \ x \ge d'$$

$$I = \frac{1}{3}bx^{3} - \frac{1}{3}(b - b_{w})(x - h_{f})^{3} + nA_{s}(d - x)^{2} + (n - 1)A'_{s}(x - d')^{2}$$

Tabla 88. Separación máxima por agrietamiento

	BENT1	BENT2	BENT3	BENT8	BENT9
MU (kN.m)	-3172.535	-3265.581	-3025.189	-2019.093	-2827.227
B (mm)	110.598	110.598	88.478	88.478	110.598
C (mm ²)	400749.804	400749.804	325154.794	325154.794	400749.804
X (mm)	532.039	532.039	488.569	488.569	532.039
I (m ⁴)	0.654	0.654	0.697	0.654	0.654
<i>fs</i> (MPA)	75.252	77.459	70.244	46.883	66.824
S (mm)	558	528	633	1198	691

La separación según los planos del puente Santa Fe es s = 125 mm, mucho menor a la calculado en la tabla 88; cumpliendo así el chequeo por servicio.

4.4.3 Chequeo por fatiga

Los elementos de concreto deberán satisfacer la siguiente expresión:

$$\gamma(\Delta f) \leq (\Delta F)_{TH}$$

 γ = Factor de carga especificado para la combinación de carga de fatiga I

 Δf = Efecto de las fuerzas, rango de esfuerzo de carga viva debido al paso de la carga de fatiga.

 $(\Delta F)_{TH}$ = Umbral de fatiga de amplitud constante

$$(\Delta F)_{TH} = 166 - 0.33 f_{min}$$

 f_{min} = Esfuerzo por carga viva mínimo resultante de la combinación de carga de fatiga I. Para la combinación de carga de fatiga I, un factor de carga γ = 1.5 deberá ser usado.

$$Mu = M_{DC} + M_{DW} + 1.5M_{FATIGAI}$$

	DC1	DC2	DW	FATIGA1	MU	f _s max f _s min	$\gamma(\Delta f)$	$(\Delta F)_{TH}$	
	kN.m	kN.m	kN.m	kN.m	kN.m	MPA	MPA	MPA	
RENT1	0.000	0.000	0.000	203.994	305.991	7.256	108.366	163.606	ОК!
DEINTI	-2849.891	-423.636	-197.156	-528.805	-4263.891	-101.110			
RENT2	0.000	0.000	0.000	174.434	261.651	6.205	107.663	163.952	ОК!
BENIZ	-2889.811	-426.052	-197.074	-510.4161	-4278.561	-101.458			
DENT2	0.000	0.000	0.000	144.488	216.732	5.030	97.535	164.340	ОК!
DEINTS	-2874.219	-323.981	-92.829	-463.271	-3985.936	-92.505			
DENITO	0.000	0.000	0.000	169.824	254.736	5.912	73.958	164.049	ОК!
DEINTO	-1966.322	-210.313	-132.398	-415.336	-2932.037	-68.046			
BENT9	0.000	0.000	0.000	194.536	291.804	6.920	98.654	163.717	OK!
	-2513.109	-386.23	-175.909	-528.846	-3868.517	-91.735			

 Tabla 89. Chequeos por fatiga

Como se observa en la tabla 89, el rango de fuerzas debido a la carga de fatiga es menor al umbral en todas la vigas cabezales; cumpliendo así el criterio establecido.

4.4.4 Diseño por cortante de bent cap No integrales

El procedimiento para determinar la capacidad y la demanda de cortante bajo cargas de servicio es el mismo realizado para la verificación de las vigas T según AASHTO LRFD Sección 5.8. Siendo la separación entre estribos S = 150 mm Los bent cap no integrales deberían satisfacer la siguiente ecuación:

$$D_c \leq d \leq 1.25 D_c$$

Donde:

 D_c = Diámetro de la columna

d = Altura total de la viga cabezal (bent cap)

 $D_c = 2000 \text{ mm}$ d = 2500 mm2000 mm < 2500 mm = 2500 mm

Por lo tanto la viga deberá ser reforzada según lo estipulado en el artículo 8.13.5.1 AASHTO Seismic y el análisis no será realizado por el método de bielas y tirantes. La demanda de cortante, Vu, se calculó usando el límite de resistencia I igual a la sección 3.3.5 de este documento.

	V _u	M _u	d_v	Es	θ	β	Vc	Vs	ØVn
	kN	kN.m	mm	S/U	Grados	S/U	kN	kN	kN
0.0	0.000	0.000	961	0.00000	29.000	4.800	3752.300	3174.911	6234.489
0.1	650.619	351.901	1420	0.00023	29.800	4.098	4732.821	4540.266	8345.778
0.2	783.995	-576.979	1879	0.00028	29.971	3.973	6071.880	5966.106	10834.187
0.3	2127.135	424.912	2261	0.00059	31.061	3.329	6122.674	6873.369	11696.439
0.4	2303.858	-2494.538	2261	0.00087	32.033	2.909	5349.624	6616.695	10769.688
0.5	5679.665	-6496.781	2261	0.00218	36.615	1.824	3354.047	5571.439	8032.937
0.6	-2303.536	-2493.019	2261	0.00087	32.032	2.909	5350.239	6616.923	10770.446
0.7	-1928.464	425.608	2261	0.00054	30.885	3.419	6287.727	6921.551	11888.350
0.8	-783.581	-575.409	1879	0.00028	29.970	3.974	6073.079	5966.373	10835.507
0.9	-651.177	353.546	1420	0.00023	29.801	4.097	4731.499	4539.985	8344.336
1.0	0.000	0.000	961	0.00000	29.000	4.800	3752.300	3174.9105	6234.489

Tabla 90. Capacidad por cortante BENT CAP 1

La tabla 90 comprueba que la viga cabezal sobre la pila P1 cumple los requerimientos por cortante.

	V _u	M _u	d_v	Es	θ	β	Vc	Vs	ØVn
	kN	kN.m	mm	S/U	Grados	S/U	kN	kN	kN
0.0	0.000	0.000	961	0.000000	29.000	4.800	3752.300	3174.911	6234.489
0.1	591.5793	331.181	1420	0.000210	29.734	4.147	4790.265	4552.335	8408.340
0.2	724.9555	-522.560	1879	0.000255	29.893	4.029	6157.443	5985.001	10928.200
0.3	2040.717	384.964	2261	0.000562	30.968	3.376	6208.184	6898.589	11796.095
0.4	2217.441	-2284.538	2261	0.000821	31.874	2.971	5462.869	6657.874	10908.669
0.5	5540.500	-6497.036	2261	0.002140	36.491	1.842	3388.201	5596.658	8086.373
0.6	-2214.108	-2428.420	2261	0.000836	31.927	2.950	5424.252	6643.984	10861.412
0.7	-2037.385	388.843	2261	0.000562	30.967	3.377	6209.531	6898.982	11797.662
0.8	-723.926	-520.244	1879	0.000255	29.891	4.030	6159.674	5985.488	10930.646
0.9	-591.519	332.936	1420	0.000210	29.735	4.147	4789.337	4552.142	8407.331
1.0	0.000	0.000	961	0.000000	29.000	4.800	3752.300	3174.911	6234.489

Tabla 91. Capacidad por cortante BENT CAP 2

La tabla 91 comprueba que la viga cabezal sobre la pila P2 cumple los requerimientos por cortante.

	V _u	M _u	d_v	Es	θ	β	Vc	Vs	ØVn
	kN	kN.m	mm	S/U	Grados	S/U	kN	kN	kN
0.0	0.000	0.000	1006	0.00000	29.000	4.800	4907.087	3321.603	7405.821
0.1	-510.952	92.241	1465	0.00015	29.511	4.326	6441.421	4737.474	10061.005
0.2	-377.576	630.498	1924	0.00018	29.628	4.231	8273.097	6192.571	13019.101
0.3	1714.067	675.226	2306	0.00051	30.787	3.471	8135.384	7084.901	13698.256
0.4	1890.791	-1777.354	2306	0.00068	31.370	3.183	7461.423	6923.722	12946.631
0.5	4413.101	-6165.419	2306	0.00180	35.310	2.041	4783.101	5959.712	9668.531
0.6	-1861.576	1351.060	2306	0.00062	31.179	3.272	7669.187	6975.833	13180.517
0.7	-757.593	2800.330	2306	0.00050	30.756	3.488	8174.619	7093.619	13741.415
0.8	1602.582	2375.061	1924	0.00072	31.526	3.114	6089.937	5741.313	10648.125
0.9	1734.988	392.929	1465	0.00051	30.784	3.473	5170.601	4501.253	8704.669
1.0	0.000	0.000	1006	0.00000	29.000	4.800	4907.087	3321.603	7405.821

Tabla 92. Capacidad por cortante BENT CAP 3

La tabla 92 comprueba que la viga cabezal sobre la pila P3 cumple los requerimientos por cortante.

							1		
	V _u	M _u	d_v	$\boldsymbol{\varepsilon}_{s}$	θ	β	Vc	Vs	ØVn
	kN	kN.m	mm	S/U	Grados	S/U	kN	kN	kN
0.0	0.000	0.000	1006	0.00000	29.000	4.800	4907.087	3321.603	7405.821
0.1	-126.449	-8.438	1465	0.00003	29.118	4.682	6970.895	4814.260	10606.640
0.2	65.901	93.640	1924	0.00003	29.102	4.697	9185.570	6327.027	13961.338
0.3	-453.597	753.862	2306	0.00020	29.695	4.178	9792.090	7402.131	15474.799
0.4	-276.874	1087.085	2306	0.00019	29.666	4.200	9844.731	7410.746	15529.929
0.5	5189.465	-3186.948	2306	0.00167	34.851	2.130	4991.796	6062.072	9948.481
0.6	277.015	1158.373	2306	0.00020	29.694	4.179	9793.945	7402.436	15476.743
0.7	453.739	815.926	2306	0.00021	29.719	4.159	9748.288	7394.904	15428.872
0.8	-65.435	140.721	1924	0.00004	29.123	4.676	9144.580	6321.477	13919.451
0.9	125.598	7.683	1465	0.00003	29.116	4.683	6972.670	4814.500	10608.453
1.0	0.000	0.000	1006	0.00000	29.000	4.800	4907.087	3321.603	7405.821

Tabla 93. Capacidad por cortante BENT CAP 8

La tabla 93 comprueba que la viga cabezal sobre la pila P8 cumple los requerimientos por cortante.

	V _u	M _u	d_v	Es	θ	β	Vc	Vs	ØVn
	kN	kN.m	mm	S/U	Grados	S/U	kN	kN	kN
0.0	0.000	0.000	961	0.00000	29.000	4.800	3752.300	3174.911	6234.489
0.1	612.268	345.894	1420	0.00022	29.762	4.126	4765.873	4547.240	8381.801
0.2	745.407	-527.977	1879	0.00026	29.914	4.014	6134.521	5979.982	10903.053
0.3	2002.238	379.068	2261	0.00055	30.932	3.395	6242.599	6908.582	11836.063
0.4	2178.962	-2346.008	2261	0.00082	31.864	2.975	5470.165	6660.480	10917.581
0.5	4547.195	-5855.400	2261	0.00182	35.354	2.033	3737.760	5835.386	8615.832
0.6	-2208.733	-2599.726	2261	0.00085	31.990	2.926	5379.861	6627.823	10806.916
0.7	-2032.011	193.638	2261	0.00054	30.885	3.419	6286.905	6921.316	11887.399
0.8	-906.352	-600.878	1879	0.00031	30.092	3.890	5945.072	5937.275	10694.113
0.9	-771.701	293.639	1420	0.00025	29.871	4.045	4671.904	4527.197	8279.191
1.0	0.000	0.000	961	0.00000	29.000	4.800	3752.300	3174.911	6234.489

Tabla 94. Capacidad por cortante BENT CAP 9

La tabla 94 comprueba que la viga cabezal sobre la pila P9 cumple los requerimientos por cortante.

4.4.5 Refuerzo por cortante

a. Estribos verticales fuera de la región de la junta

Estribos verticales con un área total, A_s^{jvo} , provistos en cada lado de la columna deberán satisfacer la siguiente expresión y deberán ser colocados como se especifica en las figuras 8.13.5.1.1-1 y 8.13.5.1.1-2 LRFD Seismic.

A _s ^{jvo}	\geq 0. 175 A_{st}	
-------------------------------	------------------------	--

JUNTA	$\frac{A_{st}}{m^2}$	0.175 <i>A_{st}</i> m ²	$\frac{A_s^{jvo}}{\mathbf{m}^2}$	CHEQUEO
P1	0.028	0.005	0.017	OK!
P2	0.036	0.006	0.017	OK!
P3	0.022	0.004	0.015	OK!
P8	0.039	0.007	0.015	OK!
P9	0.099	0.017	0.017	OK!

Tabla 95. Refuerzo vertical fuera de la región de la junta

La vigas cabezales del puente santa fe poseen el refuerzo vertical adecuado A_s^{jvo} , como se muestra en la tabla 95.

b. Estribos verticales dentro de la región de la junta

Estribos verticales con un área total A_s^{jvi} , espaciados igualmente sobre la columna deberá satisfacer:

$$A_s^{jvi} \geq 0.135A_{st}$$

Tabla 96. Refuerzo vertical dentro de la región de la junta

JUNTA	A _{st} m ²	0.135 <i>A_{st}</i> m ²	$\frac{A_s^{jvi}}{m^2}$	CHEQUEO
P1	0.028	0.004	0.022	OK!
P2	0.036	0.005	0.022	OK!
P3	0.022	0.003	0.024	OK!
P8	0.039	0.005	0.024	OK!
P9	0.099	0.013	0.022	OK!

Las vigas cabezales poseen suficiente refuerzo vertical dentro de la región de la junta, como se puede apreciar en la tabla 96.

c. Refuerzo longitudinal adicional

El refuerzo longitudinal A_s^{jl} , en ambas caras de la viga deberá incluirse, además del refuerzo para resistir las otras cargas y deberá satisfacer la siguiente expresión:

$$A_s^{jl} \geq 0.245 A_{st}$$

El refuerzo deberá ser colocado como se especifica en la figura 8.13.5.1.1-2 LRFD Seismic.

JUNTA	A _{st} m ²	0.245 <i>A_{st}</i> m ²	$\frac{A_s^{jl}}{m^2}$	CHEQUEO
P1	0.028	0.007	0.007	OK!
P2	0.036	0.009	0.007	NO CUMPLE
P3	0.022	0.005	0.0008	NO CUMPLE
P8	0.039	0.010	0.0008	NO CUMPLE
P9	0.099	0.024	0.006	NO CUMPLE

Tabla 97. Refuerzo longitudinal adicional de la junta

Como se muestra en la tabla 97 solamente el cabezal sobre la pila P1 posee el refuerzo longitudinal adicional adecuado.

d. Barras en forma de J horizontales

Barras horizontales alrededor del refuerzo longitudinal en cada cara de la viga deberá ser provisto como se muestra en la figura siguiente. Como mínimo, deberán ser colocadas en cada intersección de barra vertical-longitudinal dentro de la junta, el tamaño de barra mínimo deberá ser varilla N°4 (N°13).

Se provee varilla N°16 en la intersección mencionada, cumpliendo con el requerimiento mínimo mencionado.

4.5 Diseño de Junta Pila – Superestructura (BENT CAP INTEGRAL)

4.5.1 Proporcionamiento

4.5.1.1 Esfuerzo horizontal promedio

$$f_h = \frac{Pb}{B_{cap}D_s}$$

Pb = 0, Ya que no hay ninguna fuerza de pretensado específicamente diseñada para generar compresión en la junta, por lo tanto $f_h = 0$

4.5.1.2 Esfuerzo vertical promedio

$$f_v = \frac{P_c}{(D_c + D_s)B_{cap}}$$

Donde:

 P_c = Fuerza axial en la columna incluyendo los efectos de volteo (kN)

 D_c = Diámetro o profundidad de la columna en la dirección de la carga (m)

 D_s = Altura de la superestructura (m)

4.5.1.3 Esfuerzo cortante promedio

$$v_{jv} = \frac{T_c}{l_{ac}B_{eff}}$$

Donde:

 T_c = Fuerza de tensión de la columna $T_c = 0.7A_{st}f_{ye}$

 l_{ac} = Longitud del refuerzo de la columna embebido en el bent cap.

 $A_{st} =$ Área total del refuerzo de la columna anclado en la junta

 f_{ye} = Esfuerzo de fluencia esperado del refuerzo de la columna en la junta

 B_{C} = Ancho de la columna medida normal a la dirección de la carga

 B_{eff} = Ancho efectivo del Bent Cap. (m)

$$B_{eff} = B_C + D_c$$

 $B_{eff} = 6500 + 3000 = 9500 \text{ mm}$ (Ver figura 28)

Pero no debe tomarse mayor a B_{cap} .

- D_c = Diámetro de la columna. (m)
- 4.5.1.4 Compresión principal

$$P_{c} = \left(\frac{f_{h} + f_{v}}{2}\right) + \sqrt{\left(\frac{f_{h} - f_{v}}{2}\right)^{2} + v_{jv}^{2}}$$

Este valor tiene que cumplir la siguiente expresión:

$$P_c \le 0.25 f'_c = 6000 \text{ kN/m}^2$$

4.5.1.5 Tensión principal

$$P_{t} = \left| \left(\frac{f_{h} + f_{v}}{2} \right) - \sqrt{\left(\frac{f_{h} - f_{v}}{2} \right)^{2} + v_{jv}^{2}} \right|$$

$$P_t \le 0.38 f'_c = 9120 \text{ kN/m}^2$$

							•			
	Р	A _{st}	lac	fh	fv	Тс	Beff	v_{jv}	P _c	\boldsymbol{P}_t
	kN	m ²	m	MPa	kN/m ²	kN/m ²	m	kN/m^2	kN/m ²	kN/m ²
P4	13861.497	0.150	3.453	0.000	679.485	49245.000	3.000	4753.837	5105.705	4426.219
Р5	15612.216	0.116	3.453	0.000	765.305	38082.800	3.000	3676.301	4078.814	3313.509
P6	15550.767	0.138	3.453	0.000	762.293	45305.400	3.000	4373.530	4771.253	4008.961
P7	14076.798	0.172	3.453	0.000	690.039	56467.600	3.000	5451.067	5806.994	5116.955

Tabla 98. Esfuerzos en las juntas

Como se puede observar en la tabla 98, todas las juntas cumplen con el criterio establecido, por lo tanto satisfacen los requerimientos de proporcionamiento.

Figura 28. Ancho efectivo de la junta

4.5.2 Refuerzo cortante mínimo en la junta

Donde el esfuerzo de tensión principal en la junta no excede $0.11\sqrt{f'_c}$, el refuerzo transversal en la junta ρ_s deberá satisfacer la siguiente ecuación y no se requiere refuerzo adicional dentro de la junta.

$$\rho_s \geq \frac{0.11\sqrt{f'_c}}{f_{yh}}$$

El refuerzo transversal de la columna que se extiende en la región de la junta consiste en estribos con separaciones variables entre 150, 230 y 300 mm

Donde el esfuerzo de tensión principal de la junta exceda $0.11\sqrt{f'_c}$, el refuerzo transversal deberá satisfacer la ecuación siguiente y refuerzo adicional es requerido como se indica en AASHTO Seismic 8.13.4 y 8.13.5.

$$\rho_s \ge 0.40 \frac{A_{st}}{l_{ac}^2}$$

$$0.11\sqrt{f'c} = 0.11\sqrt{3.48} * \frac{4.448}{0.025^2} = 1460.384 \text{ kN/m}^2$$
Por lo tanto el acero mínimo será $\rho_s \ge 0.40 \frac{A_{st}}{l_{ac}^2}$

	$ ho_{s\ minimo}$	b	Αv	$ ho_{s \ Provisto}$	CHEQUEO
ALNO	S/U	m	m ²	S/U	S/U
P4	0.005	3000	1194	0.006	OK!
Р5	0.004	3000	796	0.005	OK!
P6	0.005	3000	796	0.005	OK!
P7	0.006	3000	1194	0.006	OK!

Tabla 99. Refuerzo cortante de la columna mínimo en la junta

Las juntas sobre los tramos continuos del puente Santa fe, superan el límite de acero mínimo en la junta, cumpliendo el criterio dado en la norma.

4.5.3 Diseño por cortante de juntas de bent cap integrales

4.5.3.1 T-Joints

Los siguientes tipos de juntas deberán ser consideradas como T-Joints para el análisis por cortante

- Juntas interiores integrales para bent con multi columnas en la dirección transversal
- ✓ Todas las juntas columna/superestructura en la dirección longitudinal
- ✓ Juntas de columnas exteriores para superestructuras con viga cajón si el bent cap se extiende más allá de la junta lo suficiente para desarrollar el refuerzo longitudinal.

Todas las otras juntas deberán ser consideradas knee-Joints en la dirección transversal

Refuerzo T-Joints

a. Estribos Verticales

El área de refuerzo A_s^{jv} deberá ser provista en cada lado de la columna o pila, como se especifica en las figuras 8.13.4.1.2a-1 y 8.13.4.1.2a-2 LRFD Seismic.

$$A_s^{jv} \geq 0.20 A_{st}$$

	A _{st}	0.20 A _{st}	A_s^{jv}	N° de barras	Chequeo
JUNIA m ²		m ²	m ²	S/U	S/U
P4	0.150	0.030	0.036	32 Varillas 38	OK!
P5	0.116	0.023	0.018	16 varillas 38	NO CUMPLE
P6	0.138	0.028	0.018	16 varillas 38	NO CUMPLE
P7	0.172	0.034	0.036	32 varillas 38	OK!

Tabla 100. Acero vertical mínimo T-Joint

b. Estribos horizontales

Los estribos horizontales deberán ser colocados transversalmente alrededor de los estribos verticales en dos más capas intermedias espaciados verticalmente a no más de 18 in (450 mm). El refuerzo horizontal, A_s^{jh} , deberá ser colocado dentro de una distancia D_c a cada lado de la línea central de la columna.

$$A_s^{jh} \geq 0.10 A_{st}$$

Tabla 101. Área mínima de refuerzo horizontal T-joint

Junta	$A_s^{jh}_{min}$	A_s^{jh}	N° de barras	Chequeo
	m^2	m^2	S/U	S/U
P4	0.015	0.029	8 juegos de 18 estribos	OK!
P5	0.012	0.029	8 juegos de 18 estribos	OK!
P6	0.014	0.029	8 juegos de 18 estribos	OK!
P7	0.017	0.029	8 juegos de 18 estribos	OK!

Se proveen barras N° 16 como refuerzo horizontal en la junta, el área de la barra es de 199 m².

c. Refuerzo lateral horizontal

El refuerzo longitudinal total de la cara lateral en el bent cap debe ser al menos igual a la más grande las áreas especificadas y ser colocada con un espaciamiento máximo de 12 in (300 mm).

$$A_s^{sf} \ge \max \begin{cases} 0.10 A_{Cap}^{Top} \\ 0.10 A_{Cap}^{Bot} \end{cases}$$

Donde:

 A_s^{sf} = Área del refuerzo lateral en el BENT CAP (m²)

 $A_{Can}^{Top} =$ Área de acero por flexión en la parte superior del bent cap (m²)

 $A_{Cap}^{Bot} =$ Área de acero por flexión en la parte inferior del bent cap (m²)

Junta	A_{Cap}^{Top}	A_{Cap}^{Top}	0.10 A_{Cap}^{Top}	0. 10 A ^{Bot} _{Cap}	A _s ^{sf} min	A_s^{sf}	Chequeo
	m^2	m^2	m^2	m^2	m^2	m^2	S/U
P4	0.0016	0.0012	0.00016	0.00012	0.00016	0.0024	OK!
P5	0.0008	0.0008	0.00008	0.00008	0.00008	0.0012	OK!
P6	0.0008	0.0008	0.00008	0.00008	0.00008	0.0012	OK!
P7	0.0016	0.0012	0.00016	0.00012	0.00016	0.0024	OK!

Tabla 102. Acero lateral en la junta P4-P7

Las juntas P4 y P7 poseen 8 y 6 barras N° 16 en la parte superior e inferior respectivamente, mientras que las demás juntas tienen 4 barras N°16 en ambos lados. El refuerzo lateral en P4 y P7 son 12 barras; en P5 y P6 son 6 barras (N°16).

4.5.3.2 Knee-Joints

Los siguientes tipos de juntas deberán ser consideradas como Knee-Joint para el análisis por cortante.

- ✓ Junta integrales exteriores de bent con multi-columnas en la dirección transversal, excepto como se especificó antes para vigas cajón
- Juntas de columnas exteriores en superestructuras con viga cajón si la viga no se extiende más allá de la junta lo suficiente para desarrollar el refuerzo longitudinal.

El refuerzo en las Knee-Joints deberá ser determinado en base a los siguientes dos casos que dependen de la geometría de la junta.

- ✓ Si $S < D_c/2$ usar detalle de junta clase 1
- ✓ Si $S > D_c/2$ usar detalle de junta clase 2

S = Distancia mínima desde el borde la viga exterior en el plano inferior hasta la intersección con la línea central del bent y la cara de la columna.

a. Estribos verticales

Para la clase 1 y clase 2, los estribos verticales deberán ser colocados transversalmente dentro de cada región 1, 2, 3 como se muestra en la figura 29.

El refuerzo deberá satisfacer:

$$A_s^{jv} \ge 0.20 A_{st}$$

Se tiene la misma área especificada en 4.5.3.1.1 a, en las zonas 1 y 2 de la figura 29, no se tiene este tipo de refuerzo en el área 3.

b. Estribos horizontales

Los estribos horizontales deberán ser colocados transversalmente alrededor de los estribos verticales en dos o más capas intermedias espaciados verticalmente a no más de 18 in (450 mm).

El refuerzo horizontal, A_s^{jh} , deberá ser colocado dentro de una distancia D_c a cada lado de la línea central de la columna

$$A_s^{jh} \geq 0.10 A_{st}$$

Junta	$A_s^{jh}{}_{min}$	A_s^{jh}	N° de barras	Chequeo
	m^2	m^2	S/U	s/U
P4	0.015	0.029	8 juegos de 18 estribos	OK!
P5	0.012	0.029	8 juegos de 18 estribos	OK!
P6	0.014	0.029	8 juegos de 18 estribos	OK!
P7	0.017	0.029	8 juegos de 18 estribos	OK!

Tabla 103. Acero horizontal mínimo Knee-Joint

El refuerzo horizontal mostrado en la tabla 103, es el mismo para la junta T-Joints.

c. Refuerzo lateral horizontal (4.5.3.1.1 c)

El refuerzo lateral deberá ser provisto por barras en forma de U continuas sobre la cara exterior de la junta. Los empalmes en las barras en forma de U deben estar localizados a una distancia más grande que la longitud de desarrollo desde la cara interior de la columna. Según los planos proporcionados por el MTI las juntas del puente no cuentan con este tipo de refuerzo.

Figura 29. Refuerzo vertical por cortante en la Knee-Joint

d. Refuerzo longitudinal adicional en el bent cap

Para la clase 1 y clase 2, el refuerzo longitudinal superior e inferior, A_s^{U-bar} deberá ser colocado como se muestra en la figura 30

$$A_s^{U-bar} \geq 0.33 A_{st}$$

Según los planos proporcionados por el MTI las juntas del puente no cuentan con este tipo de refuerzo.

e. Refuerzo Horizontal extremo

Para juntas clase 1, estribos horizontales en el extremo del bent cap integral deberá ser colocado como se muestra en la figura 30. El área total deberá satisfacer:

$$A_s^{jhc} \geq 0.33 A_s^{U-bar}$$

Según los planos proporcionados por el MTI las juntas del puente no cuentan con este tipo de refuerzo. El puente Santa Fe no cumple con los requerimientos mínimos de acero para una junta knee-joint.

Figura 30. Refuerzo por cortante en la knee-joint

4.5.4 Longitud de desarrollo mínima del acero de refuerzo

Según lo especificado en LRFD Seismic 8.8.4, el refuerzo longitudinal deberá ser extendido en la zapata y bent caps tan cerca como sea posible de la cara opuesta de la zapata o bent cap.

La longitud de anclaje para las barras longitudinales de la columna deberá satisfacer la siguiente expresión:

$$l_{ac} \geq \frac{0.79d_{bl}f_{ye}}{\sqrt{f'c}}$$

El diámetro $d_{bl} = 38 \text{ mm} (1.52 \text{ in}), f_{ye} = 68 \text{ ksi}, f'c = 3.5 \text{ ksi};$ por lo tanto la longitud de desarrollo será igual a

 $l_{ac \ minimo} = 1.09 \ m$ Y la longitud provista es

 $l_{ac} = 3.453$ m, Cumpliendo con el criterio estipulado.

4.6. Chequeos sísmicos y diseño de las Columnas del puente

4.6.1 Determinación de la categoría sísmica del Puente Santa Fe

El puente Santa Fe está ubicado en la Zona sísmica B según la figura 2 (RNC-07)

El tipo de suelo fue determinado en base a las siguientes ecuaciones determinándose como tipo de suelo III sobre la fundación directa; por otro lado se utilizó tipo de suelo I para los elementos fundados con pilotes.

Autor	Fórmula	Tipo de suelo
Japan Boad Accessization (2002)	$Vs = 80 N^{1/3}$	Arenas
Japan Road Association (2002)	$Vs = 100 N^{1/3}$	Arcillas
Imai y Yoshimura (1970)	$Vs = 76 N^{0.33}$	Todo tipo
Imai y Fumoto (1975)	$Vs = 89.8 N^{0.341}$	Todo tipo
Ohba y Toriumi	$Vs = 84 N^{0.31}$	Todo tipo
Obto v Coto (1078)	$Vs = 61.62 \ H^{0.222} \ N^{0.254}$	Todo tipo
Onto y Gold (1978)	$Vs = 62.14 H^{0.230} N^{0.219}$	Arcillas

Tabla 104. Fórmulas para el cálculo de Vs

Factor de amplificación por tipo de suelo s = 2.2 (Arto 25 RNC-07)

Coeficiente de aceleración espectral para el periodo de 1 s.

$$a_0 = 0.23$$
; $d = 2.7 a_0 = 2.7(0.23) = 0.621$; $T_b = 0.6 s$

$$a = Sd \frac{T_b}{T} = 2.2 * 0.621 \left(\frac{0.6}{1}\right) = 0.82g$$

Por lo tanto se comprueba que el Puente Santa Fe pertenece a la categoría de Diseño sísmico D ya que $SD_1 = 0.82g > 0.5 g$

4.6.2 Sistema resistente a sismos

Según la sección 3.3 de la norma AASHTO Seismic Design, los elementos resistentes a sismos (ERE) usados en el diseño del puente son permisibles y consecuentemente el sistema resistente a sismos (ERS) es también permitido.

Figura 31. Sistema resistente a sismos usado en el Puente Santa FE

4.6.3 Determinación del espectro de diseño

Al tratarse de una estructura del grupo A, las aceleraciones deberán ser multiplicadas por un factor de 1.5 según lo especificado en el Arto 27.II RNC-07.

Figura 32. Espectro de Diseño para Nicaragua (Suelo Tipo III)

4.6.4 Análisis y procedimiento de Diseño

4.6.4.1 Refuerzo longitudinal máximo

Esta provisión pretende evitar la congestión del acero y la fisuración por contracción extensa, además de permitir el anclaje del acero longitudinal, pero lo más importante es proveer de suficiente ductilidad a la columna. C8.8.1 AASHTO LRFD Seismic.

$$A_l \leq 0.04 A_g$$

4.6.4.2 Refuerzo longitudinal mínimo

Este parámetro refleja la preocupación de los efectos de deformación dependientes del tiempo, también es dado para evitar una diferencia considerable entre el agrietamiento por flexión y los momentos por fluencia. C8.8.2 AASHTO LFRD Seismic.

$$A_l \ge 0.010 A_g$$

Donde:

 A_I = Acero longitudinal provisto (m²)

 $A_{g} =$ Área gruesa de la sección transversal (m²)

PILA	Acero máximo	Acero mínimo	Acero proporcionado	Chequeo
1	0.364	0.091	0.028	No cumple
2	0.364	0.091	0.036	No cumple
3	0.448	0.112	0.022	No cumple
4	1.064	0.226	0.286	Ok!
5	1.064	0.226	0.191	No cumple
6	1.064	0.226	0.222	No cumple
7	1.064	0.226	0.286	Ok!
8	0.448	0.112	0.039	No cumple
9	0.364	0.091	0.099	No cumple

Tabla 105 Aceros máximos y mínimos en las columnas

Solamente las columnas 4 y 7 del puente cumplen con el acero longitudinal mínimo estipulado en la norma AASHTO Seismic. Como se muestra en la tabla 105.

4.6.4.3 Refuerzo transversal

El tamaño mínimo de las barras de refuerzo lateral deberá ser:

#13 para #29, o barras longitudinales más pequeñas

#16 para #32, o barras longitudinales más grandes

16 para paquetes de barras longitudinales

El tamaño mínimo de las barras de refuerzo lateral utilizadas en el diseño del puente Santa Fe es #16, puesto que la barra longitudinal en la mayoría de las pilas es #38.

Para el refuerzo en la región de la rótula plástica, LRFD Seismic 8.8.9 especifica que el espaciamiento máximo no deberá exceder la menor de:

- ✓ 1/5 de la menor dimensión de la columna y ½ de la menor dimensión de la pila
- ✓ 6 veces el diámetro nominal del refuerzo longitudinal
- ✓ 6 in (150 mm) para estribo o espiral
- ✓ 8 in (200 mm) para estribos agrupados

En la región de la rótula plástica la separación proporcionada según los planos del puente Santa Fe es 150 mm, cumpliendo así con los requerimientos antes mencionados.

4.6.4.4 Espaciamiento requerido para el refuerzo transversal

El espaciamiento de los estribos a lo largo del eje longitudinal, fuera de la región de la rótula plástica del elemento a compresión, no deberá exceder la menor dimensión del miembro o 12 in (300 mm).

El espaciamiento del refuerzo transversal en el puente santa fe es de 150 mm, igual al proporcionado en la región de la rótula plástica. Por otra parte el mínimo refuerzo por cortante debe satisfacer la siguiente expresión según el Arto 8.6.5 AASHTO LRFD Seismic:

 $p_s \ge 0.005$ (Cuantía de refuerzo lateral para columnas circulares)

 $p_w \ge 0.004$ (Cuantía de refuerzo lateral para columnas rectangulares)

4.6.4.5 Espaciamiento requerido para el refuerzo longitudinal Separación máxima

 $S_{max} = 8 in (200 \text{ mm}) \text{ LRFD Seismic figura C.8.6.3-1}$

La separación máxima en el acero longitudinal del puente Santa fe es de 250 mm en la pilas P1, P2, P3, P8 y P9; no cumpliendo con el límite de 200 mm.

Sin embargo se demostró que la sección es adecuada por flexión. La separación en las pilas restantes es de 125 mm, cumpliendo así el criterio establecido.

Separación mínima

- ✓ 1.5 el diámetro nominal de la barra
- ✓ 1.5 el tamaño máximo del agregado
- ✓ 1.5 in (37.5 mm)

4.6.5 Longitud mínima de soporte

Para SDC D, la longitud de soporte, N, deberá ser capaz de acomodar la demanda relativa de desplazamiento longitudinal del sismo en los soportes o en la junta dentro de un claro, dos marcos y deberá der determinada como sigue:

$$N = (4 + 1.65\Delta_{eq})(1 + 0.00025S^2) \ge 24(600mm)$$

Para puente en la categoría SDC D, la longitud de soporte deberá ser el 150% de la longitud empírica calculada (N) según la tabla 4.12.2-1 LRFD Seismic.

La demanda de soporte según los datos obtenidos de CSI Bridge fue de 177 mm en la junta ubicada en la pila P8, la longitud provista según los planos fue de 650 mm, como se observa en la figura 33 cumpliendo con la demanda.

Figura 33. Longitud de soporte proporcionada

Los datos detallados de la longitud de soporte se encuentran en el anexo A pág. xv.

4.6.6 Chequeo de la rigidez balanceada

Para una respuesta sísmica aceptable, se desea una estructura con masa y rigidez bien balanceadas. Con este propósito la sección LRFD Seismic 4.1.2 recomienda que la relación de la rigidez efectiva entre dos bents cualquieras, dentro de un marco esté dentro de los siguientes límites:

$$\frac{k_i^{e}m_j}{k_j^{e}m_i} \ge 0.75$$

Si los requerimientos de rigidez efectiva balanceada no se cumplen, algunas de las consecuencias serán:

- La columna o bent más rígido atraerá más fuerza y por lo tanto será susceptible a daño.
- La respuesta inelástica no será distribuida uniformemente a través de la estructura.
- Se generará un aumento en la demanda de torsión de la columna por la rotación de la superestructura.

Como primer paso para calcular las propiedades de sección efectiva para la columna, la carga axial muerta en la parte superior (localización potencial de la rótula plástica) es calculada. Estas fuerzas axiales son obtenidas del software CSI bridge. La sección 8.7.2 LRFD Seismic recomienda que la máxima carga axial en una columna diseñada para ser dúctil no debe ser mayor a:

$$P_u \leq 0.2 f'_c A_g$$

N° Bent	Fuerza axial P (kN)	$P_{max} = 0.2f'_c A_g \text{ (KN)}$	$P \leq 0.2f'_{c}A_{g}$
BENT1	6816.898	56784	OK!
BENT2	6389.418	56784	OK!
BENT3	5943.167	69888	OK!
BENT4	13859.200	165984	OK!
BENT5	15609.919	165984	OK!
BENT6	15548.870	165984	OK!
BENT7	17074.500	165984	OK!
BENT8	5412.570	69888	OK!
BENT9	5975.350	56784	OK!

Tabla 106. Fuerza axial debido a carga muerta

Para una columna articulada-fija, la rigidez lateral a flexión está dada por la siguiente expresión, suponiendo que la cubierta del puente se desplaza como un cuerpo rígido.

$$k^e = \frac{3 E_c I_c}{L^3}$$

Donde:

L = Altura de la columna y el módulo de elasticidad está dado por:

$$E_c = 4700 \sqrt{f'_c}$$

Usando f'_{ce} , el módulo de elasticidad será:

$$E_c = 4700\sqrt{31.2} = 26253 \text{ MPA}$$

Rigidez del BENT 1

Del análisis $M - \emptyset$, se obtuvo el momento de inercia de la sección fisurada

$$I_e = 2.465 \text{ m}^4$$

$$k_1^e = \frac{3 * (26253 \text{ MPA}) * (2.465 \text{ m}^4)}{(2.8 \text{ m})^3} = 8842.5832 \frac{\text{MN}}{\text{m}}$$

$$m_1 = \frac{6816.898 \text{ kN}}{9.81 \text{ m/s}^2} = 694.893 \text{ kN} - \text{s}^2/\text{m}$$

De la misma forma se calcularon las rigideces y masas tributarias de todas las columnas y se chequearon los requerimientos de rigidez como se muestran en la tabla siguiente.

FRAME 1	FRAME 2	FRAME 3
$\frac{k_2^{\ e}m_1}{k_1^{\ e}m_2} = 0.50 < 0.75$ $\frac{k_3^{\ e}m_2}{k_2^{\ e}m_3} = 0.10 < 0.75$	$\frac{k_5^{\ e}m_4}{k_4^{\ e}m_5} = 0.50 < 0.75$ $\frac{k_6^{\ e}m_5}{k_5^{\ e}m_6} = 0.63 < 0.75$ $\frac{k_6^{\ e}m_7}{k_7^{\ e}m_6} = 0.86 > 0.75 \text{ ok!}$	$\frac{k_8^{\ e}m_9}{k_9^{\ e}m_8} = 0.58 < 0.75$

Tabla 107	7. Cheauea	de la	rididez	balanceada

Como se puede observar las columnas del puente Santa Fe, no cumplen con el criterio de rigidez balanceada.

4.6.7 Geometría de marco balanceada

La norma recomienda que la relación entre los periodos fundamentales de vibración de los marcos adyacentes sea:

$$\frac{T_i}{T_j} \ge 0.7$$

Las consecuencias de no cumplir con este requerimiento incluye una gran probabilidad de respuesta fuera de fase entre los marcos adyacentes produciendo grandes desplazamientos relativos e incrementando la probabilidad de asentamiento longitudinal y colisión entre los marcos en las juntas de expansión.

El puente Santa Fe está formado por tres frames (marcos) unidos por juntas de expansión, el período de cada estructura se muestra a continuación:

$$T_{A1P3} = 0.65446 s$$

$$T_{P3P8} = 0.68135 s$$

$$T_{P8A2} = 0.67442 s$$

$$\frac{T_{A1P3}}{T_{P3P8}} = \frac{0.65446}{0.68135} = 0.96 > 0.7 \text{ ok!}$$

$$\frac{T_{P8A2}}{T_{P3P8}} = \frac{0.67442}{0.68135} = 0.98 > 0.7 \text{ ok!}$$

4.6.8 Demanda sísmica

En este caso se utilizó el procedimiento 2: Análisis Dinámico elástico. Esta demanda sísmica deberá ser calculada independientemente a lo largo de dos ejes perpendiculares, típicamente los ejes longitudinal y transversal del puente.

Una combinación de las demandas sísmicas ortogonales deberá ser usada para tomar en cuenta la incertidumbre en la dirección del movimiento sísmico y la ocurrencia simultánea de fuerzas sísmicas en dos direcciones horizontales perpendiculares.

 $Caso 1 = 30\% \Delta_{D}^{Long} + 100\% \Delta_{D}^{Trans}$ $Caso 2 = 100\% \Delta_{D}^{Long} + 30\% \Delta_{D}^{Trans}$

Obviamente la respuesta del puente bajo fuertes movimientos sísmicos no será puramente elástica después que las columnas y otros componentes hayan fluido.

En el diseño basado por fuerzas, un factor de reducción, R, es aplicado para estimar las fuerzas de diseño. De forma similar, en el diseño basado en desplazamientos, un factor de modificación de desplazamiento, R_d , es introducido para estimar los desplazamientos de diseño. Este factor debe ser aplicado en las dos direcciones ortogonales independientes.

$$\begin{aligned} R_d &= \left(1 - \frac{1}{\mu_D}\right) \frac{T^*}{T} + \frac{1}{\mu_D} \ge 1.0 \text{ para } \frac{T^*}{T} > 1.0 \end{aligned}$$
$$\begin{aligned} R_d &= 1.0 \text{ para } \frac{T^*}{T} < 1.0 \end{aligned}$$
$$\begin{aligned} T^* &= 1.25 T_s \end{aligned}$$

 T^* = Periodo característico del suelo (s)

T = Periodo fundamental de la estructura (s)

 T_s = Periodo al final de la meseta del espectro de diseño (s)

Dirección longitudinal

$$T_s = 0.6 s$$

 $T^* = 1.25 (0.6) = 0.75 s$
 $T = 0.67 s$

$$\frac{T^*}{T} = \frac{0.75}{0.67} = 1.12 > 1 \text{ por lo tanto } \mathbf{R}_d = \left(\mathbf{1} - \frac{\mathbf{1}}{\mu_D}\right) \frac{T^*}{T} + \frac{\mathbf{1}}{\mu_D} \ge \mathbf{1}.\mathbf{0}$$

Dirección Transversal

$$T = 0.63 s$$

$$\frac{T^*}{T} = \frac{0.75}{0.63} = 1.19 > 1 \text{ por lo tanto } R_d = \left(1 - \frac{1}{\mu_D}\right) \frac{T^*}{T} + \frac{1}{\mu_D} \ge 1.0$$

Por lo tanto se calculó el magnificador de desplazamiento como se muestra en la siguiente tabla.

Claro	Distancia (m)	Dirección	R_d	Demanda* R_d (m)
1	24	TRANS	1.13	0.014
	24	LONG	1.09	0.023
	48	TRANS	1.05	0.012
2	48	LONG	1.08	0.029
2	72	TRANS	1.00	0.009
3	72	LONG	1.00	0.012
4	107	TRANS	1.08	0.114
4	107	LONG	1.08	0.191
-	167	TRANS	1.11	0.178
5	167	LONG	1.08	0.203
6	227	TRANS	1.11	0.284
	227	LONG	1.06	0.213
7	287	TRANS	1.11	0.264
/	287	LONG	1.06	0.220
	322	TRANS	1.00	0.018
0	322	LONG	1.00	0.022
0	342	TRANS	1.00	0.047
9	342	LONG	1.03	0.070

Tabla 108. Demanda de desplazamiento

Las ductilidades usadas son las calculadas en las tablas 109 y 110

4.6.9 Requerimientos de ductilidad en los miembros para SDC D

La demanda de ductilidad en los miembros individuales μ_D deberá satisfacer:

- ✓ Para bent con una sola columna $\mu_D \leq 5$
- ✓ Para bent con múltiples columnas $\mu_D \leq 6$
- ✓ Para pilas tipo muro en la dirección débil μ_D ≤ 5
- ✓ Para pilas tipo muro en la dirección fuerte $\mu_D \leq 1$
- ✓ Para miembros de concreto reforzado tales como: pilotes perforados, pilotes in-situ y pilotes presforzados $\mu_D \leq 4$

4.6.9.1 Cálculo de la demanda de ductilidad

La demanda de ductilidad del miembro puede ser determinada usando un análisis

 $M - \emptyset$, con las siguientes expresiones, suponiendo que:

- La rotación plástica θ_p , está concentrada en el centro de la rótula plástica
- ✓ La distribución de la curvatura elástica es lineal a lo largo de la columna
- La curvatura plástica es constante sobre la longitud equivalente de la rótula plástica analítica L_p

$$\theta_{pd} = (\Phi_{pd})L_p$$

$$\Phi_{pd} = (\Phi_{col} - \Phi_{yi})$$

$$\Delta_{yi} = \frac{\Phi_{yi}L^2}{3}$$

$$\Delta_{pd} = \theta_{pd} \left(L - \frac{L_p}{2}\right)$$

$$\mu_D = 1 + \frac{\Delta_{pd}}{\Delta_{yi}}$$

Donde:

 ϕ_{col} = Curvatura de la columna en la demanda de desplazamiento máxima (1/m)

 ϕ_{yi} = Curvatura de fluencia idealizada determinada (1/m) LRFD Seismic 8.5

 Φ_{pd} = Demanda de curvatura plástica en la columna (1/m)

Δ_{pd}= Demanda de desplazamiento plástico (m)

 Δ_{yi} = Desplazamiento de fluencia idealizado, correspondiente a la curvatura de fluencia idealizada Φ_{vi} (m)

Figura 34. Modelo Momento Curvatura

Los valores de las curvaturas fueron obtenidos mediante la idealización del diagrama momento curvatura usando CSI Bridge como se muestra en la figura 35.

Figura 35. Diagrama Momento-Curvatura usando CSIBridge

4.6.9.2 Longitud analítica de la rótula plástica

La longitud analítica de la rótula plástica L_p , deberá ser tomada como la longitud equivalente de la columna sobre la cual la curvatura plástica es asumida como constante para el cálculo de la rotación plástica.

Para columnas de concreto reforzado sobre zapatas, bent caps integrales; la longitud de la rótula plástica puede ser determinada como:

$$L_p = 0.08L + 0.15f_{ye} d_{bl} \ge 0.3f_{ye} d_{bl}$$

En nuestro caso las rótulas plásticas fueron ubicadas y sus longitudes fueron calculadas automáticamente usando el programa CSI Bridge.

4.6.9.3 Revisión de los requerimientos por ductilidad

Utilizando los valores proporcionados por el software la demanda de ductilidad fue calculada como sigue:

BENT	φ _{yi}	φ _{yi}	Δ_{yi}	Δ_{yi}	Δ_{pd}	Δ_{pd}	μ_D	μ_D
	Т	В	Т	В	Т	В	Т	В
1	0.001660	0.001657	0.00434	0.00433	0.016458	0.01647	4.8	4.8
2	0.001959	0.001954	0.00846	0.00844	0.018072	0.01810	3.1	3.1
3	0.002130	0.001339	0.04320	0.02716	-0.031641	-0.01560	0.3	0.4
4	0.000856	0.000834	0.05996	0.05846	0.116551	0.11805	2.9	3.0
5	0.000728	0.000721	0.06602	0.06543	0.122595	0.12319	2.9	2.9
6	0.000856	0.000826	0.10302	0.09941	0.097702	0.10131	1.9	2.0
7	0.000855	0.000830	0.10291	0.09985	0.104477	0.10753	2.0	2.1
8	0.002292	0.002269	0.06894	0.06825	-0.047365	-0.04668	0.3	0.3
9	0.001922	0.001905	0.05423	0.05374	0.014188	0.01468	1.3	1.3

Tabla 109. Demanda de ductilidad longitudinal

Tabla 110. Demanda de ductilidad Transversal

BENT	φ _{yi}	φ _{yi}	Δ_{yi}	Δ_{yi}	Δ_{pd}	Δ_{pd}	μ_D	μ_D
	Т	В	Т	В	Т	В	Т	В
1	0.001660	0.001657	0.00434	0.01213	0.0084	0.0006	2.94	1.05
2	0.001959	0.001954	0.00846	0.03038	0.0032	-0.0187	1.38	0.38
3	0.002130	0.001339	0.04320	0.21183	-0.0338	-0.2025	0.22	0.04
4	0.000856	0.000834	0.05996	0.84768	0.0452	-0.7425	1.75	0.12
5	0.000728	0.000721	0.06602	1.07955	0.0943	-0.9192	2.43	0.15
6	0.000856	0.000826	0.10302	1.88885	0.1517	-1.6342	2.47	0.13
7	0.000855	0.000830	0.10291	1.89718	0.1351	-1.6592	2.31	0.13
8	0.002292	0.002269	0.06894	0.64840	-0.0509	-0.6304	0.26	0.03
9	0.001922	0.001905	0.05423	0.49437	-0.0074	-0.4475	0.86	0.09

T: Top; B: Bottom

Como se puede observar en las tablas anteriores la demanda de ductilidad está por debajo del límite establecido en 4.6.9 LRFD Seismic en el sentido longitudinal. En el sentido transversal la ductilidad es excedida en la parte superior de la pila1 y 4 ya que estos son considerados como pilas en la dirección transversal como se explicará más adelante en 4.6.13

4.6.10 Relación demanda vs capacidad

Análisis Pushover

Según LRFD Seismic 4.8.2, un análisis estático no lineal debe ser usado para determinar la capacidad de desplazamiento de la estructura. Este procedimiento se realizó con CSI Bridge, siendo críticas la pila 1 y 2 del puente como se muestra en la figura 36.

EL programa analizó cada bent de forma individual en la dirección transversal y longitudinal para determinar la capacidad de desplazamiento, generando de forma automática las curvas pushover y determinando el desempeño de la estructura.

Figura 36. Pushover longitudinal y transversal de la PILA 1

Como se observa en la figura 36 el desempeño del elemento está en seguridad de vida. Las capacidades de desplazamiento se muestran en Tabla 111.

Figura 37. Curva Pushover Transversal PILA 1

Clara	Estación	Dirección	Demanda	Capacidad	Relación D/C
Claro	m		m	m	S/U
1	24	TRANS	0.014	0.051	0.28
	24	LONG	0.023	0.083	0.27
2	48	TRANS	0.012	0.047	0.26
2	48	LONG	0.029	0.106	0.27
2	72	TRANS	0.009	0.038	0.25
5	72	LONG	0.012	0.044	0.26
л	107	TRANS	0.114	0.421	0.27
4	107	LONG	0.191	0.706	0.27
E	167	TRANS	0.178	0.641	0.28
5	167	LONG	0.203	0.754	0.27
6	227	TRANS	0.284	1.019	0.28
	227	LONG	0.213	0.803	0.27
7	287	TRANS	0.264	0.952	0.28
/	287	LONG	0.220	0.830	0.27
8	322	TRANS	0.018	0.072	0.25
	322	LONG	0.022	0.087	0.25
0	342	TRANS	0.047	0.187	0.25
9	342	LONG	0.070	0.276	0.25

Tabla 111.	Relación	Demanda –	Ca	pacidad	(D/C)
					· · · /

El valor más crítico de la relación D/C es en sentido transversal de la pila P1 y la dirección transversal de la pila P5, ambos de 0.28.
4.6.11 Revisión de los efectos $P - \Delta$

La acción de fuerzas laterales que producen desplazamientos, producirá un momento adicional en el pilar, el momento es el producto de la carga P y la deflexión Δ .

El puente Santa Fe posee columnas relativamente altas, los efectos $P - \Delta$ pueden ser significativos para esta situación. De acuerdo al Arto. 4.11.5 LRFD Seismic, los efectos P- Δ pueden ser ignorados en el análisis y diseño de estructuras Tipo 1 si se satisface para las columnas de concreto reforzado la ecuación siguiente.

$$P_{dl}\Delta_r \leq 0.25M_p$$

Donde:

 P_{dl} = La carga muerta no factorada actuando sobre la columna.

 Δ_r = La desviación lateral relativa entre el punto de contra flexión y el extremo final (más lejano) de la rótula plástica.

 M_p = La capacidad plástica idealizada del momento de la columna de concreto reforzado basada en propiedades del material esperadas.

PILA	P _{dl}	M _p	Δ	≤ 0.25
	KN	KN.m	m	
1	6816.898	27704.813	0.014	0.004
2	6389.418	32005.679	0.012	0.002
3	5943.167	19723.679	0.009	0.003
4	13859.2	414576.323	0.114	0.004
5	15609.919	429271.957	0.178	0.006
6	15548.87	320275.383	0.284	0.014
7	17074.5	414933.009	0.264	0.011
8	5412.57	26810.557	0.018	0.004
9	5975.35	65518.829	0.047	0.004

Tabla 112. Efectos P- Δ en la dirección transversal

PILA	P _{dl}	M _p	Δ	≤ 0 .25
	kN	KN.m	m	
1	6816.898	18657.775	0.023	0.008
2	6389.418	23114.547	0.029	0.008
3	5943.167	20058.26	0.012	0.003
4	13859.2	219566.07	0.191	0.012
5	15609.919	229427.72	0.203	0.014
6	15548.87	182101.68	0.213	0.018
7	17074.5	219796.88	0.220	0.017
8	5412.57	29753.116	0.022	0.004
9	5975.35	46987.325	0.070	0.009

Tabla 113. Efectos P-A en la dirección longitudinal

Las secciones cumplen con el requerimiento mencionado por lo tanto no es necesario una evaluación de los efectos $P - \Delta$.

4.6.12 Capacidad lateral mínima a flexión

La capacidad mínima a flexión lateral de cada columna deberá ser tomada como:

$$M_{ne} \geq 0.1 P_{trib} \left(rac{H_h + 0.5 D_s}{\Lambda}
ight)$$

 M_{ne} = Capacidad nominal de la columna basada en las propiedades esperadas de los materiales determinado del análisis momento curvatura. (kN.m) figura 34.

 P_{trib} = La mayor entre la carga muerta en la columna o la fuerza asociada con la masa tributaria sísmica colectada en los bents (kN)

 H_h = La altura desde la parte superior de la zapata hasta la parte superior de la columna (m)

 D_s = Altura de la superestructura (m)

 Λ = Factor de fijación de la columna definido en el artículo 4.8.1 LRFD Seismic

BENT	HINGE	M _{ne}	H _h	Λ	D_s	P _{DC}	P _{SISMO}	P _{trib}	M _{min}	
N°	TIPO	kN.m	m	S/U	m	kN	kN	kN	kN.m	
1	Т	16989.886	2.8	1	1.6	6816.898	3860.951	6816.898	2454.083	Ok!
1	В	16736.663	2.8	1	1.6	7260.444	3860.951	7260.444	2613.760	Ok!
2	Т	18108.722	3.6	1	1.6	6389.418	2525.504	6389.418	2811.344	Ok!
2	В	18471.674	3.6	1	1.6	6946.066	2526.978	6946.066	3056.269	Ok!
2	Т	12222.290	7.8	1	1.6	5943.167	998.110	5943.167	5111.124	Ok!
5	В	13115.589	7.8	1	1.6	7141.542	1003.235	7141.542	6141.726	Ok!
	Т	230127.198	14.5	1	3.8	13859.200	4454.032	13859.200	22729.088	Ok!
4	В	250956.315	14.5	1	3.8	22127.558	4624.920	22127.558	36289.195	Ok!
F	Т	184807.005	16.5	1	3.8	15609.919	6633.696	15609.919	28722.251	Ok!
5	В	202639.039	16.5	1	3.8	24797.239	6727.607	24797.239	45626.920	Ok!
c	Т	174765.795	19.0	1	3.8	15548.870	4010.314	15548.870	32497.138	Ok!
0	В	198226.103	19.0	1	3.8	25884.492	4141.524	25884.492	54098.588	Ok!
7	Т	230598.790	19.0	1	3.8	14074.500	4872.692	14074.500	29415.705	Ok!
/	В	256485.112	19.0	1	3.8	24410.522	5094.905	24410.522	51017.991	Ok!
0	Т	15189.121	9.5	1	1.4	5412.570	1010.389	5412.570	5520.821	Ok!
õ	В	16238.604	9.5	1	1.4	6861.302	1016.098	6861.302	6998.528	Ok!
0	Т	38933.129	9.2	1	1.4	5975.350	762.669	5975.350	5915.597	Ok!
9	В	40347.640	9.2	1	1.4	7323.719	767.204	7323.719	7250.482	Ok!

Tabla 114. Capacidad mínima a flexión

T: Top, B: Bottom

4.6.13 Revisiones por cortante

Este requerimiento es necesario debido al colapso potencial de la superestructura si la columna falla por cortante.

La demanda de cortante , V_u , para una columna deberá ser determinada en base a la fuerza V_{po} , asociada con el momento de sobre resistencia M_{po} como se especifica en la figura 4.11.2-1 LRFD Seismic. Las demandas de cortante fueron calculadas en las siguientes tablas, en ambos ejes ortogonales en la región de la rótula plástica.

				Demanda lon	gitudinal		Demanda transversal			
BENT	HINGE	λ_{mo}	M_p	M _{po}	L _c	V _u	M_p	M _{po}	L _c	V _u
			kN.m	kN.m	m	kN	kN.m	kN.m	m	kN
1	Т	1.4	18657.775	26120.885	2.05	12756.830	27704.813	38786.7382	2.05	18942.537
1	В	1.4	18848.911	26388.475	2.05	12887.515	27992.233	39189.1262	2.05	19139.054
2	Т	1.4	23114.547	32360.366	2.85	11364.084	32005.679	44807.9506	2.85	15735.339
2	В	1.4	22380.721	31333.009	2.85	11003.304	32559.742	45583.6388	2.85	16007.739
2	Т	1.4	20058.260	28081.564	7.05	3984.557	19723.679	27613.1506	7.05	3918.093
5	В	1.4	21231.961	29724.745	6.89	4315.565	20662.798	28927.9172	6.89	4199.878
л	Т	1.4	219566.065	307392.491	13.75	22359.720	414576.323	580406.852	13.75	42218.777
4	В	1.4	229427.717	321198.804	13.45	23877.756	429271.957	600980.74	13.45	44676.604
E	Т	1.4	152094.724	212932.614	15.75	13521.591	292337.826	409272.956	15.75	25989.545
5	В	1.4	159912.855	223877.997	15.48	14466.328	311096.791	435535.507	15.48	28143.004
6	Т	1.4	182101.676	254942.346	17.90	14239.248	320275.383	448385.536	17.90	25043.595
0	В	1.4	195869.470	274217.258	17.18	15957.151	338735.682	474229.955	17.18	27596.217
7	Т	1.4	219796.876	307715.626	17.82	17263.924	414933.009	580906.213	17.82	32590.872
/	В	1.4	231749.640	324449.496	17.02	19057.687	433423.277	606792.588	17.02	35642.105
0	Т	1.4	29753.116	41654.362	8.22	5064.853	26810.557	37534.7798	8.22	4563.943
0	В	1.4	31021.048	43429.467	7.32	5929.261	27935.907	39110.2698	7.32	5339.578
0	Т	1.4	46987.325	65782.255	7.92	8301.438	65518.829	91726.3606	7.92	11575.473
5	В	1.4	47578.611	66610.055	7.02	9482.398	66482.009	93074.8126	7.02	13249.838

Tabla 115. Demanda de cortante

T: Top, B: Bottom

En la dirección transversal las Pilas 1, 2 y 4 serán consideradas como tipo muro según lo especificado en AASHTO Seismic Artículos 8.1.Por lo tanto la demanda podrá tomarse como la demanda sísmica de cortante calculado con CSI Bridge.

Donde:

 $M_{po} = M_p \lambda_{mo}$ AASHTO Seismic 4.11.2 $V_u = M_{po}/L_c$

 λ_{mo} = Magnificador por sobre resistencia

 $L_c = Altura de la columna$

La capacidad de cortante de la columna dentro de la región de la rótula plástica, deberá ser calculada en base propiedades nominales de los materiales y deberá satisfacer:

$$\phi_s V_n \geq V_u$$

Las revisiones dependerán del tipo de elemento vertical que se esté considerando; si la relación de la altura libre con la dimensión máxima en planta es mayor a 2.5 el soporte vertical deberá ser considerado como una columna, si la relación es menor que 2.5 el soporte será considerado como una pila tipo muro (Pier Wall). Sección 8.1 AASHTO LRFD Seismic

PILA	Altura libre	Dimensión máxima	Relación	Tipo de
	m	m	S/U	elemento
1	2.8	3	0.93	PILA
2	3.6	3	1.20	PILA
3	7.8	2.5	3.12	COLUMNA
4	14.5	6.5	2.23	PILA
5	16.5	6.5	2.54	COLUMNA
6	19	6.5	2.92	COLUMNA
7	19	6.5	2.92	COLUMNA
8	9.5	2.5	3.80	COLUMNA
9	9.2	3	3.07	COLUMNA

Tabla 116. Elemento columna o pila tipo muro

4.6.13.1 Capacidad a cortante del concreto

$$V_c = v_c A_e$$
$$A_e = 0.8A_g$$

Si P_u está en compresión

$$\nu_c = 0.032\alpha' \left(1 + \frac{P_u}{2A_g}\right) \sqrt{f'_c} \leq \min \begin{cases} 0.11\sqrt{f'_c} \\ 0.047\alpha'\sqrt{f'_c} \end{cases}$$

De otro modo $v_c = 0$

Para columnas rectangulares

$$\alpha' = \frac{f_w}{0.15} + 3.67 - \mu_D$$
$$f_w = 2\rho_w f_{yh} \le 0.35$$
$$\rho_w = \frac{A_v}{bs}$$

Para columnas circulares

$$\alpha' = \frac{f_w}{0.15} + 3.67 - \mu_D$$
$$f_s = \rho_s f_{yh} \le 0.35$$
$$\rho_s = \frac{4A_{sp}}{sD'}$$

4.6.13.2 Capacidad a cortante del acero

Para miembros de sección rectangular la capacidad a cortante del acero de refuerzo está definida como:

Sección rectangular

Sección circular

$$V_{s} = \frac{A_{v} f_{yh} d}{S} \qquad \qquad V_{s} = \frac{\pi}{2} \left(\frac{n A_{sp} f_{yh} D'}{S} \right)$$

 $A_v =$ Área de la sección transversal del refuerzo por cortante en la dirección de la carga (mm²)

 f_{yh} = Esfuerzo de fluencia del refuerzo transversal (MPa)

d = Profundidad efectiva de la sección en la dirección de la carga, medida desde la cara de compresión del miembro hasta el centro de gravedad del acero de tensión (mm)

S = Separación del acero transversal (mm)

 v_c = Esfuerzo cortante del concreto (kN/m²)

 α' = Factor de ajuste del esfuerzo a cortante del concreto

BI	ENT	A_g	A_e	P_u	ρ_w	f_w	α'	$0.11\sqrt{f'_c}$	$0.047 \alpha' \sqrt{f'_c}$	v _c	v _c min	V _c
	HINGE	m^2	m^2	kN	S/U	Ksi	S/U	Ksi	Ksi	kN/m^2	kN/m^2	kN
1	Т	9.120	7.30	7154.073	0.005	0.35	1.210	0.206	0.106	0.076	0.076	3964.246
T	В	9.120	7.30	7519.453	0.005	0.35	1.201	0.206	0.106	0.076	0.076	3942.821
2	Т	9.120	7.30	6741.657	0.005	0.35	2.868	0.206	0.252	0.180	0.180	9368.575
2	В	9.120	7.30	7278.981	0.005	0.35	2.859	0.206	0.251	0.180	0.180	9363.474
2	Т	11.130	8.90	6399.183	0.004	0.35	3.000	0.206	0.264	0.187	0.187	11823.025
5	В	11.130	8.90	8155.876	0.004	0.35	3.000	0.206	0.264	0.188	0.188	11893.909
Л	Т	26.520	21.22	13994.398	0.005	0.35	3.000	0.206	0.264	0.186	0.186	28113.549
4	В	26.520	21.22	25237.619	0.005	0.35	2.984	0.206	0.262	0.189	0.189	28554.993
E	Т	26.520	21.22	15796.362	0.004	0.35	3.000	0.206	0.264	0.187	0.187	28239.321
5	В	26.520	21.22	28289.525	0.004	0.35	3.000	0.206	0.264	0.191	0.191	28899.171
6	Т	26.520	21.22	15733.242	0.004	0.35	3.000	0.206	0.264	0.187	0.187	28234.906
0	В	26.520	21.22	29788.831	0.004	0.35	3.000	0.206	0.264	0.192	0.192	28977.279
7	Т	26.520	21.22	14194.879	0.005	0.35	3.000	0.206	0.264	0.186	0.186	28129.017
/	В	26.520	21.22	28250.468	0.005	0.35	3.000	0.206	0.264	0.191	0.191	28871.389
0	Т	11.130	8.90	5879.001	0.004	0.35	3.000	0.206	0.264	0.186	0.186	11784.907
0	В	11.130	8.90	8081.421	0.004	0.35	3.000	0.206	0.264	0.187	0.187	11873.777
0	Т	9.120	7.30	6298.793	0.005	0.35	3.000	0.206	0.264	0.188	0.188	9769.424
3	В	9.120	7.30	8039.724	0.005	0.35	3.000	0.206	0.264	0.190	0.190	9851.693

Tabla 117. Resistencia al corte del concreto en la dirección longitudinal

El factor de ajuste por cortante del concreto α' no deberá ser mayor a 3 ni menor que 0.3 La resistencia al cortante fue calculada con una sección rectangular equivalente pues la norma no brinda ecuaciones para pilas ovaladas.

BI	ENT	Ag	A _e	P _u	ρ_w	f_w	α'	$0.11\sqrt{f'_c}$	$0.047 \alpha' \sqrt{f'_c}$	v _c	v _c min	V _c
		m^2	m^2	kN	S/U	Ksi	S/U	Ksi	Ksi	kN/m^2	kN/m^2	kN
1	Т	9.120	7.30	7154.073	0.006	0.35	3.000	0.206	0.264	0.189	0.189	9829.881
L	В	9.120	7.30	7519.453	0.006	0.35	3.000	0.206	0.264	0.190	0.190	9847.147
2	Т	9.120	7.30	6741.657	0.006	0.35	3.000	0.206	0.264	0.189	0.189	9799.171
2	В	9.120	7.30	7278.981	0.006	0.35	3.000	0.206	0.264	0.189	0.189	9824.562
2	Т	11.130	8.90	6399.183	0.005	0.35	3.000	0.206	0.264	0.187	0.187	11823.025
5	В	11.130	8.90	8155.876	0.005	0.35	3.000	0.206	0.264	0.188	0.188	11893.909
4	Т	26.520	21.22	13994.398	0.005	0.35	3.000	0.206	0.264	0.186	0.186	28113.549
4	В	26.520	21.22	25237.619	0.005	0.35	3.000	0.206	0.264	0.190	0.190	28707.382
-	Т	26.520	21.22	15796.362	0.005	0.35	3.000	0.206	0.264	0.187	0.187	28239.321
5	В	26.520	21.22	28289.525	0.005	0.35	3.000	0.206	0.264	0.191	0.191	28899.171
G	Т	26.520	21.22	15733.242	0.005	0.35	3.000	0.206	0.264	0.187	0.187	28234.906
0	В	26.520	21.22	29788.831	0.005	0.35	3.000	0.206	0.264	0.192	0.192	28977.279
7	Т	26.520	21.22	14194.879	0.005	0.35	3.000	0.206	0.264	0.186	0.186	28129.017
/	В	26.520	21.22	28250.468	0.005	0.35	3.000	0.206	0.264	0.191	0.191	28871.389
0	Т	11.130	8.90	5879.001	0.005	0.35	3.000	0.206	0.264	0.186	0.186	11784.907
0	В	11.130	8.90	8081.421	0.005	0.35	3.000	0.206	0.264	0.187	0.187	11873.777
0	Т	9.120	7.30	6298.793	0.006	0.35	3.000	0.206	0.264	0.188	0.188	9769.424
9	В	9.120	7.30	8039.724	0.006	0.35	3.000	0.206	0.264	0.190	0.190	9851.693

Tabla 118. Resistencia al corte del concreto en la dirección transversal

El factor de ajuste por cortante del concreto α' no deberá ser mayor a 3 ni menor que 0.3 La resistencia al cortante fue calculada con una sección rectangular equivalente pues la norma no brinda ecuaciones para pilas ovaladas.

BE	BENT		A_{v}	f _{yh}	d	V _s
	HINGE	mm	mm ²	MPa	mm	kN
1	Т	150	1533	345	1850	6522.915
Т	В	150	1533	345	1850	6522.915
2	Т	150	1533	345	1850	6522.915
2	В	150	1533	345	1850	6522.915
2	Т	150	1502	345	2350	8118.310
5	В	150	1502	345	2350	8118.310
4	Т	150	2189	345	2850	14348.895
4	В	150	2189	345	2850	14348.895
	Т	150	1694	345	2850	11104.170
5	В	150	1694	345	2850	11104.170
G	Т	150	1694	345	2850	11104.170
0	В	150	1694	345	2850	11104.170
7	Т	150	2189	345	2850	14348.895
/	В	150	2189	345	2850	14348.895
0	Т	150	1502	345	2350	8118.310
8	В	150	1502	345	2350	8118.310
0	Т	150	1533	345	1850	6522.915
9	В	150	1533	345	1850	6522.915

Tabla 119. Resistencia al corte del acero en la dirección longitudinal

Tabla 120. Resistencia al corte del acero en la dirección transversal

BE	NT	S	A_{v}	f _{yh}	d	V _s
	HINGE	mm	mm ²	MPa	mm	kN
1	Т	150	1732	345	2850	11353.260
T	В	150	1732	345	2850	11353.260
2	Т	150	1732	345	2850	11353.260
2	В	150	1732	345	2850	11353.260
2	Т	150	1701	345	2350	9193.905
5	В	150	1701	345	2350	9193.905
4	Т	150	2388	345	6350	34876.740
4	В	150	2388	345	6350	34876.740
E	Т	150	2291	345	6350	33460.055
5	В	150	2291	345	6350	33460.055
G	Т	150	2291	345	6350	33460.055
0	В	150	2291	345	6350	33460.055
7	Т	150	2388	345	6350	34876.740
/	В	150	2388	345	6350	34876.740
o	Т	150	1701	345	2350	9193.905
8	В	150	1701	345	2350	9193.905
0	Т	150	1732	345	2850	11353.260
9	В	150	1732	345	2850	11353.260

BE	NT	V _u	V _c	V_s	$\phi_s V_n$	D/C
HINGE	TIPO	kN	kN	kN	kN	S/U
1	Т	12756.830	3964.246	6522.915	9438.445	1.4
1	В	12887.515	3942.821	6522.915	9419.162	1.4
2	Т	11364.084	9368.575	6522.915	14302.341	0.8
2	В	11003.304	9363.474	6522.915	14297.750	0.8
3	Т	3984.557	11823.025	8118.310	17947.201	0.2
3	В	4315.565	11893.909	8118.310	18010.997	0.2
4	Т	22359.720	28113.549	14348.895	38216.200	0.6
4	В	23877.756	28554.993	14348.895	38613.499	0.6
5	Т	13521.591	28239.321	11104.170	35409.142	0.4
5	В	14466.328	28899.171	11104.170	36003.007	0.4
6	Т	14239.248	28234.906	11104.170	35405.169	0.4
6	В	15957.151	28977.279	11104.170	36073.304	0.4
7	Т	17263.924	28129.017	14348.895	38230.120	0.5
7	В	19057.687	28871.389	14348.895	38898.256	0.5
8	Т	5064.853	11784.907	8118.310	17912.895	0.3
8	В	5929.261	11873.777	8118.310	17992.878	0.3
9	Т	8301.438	9769.424	6522.915	14663.105	0.6
9	В	9482.398	9851.693	6522.915	14737.147	0.6

Tabla 121. Revisiones por cortante longitudinal

Tabla 122. Revisiones por cortante Transversal (columna)

BE	NT	V _u	V _c	V _s	$\phi_s V_n$	D/C
	HINGE	kN	kN	kN	kN	S/U
3	Т	3918.093	11823.025	9193.905	18915.2366	0.21
3	В	4199.878	11893.909	9193.905	18979.0329	0.22
5	Т	25989.545	28239.321	33460.055	55529.4382	0.47
5	В	28143.004	28899.171	33460.055	56123.3035	0.50
6	Т	25043.595	28234.906	33460.055	55525.4651	0.45
6	В	27596.217	28977.279	33460.055	56193.6008	0.49
7	Т	32590.872	28129.017	34876.740	56705.1809	0.57
7	В	35642.105	28871.389	34876.740	57373.3165	0.62
8	Т	4563.943	11784.907	9193.905	18880.9304	0.24
8	В	5339.578	11873.777	9193.905	18960.9138	0.28
9	Т	11575.473	9769.424	11353.260	19010.4159	0.61
9	В	13249.838	9851.693	11353.260	19084.4577	0.69

BENT	HINGE	$\phi_s V_n$ V_u		D/C
		kN	kN	S/U
1	Т	21856.777	10427.330	0.48
1	В	21856.777	10427.330	0.48
2	Т	21856.777	6395.933	0.29
2	В	21856.777	6499.564	0.30
4	Т	63557.208	26332.122	0.41
4	В	63557.208	31594.170	0.50

Tabla 123. Revisiones por cortante Transversal (Pila tipo muro)

Las revisiones por cortante trasversal se dividió en los elementos considerados como columnas y pilas tipo muro según lo especificado en AASHTO LRFD Arto.8.6.9. Para los elementos tipo muro la demanda de cortante será la brindada por CSI Bridge mediante el análisis dinámico, como se especifica en AASHTO LRFD LRFD Seismic 8.6.9.

La ecuación utilizada para calcular la resistencia al cortante en los elementos considerados como pilas tipo muro es:

$$V_n = \left(0.13\sqrt{f'c} + \rho_h f_{yh}\right)bd \leq 0.25\sqrt{f'c}A_e, \ \rho_h = \frac{A_v}{bs}$$

d = Dimensión de la sección en la dirección de la carga

b = Ancho de la sección

CONCLUSIONES

Luego del estudio realizado al puente Santa Fe se comprobó que el diseño de la superestructura cumple con las especificaciones establecidas por la norma AASHTO LRFD 2012 correspondientes al dimensionamiento, chequeo por flexión y cortante para los estados límites de resistencia y servicio. De este modo se demostró que las secciones transversales de las vigas T y vigas cajón del puente cumplen con los requisitos descritos en la sección 5.14 de la norma con respecto al dimensionamiento de la sección.

Del análisis estructural del puente se obtuvo un momento último máximo factorado de 3631.757 kN.m y 71108.333 kN.m en el tramo A1P1 y P7P8 respectivamente. Así mismo procesando los esfuerzos obtenidos en CSI Bridge se obtuvieron valores de cortantes máximos factorados de 1030.076 kN y 6002.632 kN en los tramos P2P3 y P5P6. (Vigas T y vigas cajón).

Una vez calculadas las demandas de flexión y cortante en la vigas se determinó la capacidad resistente de las mismas, resultando la demanda menor a la capacidad en todos los casos, por lo tanto su comportamiento en condiciones de servicio será el adecuado como se muestran en las tablas 21-30 y 59-68.

En la revisión de los estribos de la subestructura, también se verificó que éstos cumplen con las especificaciones por flexión, cortante, volteo y deslizamiento establecidas por la norma antes mencionada.

Se obtuvo para el estribo A1 un momento máximo factorado de 37.573 kN.m y 641.048 kN.m y valores de cortante máximo de 25.919 kN y 195.881 kN por metro de base para el muro de respaldo y el cuerpo del estribo respectivamente. De la misma forma para el estribo A2 se tienen valores de 36.342 kN.m, 2,310.041 kN.m y 20.739 kN, 450.892 kN como demandas de momento y cortante. Teniendo estos valores se determinó la cantidad de acero requerido, resultando adecuado al comparar con el acero provisto según los planos del puente.

En el chequeo de estabilidad se calculó una excentricidad de 0.861 m siendo ésta menor a la máxima permitida de 2.83 m según el artículo 11.6.3.3 AASHTO LRFD por lo que el estribo no presenta riesgo de volteo.

Los estribos tampoco presentaron falla por deslizamiento pues la resistencia nominal contra esta falla es de 1,678.289 kN mayor a la componente horizontal de fuerzas de 549.642 kN. A su vez la capacidad de cargas de los suelos es de 14885.16 kN mayor a la resultante de fuerzas de 12804.50 kN para el estribo A1 y 2,274.839 kN/m² > 373.45 kN/m² para el estribo A2.

Por lo explicado anteriormente se puede concluir que las dimensiones de los estribos (muro de respaldo y cuerpo) son adecuadas para resistir las solicitaciones máximas a las cuales serán sometidos.

Después de verificar los requerimientos de diseño sísmico para el sistema resistente a cargas laterales, se observó que algunas pilas no cumplen las especificaciones establecidas por la norma AASHTO LRFD Seismic 2011 en cuanto a la rigidez balanceada y a la capacidad por corte, presentando el siguiente comportamiento:

No se cumple el requisito de rigidez balanceada entre las columnas de los marcos, pues al calcular las relaciones de masa y rigidez estas resultaron menores al límite de 0.75 establecido por la norma, a excepción de las pilas P6 y P7, como se comprobó en la tabla 107. La falta de masa y rigidez balanceada puede ocasionar un incremento del daño en los elementos más rígidos, una distribución no balanceada de la respuesta inelástica a lo largo de la estructura y el incremento de rotación en las columnas según lo estipulado en el artículo 4.1.2 de la norma AASHTO LRFD Seismic Bridge Design.

La distribución no balanceada de la respuesta inelástica de la estructura provoca que en los elementos verticales más rígidos se concentre la mayor cantidad de fuerza, siendo éstos los más susceptibles a daños.

Por el contrario la relación de los periodos entre los marcos adyacentes es mayor de 0.7 cumpliendo con el criterio establecido en el artículo 4.1.3 LRFD Seismic

con lo que se previene la amplificación de los desplazamientos relativos que puedan incrementar la probabilidad de golpeteo en las juntas de expansión.

En la pila P1 la demanda de cortante de la sección excede en un 40% su capacidad, 12756.830 kN > 9438.445 kN en la dirección longitudinal. Este cortante es asociado directamente a la capacidad de momento plástico sobre resistente de la columna independientemente de las fuerzas de diseño elásticas obtenidas del sismo según lo estipulado en el artículo 8.6.1 LRFD Seismic; esto es mostrado en la tabla 121. Por el contrario las demás pilas cumplen con las especificaciones por cortante en ambas direcciones ortogonales.

Al evaluar la longitud minina de soporte (Arto 4.12.1 LRFD Seismic) en los estribos y juntas de expansión (P3 Y P8), a través del análisis dinámico, se demostró que la distancia provista según los planos (650 mm) es adecuada para resistir el desplazamiento longitudinal esperado durante un sismo. El desplazamiento máximo obtenido fue de 177 mm (< 650 mm), por lo tanto la superestructura no presenta riesgo de colapso ante el criterio mencionado anteriormente.

Otro aspecto importante fue la evaluación de la demanda de ductilidad (μ_D) en las columnas, resultando un valor máximo de 4.8 en la dirección longitudinal siendo inferior al valor máximo establecido por la norma ($\mu_D \leq 5$) y de 2.94 en la dirección transversal superando al valor máximo ($\mu_D \leq 1$) en esta dirección, lo que ocasiona una pérdida de la resistencia a cortante del elemento.

Al revisar el detalle en las juntas correspondiente a las pilas empotradas (P4-P7) estas satisfacen los criterios de proporcionamiento como se resume en la tabla 98, lo que significa que las dimensiones de estas juntas son adecuadas para resistir los esfuerzos de tensión y compresión principal producidos.

Los aceros longitudinales mínimos de las columnas no son satisfechos como se muestra en la tabla 105, sin embargo se demostró que la capacidad minina a flexión requerida se cumple para todas las pilas del puente como se detalla en la tabla 114. Según el análisis estático no lineal (pushover) se anticipa que los daños más severos durante un movimiento sísmico se presentarán en la parte inferior de las pilas P1, P2 y P9, pues es aquí donde se formaron las rótulas plásticas dejando a la estructura en el estado de desempeño de seguridad de vida con una rotación máxima de 0.0159 radianes en la dirección transversal correspondiente a la pila P1.

Según el artículo 1.5 del código FEMA 356 existen cuatro niveles de desempeño (operacional, ocupación inmediata, seguridad de vida y prevención de colapso) y según el resultado obtenido por el análisis pushover para las pilas mencionadas anteriormente, el hecho de que la estructura esté en el estado de desempeño de seguridad de vida es apropiado según la filosofía de diseño de la AASHTO LRFD Seismic Design establecida en el artículo 3.2 que propone que ésta permanezca en dicho nivel de desempeño; esto significa que durante el sismo máximo que se puede producir en el sitio, la estructura va a sufrir daños en los elementos estructurales que podrán ser reparados, conservando su resistencia ante el colapso.

La demanda de desplazamiento fue obtenida mediante un análisis dinámico utilizando CSI Bridge siendo el máximo valor de 284 mm en la dirección transversal de la pila P6. La capacidad de desplazamiento de la estructura calculada con el análisis estático no lineal (Pushover) es óptima, teniendo un valor máximo de la relación demanda capacidad de 0.28 en la pila P1, muy por debajo del límite establecido por la norma sísmica.

En resumen, de acuerdo a los resultados obtenidos en el diseño de las pilas y por todo lo explicado anteriormente, la única falla encontrada fue en la pila P1, esperándose una falla frágil por corte del elemento en la región de la rótula plástica, por lo demás el puente se comportará de forma satisfactoria.

RECOMENDACIONES

Debido a que Nicaragua es un país sísmico se debe tener conciencia sobre la importancia de diseñar los elementos de una estructura sísmicamente para poder tener una respuesta aproximada de su comportamiento ante un sismo.

Una de las maneras en las se puede obtener esa respuesta es a través de la aplicación del método de análisis estático no lineal (pushover) el cual provee al ingeniero información sobre las demandas de desplazamiento de las pilas y una mayor comprensión de la respuesta del puente debido a que este método muestra los puntos en donde se concentrará el mayor daño provocado durante un terremoto.

El análisis estático no lineal es un procedimiento altamente recomendado en el diseño de puentes pues éste toma en cuenta las propiedades inelásticas de los materiales, a su vez provee una descripción acertada del comportamiento de los elementos más allá de la fluencia conduciendo a mejores estimaciones de la capacidad de desplazamiento en comparación con los métodos tradicionales.

Por otra parte, la herramienta computacional CSI Bridge es muy útil para realizar este procedimiento, presentando una gran cantidad de opciones para el desarrollo de modelos con gran variedad estructural; siendo una de los programas más conocidos y utilizados en la actualidad.

Con respecto a la potencial falla por cortante que ocurrirá en la pila P1, primeramente se debe evaluar la situación del elemento para luego saber cuál alternativa de reparación se puede aplicar mejor según sea el caso:

 Recuperar el monolitismo con inyección de resina epoxi o lechada de cemento epóxica en caso de que solamente se presenten la formación de grietas pequeñas (0.1 a 1 mm) o moderadas (1 a 5 mm) después de un sismo.

2. Verificar la armadura existente y reforzar en caso de ser necesario, lo cual se puede lograr de la siguiente manera:

- a) Colocar insertos (tipo anclajes) a través de perforaciones y rellenar con epoxi.
- b) Picar y colocar armadura adicional para luego hormigonar o rellenar con mortero epoxi.
- c) Reforzar con armadura externa a través del encamisado con placas metálicas, encamisado con concreto o encamisado con materiales compuestos (polímeros reforzados); siendo el primero el de uso común.
- d) Añadiendo una malla de alambre soldado adyacente a la pila.
- e) Añadiendo estribos soldados a la pila.

4. Eventual demolición y reemplazo, para esto se debe analizar el grado del daño ocasionado al elemento.

REFERENCIAS BIBLIOGRÁFICAS

- American association of state highway and trasportation officials. (2012), AASHTO LRFD Bridge design specifications. Washington, EEUU.
- American association of state highway and trasportation officials. (2011). AASHTO Guide specifications for LRFD seismic bridge design. Washington, EEUU.
- Barker, Richard M. & Puckett, Jay A. (1997). Design of Highway Bridges, Based on AASHTO LRFD Bridge Design Specifications
- Braja M. Das, (2012), Fundamento de ingeniería de cimentaciones. Mexico, D.F.
- Bridge Design Academy Prototype Bridge, (2006). LRFD Design Example B. EEUU.
- Burgos Namuche Maribel, (2007). Estudio de la metodología "diseño por capacidad" en edificaciones aporticadas de concreto armado. Lima, Perú.
- California Department of transportation, (2006). CALTRANS Seismic Design Criteria. California, EEUU.
- Claros Chuquimia, R. & Meruvia Cabrera, P. (2004). Apoyo didáctico en la enseñanza-aprendizaje de la asignatura de puentes. Cochabamba, Bolivia.
- Chen Wai-Fah & Duan Lian, (2014). Bridge engineering handbook: Seismic Design. Florida, EEUU.
- Chen Wai-Fah & Duan Lian, (2014). Bridge engineering handbook: Superstructure Design. Florida, EEUU.
- Chen Wai-Fah & Duan Lian, (2014). Bridge engineering handbook: Suberstructure Design. Florida, EEUU.
- Computer & Structures Inc, (2015). Bridge Seismic Design, Automated Seismic Design of Bridges AASHTO Guide Specification for LRFD Seismic Bridge Design. EEUU.
- Computer & Structures Inc, (2015). CSI Analysis Reference Manual for SAP2000, ETABS, SAFE and CSIBridge. EEUU.
- Computer & Structures Inc, (2015). Introduction to CSIBridge. EEUU
- Cosmin G. Chiorean, (2003). Application of pushover analysis on reinforced concrete bridge model. Portugal.

- Federal highway administration, Department of transportation (2015). Posttensioned Box Girder design manual. Washington, EEUU.
- Federal emergency management agency, Fema 356, (2000). Prestandard and commentary for the seismic rehabilitation of buildings. EEUU.
- Ger, Jeffrey & Cheng Y. Franklin. (2012). SEISMIC DESIGN AIDS for nonlinear Pushover analysis of Reinforce concrete and steel bridges. EEUU
- Kaliprasanna sethy. (2011). Application of pushover analysis to reinforced concrete bridges. India
- Informe del estudio preparatorio para el proyecto de construcción del puente Santa Fe en la república de Nicaragua, (2009). Central Consultant inc.
- Martínez Jáenz, P. M. & Manzanarez Berroterán, J. S (2008). Diseño de Puentes con la Norma AASHTO LRFD 2005. Managua, Nicaragua.
- M.J.N Priestley. (2007). Displacement Based seismic design of structures. Italia.
- M.J.N Priestley. (1996). Seismic design and retrofit of bridges. EEUU.
- Medina R. Christian D, (2012) Estudio de la relación momento curvatura como herramienta para entender el comportamiento de secciones de hormigón armado. Ambato, Ecuador.
- Nancu N. María L. (2008). Metodología para el análisis y dimensionamiento de puentes construidos evolutivamente mediante avance por voladizo sucesivos. Sevilla, España.
- Narendra Taly, P. E. (1998). Design of Modern Highway Bridges. EEUU.
- Nilson, Arthur H. (1987). Design of prestressed concrete. New York, EEUU.
- Nawy, Edward G. (2009). Prestressed Concrete, A fundamental approach, fifth edition. EEUU.
- Naaman, Antonie E. (2004). Prestressed Concrete Analysis and Design, Fundamentals, Second Edition. EEUU.

Post-tensioning institute (2006). Post-tensioning Manual, sixth edition. EEUU.

