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ABSTRACT 
 

Dynamic signal control strategies are effective in relieving congestions during nontypical days, such as 

those with high demands, incidents with different attributes, and adverse weather conditions. This research 

recognizes the need to model the impacts of dynamic signal controls for different days representing, 

different demand and incident levels. Methods are identified to calibrate the utilized tools for the patterns 

during different days based on demands and incident conditions utilizing combinations of real-world data 

with different levels of details. A significant challenge addressed in this study is to ensure that the 

mesoscopic simulation-based dynamic traffic assignment (DTA) models produces turning movement 

volumes at signalized intersections with sufficient accuracy for the purpose of the analysis. A new model is 

developed to estimate the drop in capacity at the incident location by considering the downstream signal 

control queue spillback effects. A second model is developed to estimate the reduction in the upstream 

intersection capacity due to the drop in capacity at These regression models are combined with the DTA 

model to estimate the volume at the incident location and alternative routes. The volumes with different 

demands and incident levels, resulting from DTA modeling are imported to a microscopic simulation model 

for more detailed analysis of dynamic signal control. The microscopic model shows that the implementation 

of special signal plans during incidents and different demand levels can improve mobility the midblock 

incident location as estimated by the first model measures. 
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RESUMEN 
 

Las estrategias de control dinámico de la señal son efectivas para aliviar las congestiones durante los días 

no típicos, como aquellos con altas demandas, incidentes con diferentes atributos y condiciones climáticas 

adversas. Esta investigación reconoce la necesidad de modelar los impactos de los controles de señal 

dinámica para diferentes días que representan diferentes niveles de demanda e incidentes. Los métodos se 

identifican para calibrar las herramientas utilizadas para los patrones durante diferentes días en función de 

las demandas y las condiciones del incidente utilizando combinaciones de datos del mundo real con 

diferentes niveles de detalles. Un desafío importante abordado en este estudio es garantizar que los modelos 

de asignación dinámica de tráfico (DTA) basados en simulación mesoscópica produzcan volúmenes de 

movimiento de giro en intersecciones señalizadas con suficiente precisión para el propósito del análisis. Se 

desarrolla un nuevo modelo para estimar la caída de la capacidad en la ubicación del incidente considerando 

los efectos de derrame de la cola de control de señal aguas abajo. Se desarrolla un segundo modelo para 

estimar la reducción en la capacidad de intersección aguas arriba debido a la caída en la capacidad en Estos 

modelos de regresión se combinan con el modelo DTA para estimar el volumen en la ubicación del incidente 

y las rutas alternativas. Los volúmenes con diferentes demandas y niveles de incidentes, resultantes del 

modelado DTA se importan a un modelo de simulación microscópica para un análisis más detallado del 

control dinámico de la señal. El modelo microscópico muestra que la implementación de planes de señales 

especiales durante los incidentes y los diferentes niveles de demanda pueden mejorar la movilidad en la 

ubicación del incidente en el bloque medio según lo estimado por las primeras medidas del modelo. 

 

Palabras clave: Modelo dinámico; Gestión activa del tráfico (ATM); Transporte; Viajes. 

 

1. INTRODUCCIÓN 
 

Active Traffic Management (ATM) is an important component of Transportation System Management and 

Operations (TSM&O) and Active Traffic Demand Management (ATDM), providing significant benefits in 

terms of travel time, travel time reliability, emission, fuel consumption, safety, and other performance 

measures of the transportation systems. There is an urgent need for decision support systems to support 

ATM strategies (Avetisyan, Miller-Hooks, Melanta, & Qi, 2014). This is particularly true for ATM 

strategies on urban streets, as agencies start moving their focus to these streets. Agencies have encountered 

other challenges, including their need to identify the urban street corridors that benefit the most from ATM 

implementation, what strategies are the most advantageous, in addition to the magnitude of the benefits, 

costs and their implementation barriers under different conditions and unreliability sources such as 
incidents, high demands and severe weathers conditions (Shams, Jin, Fitzgerald, Asgari, & Hossan, 2017). 

Agencies are also interested in assessing the benefits and costs in investing in ATM strategies versus 

investing in capacity improvements such as adding lanes or interchange modifications. Therefore, ATM 

strategies are becoming crucial components of transportation system planning and operations. Various 

levels of modeling tools including sketch planning, macroscopic, mesoscopic, microscopic simulations 

tools combined with static or dynamic traffic assignment have been applied by transportation agencies to 

model advanced traffic management strategies (Bhide, 2005). Multi-resolution modeling (MRM) is an 

integrated approach that combines different modeling levels that can be used as an effective method for the 

assessment and support of ATM strategies and to support mitigating transportation system congestion 
problems. However, there is a need for methods and tools to allow agencies to use MRM in general and to 

use MRM in evaluating ATM in particular. This dissertation develops and uses methods for the use of MRM 

to support agency decisions related to ATM strategies deployment on urban streets (Hadi, Sinha, & Wang, 

2007; Hadi et al., 2016).
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2. METHODOLOGY 
 

The first step was the data acquisition. Data from multiple sources and agencies was collected and processed 

to develop and calibrate models. Next, acombination of tools were selected for the modeling and analysis 

of this research. After the tool selection, the next step was network preparation for modeling. The network 

geometry was imported, updated, and cleaned to better represent the existing real-world network (Hong, 

Yue-sheng, & Bin, 2013). Different traffic patterns were identified for modeling to represent different 

demands and congestion levels. Then, the traffic network and demand parameters (supply and demand) of 

the simulation-based DTA models were calibrated for different demand levels utilizingreal-world measures 

such as traffic flow, on each link and on each turning movement (Jin, Hossan, Asgari, & Shams, 2018). The 
trip matrices were estimated for 15 minutes’ time intervals for input to the DTA models. An Origin 

Destination Matrix Estimation (ODME) process was implemented through three levels of calibration. In the 

first level (the network level), the overall network was calibrated. Since the arterial streets are the focus of 

this study, in the second level, a more detailed calibration of the demands on arterial street segments was 

conducted. In the third level, the demands of the intersections’ turning movements were calibrated through 

a focus calibration on these movements. The next steps in the model preparation for modeling was to 

prepare the microscopic simulation model network. The calibrated model was imported from the 

simulation-based DTA tool to the microscopic tool. The combination of the two tools allowed the 

assessment of the traffic and incident responsive signal control. 

 

3. RESEARCH BACKGROUND  
 

ATDM strategies dynamically control and manage traffic demand, travel demand, and traffic flow of 

transportation facilities (Aghdashi, Khazraeian, Trask, Hadi, & Rouphail, 2017; S Khazraeian, Hadi, & 

Xiao, 2017; Samaneh Khazraeian, Xiao, Hadi, & Aghdashi, 2015). The Federal Highway Administration’s 

(FHWA) ATDM programs was introduced to support active, integrated and performance-based solutions to 

enhance safety, maximize system productivity, and improve individual mobility in multi-modal surface 

transportation systems. Examples of ATDM strategies are shown in Table 1 (Hadi, et al., 2016). 

 
Table 1. Examples of ATDM Strategies 

 

Active Traffic 

Management (ATM) 

Active Demand 

Management (ADM) 

Active Parking 

Management (APM) 

Adaptive Ramp Metering Dynamic Fare reduction Dynamic Overflow 

Transit Parking 

Adaptive Traffic Signal 

Control 

Dynamic HOV/Managed 

Lanes 

Dynamic Parking 

Reservation 

Dynamic Junction Control Dynamic Pricing Dynamic Wayfinding 

Dynamic Lane Reversal or 

Contraflow Lane Reversal 

Dynamic Ridesharing Dynamic Priced Parking 

Dynamic Lane Use Control Dynamic Routing  

Dynamic Merger Control Dynamic Transit Capacity 

Assignment 

 

Dynamic Shoulder Lanes On-Demand Transit  

Dynamic Speed Limits Predictive Traveler 

Information 

 

Queue Warning Transfer Connection 

Protection 

 

Transit Signal Priority   
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4. RESEARCH FINDINGS 

 
Incident management is a vital part of ATM strategies. Estimating the impact of incidents and incident 

management allows traffic management agencies to determine the need for various incident management 

strategies and technologies to justify the decision to invest in their programs. This research describes a new 

approach to estimate the capacity impacts due to arterial incidents that result from the interaction between 

the drop in capacity below demands at midblock urban street segment locations and upstream and 

downstream signalized intersection operations. This research also describes the development and 

application of a new model that can estimate the impacts of incidents and incident management strategies 

on urban street facilities. The developed method was successfully used to estimate the impact of modifying 

signal timing plans during incidents with consideration of the estimating drop in capacity. 

 
4.1. Estimating the capacity impacts of urban street incidents 

 

Thus, the upstream movement greens can be divided into two parts. The first part, referred to as the 

“unconstrained green” in this study, is the green time portion that vehicles from the upstream links can leave 

at the throughput of upstream links due to the availability of queuing storage at the downstream link. In the 

second part, referred to as the “constrained green,” the movements from the upstream links are controlled 

by the capacity at the incident location due to the spillback of the queues from the downstream incident. 

The result of having this constrained green is a reduction in the capacity of the upstream intersection feeding 

links, which causes an increase in the upstream movement delays. 

On the other hand, incident link capacity can be affected by the downstream intersection queue if it spills 

back to the upstream incident location. In addition, a reduction in link capacity due to incidents can prevent 

vehicles from arriving at downstream signalized intersections, reducing the utilization of downstream green 

movement and thus the capacity. Consequently, this decreases downstream intersection queue discharges. 

 

4.2. Calibration of microscopic simulation for no-incident conditions 

 

Two of the urban driver car-following models in VISSIM (Wiedemann 74 driver behavior model) were 

fine-tuned in this study in order to obtain the target saturation flow rate: 1) the additive part of desired safety 

distance (bx_add); and 2) the multiplicative part of the desired safety distance (bx_mult) (Al-Nuaimi, Ayers, 

& Somasundaraswaran, 2013; Kim, Kim, & Rilett, 2005). These parameters determine the desired safety 

distance, which has a direct impact on saturation flow rate (26). The most appropriate combination of the 

two parameters was found to be 2.4 feet for the additive part of the desired safety distance and 3.4 for the 

multiplicative part of the desired safety distance. The resulting saturation flow rate for the simulated thru 

movement was 1,854 passenger cars per hour per lane based on the average of ten simulation runs with 

different random seeds. 

 

4.3. Estimating capacity drop due to incidents at the movement stop lines 

 

Once the network was calibrated for no-incident conditions, it was necessary to model the incident 

conditions. In order to model incident impacts using simulation, it was necessary to emulate the estimated 

drop in capacity at the incident location in the simulation model. The capacity drop at the incident location 

was estimated based on the equations developed in the SHRP2 Program L08 project referenced earlier 

(Zegeer et al., 2014). The equations used in the estimation is as follows: 

 

b𝑖𝑐, 𝑖𝑛𝑡(𝑖), 𝑛, 𝑚 = 0.58 𝐼𝑓𝑖, 𝑖𝑛𝑡 (𝑖), 𝑛 0.42𝐼 𝑝𝑑𝑜, 𝑖𝑛𝑡 (𝑖), 𝑛 + 0.17𝐼𝑜𝑡ℎ𝑒𝑟, 𝑖𝑛𝑡 (𝑖), 𝑛 

 

𝑓𝑖𝑐, 𝑛𝑡(𝑖), 𝑛, 𝑚, 𝑎𝑝, 𝑑 = saturation flow adjustment factor for incident influence on movement m (m = L: 

left, T: through, R: right) at intersection i 
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𝑁𝑛, 𝑛𝑡(𝑖), 𝑛, 𝑚 = number of serving movement lanes (m) on leg associated with phase (n) at intersection i 

Nic,int(i),n,m,ap,d = number of serving movement lanes (m) blocked by the incident on leg associated with 

phase (n) at intersection i 

bic,int(i),n = calibration coefficient on leg associated with phase (n) at intersection i 

Ifi, int (i), n = indicator variables for fatal-or-injury on leg associated with phase (n) at intersection i 

I pdo, int (i), n = indicator variables for property damage only (PDO) on leg associated with phase (n) at 

intersection i 

𝐼𝑜𝑡ℎ𝑒𝑟, 𝑛𝑡 (𝑖), 𝑛=indicator variables for non-crash incident on leg associated with phase (n) at intersection  

 

4.4. Modeling incidents in microscopic simulation 

 

This section describes the calibration of microscopic simulation models for incident conditions in VISSIM. 

VISSIM does not allow the user to specify incidents in the model. This section describes the calibration of 

microscopic simulation models for incident conditions in VISSIM. VISSIM does not allow the user to 

specify incidents in the model. 

 

Previous studies modeled incidents by setting up a red signal at the incident lane using vehicle(s) with zero 

speed at the time and location of the incident (Avetisyan, et al., 2014) or using buses with dwelling times 

equal to the lane blockage durations (Hadi, et al., 2007). In this study, the incidents were simulated in 

VISSIM using bus stops with dwell times equal to incident duration on the blocked lanes. This was 

combined with a reduced speed area on the adjacent lanes to emulate drivers slowing down to observe the 

incident (Hadi, et al., 2007; Zhou & Taylor, 2014). The length of “reduce speed area” in the vicinity lanes 

of the incident was modified by trial and error to achieve the abovementioned expected drop in capacity due 

to the uninterrupted incident. “Uninterrupted incident” refers to the incident that is not affected by 

downstream signal queue spillbacks. 

 

4.5. Assessing the impacts of downstream signal on upstream incident capacity 

 

Based on the simulation results for one lane blockage, the upstream incident capacity was not found to be 

affected by the downstream intersection when the incidents occur at 400.m and 433.m. from the downstream 

signal and when the g/C ratio at the downstream signal equals 0.67 and 0.55, respectively. These values 

were selected for use in the analysis based on typical g/C ratios for the main street in the analysis area. 

Reducing the g/C ratio to a level that constrains the departing volumes from the upstream link is expected 

to reduce the traffic volume arriving at the downstream incident location, and this may reduce the portion 

of unconstrained green. For the two-lane blockage incident, the capacity at the incident location was not 

affected significantly by the downstream intersection when the incident occurs at 75m. or more from the 

downstream signal. This distance is the same for both g/C ratios (0.55 and 0.67). 

 

The data presented was used to develop regression models to estimate the incident capacity (IC) based on 

the investigated influencing factors. The developed regression models are presented in Table 2. The 

developed regression models show that there is a significant relationship between the incident capacity and 

the three independent variables, mentioned earlier, as indicated by the Coefficient of Determination (R-

Squared) values and the t-test of the significance of the independent variable coefficients. If the g/C ratio 

for an assessed condition is between the two g/C ratios assessed in this study, as displayed in Table2, 

interpolation can be used to estimate the capacity. 
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Table 2. Upstream interrupted incident capacity regression models 

 

Number of 

Lane Blockage 

Downstream 

Signal g/C 

Upstream Incident Capacity R2 

One Lane 

Blockage 

0.67 

0.55 

IC = 0.624x + 532 

 IC = 0.5922x + 646.23 

09216 

09023 

Two Lane 

Blockage 

0.67 

0.55 

IC= 6E-07x3 - 0.0015x2 + 1.1292x + 192.34 

IC = 4E-07x3 - 0.0011x2 + 0.839x + 212.18 

08915 

09082 

 
4.6. Assessing the impacts of incidents on upstream intersection maximum throughputs 

 

A second model was developed in this study to estimate upstream intersection maximum throughput as 

impacted by the drop in capacity due to a downstream signal. The maximum throughput was assessed for 

incidents with different distances from the upstream intersection, different volume-to-capacity incident link 

ratios (v/Ic), and different incident durations. This was conducted by introducing incidents at different 

locations with different capacity drops and different incident durations in a VISSIM model. The incident 

durations were 15 minutes, 35 minutes, and 45 minutes. It should be noted that 35 minutes is the median 

incident duration at the study location. 

 

Figures 1 to 3 show the variation in the upstream intersection maximum throughput with the incident 

location, incident duration and the v/Ic ratio at the incident location. In these figures, the incident location 

references the distance from the upstream signal stop line. It should be also noted that the saturation flow 

of the upstream signal without incident is 5,562 veh/hr. Thus, incidents with downstream locations and v/Ic 

ratios that produce this upstream intersection saturation flow in the simulation are recognized as incidents 

that do not impact upstream signal operations. For example, the investigated 35- minute incident did not 

affect the upstream intersection throughput when it is located more than 470 m., 730 m., and 920m. from 

the upstream signalized intersection with the v/Ic ratio at the incident location of 1.13, 1.3 and 1.5, 

respectively. 

 

 

 
 
Figure 1. Upstream Intersection Maximum Throughput Variation with Incident Location and Duration (v/Ic = 1.13) 

at the Incident Location. 

Series 1

Series 3

Category
1
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2
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3
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4
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5
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6
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7
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8
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3836
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4945
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2549 2795 2578
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3595

3986

4793
5538

Series 1 Series 2 Series 3
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Figure 2. Upstream Intersection Maximum Throughput Variation with Incident Location and Duration (v/Ic = 1.3) at 

the Incident Location 

 

 
 
Figure 3. Upstream Intersection Maximum Throughput Variation with Incident Location and Duration (v/Ic = 1.5) at 

the Incident Location. 

 

As seen in Figures 1 to 3, the throughput decreases with the increase in the v/Ic ratio at the incident location 

and the decrease in the distance between the upstream intersection and the incident location. As stated 

earlier, when an incident occurs at a location downstream of an upstream intersection, the throughput of the 

upstream links that feed the incident link can decrease if the queue from the incident spills back to the 

upstream links. For incidents that cause queueing due to demand exceeding the capacity at the incident 

location, when the signal phases serving the upstream feeding links are red, the downstream link queue 

starts decreasing due to the reduction in the arrivals at the back of the queue. This creates some queuing 

capacity that can accommodate flows from the upstream links in the green phase. 
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2945
3665
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During the first parts of the upstream link green phases, referred to as the “unconstrained green”, the vehicles 

will be able to leave the stop lines of the feeding links at the saturation flow rates of these links until the 

queue due to the downstream incident spills back to the upstream signal again. The duration of the 

unconstrained green was calculated based on the following relationships: 

 

                  𝑀𝑇 = 𝑆𝐹 × 𝑈𝐺 /𝐶+ 𝐼𝑐 × (𝑇𝐺−𝑈𝐺) /𝐶                                                                   

 

UG = upstream intersection unconstrained green time 

MT = intersection maximum throughput 

TG = upstream intersection green time 

C = cycle length 

Ic = capacity at the incident location, and 

SF = saturation flow. 

 

Table 3 presents the variation in the unconstrained green as a function of the demand to capacity ratio at the 

incident location, incident duration and the distance from the upstream intersection to the incident location. 

Table 3 shows the regression analysis models developed in this study to estimate the maximum throughput 

and the unconstrained green of the upstream intersection as a function of the independent variables. The x 

in the table is the incident distance from the upstream intersection in feet. 

 
Table 3. Variation in Upstream Unconstrained Green in Terms of Incident location, Duration and Volume to Incident 

Capacity (v/Ic) Ratio 

 

v/Ic at 

incident 

location 

Incident 

Location 

Unconstrained Green for 

15 Minut Incident 

Unconstrained Green for 

35 Minut Incident 

Unconstrained Green for 

45 MinuteIncident 

 55 27.02 22.51 18.33 

 110 32.14 36.33 25.12 

 165 46.35 46.44 31.12 

 220 59.23 55.13 47.44 

1.13 275 65.39 59.43 52.27 

 330 67.43 60.12 53.56 

 385 72.22 62.13 54.32 

 440 80.00 80.00 80.00 

 55 25.12 24.15 22.54 

 110 42.14 36.35 32.56 

 165 48.43 39.12 34.34 

 220 54.12 43.12 38.32 

 275 47.31 44.14 41.32 

1.30 330 49.39 29.18 27.14 

 385 64.45 31.48 28.16 

 440 75.12 44.29 39.52 

 495 80.00 70.38 64.34 

 550 80.00 71.46 65.39 

 605 80.00 80.00 78.12 

 660 80.00 80.00 80.00 

 55 17.38 15.36 12.43 

 110 36.74 32.47 28.93 

 165 38.90 32.01 27.63 

 220 42.77 34.11 29.07 

 275 47.07 35.78 30.22 

 330 46.64 32.90 26.70 

 385 51.81 35.32 28.35 
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1.50 440 66.32 49.55 41.69 

 495 76.77 50.46 50.59 

 550 70.31 54.88 57.90 

 605 71.60 55.06 36.31 

 660 74.62 58.75 36.67 

 715 78.00 65.71 42.84 

 770 80.00 71.34 44.06 

 835 80.00 80.00 64.86 

 890 80.00 80.00 80.00 

 
Table 4. Regression Models to Estimate Upstream Intersection Maximum Throughput and Unconstrained Green 

Regression Models 

 

Incident 

Duration 

v/Ic at 

Incident 

Location 

Intersection Movement 

 Maximum Throughput 

R2 Unconstrained Green R2 

 1.13 MT = 0.4858x + 1243.6 0.84 UG = 0.0439x + 16.785 0.9 

15minutes 1.3 MT = 0.3317x + 1256.7 0.83 UG = 0.0315x + 18.136 0.85 

 1.5 MT = 0.3534x + 994.31 0.85 UG = 0.0271x + 19.117 0.86 

 1.13 MT = 0.4628x + 13513.7 0.81 UG= 0.0423x + 16.696 0.84 

35minetes 1.3 MT = 0.3342x + 1048 0.83 UG = 0.0315x + 15.183 0.88 

 1.5 MT = 0.2461x + 828.35 0.88 UG = 0.0253x + 18.347 0.86 

 1.13 MT = 0.3632x + 1153.4 0.85 UG = 0.041x + 8.8462 0.89 

45minetes 1.3 MT = 0.4256x + 985.88 0.89 UG = 0.0366x + 11.35 0.86 

 1.5 MT = 0.3189x + 910.82 0.85 UG = 0.0116x + 12.812 0.82 

 

4.7. Modeling Incidents in Mesoscopic Simulation 

 

This approach was tested by running DTAlite with a small hypothetical network that has five nodes and 

four links. The first upstream link was designed to accommodate the expected queue of the arriving vehicles 

to the network, in case of spillback from the incident. The third link was considered as the link, on which 

an incident occurs at the midblock. The second link was the incident upstream link. One lane blockage 

incident with a 35-minute duration was modeled 600 ft. downstream from the upstream signal and 800 ft. 

away from the downstream signal. The incident started in the 990-minute time step of the simulation and 

was removed in the 1,025-minute time step. Five scenarios were developed to analyse the performance of 

the incident modeling in different ways in the DTAlite. incident. The third link was considered as the link, 

on which an incident occurs at the midblock. The second link was the incident upstream link. One lane 

blockage incident with a 35-minute duration was modeled 270m. downstream from the upstream signal and 

800 ft. away from the downstream signal. The incident started in the 990-minute time step of the simulation 

and was removed in the 1,025-minute time step. Five scenarios were developed to analyse the performance 

of the incident modeling in different ways in the DTA lite .downstream g/C ratio is 0.55. The upstream 

signal g/C ratio is also 0.60, so that, the upstream node maximum flow is 2880 (veh/hr) for three lanes. The 

V/Ic ratio at the incident location is equal to 1.40. By using the regression model in Table 3 the upstream 

signal maximum saturation flow was calculated (950 veh/hr/ln or 2850 veh/hr). Thus, the upstream 

signalized intersection capacity during the incident can be calculated by multiplying the upstream signal 

maximum throughput (2850 veh/hr) by its g/C ratio (0.6), which is equal to 1710 (veh/hr) or (427 

veh/15min). 

 

As seen in the Table 5, the upstream signal capacity is about 690 (veh/15 minutes) without the incident. The 

second scenario shows that the upstream signal capacity starts to drop once the queue from the incident 

capacity location reaches the upstream signal according to the mesoscopic simulation modeling associated 

with the DTA tool. The results show that the queue reaches the upstream node 15 minutes after the incident 
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occurred because the utilized mesoscopic models the incident at the stop line. Also, the results show that 

the percentage drop in the incident capacity is the same at the incident location and upstream intersection 

location once the shockwave reaches the upstream intersection, which does not account for the inefficiency 

at the upstream intersection location described earlier. In the third scenario, the incident location was 

modeled with a dummy link and without the downstream signal queue spillback effects on its downstream 

incident. As can be seen, although the drop in capacity occurred earlier, the same drop in capacity result in 

Scenario 3 as in Scenario 2. In the fourth scenario, the drop in the incident capacity was modeled based on 

dropping the capacity on the dummy link and accounting from as seen in the Table 5, the upstream signal 

capacity is about 690 (veh/15 minutes) without the incident. The second scenario shows that the upstream 

signal capacity starts to drop once the queue from the incident capacity location reaches the upstream signal 

according to the mesoscopic simulation modeling associated with the DTA tool. The results show that the 

queue reaches the upstream node 15 minutes after the incident occurred because the utilized mesoscopic 

models the incident at the stop line. Also, the results show that the percentage drop in the incident capacity 

is the same at the incident location and upstream intersection location once the shockwave reaches the 

upstream intersection, which does not account for the inefficiency at the upstream intersection location 

described earlier. In the third scenario, the incident location was modeled with a dummy link and without 

the downstream signal queue spillback effects on its downstream incident. As can be seen, although the 

drop in capacity occurred earlier, the same drop in capacity result in Scenario 3 as in Scenario 2. In the 

fourth scenario, the drop in the incident capacity was modeled based on dropping the capacity on the dummy 

link and accounting from downstream signal queue spillback. The downstream signal’s effects on capacity 

is indicated by dropping the incident throughput from 500 (veh/15 min) to (474 veh/15 min). However, this 

drop still did not account for the inefficiency in upstream signal operations. The last scenario was designed 

based on the proposed method and the results show that the combination of the derived regression model 

and the DTA tool modeling can account for this effect by dropping the capacity further to 427 (veh/15 min). 

 
Table 5. Upstream Signal Maximum Throughput for the Test Scenarios 

 

Time 

Stamp 

(min 

Scenario 1 

Upstream 

Node 

Throughput 

(veh/15min) 

Scenario 2 

Upstream 

Node 

Throughput 

(veh/15min 

Scenario 3 

Upstream 

Node 

Throughput 

(veh/15 min 

Scenario 4 

Upstream 

Node 

Throughput 

(veh/15min) 

Scenario 4 

Incident 

Location 

Throughput 

(veh/15min) 

Scenario 5 

Upstream 

Node 

Throughput 

(veh/15min) 

970 158 158 158 158 158 158 

985 688 688 688 688 688 688 

1000 689 647 500 474 474 427 

1015 688 500 500 474 474 427 

1030 690 500 768 768 746 760 

1045 689 689 877 878 877 878 

1060 688 688 878 877 878 877 

1075 689 689 695 696 688 696 

1090 687 687 675 675 675 675 

1105 688 675 675 676 676 676 

1120 689 689 642 674 675 674 

 

4.8. Special Signal Timing Plan 

 

The implemented special signal timing plan was to divide the upstream signal incident movement green 

time (i.e., 61 seconds for a 45-minute incident) into two parts to reduce the spillback effect that block the 

green time at the end of a long green. The first green phase of the upstream main street movement was set 

to the estimated unconstrained green estimated using the models presented. After the first green time, the 

upstream signal main street movement green was terminated and the greens of the cross street movements 

were turned on. Once the cross streets’ movement green were terminated, a green time was assigned to the 
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EB and WB green movements again as shown in the Figure. 4 (EB1 & WB1). This new signal plan was set 

to start when the incident queue reaches the upstream signal and remained in effect until the incident queue 

was determined to have no impact on the upstream signal. 

 
Normal Condition Signal Control Plan 

 

 
 

Special Signal Timing Plan for the Incident 

 

 
 

Figure 4. Signal Control Plan for Normal Day vs. Special Signal Control Plan 

 

5. CONCLUSIONES 
 

This study demonstrates the need for and utilization of a multi-resolution and multiscenario modeling 

approach to support the evaluation and design of ATM strategies. Most ATM strategies are effective in 

relieving congestion during non-typical days and patterns with high demands, incidents with different 

severity levels, and adverse weather conditions. This research highlights the importance of modeling 

different traffic patterns when assessing the benefits of dynamic signal control that is responsive to traffic 

and incident conditions. The days that correspond to different percentiles of traffic, such as the 50th, 75th, 

and 95th percentiles were determined and modeled using a mesoscopics imulation- based DTA. The origin-

destination demands for the three levels were determined utilizing an ODME process based on a seed matrix 

and traffic counts for the three days. It was determined that current methods of calibrating the demands 

utilizing ODME modules based on segment counts is not adequate enough to produce accurate estimates of 

the turning movement counts and that the inclusion of turning movement counts as an input to the ODME 

is necessary. 

 

The study then demonstrated the use of the DTA model with this setup to produce turning movement 

volumes for different demand levels to input into signal optimization and microscopic simulation modeling 

tools to assess the impact of dynamic signal control. The Highway Capacity Software (HCS) was used to 

optimize the signal timing for different traffic patterns, and the resulting signal timings were evaluated using 

microscopic simulation to evaluate the traffic response signal control performance. The results indicate that 

the delay resulting from the implementation the traffic response signal control strategies can be reduced 

significantly and that this method can be used as part of planning for operations to evaluate and design 

strategies. 

 

This study also investigated the method used to assess incident responsive dynamic signal control. An 

important aspect of the assessment is to determine the capacity impacts of the interaction between the drop 

in capacity below demands at the midblock urban street segment location and the upstream and downstream 

signalized intersection operations. A model was developed to estimate the drop in capacity at the incident 

location as a function of the number of blocked lanes, distance from downstream intersection, and g/C ratio 

of the downstream signal. A second model was developed to estimate the reduction in the upstream 
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intersection capacity due to the drop in capacity at the midblock incident location as estimated by the first 

model. The second model estimates the drop in capacity of the upstream links feeding the incident locations 

as a function of incident duration time, v/c ratio at the incident location, and distance from an upstream 

signalized intersection. The developed regression models show significant relationships between the drops 

in incident capacity and the drops in upstream saturation flow as dependent and independent variables in 

the model. The focus of this study was on a three-lane arterial facility because three lane facilities are the 

most common type of principal urban street facilities. However, the second model that estimates upstream 

intersection flow rates is applicable to facilities with a different number of lanes. The developed capacity 

reduction models were used to estimate delay due to an urban street incident. The delay was calculated as a 

combination of the delay due to queuing on the incident link and the increase in upstream intersection control 

delays due the reduction in maximum throughputs resulting from queue spillback to the upstream 

intersection. A comparison with microscopic simulation modeling results showed that the delay estimated 

using the combination of the increase in control delay based on the reduction in capacity estimated by the 

developed models and deterministic queuing at the incident location produced better results than using the 

deterministic queuing procedure by itself for estimating delays. 

 

The developed method to estimate urban street incident impacts was then implemented as part of the multi-

resolution modeling to refine the DTA modeling and as an input to the highway capacity manual-based 

modeling of incident and incident responsive management impacts. To supplement the DTA modeling for 

this purpose, additional regression models were developed to estimate diversion due to urban street 

incidents. These regression models were combined with the DTA model to estimate the volumes at the 

incident location and alternative routes. The produced volumes during theincident were then used as inputs 

to microscopic simulation for more detailed analysis and to demonstrate the benefits of special signal plans 

during incident conditions. 
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