
 

 

 

 

 

61 

 

Vol. 34, No. 01, pp. 61-73/Marzo 2021 

 

ISSN-E 1995-9516 

Universidad Nacional de Ingeniería 

COPYRIGHT © (UNI). TODOS LOS DERECHOS RESERVADOS 

http://revistas.uni.edu.ni/index.php/Nexo 

https://doi.org/10.5377/nexo.v34i01.11285      

 

Behaviour examples for synthesizing automaton models by temporal formulas 

 

Ejemplos de comportamiento para sintetizar modelos de autómatas mediante 

fórmulas temporales 

 
 

Dmitry V. Pashchenko1*, Alexey I. Martyshkin2, Dmitry A. Trokoz1, Tatyana Yu. Pashchenko3, 

Mikhail Yu. Babich4, Mikhail M. Butaev4 

 
1 Penza State Technological University, 440039, Russia, Penza, 1/11 Baydukova lane/Gagarina St., 1/11  

2 Department of Computational Automatons and Systems, Penza State Technological University, 440039, 

Russia, Penza, 1/11 Baydukova lane/Gagarina St., 1/11  
3 Sub-department of Management and Economic Security, Penza State University, 440026, Russia, Penza, 

Krasnaya Street, 40 
4 JSC Research and Production Enterprise “Rubin”, 440000, Russia, Penza, Baydukova St., 2 

 

*dmitry.pashcenko@gmail.com 

 

 

(recibido/received: 15-December-2020; aceptado/accepted: 01-February-2021) 

 

 

ABSTRACT 

 
The paper deals with researching and developing the methods that make it possible to account behaviour examples 

when synthesizing automaton models by temporal formulas. Definitions of the terms and concepts used in work are 

given; the problem of synthesizing automaton systems according to the specification in the form of temporal 

formulas and behaviour examples is formulated; a promising algorithm for reducing the problem of synthesizing 

automaton systems to the Boolean formula satisfiability problem is described; an analysis of the domain and other 

approaches is carried out. New methods of taking into account behaviour examples in the synthesis of automaton 

systems according to a specification given in the form of temporal formulas are proposed. Algorithms for 

constructing graphs of scripts and methods for dividing graphs into clusters are described; they are designed to 

increase the efficiency of representing behaviour examples used for coding the behaviour examples in the form of 

Boolean formulas. An experimental study of the proposed methods of accounting for behaviour examples and basic 

approaches to the presentation of behaviour examples is carried out. The experimental results showed the superiority 

of the newly developed methods regarding the presentation of scripts in the form of temporal formulas. In summary, 

the main conclusions of the work carried out are presented. 

 

Key words: automaton model, discrete-event simulation, finite state automaton, conflicting situation, methods of 

accounting for behaviour examples. 

RESUMEN 
 

El artículo aborda el tema de la investigación y desarrollo de métodos que permitan dar cuenta de ejemplos 

de comportamiento al sintetizar modelos de autómatas mediante fórmulas temporales. Se dan definiciones 

de los términos y conceptos utilizados en el trabajo; se formula el problema de sintetizar sistemas de 

autómatas según la especificación en forma de fórmulas temporales y ejemplos de comportamiento; se 

describe un algoritmo prometedor para reducir el problema de sintetizar sistemas de autómatas al problema 

https://doi.org/10.5377/nexo.v34i01.11285
mailto:dmitry.pashcenko@gmail.com


 

62 
 

de satisfacibilidad de la fórmula booleana; Se realiza un análisis del dominio y otros enfoques. Se proponen 

nuevos métodos para tener en cuenta ejemplos de comportamiento en la síntesis de sistemas de autómatas 

según una especificación dada en forma de fórmulas temporales. Se describen algoritmos para construir 

gráficos de scripts y métodos para dividir gráficos en grupos; están diseñados para aumentar la eficiencia 

de la representación de ejemplos de comportamiento utilizados para codificar los ejemplos de 

comportamiento en forma de fórmulas booleanas. Se lleva a cabo un estudio experimental de los métodos 

propuestos para dar cuenta de ejemplos de comportamiento y enfoques básicos para la presentación de 

ejemplos de comportamiento. Los resultados experimentales mostraron la superioridad de los métodos 

recientemente desarrollados con respecto a la presentación de guiones en forma de fórmulas temporales. En 

resumen, se presentan las principales conclusiones del trabajo realizado. 

 

Palabras clave: modelo de autómata, simulación de eventos discretos, autómata de estado finito, situación 

de conflicto, métodos de contabilización de ejemplos de comportamiento. 

 

1. INTRODUCTION 
 

The synthesis of automata models is a common problem. Its field of application ranges from software verification 

and control system synthesis (Vashkevich & Biktashev, 2016; Peter Faymonville et al., 2017; Biktashev & 

Vashkevich, 2013; Dubinin et al., 2016) and (Dubinin & Drozdov, 2016; Pashchenko et al., 2020; 

Pashchenko et al., 2020; Volchikhin et al., 2013) to bioinformatics problems and formal description of parallel 

algorithms and processes (Vashkevich & Biktashev, 2011; Vashkevich & Biktashev, 2011; Vashkevich et al., 

2015). A common way to solve this problem is to reduce it to a Boolean formula's satisfiability problem 

(Vashkevich & Vashkevich, 1996). Typically, linear temporal logic formulas are used to define the specification 

of a synthesized system. In this area, a new promising approach to synthesizing an automaton model with a 

constraint on the size of the system has recently appeared (Peter Faymonville et al., 2017). However, only the 

temporal logic formulas are often not enough to specify all the synthesized system features. Sometimes the task is 

to synthesize automaton systems based only on behaviour examples. The purpose of the paper is to study effective 

methods of accounting for behaviour examples and compare the methods with other approaches to presenting 

behaviour examples. 

 

2. MATERIALS AND METHODS 
 

The Boolean formula satisfiability problem is the problem of finding such an assignment of propositional variables 

included in the Boolean formula so that the formula becomes true. For the Boolean formula satisfiability problem, 

it can contain only variables, parentheses, and operations AND, OR, NOT. An existential quantifier is implied in 

the Boolean formula satisfiability problem for the connection between the propositional variables included in it. 

The satisfiability problem for a Boolean formula with quantifiers is an extension of the Boolean formula 

satisfiability problem, in which, along with the existential quantifier, the universal quantifier can be used to connect 

variables. Synthesis with a system size constraint is an approach to the automaton model synthesis with a constraint 

on the size of the final system and on the number of visits to rejecting states. The problem of synthesis with the 

system size constraint can be represented as a problem of the solvability of a system of constraints, even in 

conditions where other approaches to synthesis are unsolvable, for example, in the synthesis of asynchronous or 

distributed systems (Vashkevich, 2004). Linear temporal logic is logic with operators that allows us to work with 

time. With its help, we can set the order of phenomena and their interactions in time. In addition to the usual logical 

operators, linear temporal logic formulas support the following operators: 

 

• X𝜑 (next) - the formula 𝜑 must be satisfied in the next state. 

• F𝜑 (finally) - the formula 𝜑 must be satisfied in one of the following states. 

• G𝜑 (globally) - the formula 𝜑 must be satisfied in every state. 

• 𝜑U𝜓 (until) - the formula 𝜑 must be satisfied at least until the moment when the formula 𝜓 is satisfied (which 

must be satisfied for sure now or in the future). 



 
 

63 
 

• 𝜑R𝜓 (release) - the formula 𝜓 must be satisfied up to the state (including the current state) in which 𝜑 is first 

satisfied, if 𝜑 is never satisfied, then 𝜓 must always be satisfied. 

• 𝜑W𝜓 (weak until) - the formula 𝜑 must be satisfied at least until the moment when the formula 𝜓 is satisfied, if 

𝜓 will never be satisfied, then 𝜑 must always be satisfied. 

• 𝜑M𝜓 (strong release) - the formula 𝜓 must be satisfied up to the state (including this state), when 𝜑 is first satisfied 

(which must be satisfied now or in the future). 

 

Let Σ be a finite set of propositional variables and a linear temporal formula 𝜑 defined over this set, then 

the language of the formula 𝜑, denoted by ℒ (𝜑), consists of infinite sequences of states 𝜎 ∈ (2K). 

An example of a linear temporal logic formula: 
0 1 0 0 1 1( ) ( ) ( )G g g G r Fg G r Fg      . 

 

This expression specifies the behaviour of an arbiter system, which, after a request 𝑟0 or 𝑟1, must sooner or 

later issue the appropriate permission, while it is prohibited to issue both permissions simultaneously. 

The universal co-Buchi automaton 𝒜 over a finite alphabet Σ is given by the quadruple ⟨𝑄, 𝑞0, 𝛿, 𝐹⟩, where 

𝑄 is a finite set of the automaton states; 𝑞0 ∈ 𝑄 is an initial state of the automaton, δ: 𝑄 × 2 Σ × 𝑄 is the 

transition relation, and 𝐹 ⊆ 𝑄 is a set of rejecting states. Let an infinite word 𝜎 ∈ (2Σ) ∗ is given; the initiation 

of the given word on the automaton 𝒜 generates an infinite sequence of states 𝑞0𝑞1𝑞2 …∈𝑄∗. The start is 

considered admitting if it contains only a finite number of rejecting states. The automaton 𝒜 admits the 

word 𝜎 if all starts of the given the word by the automaton 𝒜 were admitting. The automaton 𝒜 language 

is denoted as ℒ (𝒜) and is a set {𝜎 ∈ (2 Σ)∗ | 𝒜 takes 𝜎}. Further, universal co-Buchi automata are depicted 

as directed graphs with vertices Q and a symbolic representation of the relation 𝛿 in the form of propositional 

Boolean formulas 𝔹 (Σ). Rejection states 𝐹 will be marked with double lines. 

 

Let Σ is a set of propositional variables; we divide it into two parts: I being variables controlled by their 

environment and O being variables controlled by the system. In this definition, we mean by the environment 

the external environment with which the automaton system interacts, and the automation system itself will 

be understood as the system. Thus, it is assumed that the variables from set I will be changed only by the 

external environment, and the variables from set O will be changed only by the automaton system. The 

transition system 𝒯 is given by the triple ⟨T, 𝑡0, 𝜏⟩, where T is a finite set of states; 𝑡0 is an initial state, and 

𝜏: 𝑇 × 2I → 20 × 𝑇 is the transition function. If for a given state 𝑡 ∈ 𝑇 and variables 𝒊 ≠ 𝒊'∈ 2I it follows from 

𝜏 (𝑡, 𝒊) = (𝒐, _) and 𝜏 (𝑡, 𝒊 ') = (𝒐', _) that 𝒐 = 𝒐', then the system of transitions is called the Moore transition 

system, otherwise. the Mealy transition system. 

 

Starting an infinite sequence 𝒊𝟎𝒊𝟏… ∈ (2I) ∗ on 𝒯 generates an infinite trace ({𝑡0} ∪ 𝒊𝟎 ∪  )({𝑡1} ∪ 𝒊𝟏 ∪ 𝒐𝟏)… 

∈ (2T∪I∪O)∗, where 𝜏 (𝑡j,𝑖j) = (𝑜j, 𝑡j+1) for every 𝑗 ≥ 0. The path 𝜔 ∈ (2I∪O) * is the projection of the trace onto 

propositional variables. The set of all paths generated by the transition system 𝒯 will be denoted by 𝑃𝑎𝑡ℎ𝑠 
(𝒯). The transition system realizes the linear temporal logic formula if 𝑃𝑎𝑡ℎ𝑠 𝒯 ⊆ ℒ (𝜑). 

 

The product of the transition system 𝒯 = ⟨𝑇, 𝑡0, τ⟩ and the co-Buchi automaton 𝒜 = ⟨Q, 𝑞0, δ, F⟩ is a traversal 

graph 𝒢 = ⟨𝑉, 𝐸⟩, where 𝑉 = 𝑇 × 𝑄 is the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges such that ((t, q), (𝑡 ', 
𝑞')) ∈ 𝐸 ⇔ ∃𝒊 ∈ 2I. ∃𝒐 ∈ 20. 𝜏 (𝑡, 𝒊) = (𝒐, 𝑡 ’) and (𝑞, 𝒊 ∪ 𝒐, 𝑞’) ∈ 𝛿. 

 

The problem of synthesizing reactive automata systems is to find a minimal automaton system that will 

implement the given specification. There are many approaches to solving this problem, but one of the most 

successful is the reduction to the Boolean formula satisfiability problem (Biktashev & Vashkevich, 2013). 

The main advantage of this approach and the speed at which the target system is located is the fact that when 

improving programs for solving the Boolean formula satisfiability problem, the work of the search algorithm 

for the reactive target system will also improve. Usually, the specification for the reactive target system is 

given in linear temporal logic formulas; however, it is often necessary to indicate behaviour examples of the 

sought system. Within this paper's frameworker, we will refer to the sequences of pairs of vectors 𝒊 ∈ 2 | I | 



 

64 
 

and 𝒐 ∈ 2 | O | defining the state of variables controlled by the ensystem's environment and variables as 

scripts. A set of several scripts will be called behaviour examples. A separate pair that makes up the script 

will be called a script element. A reactive system is considered to implement behavior examples to reproduce 

every script in a given set. Behaviour examples allow us to specify additional system properties that were 

not presented in the LTL specification. Also, the task of synthesizing a reactive system is often posed only 

by behaviour examples (Finkbeiner & Schewe, 2007). 

 

Annotation function 𝜆: 𝑇 × 𝑄 → {⊥} ∪ ℕ is a function that assigns to the vertices of the starting graph either 

a natural number 𝑘, or ⊥ if the vertex is unreachable. An annotation function is considered correct if the 

following conditions are met: a natural number is assigned to a pair of initial states (𝑡0, 𝑞0); a natural number 

𝑘 is assigned to the pair of states (𝑡, 𝑞), then for all 𝒊 ∈ 2I and 𝒐 ∈ 2О such that 𝜏 (𝑡, 𝒊) = (𝒐, 𝑡 ') and (𝑞, 𝒊 ∪ 

𝒐, 𝑞') ∈ 𝛿, a greater or equal, or strictly greater natural number must be assigned to the pair (𝑡 ', 𝑞'), if 𝑞 '∈ 

𝐹. That is, 𝜆 (𝑡 ’, 𝑞’) ⊳q ’𝑘, where ⊳ q’ ≔>, if 𝑞 ’∈ 𝐹, ≥ otherwise /. 

 

Let us describe the construction of a system of constraints for given 𝒯, 𝒜, and 𝜆, which is solvable only if 

the annotation function is correct. By definition, the correctness of the annotation function can be proved by 

checking all transitions in the graph, for this, we code 𝒯, 𝒜 and 𝜆 with the following propositional variables: 

• The transition function 𝜏 of the transition system 𝒯 is represented by two propositional variables: 𝑜t, 𝒊 for 

each outgoing variable controlled by the system 𝑜 ∈ 𝑂 and 𝜏t, i, t ’, denoting the transition from state 𝑡 to state 

t’. Let (𝑡, t ') ∈ 𝑇 × 𝑇 and 𝒊 ∈ 2I, then 𝜏t, i, t' = 𝑇𝑟𝑢𝑒 ⟺ 𝜏 (𝑡, 𝒊) = (_, 𝑡 ') and 𝑜t, 𝒊 = 𝑇𝑟𝑢𝑒 ⟺ 𝜏 (𝑡, 𝒊) = (𝒐, _), 

where 𝑜 ∈ 𝒐. 

 

• The transition relations δ: 𝑄 × 2I∪O × 𝑄 of the co-Buchi automaton 𝒜 can be represented as a formula 𝛿 t, 

q, i, q' with the variables 𝑜t, 𝒊 in such a way that the assignment 𝒐 for the variables 𝑜t,i satisfies 𝛿 t, q, i, q'⟺ (𝑞, 

𝒊 ∪ 𝒐, 𝑞 ') ∈ 𝛿. 

 

• For convenience, we divide the annotation function into two parts: 𝜆𝔹: 𝑇 × 𝑄 → 𝔹, which represents the 

reachability of the vertex, and 𝜆 #: 𝑇 × 𝑄 → ℕ. For each 𝑡 ∈ 𝑇 and 𝑞 ∈ 𝑄, we introduce the variable 𝜆 t, q𝔹 = 

True ⟺ the vertex (𝑞, 𝑡) in the starting graph is reachable from the initial vertex, and the variable 𝜆 # t, q 

represented by a bit vector and equal to the value 𝜆 (𝑡, 𝑞). 

Using the propositional variables described above, the Boolean formula is compiled that checks the 

correctness of the annotation function. 

# #

, , , , ' , , ' ', ' ', ' ,
' '2

( )
I

B

t q t q i q t i t t q t q t q
q Qt T q Q t Ti

     


   

  
     

  
    ,               (1) 

 

If for the given 𝒯, 𝒜 and 𝜆 the propositional variables satisfy the system of constraints, then the annotation 

function is correct (Heule & Verwer, 2013). There are several different approaches to the synthesis of 

automaton systems, which allow simultaneously taking into account the specification in the form of linear 

temporal logic formulas and behaviour examples. Among them there are the following methods: 

 

- An iterative approach based on reducing to the Boolean formula satisfiability problem, the work of which 

consists of several stages: representing scripts in the form of a script tree, which is then represented as a 

Boolean formula; generating an automaton system according to the obtained formula; checking the 

synthesized automaton system using the model checking approach (Finkbeiner & Schewe, 2013) for 

compliance with linear temporal formulas; if counterexamples are identified at the current stage, they are 

added to the script tree with a special mark and the whole process is repeated anew. Thus, an automaton that 

implements a given specification is gradually deduced, or a fact that denies the existence of such a system 

is revealed. An important point in the described approach is the use of software tools for solving the Boolean 

formula satisfiability problem that support an incremental search for a solution (Clarke et al.,1999), which 



 
 

65 
 

allow not to completely rerun the search for a solution after adding another counterexample. 

 

- Another approach is the method (Vashkevich & Biktashev, 2016), which is based on reducing to the 

satisfiability problem for a Boolean formula with quantifiers and checking models with a constraint on the 

length of the tested paths. This approach is somewhat similar to the previous one, but now the boundary 

used in model validation to check the length of the paths being tested, is sequentially increased instead of 

adding counterexamples. After generating the automaton, as in the previous method, a check is performed 

again whether the obtained automaton satisfies the LTL properties; if not, then the boundary used for 

checking models is increased and the operation is repeated anew. There is also a modification of this 

approach, in which a formula with quantifiers is translated into a satisfiability formula by an almost 

exponential expansion of universality quantifiers. 

 

2.1. Theoretical research 

 

Today, perhaps the only way of presenting behaviour examples, that suggests the possibility of adding them 

to the specification when using the synthesis approach with a constraint on the size of the system is to 

represent behaviour examples in the form of linear temporal logic formulas. Since this method does not 

require modifications of the algorithm for reducing to the Boolean formula satisfiability problem used in the 

bounded synthesis approach, we will consider it as the starting point for further comparisons of the results 

with other proposed methods. To represent behaviour examples in the form of linear temporal formulas, it 

is necessary to sequentially replace each transition in the list of elements of a specific script with a 

construction of the form 𝒊k → 𝒐k ∧ X (𝒊k+1→ 𝒐k+1 ∧ …), where the vector 𝒊 specifies the state of environment 

variables in this element of the script, the vector 𝒐 specifies the state of the system variables, and X denotes 

the temporal logic operator “next”. 

 

Suppose that 𝐼 = {𝑒11, 𝑒12, 𝑒2, 𝑒3, 𝑒4}, 𝑂 = {𝑧1, 𝑧2, 𝑧3} and there are the following scripts 

       

   

11 1 2 12 2 2

11 1 4 3

| | | |

| |

e z e e z e

e z e z

  


,                               (2)          

Then the temporal formulas defining these scripts will look like this 

 

 

 

 

 

 

 

11 4 12 3 2

1 2 3 2 11 4 12 3

1 2 3 12 11 4 3 2

2 1 3 2 11 4 12 3

1 2 3

11 4 12 3 2

1 2 3 4 11 12 3 2

3

((

((

((

)))))

((

e e e e e

z z z Х e e e e e

z z z Х e e e e e

z z z Х e e e e e

z z z

e e e e e

z z z Х e e e e e

z

   

       

        

       

  

   

       

  1 2 )))))z z 

,    (3) 

 

As can be seen from the example, the disadvantage of this approach is a strong increase in size of the formula 

defining the specification of the system, namely, (| 𝐼 | + | 𝑂 |) ⋅ | 𝑆𝐶 |, where | 𝐼 | is the size of the set of 

environment variables, | O | is the size of the set of variables of the system, and | 𝑆𝐶 | is the number of script 

elements in the given behaviour examples. Due to an increase in the formula, the amount of time required 

for construction of co-Buchi automaton increases, and the co-Buchi automaton itself also increases directly, 

which ultimately leads to an inefficient growth of the corresponding Boolean formula and an increase in the 

time spent on synthesizing the target automaton system. In addition, this method does not take into account 



 

66 
 

the peculiarities of the behaviour examples. 

 

Another way to represent system behavior examples is to represent them as a tree or graph of scripts. The 

original algorithm for constructing a script tree was described in (Vashkevich, N.P. (2004; Eén & Sörensson, 

2003); we will use its modified version in the given work. A tree or script graph is a tree or, respectively, a 

graph, where the state of the environment variables and the expected state of the system variables are written 

on each edge. In traversing the tree or graph using the projection of conditions on its edges, we can get all 

the scripts from the list of scripts on which it is constructed. Initially, the tree contains only one vertex, i.e., 

its root, then script elements are sequentially added according to the following principle: if there is an edge 

from the current vertex according to the condition presented in the script element, then a transition is 

performed along this edge to the next vertex; if there is no such edge, then a new vertex is added to which a 

new edge is drawn from the current vertex with the necessary condition; after that, a transition to the created 

vertex is performed. For example, let's say we have the following scripts: 

 

 

         

       

               

             

 

     

   

2

1 22 11 2 12 2

1 23 2 12 2

1 2 1 22 11 2 12 3 2 12 2

1 2 1 23 2 12 3 2 12 2

34

1 32 11 4

1 33 4

|

| | | | |

| | | |

| | | | | | | |

| | | | | | |

|

| | |

| |

e

e e e e ez z

e e e ez z

e e e e e e e ez z z z

e e e e e e ez z z z

e z

e e ez z

e ez z

   

  

      

     

 



,  (4) 

 

The script tree constructed according to the algorithm described above for the given behaviour examples, is 

shown in Figure 1. 

 

 
Figure 1. An option of the script tree for the given behaviour examples 

 

 

As we can see from the example, the script tree allows us to more efficiently define behaviour examples by 

reducing the amount of information required to represent scripts. 

Let's develop the idea of combining behaviour examples into a script tree, and let’s move on to the script 

graph. A script graph differs from a script tree in that now the final elements of the scripts are also merged 

in addition to combining the initial elements of the scripts. The process of building a script graph starts in 

the same way as building a tree, but now back edges are also remembered for each vertex. After the end of 

the first stage, all vertices from which no edges outgo merge into one final vertex. Further, starting from the 

final vertex, a recursive traversal of the graph occurs along the back edges in such a way that if several back 

edges originate from the vertex with the same condition, then the vertices to which these edges lead merge 

into one, after which these vertices are passed. The process is repeated again until it reaches the root. It is 



 
 

67 
 

worth noting one key point of this algorithm: when traversing and merging vertices along back edges, it is 

very important not to allow a situation when we add the ability to get new scripts that were absent in the 

original list. For a better understanding, we will give an example of such a situation: for example, after the 

first step, we have a tree, which is shown in Figure 2. 

 

 
Figure 2. A script tree in which a path conflict will occur when merging vertices 

 

Note that if we do not take into account the case described above, then, when merging vertices along back 

edges, we get the following script graph (Figure 3). 

 

 
Figure 3. A graph of scripts in which unintended transitions are possible 

 

The graph shown in Figure 3 displays the script (𝑏 | 𝑦) → (𝑏 | 𝑦) that was absent in the original list of scripts. 

This can lead to the synthesis of an incorrect automaton system and cause problems with the search or even 

the absence of a solution for the Boolean formula satisfiability problem if the formulas of linear temporal 

logic in the specification prohibit or contradict such transitions. To avoid the described problems, we can 

use the approach applied in the algorithm for minimizing finite state automata, with the help of which the 

vertices are divided into equivalence classes and then a new script graph is constructed from them. As an 

example, Figure 4 shows a script graph for the same behaviour examples for which the script tree was 

constructed above: 

 

 
Figure 4. An example of a script graph 

 

Using a script graph can further reduce the amount of information needed to present behaviour examples. 

The methods described later in this chapter will be based, in one way or another, on the search for matching 

the vertices of a script tree or graph to the vertices of the target transition system. 

 

As mentioned above, the methods of accounting for behaviour examples in the synthesis of automaton 

models are based on the search for a mapping between the script graph's vertices and the states of the 

transition system. To do this, we introduce a new type of Boolean variables, St,j, defining the correspondence 

between vertices and states. Thus, St, j is true if and only if the state 𝑡 of the transition system corresponds to 

the vertex 𝑗 of the script graph. We also denote by 𝑜𝑢𝑡 (𝑗) the set of edges outgoing from the vertex 𝑗 and 

represented in the form of triplets from the vertex to which the edge enters and conditions for the state of 

variables controlled by the environment and variables controlled by the system. To confirm the correctness 

of the established correspondence between the script graph's vertices and the states of the transition system, 

it is necessary for each vertex to check the correspondence between the edges outgoing from it and the 

transitions from the transition system. In other words, if the state 𝑡 corresponds to the vertex 𝑗, then for each 



 

68 
 

edge outgoing from the current vertex with conditions 𝒊 and 𝒐 to the vertex 𝑗' there must be a transition in 

the system of transitions from the state 𝑡 to the state 𝑡Ö with the state of the environment variables equal to 

the vector 𝒊 and the system variables equal to vector 𝒐 and the state t' thus must correspond to the vertex 𝑗'. 
The predicate that sets this condition is shown below. 

 

, , ' , ', '
( ', , ) ( ) '

( )t i t t i t j
t T j ST j i o out j t T

O S
   

     ,    (5) 

Where the variable
, , 't i t  from the original encoding sets the transition from the state 𝑡 to the state 𝑡’ when the environment 

variables are equal to the vector 𝒊, and the vector of variables 𝒐t, 𝒊 sets the state of the environment variables equal to the 

vector 𝒐 when this transition is performed. 

 

This expression can be used to check the correctness of a given match and search for it when passing it to the program for 

finding the assignment of variables at which the formula will be executed. The only additional condition that must be 

added to the formula is St0, j0, which asserts the correspondence between the initial state of the transition system and the 

root vertex of the script graph. 

 

The size of the resulting formula is of 𝒪 (n2⋅ | SG | 2⋅ | O |) clauses, and it contains 𝒪 (𝑛⋅ (2 | I | ⋅ | O | + |SG|)) variables, where 

𝑛 = | 𝑇 | is the size of the transition system; | SG | is the size of the script graph, | I | and |O| are the sizes of the sets of 

variables controlled by the environment and the system, respectively. It is assumed that this predicate will be added to the 

original expression presented in (Peter Faymonville et al., 2017), which will increase the number of variables included in 

the original formula by 𝑛 ⋅ |SG|. However, it is worth noting that at the moment, the proposed formula does not use the 

predicate from the original formula anymore, which states that for each state, there is a transition from it for all variants of 

states of environment variables. 

 

, , '
'2I

t i t
t T t Ti


 
 ,                                                                                          (6) 

 

To do this, we modify our formula by changing the condition that specifies the correspondence between 

transitions in the script graph and in the transition system. This modification changes the meaning of the 

original formula. Now, if the state 𝑡 corresponds to the vertex 𝑗, then for each edge outgoing from the given 

vertex with conditions 𝒊 and 𝒐 to the vertex 𝑗 ', and if the transition in the transition system leads from the 

state 𝑡 to the state 𝑡' with the state of the environment variables equal to the vector 𝒊, then the state of the 

system variables must be equal to the vector 𝒐, and the state 𝑡 'must correspond to the vertex 𝑗'. The modified 

formula is as follows: 

 

, , , ' , ', '
( . , ) ( ) '

( ( ))t j t i t t i t j
t T j ST j i o out j t T

S o S
   

     ,    (7) 

 

It is believed that the updated formula will allow us to quickly find the right solution or the fact that there is 

none. 

Before moving on to methods based on reducing the Boolean formula's satisfiability problem with 

quantifiers, it is worth dwelling on modifying the script graph, namely, dividing it into clusters. This 

approach is aimed at an even stronger compression of information about behaviour examples, which leads 

to a simplification of the resulting Boolean formula. Consider two approaches to clustering, i.e., vertex 

clustering and global clustering. 

 

First, we will consider the vertex clustering approach, as it involves less change in the script graph. It consists 

of the fact that the conditions on the script graph's edges are divided into conditions for variables controlled 

by the environment and conditions controlled by the system. Further, the edges outgoing from the vertex are 



 
 

69 
 

divided into clusters according to the conditions for the environment variables; for this, a new imaginary 

vertex is added, to which an edge leads from the original vertex with the condition for the environment 

variables and from which the edges come with conditions for the variables controlled by the system and 

associated with this cluster. No new vertex is added for clusters with only one edge. 

 

Now let's look at the second approach. In contrast to vertex clustering, it is assumed that all edges in the 

graph are split into clusters at once when using the global clustering method. For this purpose, the conditions 

on the edges are divided by the type of variables, as in the previous version. Further, global clusters 

associated with conditions on variables controlled by the environment are constructed using all the edges of 

the graph. After that, the edges located inside of such clusters are divided again into subclusters, this time 

connected by the conditions for the variables controlled by the system. 

 

2.2.  Methods of accounting for behaviour examples when reducing to the Boolean formula satisfiability 

problem with quantifiers 

 

The methods of accounting for behaviour examples when reducing to the Boolean formula satisfiability 

problem are based on the same approach to finding a correspondence between a script graph and a transition 

system as methods when reducing to a formula without quantifiers. The main difference from the quantifier-

free notation in expression (Peter Faymonville et al., 2017) was the presence of a universality quantifier for 

environment variables, which made it possible to represent the variables 𝜏t, t’ and 𝒐t as functions of the 

variables 𝒊. This solution made it possible to reduce the size of the formula itself and the number of variables 

included in it; due to this, it becomes possible to more efficiently code the predicate, which was not available 

in the early version of the methods the Boolean formula satisfiability. 

 

The first version of the formula is obtained by modifying the quantifier-free version with an amendment to 

the new conditions. The meaning of the new predicate is as follows: if the state 𝑡 corresponds to the vertex 

𝑗, then for each edge outgoing from the current vertex with the conditions 𝒊 and 𝒐 to the vertex 𝑗 ', if at the 

moment the environment variables are in the state 𝒊, then there must be a transition in the transition system, 

which leads from the state 𝑡 to the state 𝑡', and the state of the system variables must be equal to the vector 

𝒐 and the state 𝑡' must correspond to the vertex 𝑗 '. The new expression looks like this 

 

, , ' ', '
( . , ) ( ) '

( ( ))t j t t t t j
t T j SG j i o out j t T

S i O S
   

      ,                 (8) 

 

We would like to point out immediately that the variables 𝒊 and 𝒐t standing under the operator 
't T do not 

depend on 𝑡 ’, so they can be taken out from under its action without any losses 

 

, , ' ', '
( . , ) ( ) '

( )t j t t t t j
t T j SG j i o out j t T

S O S
   

      ,   (9) 

The size of the first version of the formula is of 𝒪 (𝑛⋅ | 𝑆𝐺 |) 2⋅ (| O |) + | I | + 𝑛)) clauses and the number of 

new variables is still 𝒪 (𝑛 ⋅ | 𝑆𝐺 |). 

 

Now we turn to the second version of the predicate to solve a Boolean formula's satisfiability problem with 

quantifiers. The second version of the formula proposes to use the previously proposed global clustering 

principle. To do this, we divide this graph into clusters by environment variables and then denote the set of 

vectors characterizing clusters as 𝐼𝐶. Also, now the set 𝑜𝑢𝑡 (𝑗, 𝒊) contains only those edges outgoing from 

the vertex 𝑗 that lie in the cluster for the vector of environment variables 𝒊. The set of vertices in the 

corresponding cluster will be denoted as 𝑆𝑇 (𝒊). Suppose the environment variables are in the state 𝒊 and the 

vertex 𝑗 corresponds to the state 𝑡. In that case,hen there must be a corresponding transition in the transition 

system for each edge outgoing from this vertex and lying in the cluster associated with the vector 𝒊, with the 



 

70 
 

condition 𝒐 to the vertex 𝑗 ’. 
 

, , ' ', '
( ) ( ', ) ( , ) '

( )t j t t t t j
i IC t T j SG i j o out j i t T

i S O S
    

        ,   (10) 

The external operator 
i IC
  fixes the state of the environment variables, which should make it easier to check 

and find dependencies for the variables tt, t ', and ot. The size of the second version of the formula is of 𝒪 (| 

IC | ⋅ (| I | + n⋅ | SG | 2⋅ (| O | + n))) clauses. This version of the formula is beneficial for relatively small sizes 

of | IC | , otherwise, it can lead to an increase in the time required to find the right solution. 

As in the case of the quantifier-free formula, we use the predicate of the transition function completeness 

for the third version of the formula from the original formula. 

 

, '
'

t t
t T t T


 
 ,                                (11) 

 

Also, the vertex clustering approach will be applied in the current version of the formula for greater 

efficiency; this makes it possible to define the script graph more efficiently, without suffering from cases 

with a large number of clusters. We denote the set of vectors specifying the state of environment variables 

associated with clusters for a vertex 𝑗 as (𝑗). 
 

, , ' ', '
( ) ( ', ) ( , ) '

( )t j t t t t j
t T j SG i IC j j o out j i t T

S i O S
    

       ,    (12) 

 

The asymptotics of the new formula is similar to the first version and amounts to 𝒪 (n⋅ | SG | 2⋅ (| O | + | I | 

+ n)), but despite this, it is expected that this formula will be more efficient due to more efficient work with 

constraints on variables defining the transition function of the target transition system, and using vertex 

clustering. 

 

3. ANALYSIS OF THE RESULTS 
 

In the experimental part, the proposed methods of accounting for behaviour examples when synthesizing 

automaton models using temporal formulas are compared, and an analysis of the results will be presented. 

Testing was performed on a computer running OS Ubuntu 16.04, having an Intel Core i5 5257U processor, 

and 4GB RAM. The transformation of linear temporal properties into a co-Buchi automaton was carried out 

using the “spot” utility, “cryptominisat” was used as a software tool for finding a solution to the satisfiability 

problem for a Boolean formula, and rareqs was used as a means for solving the Boolean formula satisfiability 

problem with quantifiers. To process the input data, we used a modified version of the BoSy program (BoSy, 

2016) written with the use of the Swift programming language, into which the methods proposed in work 

are embedded. We also used Python scripts to generate behaviour examples and represent scripts in the form 

of temporal formulas. A part of the test set of entities presented at the SYNTCOMP competition for the 

synthesis of reactive systems was used as tests. Random behaviour examples were generated for each entity 

to test the effectiveness of the methods of accounting for behaviour examples using the program written in 

the Python language. The generation was carried out as follows: an automaton system was delivered to the 

program input, for which it was necessary to construct behaviour examples presented in the form of a 

directed graph with conditions for environment variables and system variables indicated on the transitions, 

and the number of scripts that need to be generated. Further, the length 𝑛 was randomly determined for each 

script within the range from 2 to | the automaton system size | ⋅5. After that, starting in the initial state 

randomly each time, an outgoing transition to the next state was selected, and a condition for the variables 

of this transition was added to the script. If there are multiple environment variable assignments that satisfy 

the transition condition, then one of them is randomly selected. After a new specification was generated in 

the form of linear temporal formulas and behaviour examples, it was passed to the input of another utility, 



 
 

71 
 

which converted the behaviour examples into linear temporal logic formulas for comparison with the base 

implementation. The resulting data were delivered to the input of the tested program. During testing, the 

running time of each individual step of the bounded synthesis algorithm was measured and the total running 

time of all steps. About twenty starts were made for each input data and each method, among which the 

average time at each stage was selected, and before that, five starts were previously performed without time 

measurements. 

 

The experiments' results for approaches based on reducing the Boolean formula satisfiability problem and 

approaches based on reducing the satisfiability problem of a Boolean formula with quantifiers are presented 

in the graphs shown in Figure 5 and Figure 6, respectively. The vertical scale in the graphs represents the 

time in seconds, and the horizontal scale gives a number of entities for which a solution was found. Each 

entity's running time was determined as the total running time of all stages of the “bounded synthesis” 

algorithm. 

 

 
Figure 5. Comparison of the work speed for various methods when reducing to the Boolean formula satisfiability 

problem 

 

 
Figure 6. Comparison of the work speed for various methods when reducing to the Boolean formula satisfiability 

problem with quantifiers 

 

As can be seen from the graph shown in Figure 5, for the variant with reducing the problem to the Boolean 

formula satisfiability, the first version of the formula showed itself in the best way, although it is worth 

noting that the second version is not far behind it. Such a large increase is justified by the fact that in the 

course of encoding for the Boolean formula satisfiability problem in the bounded synthesis version, an 

enumeration over 2 | Å | variables is performed, and the formula grows very much with an increase in the co-



 

72 
 

Buchi automaton. There is no dependence on 2 | Å | in the proposed methods; therefore, the formula does not 

increase so much with the growth of the script graph. 

 

The graph presented in Figure 6 shows that the leader is the third version of the encoding, which uses the 

predicate of the transition function completeness and vertex clustering; the performance gain is also 

significant, although it is not as large as for other versions. 

 

After the experiments, the fact was confirmed that when the behaviour examples are represented in the form 

of linear temporal logic formulas, the time required for the construction of a co-Buchi automaton 

significantly increases due to the complexity of the LTL specification structure. 

 

4. CONCLUSION 
 

The paper shows new methods of accounting for behaviour examples in the synthesis of automaton models 

using temporal formulas based on the approach of synthesizing automaton models with a constraint on the 

target system's size. Also, new options for representing behaviour examples in the form of clustered script 

graphs were proposed. In addition, an experimental study was carried out, which showed the high efficiency 

of new methods and their multiple superiority over the basic methods. 

 

ACKNOWLEDGMENTS 
 

RFBR funded the reported study according to the research project № 19-07-00516.  

 

REFERENCES 
 

Biktashev, R.A., Vashkevich, N.P. (2013). Models of event-driven non-deterministic automata for the 

formal presentation of the main properties of control systems for parallel processes and resources. 

Infocommunication technologies, 11(3), 95-98. 

 

BoSy. Reactive synthesis tool based on constraint solving. — 2016. — URL: https://github.com/reactive-

systems/bosy 

 

Clarke, E.M., Grumberg, O., Peled, D. (1999). Model checking. MIT press, USA. 

 

Dubinin, V.N., & Drozdov, D.N. (2016). Design and implementation of control systems for discrete event 

systems based on hierarchical modular non-deterministic automata (Part 1. Formal model). Proceedings of 

higher educational institutions. Volga region. Technical science, 1(37),28-39. 

 

Dubinin, V.N., Budagovsky, D.A., Drozdov, D.N., & Artamonov, D.V. (2016). Design and implementation 

of control systems for discrete event systems based on hierarchical modular non-deterministic automata 

(Part 2. Methods and tools) Proceedings of higher educational institutions. Volga region. Technical science, 

2(38), 18-32. 

 

Eén, N., Sörensson, N. (2003). Temporal induction by incremental SAT solving. Electr. Notes Theor. Comp. 

Sci, 89(4), 543–560. 

 

Finkbeiner, B., Schewe, S. (2007). SMT-based synthesis of distributed systems. In: Proceedings of AFM. 

 

Finkbeiner, B., Schewe, S. (2013). Bounded synthesis. STTT, 15(5-6), 519–539. 

 

Heule, M.J., Verwer, S. (2013). Software model synthesis using satisfiability solvers. Empir. Software Eng, 

https://github.com/reactive-systems/bosy
https://github.com/reactive-systems/bosy


 
 

73 
 

18(4), 825–856. 

 

Pashchenko, D.V., Martyshkin, A.I., Trokoz, D.A. (2020). Decomposition of Process Control Algorithms 

for Parallel Computing Systems Using Automata Models. Proceedings - 2020 International Russian 

Automation Conference, RusAutoCon 2020, 839-845, 9208165 

 

Pashchenko, D.V., Trokoz, D.A., Martyshkin, A.I., Sinev, M.P., Svistunov, B.L. (2020). Search for a 

substring of characters using the theory of non-deterministic finite automata and vector-character 

architecture. Bulletin of Electrical Engineering and Informatics, 9(3), 1238-1250 

 

Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, Leander Tentrup. Encodings of Bounded Synthesis. 

International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2017. P. 

354-370. doi:10.1007/978-3-662-54577-5_20 

 

Vashkevich, N.P. (2004). Nondeterministic automata in the design of parallel processing systems: 

Textbook. - Penza: Publishing house of the Penza State University, - 280 p. 

 

Vashkevich, N.P., & Biktashev, R.A. (2011). The Benefits of a Formal Language Based on the Concept of 

Non-determinism in the Structural Implementation of Parallel Systems of Logical Control of Processes and 

Resources / Proceedings of Higher Educational Institutions. Volga region. Technical science, 1,  3-11. 

 

Vashkevich, N.P., & Biktashev, R.A. (2011). The benefits of a formal language based on the concept of 

non-determinism for functional description and transformation of algorithms for managing processes and 

resources in parallel systems. Telecommunications, 1, 18-25. 

 

Vashkevich, N.P., & Vashkevich, S.N. (1996). Non-deterministic automata and their use for the synthesis 

of control systems. Part 1. Equivalent transformations of non-deterministic automata: Textbook. - Penza: 

Publishing house of the Penza State Technical University, - 88 p. 

 

Vashkevich, N.P., Biktashev, R.A. (2016). Non-deterministic automata and their use for the implementation 

of parallel information processing systems: Monograph - Penza: PSU Publishing House, 394 P.  

 

Vashkevich, N.P., Biktashev, R.A., Pashchenko, D.V., Kutuzov, V.V., & Sauanova, K.T. (2015). Using 

models of event-driven non-deterministic automata for the formal description of parallel algorithms of 

logical control. Bulletin of NAS RK, 4,  48-63. 

 

Volchikhin, V.I., Vashkevich, N.P., & Biktashev, R.A. (2013). Models of event-driven non-deterministic 

automata for representing control algorithms for interacting processes in multiprocessor computing systems 

based on the use of the monitor mechanism. Proceedings of higher educational institutions. Volga region. 

Technical science, 2(26), 5-14. 

 


