
807 

 

 

 

 

An efficient FPGA implementation of hand gestures recognition based on 

neural networks 
  

Una eficiente implementación en FPGA del reconocimiento de gestos de mano 

basado en redes neurales 
 

 

Ali Abdolazimi1, Amir Sabbagh Molahosseini1,*, Farshid Keynia 2  
 

1 Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran. 
2 Department of Energy Management and Optimization, Institute of Science and High Technology and 

Environmental Sciences, Kerman, Iran. 

 
*
 amir@iauk.ac.ir 

 

 

(recibido/received: 12-enero-2021; aceptado/accepted: 08-abril-2021) 
 

 

ABSTRACT 
 

Different gestures of hand which is a powerful communication channel between man to man and/or man 

to machine transfers a large amount of information in our daily lives. For example, sign languages are 

widely used by individuals with speech handicaps. Recognizing hand gestures in the image can be 

considered a powerful parameter in man-to-machine communication. Although researchers have been 

trying to implement different hand gestures on several hardware platforms over the past years, their 

attempts have been confronted by many challenges including restricted resources of hardware platforms, 

noise factors in the environment, or insufficient accuracy of output in high numbers of experimental 

samples. In this work, an optimum and parallelized method is developed to implement recognition of 

different hand gestures in the image on FPGA. The introduced method uses an MLP network with high 

numbers of hidden layers without wasting resources of the hardware platform. The results comparing the 

proposed optimized method with the state-of-the-art methods show that the suggested method can be 

implemented on an FPGA platform with high output accuracy and lower resources. 

 

Keywords: MLP, FPGA implementation, Hand gestures recognition, Fourier transform, Neural network. 

 

RESUMEN 
 

Los diferentes gestos de la mano que es un poderoso canal de comunicación entre hombre a hombre y / o 

hombre a máquina, transfieren gran cantidad de información en nuestra vida diaria. Por ejemplo, los 

lenguajes de señas son ampliamente utilizados por personas con discapacidad del habla. El 

reconocimiento de los gestos de las manos en la imagen puede considerarse como un parámetro poderoso 

en la comunicación hombre-máquina. Aunque los investigadores han intentado implementar diferentes 

gestos con las manos en varias plataformas de hardware durante los últimos años, sus intentos se han 

enfrentado a muchos desafíos, incluidos los recursos restringidos de las plataformas de hardware, factores 
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de ruido en el entorno o una precisión insuficiente de la salida en un gran número de muestras 

experimentales. En este trabajo se desarrolla un método óptimo y paralelizado para implementar el 

reconocimiento de diferentes gestos con las manos en imagen en FPGA. El método introducido utiliza una 

red MLP con un gran número de capas ocultas sin desperdiciar recursos de la plataforma de hardware. Los 

resultados que comparan el método optimizado propuesto con los métodos de última generación muestran 

que el método sugerido se puede implementar en la plataforma FPGA con una alta precisión de salida y 

menos recursos. 

 

Palabras claves: MLP, Implementación FPGA, Reconocimiento de gestos con las manos, Transformada 

de Fourier, Red neuronal. 

 

1. INTRODUCTION 
 

Hand movements are a simple and natural way of interacting. Even, people who can speak, usually make 

use of many different movements to help their communications. Movements of hand can be used in a wide 

range of the current applied programs through movements (different sign languages) and applying objects 

in Virtual Environment (VE) as a way of an interacting man with the computer. To achieve a natural and 

comprehensive interaction between man and computer, a man’s hand can be used as a connecting device 

(Kirishima, Sato, & Chihara, 2005). From years ago, fast information processing was a matter of desire, 

and attempts were made to achieve it partially by developing suitable hardware and algorithms along with 

specific programming such as parallelized processing according to daily needs. The hardware, which is 

recently used practically due to technological developments, is Field-Programmable Gate Arrays 

(FPGAs). Nowadays, hardware can be provided with the help of one or more FPGAs accompanied by 

accessories that can perform algorithms with higher calculation load. In order to implement these 

algorithms, it requires transferring them in a parallelized way and then designing several processors by 

assembling the internal structure of FPGA and finally solving the problem in a parallel manner. One of 

these problems is the immediate processing of image and video signals, which includes the 

implementation of the algorithms of image processing. Hardware design techniques, such as parallelism 

and pipeline, can be developed on FPGA, which is not possible with a specific design of DSP (Lee & 

Sobelman, 2003; Wasfy & Zheng, 2012). 

 

During past years, many researchers implemented different hand gestures on images and a few of them 

implemented the gestures on hardware platforms such as FPGA. The implementation carried out in this 

paper differs from other one’s implementation MLP neural network on FPGA using hybrid architecture. 

Because neural networks should always wait to know the output value from the previous layer and this 

value moves in front to reach the exit. But in the suggested parallel architecture, all the layers can work in 

parallel form with a multiplexer in the control layer section, and the speed increases very much in this 

state. If we deal with other methods such as the direct implementation of a digital neural network on 

FPGA (Dinu & Cirstea, 2007; Dinu, Cirstea, & Cirstea, 2009) and compare it with the proposed method. 

We will notice that direct implementation consists of three steps: a digital mathematical model of the 

neural network, transforming the digital model into the level of the gate, and implementation of the gates 

which would be time-consuming with complex calculations and causes many resources to be used. 

 

But in the used method, parallelizing is performed in link level in the calculation unit between input - 

middle and middle – output. The sigmoid function is implemented in the form of hardware and a new 

method is suggested to keep the weights in the calculation unit, which can result in easy implementation 

of the neural network on the hardware. If more links can be calculated at the same time and the operation 

be performed on them, then the processing speed will be increased and more resources will be used. 

Furthermore, using shift and summation instead of multiplication (Govekar & Amonkar, 2017) and 

making binary the value of activation function (sigmoid function) are also among the other methods used 
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to reduce resources and the volume of calculations. The proposed method also utilizes a layer control for 

multiplexing the layers to save resources. 

 

2. RELATED WORK 

 
As mentioned before, in recent years, different implementations with specific objectives have been carried 

out generally from the neural network on FPGA. In this section, we have a brief look at the parallelized 

and optimized implementation that resulted in reduced usage of resources. In Domen and Simon (2012), a 

solution was suggested to implement high-volume networks with lots of layers. Multiple makers 

implement each neuron and nonlinear operations, such as activating functions of the network, which are 

nonlinear; are turned into linear blocks, and then blocks are implemented. In this process, if, for example, 

an FPGA has 3600 multiple makers, it can implement a neuron of 40  40. Internal memories can be used 

to store the results of each layer along with the input and the weights. The researchers used external 

memories for FPGAs with limited memories. 

 

In Lin, et al. (2010), first, two algorithms were combined to achieve optimum process, save resources and 

increase the speed, and then the combination was used to implement a multilayer perceptron network on 

FPGA. Those algorithms are as following: using multiplication of the layers and parallelizing architecture. 

According to the study, the layers continue to be processed in a parallel manner as opposed to the 

conventional state and it is not required that the results of the previous layer must be present and then sent 

to the next layer, rather, all the layers are involved simultaneously. When the layer n is calculated, the 

layers n-1 and n-2 are also calculated. The next method was used, however, is multiplexing the layers; in 

that, in each moment and one clock, only one layer is used according to the address of multiplex. The 

results of this implementation showed that the suggested method with multiplexing the layers of a neural 

network can reduce consumption of resources up to 30%. 

 

In Murugan, Lakshmi, Sundar, and MathiVathani (2014), the implementation was carried out about xor 

problem on Virtex chip. According to the researchers, the discussed method is based on the multilayer 

perceptron network and using of the algorithm after diffusion, which can be used in immediate platforms 

such as pattern recognition, image processing, sound processing, and so forth. It consists of three main 

control units: after diffusion unit, pioneer unit, and the general unit, which controls two previous units. 

The implemented network has three layers, the first one of them, as the gate of xor, has two entrances, the 

hidden layer consisting of two neurons and the exit layer that has one neuron. 

 

In Tiwari and Khare (2015), a pioneering network was implemented on the hardware platform of FPGA, 

Virtex series 5 using two activating functions. The innovation of the paper involving implementation is 

activating function using the algorithm of Coordinate Rotation Digital Computer. This algorithm becomes 

converge to answer by using epochs. Two activating functions were implemented by using this algorithm: 

sigmoid function and hyperbolic tangent function. Neurons and the relations between the layers were 

implemented directly by using multiple makers. The hardware language was VHSIC Hardware 

Description Language (VHDL), the implementation environment was Xilinx ISE and the simulator was 

ISim. According to the paper, the proposed method can increase the accuracy of the output results and 

even increases the speed of the process compared with other implementation methods.  

 

In Amani (2013), an implementation method with a deductive assessment of resource and output speed 

was developed to solve the problem of working with decimal marked numbers. The percentage of saving 

resources and improving speed for one neuron was reported with LUT. Moreover, Amani (2013) tries to 

find a general formula for a neuron with several inputs so that makes it easy to estimate approximately the 

required resources and access speed for a multilayer neural network. This makes it possible for the 

designer to indicate the capacity of FPGA for a specific application. Using the suggested method 
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involving the implementation of a neural network based on application, an example of the modulator of 

the spatial vector was developed for controlled initialization with the vector. 

3. IMPLEMENTATION OF DIFFERENT HAND GESTURES IN MATLAB 

The neural network used in this work is a four-layer MLP network with a head and two classes, one of 

which is for the gestures of hand and the other for the gestures of the face. Its order is 27-8-8-2, where 27 

is the number of neurons of the input layer, the two hidden layers each with 8 neurons and 2 refers to two 

output layers. The reason for choosing 8 neurons for each hidden layer is that it results in easier 

implementation and less usage of resources compared with the cases with a higher number of neurons. 

The mentioned method in Heidaryan and Farokhi (2015) was used in the network in the form of some 

describing features such as Hu invariant moments and Fourier transform. Binary images consist of 

different hand and face gestures that are used to learn the network. The reason that every gesture of hand 

was not assigned to one class is due to the reduction of the parameters such as specificity, sensitivity, and 

accuracy in the network depending on different classes (i.e. 5 classes for 5 different hand gestures). 

Several networks for different gestures according to the features (single and two by two) were tested. The 

number of neurons for the hidden layers in the network was 4 layers as 20-8-8-2 involving the feature of 

Discrete Fourier Transform (DFT), 7-8-8-2 involving the feature of Hu invariant moments (Hu), and 

finally, 27-8-8-2 involving the feature of DFT and Hu.  

 

3.1. Invariant moments 

Invariant moments are the most important descriptors of the region and are used in many studies on 

pattern recognition. In recent years, this descriptor has been used widely to recognize different hand 

gestures. These moments have properties including displacement-invariant, rotation, scale variation, and 

even noise (Funatsu & Sasaki, 2018; Li et al., 2017). Of course, invariant moments are not powerful 

descriptors by themselves; however, they can produce a powerful neural network in pattern recognition 

due to the addition of other features. Apart from recognizing the gesture and shape of the images, invariant 

moments can be used to recognition motions. The results show that using invariant moments accompanied 

with other features leads to increased accuracy in the network (Premaratne, Ajaz, & Premaratne, 2013). 

Rank moments (p+q) and central moments are defined as follows: 

 

      𝑚𝑝𝑞 = ∑  ∑  𝑦𝑥 𝑥𝑝. 𝑦𝑞. 𝑓(𝑥, 𝑦)                                                         (1)          

  𝜇𝑝𝑞 = ∑  ∑  𝑦𝑥 (𝑥 − �̅�)𝑝. (𝑦 − �̅�)𝑞. 𝑓(𝑥, 𝑦)                                             (2) 

 

Where:  

�̅� =
m10

m00
    ,   �̅� =

m01

m00
 

Where, in binary images, 𝑚00 represents the area, and 𝑚01 and 𝑚10 represent the center of mass in the 

image. 𝑓 (𝑥, 𝑦) shows being white or black about the pixel in a binary image and its value is 0 or 1, and x 

and y are the coordinates of the related pixel. Normalized central moments (Equation 3) and (Equation 4) 

will not change with the changes that occurred in the size of the scale image. 

 ɳ
𝑝𝑞

=
𝜇𝑝𝑞

𝜇00
𝛾                                                                                         (3) 

𝛾 =
𝑝+𝑞

2
+ 1                                                                                              (4) 
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Finally, constant moments are defined using normalized central moments. Since the moments of upper 

ranks are usually sensitive to noise, only the moments up to the seventh rank are calculated as image 

descriptors. The equation 5 to 8 are defined as follows: 

                                   𝜑1 = ɳ20 + ɳ02                                                                                         (5) 

                          𝜑2 = (ɳ20 − ɳ02)2 + 4ɳ
11

2                                                                    (6) 

                            𝜑3 = (ɳ30 − 3ɳ12)2 + (3ɳ
21

+ ɳ03)2                                                  (7) 

                      𝜑4 = (ɳ30 + ɳ12)2 + (ɳ
21

+ ɳ03)2                                                       (8) 

3.2.  2-D Discrete Fourier transform (DFT) 

Another feature used is the 2-D Discrete Fourier transform. DFT can be used to assess signals. If we 

consider a digital image as a 2-D signal with limited and periodic length, then we can assess the frequency 

content of the image by calculating the coefficients of transforming discrete Fourier and other related 

coefficients (Jin, Min, Ng, & Zheng, 2019). The relations equations 9 and 10 show transforming 2-D 

discrete Fourier in image 𝑀×𝑁. 

𝐹(𝑘, 𝑙) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑚, 𝑛)𝑒

−𝑗2𝜋(
𝑘𝑚

𝑀
+

𝑙𝑛

𝑁
)
                                                   𝑁−1

𝑛=0
𝑀−1
𝑚=0  (9) 

 𝑓(𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝐹(𝑘, 𝑙)𝑒

𝑗2𝜋(
𝑘𝑚

𝑀
+

𝑙𝑛

𝑁
)
                                                    𝑁−1

𝑙=0
𝑀−1
𝑘=0  (10) 

where, 𝑓 (𝑚, 𝑛) shows the pixel is white or black in a binary image and its value is 0 or 1, so we have: 

𝐾, 𝑚 = 0,1, … , 𝑀 − 1 and  𝑙, 𝑛 = 0,1, … , 𝑁 − 1  where initial 20 coefficients were used for the network. 

It should be mentioned that a network is learned to recognize the color of skin, and is applied to the image. 

Then the binary images containing hands and faces were used to train the network and finally they turned 

into two matrixes of test and train. The binary images (white and black) are recalled containing only hands 

and faces (in white) while the remainder of the images is in black. After indicating the features based on 

the images and dividing them into two classes of hands and faces, two matrixes of test and train are 

produced from these classes. In the matrix of a database, there are 27 columns, 20 of which are related to 

the feature of Fourier transformation and, in fact, indicate 20 coefficients of transforming discrete Fourier. 

The remaining seven are related to invariant moments. As a result, a total of 27 features means that the 

number of our inputs or neurons is 27 and the last two columns (28 and 29) are the number of classes (1 to 

2 for 2 classes). 

 

4. THE RESULTS OF IMPLEMENTATION 

According to equations 11 to 13, three parameters of specificity, sensitivity, and accuracy can be 

calculated for each class. 

  Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                              (11) 

   Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                              (12) 

        Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                    (13) 

The database matrix of the network has 27 columns of features and 600 lines as the number of samples. In 

this paper, it is preferred to use the 60-40 method so that exactly 60% of the samples are assigned to the 

training matrix and 40% to the test matrix. As it is seen, the learning rate is 0.01, which is suitable for 

exiting the local minimum. The processing speed, however, is reduced and in fact, the progressing steps of 

correcting steps became smaller. Two numbers of the middle or hidden layer along with one output and 

input create four layers of the network. The network with four layers in its normal position and two hidden 

layers in form 8-8 has 92.31 percent of total accuracy and 0.042 of total learning error. The main reason 
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for this increase is the very train and test matrixes and normalization applied in them. In fact, when data 

settle between 0 and 1 and there is less variance and discreteness, the network learns accurately and the 

results became better. In the following, the results and tables of the network with four layers are presented. 

The average accuracy of every class is 92.31% in 12000 epochs, which is the desired value. The error 

chart of the network with four layers was presented at the beginning of Figure 1. As it is seen, the network 

in 12000 epochs has the average error of 2  10-7 (𝐸𝑎𝑣), where 𝐸𝑎𝑣 is the average error that is a very low 

value. Table 1 shows the specifications of the MLP network with four layers in terms of structure and 

applied properties. In this table, learning is sequential, namely, in each epoch; the weights are updated, as 

opposed to batch learning. Table 2 shows the training error of each class along with the results of network 

simulation and the parameters including accuracy, sensitivity, and specificity in each class. Table 2 shows 

that the accuracy, sensitivity, and specificity of each class can be calculated by applying relations 11, 12, 

and 13. TN, FP, FN, and TP were discussed in the previous section. It is worth noting that the error 

presented in Table 2 is the error of testing a network with four layers, which differs from the training error 

of the network with the value of 2  10-7. This chart is shown in Figure 1. In this chart, the quadrature 

axis excess represents the number of epochs and the vertical axis shows the value of average error. Of two 

curves, one is related to the hand and the other to face. 

 

 

 

 

 

 

 

 

Figure 1. Chart of training error reduction for each of two classes in 1000 epochs for the network with four 

layers 

 

 

 

 

 

 

 

 

Figure 2. Bar chart of three parameters of accuracy, sensitivity, and specificity for the network with four 

layers. 
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Table 1. The properties of used four-layer MLP network 

 

 

 

 

 

 

 

 

 

 

5. FPGA IMPLEMENTATION 

 
In this section, first, the theory of applied optimizations in the present implementation is explained and 

then the hardware implementation will be discussed. The proposed method for implementation of the 

MLP network of 27-8-8-2 include the following optimizations: 

• Calculation parallelizing between the input links and hidden layer as well as neurons 

• Using only binary systems of 0 and 1 as the value of the sigmoid function. In other words, one bit is used 

for 0 and 1 respecting the value of a function, instead of two bits. 

• Using shifters instead of direct multiplication. In other words, instead of multiplying directly inputs by 

weights, a collector and shifter were used, which is very cheap and requires fewer resources. 

• Producing open output in the form of a bit (0 and 1)  

• Using a layer control for multiplexing the layers  

In this case, several hidden layers are connected to a multiplexer, and the selected layer can be chosen and 

used at a higher speed. Figures 4 and 5 show how multiplexers of the layers are used and figure 6 shows 

how the layer control is connected to the neurons of middle layers as well as input and output of the block 

of layer control. In this case, only one layer with its neurons is implemented and the values of the neurons 

are displaced by a multiplexer. For example, assume that we have just one layer with 8 neurons, according 

to Figure 3 extracted from the reference. First, the inputs of the first layer weights are calculated by 

control block timing and the results are stored in the neuron named s0 Then the value of the neuron is 

multiplied by the related weights by control block and multiplex and stored in the neuron named s1. The 

process is continued until all the layers are calculated. When working on one layer finishes the results of 

calculations are stored in a look-up table, which is connected to the layer control section. Then, the 

calculation of the next layer starts. Thus, the network 27-8-2 is implemented, instead of network 27-8-8-8-

2, and in this way; the resources of FPGA can be significantly saved. 

 

 

 

 

 

20-8-8-220-8-8-2               Number of neurons 

27 Number of Features 

12000 Number of Epoch 

2 × 10−7 𝐸𝑎𝑣 

92.31 % ACC𝑎𝑣 

Full connection Connection 

4 Number of layers 

0.01 Learning rate 

360 Train example 

240 Test example 

Sequential Learning Learning way 
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Table 2. The results of four-layer MLP network in MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. The structure of the calculation unit 

As mentioned before, in the proposed implementation, there is only one hidden layer that can be used by a 

multiplexer, whenever it is needed. For example, any of the following 3 networks can be implemented 

using this method; a network with a layer structure of 27-8-2, a network with a layer structure of 27-8-8-2, 

and a network with a layer structure of 27-8-8-8-2. It continues like that only by one hidden layer with 8 

neurons and one multiplexer one can implement other layers with any number of them. This is done in the 

control unit; thus, it will be enough to develop only the relations between the layers of input-hidden-output 

in the parallelized way. Figure 3 shows the structure of the network with perceptron multilayer using a 

multiplexer. 

Hu & DFT 

92.31 % Accuracy Hand class 

92.31 % Accuracy Face class 

100 % Sensitivity Hand class 

85.71 % Sensitivity Face class 

85.71 % Specificity Hand class 

100 % Specificity Face class 

0 𝐹𝑁ℎ𝑎𝑛𝑑  

10 𝐹𝑁𝑓𝑎𝑐𝑒  

10 𝐹𝑃ℎ𝑎𝑛𝑑  

0 𝐹𝑃𝑓𝑎𝑐𝑒  

60 𝑇𝑁ℎ𝑎𝑛𝑑  

60 𝑇𝑁𝑓𝑎𝑐𝑒  

60 𝑇𝑃ℎ𝑎𝑛𝑑  

60 𝑇𝑃𝑓𝑎𝑐𝑒  

27 Number of Features 

27-8-8-2 Number of neurons 

12000 Number of epoch 

2 × 10−7 𝐸𝑎𝑣 
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Figure 3. a) Structure of a conventional MLP network, b) Structure of MLP network with multiplexing of 

hidden layers. 

The links between two layers can be processed independently and in a parallelized way. Data between two 

layers are transferred in series. It means that the next layer can have the data only when the previous layer 

finishes its processing on them and delivers to the next layer. Considering this, not only the links between 

input and middle layers but also output neurons take part in the parallelizing process. Thus, there would be 

two kinds of calculation: 

1- Parallelizing at neuron level: this kind of parallelizing means that, for example, all the output 

neurons have access to the results once the neuron of the middle layer numbered one prepares 

them. 

2- Parallelizing in link level: this kind of parallelizing means that, for example, the calculations 

of all the links between input neurons and the neuron of the middle layer numbered one will 

be done independently. No multiplexer is needed to link between bias and the neuron of the 

middle layer due to the bias logic was considered. The neuron in the middle layer can gain 

given bias using LUT. This model was shown in figure 4. In the figure, the input layer with 27 

neurons, the hidden layer in the multiplex form with 8 neurons, and the output layer with two 

neurons were represented. Two discussed models of calculation along with multiplexing of 

the middle layer were also presented in the figure. The links between input and middle layers 

as well as output neurons take apart in the parallelizing process and the results of calculations 

of the middle layer are returned to the units by the diffusion. Thus, all the conditions of 

calculation can be assessed at the same time for the output neurons. 
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5.2. Hardware implementation of stimulating sigmoid function 

Hardware implementation of stimulating sigmoid function is an important part of the hardware 

implementation of neural networks. Since the function includes nonlinear mapping and the operators such 

as power, sum, and division, it will take greater time and hardware resources if the implementation is 

applied directly. 

 

Figure 4. Structure of network implementation of 27-8-8-2 with parallelizing link and neuron and multiplex 

of the hidden layer. 

 

Thus, in this method, LUT was used to implement it. In this method, what should be considered in terms 

of hardware implementation, is the value of the ROM unit and the complexity degree of time controlling 

dealing with address giving by LUT. This method, which was developed by Srdjan Coric, was showed by 

Equation 14 and 15: 

 𝑎𝑖(𝑛𝑒𝑡) =
1

1+𝑒−𝑛𝑒𝑡                                                                                  (14) 

The equation of 14 can be changed as follows: 

  𝑎𝑖(𝑛𝑒𝑡) =
255

1+𝑒
−𝑛𝑒𝑡

8

                                                                                 (15) 

Where net is a positive integral value. If a net is a negative integral value, the sigmoid integral value can 

be applied by the following formula: 

             𝐹(𝑛𝑒𝑡) = 255 + 𝐹(𝑛𝑒𝑡)∗                                                                (16) 

Where 𝑛𝑒𝑡 * = 2𝑁+ 𝑛𝑒𝑡 and N is the input length. In the Equation of 16, F (net)* can be calculated from 

relation Equation of 15. The above terms show that although this method reduces the involved ROM units, 

it is not flexible enough. Timing of address producing becomes complex and the cycle of processing of 

calculation unit takes longer time due to multiple parallelizing. Investigating equation 15 shows that if the 

input of the sigmoid function exceeds a particular amount, its output should be nearly 255. On the other 

hand, if the input of the function is less than a particular amount, the output should be near zero. Thus, the 
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following steps are suggested to increase the efficiency of the hardware implementation of the sigmoid 

function: 

1- If the input of the function exceeds 127, its output should be considered 255 and similarly, if 

the input of the function is less than -128, its output should be considered zero. 

2- If the input is between -128 to 127, the output can be calculated by the following relation: 

𝑎𝑖(𝑛𝑒𝑡) =
255

1 + 𝑒
−𝑛𝑒𝑡

24

 

These values are stored in LUT. While working with the neural network if the number 128 is added to the 

input, it can produce easily the given address in LUT. The investigations show that the suggested method 

is suitable for middle and output layers. Furthermore, networks that use this implementation method are 

performance as much as the networks, which calculate the sigmoid function directly with float calculating 

data. 

  5.3. Implementation of links   

Four RAMs were used to implement links, multiple the weights in the input, and bias the neurons: a RAM 

related to the weights of links between input and middle layers, a RAM related to the values of middle 

layer bias, a RAM related to the weights corresponding to the links between the neurons of middle and 

output layers, and a RAM related to the values of output neurons bias. The number of neurons in the 

middle layer is showed by N. Thus, RAM is placed in the calculation model of link in a way that the 

values of weights of the links between the neurons and the number one neuron of the middle layer can be 

placed in the zero address of the RAM. The other weights are placed in the same manner. Totally, N 

address is required. After calculating the weight of links and the bias values on the learning phase by 

MATLAB software, the results are placed in FPGA by using the rules mentioned above. All links of the 

neural network are accessible by a sequential increase of the address. This was shown in figure 5. When 

the address is zero, the operations shown on the left side of the figure should be performed. All links 

presented by the arrow on the left side of the figure are to be covered. With increasing the address up to 1, 

more links can be covered. These links were presented by the arrow on the right side. Thus, all the links of 

the network can be accessible by increasing the address from zero up to N (N is the number of neurons in 

the middle layer). 

Figure 5. evaluating network links regarding memory address increase 
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5.4. Implementation Modules 

Verilog language was used to implement the related modules. Each neuron has one module in each layer. 

As an example, each neuron of the hidden and output layers has a separate module for itself. As discussed 

before, for multiplication, the operations of shift and sum are used instead. This algorithm is used while 

multiplying booth about which we will discuss in the next section. Four RAMs were used to maintain the 

values of the weights and bias of neurons and in continue, we will discuss that. Finally, one module named 

control unit, undertakes the task of controlling all of the modules and multiplexing the middle layers. 

5.4.1. Booth multiplication 

Given the optimizations presented in section 3, shift and sum existed in the algorithm of booth 

multiplication, were used to multiply the weights in the inputs. The algorithm of booth multiplication 

introduces a procedure for multiplying binary numbers in presenting the compliment with 2 marks. The 

basis of the algorithm is that the strings of 0 in the multiplier have not to be summed, rather they need 

only to be shifted displaced. The strings of 1 in multiplier, from bit order of 2k to 2m, can be considered as 

2k+1 – 2m. Booth algorithm, like as all methods of multiplication, has to consider multiplier bits and shift 

the product partially. Before shifting, the multiplier may be summed with or reduced from the partial 

product or it may remain unchanged. Based on the discussed matters, to do calculating operations in each 

neuron we need the implementation of multiplication. In this respect, the algorithm of booth multiplication 

was used. Both inputs and weights are considered 4-bit and the result 16-bit. 

5.4.2.   The neuron of the middle layer 

In the module of the middle layer, the inputs are considered 4 bits and since there are 27 inputs, we have a 

total of 108 bits from zero to 107 all of which are assigned to the inputs and their corresponding weights. 

The module of the neuron in the middle layer can be assumed as in figure 6. HZ_bus, start, clk are the 

single-bit input signals for the starting clock of calculating operations, neurons of impedance (HZ), the 

lines of exit bus belonged to the neuron, respectively. Weight_Mid is the 108 bits input from one line 

address of RAM related to the weights of the links between the input and middle layers. These 108 bits are 

the length of Weight_Mid. Input_Mid is the 108-bit input consisting of 27 input values any of which is 4-

bit. In the network implementation section of MATLAB software, it should be notice that the input value 

cannot be higher than 16. Bias-Mid is the 16-bit input coming from the RAM relating to the bias of the 

neurons in the middle layer and having the bias value corresponding to the related neuron. Output_Mid is 

the 8-bit output of the neuron, which is given to the next layer and is considered from zero to 7. The 

reason for it being 8 bits is that two 4-bit numbers are multiplied by each other and the result will be 8-bit. 

5.4.3. The neuron of the output layer 

The module of the neuron in the output layer can be imagined as Figure 7. The description of this module 

is the same as that of the neuron in the middle layer with a difference. In this case, the values of the weight 

of links and the bias of neurons result from the related RAMs. Moreover, Input_Out is an 8-bit input that, 

in fact, is the very value of the 8-bit output of the neuron of the previous layer and relates to the module of 

the middle layer. 
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Figure 6. The module of the neuron in the middle layer                 Figure 7. The module of the output neuron. 

 

5.4.4. RAM of the weights corresponding to the links between the input and middle layers 

 

The module of this RAM can be considered as figure 8. In this module, the input signal is used to give 

initialization values to the memory. These values are placed in the memory as the network was trained in 

MATLAB software. The 3-bit input of Add indicates the given address. 4 bits are assigned to each value 

and there are 27weights (the number of inputs) and at the end, the 108-bit data of output contains the 

weights. (It is also possible to use a doubled space with 256 bits for more neurons of the middle layer) the 

module of next RAMs can be implemented similarly including the RAM related to the weights 

corresponding to the links between middle and output layers, the RAM related to the bias corresponding to 

the neurons of the output layer, and the RAM related to the bias corresponding to the neurons of the 

output layer. The only difference is that their output data is different and based on applying so called 

RAM that we avoid referring to it. 

 

 

 

 

 

 

 

Figure 8.  The RAM related to the weights corresponding to the links between middle and input layers 

 

5.4.5. Control unit of neurons and layers 

In fact, the control unit of neurons and layers has two important tasks to do. 1- Controlling neurons and 

layers and allowing the modules to start and stop on the condition of reaching inputs to outputs. 2- 

Controlling layers through multiplexing them. The module of the control unit can be considered as figure 

9. This unit controls the start of calculating operations of the neurons in the middle layer by 8 output 

signals start_Mid1 to start_Mid8. The output signal (initialization) activates the corresponding signal 

located in the memories to give the initial values. 8 output signals of HZ_bus1 to HZ_bus8 have the 
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responsibility of managing the order of being impedance of output bus by the neurons of the middle 

layers. The address lines of Address_Mid and Address_Out are to produce the proper address of the 

memories containing the corresponding weights to the links. The signal of end_work indicates the end of 

the network task. This unit receives an input named layer_number to control the layers. In fact, the input 

indicates the number of hidden layers, which is changeable from 1 up to 3. The operations of control unit 

should be repeated based on the number of the hidden layers, that is, if we have two hidden layers, to use 

multiplexing the layers, the operations of the control unit should exactly be repeated twice, in that, we 

have a layer with two timings, instead of two hardware layers. In figure 9, the number of layers was 

applied as an input in the module. 

5.4.6. The module of implementation neural network of 27-8-8-2 

This network is implemented by the modules introduced in the previous section. What is noticeable about 

this module is that a look-up table and multiplexer module were used. In fact, the task of a multiplexer is 

to choose the output of the neurons in the middle layer in the look-up table. The output of the neurons in 

the middle layer is stored in the look-up table. The multiplexer chooses the output of the neurons in the 

middle layer depending on the number of hidden layers. As an example, if we have two hidden layers, the 

results of the neurons in the middle layer are stored twice and the multiplexer chooses the results of the 

neurons in the middle layer and then gives them as output to the neurons of the output layer. In continue, 

the schematic of both networks was shown. Figure 10 shows the schematic of the 27-8-8-2 network along 

with wiring and relation among the internal components. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The module of control unit. 

 

6. SYNTHESIS AND SIMULATION 

Two different types of hardware were used in this implementation. The differences can be compared in the 

references. 1-Spartan 3 XC3S5000 5fg900 with limited resources. 2- Spartan 6 slx 100t with larger 

resources. The synthesis was done by Xilinx Synthesis Tool (XST), existed in ISE software package, and 

is used to both designing processes based on HDL or schematic. In this section, we discuss the simulation 

of the 27-8-8-2 network after synthesizing. Before starting, it should be noted that simulation is done in 

two steps. First after the synthesis to evaluate the accuracy of circuit function and second after place and 

route phase to check the information of delay in the blocks along with the routes after routing and 
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evaluating accurately the behavior of the circuit under the worst conditions, and finally evaluating the 

arrangement of the project after laying out and route location. simulation method that is discussed in this 

section involves before locating and routing steps. From this section, all simulations are done by ISE 

simulation tool of software package, namely Isim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure10. Schematic of 27-8-8-2 network, wiring, and relation among its components 

We need a test file to do the simulation. The test file consists of simulation information including the 

values of inputs and circuit variables, total time of simulation, information of Clock, and so on. In this 

implementation method, the implementation module of the sigmoid function uses only the Unisim library 

and since Isim simulator compiles this library during application automatically (version higher than 10), 

there is no need to compile it manually. 27 inputs have the values and one of the lines of values is the test 

matrix in MATLAB software. The result of the network according to the values is in the form of 0 and 1 

meaning that Output 1 is 1 and Output 2 is 0. The Reset signal has the value 1, at first; however, the 

outputs remain unknown and become zero in 150 Nano seconds. Once they become zero the network 

starts working. The circuit clock changes its position every 5 Nano seconds. The network needs 650 Nano 

seconds altogether to reach its final value and after that, the outputs become stable. Figure 11 (a and b) 

shows the results of Isim simulator (in this simulation, the inputs have 16 bits). 

7. EVALUATION OF IMPLEMENTATION IN 27-8-8-2 NETWORK 

 
This section provides a summary of reports about mapping, route, and implementation on Spartan 3 

XC3S5000 5fg900, in the 27-8-8-2 network. First, a neural network was implemented without 

multiplexing the layers and by using directly multiplication instead of the booth multiplication algorithm 

The results of this process were presented in table 3. Then a 4-layer neural network was implemented with 

multiplexing the layers and the optimizations discussed in the previous section. The results were compared 

with those of the previous network in table 3. As seen in Table 3, using multiplexing of the layers prevents 
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resource waste significantly. In the last column, for all the resources, the lookup table involving the 

hardware platform was optimized 24%. Considering this matter, complicated functions such as hyperbolic 

tangent can be used in activating function, which brings about better results. 

 

 

Figure 11. a) Simulation results of 27-8-8-2 network (network of recognizing hand) in time that Reset signal is 1. 

(Red color indicates unknowingness of the outputs). b) In final time (the whole neurons are calculated and the output 

become stable). 

 

 

 

 

 

 

 

Optimized percent 

Ordinary Neural 27-8-8-2 (The 

previous work) 

Optimized Neural 27-8-8-2 (The 

proposed work) 
Module Name 

Utilization Available Used Utilization Available Used Logic Utilization 



823 

Table 3. Comparing the mapping results and route location in 27-8-8-2 network (network of hand detector) on 

Spartan 3 XC3S5000 5fg900 by using directly multiplexing the layers and optimization. 

 

8. CONCLUSIONES 
 

In this paper, a method was developed to recognize hand on FPGA by using a neural network with a high 

number of hidden layers in the form of a multiplex. The results show selecting the number of the neurons 

and layers is important. In the optimizations applied on the suggested method, 71945 resources were used 

in the FPGA platform which resulted in saving resource consumption about 37.7 %, compared to the 

direct implementation (115482 resources). 
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