
807

An efficient FPGA implementation of hand gestures recognition based on

neural networks

Una eficiente implementación en FPGA del reconocimiento de gestos de mano

basado en redes neurales

Ali Abdolazimi1, Amir Sabbagh Molahosseini1,*, Farshid Keynia 2

1 Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.
2 Department of Energy Management and Optimization, Institute of Science and High Technology and

Environmental Sciences, Kerman, Iran.

*
 amir@iauk.ac.ir

(recibido/received: 12-enero-2021; aceptado/accepted: 08-abril-2021)

ABSTRACT

Different gestures of hand which is a powerful communication channel between man to man and/or man

to machine transfers a large amount of information in our daily lives. For example, sign languages are

widely used by individuals with speech handicaps. Recognizing hand gestures in the image can be

considered a powerful parameter in man-to-machine communication. Although researchers have been

trying to implement different hand gestures on several hardware platforms over the past years, their

attempts have been confronted by many challenges including restricted resources of hardware platforms,

noise factors in the environment, or insufficient accuracy of output in high numbers of experimental

samples. In this work, an optimum and parallelized method is developed to implement recognition of

different hand gestures in the image on FPGA. The introduced method uses an MLP network with high

numbers of hidden layers without wasting resources of the hardware platform. The results comparing the

proposed optimized method with the state-of-the-art methods show that the suggested method can be

implemented on an FPGA platform with high output accuracy and lower resources.

Keywords: MLP, FPGA implementation, Hand gestures recognition, Fourier transform, Neural network.

RESUMEN

Los diferentes gestos de la mano que es un poderoso canal de comunicación entre hombre a hombre y / o

hombre a máquina, transfieren gran cantidad de información en nuestra vida diaria. Por ejemplo, los

lenguajes de señas son ampliamente utilizados por personas con discapacidad del habla. El

reconocimiento de los gestos de las manos en la imagen puede considerarse como un parámetro poderoso

en la comunicación hombre-máquina. Aunque los investigadores han intentado implementar diferentes

gestos con las manos en varias plataformas de hardware durante los últimos años, sus intentos se han

enfrentado a muchos desafíos, incluidos los recursos restringidos de las plataformas de hardware, factores

Vol. 34, No. 02, pp. 807-824/Junio 2021

ISSN-E 1995-9516

Universidad Nacional de Ingeniería

COPYRIGHT © (UNI). TODOS LOS DERECHOS RESERVADOS

http://revistas.uni.edu.ni/index.php/Nexo

 https://doi.org/10.5377/nexo.v34i02.11568

808

de ruido en el entorno o una precisión insuficiente de la salida en un gran número de muestras

experimentales. En este trabajo se desarrolla un método óptimo y paralelizado para implementar el

reconocimiento de diferentes gestos con las manos en imagen en FPGA. El método introducido utiliza una

red MLP con un gran número de capas ocultas sin desperdiciar recursos de la plataforma de hardware. Los

resultados que comparan el método optimizado propuesto con los métodos de última generación muestran

que el método sugerido se puede implementar en la plataforma FPGA con una alta precisión de salida y

menos recursos.

Palabras claves: MLP, Implementación FPGA, Reconocimiento de gestos con las manos, Transformada

de Fourier, Red neuronal.

1. INTRODUCTION

Hand movements are a simple and natural way of interacting. Even, people who can speak, usually make

use of many different movements to help their communications. Movements of hand can be used in a wide

range of the current applied programs through movements (different sign languages) and applying objects

in Virtual Environment (VE) as a way of an interacting man with the computer. To achieve a natural and

comprehensive interaction between man and computer, a man’s hand can be used as a connecting device

(Kirishima, Sato, & Chihara, 2005). From years ago, fast information processing was a matter of desire,

and attempts were made to achieve it partially by developing suitable hardware and algorithms along with

specific programming such as parallelized processing according to daily needs. The hardware, which is

recently used practically due to technological developments, is Field-Programmable Gate Arrays

(FPGAs). Nowadays, hardware can be provided with the help of one or more FPGAs accompanied by

accessories that can perform algorithms with higher calculation load. In order to implement these

algorithms, it requires transferring them in a parallelized way and then designing several processors by

assembling the internal structure of FPGA and finally solving the problem in a parallel manner. One of

these problems is the immediate processing of image and video signals, which includes the

implementation of the algorithms of image processing. Hardware design techniques, such as parallelism

and pipeline, can be developed on FPGA, which is not possible with a specific design of DSP (Lee &

Sobelman, 2003; Wasfy & Zheng, 2012).

During past years, many researchers implemented different hand gestures on images and a few of them

implemented the gestures on hardware platforms such as FPGA. The implementation carried out in this

paper differs from other one’s implementation MLP neural network on FPGA using hybrid architecture.

Because neural networks should always wait to know the output value from the previous layer and this

value moves in front to reach the exit. But in the suggested parallel architecture, all the layers can work in

parallel form with a multiplexer in the control layer section, and the speed increases very much in this

state. If we deal with other methods such as the direct implementation of a digital neural network on

FPGA (Dinu & Cirstea, 2007; Dinu, Cirstea, & Cirstea, 2009) and compare it with the proposed method.

We will notice that direct implementation consists of three steps: a digital mathematical model of the

neural network, transforming the digital model into the level of the gate, and implementation of the gates

which would be time-consuming with complex calculations and causes many resources to be used.

But in the used method, parallelizing is performed in link level in the calculation unit between input -

middle and middle – output. The sigmoid function is implemented in the form of hardware and a new

method is suggested to keep the weights in the calculation unit, which can result in easy implementation

of the neural network on the hardware. If more links can be calculated at the same time and the operation

be performed on them, then the processing speed will be increased and more resources will be used.

Furthermore, using shift and summation instead of multiplication (Govekar & Amonkar, 2017) and

making binary the value of activation function (sigmoid function) are also among the other methods used

809

to reduce resources and the volume of calculations. The proposed method also utilizes a layer control for

multiplexing the layers to save resources.

2. RELATED WORK

As mentioned before, in recent years, different implementations with specific objectives have been carried

out generally from the neural network on FPGA. In this section, we have a brief look at the parallelized

and optimized implementation that resulted in reduced usage of resources. In Domen and Simon (2012), a

solution was suggested to implement high-volume networks with lots of layers. Multiple makers

implement each neuron and nonlinear operations, such as activating functions of the network, which are

nonlinear; are turned into linear blocks, and then blocks are implemented. In this process, if, for example,

an FPGA has 3600 multiple makers, it can implement a neuron of 40 40. Internal memories can be used

to store the results of each layer along with the input and the weights. The researchers used external

memories for FPGAs with limited memories.

In Lin, et al. (2010), first, two algorithms were combined to achieve optimum process, save resources and

increase the speed, and then the combination was used to implement a multilayer perceptron network on

FPGA. Those algorithms are as following: using multiplication of the layers and parallelizing architecture.

According to the study, the layers continue to be processed in a parallel manner as opposed to the

conventional state and it is not required that the results of the previous layer must be present and then sent

to the next layer, rather, all the layers are involved simultaneously. When the layer n is calculated, the

layers n-1 and n-2 are also calculated. The next method was used, however, is multiplexing the layers; in

that, in each moment and one clock, only one layer is used according to the address of multiplex. The

results of this implementation showed that the suggested method with multiplexing the layers of a neural

network can reduce consumption of resources up to 30%.

In Murugan, Lakshmi, Sundar, and MathiVathani (2014), the implementation was carried out about xor

problem on Virtex chip. According to the researchers, the discussed method is based on the multilayer

perceptron network and using of the algorithm after diffusion, which can be used in immediate platforms

such as pattern recognition, image processing, sound processing, and so forth. It consists of three main

control units: after diffusion unit, pioneer unit, and the general unit, which controls two previous units.

The implemented network has three layers, the first one of them, as the gate of xor, has two entrances, the

hidden layer consisting of two neurons and the exit layer that has one neuron.

In Tiwari and Khare (2015), a pioneering network was implemented on the hardware platform of FPGA,

Virtex series 5 using two activating functions. The innovation of the paper involving implementation is

activating function using the algorithm of Coordinate Rotation Digital Computer. This algorithm becomes

converge to answer by using epochs. Two activating functions were implemented by using this algorithm:

sigmoid function and hyperbolic tangent function. Neurons and the relations between the layers were

implemented directly by using multiple makers. The hardware language was VHSIC Hardware

Description Language (VHDL), the implementation environment was Xilinx ISE and the simulator was

ISim. According to the paper, the proposed method can increase the accuracy of the output results and

even increases the speed of the process compared with other implementation methods.

In Amani (2013), an implementation method with a deductive assessment of resource and output speed

was developed to solve the problem of working with decimal marked numbers. The percentage of saving

resources and improving speed for one neuron was reported with LUT. Moreover, Amani (2013) tries to

find a general formula for a neuron with several inputs so that makes it easy to estimate approximately the

required resources and access speed for a multilayer neural network. This makes it possible for the

designer to indicate the capacity of FPGA for a specific application. Using the suggested method

810

involving the implementation of a neural network based on application, an example of the modulator of

the spatial vector was developed for controlled initialization with the vector.

3. IMPLEMENTATION OF DIFFERENT HAND GESTURES IN MATLAB

The neural network used in this work is a four-layer MLP network with a head and two classes, one of

which is for the gestures of hand and the other for the gestures of the face. Its order is 27-8-8-2, where 27

is the number of neurons of the input layer, the two hidden layers each with 8 neurons and 2 refers to two

output layers. The reason for choosing 8 neurons for each hidden layer is that it results in easier

implementation and less usage of resources compared with the cases with a higher number of neurons.

The mentioned method in Heidaryan and Farokhi (2015) was used in the network in the form of some

describing features such as Hu invariant moments and Fourier transform. Binary images consist of

different hand and face gestures that are used to learn the network. The reason that every gesture of hand

was not assigned to one class is due to the reduction of the parameters such as specificity, sensitivity, and

accuracy in the network depending on different classes (i.e. 5 classes for 5 different hand gestures).

Several networks for different gestures according to the features (single and two by two) were tested. The

number of neurons for the hidden layers in the network was 4 layers as 20-8-8-2 involving the feature of

Discrete Fourier Transform (DFT), 7-8-8-2 involving the feature of Hu invariant moments (Hu), and

finally, 27-8-8-2 involving the feature of DFT and Hu.

3.1. Invariant moments

Invariant moments are the most important descriptors of the region and are used in many studies on

pattern recognition. In recent years, this descriptor has been used widely to recognize different hand

gestures. These moments have properties including displacement-invariant, rotation, scale variation, and

even noise (Funatsu & Sasaki, 2018; Li et al., 2017). Of course, invariant moments are not powerful

descriptors by themselves; however, they can produce a powerful neural network in pattern recognition

due to the addition of other features. Apart from recognizing the gesture and shape of the images, invariant

moments can be used to recognition motions. The results show that using invariant moments accompanied

with other features leads to increased accuracy in the network (Premaratne, Ajaz, & Premaratne, 2013).

Rank moments (p+q) and central moments are defined as follows:

 𝑚𝑝𝑞 = ∑ ∑ 𝑦𝑥 𝑥𝑝. 𝑦𝑞. 𝑓(𝑥, 𝑦) (1)

 𝜇𝑝𝑞 = ∑ ∑ 𝑦𝑥 (𝑥 − �̅�)𝑝. (𝑦 − �̅�)𝑞. 𝑓(𝑥, 𝑦) (2)

Where:

�̅� =
m10

m00
 , �̅� =

m01

m00

Where, in binary images, 𝑚00 represents the area, and 𝑚01 and 𝑚10 represent the center of mass in the

image. 𝑓 (𝑥, 𝑦) shows being white or black about the pixel in a binary image and its value is 0 or 1, and x

and y are the coordinates of the related pixel. Normalized central moments (Equation 3) and (Equation 4)

will not change with the changes that occurred in the size of the scale image.

 ɳ
𝑝𝑞

=
𝜇𝑝𝑞

𝜇00
𝛾 (3)

𝛾 =
𝑝+𝑞

2
+ 1 (4)

811

Finally, constant moments are defined using normalized central moments. Since the moments of upper

ranks are usually sensitive to noise, only the moments up to the seventh rank are calculated as image

descriptors. The equation 5 to 8 are defined as follows:

 𝜑1 = ɳ20 + ɳ02 (5)

 𝜑2 = (ɳ20 − ɳ02)2 + 4ɳ
11

2 (6)

 𝜑3 = (ɳ30 − 3ɳ12)2 + (3ɳ
21

+ ɳ03)2 (7)

 𝜑4 = (ɳ30 + ɳ12)2 + (ɳ
21

+ ɳ03)2 (8)

3.2. 2-D Discrete Fourier transform (DFT)

Another feature used is the 2-D Discrete Fourier transform. DFT can be used to assess signals. If we

consider a digital image as a 2-D signal with limited and periodic length, then we can assess the frequency

content of the image by calculating the coefficients of transforming discrete Fourier and other related

coefficients (Jin, Min, Ng, & Zheng, 2019). The relations equations 9 and 10 show transforming 2-D

discrete Fourier in image 𝑀×𝑁.

𝐹(𝑘, 𝑙) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑚, 𝑛)𝑒

−𝑗2𝜋(
𝑘𝑚

𝑀
+

𝑙𝑛

𝑁
)
 𝑁−1

𝑛=0
𝑀−1
𝑚=0 (9)

 𝑓(𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝐹(𝑘, 𝑙)𝑒

𝑗2𝜋(
𝑘𝑚

𝑀
+

𝑙𝑛

𝑁
)
 𝑁−1

𝑙=0
𝑀−1
𝑘=0 (10)

where, 𝑓 (𝑚, 𝑛) shows the pixel is white or black in a binary image and its value is 0 or 1, so we have:

𝐾, 𝑚 = 0,1, … , 𝑀 − 1 and 𝑙, 𝑛 = 0,1, … , 𝑁 − 1 where initial 20 coefficients were used for the network.

It should be mentioned that a network is learned to recognize the color of skin, and is applied to the image.

Then the binary images containing hands and faces were used to train the network and finally they turned

into two matrixes of test and train. The binary images (white and black) are recalled containing only hands

and faces (in white) while the remainder of the images is in black. After indicating the features based on

the images and dividing them into two classes of hands and faces, two matrixes of test and train are

produced from these classes. In the matrix of a database, there are 27 columns, 20 of which are related to

the feature of Fourier transformation and, in fact, indicate 20 coefficients of transforming discrete Fourier.

The remaining seven are related to invariant moments. As a result, a total of 27 features means that the

number of our inputs or neurons is 27 and the last two columns (28 and 29) are the number of classes (1 to

2 for 2 classes).

4. THE RESULTS OF IMPLEMENTATION

According to equations 11 to 13, three parameters of specificity, sensitivity, and accuracy can be

calculated for each class.

 Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11)

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (12)

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (13)

The database matrix of the network has 27 columns of features and 600 lines as the number of samples. In

this paper, it is preferred to use the 60-40 method so that exactly 60% of the samples are assigned to the

training matrix and 40% to the test matrix. As it is seen, the learning rate is 0.01, which is suitable for

exiting the local minimum. The processing speed, however, is reduced and in fact, the progressing steps of

correcting steps became smaller. Two numbers of the middle or hidden layer along with one output and

input create four layers of the network. The network with four layers in its normal position and two hidden

layers in form 8-8 has 92.31 percent of total accuracy and 0.042 of total learning error. The main reason

812

for this increase is the very train and test matrixes and normalization applied in them. In fact, when data

settle between 0 and 1 and there is less variance and discreteness, the network learns accurately and the

results became better. In the following, the results and tables of the network with four layers are presented.

The average accuracy of every class is 92.31% in 12000 epochs, which is the desired value. The error

chart of the network with four layers was presented at the beginning of Figure 1. As it is seen, the network

in 12000 epochs has the average error of 2 10-7 (𝐸𝑎𝑣), where 𝐸𝑎𝑣 is the average error that is a very low

value. Table 1 shows the specifications of the MLP network with four layers in terms of structure and

applied properties. In this table, learning is sequential, namely, in each epoch; the weights are updated, as

opposed to batch learning. Table 2 shows the training error of each class along with the results of network

simulation and the parameters including accuracy, sensitivity, and specificity in each class. Table 2 shows

that the accuracy, sensitivity, and specificity of each class can be calculated by applying relations 11, 12,

and 13. TN, FP, FN, and TP were discussed in the previous section. It is worth noting that the error

presented in Table 2 is the error of testing a network with four layers, which differs from the training error

of the network with the value of 2 10-7. This chart is shown in Figure 1. In this chart, the quadrature

axis excess represents the number of epochs and the vertical axis shows the value of average error. Of two

curves, one is related to the hand and the other to face.

Figure 1. Chart of training error reduction for each of two classes in 1000 epochs for the network with four

layers

Figure 2. Bar chart of three parameters of accuracy, sensitivity, and specificity for the network with four

layers.

813

Table 1. The properties of used four-layer MLP network

5. FPGA IMPLEMENTATION

In this section, first, the theory of applied optimizations in the present implementation is explained and

then the hardware implementation will be discussed. The proposed method for implementation of the

MLP network of 27-8-8-2 include the following optimizations:

• Calculation parallelizing between the input links and hidden layer as well as neurons

• Using only binary systems of 0 and 1 as the value of the sigmoid function. In other words, one bit is used

for 0 and 1 respecting the value of a function, instead of two bits.

• Using shifters instead of direct multiplication. In other words, instead of multiplying directly inputs by

weights, a collector and shifter were used, which is very cheap and requires fewer resources.

• Producing open output in the form of a bit (0 and 1)

• Using a layer control for multiplexing the layers

In this case, several hidden layers are connected to a multiplexer, and the selected layer can be chosen and

used at a higher speed. Figures 4 and 5 show how multiplexers of the layers are used and figure 6 shows

how the layer control is connected to the neurons of middle layers as well as input and output of the block

of layer control. In this case, only one layer with its neurons is implemented and the values of the neurons

are displaced by a multiplexer. For example, assume that we have just one layer with 8 neurons, according

to Figure 3 extracted from the reference. First, the inputs of the first layer weights are calculated by

control block timing and the results are stored in the neuron named s0 Then the value of the neuron is

multiplied by the related weights by control block and multiplex and stored in the neuron named s1. The

process is continued until all the layers are calculated. When working on one layer finishes the results of

calculations are stored in a look-up table, which is connected to the layer control section. Then, the

calculation of the next layer starts. Thus, the network 27-8-2 is implemented, instead of network 27-8-8-8-

2, and in this way; the resources of FPGA can be significantly saved.

20-8-8-220-8-8-2 Number of neurons

27 Number of Features

12000 Number of Epoch

2 × 10−7 𝐸𝑎𝑣

92.31 % ACC𝑎𝑣

Full connection Connection

4 Number of layers

0.01 Learning rate

360 Train example

240 Test example

Sequential Learning Learning way

814

Table 2. The results of four-layer MLP network in MATLAB

5.1. The structure of the calculation unit

As mentioned before, in the proposed implementation, there is only one hidden layer that can be used by a

multiplexer, whenever it is needed. For example, any of the following 3 networks can be implemented

using this method; a network with a layer structure of 27-8-2, a network with a layer structure of 27-8-8-2,

and a network with a layer structure of 27-8-8-8-2. It continues like that only by one hidden layer with 8

neurons and one multiplexer one can implement other layers with any number of them. This is done in the

control unit; thus, it will be enough to develop only the relations between the layers of input-hidden-output

in the parallelized way. Figure 3 shows the structure of the network with perceptron multilayer using a

multiplexer.

Hu & DFT

92.31 % Accuracy Hand class

92.31 % Accuracy Face class

100 % Sensitivity Hand class

85.71 % Sensitivity Face class

85.71 % Specificity Hand class

100 % Specificity Face class

0 𝐹𝑁ℎ𝑎𝑛𝑑

10 𝐹𝑁𝑓𝑎𝑐𝑒

10 𝐹𝑃ℎ𝑎𝑛𝑑

0 𝐹𝑃𝑓𝑎𝑐𝑒

60 𝑇𝑁ℎ𝑎𝑛𝑑

60 𝑇𝑁𝑓𝑎𝑐𝑒

60 𝑇𝑃ℎ𝑎𝑛𝑑

60 𝑇𝑃𝑓𝑎𝑐𝑒

27 Number of Features

27-8-8-2 Number of neurons

12000 Number of epoch

2 × 10−7 𝐸𝑎𝑣

815

Figure 3. a) Structure of a conventional MLP network, b) Structure of MLP network with multiplexing of

hidden layers.

The links between two layers can be processed independently and in a parallelized way. Data between two

layers are transferred in series. It means that the next layer can have the data only when the previous layer

finishes its processing on them and delivers to the next layer. Considering this, not only the links between

input and middle layers but also output neurons take part in the parallelizing process. Thus, there would be

two kinds of calculation:

1- Parallelizing at neuron level: this kind of parallelizing means that, for example, all the output

neurons have access to the results once the neuron of the middle layer numbered one prepares

them.

2- Parallelizing in link level: this kind of parallelizing means that, for example, the calculations

of all the links between input neurons and the neuron of the middle layer numbered one will

be done independently. No multiplexer is needed to link between bias and the neuron of the

middle layer due to the bias logic was considered. The neuron in the middle layer can gain

given bias using LUT. This model was shown in figure 4. In the figure, the input layer with 27

neurons, the hidden layer in the multiplex form with 8 neurons, and the output layer with two

neurons were represented. Two discussed models of calculation along with multiplexing of

the middle layer were also presented in the figure. The links between input and middle layers

as well as output neurons take apart in the parallelizing process and the results of calculations

of the middle layer are returned to the units by the diffusion. Thus, all the conditions of

calculation can be assessed at the same time for the output neurons.

816

5.2. Hardware implementation of stimulating sigmoid function

Hardware implementation of stimulating sigmoid function is an important part of the hardware

implementation of neural networks. Since the function includes nonlinear mapping and the operators such

as power, sum, and division, it will take greater time and hardware resources if the implementation is

applied directly.

Figure 4. Structure of network implementation of 27-8-8-2 with parallelizing link and neuron and multiplex

of the hidden layer.

Thus, in this method, LUT was used to implement it. In this method, what should be considered in terms

of hardware implementation, is the value of the ROM unit and the complexity degree of time controlling

dealing with address giving by LUT. This method, which was developed by Srdjan Coric, was showed by

Equation 14 and 15:

 𝑎𝑖(𝑛𝑒𝑡) =
1

1+𝑒−𝑛𝑒𝑡 (14)

The equation of 14 can be changed as follows:

 𝑎𝑖(𝑛𝑒𝑡) =
255

1+𝑒
−𝑛𝑒𝑡

8

 (15)

Where net is a positive integral value. If a net is a negative integral value, the sigmoid integral value can

be applied by the following formula:

 𝐹(𝑛𝑒𝑡) = 255 + 𝐹(𝑛𝑒𝑡)∗ (16)

Where 𝑛𝑒𝑡 * = 2𝑁+ 𝑛𝑒𝑡 and N is the input length. In the Equation of 16, F (net)* can be calculated from

relation Equation of 15. The above terms show that although this method reduces the involved ROM units,

it is not flexible enough. Timing of address producing becomes complex and the cycle of processing of

calculation unit takes longer time due to multiple parallelizing. Investigating equation 15 shows that if the

input of the sigmoid function exceeds a particular amount, its output should be nearly 255. On the other

hand, if the input of the function is less than a particular amount, the output should be near zero. Thus, the

817

following steps are suggested to increase the efficiency of the hardware implementation of the sigmoid

function:

1- If the input of the function exceeds 127, its output should be considered 255 and similarly, if

the input of the function is less than -128, its output should be considered zero.

2- If the input is between -128 to 127, the output can be calculated by the following relation:

𝑎𝑖(𝑛𝑒𝑡) =
255

1 + 𝑒
−𝑛𝑒𝑡

24

These values are stored in LUT. While working with the neural network if the number 128 is added to the

input, it can produce easily the given address in LUT. The investigations show that the suggested method

is suitable for middle and output layers. Furthermore, networks that use this implementation method are

performance as much as the networks, which calculate the sigmoid function directly with float calculating

data.

 5.3. Implementation of links

Four RAMs were used to implement links, multiple the weights in the input, and bias the neurons: a RAM

related to the weights of links between input and middle layers, a RAM related to the values of middle

layer bias, a RAM related to the weights corresponding to the links between the neurons of middle and

output layers, and a RAM related to the values of output neurons bias. The number of neurons in the

middle layer is showed by N. Thus, RAM is placed in the calculation model of link in a way that the

values of weights of the links between the neurons and the number one neuron of the middle layer can be

placed in the zero address of the RAM. The other weights are placed in the same manner. Totally, N

address is required. After calculating the weight of links and the bias values on the learning phase by

MATLAB software, the results are placed in FPGA by using the rules mentioned above. All links of the

neural network are accessible by a sequential increase of the address. This was shown in figure 5. When

the address is zero, the operations shown on the left side of the figure should be performed. All links

presented by the arrow on the left side of the figure are to be covered. With increasing the address up to 1,

more links can be covered. These links were presented by the arrow on the right side. Thus, all the links of

the network can be accessible by increasing the address from zero up to N (N is the number of neurons in

the middle layer).

Figure 5. evaluating network links regarding memory address increase

818

5.4. Implementation Modules

Verilog language was used to implement the related modules. Each neuron has one module in each layer.

As an example, each neuron of the hidden and output layers has a separate module for itself. As discussed

before, for multiplication, the operations of shift and sum are used instead. This algorithm is used while

multiplying booth about which we will discuss in the next section. Four RAMs were used to maintain the

values of the weights and bias of neurons and in continue, we will discuss that. Finally, one module named

control unit, undertakes the task of controlling all of the modules and multiplexing the middle layers.

5.4.1. Booth multiplication

Given the optimizations presented in section 3, shift and sum existed in the algorithm of booth

multiplication, were used to multiply the weights in the inputs. The algorithm of booth multiplication

introduces a procedure for multiplying binary numbers in presenting the compliment with 2 marks. The

basis of the algorithm is that the strings of 0 in the multiplier have not to be summed, rather they need

only to be shifted displaced. The strings of 1 in multiplier, from bit order of 2k to 2m, can be considered as

2k+1 – 2m. Booth algorithm, like as all methods of multiplication, has to consider multiplier bits and shift

the product partially. Before shifting, the multiplier may be summed with or reduced from the partial

product or it may remain unchanged. Based on the discussed matters, to do calculating operations in each

neuron we need the implementation of multiplication. In this respect, the algorithm of booth multiplication

was used. Both inputs and weights are considered 4-bit and the result 16-bit.

5.4.2. The neuron of the middle layer

In the module of the middle layer, the inputs are considered 4 bits and since there are 27 inputs, we have a

total of 108 bits from zero to 107 all of which are assigned to the inputs and their corresponding weights.

The module of the neuron in the middle layer can be assumed as in figure 6. HZ_bus, start, clk are the

single-bit input signals for the starting clock of calculating operations, neurons of impedance (HZ), the

lines of exit bus belonged to the neuron, respectively. Weight_Mid is the 108 bits input from one line

address of RAM related to the weights of the links between the input and middle layers. These 108 bits are

the length of Weight_Mid. Input_Mid is the 108-bit input consisting of 27 input values any of which is 4-

bit. In the network implementation section of MATLAB software, it should be notice that the input value

cannot be higher than 16. Bias-Mid is the 16-bit input coming from the RAM relating to the bias of the

neurons in the middle layer and having the bias value corresponding to the related neuron. Output_Mid is

the 8-bit output of the neuron, which is given to the next layer and is considered from zero to 7. The

reason for it being 8 bits is that two 4-bit numbers are multiplied by each other and the result will be 8-bit.

5.4.3. The neuron of the output layer

The module of the neuron in the output layer can be imagined as Figure 7. The description of this module

is the same as that of the neuron in the middle layer with a difference. In this case, the values of the weight

of links and the bias of neurons result from the related RAMs. Moreover, Input_Out is an 8-bit input that,

in fact, is the very value of the 8-bit output of the neuron of the previous layer and relates to the module of

the middle layer.

819

Figure 6. The module of the neuron in the middle layer Figure 7. The module of the output neuron.

5.4.4. RAM of the weights corresponding to the links between the input and middle layers

The module of this RAM can be considered as figure 8. In this module, the input signal is used to give

initialization values to the memory. These values are placed in the memory as the network was trained in

MATLAB software. The 3-bit input of Add indicates the given address. 4 bits are assigned to each value

and there are 27weights (the number of inputs) and at the end, the 108-bit data of output contains the

weights. (It is also possible to use a doubled space with 256 bits for more neurons of the middle layer) the

module of next RAMs can be implemented similarly including the RAM related to the weights

corresponding to the links between middle and output layers, the RAM related to the bias corresponding to

the neurons of the output layer, and the RAM related to the bias corresponding to the neurons of the

output layer. The only difference is that their output data is different and based on applying so called

RAM that we avoid referring to it.

Figure 8. The RAM related to the weights corresponding to the links between middle and input layers

5.4.5. Control unit of neurons and layers

In fact, the control unit of neurons and layers has two important tasks to do. 1- Controlling neurons and

layers and allowing the modules to start and stop on the condition of reaching inputs to outputs. 2-

Controlling layers through multiplexing them. The module of the control unit can be considered as figure

9. This unit controls the start of calculating operations of the neurons in the middle layer by 8 output

signals start_Mid1 to start_Mid8. The output signal (initialization) activates the corresponding signal

located in the memories to give the initial values. 8 output signals of HZ_bus1 to HZ_bus8 have the

820

responsibility of managing the order of being impedance of output bus by the neurons of the middle

layers. The address lines of Address_Mid and Address_Out are to produce the proper address of the

memories containing the corresponding weights to the links. The signal of end_work indicates the end of

the network task. This unit receives an input named layer_number to control the layers. In fact, the input

indicates the number of hidden layers, which is changeable from 1 up to 3. The operations of control unit

should be repeated based on the number of the hidden layers, that is, if we have two hidden layers, to use

multiplexing the layers, the operations of the control unit should exactly be repeated twice, in that, we

have a layer with two timings, instead of two hardware layers. In figure 9, the number of layers was

applied as an input in the module.

5.4.6. The module of implementation neural network of 27-8-8-2

This network is implemented by the modules introduced in the previous section. What is noticeable about

this module is that a look-up table and multiplexer module were used. In fact, the task of a multiplexer is

to choose the output of the neurons in the middle layer in the look-up table. The output of the neurons in

the middle layer is stored in the look-up table. The multiplexer chooses the output of the neurons in the

middle layer depending on the number of hidden layers. As an example, if we have two hidden layers, the

results of the neurons in the middle layer are stored twice and the multiplexer chooses the results of the

neurons in the middle layer and then gives them as output to the neurons of the output layer. In continue,

the schematic of both networks was shown. Figure 10 shows the schematic of the 27-8-8-2 network along

with wiring and relation among the internal components.

Figure 9. The module of control unit.

6. SYNTHESIS AND SIMULATION

Two different types of hardware were used in this implementation. The differences can be compared in the

references. 1-Spartan 3 XC3S5000 5fg900 with limited resources. 2- Spartan 6 slx 100t with larger

resources. The synthesis was done by Xilinx Synthesis Tool (XST), existed in ISE software package, and

is used to both designing processes based on HDL or schematic. In this section, we discuss the simulation

of the 27-8-8-2 network after synthesizing. Before starting, it should be noted that simulation is done in

two steps. First after the synthesis to evaluate the accuracy of circuit function and second after place and

route phase to check the information of delay in the blocks along with the routes after routing and

821

evaluating accurately the behavior of the circuit under the worst conditions, and finally evaluating the

arrangement of the project after laying out and route location. simulation method that is discussed in this

section involves before locating and routing steps. From this section, all simulations are done by ISE

simulation tool of software package, namely Isim.

Figure10. Schematic of 27-8-8-2 network, wiring, and relation among its components

We need a test file to do the simulation. The test file consists of simulation information including the

values of inputs and circuit variables, total time of simulation, information of Clock, and so on. In this

implementation method, the implementation module of the sigmoid function uses only the Unisim library

and since Isim simulator compiles this library during application automatically (version higher than 10),

there is no need to compile it manually. 27 inputs have the values and one of the lines of values is the test

matrix in MATLAB software. The result of the network according to the values is in the form of 0 and 1

meaning that Output 1 is 1 and Output 2 is 0. The Reset signal has the value 1, at first; however, the

outputs remain unknown and become zero in 150 Nano seconds. Once they become zero the network

starts working. The circuit clock changes its position every 5 Nano seconds. The network needs 650 Nano

seconds altogether to reach its final value and after that, the outputs become stable. Figure 11 (a and b)

shows the results of Isim simulator (in this simulation, the inputs have 16 bits).

7. EVALUATION OF IMPLEMENTATION IN 27-8-8-2 NETWORK

This section provides a summary of reports about mapping, route, and implementation on Spartan 3

XC3S5000 5fg900, in the 27-8-8-2 network. First, a neural network was implemented without

multiplexing the layers and by using directly multiplication instead of the booth multiplication algorithm

The results of this process were presented in table 3. Then a 4-layer neural network was implemented with

multiplexing the layers and the optimizations discussed in the previous section. The results were compared

with those of the previous network in table 3. As seen in Table 3, using multiplexing of the layers prevents

822

resource waste significantly. In the last column, for all the resources, the lookup table involving the

hardware platform was optimized 24%. Considering this matter, complicated functions such as hyperbolic

tangent can be used in activating function, which brings about better results.

Figure 11. a) Simulation results of 27-8-8-2 network (network of recognizing hand) in time that Reset signal is 1.

(Red color indicates unknowingness of the outputs). b) In final time (the whole neurons are calculated and the output

become stable).

Optimized percent

Ordinary Neural 27-8-8-2 (The

previous work)

Optimized Neural 27-8-8-2 (The

proposed work)
Module Name

Utilization Available Used Utilization Available Used Logic Utilization

823

Table 3. Comparing the mapping results and route location in 27-8-8-2 network (network of hand detector) on

Spartan 3 XC3S5000 5fg900 by using directly multiplexing the layers and optimization.

8. CONCLUSIONES

In this paper, a method was developed to recognize hand on FPGA by using a neural network with a high

number of hidden layers in the form of a multiplex. The results show selecting the number of the neurons

and layers is important. In the optimizations applied on the suggested method, 71945 resources were used

in the FPGA platform which resulted in saving resource consumption about 37.7 %, compared to the

direct implementation (115482 resources).

REFERENCES

Amani, B. (2013). Neural Network implementation using FPGA. Paper presented at the

5thIranian Conference on Electrical and Electronic Engineering.

Dinu, A., & Cirstea, M. (2007). A digital neural network FPGA direct hardware implementation

algorithm. Paper presented at the 2007 IEEE International Symposium on Industrial Electronics.

Dinu, A., Cirstea, M. N., & Cirstea, S. E. (2009). Direct neural-network hardware-

implementation algorithm. IEEE Transactions on Industrial Electronics, 57(5), 1845-1848.

Domen, V., & Simon, B. (2012). Implementation of Massive Artificial Neural Networks with

Field-programmable Gate Arrays. IFAC Proceedings Volumes, 45(4), 133-138.

Funatsu, T., & Sasaki, N. (2018). Study of Measurement Method in Inter-Vehicle Distance Using

Hu Moment Invariants. Paper presented at the 2018 18th International Conference on Control,

Automation and Systems (ICCAS).

Govekar, D., & Amonkar, A. (2017). Design and implementation of high speed modified booth

multiplier using hybrid adder. Paper presented at the 2017 International Conference on

Computing Methodologies and Communication (ICCMC).

Heidaryan, M., & Farokhi, F. (2015). Robust hand gestures tracking method in cluttered

background based on multilayer perceptron. Paper presented at the 2015 5th International

Conference on Computer and Knowledge Engineering (ICCKE).

Optimized percent

Ordinary Neural 27-8-8-2 (The

previous work)

Optimized Neural 27-8-8-2 (The

proposed work)
Module Name

Utilization Available Used Utilization Available Used Logic Utilization

7% 19% 66560 12762 12% 66560 8260
Number of slice Flip

Flop

22% 57% 66560 38144 35% 66560 23296
Number of 4 Input

LUTs

24% 66% 33280 22279 42% 33280 14165
Number of occupied

Slices

24% 63% 66560 41940 39% 66560 26103
Total Number of 4

Input LUTs

37% 56% 633 357 19% 633 121
Number of bonded

IOBs

 Spartan3 XC3S5000 5fg900 Spartan3 XC3S5000 5fg900 Target Device

824

Jin, Z., Min, L., Ng, M. K., & Zheng, M. (2019). Image colorization by fusion of color transfers

based on DFT and variance features. Computers & Mathematics with Applications, 77(9), 2553-

2567.

Kirishima, T., Sato, K., & Chihara, K. (2005). Real-time gesture recognition by learning and

selective control of visual interest points. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(3), 351-364.

Lee, H., & Sobelman, G. E. (2003). Performance evaluation and optimal design for FPGA-based

digit-serial DSP functions. Computers & Electrical Engineering, 29(2), 357-377.

Li, X., Wang, X., Xie, D., Wang, X., Yang, A., & Rong, M. (2017). Time–frequency analysis of

PD-induced UHF signal in GIS and feature extraction using invariant moments. IET Science,

Measurement & Technology, 12(2), 169-175.

Lin, Z., Dong, Y., Li, Y., & Watanabe, T. (2010). A hybrid architecture for efficient FPGA-based

implementation of multilayer neural network. Paper presented at the 2010 IEEE Asia pacific

conference on circuits and systems.

Murugan, S., Lakshmi, K. P., Sundar, J., & MathiVathani, K. (2014). Design and Implementation

of Multilayer Perceptron with On-chip Learning in Virtex-E. AASRI Procedia, 6, 82-88.

Premaratne, P., Ajaz, S., & Premaratne, M. (2013). Hand gesture tracking and recognition system

using Lucas–Kanade algorithms for control of consumer electronics. Neurocomputing, 116, 242-

249.

Tiwari, V., & Khare, N. (2015). Hardware implementation of neural network with Sigmoidal

activation functions using CORDIC. Microprocessors and Microsystems, 39(6), 373-381.

Wasfy, W., & Zheng, H. (2012). General structure design for fast image processing algorithms

based upon FPGA DSP slice. Physics Procedia, 33, 690-697.

