

UNIVERSIDAD NACIONAL DE INGENIERIA

Facultad de Tecnología de la Construcción

Monografía

"DISEÑO DE UN MINI ACUEDUCTO POR BOMBEO ELÉCTRICO (MABE) UBICADO EN LA COMUNIDAD DE SANTA BÁRBARA, MUNICIPIO DE SOMOTO DEPARTAMENTO DE MADRIZ"

Para optar al Titulo de Ingeniero Civil

Elaborado por:

Br. Lester Eduardo Cárdenas Gómez

Br. Fabricio David García Corrales

Br. Urías Josué Peralta López

Tutor:

Ing. Juan Leonardo Chow Zuníga

Managua, Junio. de 2021

DEDICATORIA

Primeramente, a Dios nuestro señor, por darnos la vida, sabiduría y la voluntad de seguir siempre adelante; por estar siempre cuidando de nuestras familias y de nosotros, por estar siempre en los momentos más felices y en los más oscuros e inciertos de nuestras vidas, gracias por no desampararnos.

Y muy especialmente a nuestros padres, Fabio Josué Garcia Lanuza, José Esteban Peralta Bellorin a nuestras madres Martha Gómez Gonzales, Martha Azucena Corrales Idiáquez, Agustina Rosario López Loza por siempre estar con nosotros, enseñarnos a crecer, apoyarnos incondicionalmente y guiarnos, por ser las bases que nos ayudaron alcanzar este sueño.

Lester Eduardo Cárdenas Gómez Fabricio David Garcia Corrales Urías Josué Peralta López

AGRADECIMIENTO

Agradecemos Infinitamente a Dios nuestro señor, por habernos dado la sabiduría, el conocimiento y sobre todo por la vida que nos prestó.

Agradecemos a nuestros padres y familiares por el apoyo que nos brindaron, por la confianza que depositaron en nosotros, por el amor que nos demostraron y sobre todo por sus consejos, ya que gracias a ellos fuimos guiados por un buen camino y pudimos alcanzar una de nuestra meta propuesta.

Agradecemos a personas que aun no siendo familiares con sus consejos nos ayudaron para nunca rendirnos y poder enfrentar los problemas que en muchas ocasiones tuvimos.

A la Alcaldía de Somoto por brindarnos apoyo y proveernos la información necesaria para la realización de este trabajo.

Un especial agradecimiento a nuestro tutor Ing. Juan Leonardo Chow Zúniga por su amable atención, apoyo y ayuda en todo momento; a los maestros del departamento de construcción por brindarnos sus conocimientos que con su paciencia y abnegación nos impartieron clase con el fin de ser personas capaces de desempeñarnos en el campo de la construcción.

Lester Eduardo Cárdenas Gómez Fabricio David Garcia Corrales Urías Josué Peralta López

Contenido

1.1	INTRODUCCION	2
1.2	ANTECEDENTES	3
1.3	JUSTIFICACION	4
1.4	OBJETIVOS	6
1.4.1	Objetivo general	6
1.4.2	Objetivos específicos	6
1.5	Descripción del área de estudio	7
1.5.1	Macro localización	7
1.5.2	Micro localización	8
II Ma	rco teórico	. 10
2.1	Estudio socioeconómico	. 10
2.2	Estudio topográfico	. 10
2.3	Fuentes de abastecimiento de agua	. 11
2.4	Aforo	. 11
2.5	Calidad de Agua	. 11
2.6	Mini acueducto por bombeo eléctrico (MABE)	. 12
2.7	Dotación	. 12
2.8	Caudales de diseño	. 13
2.9	Línea de conducción	. 13
2.10	Red de distribución	. 14
2.10.1	Red abierta	. 14
2.10.2	Red cerrada	. 14
2.10.3	Diseño de red de distribución	. 14
2.10.4	Método de Hardy Cross	. 14
2.10.5	Funciones de la red de distribución	. 15
2.11	Almacenamiento	. 15
2.12	Tipos de tanque	. 15
2.12.1	Tanque sobre el suelo	. 15

2.12.2	Tanques Elevados	. 15
2.12.3	Tipo Cisterna	. 16
2.13	Presupuesto	. 16
III Dis	eño metodológico	. 19
3.1	Tipo de estudio	. 19
3.2	Estudio Socioeconómico	. 19
3.3	Estudios topográficos	. 19
3.4	Aforo	. 20
3.5	Calidad de agua	. 21
3.6	Diseño hidráulico del sistema	. 21
3.6.1	Periodo de diseño	. 21
3.6.2	Población de diseño	. 21
3.6.3	Dotación	. 22
3.6.4	Consumo doméstico (CD)	. 22
3.6.5	Consumo comercial e institucional (CP)	. 22
3.6.6	Pérdidas y/o Fugas (P/F) en el sistema	. 22
3.6.7	Consumo promedio diario (CPD)	. 22
3.6.8	Variaciones de consumo	. 22
3.6.9	Estación de bombeo	. 23
3.6.10	Dimensionamiento del tanque de almacenamiento	. 26
3.6.11	Desinfección	. 26
3.6.12	Trazado de la red de distribución	. 26
3.6.13	Modelación hidráulica en EPANET	. 26
3.6.14	Criterios de diseño para la simulación en EPANET	. 27
3.7	Conexiones domiciliares	. 28
3.8	Presupuesto	. 28
IV Cá	lculos	. 30
4.1	Censo población	. 30

4.1.1	Población adicional	30
4.1.2	Población de santa bárbara	30
4.2	Población	31
4.2.1	Actividad económica	32
4.2.2	Tipos de trabajos	33
4.2.3	Economía	34
4.2.4	Educación	35
4.2.5	Salud	36
4.2.6	Situación habitacional	37
4.2.7	Servicios básicos y condición higiénica de la vivienda	38
4.2.8	Condición higiénica de la vivienda	39
4.2.9	Situación actual del abastecimiento de agua	40
4.2.10	Calidad de agua	41
4.2.11	Estado del camino hacia la fuente	42
4.2.12	Tratamiento de agua para consumo humano	43
4.3	Estudio topográfico	44
4.3.1	Etapa de campo	45
4.3.2	Etapa de gabinete	47
4.4	Aforo de la fuente de abastecimiento	47
4.4.1	Aforo del pozo	47
4.4.2	Prueba de calidad de agua	48
4.5	Diseño hidráulico del MABE	48
4.5.1	Parámetros de diseño adoptado	48
4.5.2	Población y demanda	49
4.5.3	Población de diseño	51
4.5.4	Dotación	51

4.5.5	Caudales de diseño	51
4.5.6	Caudal por fuga	53
4.5.7	Variaciones de consumo	53
4.5.8	Diseño de columna de bombeo, sarta y línea de conducción	53
4.5.9	Almacenamiento	73
4.5.10	Desinfección	75
4.5.11	Análisis hidráulico, simulación Epanet	78
4.6	Presupuesto1	09
V Co	nclusiones y recomendaciones1	11
5.1	Conclusiones1	11
5.2	Recomendaciones1	13
5.3	Bibliografía1	15

INDICE DE ILUSTRACIONES

Ilustración 1: Macro localización	7
Ilustración 2 Micro localización	8
Ilustración 3: Mapa de la comunidad santa bárbara	45
Ilustración 4: Esquema de Línea de conducción	62
Ilustración 5: Esquema de presión de golpe de ariete	70
Ilustración 6: Curva característica de la bomba	72
Ilustración 7:Linea de conducción por bombeo	79
Ilustración 8: Perfil de cabeza en línea de conducción por bombeo	81
Ilustración 9: Perfil de elevación en línea de conducción por bombeo	82
Ilustración 10: Perfil de presiones en línea de conducción por bombeo	83
Ilustración 11: Red A1,principal	85
Ilustración 12:Perfil de elevación en Red A1	87
Ilustración 13:Perfil de cabeza en Red A1, principal	88
Ilustración 14:Perfil de presión en Red A1, principal	89
Ilustración 15: Red secundaria, A-2	90
Ilustración 16: Perfil de elevación en Red A2	92
Ilustración 17: Perfil de cabeza en Red A2	93
Ilustración 18: Perfil de presión en Red A2	94
Ilustración 19: Red secundaria R A-3	95
Ilustración 20: Perfil de elevación en Red A3	96
Ilustración 21: Perfil de cabeza en Red A3	97
Ilustración 22: Perfil de presiones de la red secundaria Red A-3	98
Ilustración 23: Red secundaria R A-4	99
Ilustración 24:Perfil de elevación en Red A4	.100
Ilustración 25: Perfil de altura piezométrica res secundaria R A-4	.100

Ilustración 26: Perfil de presiones en Red A4	102
Ilustración 27:Distribución de presiones en red de distribución en la primera	
hora con demanda cero	103
Ilustración 28: Cloro residual en la segunda hora de operación	105
Ilustración 29: Cloro residual a las 16 horas de operación	106
Ilustración 30: Distribución del cloro residual en segunda hora de operación.	108
Ilustración 31: Distribución del cloro residual a las 16 horas de operación	109

INDICE DE TABLAS

Tabla 1: Población según se edad y sexo	. 31
Tabla 2: Datos generales	. 31
Tabla 3: Personas que trabajan en la familia	. 32
Tabla 4: Tipos de trabajo por familia	. 33
Tabla 5: Ingreso familiar por mes	. 34
Tabla 6: Distribución de la población por escolaridad	. 35
Tabla 7: Tipo de enfermedades	. 36
Tabla 8: Material predominante de la vivienda	. 37
Tabla 9: Servicios básicos	. 38
Tabla 10: Servicios sanitarios	. 39
Tabla 11: Tipo de fuente que se abastecen	. 40
Tabla 12: Calidad de agua según la fuente	. 41
Tabla 13: Estado del camino hacia la fuente	. 42
Tabla 14: Método de purificación que utilizan	. 43
Tabla 15: Zona del levantamiento y lista de planos	. 47
Tabla 16: Parámetros de diseño adoptado	. 49
Tabla 17: Censo poblacional 1995 - 2005	. 50
Tabla 18: Parámetros de diseño para columna de bombeo	. 54
Tabla 19: Lista de factor de perdidas locales "K"	. 58
Tabla 20: Diámetros de tubería AMANCO (especificaciones ASTM D2241)	. 64
Tabla 21: Valores para coeficiente "K" según Mendiluce	. 66
Tabla 22: Resultados por tuberías de la línea de conducción	. 80
Tabla 23: Resultados por nodo en la línea de conducción	. 83
Tabla 24: Caudales en nodos concentrados	. 84
Tabla 25: Resultados de tuberías en la Red A1	. 86

Tabla 26: Resultados por nodos de la red principal Red A-1	
Tabla 27: Resultados de las tuberías red secundaria Red A-2 91	
Tabla 28: Resultados de nodos en Red A2	
Tabla 29:Resultados por tuberías de la red secundaria Red A-3	
Tabla 30:Resultados de nodos en Red A3	
Tabla 31:Resultados de tuberías en Red A4100	
Tabla 32:Resultados por nodos red secundaria Red A-4102	
Tabla 33: Presiones hidrostáticas en la primera hora y a las 16 horas104	
Tabla 34: Cloro residual a las 2 y 16 horas107	
Tabla 35: Levantamiento topográficoCX	
Tabla 36: Derrotero de predio de casetaCXIX	
Tabla 37: Derrotero de tanque de almacenamiento	
Tabla 38: Parámetros bacteriológico (a)CVII	
Tabla 39: Parámetros físico - químicosCVII	
Tabla 40: Resultado de metales pesado de la muestra de agua de la fuente	
Tabla 41: Resultado de estudio fisicoquímico de la muestra de agua de la	
fuente	
Tabla 42: Resultado de estudio bacteriológico de la muestra de agua de la fuente	
Tabla 43: Caudales de diseño 2020/2040CXI	
Tabla 44: Presupuesto del proyectoCXIII	

INDICE DE GRAFICOS

Grafico 1: Datos generales	31
Grafico 2: Personas que trabajan en la familia	33
Grafico 3: Tipos de trabajo por familia	34
Grafico 4: Ingreso familiar por mesiError! Marcador n	o definido.
Grafico 5: Distribución de familia por escolaridad ¡Error! Marcador n	o definido.
Grafico 6: Tipos de enfermedades	37
Grafico 7: Material predominante de la vivienda	38
Grafico 8: Servicios básicos	39
Grafico 9: Servicios sanitarios	40
Grafico 10: Tipo de fuente que se abastecen¡Error! Marcador n	o definido.
Grafico 11: Calidad de agua según la fuente	42
Grafico 12: Estado del camino hacia la fuente	43
Grafico 13: Método de purificación del agua	44

INDICE DE ECUACIONES

Ecuación 1: Método geométrico	51
Ecuación 2: Consumo doméstico (CD)	52
Ecuación 3: Consumo público o institucional (CP)	52
Ecuación 4: Consumo promedio diario (población)	52
Ecuación 5: Perdidas y/o fugas (P/F)	53
Ecuación 6: Consumo máximo día (CMD)	53
Ecuación 7: Consumo máximo horario (CMH)	53
Ecuación 8: Nivel más bajo del agua durante el bombeo (NB)	54
Ecuación 9: Longitud de la columna de bombeo (Lc)	55
Ecuación 10: Perdida de fricción en la columna de bombeo	55
Ecuación 11: Perdida de criterio (5%)	56
Ecuación 12: Velocidad promedio del fluido (Sarta)	57
Ecuación 13: Perdida local (Sarta)	57
Ecuación 14: Perdida de caga total (Sarta)	58
Ecuación 15: Diámetro teórico (Línea de conducción)	59
Ecuación 16: Carga estática de la descarga (CED)	61
Ecuación 17: Carga dinámica total (CTD)	61
Ecuación 18: Constante de tubería (Golpe de ariete)	63
Ecuación 19: Celeridad (Golpe de ariete)	64
Ecuación 20: Tiempo de ciclo de onda de precisión (Golpe de ariete)	65
Ecuación 21: Pendiente hidráulica (Golpe de ariete)	65
Ecuación 22: Tiempo de parada del agua (Golpe de ariete)	66
Ecuación 23: Condición de cierre lento (Golpe de ariete)	67
Ecuación 24; Condición de cierre rápido (Golpe de ariete)	67
Ecuación 25: Tramo de máxima de presión (Golpe de ariete)	67

Ecuación 26: S	Sobre presión por golpe de ariete	68
Ecuación 27: F	Presión máxima (Golpe de ariete)	69
Ecuación 28: F	Potencia de la bomba (HP)	71
Ecuación 29: \	Volumen compensador (Dimensionamiento)	74
Ecuación 30: \	Volumen de reserva (Dimensionamiento)	74
Ecuación 31: \	Volumen total (Dimensionamiento)	74
Ecuación 32: 0	Capacidad unitaria (Dosificación)	76
Ecuación 33: 0	Capacidad unitaria del proyecto (Dosificación)	76
Ecuación 34: \	Volumen Bombeado (Dosificación)	76
Ecuación 35: [Dosis de cloro (Dosificación)	76
Ecuación 36: 0	Capacidad de diseño de la estación de cloración (Dosificación)	77
Ecuación 37: \	Volumen de cloro comercial (Dosificación)	77
Ecuación 38: \	Volumen de agua limpia (Dosificación)	77
Ecuación 39: A	Aplicación de cloro (Dosificación)	78

Generalidades

I. GENERALIDADES

1.1 INTRODUCCION

El Pueblo indígena de Santa Bárbara está ubicado a 10 km de la parte sureste del Municipio de Somoto, su extensión territorial rural es de 2,700 manzanas en la zona seca de difícil acceso. Esta comunidad tiene una población de 349 habitantes, con raíces chorotegas. Cultivan maíz y frijol, su territorio está conformado por cuatro comunidades indígenas: Matasano, Valle la pita, El Plan Santa Bárbara.

Las cuatro comunidades tienen una junta directiva electa en asamblea general cuya función es la resolución de conflictos a lo interno de la comunidad, aunque no tienen incidencia a nivel del municipio, ni comparten proceso de intercambio entre los pueblos chorotegas del Departamento de Madriz.

En el año 1996 la comunidad pareció de varios inconvenientes en la calidad de agua, actualmente se abastecen de 4 pozos, dos de ellos son artesanales que no están en condiciones para consumo humano y los otros dos pozos está situados a 800 metros de la comunidad.

Por tanto, para asegurar el acceso al agua de los pobladores de la comunidad, se propone el diseño de un Sistema de Mini Acueducto por Bombeo Eléctrico (M.A.B.E), siguiendo los criterios de diseño y normas obligatorias de INAA. Esta acción contribuirá al mejoramiento de las condiciones de vida en general y en particular las condiciones de salud.

1.2 ANTECEDENTES

En Nicaragua el sistema hidrográfico descansa en una rica red de aguas superficiales que está constituido por 21 cuencas hidrográficas, de las cuales 13 drenan hacia la vertiente del Atlántico y 8 hacia la vertiente del Pacífico. En el país, se suministra anualmente a la población alrededor de 220 millones de metros cúbicos, de ellos el 82 % son de origen subterráneo y el 18% provienen de otros tipos de fuentes. En general se tiene una alta disponibilidad de agua por habitante (38 mil 668m³ per cápita), sin embargo, la calidad de los recursos hídricos ha sido afectada en todo el territorio y especialmente en las zonas urbanas (Organizacion Mundial de la Salud, 2015).

En el año 2011 los pobladores de la ciudad de Somoto presentaron muchas quejas por la falta o mala calidad del servicio de agua potable, este problema se dio en 25 barrios. Así mismo la escasez de agua potable no solamente fue en el casco urbano, sino también en las comunidades, como en Cacauli, San Luis, Los Hermanos Martínez, La Carbonera y Santa Bárbara, entre otros (Aragon, 2020)

Por lo anterior la comunidad indígena de Santa Bárbara, tiene una urgente necesidad de agua potable. En años anteriores la comunidad contaba con un pozo artesanal que abastecía al menos a 200 personas, pero con el transcurso de los años el caudal del pozo fue insuficiente debido al incremento de la población y a las frecuentes sequías en las épocas de verano.

Según funcionarios de la Alcaldía Municipal de Somoto, en el año 2007 el pozo se secó y la población tuvo que consumir aguas contaminadas de una quebrada que pasa cerca de sus hogares, causando múltiples enfermedades como diarrea, cólera, parásitos intestinales, entre otros.

Por tanto, los pobladores indígenas demandan un sistema de agua potable, debido a que nunca han tenido un servicio que cumpla con las condiciones higiénicas requeridas según las normas nacionales.

Actualmente los habitantes de comunidad se abastecen de agua por medio de cisternas que la Alcaldía y los Bomberos de Somoto, entregan a las familias en cantidades menores para sus necesidades más básicas.

1.3 JUSTIFICACION

En la revista publicado por el Instituto de Investigación y Desarrollo (Nitlapan UCA), Nicaragua tiene alrededor de 85 ríos, 47 lagunas, 2 lagos y 21 cuencas por lo que uno podría pensar que existen suficientes reservas de agua dulce como para no padecer nunca por falta de ella. Sin embargo, el sistema de servicio de agua potable sigue siendo una necesidad básica insatisfecha para muchos nicaragüenses, especialmente para sectores rurales del país (Instituto de Investigacion y Desarrollo - Nitlapan, 2007).

Una de estas comunidades es Santa Bárbara del municipio de Somoto, cuya falta del servicio de agua potable es catalogada como un indicador de extrema pobreza. Por otro lado, el Consejo Regional Pacífico Centro Norte (CRPIPCN), señaló que ha aumentado la incidencia de enfermedades de origen hídrico principalmente diarrea, que aparece con mayor frecuencia en temporada de invierno. Además, hay presencia de enfermedades parasitarias debido al consumo de agua contaminada y hábitos higiénicos sanitarios no adecuados en las viviendas.

También se debe mencionar el esfuerzo y deterioro físico de las familias, principalmente en el sexo femenino y niños debido al acarreo de los recipientes de agua hasta su hogar.

Por tanto, el diseño y posterior construcción de un Mini Acueducto por Bombeo (MABE) contribuirá a mejorar el nivel de vida de los habitantes mediante el acceso a los servicios agua potable de calidad, basado en la norma, reduciendo de esta manera las enfermedades de origen hídricos.

Es evidente el interés de los habitantes de la comunidad de santa bárbara para acceder al servicio de agua potable ya que es uno de los problemas más sentidos de la misma.

De acuerdo a la nueva versión del documento "Estrategia Reforzada de Crecimiento Económico y Reducción de Pobreza (ERCERP)" dos de cada tres personas en las áreas rurales son pobres, en comparación con una de cada tres en las áreas urbanas, para evitar esta pobreza será necesario mejorar la seguridad y la sostenibilidad ya que implica garantizar el acceso a viviendas seguras y asequibles, así mismo la Alcandía Municipal de Somoto pretende

realizar inversiones en transporte público, crear áreas públicas verdes y mejorar los servicios de agua potable de una manera que sea participativa e inclusiva.

1.4 OBJETIVOS

1.4.1 Objetivo general

Diseñar un sistema de mini acueducto por bombeo eléctrico (MABE) en la comunidad de Santa Bárbara situado en el municipio de Somoto, departamento de Madriz.

1.4.2 Objetivos específicos

- ✓ Conocer las características socioeconómicas y demanda de servicios de agua potable en la comunidad de Santa Bárbara.
- ✓ Realizar un estudio topográfico del sitio para conocer las características del relieve de los puntos de interés, para su utilización en el diseño del sistema de agua potable (MABE) de la comunidad.
- ✓ Realizar aforo de la fuente y conocer la calidad de agua de la misma, para su aprovechamiento en un sistema de agua potable (MABE).
- ✓ Diseñar los componentes del MABE, columna de bombeo, sarta, línea de conducción, tanque de almacenamiento, red de distribución y conexiones domiciliares.
- ✓ Elaborar el presupuesto del MABE, para que la alcaldía municipal de Somoto gestione los fondos para su financiamiento y ejecución.

1.5 Descripción del área de estudio

1.5.1 Macro localización

El municipio de Somoto se localiza a unos 218.3 km de la ciudad de Managua departamento de Managua capital de Nicaragua, ubicada en las coordenadas geográficas en la latitud 13°28'51" N y 86°55'0" W (Ilustración 1).

Ilustración 1: Macro localización

Fuente: Software QGIS

1.5.2 Micro localización

La comunidad de santa Bárbara se localiza a 10 km del municipio de Somoto departamento de Madriz, ubicadas en las coordenadas geográficas 13°27"15' N 86°31"56" W (Ilustración 2).

Ilustración 2 Micro localización

Fuente: Software QGIS

Marco teórico

Il Marco teórico

Los estudios esenciales para realizar el diseño de un sistema de abastecimiento de agua potable, comprenden el conocimientos previos del sitio donde se va efectuar el sistema, así mismo los estudios topográficos, hidrológicos, sanitarios, obras existentes y estudios misceláneos, que permitirán una serie de criterios que servirán de guía para obtener un diseño sin complejidades (INAA, 1998).

2.1 Estudio socioeconómico

El estudio socioeconómico es el medio mediante el cual se puede conocer la capacidad de pago de la población, proyección de esta, importancia y necesidad de los sectores sociales de la localidad.

De acuerdo con la Dirección de Gestión de Procesos (2016), el censo poblacional es la principal herramienta para la elaboración del estudio socioeconómico, la cual comprende tres aspectos principales para la recolección de información: diseño de ficha socioeconómica, levantamiento de datos, el procesamiento y elaboración de una base de datos (Instituto Tecnológico Oaxaca, 2001).

2.2 Estudio topográfico

Es la ciencia que estudia el conjunto de principios y procedimientos que tienen por objeto la representación gráfica de la superficie de la tierra, con sus formas y detalles, tanto naturales como artificiales (planimetría y altimetría). De "Topos" que significa lugar, y de "Grafos", descripción. Esta representación tiene lugar sobre superficies planas limitándose a pequeñas extensiones de terreno, utilizando la denominación de geodesia para áreas mayores. De manera muy simple, se puede decir que para un topógrafo la tierra es plana, mientras que para un geodesta no lo es (Corea y Asociados S.A, 2008).

Según INAA (1998), una vez que el área perimetral de la población y preseleccionados los sitios convenientes para estaciones de bombeo, planta de tratamiento y lugar para descarga de las aguas residuales, se procederá a efectuar los levantamientos topográficos de conjunto. Básicamente, estos levantamientos deben dar una perfecta idea de conjunto y tener detalles suficientes para una ejecución posterior bien ubicada. Se deberá utilizar como punto de partida de cualquier levantamiento topográfico a realizar, la Red

Geodésica Nacional, tanto en el levantamiento planimétrico como altimétrico y deberá cumplir con las recomendaciones que al respecto indique el INETER.

2.3 Fuentes de abastecimiento de agua

Las fuentes de abastecimiento para el suministro de agua potable, constituyen el elemento más importante del todo el sistema, por lo tanto, debemos estar lo suficientemente protegida y debe cumplir dos propósitos fundamentales: suministrar agua en cantidad suficiente para abastecer la demanda de la población y mantener la condición de calidad necesarias para garantizar la potabilidad (INAA, 1999b).

2.4 Aforo

Según la Asociación Servicios Educativos Rurales (2008), es necesario medir la cantidad de agua de las fuentes, para saber la cantidad de población para la que puede alcanzar. El aforo es la operación de medición del volumen de agua en un tiempo determinado. Esto es, el caudal que pasa por una sección de un curso de agua.

El valor del caudal mínimo debe ser mayor que el consumo máximo diario con la finalidad de cubrir la demanda de agua de la población futura. Lo ideal sería que los aforos se efectúen en las temporadas críticas de los meses de estiaje (los meses secos) y de lluvias, para conocer caudales mínimos y máximos (INAA, 1999b).

2.5 Calidad de Agua

Según la norma INAA, (2000), establece los parámetros para determinar los niveles de calidad exigibles de los cuerpos de agua (lagos, lagunas, lagos artificiales manantiales, ríos, aguas subterráneas, estuarios y mares), de acuerdo con los usos a los cuales se destinen.

Las aguas destinadas al uso doméstico y al uso industrial que requiera de agua potable, siempre que esta forme parte de un producto o sub-producto destinado al consumo humano o que entre en contacto con él. Las aguas de este tipo se desagregan en dos categorías:

✓ Categoría 1: las aguas que desde el punto de vista sanitario pueden ser acondicionadas sola adicción de desinfección. ✓ Categoría 2: las aguas pueden ser acondicionadas por medio de tratamientos convencionales de coagulación, floculación, sedimentación y/o coloración.

2.6 Mini acueducto por bombeo eléctrico (MABE)

Según INAA (1999b), esta opción mini acueducto por bombeo eléctrico será considerado solo en los casos en que exista:

- ✓ Disponibilidad de fuente de abastecimiento.
- ✓ Disponibilidad de energía eléctrica.
- ✓ Capacidad de pago de la comunidad.

Si no existe otra opción técnica y económicamente más aceptable entonces se realizará la perforación de uno o más pozos. Los criterios de aceptación del pozo serán los siguientes:

- ✓ El caudal de explotación será obtenido a través de una prueba de bombeo de un mínimo de 24 horas a caudal constante y de una prueba a caudal variable con mínimo de cuatro etapas de una hora cada una. La recomendación del caudal máximo de explotación se hará de acuerdo al análisis de la prueba.
- ✓ El caudal de explotación de bombeo estará en función de un período de bombeo mínimo de 12 horas y un máximo de 16 horas.
- ✓ El caudal máximo recomendado de la explotación de un pozo deberá ser igual o superior a 1.5 del consumo día promedio (QDP).
- ✓ Disposición de la comunidad para operar y mantener el sistema

2.7 Dotación

La dotación para zonas urbanas se expresa como la cantidad de agua por persona por día, esta depende de: Nivel de servicio adoptado, factores geográficos, factores culturales, uso del agua. Las cantidades de dotaciones para sistemas de agua potable se representan en la sección 3.1 de la norma (INAA, 1999b).

2.8 Caudales de diseño

Es la base para realizar el diseño de la línea de conducción y el diseño de la red de agua potable según se detalla en la norma (INAA, 1999b).

Los caudales de diseño dependen de las dotaciones y variaciones de Consumo, estas últimas estarán expresadas como factores de la demanda promedio diario, y sirven de base para el dimensionamiento de la capacidad de: obras de captación, línea de conducción y red de distribución (INAA, 1999b).

Estos valores son los siguientes:

- ✓ Consumo máximo día (CMD)= 1.5 CPD (Consumo promedio diario)
- ✓ Consumo máximo hora (CMH)= 2.5 CPD (Consumo promedio diario)

2.9 Línea de conducción

La línea de conducción es el conjunto de ductos, obras de arte y accesorios destinados a transportar el agua procedente de la fuente de abastecimiento, desde el lugar de la captación, hasta un punto que bien puede ser un tanque de regulación, una planta potabilizadora, o la red de distribución (INAA, 1999, pág. 52).

La línea de conducción por bombeo eléctrico es un método empleado en casos donde la topografía del terreno no presta las condiciones requeridas para que la conducción del agua sea por gravedad, por lo tanto la implementación de un sistema de bombeo eléctrico es la alternativa más viable para el transporte del agua hasta el tanque de almacenamiento (INAA, 1999b).

Para el cálculo hidráulico, la pérdida por fricción se usará de la fórmula de Hazen William u otra similar y para determinar el mejor diámetro (más económico) puede aplicarse una fórmula similar a la de Bresse. Se dimensionará para la condición del consumo de máximo día al final del período de diseño, el cual se estima en 1.5 del consumo promedio (CMD=1.5 CP, más las pérdidas). La tubería de descarga deberá ser seleccionada para resistir las presiones altas, y deberán ser protegidas contra el golpe de ariete instalando válvulas aliviadoras de presión en las vecindades de las descargas de las bombas (INAA, 1999b).

2.10 Red de distribución

La red de distribución es el conjunto de tuberías de diferentes diámetros, válvulas, grifos y demás accesorios cuyo origen está en el punto de entrada al pueblo (final de la línea de aducción) y que se desarrolla por todas las calles de la población (Pittman, 1997, pág. 93).

2.10.1 Red abierta

Red abierta o redes arborescentes; sin ningún circuito cerrado o, dicho de otro modo donde el agua tan solo puede circular en un único sentido (Villá, Campalans, Bartolí, Oliete Josa, & Pérez-Foguet, 2005, pág. 80)

2.10.2 Red cerrada

En este sistema las tuberías se interconectan formando mallas, esta variante elimina los puntos muertos y se vuelve un sistema de servicio más eficiente y permanente (pittman, 1997).

2.10.3 Diseño de red de distribución

Para el diseño de la red de distribución la norma INAA (1999b) establece al menos tres aspectos a considerar:

- ✓ Se deberá diseñar para la condición del consumo de hora máxima al final del período de diseño, el cual resulta al aplicar el factor de 2.5 al consumo promedio diario (CHM = 2.5 CPD, más las pérdidas).
- ✓ El sistema de distribución puede ser de red abierta, de malla cerrada o una combinación de ambos.
- ✓ La red se deberá proveer de válvulas, accesorios y obras de arte necesarias, para asegurar su buen funcionamiento y facilitar su mantenimiento.

2.10.4 Método de Hardy Cross

El profesor Hardy Cross desarrollo su método inicialmente para dar solución al problema de vigas continuas en análisis estructural; sin embargo, rápidamente adopto su metodología para la solución hidráulica de redes cerradas, propias de los sistemas de abastecimiento de agua potable en el año 1936

Este método se implementó en la corrección de caudales de la red de distribución y posterior mente, observar las variaciones con respecto al software EPANET.

Se demostró que el uso de dicho método genera resultados por debajo de 1% de variabilidad con respecto a los demás métodos, lo cual evidencia que ambas metodologías son congruentes. La convergencia presenta una considerable sensibilidad a las variaciones en la precisión decimal. (Loaísiga, 2017)

2.10.5 Funciones de la red de distribución

Las redes de distribución deben cumplir con 2 funciones esenciales tales como suministrar el agua potable a todos los beneficiarios de forma segura cumpliendo con los parámetros de las normas establecidas y suficiente para combatir situaciones imprevistas como incendios (INAA, 1999b).

2.11 Almacenamiento

Los depósitos para el almacenamiento en los sistemas de abastecimiento de agua, tienen como objetivos; suplir la cantidad necesaria para compensar las máximas demandas que se presenten durante su vida útil, brindar presiones adecuadas en la red de distribución y disponer de reserva ante eventualidades e interrupciones en el suministro de agua. (INAA, 1999b).

2.12 Tipos de tanque

2.12.1 Tanque sobre el suelo

Se recomienda este tipo de tanque en los casos siguientes:

Cuando la topografía del terreno lo permita y en comunidades rurales que dispongan localmente de materiales de construcción como piedra bolón o cantera.

2.12.2 Tanques Elevados

En el diseño de tanques elevados que generalmente son de acero debe de considerarse lo siguiente.

- ✓ El nivel mínimo del agua en el tanque debe ser capaz de lograr presiones adecuadas en la Red de distribución.
- ✓ Se debe emplear la misma tubería de entrada y salida del agua, en el caso que el sistema fuese del tipo Fuente-Red-Tanque.
- ✓ La tubería de rebose descargará libremente sobre una plancha de concreto para evitar la erosión del suelo.

- ✓ Se instalarán válvulas de compuertas en todas las tuberías, exceptuando la de rebose y se recomienda que todas las válvulas y accesorios sean tipo brida.
- ✓ Debe considerarse los demás accesorios como; escaleras, dispositivos de ventilación, acceso con su tapadera indicador de niveles y en caso especiales una luz roja para prevenir accidentes aéreos en vuelos nocturnos.
- ✓ Las escaleras exteriores deben tener protección adecuada y se diseñarán dispositivos que permitan controlar el nivel máximo y mínimo del agua en el tanque.

2.12.3 Tipo Cisterna

Este tipo de almacenamiento se recomienda en pequeñas granjas o comunidades rurales donde se carece de aguas superficiales, o subterráneas, por lo tanto, el agua de lluvia es la fuente disponible de abastecimiento local. El agua de lluvia que escurre en los sistemas de techos se conduce a través de canales y ductos de bajantes a las cisternas de almacenamiento situado sobre el piso o soterrado.

La cisterna puede ser construida de mampostería u hormigón armado, en ella se puede emplazar una bomba de mano de acción directa o de mecate para la distribución de agua.

2.13 Presupuesto

Es la determinación previa de la cantidad de dinero necesaria para realizar un determinado proyecto, a cuyo fin se toma como base la experiencia adquirida en otras construcciones de índole semejantes. (Pittman, 1997)

Es necesario determinar detalladamente cada uno de los costos de las actividades involucrados para llevar a cabo el proyecto de diseño de la red del alcantarillado sanitario por cada tramo de tubería el presupuesto será elaborado de la siguiente manera (FISE)

✓ Los precios de materiales serán tomados de los costos promedios que se manejan en el mercado.

- ✓ La mano de obra se determinara basándose en las normas de rendimiento horario para obras verticales y el catálogo de precios vigentes para construcción brindado por (FISE)
- ✓ El costo total de una actividad es la sumatoria del costo delos materiales la mano de obra, un 8% de la mano de obra para gastos de herramientas y equipo y un 35% del costo directo adicional para costos indirectos.

Diseño metodológico

III Diseño metodológico

3.1 Tipo de estudio

Esta investigación es de tipo de alcance descriptivo y de campo con enfoque mixto, ya que se recopilarán y procesarán datos cuantitativos y cualitativos, a través de encuestas, guías de observación, análisis de datos topográficos y así como revisión bibliográfica.

3.2 Estudio Socioeconómico

El estudio socioeconómico se realizó con el propósito de conocer el nivel socioeconómico y servicios de agua potable, ya que son aspectos importantes para la realización del presente estudio. Por lo tanto, se aplicó una encuesta (Anexo 1), a las 14 viviendas para así obtener la información de carácter socioeconómico que se mencionan a continuación:

- ✓ Estado físico de la vivienda.
- ✓ Cantidad de personas por vivienda.
- ✓ Enfermedades que padece la familia.
- ✓ Situación económica de la familia.
- ✓ Lugar de trabajo e ingresos mensuales.
- ✓ Disponibilidad de agua para consumo familiar.

3.3 Estudios topográficos

En la comunidad de Santa Bárbara se realizó el estudio topográfico el cual servirá de base para el diseño de la línea de conducción y red de distribución, así como para la ubicación del predio donde se ubica la fuente que es un pozo perforado y tanque de almacenamiento.

El método que se empleó es el taquimétrico lo cual consta de: estación total Serie OS105 de TOPCON, con su respectivo prisma, bastón, brújula, y una cinta métrica para medir altura de instrumento en cada punto de cambio (altimetría y planimetría). A continuación, las actividades realizadas:

✓ Ubicación espacial del terreno: fue por medio del sistema de global de posicionamiento satelital (GPS), aparato eléctrico, digital portátil marca Gamin, modelo (Etrex LEGEND H 62s), designado para sistemas de

- coordenadas y navegación: UTM/UPS, Datum WGS84 con un margen de error de aproximadamente de 4 metros.
- ✓ Ubicación de pozo: para la ubicación del pozo se marcó el punto donde se sitúa para luego introducir los datos de las coordenadas del primer punto a la estación total y de esta manera iniciar con el levantamiento topográfico.
- ✓ Línea de conducción: en este proceso de levantamiento se obtuvieron las coordenadas a cada 20m o menos según el relieve. La línea conducción desde el pozo hacia donde se ubicará el tanque de almacenamiento se hizo por la parte más recta entre los puntos.
- ✓ Red de distribución: se levantarán las coordenadas cada 20m o menos según el relieve; de la red de distribución se tomaron datos por todas las infraestructuras existentes (casa, poste de luz, cercas, ramales de camino, puentes), dejando BM en los puentes y pozo, para su debido replanteo en la ejecución del proyecto.
- ✓ Elaboración de planos: en este proceso se realizó planos y perfiles de: línea de conducción, red de distribución, así como la ubicación del pozo, tanque de almacenamiento y caseta de bombeo.

3.4 Aforo

El aforo de la fuente se realizo basado en la norma (INAA, 1999b), utilizando los siguientes prodedimientos:

- ✓ El caudal de explotación se obtuvo a través de una prueba de bombeo de 24 horas a caudal constante y de una prueba a caudal variable con mínimo de cuatro etapas de una hora cada una. La recomendación del caudal máximo de explotación se hizo de acuerdo al análisis de la prueba.
- ✓ El caudal de explotación de bombeo fue determinado en función de un período de bombeo mínimo de 12 horas y un máximo de 16 horas.
- ✓ El caudal máximo recomendado de la explotación de un pozo deberá ser igual o superior a 1.5 del consumo día promedio (QDP).

3.5 Calidad de agua

El estudio de calidad de agua se realizará tomando una muestra de la fuente para su debido análisis correspondiente donde se podrá saber si el la muestra es factible para los requisitos de cálida de agua según la norma (INAA, 1999b). Una vez realizada el resultado del análisis del agua de la fuente de abastecimiento, se comparó con lo establecido en la norma las siguientes características:

- √ Bacteriológicas
- √ Físicas
- ✓ Químicas
- √ Biológicas

El agua de la fuente debe ser e tal calidad que no requiera un tratamiento que sea excesivo o antieconómico (Anexo 2).

3.6 Diseño hidráulico del sistema

Se realizó un análisis hidráulico del sistema tomando en cuenta el estudio topográfico y la demanda de la población. A partir de estas características se diseñaron las obras hidráulicas del sistema de abastecimiento de agua potable.

El cálculo hidráulico se realizó siguiendo las normas técnicas obligatorias nicaragüense de sistemas de abastecimiento de agua potable en el medio rural (INAA, 1999b).

3.6.1 Periodo de diseño

Cuando se trata de diseñar un sistema de abastecimiento de agua potable en zonas rurales es obligatorio fijar la vida de todos los componentes del sistema. Según la (INAA, 1999a) el periodo de diseño es de 20 años para pozos perforados, que para el presente estudio estará comprendido entre los años 2020-2040.

3.6.2 Población de diseño

En la sección 2.2 de la norma (INAA, 1999a) para el cálculo de las poblaciones futuras se empleara el método geométrico, si no se dispone de datos de población al inicio del periodo de diseño, debemos de efectuar un censo

población por medio de representante comunitarios o promotores, en el presente caso la información fue bridando por la Alcaldía Municipal de Somoto departamento de Madriz.

3.6.3 Dotación

Para sistemas de abastecimiento de agua potable con un nivel de servicio por medio de conexiones domiciliares de patio se asigna un caudal de 50lpd a 60lpd, por tanto se adopta para el diseño una donación de 60lpd (INAA, 1999b, pág. 11).

3.6.4 Consumo doméstico (CD)

Se determinó el consumo doméstico tomando en cuenta la población de diseño previamente calculada y las dotaciones indicadas anteriormente, como lo establece la norma (INAA, 1999b).

3.6.5 Consumo comercial e institucional (CP)

Los factores de la demanda utilizados fueron 7% y 7%, con relación al consumo doméstico (CD) correspondientes al consumo comercial e institucional (INAA, 1999b).

3.6.6 Pérdidas y/o Fugas (P/F) en el sistema

Para estimar el valor de la fuga se utilizó el criterio que establece la norma el cual es el 20% del consumo doméstico (INAA, 1999b, pág. 14).

3.6.7 Consumo promedio diario (CPD)

El consumo promedio diario se calculó mediante la dotación seleccionada, la población de diseño y el factor de la demanda, que para este caso no se consideró consumo comercial e industrial (INAA, 1999, pág. 15).

3.6.8 Variaciones de consumo

Según la norma (INAA, 1999a) las variaciones de consumo estarán expresadas como factores de la demanda promedio diario y estas sirven de base para el dimensionamiento de la capacidad de obras de captación de línea de conducción y red de distribución.

Estos valores son los siguientes:

- ✓ Consumo máximo día (CMD) = 1.5 CPD (Consumo promedio diario), para línea de conducción más fugas.
- ✓ Consumo máximo hora (CMH) = 2.5 CPD (Consumo promedio diario), para el diseño de la red de distribución más fugas.

3.6.9 Estación de bombeo

Para impulsar el agua desde la toma hasta la altura requerida venciendo las cargas estáticas y las pérdidas originadas en el conducto al trasladarse el flujo, es necesario lo siguiente:

3.6.9.1 Diseño de la columna de bombeo

Para encontrar el diámetro correcto en la columna de bombeo es obligatorio conocer el diámetro de ademe del pozo el cual debe estar relacionado al caudal a extraerse. En el cuadro Nº 6.1 y 6.2 de la norma (INAA, 1999b, pág. 36) se consigue definir el diámetro de ademe del pozo y la columna de bombeó por medio del caudal.

En el diseño de la columna de bombeo se utilizó la fórmula de Hazen-William para determinar la perdida de carga por fricción en la columna de bombeo, así mismo se analizó el diseño en base al criterio establecido según la norma (INAA, 1999b, pág. 36), lo cual nos dice que la pérdida por fricción debe ser menor al 5% de la longitud de la columna de bombeo.

3.6.9.2 Diseño de la sarta

Para calcular el diámetro de la sarta se tomó en consideración los rangos de caudales para así seleccionar el diámetro correcto, según la norma (INAA, 1999b, pág. 24).

También se determinaron las pérdidas de carga por fricción en la sarta y se calcularon con la ecuación de Hazen-William.

Además, debido a que la sarta lleva accesorios tales como: Tee, válvulas, codos y macro medidor se calcularon las pérdidas locales aplicando los coeficientes de pérdidas de cada accesorio a la altura de velocidad (INAA, 1999b, pág. 25)

La sarta llevara lo siguiente compontes:

✓ Maestro Medidor

- ✓ Manómetro
- ✓ llave de chorro ½"
- ✓ Derivación descarga para prueba de bombeo y limpieza de la sarta.
- ✓ Unión flexible para efecto de mantenimiento.

Las tuberías se anclarán adecuadamente tomado en cuenta las fuerzas que actúan en los atraques para obtener un buen diseño.

3.6.9.3 Diseño de línea de conducción

Para el diseño de la línea de conducción se realizó lo siguiente:

✓ Determinación de diámetro

Para determinar el mejor diámetro (más económico), se aplicó la fórmula de Bresse usada en los Estados Unidos de Norte América (INAA, 1999b), con la cual se obtuvo un diámetro teórico a partir del cual se tomó un diámetro comercial de tubería PVC norma ASTM 2241.

√ Velocidad

Según la norma INAA (1999b, pág. 53) las velocidades del flujo en los conductos para evitar erosión interna o sedimentación en las tuberías debemos de utilizar valores 0.6 m/s y 1.5 m/s para la línea de conducción.

√ Pérdidas de cargas en la línea de conducción

Las pérdidas de carga por fricción en la línea de conducción se calcularon mediante la ecuación de Hazen – Williams (INAA, 1999b, pág. 44).

✓ Carga dinámica total (CDT)

De acuerdo a la Comisión Nacional del Agua (2007) la carga dinámica total se calcula por medio de la suma total de resistencia del sistema, correspondientes a la carga estática total, a la pérdida de carga por fricción y locales en todo el sistema.

✓ Golpe de ariete

Para conocer las condiciones de golpe de ariete se consideró los cálculos con las ecuaciones de Medeluce, Michaud y la de Allievi (IVASP, 2009).

Para calcular la sobre presión generada por el golpe de ariete se realizó lo siguiente:

√ Cálculo de la celeridad

La celeridad es la velocidad de propagación de las ondas de presión en función de las características elásticas del sistema fluido-tubería y se calcula mediante la ecuación propuesta por Allievi (Bohorquez Forero, 2011, pág. 4).

√ Tiempo de parada de la bomba

El valor del tiempo de parada se calculó por medio de la ecuación propuesta por Mendiluce (Bohorquez Forero, 2011, pág. 6).

El tiempo de parada se comparó con tiempo recorrido de la onda de presión, siendo cierre rápido cuando el tiempo de parada es menor que el tiempo de la onda de presión, o cierre lento si el tiempo de parada fuera mayor que el recorrido de la onda.

Así mismo se calculó la longitud crítica para determinar el tipo de impulsión, sea ésta impulsión corta o larga.

Se determinaron las sobrepresiones según la ecuación de Michaud para cierre lento e impulsión corta y Allievi para cierre rápido e impulsión larga (Universidad de Castilla-de L Mancha, 2011, págs. 8-9).

Una vez calculada la sobre presión, se procedió a calcular la presión total en el sistema, siendo ésta igual a la sobre presión más la altura hidrostática, sabiendo que la altura hidrostática se obtiene por la diferencia desde la cota del tanque y la cota del pozo más la altura de la descarga del tanque.

√ Cálculo de la potencia de la bomba

Para el cálculo de la potencia teórica de la bomba se tomó en cuenta el caudal de diseño de la línea de conducción, así como la carga dinámica total, teniendo una eficiencia del 75%.

√ Selección del equipo de bombeo

Una vez conocida la altura total a vencer por la bomba y el caudal que debe suministrar la misma, se procedió a seleccionar la bomba, teniendo en cuenta la curva característica de la misma (H.Q), para ello se selecciona el punto de operación en el rango de eficiencia que recomienda el fabricante.

3.6.10 Dimensionamiento del tanque de almacenamiento

Los criterios de dimensionamiento que se utilizaron son los que señalan las normas nacionales, la cual menciona que el depósito debe tener un volumen compensador equivalente al 15 % del CPD, y también un volumen de reserva equivalente al 20% del CPD.

3.6.11 Desinfección

Basado en norma (INAA, 1999b, pág. 97) se decidió utilizar hipoclorito de sodio al 13%, para la desinfección con una capacidad de 1 kg por cada 8.2 l/s, debido a que éste producto es el más usado universalmente, dado a sus propiedades oxidantes y su efecto residual para eliminar contaminaciones posteriores; también es la sustancia más económica y con mejor control y seguridad que se puede aplicar al agua para obtener su desinfección adecuada.

3.6.12 Trazado de la red de distribución

Para el diseño de la red de distribución se utilizó el software AutoCAD para el trazado de la red principal considerando la mayor cobertura de viviendas posibles y así poder cumplir según los parámetros establecidos por la norma (INAA, 1999b).

3.6.13 Modelación hidráulica en EPANET

✓ Configuración de valores predeterminados

La configuración de los valores predeterminados de EPANET se realizó en la ventana "Valores por defecto" de la pestaña "Proyecto" de la barra de menú. Desde esta ventana en la primera pestaña "Etiquetas ID" se emplearán las etiquetas para nombrar los distintos elementos de la red de distribución, con un incremento de 1 para cada elemento nuevo consecutivo.

Las modificaciones más importantes para la simulación corresponden a las siguientes:

- ✓ Longitudes automáticas activadas. Lo que nos permite trazar los tramos de tuberías asegurando el cálculo interno de la longitud de forma automática.
- ✓ Diámetro de tuberías predeterminado igual a 55.70 mm equivalente al diámetro interno para tuberías con diámetro nominal de 2" correspondiente al mínimo según la normativa nicaragüense.

- ✓ Rugosidad Hazen-Williams predeterminado 150 para tuberías PVC.

 Las unidades de medida a utilizar fueron las correspondientes al Sistema Internacional:
- ✓ Unidad de caudal (I/s)
- ✓ Perdida por fricción.
- √ Peso específico (kg/m³)
- ✓ Viscosidad relativa (cinemática) según prueba de bombeo.
- ✓ Factor de demanda será un valor que puede ser cambiado en atención al tipo de escenario a simular. Para comenzar puede ser definido en 2.5, es decir, igual al factor de demanda para consumo máximo horario.

3.6.14 Criterios de diseño para la simulación en EPANET

- ✓ Diámetro: El diámetro mínimo recomendado para la red pública es de 50 mm (2"), en caso necesario se aceptan hasta 1 1/2" (37.5 mm).
- ✓ Pérdidas hidráulicas: Para el análisis hidráulico se utilizó la ecuación de Hazen-Williams, para el cálculo de las pérdidas carga a lo largo de todo el sistema. Utilizando un coeficiente de Hazen Williams de 150 para ductos de PVC.
- ✓ Velocidad: Se utilizaron valores de velocidades del flujo en los conductos en un rango de 0.4 m/s a 2 m/s, para evitar erosión interna o sedimentación en las tuberías.
- ✓ Presiones máximas y mínimas: Para brindar presiones adecuadas en el funcionamiento del sistema de abastecimiento, la norma (INAA, 1999a) recomienda utilizar presiones de 5.0 metros mínima y 50.0 metros la máxima.
- ✓ Demandas nodales: Las demandas nodales se determinaron en dependencia de la cantidad de viviendas que va abastecer cada tramo, en el cual se consideraron datos como el hacinamiento actual de personas en cada casa, la dotación per cápita, la tasa de crecimiento adoptada y el factor de consumo humano; el caudal total debe ser igual al consumo promedio horario calculado.

3.7 Conexiones domiciliares

Las conexiones domiciliares se diseñaron con un diámetro mínimo de tubería de ½ (12.5 mm) pulgadas, así mismo se establecerá un medidor correspondiente para cada vivienda incluyendo a una iglesia, este requisito se deberá cumplir según la normativa técnica para el diseño de abastecimiento y potabilización del agua (INAA, 1999a, pág. 53)

3.8 Presupuesto

Para la elaboración del presupuesto del proyecto del Mini Acueducto por Bombeo Eléctrico en el sector "El Plan" ubicando en la comunidad de Santa Bárbara municipio de Somoto departamento de Madriz se hizo mediante lo siguientes pasos:

- ✓ Estimar cantidades de obras en base a los planos constructivos.
- ✓ Organizar las actividades en etapas y sub etapas.
- ✓ Utilizar los costos unitarios del FISE, para calcular el presupuesto con el software Excel.

Cálculos y resultados

IV Cálculos

En esta sección se presenta los cálculos y resultados de los diversos estudios realizados para el diseño del mini acueducto por bombeo eléctrico (MABE) ubicado en el sector "El Plan" de la comunidad santa bárbara.

El diseño siguió los parámetros establecidos por las normativas técnicas nicaragüenses presentadas por INAA en la NTON 09-002 99.

4.1 Censo población

El equipo de gabinete realizo un reconocimiento en el sector "El Plan" en la comunidad de Santa Bárbara municipio de Somoto en el cual tenía como objetivo realizar 14 encuestas a los jefes de familia, pero una vez estando en el sitio del proyecto se analizó que no era necesario realizar las encuestas por las características de la población y se decidió aplicar un censo poblacional con el fin de generar información estadística confiable, distribución de la población y de sus características económicas sociales y demográficas. A continuación, se describe cada uno de los ítems estudiados.

4.1.1 Población adicional

De acuerdo a la visita de campo se observó que existen varios terrenos en proceso de construcción, sin embargo, se desconoce la cantidad de personas por vivienda, por lo tanto, no fue posible censar esa parte del sector, por esta razón el Instituto Nacional de Estadísticas y Censos (INEC) establece un promedio de personas por vivienda de 6 personas, dicho dato se utilizara para el respectivo cálculo de la población adicional.

4.1.2 Población de santa bárbara

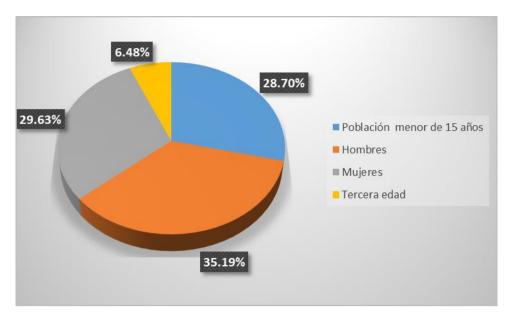
La comunidad de santa bárbara es una comunidad rural dividida por tres sectores conocidos como El Plan, Matasano y la Pita con grupos poblacionales concentrados, que pertenece al municipio de Somoto departamento de Madriz. Según el censo realizado por INIDE (2008), la comunidad está conformada por un total de 87 viviendas y 349 personas distribuidas en los tres sectores (tabla 1).

Tabla 1: Población según se edad y sexo

PRINCIPALES INDICADORES DE POBLACION AL MENOR NIVEL DE DESAGRACION GEOGRÁFICA CENSO (1995/2005) ACTUALIZADO EN EL AÑO 2008 Hombres Muieres Menor de 15 De 15 años y Menor de 15 De 15 años y Comunidad Ambos sexo años años mas mas Santa Bárbara 349 54 125 48 122

Fuente: Elaboración propio

A continuación, se presentan los resultados del estudio socioeconómico realizado en el sector "El Plan", el cual forma parte de la comunidad de Santa Bárbara, como se indicó anteriormente. En el presente estudio se obtuvo información de familias, las viviendas y el servicio de agua potable. El censo se llevó a cabo el mes de marzo del año 2020. A continuación, se muestran los resultados:


4.2 Población

El sector llamado "El Plan" posee una población total de 108 habitantes, que está compuesta por 31 niños menores de 15 años correspondiente al 28.70 %, 32 mujeres correspondiente al 29.63 % y 38 hombres correspondiente al 35.19 %. Así mismo hay por 7 habitantes de la tercera edad que equivale al 6.48 % de la población total como se muestra en la tabla 2 y gráfico 1.

Tabla 2: Datos generales

Descripción	Cantidad
Población menor de 15	
años	31
Hombres	38
Mujeres	32
Tercera edad	7
Viviendas encuestadas	17
Total de habitantes	108
Porcentaje de habitantes	100%

Grafico 1: Datos generales

4.2.1 Actividad económica

En cuanto a los ingresos que tiene cada familia se encontró que un 41.18 % de las familias cuentan con 1 personas que trabajan, seguido con un 29.41 % donde trabajan 2 persona, así mismo se observó que el 17.65 % de las familias tienen 3 personas que trabajen y finalmente el 11.76 % de las familias no tienen ningún miembro que aporte ingresos al hogar, a como se muestra en la tabla 3 y grafico

2.

Tabla 3: Personas que trabajan en la familia

Personas que trabajan en la familia					Total	
Nº de personas 0 1 2 3 >3					rotai	
Nº de familias	2	7	5	3	0	17
Porcentaje	11.76%	41.18%	29.41%	17.65%	0.00%	100%

17.65%

10.00%

11.76%

11.76%

11.76%

11.76%

11.76%

11.76%

11.76%

11.76%

11.76%

Grafico 2: Personas que trabajan en la familia

4.2.2 Tipos de trabajos

Sobre el tipo de trabajo que tiene la población se encontró que un 29.41 % son agricultores, mientras que otro 29.41% realiza trabajos diversos tales como empleados públicos y sector informal, así mismo se tiene un 17.65% que trabaja en el área de construcción, mientras que un 17.65% de las familias es ama de casa, para finalizar un 5.88% trabaja en el área de ganadería a como se indica en la tabla 4 y grafico 3.

Tabla 4: Tipos de trabajo por familia

Tipos de trabajos por familia						
Nº de Ama de						
personas	Agricultura	Ganadería	Construcción	casa	Otros	Total
Nº de familias	5	1	3	3	5	17
Porcentaje	29.41%	5.88%	17.65%	17.65%	29.41%	100%

Grafico 3: Tipos de trabajo por familia

4.2.3 Economía

De acuerdo a los tipos de trabajos que ejercen los pobladores del sector se dice que el 82.35 % recibe un salario igual o menor a 2000 córdobas, mientras que el 11.76 % tiene un salario de 3000 a 4000 córdobas y el 5.88 % reciben salario de 5000 a 8000 córdobas, mientras que ninguna familia posee un ingreso mayor a 8000 córdobas a como se muestra en la tabla 5 y grafico 4.

Tabla 5: Ingreso familiar por mes

Ingreso familiar por mes					
Córdobas 0 a 2000 3000 a 5000 a 8000 C\$ Nicaragüense C\$ 4000 C\$ 8000 C\$ a mas					Total
Nº de familias	14	2	1	0	17
Porcentaje	82.35%	11.76%	5.88%	0.00%	100%

5.88% 0.00%

11.76%

10 a 2000 CS

3000 a 4000 CS

5000 a 8000 CS

8000 CS a mas

Grafico 4: Ingreso familiar por mes

4.2.4 Educación

En el nivel de escolaridad que presenta el sector "El Plan" se describe que el 64.71 % de las familias pudieron cursar la primaria, por otra parte, el 17.65 % están actualmente cursando la secundaria y solamente el 17.65 % tienen la titulación en técnico, cabe mencionar que en ninguna de las familias se cuenta con la titulación universitaria a como se muestra en la tabla 6 y grafico 5.

Tabla 6: Distribución de la población por escolaridad

Distribución de la población por escolaridad					
Escolaridad	ad Primaria Secundaria Técnico Universidad				Total
Nº de familias	11	3	3	0	17
Porcentaje	64.71% 17.65% 17.65% 0.00%				100%

17.65%

Primaria
Secundaria
Técnico
Universidad

Grafico 5: Distribución de familia por escolaridad

4.2.5 Salud

Las enfermedades más frecuentes que mencionan los jefes de hogar son: el 58.82 % padecen otras enfermedades como derrame cerebral e hipotensión arterial, por otra parte, el 17.65 % padece de enfermedades estomacales debido a que consumen agua de mala calidad y un 23.53 % presenta enfermedades respiratorias a como se indica en la tabla 7 y grafico 6.

Tabla 7: Tipo de enfermedades

٦				
Enfermedades	Total			
Nº de familias	4	3	10	17
Porcentaje	23.53%	17.65%	58.82%	100%

23.53%

Respiratorias
Estomacales
otras

Grafico 6: Tipos de enfermedades

4.2.6 Situación habitacional

En la inspección y visita de campo realizada a las familias del sector, se observaron los tipos de materiales de los cuales están construidas las viviendas, encontrando que un 29.41% de las mismas están hechas de adobe, por otra parte, un 35.29% están construidas de bloque, siguiéndolo con un 29.41% de ladrillo y finalmente un 5.88 % de las viviendas están hechas de madera como se muestra en la tabla 8 y grafico 7.

Tabla 8: Material predominante de la vivienda

Mater	Total				
Material	10101				
Nº de familias	5	1	6	5	17
Porcentaje	29.41%	5.88%	35.29%	29.41%	100%

29.41%

Adobe

Madera

Bloque

Ladrillo

35.29%

Grafico 7: Material predominante de la vivienda

4.2.7 Servicios básicos y condición higiénica de la vivienda

De acuerdo a los servicios básicos que presenta la comunidad santa bárbara el sector "El Plan" existe energía eléctrica lo cual logra satisfacer a las 17 familias, no obstante, todas carecen del servicio agua potable como se muestra en la tabla 9 y grafico 8.

Tabla 9: Servicios básicos

Serv			
Servicio	Total		
Nº de familias	17	0	17
Porcentaje	100.00%	0.00%	100%

0.00%

Energía eléctrica
Agua potable

Grafico 8: Servicios básicos

4.2.8 Condición higiénica de la vivienda

Según las condiciones higiénicas sanitarias las 17 familias del sector poseen servicios sanitarios (letrinas), mientas que ninguno tiene una red de drenaje de aguas residuales, como se muestra en la tabla 10 y grafico 9.

Tabla 10: Servicios sanitarios

Servi			
Servicios	desagüe	Letrina	Total
Nº de familias	0	17	17
Porcentaje	0.00%	100.00%	100%

0.00%

Red de Red de desagüe
Letrina

Grafico 9: Servicios sanitarios

4.2.9 Situación actual del abastecimiento de agua

De acuerdo a la información recopilada a través del censo en lo relacionado al abastecimiento de agua se tiene un 52.94% de las familias se abastece de agua de río, mientras que un 47.06 % se abastecen de agua de lluvia en temporada de invierno como se indica en la tabla 11 y grafico 10.

Tabla 11: Tipo de fuente que se abastecen

Tipo de fuente que se abastecen					
Fuente Rio Lago Manantial Lluvia					Total
Nº de familia	9	0	0	8	17
Porcentaje	52.94%	0.00%	0.00%	47.06%	100%

47.06%

1 Rio
1 Lago
1 Manantial
1 Lluvia

Grafico 10: Tipo de fuente que se abastecen

4.2.10 Calidad de agua

La calidad de agua que presenta la fuente tiene algunos factores que afecta a las familias de la comunidad por lo cual el 17.65% de las familias que se abastece del río la consideran de buena calidad, mientras que el 82.35% la considera de mala calidad, como se muestra en la tabla 12 y grafico 11.

Tabla 12: Calidad de agua según la fuente

Calidad de agu				
Calidad	Calidad Buena Mala			
Nº de familias	3	14	17	
Porcentaje 17.65% 82.35%		82.35%	100%	

17.65%

Buena

Mala

Grafico 11: Calidad de agua según la fuente

4.2.11 Estado del camino hacia la fuente

Sobre el estado del camino, 4 familias equivalentes al 23.53% manifestaron que es muy incómodo al momento de circular, mientras que otras 13 familias que representan el 76.47%, afirmaron que el camino está demasiado malo, por lo que hay momentos que se deben ayudar entre ellos, estos resultados concuerdan las con las dificultades de acarreo de agua presentadas por los pobladores, los cuales se muestran a continuación tabla 13 y grafico 12.

Tabla 13: Estado del camino hacia la fuente

Estado de				
Estado físico	Total			
N⁰ de familias	0	13	4	17
Porcentaje	0.00%	76.47%	23.53%	100%

0.00%

23.53%

Bueno

Malo

Incomodo

Grafico 12: Estado del camino hacia la fuente

4.2.12 Tratamiento de agua para consumo humano

Según los resultados encontrados 11 familias que representan el 64.71% ponen a hervir el agua, otras 2 familias equivalentes al 11.76% no utiliza ningún método de tratamiento por lo cual corren riesgos de contraer enfermedades así mismo 4 familias con el 23.53% optan por la cloración. Los resultados se indican en la tabla 14 y grafico 13.

Tabla 14: Método de purificación que utilizan

Método de purificación que utilizan					
Método	Cloración	Hirviendo	Ninguna	Otros	Total
Nº de familias	4	11	2	0	17
Porcentaje	23.53%	64.71%	11.76%	0.00%	100%

11.76% 23.53%

Clarificación
Hirviendo
Ninguna
Otros

Grafico 13: Método de purificación del aqua

4.3 Estudio topográfico

Se realizó un levantamiento y estudio topográfico correspondientes a altimetría y planimetría en el sector "El Plan" ubicado en la comunidad de Santa Bárbara del municipio de Somoto departamento de Madriz.

Se hizo el levantamiento tomando los primeros puntos de referencia con GPS en coordenadas UTM, zona 16P con DATUM WGS 84, realizando la totalidad de la tarea con estación total Serie OS105 de TOPCON con una precisión de 1 a 5 segundos.

Debido a que la alcaldía de Somoto no dispone actualmente de un plano de la comunidad de Santa Bárbara donde se ubique el sector el "El Plan", se descargó una imagen satelital mediante el uso del software QGIS 3.18, que incluye los tres sectores de la comunidad a como se muestra en la ilustración 3.

Ilustración 3: Mapa de la comunidad santa bárbara

Fuente: Software Qgis

4.3.1 Etapa de campo

El reconocimiento de campo, tuvo como objetivo recabar información, principalmente visual sobre algunas características de interés. Durante esta etapa se llevaron a cabo las siguientes actividades de reconocimiento:

- ✓ Reconocimiento de la infraestructura pública, en especial la vial.
- ✓ Identificación de accidentes topográficos. Identificación de posibles zonas con amenaza de derrumbes o deslizamientos.
- ✓ Identificación de posibles predios para el depósito.
- ✓ Identificación de posibles rutas para la línea de conducción.

Una vez realizado el reconocimiento del terreno se nivelo y centró la estación total en el punto de inicio 0+000.00 mojón que fue marcado con pintura y se logró tomar la coordenada X=550690.68, Y=1487449.69 con una elevación de 858.749 m.s.n.m, luego se definió el siguiente punto de armado en la estación 0+150 con coordenadas X=550570.9400, Y=1487396.1300 con una elevación

de 862.465 m.s.n.m, cuyo mojón fue identificado de la misma manera que el punto de inicio, esta información se guardó en la estación total.

Después de esto, se procedió a posicionarse en la segunda estación y se radio hacia el punto de inicio realizando el amarre pertinente y verificando que este estuviera el menor grado de error, este procedimiento se realizó previamente para las siguientes estaciones (Anexo II, tabla 35).

En el levantamiento se ubicaron estaciones que varían entre 39 m como mínima y 316 m como máxima debido a que la topografía del terreno es irregular, así mismo en cada punto se tomaron las coordenadas (X, Y) y elevaciones, dicho levantamiento contiene 15 estaciones.

Unos de los primeros objetos que se levantó en la ruta fue el lugar de captación (pozo), dicha captación se encuentra en las coordenadas X = 5532017.408, Y= 14879981.233 con una elevación de 860.100 m.s.n.m, también se realizó el derrotero del predio de la caseta de control con sus respectivas coordenadas. (Anexo II, tabla 36).

El segundo objeto levantado en la ruta fue el tanque de almacenamiento, por lo tanto, conllevo primeramente la identificación del predio más favorable el cual fue donado por uno de los pobladores del sector ubicándose en las coordenadas X = 550490.7700, Y = 14873933.300 con una elevación de 878 m.s.n.m, también se realizó el derrotero en el lugar de construcción de dicho tanque (Anexo II, tabla 37).

Como tercer objeto se encuentra la línea de conducción en el cual se logró obtener la ruta más favorable empezando en la estación 0+000 con coordenada X = 550659.3300, Y= 14874532.500 con una elevación de 860.954 m.s.n.m, cabe mencionar que se tomaron estaciones cada 50 m para así obtener una descripción espacial precisa del trazado, su longitud total de trazado fue de 153.606 m lineales (Anexo XII, plano Nº 6).

El cuarto y último objeto levantado es la red de distribución con una longitud de 457.497 metros lineales, cabe señalar que se identificaron los nodos para el respectivo marcaje de puntos con sus propias estaciones, coordenada y elevaciones, así mismo se tomó en cuenta la ubicación de cada vivienda para realizar la toma de tubería domiciliar (Anexo XXVI, plano Nº 20).

4.3.2 Etapa de gabinete

En la etapa final que es el procesamiento de datos se obtuvo toda la información para luego descargar los datos de la estación total, los cuales se exportaron al software Civil 3D, en esta última etapa se realizó el juego de planos que fue útil para la simulación de EPANET y así también para otros cálculos hidráulicos (línea de conducción, red de distribución y ubicación pozo – tanque). En la tabla 15 se presenta la lista de planos.

Tabla 15: Zona del levantamiento y lista de planos

Zona del levantamiento	Anexo	Página	Tabla
Levantamiento topográfico	II	119	35
Derrotero de predio de caseta	II	129	36
Derrotero del tanque	II	129	37
Juego de planos			
Plano de conjunto	VII	142	plano Nº 1
Plano topográfico	VIII	143	plano Nº 2
Plano de línea de conducción	XII	147	plano Nº 6
Plano de red de distribución Red A -1,			
principal	XIII	148	plano Nº 7
Plano de red de distribución Red A -2, A			
-3, A -4	XIV	149	plano Nº 8
Plano de conexión típica para servicios			plano Nº
domiciliarios	XXVI	161	20

Fuente: Elaboración propia

4.4 Aforo de la fuente de abastecimiento

El 23 de enero del 2020 se realizó la prueba de bombeo para el pozo perforado en el año 2016. La fuente de agua está ubicada en el sector "El Plan" en la comunidad de Santa Bárbara municipio de Somoto departamento de Madriz.

4.4.1 Aforo del pozo

La obra de captación presenta las siguientes características según el aforo que se realizó mediante una bomba de presión de alto rendimiento SERIE BT4 durante 720 minutos:

- ✓ Fecha de perforación: 07/09/2016.
- ✓ Coordenadas N 13°27'15" m, W 86°31'56", propiedad donada por la comunidad,
- ✓ Tipo de acuífero confinado con un pozo perforado

✓ Capa de saturación = 16.59 m

✓ Caudal de Explotación = 0.946353 l/s

✓ Descenso (15 gpm): 3.27 m

✓ Nivel estático del agua: 13.32 m

√ Temperatura 29 C^o

En el anexo III, se presentan los detalles del aforo de la fuente.

4.4.2 Prueba de calidad de agua

Se realizó el análisis de calidad de agua del pozo ubicado en el sector "El Plan" teniendo como objetivo estudiar la muestra tomada el día 16 de junio del año 2020 para su debida examinación bacteriológico, físico químico y biológico. Este resultado indica que la fuente no se encuentra contaminada con coliformes fecales y por tanto es apta para ser utilizada como fuente de abastecimiento de agua potable. Sin embargo, tendrá un clorinador sobre el tanque recomendado por la norma (INAA, 1999a). (Ver Anexo IV).

En el análisis físico químico que se presentan en el Anexo IV, tablas 40,41 y 42 los resultados de los 20 parámetros analizados muestran que ninguno está por encima del valor máximo admisible, conforme las normas de calidad para aguas de consumo humano (INAA, 1999a).

4.5 Diseño hidráulico del MABE

Se realizó un análisis hidráulico del sistema tomando en cuenta el estudio topográfico y la demanda de la población. Se diseñaron las obras hidráulicas del sistema de abastecimiento de agua potable, tomando en cuenta las normas técnicas obligatorias nicaragüense de sistemas de abastecimiento de agua potable en el medio rural (INAA, 1999b).

4.5.1 Parámetros de diseño adoptado

Los parámetros de diseño se establecen conforme a la normativa aplicable los cuales se muestran en la tabla 16 (INAA, 1999b).

Tabla 16: Parámetros de diseño adoptado

Descripción	Parámetro/método	Unidad	
Dotación (domiciliar-publica)	60	LPS	
Periodo de diseño	20	Años	
Pérdidas de agua (CPD)	20	%	
Factores de demanda			
Variaciones d	le consumo		
CMD	1.5	-	
СМН	2.5	-	
Diámetro mínimo	1 ½"	pulgada	
Para caminos con poco tráfico vehicular, tendrá una cubertura de:	1	Metro	
Nivel de servicio	Toma domiciliar	-	
Método de diseño en EXCEL para columna de bombeo, sarta y línea de: conducción	Hazen-Willian	-	
Método de diseño en EPANET para línea de conducción y red de distribución	Hazen-Willian	-	
Escenario de diseño	CMH y consumo cero	-	
Velocidad en línea de conducción	0.6 – 1.5	m/s	
Presiones en la red de distribución	5.0 a 50.00	m/km	

4.5.2 Población y demanda

4.5.2.1 Tasa de crecimiento

Para la determinación de la población esperada durante el periodo de diseño de 20 años, según el censo realizado en el departamento de Madriz por (INIDE, 2006) en el año 1995 a 2005 la tasa de fue de 2.1 % anual a como se muestra en la tabla 17.

Tabla 17: Censo poblacional 1995 - 2005

POBLACION TOTAL, DISTRIBUCION PORCENTUAL Y TASA DE CRECIMIENTO, SEGÚN DEPARTAMENTO / REGION AUTONOM. CENSO DE 1995 Y 2005				
Departamento/Región Autónoma	Población 1995 2005		Tasa de crecimiento (%)	
La Republica	4,357.10	5,142,098	1.7	
Madriz	107,567	132,559	2.1	

Según el Instituto Nacional de Información y Desarrollo (INIDE) para el año 2008 realizaron una actualización de información del censo (1995/2005), al nivel local lo cual pone a disposición los indicadores desagregados al nivel de barrio, comarca, comunidad y localidad para cada uno de los 153 municipios del país.

De acuerdo a la actualización de dicho censo se logró conocer la población de la comunidad Santa Bárbara el cual posee 349 habitantes a como se describe en el inciso 4.1.2, por otra parte, la alcaldía municipal de Somoto no tiene registros de la cantidad de personas de cada sector de la comunidad por lo tanto el equipo de gabinete realizo un censo en el sector llamado "El Plan" determinando que el sector cuenta con aproximadamente 108 personas.

Se debe mencionar que se incluirán también los habitantes de 21 viviendas que están en proceso de construcción, además se estimara 6 personas por vivienda a como se menciona en el inciso 4.1.1, por consiguiente, se tiene un resultado de 126 personas adicionales que también serán beneficiadas del proyecto MABE.

Como resultado de lo expuesto se realizó la sumatoria de la población censada más la población adicional, con lo cual se obtuvo una sumatoria de 234 personas en total.

4.5.3 Población de diseño

Para el cálculo de la población de diseño se proyectó a 20 años debido a la vida útil de los componentes del MABE, además se utilizó el método geométrico descrito en el sección 2.2 de la normativa (INAA, 1999a).

También se adoptó una tasa de crecimiento del 2.5% debido a que la tasa crecimiento del sector "El Plan" es negativa y presenta un decrecimiento de la población a como se menciona en la sección 4.4.2.1, de igual manera la normativa (INAA, 1999b, pág. 8) recalca que para poblaciones menores del 2.5% la proyección final se hará basada a una tasa de crecimiento del 2.5%. Aplicando la ecuación 1, se tiene como resultado una población futura de 383 habitantes como se muestran a continuación:

Ecuación 1: Método geométrico

$$P_n = P_0 (1 + r)^n$$

$$Pn = 234 * (1 + 0.025)^{20}$$

Pn = 383 habitantes

4.5.4 Dotación

Para sistemas de abastecimiento de agua potable con un nivel de servicio por medio de conexiones domiciliares de patio se asigna un caudal de 50lpd a 60lpd según en la sección 3.1 de la normativa (INAA, 1999a), se adoptó en este caso 60 lpd.

4.5.5 Caudales de diseño

Los caudales de diseño son la base para el dimensionamiento de los elementos de la línea de conducción y la red de distribución según se detalla en la norma INAA (1999), lo que corresponden: consumo promedio diario, consumo máximo diario y consumo máximo horario.

Los resultados de consumo promedio diario (CPD), consumo institucional, consumo comercial, pérdida en el sistema, caudal del máximo día (CMD) y caudal de la máxima hora (CMH) se indican en la tabla 36 (Ver Anexo V, tabla 43).

Para determinar el consumo promedio se tomó en cuenta el consumo doméstico, también se consideró en la misma un consumo comercial igual a cero, debido a que los sectores no presentan consumos comerciales importante, sin embargo, presenta una iglesia, por lo que el consumo institucional fue tomado en cuenta. A continuación, se presentan los resultados:

√ Consumo doméstico (CD):

Para el cálculo del consumo doméstico se hará uso de la ecuación 2 teniendo como resultado 0.27 lps por habitante que dispondrá para sus necesidades diarias de consumo.

Ecuación 2: Consumo doméstico (CD)

$$CD = P_f \left(\frac{Dotacion lpd}{86400 s} \right)$$

$$CD = 383 \text{ Hab} \left(\frac{60 \text{ lppd}}{86400 \text{ s}} \right) = 0.27 \text{ lps}$$

✓ Consumo público o institucional (CP):

Aplicando la ecuación 3, se obtuvo un consumo público o institucional de 0.02 lps, cabe destacar que el consumo comercial e industrial no se realizaron cálculos ya que no hay establecimientos por lo tanto estos componentes no se tomaron en consideración.

Ecuación 3: Consumo público o institucional (CP)

$$CP = CD(7\%)$$

Intitucional =
$$0.27(7\%) = 0.02 \text{ lps}$$

Tomando en consideración las observaciones anteriores se determina el sumatorio total mediante la ecuación 4 para así obtener el consumo promedio diario de población (CPD), teniendo como resultado 0.28 lps, a continuación, el siguiente procedimiento:

Ecuación 4: Consumo promedio diario (población)

$$CPD_{poblacion} = CD + CP$$

$$CPD_{poblacion} = 0.27 + 0.02 = 0.28 \text{ lps}$$

4.5.6 Caudal por fuga

Según INAA (1999b, pág. 14) se requiere estimar las pérdidas o fugas de la red, el cual se calcula con la ecuación 5, de esta manera se pudo tener un valor de 0.057 lps. A continuación, se presenta el resultado:

√ Pérdidas y/o Fugas (P/F):

$$PF = (CPD)(20\%)$$

$$PF = (0.28 \text{ lps})(20 \%) = 0.057 \text{ lps}$$

4.5.7 Variaciones de consumo

Utilizando la ecuación 6 se calculó el consumo máximo diario (CMD), para el gasto requerido del diseño de la línea de conducción obteniendo como resultado 0.48 lps como se presenta a continuación:

✓ Consumo máximo día (CMD):

Ecuación 6: Consumo máximo día (CMD)

$$CMD = 1.5 (0.28 lps) + (0.057 lps) = 0.48 lps$$

✓ Consumo máximo hora (CMH):

Consumo máximo horario (CMH), es el gasto que considera la norma para el diseño de la red de distribución, cuyo resultado fue 0.77 lps, como se muestra al aplicar la ecuación 7.

Ecuación 7: Consumo máximo horario (CMH)

$$CMH = 2.5 CPD + fugas$$

$$CMD = 2.5 (0.28) + 0.057 lps = 0.77 lps$$

4.5.8 Diseño de columna de bombeo, sarta y línea de conducción

En este acápite se describirán los cálculos del diseño de la columna de bombeo, sarta, línea de conducción, golpe de ariete, potencia y selección de la bomba utilizando los criterios de diseño descritos en la inciso 6.4 cuadro 6.1 de la norma rural (INAA, 1999a).

A continuación, en la tabla 18 se muestran los siguientes criterios de diseño:

Tabla 18: Parámetros de diseño para columna de bombeo

Diámetro Interno Ademe		Caudal de Bombeo		
milímetros	Gpm	Gpm	Lps	
150	160	160	10	
200	240	240	15	
250	400	400	25	
Caudal de la Fuente		15	0.95	
Perdida de Fricción en la Columna de Bombeo		5%		
Longitud de col para que se su		6 metros		

4.5.8.1 Columna de bombeo

✓ Diámetro de la columna de bombeo

Para elegir el diámetro correcto de la columna de bombeo se considera la tabla 6.1 de la norma (INAA, 1999a, pág. 22). Este parámetro debe estar relacionado al caudal a extraerse (CMD), mediante dicho caudal se puede hallar el diámetro para la columna del pozo. Se adoptó un diámetro para columna de bombeo de 1 1/2 pulgadas de material Hierro Galvanizado SCH – 40 con diámetro interno de 40.9 mm.

✓ Nivel más bajo del agua durante el bombeo (NB)

Utilizando la ecuación 8 se determinó el nivel más bajo durante el bombeo en el pozo, donde el nivel estático del agua fue de 13.32 m, se adoptó un nivel de abatimiento de 6 m el cual considera las variaciones de nivel en los meses de abril y octubre, y el abatimiento del pozo durante 24 horas. A continuación, se presenta los cálculos:

Ecuación 8: Nivel más bajo del agua durante el bombeo (NB)

$$NB = NAE + Varicion\ estacionaria + Abatimiento$$

$$NB = 13.32 m + 6 m + 3.27 m = 22.59 m$$

✓ Longitud de la columna de bombeo

Por medio de la ecuación 9 se determinó la longitud de columna de bombeo tomando en consideración el nivel más bajo durante el bombeo del pozo cuyo valor fue de 22.59 m y una sumergencia de 6 m como lo recomienda la norma (INAA, 1999a, pág. 37). A continuación, se presenta los cálculos:

Ecuación 9: Longitud de la columna de bombeo (Lc)

$$Lc = NB + Sumergencia$$

$$Lc = 22.59 \text{ m} + 6 \text{ m} = 28.59 \text{ m}$$

√ Pérdidas por fricción en la columna de bombeo

Para el cálculo de la pérdida de carga en la columna de bombeo, se utilizó la ecuación 10 de Hazen-Willian, obteniéndose una pérdida de carga por fricción de 0.16 m, valor que fue comparado con el parámetro de diseño que recomienda la norma (INAA, 1999b, pág. 36), la cual expresa que la pérdida de carga no debe ser mayor al 5% de la longitud de la tubería.

A continuación, los siguientes resultados:

Ecuación 10: Perdida de fricción en la columna de bombeo

$$h_f = 10.67 \left(\frac{Q^{1.85}}{C^{1.85} D^{4.87}} \right) L$$

Dónde:

Hf: Pérdida (m)

Q: 0.00048 m³/s

C: 130 (Coeficiente de rugosidad)

L: 28.59 m (Incluido 6 m de sumergencia)

D: 0.0409 m

$$h_f = 10.67 \left(\frac{0.00048^{1.85}}{130^{1.85} \ 0.0409^{4.87}} \right) 28.59$$

$$h_f = 0.16 \text{ m}$$

Según en lo establecido en la norma (INAA, 1999b, pág. 36), las pérdida por fricción en la columna de bombeo no deben ser mayor al 5% de su longitud y el diámetro se diseña según el caudal requerido para la línea de conducción.

Ecuación 11: Perdida de criterio (5%)

$$hf_{criterio} = (5\%) (Lc)$$

Dónde:

Hcriterio: Criterios basados en la norma.

L_C: 28.59 m

$$h_{criterio} = 5\% (28.59) = 1.43 \text{ m}$$

$$h_{\rm f}$$
, 0.16 m < 1.43 m; cumple

De acuerdo a la norma técnica la pérdida de criterio tiene que ser mayor a la pérdida por fricción de la tubería de la columna de bombeo, por lo consiguiente cumple el criterio de diseño.

4.5.8.2 Sarta

✓ Diámetro de la sarta

Para seleccionar el diámetro de la sarta debemos basarnos en los criterios de diseño que establece la norma (INAA, 1999b, pág. 39), de esta manera proponemos una sarta de 1 ½ pulgadas de tubería HG Clase 40 de 6 metros de longitud junto con los componentes para el control y monitoreo que se presenta en el juego de plano típico de sarta (Anexo XI, plano Nº 5)

√ Pérdidas de carga en la sarta

Para obtener los resultados de los cálculos hidráulicos de la pérdida de fricción en la sarta se utilizó la ecuación de Hazen-Willian teniendo como resultado 0.03 m. A continuación, los siguientes resultados:

✓ Pérdida por fricción en la sarta

$$h_f = 10.67 \left(\frac{Q^{1.85}}{C^{1.85} D^{4.87}} \right) L$$

Dónde:

Q: 0.00048 m³/s

C: 130 (Coeficiente de rugosidad)

L: 6.1 m

D: 0.0409 m

$$h_f = 10.67 \left(\frac{0.00048^{1.85}}{130^{1.85} \ 0.0409^{4.87}} \right) 6.1 = 0.03 \ m$$

√ Pérdida locales sarta

Para determinar las pérdidas locales en la sarta, lo primero es calcular la velocidad promedio del fluido utilizando la ecuación 12, donde se obtuvo un valor de 0.37 m/s, una vez obtenida la velocidad se realiza el cálculo de la pérdida local en la sarta con la ecuación 13, otorgando un valor de 0.06 m y para finalizar con la ecuación 13, logramos resolver la pérdida total en la sarta con un valor de 0.09 m. A continuación, los siguientes resultados:

Ecuación 12: Velocidad promedio del fluido (Sarta)

$$Q = V * A \Rightarrow V \frac{Q}{A} = \frac{Q}{\frac{\pi \phi^2}{4}} = \frac{4Q}{\pi \phi^2}$$

Dónde:

Q: 0.00048 m³/s

Ø: 0.0409 m

$$V = \frac{4(0.00048)}{\pi (0.0409)^2}$$

$$V = 0.37 \text{ m/s}$$

Una vez obtenido la velocidad promedio del fluido conseguimos deducir la pérdida local en la sarta mediante la ecuación 13 así mismo el factor de pérdidas locales (K) se encuentra en la tabla 19.

Ecuación 13: Perdida local (Sarta)

$$h_l = \sum K \left(\frac{v^2}{2g} \right)$$

Dónde:

h: Pérdida local en la sarta

K: 8.7 (coeficiente de resistencia)

V: 0.37 m/s

G: 9.81 m/s²

$$h(local) = K * \frac{v^2}{2g}$$

$$h(local) = 8.7 * \frac{(0.37)^2}{2(9.81)} = 0.06 m$$

Tabla 19: Lista de factor de perdidas locales "K"

Unidad	Componente	K
1	Unión dress de Ø 1 .1/2" H.F	0.3
1	Medidor Maestro Ø 2" Extremo con rosca	0.5
1	Válvula de CHECK H.F. Ø 1 1/2 Extremos con rosca	2.5
1	TEE de H.F. Ø 1 1/2" extremos con rosca	1.8
1	Válvula de alivio de H.F Ø1/2" Extremos con rosca	2.5
1	Válvula de pase de H.F. Ø 1 1/2 Extremo con rosca	0.2
1	Válvula de pase de H.F. Ø 1 1/2 Extremo con rosca	0.2
2	Codos de 45° x 1 1/2" H.F. extremos roscados	0.4
1	Unión dresser de Ø 1 1/2 para tubo PVC y H.G	0.3
Sumatoria	de coeficiente de resistencia	8.7

Fuente: Elaboración propia

✓ Pérdida de carga total en la sarta

Por medio de la ecuación 14 logramos conjeturar la pérdida de carga total en la sarta obteniendo el siguiente resultado:

Ecuación 14: Perdida de caga total (Sarta)

$$h total sarta = h_{friccion} + h_{local}$$

h total sarta = 0.03 m + 0.06 m = 0.09 m

4.5.8.3 Línea de conducción

✓ Diámetro teórico

Para el dimensionamiento de la línea de conducción (Anexo XII, plano № 6) se utilizó la ecuación de Bresse descrita en el inciso 7.2.2 de la norma (INAA, 1999a) con el objetivo de conocer el mejor diámetro , que económicamente y técnicamente sea el más óptimo. Se realizó comparaciones entre los diferentes diámetros de tubería, además deberán cumplir los rangos de velocidades entre 0.6 y 1.5 m/s (INAA, 1999b, pág. 53).

Para este procedimiento se aplicó la ecuación 15, con el propósito de encontrar el diámetro más económico para la línea de conducción de tal manera que se obtuvo un valor de 29 mm a como se muestra a continuación:

Ecuación 15: Diámetro teórico (Línea de conducción)

$$D = 0.9 (Q)^{0.45}$$

Dónde:

D: m

Q: 0.00048 m³/s

$$D = 0.9 (0.00048)^{0.45}$$

$$D = 0.03 = 29 \text{ mm}$$

✓ Diámetro comercial:

El diámetro comercial a seleccionar es 44.6 mm SDR-26 (160 psi ATM2241) de 1½" pulgadas con una longitud de 124.916 m, dicho diámetro es el más óptimo según la fórmula de Selección de Diámetros más eficiente para el sistema.

✓ Análisis hidráulico

A continuación, se presenta el análisis hidráulico de la línea de conducción con una longitud de 124.916 m, con tubería PVC de 1 ½" pulgadas SDR 26, (160 psi), ASTM 2241.

√ Velocidad

Basada en la ecuación 12 de la sección 4.5.8.2 se realizó el cálculo de la velocidad de flujo en la tubería logrando un valor de 0.31 m/s, debido a que la

velocidad no cumple de acuerdo a la norma (INAA, 1999b, pág. 53) se propone colocar suficientes válvulas de limpieza para eliminar los sedimentos en la tuberías. A continuación, el siguiente resultado:

$$\mathbf{Q} = V * A \Rightarrow V \frac{Q}{A} = \frac{Q}{\frac{\pi \phi^2}{4}} = \frac{4Q}{\pi \phi^2}$$

Dónde:

V: Velocidad, m/s

Q: 0.00048 m³/s

Ø: 0.0446 m

$$V = \frac{4(0.00048)}{\pi \ (0.0446)^2}$$

$$V = 0.31 \, \text{m/s}$$

√ Pérdida de carga (hf) en la línea de conducción

Para calcular la perdida en la línea de conducción será por medio de la ecuación 10 de Hazen-Wiliams descrita en la sección 4.5.8.1, así mismo el valor del coeficiente (C) lo tomaremos de la tabla número 6 de la norma (INAA, 1999b).La pérdida de carga en la línea de conducción tuvo un valor de 0.3 m. A continuación, el siguiente procedimiento:

$$h_f = 10.67 \left(\frac{Q^{1.85}}{C^{1.85} \; D^{4.87}} \right) L$$

Dónde:

Q: 0.00048 m³/s

D: 0.0446 m

C: 150 m

L: 124.916 m

$$h_f = 10.67 \left(\frac{0.00048^{1.85}}{150^{1.85} \ 0.0446^{4.87}} \right) 124.916 = 0.3 \ m$$

4.5.8.4 Carga dinámica total (CDT)

Ecuación 16: Carga estática de la descarga (CED)

 $CED = Cota \ del \ tanque - Cota \ del \ pozo + altura \ de \ rebose$

Dónde:

Cota del tanque: 878 m

Cota del pozo: 843.5 m

Altura del rebose: 2.7 m

$$CED = 878 m - 843.5 m + 2.7 m = 37.2 m$$

Ecuación 17: Carga dinámica total (CTD)

CTD = NB + CED + Pérdidas en columna de bombeo + pérdias en la sarta + Pérdidas en la descarga

Dónde:

NB: Nivel más bajo del agua durante el bombeo

CED: Carga estática de la descarga

$$CTD = 22.59 \text{ m} + 37.2 \text{ m} + 0.16 \text{ m} + 0.03 \text{ m} + 0.06 \text{ m} + 0.3 \text{ m}$$

$$CTD = 60.39 \text{ m}$$

$$CTD = 198.14 \text{ ft}$$

seccion 2 seccion 880.7 MSNM Rebose=880.7msnm 878 MSNM CED=37.2m HB = 60.39(sarta) NTN =843.5msnm Capa de saturacion =16.59m NE= 13.32m Acuífero NB=22.59 Nivel de referencia Abatimiento =3.27m variación estacionaria.=6m Cono de abastecimiento

Ilustración 4: Esquema de Línea de conducción

4.5.8.5 Golpe de ariete

En el diseño de la línea de conducción se calculó el golpe de ariete analizando la sobrepresión que soportara la tubería PVC de 1 ½" pulgadas SDR 26, (160 psi), ASTM 224.

Los valores de "K" para hallar la celeridad se tomaron de la tabla en anexo o si no también lo podemos calcular mediante la ecuación 18. A continuación el siguiente resultado:

Ecuación 18: Constante de tubería (Golpe de ariete)

$$k = \frac{10^{10}}{\epsilon}$$

Dónde:

K: Constante de la tubería

E: Elasticidad del PVC (3x108)

$$k = \frac{10^{10}}{3x10^8}$$

$$k = 33.33$$

✓ Celeridad

Considerando una línea de conducción de PVC SDR-26 de 1 ½" pulgada con diámetros de 60.3 mm interno y 44.56 mm externo, espesor de tubo de 1.85 mm, coeficiente de módulo de elasticidad de 33.33 mm, se establece la condición más crítica, ya sea por el cierre rápido o lento del equipo de bombeo instalado al inicio de la conducción, dicho cierre ocasiona energía cinética a energía de presión, provocando sobrepresión en la tubería y accesorios, dando como consecuencia una avería potencial en el sistema.

Con el fin de determinar el golpe de ariete en la línea de impulsión se requiere identificar ciertos parámetros que condicionan la línea como:

- ✓ Tiempo de ciclo de onda de presión.
- ✓ Tiempo de parada del agua.
- ✓ Tramo de máxima presión

En la tabla 19, se muestra los diferentes diámetros interno y externo de tuberías SDR – 26 (160 psi) de empresa AMANCO:

Tabla 20: Diámetros de tubería AMANCO (especificaciones ASTM D2241)

Diámetro nominal		Diámetro externo		Diámetros internos		Espesor mínimo de pared	
Pulgada	(mm)	Pulgada	(mm)	Pulgadas	(mm)	Pulgadas	(mm)
1	25	1.315	33.4	1.195	30.36	0.06	1.52
1 1/4	31	1.66	42.16	1532	38.92	0.064	1.62
1 ½	38	1.9	60.33	1.754	44.56	0.073	1.85
2	50	2.375	73.03	2.193	55.71	0.091	2.31
2 ½	62	2.875	88.9	2.665	67.45	0.11	2.79
3	75	3.5	114.3	3.23	82.04	0.135	3.43
4	100	4.5	168.28	4.154	105.52	0.173	4.39
6	150	6.625	219.08	6.115	155.32	0.225	6.48
8	200	8.625	273.05	7.961	202.22	0.332	8.43
10	250	10.75	323.85	9.3924	252.07	0.413	10.49

Fuente: Elaboración propia

De acuerdo a la información anterior se logró obtener la celeridad en la línea de conducción con la ecuación 19 obteniendo un valor de 346.19m/s.

Ecuación 19: Celeridad (Golpe de ariete)

$$a = \frac{9900}{\sqrt{48.3 + k\frac{D}{e}}}$$

Dónde:

K: 33.33 mm (Coeficiente que tiene en cuenta los módulos de elasticidad)

D: 44.56 mm

E: 3x10^8 mm (Módulo de elasticidad del material del tubo PVC)

E: 1.85 mm (Espesor del tubo)

$$a = \frac{9900}{\sqrt{48.3 + 33.33 \left(\frac{44.56}{1.85}\right)}} = 346.19 \text{ m/s}$$

√ Tiempo de ciclo de onda de presión

Para considerar las peores condiciones de funcionamiento se necesita la "L" como longitud de la tubería y la celeridad "a", ya que estos son los criterios importantes al momento de calcular el tiempo de clico de la onda de presión, dicho cálculo se realizará mediante la ecuación 20 para lograr un tiempo de 0.72 segundos.

Ecuación 20: Tiempo de ciclo de onda de precisión (Golpe de ariete)

$$TC = \frac{2L}{a}$$

Dónde:

TC: Tiempo critico

A: 346.19 m/s

L: 124.916 m

$$TC = \frac{2(124.916 \text{ m})}{(\frac{346.19 \text{ m}}{\text{S}})} = 0.72 \text{ seg}$$

√ Tiempo de parada del agua

Para calcular el tiempo de parada del agua es obligatorio tomar en cuenta los siguientes criterios que describe Mendiluce, el primer es el coeficiente "C" es un ajuste emperico en función de las pendientes hidráulicas crecientes de hasta el 20% y se reduce progresivamente a partir de este valor hasta hacerse cero para pendientes del 40%. Dicho coeficiente se determina mediante la ecuación 21, a continuación, el siguiente procedimiento:

Ecuación 21: Pendiente hidráulica (Golpe de ariete)

$$m = \frac{Hm}{L}$$

Dónde:

m: Pendiente hidráulica

Hm: 60.39 m

L: 124.916 m

$$m = \frac{60.39 \text{ m}}{124.916 \text{ m}} = 0.48 \text{ m}$$

Según Mendiluce la pendiente hidráulica (m) toma el valor del coeficiente "C", dicho valor se evalúa con las siguientes condiciones: si Hm/L es menor a 0.20 entonces C = 1, si Hm/L es mayor o igual a 0.40 entonces C = 0, pero si Hm/L es igual a 30 entonces C = 0.60.

De acuerdo al valor obtenido en la ecuación 21 y las condiciones antes mencionadas logramos obtener un coeficiente "C" de 0.8

Como segundo criterio tenemos que el coeficiente "K" depende de la longitud de la tubería y se puede obtener a partir de las condiciones descritas por Mendiluce a continuación en la tabla 21 se muestran los siguientes valores:

Tabla 21: Valores para coeficiente "K" según Mendiluce

L	K
L < 500	2
L = 500	1.75
500 < L <	
1500	1.5
L = 1500	1.25
L > 500	1

Fuente: Elaboración propia

Una vez definido cada valor según se criterio se determina el tiempo de parada a través de la ecuación 22 de Mendiluce logrando un tiempo de parada de 0.93 segundo a continuación, el siguiente procedimiento:

Ecuación 22: Tiempo de parada del agua (Golpe de ariete)

$$T = C + \frac{K * L * V}{g * H_m}$$

Dónde:

C: 0.8

K: 2

L: 124.916 m

V: 0.31 m/s

G: 9.81 m/s²

Hm: 60.39 m

$$T = 0.8 + \frac{2 * 124.916 \text{ m} * \frac{0.31 \text{m}}{\text{s}}}{9.81 * 60.39 \text{ m}} = 0.93 \text{ seg}$$

La evaluación del tiempo de parada con relación al tiempo del ciclo de la onda de presión se realiza mediante las ecuaciones 23 y 24:

Ecuación 23: Condición de cierre lento (Golpe de ariete)

$$T > \frac{2L}{a}$$
 cierre lento

Ecuación 24; Condición de cierre rápido (Golpe de ariete)

$$T < \frac{2L}{a}$$
; cierre rapido

Una vez obtenido los datos se realizó la evaluación del tiempo de parada (T) de acuerdo a la ecuación 22 logrando un valor de 0.93 segundos, esto significa que tendremos un cierre lento ya que el tiempo del ciclo de la onda de presión (TC) fue de 0.72 segundos inferior al tiempo de parada en la válvula de retención.

✓ Tramo de máxima presión

Para determinar la distribución de las presiones máximas a lo largo de la tubería se utilizó la ecuación 25 de tal manera que el resultado se evaluará según las condiciones de impulsión corta (Allievi) o impulsión larga (Michaud). A continuación, los siguientes resultados:

Ecuación 25: Tramo de máxima de presión (Golpe de ariete)

$$L_c = \frac{a * T}{2}$$

Dónde:

Lc: Longitud crítica

A: 346.19 m/s

T: 0.93 segundos

$$L_c = \frac{(346.19 \text{ m/s})(0.93 \text{ seg})}{2} = 161.09 \text{ m}$$

Para determinar el tipo de impulsión se evaluó la longitud a través de las siguientes condiciones:

$$L > L_c$$
; impulsion larga aplica allievi

$$L < L_c$$
; impulsion corta, aplica Michaud

Aplicando la condición anterior, teniendo en cuenta que la longitud total de la tubería es de 124.916 m, la cual es menor que la longitud crítica se concluye que la impulsión es corta, a como se muestra a continuación:

Dónde:

L: 124.916 m

Lc: 161.09 m

124.916 m < 161.09 m, entonces es impulsion corta

√ Sobre presión por golpe de ariete

Para conocer la sobrepresión causada por el golpe de ariete se utilizó la ecuación 26 de Michaud debido a que el tiempo de parada (T) es mayor el tiempo de la onda de presión (Tc) y se trata de una impulsión corta como se indicó anteriormente, por lo tanto, se obtuvo un valor de 8.48 m, para la sobre presión, como se observa a continuación.

Ecuación 26: Sobre presión por golpe de ariete

$$\Delta H = \frac{2 * L * V}{g * T}$$

Dónde:

L: 124.916 m

V: 0.31 m/s

G: 9.81 m/s²

T: 0.93 m

$$\Delta H = \frac{2(124.916 \text{ m})0.31\text{m/S}}{9.81\frac{\text{m}}{\text{s}^2} (0.93 \text{ seg})} = 8.48 \text{ m}$$

✓ Presión máxima sobre la instalación

La presión máxima ejercida en las paredes de la tubería de la línea de conducción está dada por la sumatoria de la carga estática y la sobrepresión ocasionada por golpe de ariete, la cual se calculó con la ecuación 27, obteniendo un valor de 55.55 m, equivalente a 78.88 PSI.

Ecuación 27: Presión máxima (Golpe de ariete)

$$Pmax = (Hm - Nivel dinamico del pozo) + \Delta H$$

$$Pmax = (60.39 \text{ m} - 13.32 \text{ m}) + 8.48 \text{ m} = 55.55 \text{ m}$$

Así mismos, la presión de trabajo de la tubería PVC SDR-26, propuesta en el diseño es 112 m, valor superior a la máxima presión en la línea de conducción que alcanza 55.55 m, por tanto, se concluye que el tipo de tubería adoptada es adecuada para la línea de conducción.

A continuación, en la ilustración 5 se muestra la gráfica de las distribuciones de energía en el golpe de ariete.

Ilustración 5: Esquema de presión de golpe de ariete LGA Ah=8.48m Lp Hf=0.6m Lce p/Y=2]7m Tubería de línea de conducción Hm=60.39m Hg=37.27m Saria y sus partes Tanque $\Delta z = 34.5 \text{m}$ L=124.91m<Lc161.09m Tubería de succión

✓ Selección de la bomba

Para poder elegir la bomba más adecuada se tomó en cuenta los siguientes aspectos: carga dinámica total calcula en la sección 4.4.8.3 que equivale a 60.39 m, caudal calculado en la sección 4.4.7 de 0.48 lps y también añadiremos el 70% de eficiencia de la bomba.

Una vez recolectada la información se calcula la potencia teórica de la bomba utilizando la ecuación 28, en el cual obtuvimos un resultado de 0.55 HP.

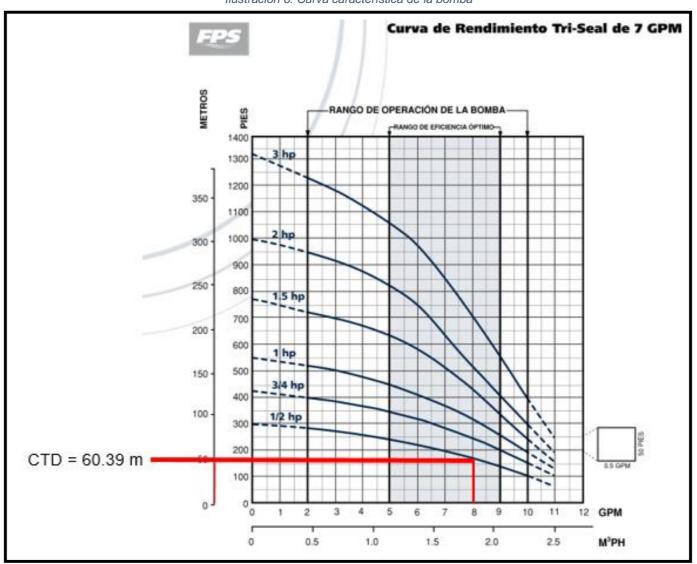
Ecuación 28: Potencia de la bomba (HP)

$$NB = \frac{\gamma * C. T. D * Q}{EB(746)}$$

Dónde:

NB: Potencia de la bomba, Hp

y: 997 N/m³ (peso específico del agua, a temperatura 23º C)


C.T.D: 60.39 m

Q: 0.00048 m³/s

EB: Eficiencia de la bomba, 70 %

$$NB = \frac{(997)(9.81)(60.39 \text{ m})(0.00048 \text{ m}^3/\text{s})}{70 \% (746)} \text{ 0.55 HP}$$

Ilustración 6: Curva característica de la bomba

Según en la sección 6.3 de la normativa (INAA, 1999b, pág. 37), se deben proyectar dos unidades de bomba como mínimo, siendo una de reserva, de esta forma se adoptó una bomba comercial Franklin Electric Serie BT4 -15 GPM con potencia de ½ Hp para los primeros 10 años, y para el segundo periodo se utilizara la misma potencia de bomba ya que sus características son aproximadamente iguales de acuerdo al primer periodo, en la ilustración 6 se muestra la curva característica.

No obstante, la bomba seleccionada en el punto óptimo operación producirá un caudal de 0.50 L/s, mayor al caudal de consumo máximo diaria (CMD), que es de 0.48 L/s. De mencionar que la bomba de ½" Franklin es la de menor potencia en el mercado. En sección de simulación hidráulica se hará una simulación de línea de conducción con la curva H-Q de bomba antes mencionada.

4.5.9 Almacenamiento

La normativa (INAA, 1999, pág. 57) en el capítulo referente al almacenamiento indican que el tanque de almacenamiento debe estimarse en un 35% del consumo promedio diario (15% destinado a compensar las variaciones horarias del consumo y 20% de reserva para atender eventualidades en caso de emergencias como son reparaciones en Obra de fuente o Línea de Conducción).

4.5.9.1 Dimensionamiento

Para el dimensionamiento del tanque se llevó a cabo mediante la normativa (INAA, 1999b, pág. 57) para el respectivo cálculo del volumen compensador (VC) utilizando la ecuación 29 se obtuvo un valor de 2.46 m³, así mismo con la ecuación 30 se calculó el volumen de reserva (VR) teniendo como resultado 3.28 m³ y para finalizar con la ecuación 31 se calculó el volumen total (VT) dando como resultado 5.74 m³. Este tipo de tanque se diseñó también a partir de las 16 horas de bombeo bajo la normativa INAA.

A continuación, se presentan los cálculos para la determinación del volumen de almacenamiento:

Ecuación 29: Volumen compensador (Dimensionamiento)

$$VC = 15\%(CPD \text{ en } l/S)$$

Dónde:

VC: Volumen compensador, m³

CPD(población): Consumo promedio diario, m³

 $VC = 15\%(0.28 \text{ lps}) = 0.04 \text{ lps} (16 \text{ horas})(3600 \text{ segundos})(0.001 \text{ m}^3) = 2.46 \text{ m}^3$

Ecuación 30: Volumen de reserva (Dimensionamiento)

$$VR = 20\%(CPD)$$

Dónde:

VR: Volumen de reserva, m³

CPD (población): Consumo promedio diario, m³

 $VR = 20\%(0.28 \text{ lps}) = 0.056 \text{ lps} (16 \text{ horas})(3600)(0.001 \text{ m}^3) = 3.28 \text{ m}^3$

Ecuación 31: Volumen total (Dimensionamiento)

$$VT = 35\%(CPD)$$

Dónde:

VT: Volumen total, m³

CPD (población): Consumo promedio diario, m³

 $VT = 35\%(0.28 \text{ lps}) = 0.098 \text{ lps} (16 \text{ horas})(3600 \text{ segundos})(0.001 \text{ m}^3) = 5.74 \text{ m}^3$

4.5.9.2 Localización del tanque de almacenamiento

El tanque de almacenamiento se localiza en la cota 878.000 msnm (Anexo XVI, plano Nº 10), cabe mencionar que esta ubicación es la más cercana al sector el "El Plan" tomándose en cuenta la topográfica del terreno, de esta manera brindara presiones aceptables en los puntos de distribución.

4.5.9.3 Tipo de tanque a utilizar

De acuerdo a la falta de material para la elaboración del tanque de almacenamiento se realizó la propuesta de colocar un tanque vertical tipo

Rotaplas echo de polietileno con dimensiones de 2.70 m de altura y un diámetro de 2.40 m para una capacidad de 10 m³ lo cual podrá almacenar el volumen de agua calculado en el inciso 4.4.9.1, dicho tanque será colocado sobre una losa de concreto ubicado en la parte más alta del sector con el propósito de lograr presiones adecuada a la red de distribución. (Anexo XVI, plano Nº 10).

4.5.10 Desinfección

4.5.10.1 Tratamiento

Según el resulto de los análisis de metales pesados, fisicoquímicos y bacteriológico se determinó no utilizar ningún tratamiento adicional más que la desinfección preventiva con cloro para garantizar la calidad del agua y eliminar los coliformes totales de acuerdo a las norma (INAA, 1999b, págs. 96-99).Para que los habitantes del sector gocen de agua libre de bacterias, virus y amebas será necesario incorporar un sistemas de desinfección .

4.5.10.2 Dosificación

De acuerdo a la normativa (INAA, 1999a, pág. 56) se utilizara el Hipoclorito de sodio diluyendo previamente la solución concentrada de fábrica (130 gr/L) con agua limpia hasta una concentración máxima de 1% al 3%, para su debida dosificación, se usara un hipoclorador de carga constante de fabricación nacional. Ver Anexo VIII. Plano típico del hipoclorador.

Mediante la ecuación 32 se logró obtener la capacidad unitaria de la estación lo cual nos dio como resultado de 0.1215 Kg/día sobre L/s, así mismo con la ecuación 33 se calcula la capacidad unitaria del proyecto obteniendo un resultado de 0.094 Kg/día mediante un bombeo de 16 horas, esto corresponde a una aplicará de 93,706.55 mg/día.

El volumen bombeado diario se realizó a través de la ecuación 34 dando como resultado 44.26 m³/día, por lo tanto, utilizaremos una dosis previamente calculada con la ecuación 35 lo cual tiene un valor de 2.12 mg/L.

La capacidad de diseño de la estación de cloración Kg, Cloro/día se calculó mediante el uso de la ecuación 36 o cual nos dio de 0.09 Kg cloro/día, el volumen de cloro comercial se efectuó con la ecuación 37 obtenido un valor 0.72 L/dia, el volumen de agua limpia para diluir el cloro comercial se calculó con la ecuación

38 teniendo como resultado 4.49 litros de agua lo cual se le aplicara 97.67 gotas de cloro comercial. A continuación, se mostrarán los siguientes resultados:

Ecuación 32: Capacidad unitaria (Dosificación)

$$Ca = \frac{1 \text{ Kg/dia}}{8.2 \text{ L/s}}$$

Dónde:

Ca: Capacidad unitaria (Kilogramos días/ litros por segundo)

Para 130 gpm = 8.20 L/s (Hipoclorador para capacidades menores de 1 Kg/dia)

$$Ca = \frac{1 \text{ Kg/dia}}{8.2 \text{ L/s}} = 0.1215 \frac{\text{Kg/dia}}{\text{L/s}}$$

Dado que nuestro Consumo Máximo Hora (CMH) es de 0.77 lps, la capacidad unitaria del proyecto se hará mediante la siguiente ecuación:

Ecuación 33: Capacidad unitaria del proyecto (Dosificación)

Ca (proyecto) =
$$Q \frac{l}{s}$$
 (Ca unitaria)

Ca (proyecto) =
$$0.77 \frac{l}{s} (0.1215) = 0.094 \text{ kg/dia}$$

El volumen bombeado diario se determinará mediante la siguiente ecuación:

Ecuación 34: Volumen Bombeado (Dosificación)

$$V(bombeado) = Hr de Bombeo (Q \frac{L}{s})$$

V(bombeado) = (16 Hr) * (3600 seg)
$$\left(0.77 \frac{l}{s}\right) = 44,259.48 \frac{l}{dia} = 44.26 \text{ m}^3/\text{dia}$$

Previamente se calcula la dosis a utilizar en la siguiente ecuación:

Ecuación 35: Dosis de cloro (Dosificación)

$$C = \frac{\text{Peso cloro en } \frac{\text{mg}}{\text{dia}}}{\text{Volumen Bombeado } \frac{L}{\text{dia}}}$$

$$C = \frac{93,706.55 \frac{\text{mg}}{\text{dia}}}{44,259.48 \frac{\text{L}}{\text{dia}}} = 2.12 \text{ mg/L}$$

La capacidad requerida para la estación de cloración se realizará a través de la siguiente la ecuación:

Ecuación 36: Capacidad de diseño de la estación de cloración (Dosificación)

$$Ca = \frac{Q(C)}{1000}$$

Dónde:

Ca: Capacidad de diseño de la estación de cloración Kg. Cloro/dia

Q: Caudal de agua, máximo horario m³/dia.

C: Dosis de cloro a aplicar mg/L

$$Ca = \frac{(44.26 \frac{\text{m}^3}{\text{dia}})(2.12 \text{ mg/dia})}{1000} = 0.09 \text{ Kg cloro/dia}$$

El volumen del cloro comercial se deducirá a través de la siguiente ecuación teniendo como parámetro: 1 litro de cloro comercial contiene una concentración de 130 gr/L.

Ecuación 37: Volumen de cloro comercial (Dosificación)

$$V = \frac{\text{Ca (proyecto)}}{\text{Concentracion de cloro comercial}}$$

$$V = \frac{93.7 \text{ gr/dia}}{130 \text{ gr/L}} = 0.72 \text{ L/dia}$$

Para el proceso de dilución del cloro con el agua limpia la normativa manda un rango de 1% a 3% lo cual adoptaremos por un 2%, a continuación, el siguiente cálculo:

Ecuación 38: Volumen de agua limpia (Dosificación)

$$V(agua) = \frac{V(cloro)en\ litros(Concentracion\ comercial)}{Porcentaeje\ a\ diluir}$$

$$V(agua) = \frac{(0.72 \text{ L/dia})(13\%)}{2\%} = 4.49 \text{ litros de agua}$$

Esta significa que se debe diluir 0.70 litros de cloro comercial al 13 % con aproximadamente 5 litros agua, para obtener una solución al 2% de cloro que se aplicara en el tanque con un hipoclorador de flujo constante.

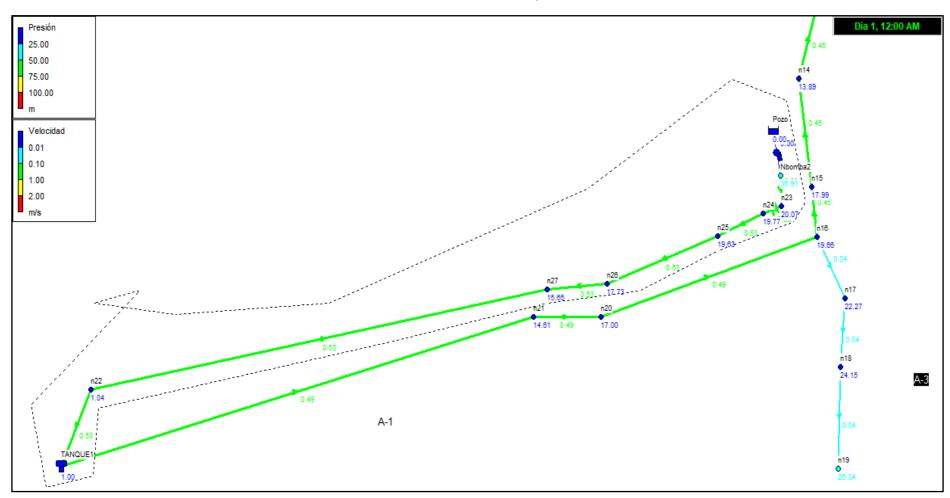
Para la aplicación de cloro se debe saber que 20 gotas es 1 ml y 1 litro 1000 ml, por lo tanto 20,000 gotas es 1 litro, como son 5 litros de agua se tendrá 90,000 gota, las que se aplicaran en 16 horas, lo que corresponde a 960 minutos, por tanto, en la siguiente formula se aplicara:

Ecuación 39: Aplicación de cloro (Dosificación)

$$\frac{93,706.55}{960}$$
 = 97.61 gotas/minutos

4.5.11 Análisis hidráulico, simulación Epanet

El análisis hidráulico del acueducto se realizó mediante simulaciones en Epanet para lo que se tomó en cuenta el sistema de bombeo que incluye la columna de bombeo, sarta, línea de conducción por bombeo y red de distribución.


Para los cálculos hidráulicos en la línea de conducción y la red de distribución se configuraron los parámetros de los valores por defecto de la manera siguiente: Pérdida de carga con la ecuación de Hazen-Williams, unidades de caudal (lps), unidades de pérdidas de carga (m), coeficiente (C) de Hazen-Williams con un valor de 150 para tubería PVC y 130 para tunería de hierro galvanizado.

A continuación, se describen las características de la línea de conducción y red de distribución en el sector "El Plan" ubicado en la comunidad de Santa Bárbara.

4.5.11.1 Línea de conducción por bombeo

La línea de conducción (Anexo XV, plano Nº 9) con una longitud total de 124.916 m y un diámetro de 1½" pulgada tubería PVC SDR- 26 norma ASTM 2164, fue calculada y descrita en el inciso 4.5.8.3. No obstante, también se hizo la simulación con el software EPANET teniendo en cuenta la longitud y diámetro antes mencionado, así como una columna de bombeo de 22.59 m y sarta de 6.10 m, conectada a una bomba sumergible de ½ HP como se observa en la ilustración 7, (Anexo XVII plano Nº 11 línea de conducción, indicado tuberías diámetros y accesorios)

Ilustración 7:Linea de conducción por bombeo

La bomba aportó un caudal de 0.51 L/s, con una altura manométrica de 58.98 m, sin embargo, el caudal de la bomba supera el caudal del consumo máximo diario que fue calculado en 0.48 L/s. Se observa, por tanto, que el caudal real en la línea de conducción será superior al caudal teórico calculado.

Ahora bien, partiendo de la característica antes citadas de la estación de bombeo, se obtuvo una velocidad de flujo en la línea de conducción de 0.33 m/s, además velocidades en la columna de bombeo y sarta de 0.39 m/s. De este modo, la velocidad en la línea de conducción fue cercana a la velocidad mínima de 0.6 m/s, mientras que las velocidades de la columna de bombeo y sarta no cumplen con lo recomendado en la norma (INAA, 1999b, pág. 53).

También resultó una pérdida de carga por fricción de 3.01 m/km en línea de conducción, 15.43 m/km en la sarta y 4.56 m/km en la columna de bombeo. Los valores más altos de pérdidas en la sarta y columna de bombeo se deben a que en éstas, la tubería es HG la cual tiene mayor rugosidad que la tubería PVC de la línea de conducción, así mismo en la sarta ocurren pérdidas locales por accesorios. Los resultados detallados se presentan en la tabla 22.

Tabla 22: Resultados por tuberías de la línea de conducción

L	L - CONDUCCION Tabla de Red - Líneas en 16:00 Horas									
						Perd.				
	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Unit.	Cloro			
ID Línea	m	mm		LPS	m/s	m/km	mg/L			
Tubería 1	5	44.6	150	0.51	0.33	3.01	0			
Tubería p25	82.42	44.6	150	0.51	0.33	3.01	0			
Tubería p24	10.62	44.6	150	0.51	0.33	3.01	0			
Tubería p23	20.8	44.6	150	0.51	0.33	3.01	0			
Tubería p22	6.076	44.6	150	0.51	0.33	3.01	0			
Tubería sarta										
p21	6.1	40.94	150	0.51	0.39	15.43	0			
Tubería										
columna										
de bombeo	28.59	40.94	150	0.51	0.39	4.56	0			
Longitud total										
de L -										
CONDUCCION	153.606					CTD				
	No	No	No							
Bomba 1	Disponible	_	_	0.51	0	-58.98	0			

En la ilustración 8 se muestra el perfil del terreno natural de la línea de conducción (Anexo XVII, plano Nº 11), lo que se ilustra desde el pozo hasta el tanque. También se presenta la gradiente de hidráulica en la ilustración 8, donde se presenta la altura piezométrica,

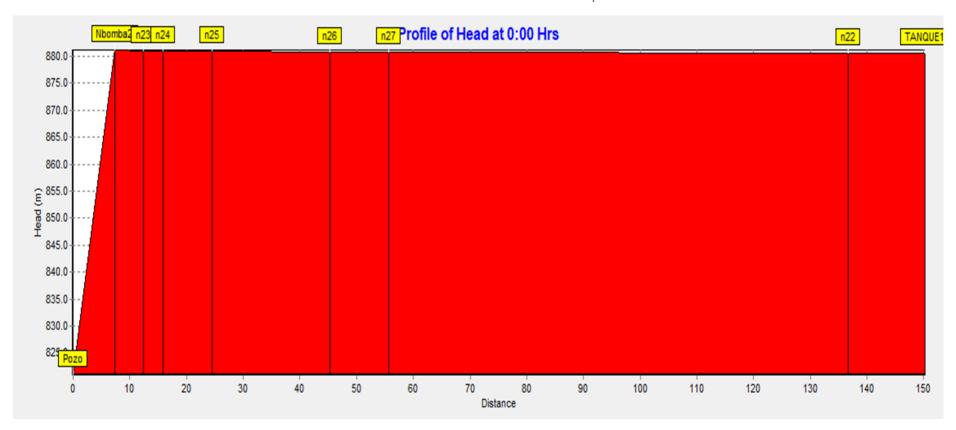
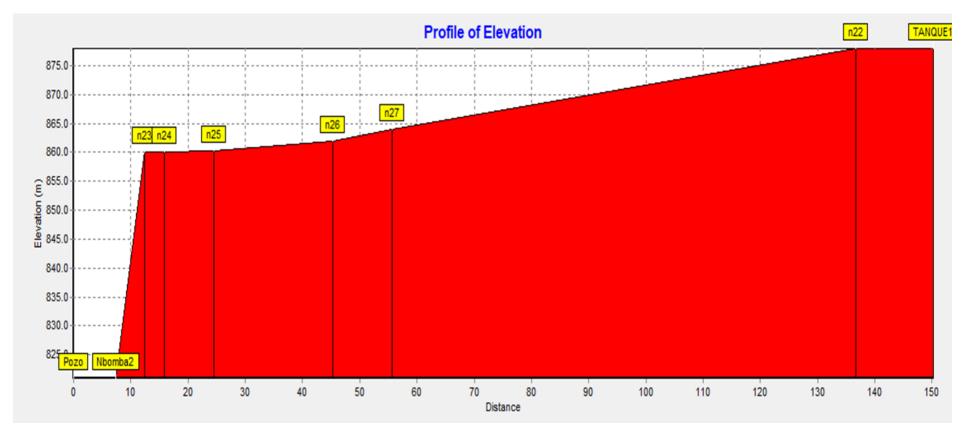



Ilustración 8: Perfil de cabeza en línea de conducción por bombeo

Ilustración 9: Perfil de elevación en línea de conducción por bombeo

En la ilustración 10, se presenta el perfil de presiones siendo la mayor de 37.02m y corresponde a la presión manométrica de la bomba en la columna de bombeo, luego la presión descienda en la sarta a 20.18m y continúa descendiendo gradualmente en la medida que ocurren las pérdidas de carga por fricción hasta llegar al tanque con una presión de 1.12 m en la descarga (Tabla 23).

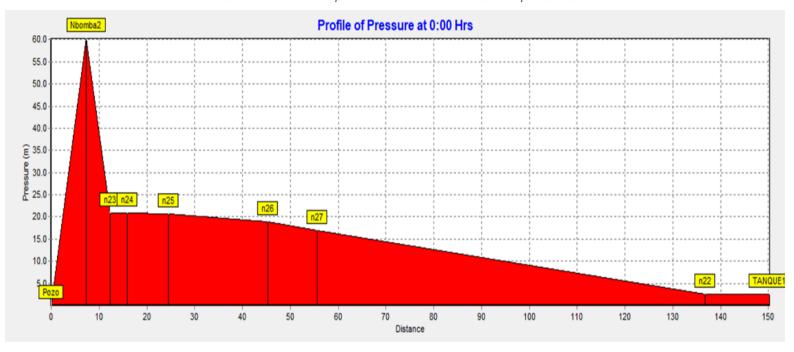


Ilustración 10: Perfil de presiones en línea de conducción por bombeo

Fuente: Elaboración propia

También se observa en la tabla 23, que el tanque tiene una dosis de cloro de 2.12 mg/L, el cual después de 16 horas alcanza un valor de cloro residual de 0.39 mg/L, los valores de cloro están en el rango recomendado por la norma que marca un mínimo de cloro residual de 0.20 mg/L y un máximo de 0.50 mg/L (INAA, 1999b, pág. 99).

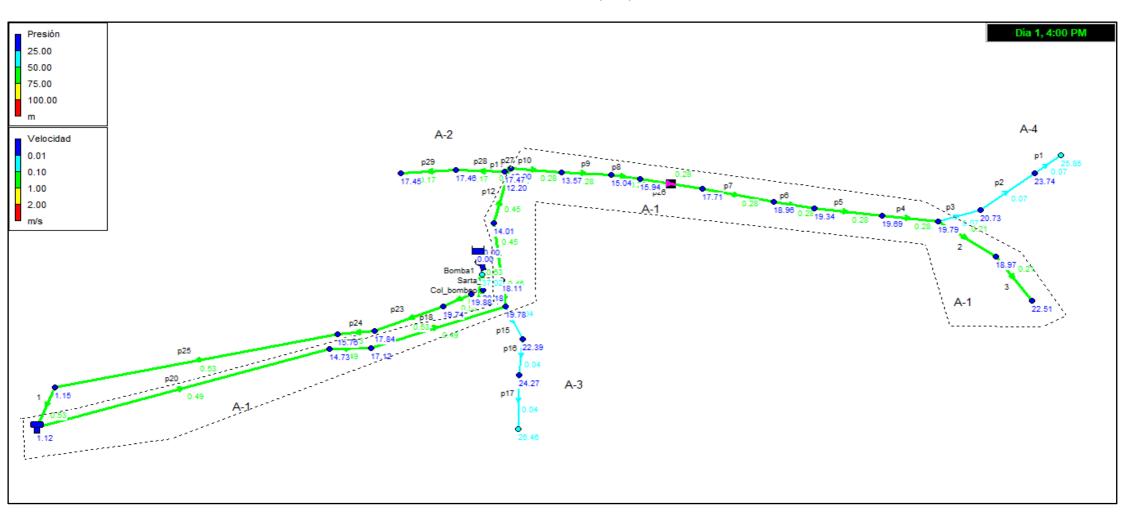
4.5.11.2 Análisis hidráulico simulación de la red de distribución

✓ Demandas nodales en la red de distribución

En la fase de diseño, una vez definida la configuración geométrica de la red de distribución se calcularon las demandas nodales partiendo del caudal de consumo máximo horario (CMH) cuyo valor fue de 0.77 L/s. La distribución del caudal en nodos concentrados se realizó en base a la distribución espacial de las viviendas, los resultados se presentan en la tabla 24.

Tabla 24: Caudales en nodos concentrados

Demanda nodales								
Zona	Vivienda (unid)	Nodos	Caudal L/s					
A -1	15	n32	0.33					
A -2	12	n30	0.26					
A -3	3	n19	0.07					
A -4	5	n4	0.11					
Total	35		0.77					


Fuente: Elaboración propia

Cómo se observa en la tabla 24, la red de distribución se dividió en cuatro subredes atendiendo a la distribución espacial de la población. Así mimo para la simulación hidráulica se tomó en consideración los criterios de velocidades en un rango de 0.4 m/s a 2.0 m/s y presiones en un rango de 5.0 m y 50.0 m (INAA, 1999a, pág. 16). A continuación, se describen las 4 subredes en que fue divida la red de distribución.

✓ Red de distribución principal A-1

En la ilustración 11 se presenta la topología de la red de distribución con sus 4 sectores. La red principal Red A-1, está indicada con líneas punteadas, y se ilustra la trayectoria de la red, conservándose que ella cubre la mayor parte de la comunidad, en dirección este-oeste, estando el tanque en la zona este.

Ilustración 11: Red A1, principal

La red principal Red A-1 (Anexo XVIII, plano Nº 12), fue diseñada con tubería PVC 1 ½" SDR 26 norma ASTM 2164, tiene una longitud de 341.757m. Por la red fluyen según la tabla 24, caudales que van desde 0.77 L/s al inicio de la misma, reduciéndose gradualmente a 0.70 L/s, 0.44 L/s, y 0.22 L/s, en la medida que se entrega agua a los ramales secundarios como se muestran en la ilustración 10. La red principal dará servicio a 15 viviendas

En la tabla 25 también se presentan las velocidades de flujo las cuales inician con 0.49 m/s al inicio de la red y descienden hasta 0.21 L/s al final de la red. Las velocidades al final de red son inferiores a lo recomendado por la norma (INAA, 1999a, pág. 16), lo que presentará problemas de sedimentación, no obstante la red será dotada de válvulas de limpieza para evitar la sedimentación excesiva.

Las pérdidas de carga también se reducen en la medida que la red entrega caudal a las redes secundarias, los valores de las pérdidas de carga por fricción alcanzaron un máximo de 6.47 m/km a un mínimo de 1.35 m/Km, como se observa en la tabla 25.

También se presentan los valores de cloro residual después de 16 horas de aplicación encontrándose que los valores variaron en un rango de 0.39 mg/L a 0.44 mg/L y ellos se encuentran en el rango recomendado por la norma que es de 0.2 mg/L a 0.5 mg/L (INAA, 1999b, pág. 99).

Tabla 25: Resultados de tuberías en la Red A1

	Tabla de Red - Líneas en 16:00 Horas									
RED-1	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Perd. Unit.	Cloro			
ID Línea	m	mm		LPS	m/s	m/km	mg/L			
Tubería p20	79.38	44.6	150	0.77	0.49	6.47	0.39			
Tubería p19	11.95	44.6	150	0.77	0.49	6.46	0.4			
Tubería p18	39.91	44.6	150	0.77	0.49	6.47	0.4			
Tubería p14	8.391	44.6	150	0.7	0.45	5.42	0.4			
Tubería p13	18.22	44.6	150	0.7	0.45	5.42	0.4			
Tubería p12	14.03	44.6	150	0.7	0.45	5.42	0.41			
Tubería p11	3.679	44.6	150	0.7	0.45	5.44	0.41			
Tubería p10	14.49	44.6	150	0.44	0.28	2.29	0.41			
Tubería p9	14	44.6	150	0.44	0.28	2.3	0.41			
Tubería p8	8.308	44.6	150	0.44	0.28	2.29	0.42			
Tubería p26	17.85	44.6	150	0.44	0.28	2.29	0.42			
Tubería p7	20.38	44.6	150	0.44	0.28	2.3	0.42			
Tubería p6	11.69	44.6	150	0.44	0.28	2.29	0.43			

Tubería p5	19.15	44.6	150	0.44	0.28	2.3	0.43
Tubería p4	15.67	44.6	150	0.44	0.28	2.29	0.43
Tubería p2	19.531	44.6	150	0.33	0.21	1.34	0.44
Tubería p3	25.128	44.6	150	0.33	0.21	1.35	0.43
Longitud tota			341.7	57 m			

En la ilustración 12, se presenta el perfil del terreno natural, (Anexo XVIII, plano Nº 12) el cual muestra un el relieve ondulado, en el punto más alto se ubica el tanque y el más bajo está en nodo n32 al final de la red A-1.

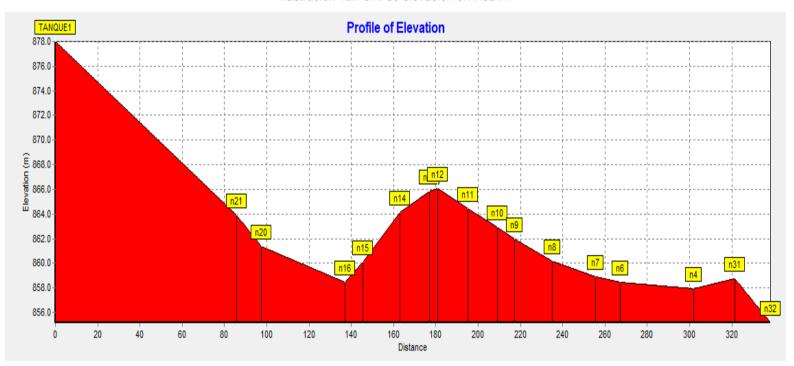
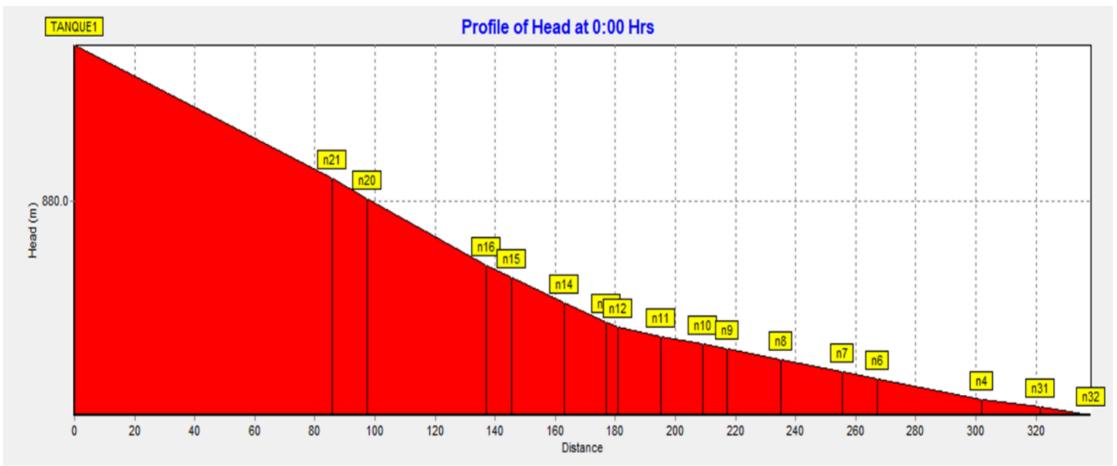



Ilustración 12:Perfil de elevación en Red A1

Fuente: Elaboración propio

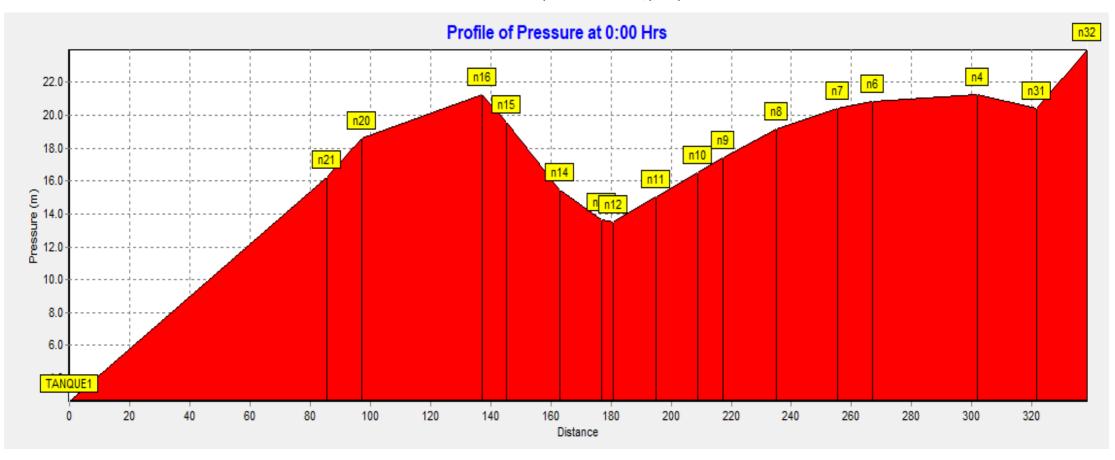

También en la ilustración 13, se presenta la gradiente hidráulica de la red principal Red A-1, se observa la línea piezométrica, con pendientes que obedecen a la pérdida de carga, siendo mayores al inicio a causa del mayor caudal que fluye en la tubería y menores al final de la red, dónde los caudales después del consumo son menores.

Ilustración 13:Perfil de cabeza en Red A1, principal

La ilustración 14, presenta el perfil de presiones a lo largo de la red, observándose la mínima en el tanque y la máxima en el nodo n32 que es el punto más bajo de la red principal Red A-1.

Ilustración 14:Perfil de presión en Red A1, principal

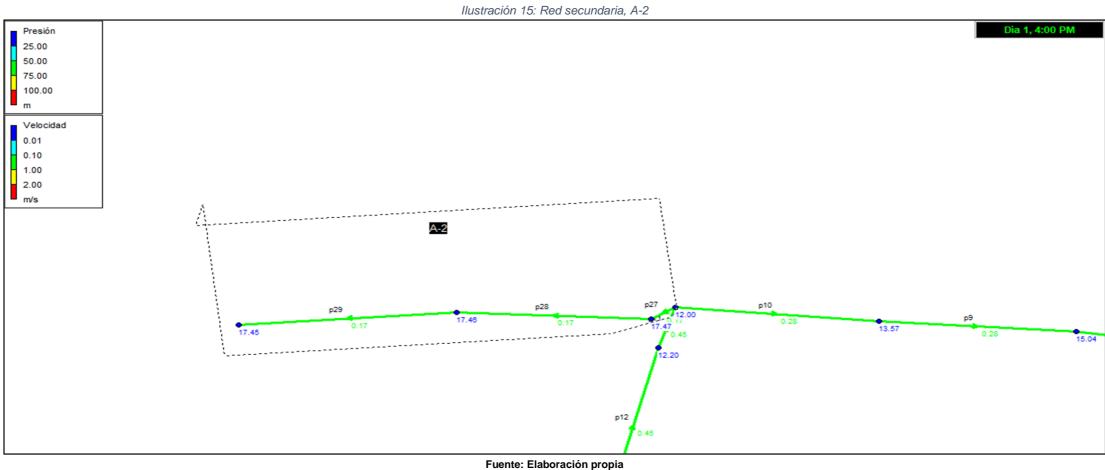

Los resultados de la tabla 25, presentan las variaciones de la altura piezométrica y presiones; con relación a las presione la mínima de 1.3 m se da en el tanque, no obstante en la red propiamente, las presiones oscilaron entre 14.7 m y 22.69 m, todo los valores están en el rango que recomienda la norma la cuan manda un mínimo de 5 m y máximo de 50 m (INAA, 1999a, pág. 16).

Tabla 26: Resultados por nodos de la red principal Red A-1

Tabla de Red - Nudos en 16:00 Horas									
RED-1	Cota	Demanda Base	Calidad inicial	Altura	Presión	Cloro			
ID Nudo	m	LPS	m/g/L	m	m	mg/L			
Deposito TANQUE -1	878	No Disponible	2.12	879.3	1.3	0.22			
Conexión n21	863.873	0	0	878.79	14.91	0.4			
Conexión n20	861.406	0	0	878.71	17.3	0.4			
Conexión n16	858.487	0	0	878.45	19.96	0.4			
Conexión n14	864.118	0	0	878.31	14.19	0.41			
Conexión n15	860.111	0	0	878.41	18.29	0.4			
Conexión n13	865.851	0	0	878.23	12.38	0.41			
Conexión n12	866.032	0	0	878.21	12.18	0.41			
Conexión n11	864.422	0	0	878.18	13.76	0.41			
Conexión n10	862.925	0	0	878.15	15.22	0.42			
Conexión n9	862	0	0	878.13	16.13	0.42			
Conexión n8	860.194	0	0	878.09	17.89	0.42			
Conexión n7	858.897	0	0	878.04	19.14	0.43			
Conexión n6	858.489	0	0	878.01	19.52	0.43			
Conexión n5	858.098	0	0	877.97	19.87	0.43			
Conexión n4	857.958	0	0	877.93	19.97	0.43			
Conexión n31	858.749	0	0	877.91	19.16	0.44			
Conexión n32	855.18	0.33	0	877.87	22.69	0.44			

✓ Red Secundaria A-2

En la ilustración 15 se presenta la topología de la red secundaria red A-2, la cual está indicada con líneas punteadas que indican la trayectoria de la red, conservándose que ella cubre el sector noreste de la comunidad.

La red secundaria Red A-2 (Anexo XIX plano Nº 13), fue diseñada con tunería PVC 1 ½" SDR 26 norma ASTM 2164 tiene una longitud de 34.918 m. Por la red fluyen según la tabla 27, un caudal de 0.26 L/s para abastecer a 12 familias (tabla 27).

En la tabla 27 también se presentan las velocidades de flujo las cuales son de 0.17 m/s a largo de la red. Las velocidades son inferiores a las recomendadas por la norma (INAA, 1999a, pág. 16), por lo que se prevé, la instalación de válvulas de limpieza y mantenimiento frecuente para evitar la sedimentación excesiva.

Las pérdidas de carga por fricción, tuvieron valores en un rango de 0.86 m/km a 0.87 m/km, como se observa en la tabla 27.

En la tabla 27 también se presentan los valores de cloro residual después de 16 horas de aplicación, encontrándose que los valores fueron de 0.41 mg/L como mínimo y 0.42 mg/L como máximo, los cuales se encuentran en el rango de 0.2mg/L a 0.5 mg/L que es lo recomendado por la norma (INAA, 1999b, pág. 99).

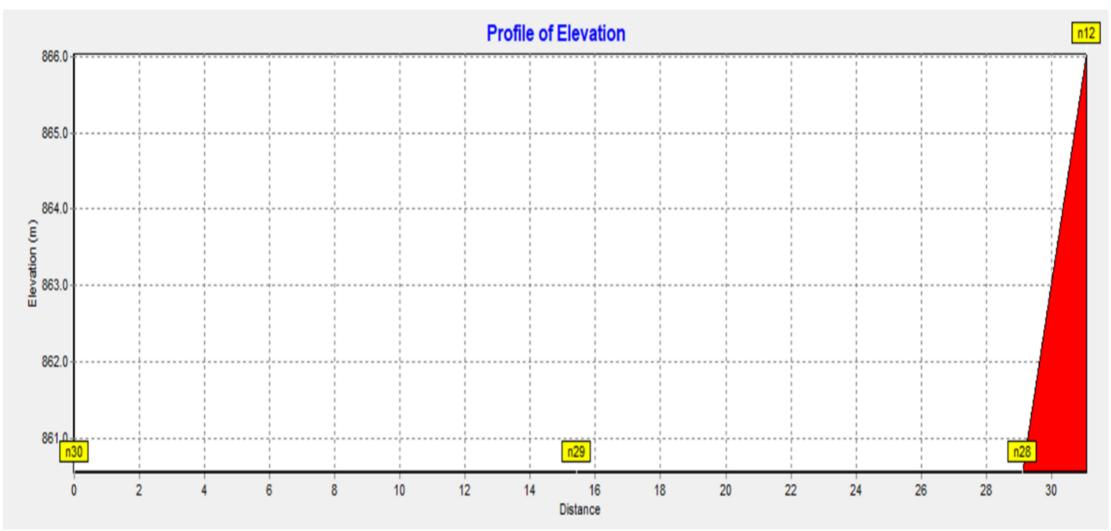

Tabla 27: Resultados de las tuberías red secundaria Red A-2

Tabla de Red - Líneas en 16:00 Horas								
RED-2	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Perd. Unit.	Cloro	
ID Línea	m	mm		LPS	m/s	m/km	mg/L	
Tubería p27	5.818	44.6	150	0.26	0.17	0.86	0.41	
Tubería p28	13.71	44.6	150	0.26	0.17	0.87	0.41	
Tubería p29	15.39	44.6	150	0.26	0.17	0.87	0.42	
Longitud tota	I RED -2			34.91	18 m			

Fuente: Elaboración propia

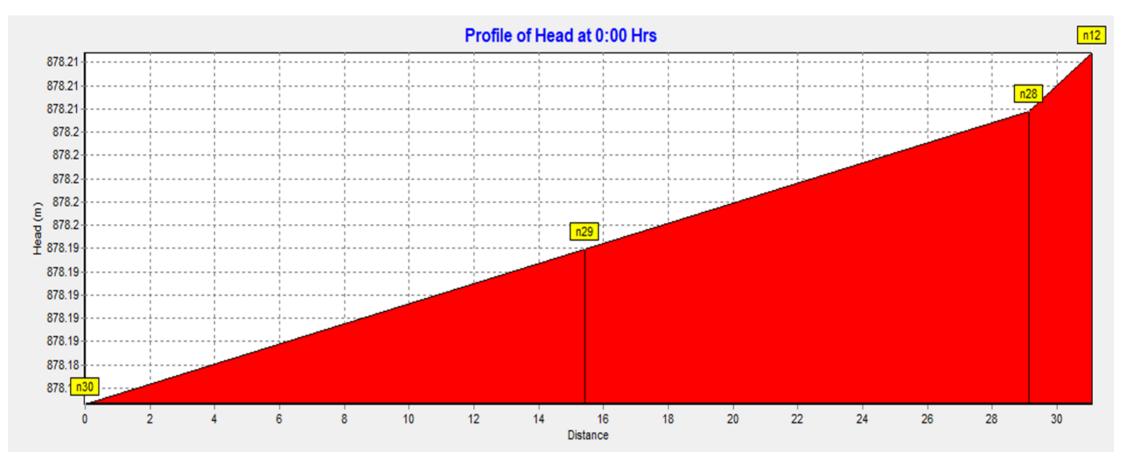

En la ilustración 16, se presenta el perfil del terreno natural (Anexo XIX, plano № 13) el cual muestra un desnivel de 5.484m entre los nodos n12 y n28, para luego mostrar un relieve plano hasta el nodo n30 al final de la red A-1.

Ilustración 16: Perfil de elevación en Red A2

También en la ilustración 17, se presenta la gradiente hidráulica de la Red A-2, se observa la línea piezométrica, con pendientes que obedecen a la pérdida de carga.

Ilustración 17: Perfil de cabeza en Red A2

La ilustración 18, presenta el perfil de presiones a lo largo de la red, observándose que la mínima fue en el nodo n12 y las máximas en la zona plana bajo el nivel del nodo n12, correspondientes a los nodos n28, n29 y n30 de la red principal Red A-1.

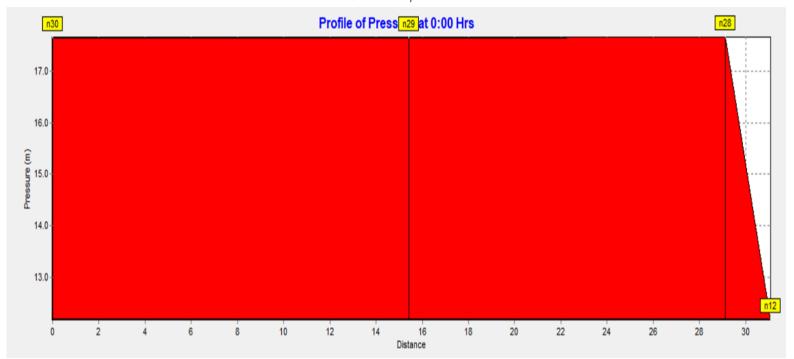


Ilustración 18: Perfil de presión en Red A2

Fuente: Elaboración propia

Los resultados de la tabla 28, presentan las variaciones de la altura piezométrica y presiones; respecto a las presiones, la mínima fue de 12.00 m y la máxima de 17.47 m, todos los valores están en el rango que recomienda la norma que es un mínimo de 5 m y máximo de 50 m (INAA, 1999a, pág. 16).

Tabla 28: Resultados de nodos en Red A2

Tabla de Red - Nudos en 16:00 Horas							
RED-2	Cota	Demanda Base	Calidad inicial	Altura	Presión	Cloro	
ID Nudo	m	LPS	m/g/L	m	m	mg/L	
Conexión n12	866.032	0	0	878.21	12.18	0.41	
Conexión n28	860.548	0	0	878.21	17.66	0.41	
Conexión n29	860.548	0	0	878.19	17.65	0.42	
Conexión n30	860.548	0.26	0	878.18	17.63	0.42	

✓ Red secundaria A-3

En la ilustración 19 se presenta la topología de la red secundaria red A-3, la cual está indicada con líneas punteadas que indican la trayectoria de la red, observándose que ella cubre el sector sureste de la comunidad.

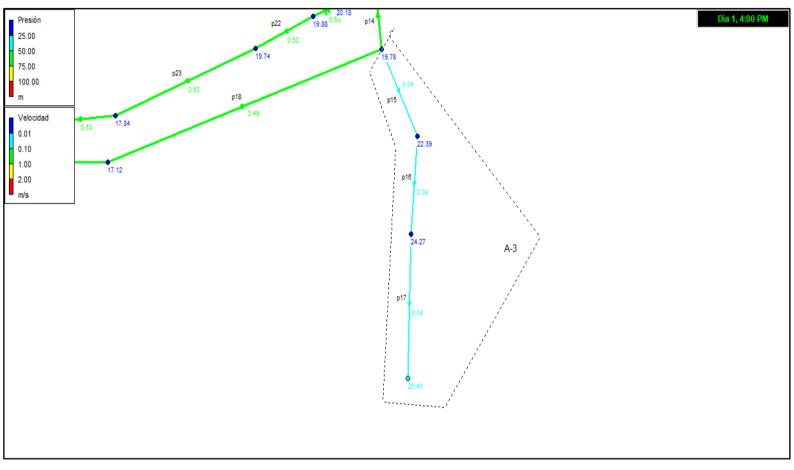


Ilustración 19: Red secundaria R A-3

Fuente: Elaboración propia

Así mismo, la red secundaria Red A-3 (Anexo XIX, plano Nº 13), también fue diseñada con tubería PVC 1 ½" SDR 26 norma ASTM 2164, tiene una longitud de 39.580 m. Por la red fluyen según la tabla 29, un caudal de 0.07 L/s para abastecer a 3 familias (tabla 29).

En la tabla 29 también se presentan las velocidades de flujo las cuales son de 0.04 m/s a largo de la red. Las velocidades son muy inferiores a las recomendadas por la norma (INAA, 1999a, pág. 16), por lo que se prevé, la instalación de válvulas de limpieza y mantenimiento frecuente para evitar la sedimentación excesiva.

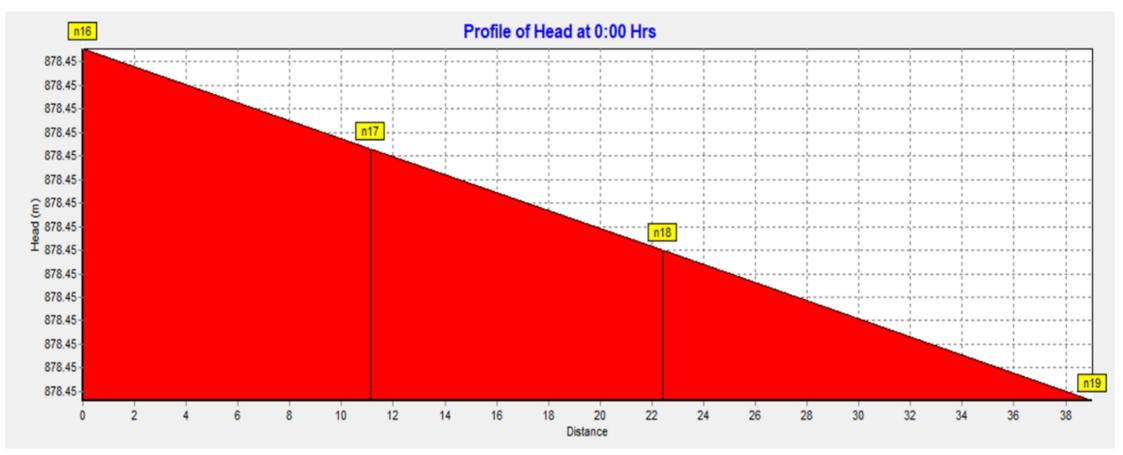
Las pérdidas de carga por fricción, tuvieron valores en un rango de 0.07 m/km a 0.08 m/km, como se observa en la tabla 29. Los valores bajos de pérdidas de carga de deben al poco caudal que fluye en la red cuyo diámetro mínimo es de 1 ½".

En la tabla 29 además se presentan los valores de cloro residual después de 16 horas de aplicación, encontrándose que los valores a lo largo de la tubería fueron de 0.4 mg/L, los cuales se encuentran en el rango de 0.2 mg/L a 0.5 mg/L que es lo recomendado por la norma (INAA, 1999b, pág. 99).

Tabla 29:Resultados por tuberías de la red secundaria Red A-3

Tabla de Red - Líneas en 16:00 Horas							
RED -3	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Perd. Unit.	Cloro
ID Línea	m	mm		LPS	m/s	m/km	mg/L
Tubería p15	11.42	44.6	150	0.07	0.04	0.07	0.4
Tubería p16	11.44	44.6	150	0.07	0.04	0.08	0.4
Tubería p17	16.72	44.6	150	0.07	0.04	0.08	0.41
Longitud tota			39.5	8 m			

Fuente: Elaboración propia


En la ilustración 20, se presenta el perfil del terreno natural (Anexo XIX plano Nº 13) el cual muestra una pendiente decreciente alineada entre los nodos n16 y n19 al final de la red A-3.

n16 **Profile of Elevation** 858.0 857.0 Elevation (m) 854.0 853.0 852.0 12 10 14 22 24 26 34 36

Ilustración 20: Perfil de elevación en Red A3

También en la ilustración 21, se presenta la gradiente hidráulica de la Red A3, se observa la línea piezométrica, con pendientes suave que obedecen a la poca pérdida de carga por fricción, debido al bajo caudal de 0.07 l/s y diámetro de 1 ½" en la tunería PVC.

Ilustración 21: Perfil de cabeza en Red A3

La ilustración 22, presenta el perfil de presiones a lo largo de la red, observándose que la mínima fue en el nodo n16 y la máxima en el nodo n19, se anota que las presiones aumentan gradualmente en la medida que las cotas del terreno disminuyen.

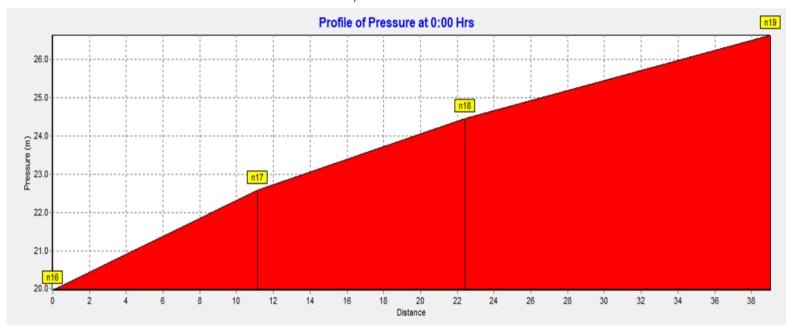


Ilustración 22: Perfil de presiones de la red secundaria Red A-3

Fuente: Elaboración propia

Los resultados de la tabla 30, presentan además las variaciones de la altura piezométrica y presiones. Observando las presiones, se nota que la mínima fue de 19.78 m y la máxima de 26.46 m, todos los valores están en el rango que recomienda la norma que es un mínimo de 5 m y máximo de 50 m (INAA, 1999a, pág. 16).

Tabla 30:Resultados de nodos en Red A3

Tabla de Red - Nudos en 16:00 Horas						
RED-3	Cota	Demanda Base	Calidad inicial	Altura	Presión	Cloro
ID Nudo	m	LPS	m/g/L	m	m	mg/L
Conexión n16	858.487	0	0	878.45	19.96	0.4
Conexión n17	855.878	0	0	878.45	22.57	0.4
Conexión n18	854	0	0	878.45	24.45	0.4
Conexión n19	851.806	0.07	0	878.45	26.64	0.41

✓ Red secundaria A-4

En la ilustración 23 se presenta la topología de la red secundaria red A-4, la cual está indicada con líneas punteadas que indican la trayectoria de la red, conservándose que ella cubre el sector noroeste de la comunidad.

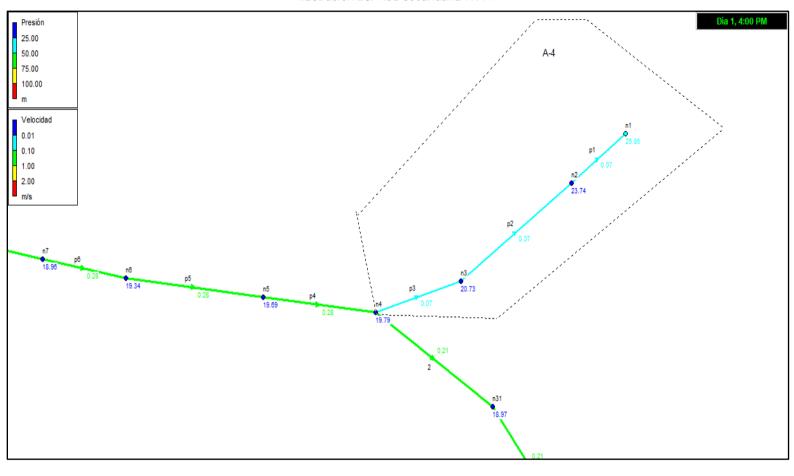


Ilustración 23: Red secundaria R A-4

Fuente: Elaboración propia

También la red secundaria Red A-4 (Anexo XIX plano N° 13) fue diseñada con tunería PVC 1 ½" SDR 26 norma ASTM 2164, tiene una longitud de 41.242 m. Un caudal de 0.11 L/s fluyen por la red según la tabla 31, para abastecer a 5 viviendas (tabla 31) .

En la tabla 31 asimismo se presentan las velocidades de flujo, las cuales son de 0.07 m/s a largo de la red. Las velocidades son muy inferiores a las recomendadas por la norma (INAA, 1999a, pág. 16), por lo que se prevé, la instalación de válvulas de limpieza y mantenimiento frecuente para evitar la sedimentación excesiva.

Las pérdidas de carga por fricción a lo largo de la red, tuvieron valores un rango de 0.17 m/km a 0.18 m/km, como se observa en la tabla 31.

En la tabla 31 también se presentan los valores de cloro residual después de 16 horas de aplicación, anotándose valores de 0.25 mg/L a lo largo de la red, los cuales se encuentran en el rango de 0.2mg/L a 0.5 mg/L que es lo recomendado por la norma (INAA, 1999b, pág. 99).

Tabla 31:Resultados de tuberías en Red A4

Tabla de Red - Líneas en 16:00 Horas							
RED -4	Longitud	Diámetro	Rugosidad	Caudal	Velocidad	Perd. Unit.	Cloro
ID Línea	m	mm		LPS	m/s	m/km	mg/L
Tubería p3	12.39	44.6	150	0.11	0.07	0.18	0.44
Tubería p2	19.23	44.6	150	0.11	0.07	0.18	0.44
Tubería p1	9.622	44.6	150	0.11	0.07	0.17	0.44
Longitud tot	al RED -4		41.242 m				

Fuente: Elaboración propia

En la ilustración 24, se presenta el perfil del terreno natural (Anexo XIX, plano Nº 13) donde se muestra una pendiente decreciente alineada entre los nodos n4 y n1 al final de la red A-4.

Profile of Elevation n4 857.0 Elevation (m) 0.559 n2 854.0 853.0

Ilustración 24:Perfil de elevación en Red A4

Fuente: Elaboración propia

20 Distance 24

14

Además, en la ilustración 25, se describe la gradiente hidráulica de la Red A4 se observa la línea piezometrica, con pendientes suaves que obedecen a la poca perdida de cagar por fricción, debido al bajo caudal de 0.11 l/s y diámetro de 1 1/2" en la tubería PVC.

Profile of Head at 0:00 Hrs 877.93 877.93 877.93 877.93 877.93 877.93 877.93 E 877.93 877.93 877.93 n2 877.93 877.93 877.93 877.9 n1 10 12 14 16 18 22 24 26 28 30 32 34 38 8 20 36 Distance

Ilustración 25: Perfil de cabeza en Red A4

La ilustración 26, presenta el perfil de presiones a lo largo de la red, observándose una presión mínima en el nodo n4 y una máxima en el nodo n1, se apunta que las presiones aumentan gradualmente en la medida que las cotas del terreno disminuyen en dirección noreste (ilustración 22).

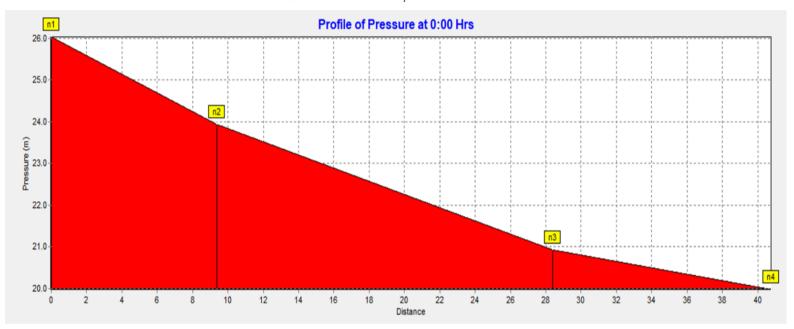


Ilustración 26: Perfil de presiones en Red A4

Fuente: Elaboración propia

Los resultados de la tabla 32, presentan las variaciones de la altura piezométrica y presiones, se observa que las presiones tienen un mínimo de 19.79 m y una máxima de 26.03 m, todos los valores están en el rango que recomienda la norma que es un mínimo de 5 m y máximo de 50 m (INAA, 1999a, pág. 16).

Tabla 32:Resultados por nodos red secundaria Red A-4

Tabla de Red - Nudos en 16:00 Horas						
RED -4	Cota	Demanda Base	Calidad inicial	Altura	Presión	Cloro
ID Nudo	m	LPS	m/g/L	m	m	mg/L
Conexión n4	857.958	0	0	877.92	26.03	0.44
Conexión n3	857.014	0	0	877.93	23.93	0.44
Conexión n2	854	0	0	877.93	20.92	0.44
Conexión n1	851.894	0.11	0	877.93	19.97	0.43

4.5.11.3 Presiones hidrostáticas en la red de distribución

En la ilustración 27 se observan las presiones en la primera hora de operación por nodos en toda la red de distribución y línea de conducción. Con la excepción de la presión en la descarga del tanque que fue de 1.11 m, el resto de presiones según la tabla 33, en la primera de bombeo osciló con una mínima de 13.07m y una máxima de 37.01 m, todas cumplen con la norma que recomienda para la zona rural un mínimo 5 m y máximo de 50m (INAA, 1999a, pág. 16)

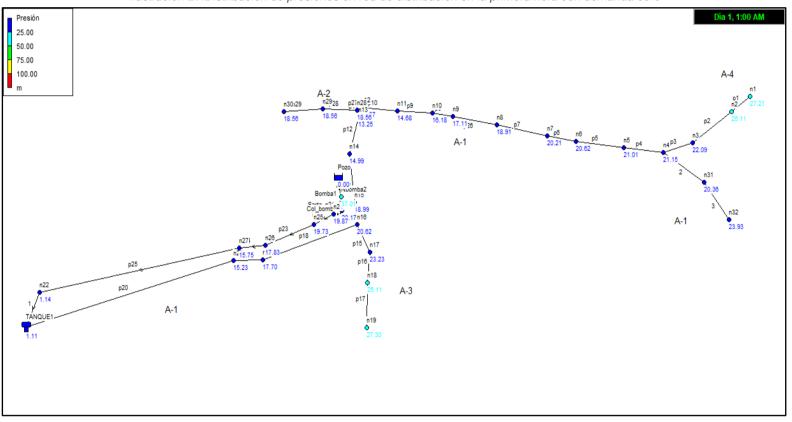


Ilustración 27:Distribución de presiones en red de distribución en la primera hora con demanda cero

Fuente: Elaboración propia

También en la tabla 33, se presenta un resumen de las presiones de la primera hora de bombeo y a las 16 horas, en últimas horas la presión mínima fue de 14.61 m y la máxima de 38.42 m, tanto las presiones a la primera hora como las 16 horas cumplen con la norma (INAA, 1999a, pág. 16). Se concluye que las presiones hidrostáticas no afectarán el funcionamiento de red en momentos de poca o nula demanda.

Tabla 33: Presiones hidrostáticas en la primera hora y a las 16 horas

Tabla de Red - Nudos e	Tabla de Red - Nudos en			
Horas		16:00 Horas		
Presión	T	Presión		
ID Nudo	m	ID Nudo	m	
Conexión n1	27.21	Conexión n1	28.75	
Conexión n2	25.11	Conexión n2	26.64	
Conexión n3	22.09	Conexión n3	23.63	
Conexión n4	21.15	Conexión n4	22.69	
Conexión n5	21.01	Conexión n5	22.55	
Conexión n6	20.62	Conexión n6	22.16	
Conexión n7	20.21	Conexión n7	21.75	
Conexión n8	18.91	Conexión n8	20.45	
Conexión n9	17.11	Conexión n9	18.64	
Conexión n10	16.18	Conexión n10	17.72	
Conexión n11	14.68	Conexión n11	16.22	
Conexión n12	13.07	Conexión n12	14.61	
Conexión n13	13.25	Conexión n13	14.79	
Conexión n14	14.99	Conexión n14	16.53	
Conexión n15	18.99	Conexión n15	20.53	
Conexión n16	20.62	Conexión n16	22.16	
Conexión n17	23.23	Conexión n17	24.77	
Conexión n18	25.11	Conexión n18	26.64	
Conexión n19	27.3	Conexión n19	28.84	
Conexión n20	17.7	Conexión n20	19.24	
Conexión n21	15.23	Conexión n21	16.77	
Conexión n22	1.14	Conexión n22	2.68	
Conexión n23	20.17	Conexión n23	21.6	
Conexión n24	19.87	Conexión n24	21.33	
Conexión n25	19.73	Conexión n25	21.19	
Conexión n26	17.83	Conexión n26	19.3	
Conexión n27	15.75	Conexión n27	17.23	
Conexión n28	18.56	Conexión n28	20.1	
Conexión n29	18.56	Conexión n29	20.1	
Conexión n30	18.56	Conexión n30	20.1	
Conexión Nbomba 2	37.01	Conexión Nbomba 2	38.42	
Conexión n32	23.93	Conexión n32	25.46	
Conexión n31	20.36	Conexión n31	21.9	
Embalse de pozo	0	Embalse de pozo	0	
Deposito TANQUE 1	1.11	Deposito TANQUE 1	2.64	

Fuente: Elaboración propia

4.5.11.4 Análisis de la simulación cloro

Se hizo una simulación de cloro que se muestra en la ilustración 28, para lo cual se aplicó una dosis 2.12 mg/L en el tanque de almacenamiento, la movilidad del

cloro en la segunda hora según la tabla 34, alcanzó la totalidad de la red, con valores mínimos de 1.6 mg/L en el tanque y 1.87 mg/L al final de red en nodo n1.

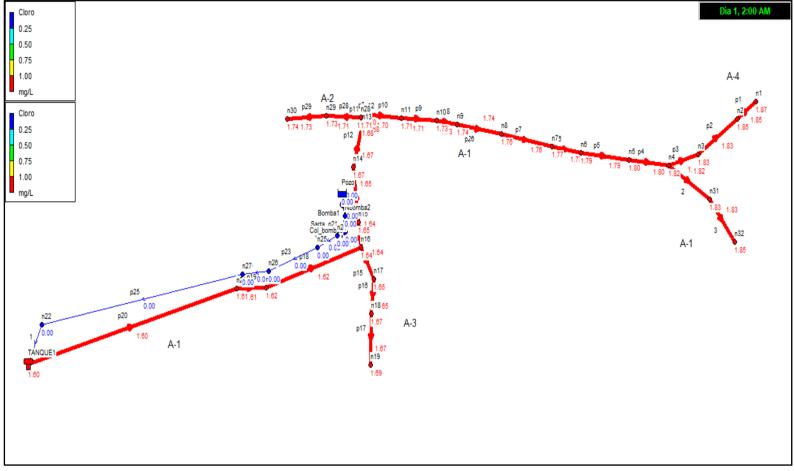


Ilustración 28: Cloro residual en la segunda hora de operación

Fuente: Elaboración propia

En la ilustración 28 se presenta la distribución de cloro a las 16 horas, notándose que hubo una disminución del cloro residual, los valores mínimos de cloro fueron de 0.22 mg/L en el tanque y 0.26 mg/L en el nodo 1 como se muestra en la tabla 34.

Todos los valores de cloro a las dos horas y 16 horas, están en rango que recomienda la norma la cual menciona concentraciones de cloro residual mínima de 0.2 mg/L y máxima de 0.5 mg/L (INAA, 1999a, pág. 99).

Los valores cloro residual en cero que se presentan en la tabla 33, corresponden a los nodos de la línea de conducción, donde no se aplicó cloro, debido a que como se mencionó anteriormente el cloro en forma de hipoclorito de sodio, se aplicó en el tanque por medio de un hipoclorador de carga constate, cómo lo recomienda la norma y se describe en el acápite 4.5.10.

Tabla 34: Cloro residual a las 2 y 16 horas

Tabla de Red - Nudos en 2:00 Horas		Tabla de Red - Nudos en 16:00 Horas		
ID Nudo	Cloro mg/L	ID Nudo	Cloro mg/L	
Conexión n22	0	Conexión n22	0	
Conexión n23	0	Conexión n23	0	
Conexión n24	0	Conexión n24	0	
Conexión n25	0	Conexión n25	0	
Conexión n26	0	Conexión n26	0	
Conexión n27	0	Conexión n27	0	
Conexión Nbomba 2	0	Conexión Nbomba 2	0	
Embalse de pozo	0	Embalse de pozo	0	
Deposito TANQUE 1	1.77	Deposito TANQUE 1	0.39	
Conexión n21	1.78	Conexión n21	0.4	
Conexión n20	1.78	Conexión n20	0.4	
Conexión n16	1.79	Conexión n16	0.4	
Conexión n15	1.8	Conexión n15	0.4	
Conexión n17	1.8	Conexión n17	0.4	
Conexión n14	1.81	Conexión n14	0.41	
Conexión n18	1.81	Conexión n18	0.41	
Conexión n13	1.81	Conexión n13	0.41	
Conexión n19	1.82	Conexión n19	0.41	
Conexión n12	1.82	Conexión n12	0.41	
Conexión n11	1.83	Conexión n11	0.41	
Conexión n28	1.83	Conexión n28	0.41	
Conexión n10	1.84	Conexión n10	0.42	
Conexión n29	1.84	Conexión n29	0.42	
Conexión n9	1.85	Conexión n9	0.42	
Conexión n30	1.85	Conexión n30	0.42	
Conexión n8	1.85	Conexión n8	0.42	
Conexión n7	1.86	Conexión n7	0.43	
Conexión n6	1.87	Conexión n6	0.43	
Conexión n5	1.88	Conexión n5	0.43	
Conexión n4	1.89	Conexión n4	0.43	
Conexión n3	1.89	Conexión n3	0.44	
Conexión n31	1.89	Conexión n31	0.44	

Conexión n2	1.9	Conexión n2	0.44
Conexión n32	1.9	Conexión n32	0.44
Conexión n1	1.91	Conexión n1	0.44

Fuente: Elaboración propia

En la ilustración 30 se presenta el mapa de distribución de cloro, en él se observa que cloro residual en la segunda hora de operación en el tanque de almacenamiento, corresponde a un rango menor de 25 mg/L presentado en color azul, seguidamente el cloro residual aumenta observándose un rango de colores que va de verde a rojo, siendo el rojo el de mayor concentración (1 mg/L).

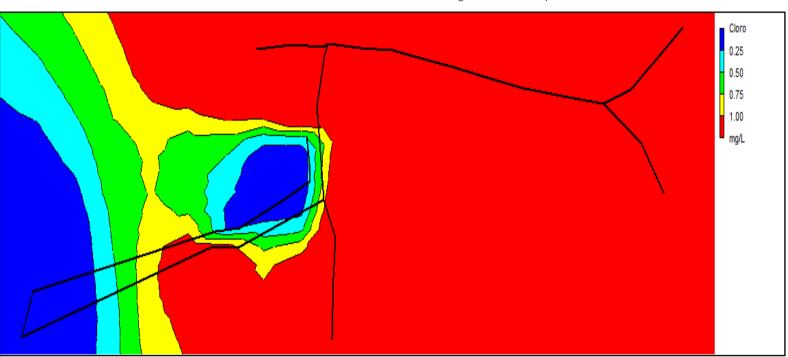


Ilustración 30: Distribución del cloro residual en segunda hora de operación

Fuente: Elaboración propia

A las 16 horas las concentraciones de cloro residual han bajado cómo lo se describe en la ilustración 31, no obstante, el mapa muestra un rango de colores azul y celeste que corresponde a rangos de cloro residual de 0.25 mg/L a 0.5 mg/L. Los valores mencionados están en el rango recomendado por la norma (INAA, 1999a, pág. 99)

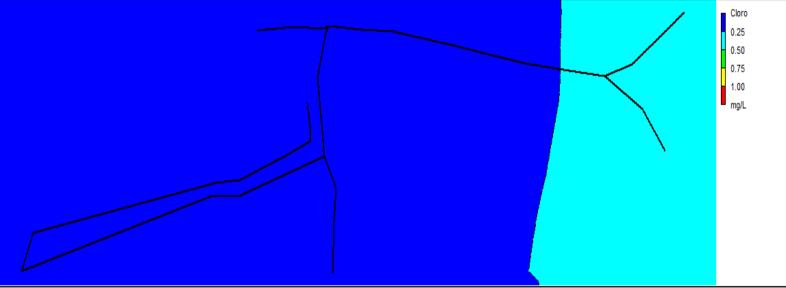


Ilustración 31: Distribución del cloro residual a las 16 horas de operación

Fuente: Elaboración propia

4.5.11.5 Conexión domiciliar

Los pobladores del sector "El Plan" deberán de aportar parte de la tubería a utilizarse en las tomas domiciliares. La conexión domiciliar llegará hasta el lindero de la propiedad, a partir de ahí la conexión correrá por cuenta del propietario. De acuerdo a la normativa (INAA, 1999b) el diámetro de cada conexión deberá ser de ½ (12.5 mm) pulgada y estará conectada con un medidor de flujo volumétrico, así mismo tendrá su respectiva caja con sus accesorios.

Toda conexión domiciliar deberá estar siempre controlada por su medidor correspondiente o por un regulador de flujos. (Anexo XXVI plano Nº 20).

4.6 Presupuesto

La hoja de alcances del presupuesto se construyó con referencia al FISE donde se expone el "Catálogo de Etapas y Sub-Etapas" que se realizó en la construcción de dicho proyecto y las cantidades que se estiman en base a los planos propuestos. Los costos unitarios para algunos conceptos fueron cotizados con expertos.

En el Anexo VI, tabla 44 se puede observar el costo por etapa del proyecto, así como también el costo total de este.

Conclusiones y recomendaciones

V Conclusiones y recomendaciones

5.1 Conclusiones

- 1) Se realizó un diagnóstico de la situación actual a los pobladores del sector "El Plan" de la comunidad santa bárbara a través de un censo poblacional donde se obtuvo que la distribución de población por sexo es de 29.63% mujeres y 35.19% hombres, 28.70%, también se refleja una distribución de población menor de 15 años equivalente a un 28.70% donde el nivel de escolaridad es primaria con un 64.71% por lo tanto para considerar un programa de capacitación de agua se deberá tomar en cuenta los indicadores de sexo, distribución por edades y el nivel de escolaridad.
- 2) Al realizar el estudio topográfico, se generó la alternativa de un sistema de abastecimiento por bombeo eléctrico debido a los niveles entre pozo (843.5 msnm) y tanque (878 msnm). La topografía del terreno fue favorable a los criterios de diseño de los componentes del sistema cumpliendo con lo indicado en la NTON 09001-99.
- 3) El aforo refleja que la fuente posee la capacidad de producción suficiente para abastecer los próximos 20 años a los pobladores del sector, por ende es viable utilizar la fuente para el acueducto proyectado.
- 4) Se demostró mediante el análisis físicos-químicos que la fuente de abastecimiento se encuentra libre de bacterias superando los valores límites permisibles según las normas CAPRE y el INAA, por lo tanto, solo se implementará la cloración para garantizar la protección del agua contra riesgos de infecciones de origen hídrico para que los pobladores del sector gocen de una buena salud.
- 5) Se realizó el diseño hidráulico de la línea de conducción donde se obtuvo la curva característica de la bomba comercial Franklin Electric Serie BT4 -7 GPM con potencia de ½ Hp es válida para el sistema, así mismo al realizar la simulación de línea de conducción y red de distribución con el software EPANET se cumple con lo establecido en la normativa en lo que respecta a presiones, sin embargo, en el criterio de velocidades no se cumple. También se debe de agregar que los diámetros seleccionados para línea de conducción y red de distribución (1 ½") fueron propuestos según las

- normas para las zonas rurales, el material y longitud de las tuberías se propusieron en base a criterios técnicos (SDR 26).
- 6) Los planos fueron la base fundamental para estimar los costos para la implementación de este proyecto de agua potable, por lo tanto, el presupuesto se dividió en 8 etapas: primera etapa preliminares con un valor de C\$ 6,354.08, segunda etapa obra de captación C\$ 101,807.75, tercera etapa línea de conducción C\$ 16,171.81 cuarta etapa red de distribución C\$ 92, 348.40 quinta etapa tanque de almacenamiento C\$ 245,671.12, sexta etapa conexiones domiciliares C\$ 159,606.98, séptima etapa sistema de tratamiento C\$ 332,085.42 y la octava etapa limpieza final C\$ 2,229.48, si realizamos la sumatoria de todas las etapas del proyecto encontramos un presupuesto de C\$ 1,243,157.57 córdobas.

5.2 Recomendaciones

- 1) A causa de la situación desmejorada que presenta la comunidad en referencia a la contaminación de los suelos y posible contaminación de las aguas subterráneas por consecuencia a los desechos sólidos domésticos y aguas grises sobre los patios, los pobladores deben ser capacitados y adecuados para que logren construir, mantener y operar su propio proyecto de agua.
- 2) Deberá conformar un comité de Agua Potable y Sanamiento (CAPS), que vele por el manejo, cuido y mantenimiento del servicio, el comité deberá sostener reuniones periódicas a lo interno.
- 3) Se deberá consumir el agua exclusivamente para las necesidades humanas y actividades domésticas, no utilizar el agua para el cultivo, ni para el consumo y baño de grandes animales; o cualquier actividad no considerada durante el diseño o que resulte inapropiada a saber por el CAPS.
- 4) Se deben designar encargados que realicen las labores de operación y mantenimiento del sistema.
- 5) Analizando el estado económico de las familias del sector, el sistema de agua potable constará de 3 bombas comerciales Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP, dichas bombas tendrán la misma capacidad debido a su fácil mantenimiento, cabe mencionar que 1 unidad se utilizara de reserva siempre y cuando que la bomba en funcionamiento presenta fallas mecánicas.
- 6) Realizar la limpieza constantemente en las siguientes obras construidas: Tanque de almacenamiento e hipoclorador de carga constante. Se deberá coordinar con la alcaldía municipal de Somoto en caso de una desinfección completa del sistema.
- 7) Mantener un stock de herramientas y accesorios para reparaciones inmediatas del sistema

Bibliografía

5.3 Bibliografía

- AIRES, U. D. (2005). Estudios de Transitorios: Golpe de Ariete. Buenos Aires.
- Aragon, W. (Miercoles de Julio de 2020). ENACAL y la Alcaldia de Somoto abastecen a las comunidades de somoto por falta de agua. *LA PRENSA*.
- Bohorquez Forero, D. C. (2011). *El Golpe de Ariete*. Ciudad Real: Universidad de Castilla La Mancha.
- CAPRE. (1994). Normas de calidad del agua para el consumo humano. San Jose, Costa Rica: Norma Regional CAPRE.
- Corea y Asociados S.A. (2008). *Manual para la Revision de Estudios Topograficos*. Managua: MTI.
- FISE. (2012). Fondo deInversion Social de Emergencia. Managua: FISE.
- INAA. (1998). Instituto Nicaraguense de Acueducto y Alcantarillados. Managua: INAA.
- INAA. (1999a). Norma Tecnica Obligatoria Nicaraguense para el Abastecimiento de Agua Potable en la Zona rural. Managua: INAA.
- INAA. (1999b). Norma tecnica para el diseño de abastecimiento y potabilizacion del agua . Managua: INAA.
- INIDE. (2006). Instituto Nacional de Informacion y Desarrollo. Managua: INIDE.
- Instituto de Investigacion y Desarrollo Nitlapan. (2007). *Institucionalidad para la Gestion del Agua en Nicaragua*. Managua, Nicaragua: NITLAPAN.
- Instituto tecnologico Oaxaca. (2001). *Abastecimiento de agua.* Oaxaca:

 Direccion general de institutos tecnologicos instituto tecnologico Oaxaca departamento de ciencias de la tierra.
- Instituto Tecnológico Oaxaca. (2001). *Abastecimiento de Agua.* Oaxaca:

 Dirección General de Instututos Tecnológicos Instituto Tecnológico

 Oaxaca Departamento de Ciencias de la Tierra.
- IVASP. (2009). FENÓMENO TRANSITORIO DEL GOLPE DE ARIETE. Valencia

115

- Loaísiga, H. E. (2017). Comparacion del Metodo de Hardy Cross y Sofware EPANET en Diseños de Agua Potable. Managua: EL HIGO.
- Organizacion Mundial de la Salud. (2015). *Boletín Informativo el Agua.* Managua, Nicaragua: OMS.
- Pittman, A. R. (1997). *Agua Potable Para Poblaciones Rurales*. Lima: Asociación Servicios Educativos Rurales (SER).

Anexo

Anexo I: Formato de Censo

UNIVERSIDAD NACIONAL DE INGENIERIA

SEDE REGIONAL DEL NORTE

Reciento Universitario Augusto C. Sandino, Estelí-Nicaragua

CENSO EN EL SECTOR "EL PLAN" UBICADO EN LA COMUNIDAD SANTA BARBARA MUNICIPIO DE SOMOTO DEPARTAMENTO DE MADRIZ

Encuesta N ^a :					
Nombre del encuestado / a: _					
Edad:	Genero: Masculino	Femenino			
INFORMACION SOBRE LA	VIVIENDA				
1. Tendencia de la vivien	nda				
Propia					
Alquilada					
Alquiler/venta					
2. Material predominante	e de la vivienda				
Adobe					
Madera					
Bloque					
Ladrillo					
3. Servicios básicos y condición higiénica de la vivienda					
Energía eléctrica					

Red de agua
Red de desagüe
Letrina
INFORMACION DE LA FAMILIA
4. ¿Cuántas personas habitan en la vivienda?
1 a 3 6 a mas
5. ¿Cuántas personas trabajan en su familia?
No posee trabajo 1 a 2 3 a mas
6. ¿Con que grado de estudio cuenta usted?
Primaria
Secundaria
Técnico
Universidad
Sin estudio
7. ¿A qué actividad de trabajo se dedica usted?
Agricultura
Ganadería
Construcción
Ama de casa
Otros
8. ¿Qué tipo de enfermedades padece frecuentemente usted?
Respiratorias
Estomacales
Otros
9. ¿Cuál es el monto de ingresos económicos mensualmente?

0 C\$ a 2000
2000 C\$ a 4000
5000 C\$ a 8000
8000 C\$ a mas
INFORMACION SOBRE EL ABASTECIMIENTO DE AGUA
10. ¿Cuál es la procedencia del agua?
Rio
Laguna
Manantial
Lluvia
11. ¿Cómo describiría la calidad de agua de la fuente?
Buena
Mala
12. ¿Cómo considera usted el estado del camino para visitar la fuente?
Bueno
Malo
Incomodo
13. ¿Qué tipo de método utiliza usted para purificar el agua extraída de la fuente?
Cloro
Hervir
Ninguno
Otros

Anexo II. Levantamiento topográfico

Tabla 35: Levantamiento topográfico

Punto	Coordenadas X	Coordenadas Y	Elevación	Objeto levantado
1	5504907700	14873933300	878	TANQUE
2	5506111200	14874230600	860.1	POZO
3	5505709400	14873961300	862.465	01 HIPOLITO AMADOR
4	5506332000	14874595600	864.422	
5	5506441400	14874584900	863.127	
6	5506486500	14874642900	863.694	
7	5506593300	14874532500	860.954	10 INDALECIO GONZALES
8	5506613500	14874546800	861.135	
9	5506727600	14874545000	860	
10	5507154900	14874406100	857.869	11 LIDIA ALFARO
11	5506674900	14874596700	861.448	
12	5506670600	14874541000	860.555	PE
13	5506906800	14874496900	859	
14	5506928600	14874559100	859.724	
15	5507041900	14874483600	858.489	
16	5507195200	14874452200	858.118	
17	5507127400	14874540400	858.943	
18	5507236000	14874518800	858.133	
19	5507387700	14874443800	857.958	
20	5507415100	14874428200	857.739	
21	5507650100	14874198600	855.179	12 FAUSTINO CUADRA
22	5507505800	14874480200	857.014	
23	5507495900	14874457600	857.093	
24	5507500300	14874565700	856.775	
25	5507733200	14874650000	851.894	
26	5507663400	14874588700	854.012	
27	5507647200	14874641000	853	
28	5507788300	14874597200	852.314	13 NATHALIA SANCHEZ
29	5506216500	14874617500	865.888	
30	5507365000	14874456600	858	
31	5506178000	14874259200	859.912	
32	5506128900	14874146700	858.416	
33	5506287800	14873722700	851.114	06 JESUS CAZCO
34	5506225400	14873839200	851.847	
35	5506168300	14873880900	853.094	
36	5506236400	14874028500	854.738	
37	5506192100	14874057800	855.731	

38	5506215400	14874144600	857.152	
39	5506183200	14874256500	859.805	
40	5506163200	14874261700	860.111	
41	5506163600	14874421500	863.48	
42	5506190400	14874497400	864.55	
43	5506243000	14874596500	865.508	
44	5506171700	14874597700	866.088	
45	5506176400	14874572800	865.851	
46	5506116100	14874369600	862.786	
47	5506110800	14874261900	860.604	
48	5506111200	14874230600	860.1	
49	5506076200	14874160600	859.208	
50	5506077700	14874059100	857.115	
51	5506002100	14873989100	857.152	03 ISABEL GONZALEZ
52	5505680200	14874049100	863.873	02 EMILIO AMADOR
53	5506127600	14874139100	858.248	
54	5506167000	14874118700	857.276	
55	5506134700	14874082600	856.82	05 CANDIDA AMADOR
56	5506292300	14874117200	855.558	07 SIRIACO GONZALEZ
57	5506209200	14873801700	851.806	
58	5506221800	14874079900	855.878	
59	5506173300	14874180000	858.487	
60	5505951600	14874102000	859.766	
61	5505797100	14874050000	861.406	
62	5505926900	14874042000	859.202	PE
63	5506125500	14874279700	860.771	
64	5506141300	14874438100	864.118	
65	5506188500	14874607500	866.032	
66	5506131400	14874275600	860.658	
67	5506102100	14874180000	859.363	
68	5506007500	14874207600	860.562	
69	5506035600	14874303400	861.88	
70	5506015800	14874340800	862.649	
71	5506058200	14874319900	862.026	
72	5506103500	14874313500	861.586	
73	5506115400	14874314000	861.515	
74	5506146000	14874310900	861.202	
75	5506147600	14874217800	859.527	
76	5506103300	14874250600	860.483	
77	5506095800	14874258100	860.663	
78	5506052000	14874269700	861.199	
79	5506012700	14874286800	861.787	
80	5505984500	14874301400	862.241	

81	5505965200	14874244300	861.631	
82	5505949100	14874187900	861.123	
83	5506000000	14874181100	860.253	
84	5506015300	14874231800	860.886	
85	5506078900	14874217700	860.152	
86	5506070800	14874180300	859.618	
87	5506081500	14874179200	859.515	
88	5506095300	14874209000	859.882	
89	5506143600	14874197800	859.245	
90	5506140200	14874165400	858.71	
91	5505929700	14874357800	863.287	04 APOLONIA AMADOR
92	5506083600	14874481400	864.942	08 MARTA HERNANDEZ
93	5506093500	14874686100	867.421	09 NO SE ANOTO NOMBRE
94	5505985100	14874571900	866.39	PE
95	5505881200	14874592200	866.726	
96	5505869300	14874639000	867.57	
97	5506026500	14874666300	867.756	
98	5506034700	14874603300	866.796	
99	5506232400	14874671300	866.191	
100	5506314400	14874669200	865.506	
101	5506470900	14874587000	862.925	
102	5532009708	14880064133	861.586	
103	5532021608	14880064633	861.515	
104	5532052208	14880061533	861.202	
105	5532053808	14879968433	859.527	
106	5532009508	14880001233	860.483	
107	5532002008	14880008733	860.663	
108	5531958208	14880020333	861.199	
109	5531918908	14880037433	861.787	
110	5531890708	14880052033	862.241	
111	5531871408	14879994933	861.631	
112	5531855308	14879938533	861.123	
113	5531906208	14879931733	860.253	
114	5531921508	14879982433	860.886	
115	5531985108	14879968333	860.152	
116	5531977008	14879930933	85.9618	
117	5531987708	14879929833	859.515	
118	5532001508	14879959633	859.882	
119	5532049808	14879948433	859.245	
120	5532046408	14879916033	858.71	
121	5531835908	14880108433	863.287	04 APOLONIA AMADOR
122	5531989808	14880232033	864.942	08 MARTA HERNANDEZ
123	5531999708	14880436733	867.421	09 NO SE ANOTO NOMBRE

124	5531891308	14880322533	866.39	PE
125	5531787408	14880342833	866.726	
126	5531775508	14880389633	867.57	
127	5531932708	14880416933	867.756	
128	5531940908	14880353933	866.796	
129	5532138608	14880421933	866.191	
130	5532220608	14880419833	865.506	
131	5532377108	14880337633	862.925	
132	5532094708	14880358133	866.032	
133	5530813908	14879683933	878	TANQUE
134	5532633808	14880295633	860.194	
135	5532017408	14879981233	860.1	POZO
136	5531615608	14879711933	862465	01 HIPOLITO AMADOR
137	5532238208	14880346233	864.422	
138	5532347608	14880335533	863.127	
139	5532392708	14880393533	863.694	
140	5532499508	14880283133	860.954	10 INDALECIO GONZALEZ
141	5532519708	14880297433	861.135	
142	5533061108	14880156733	857.869	11 LIDIA ALFARO
143	5532581108	14880347333	861.448	
144	5532576808	14880291633	860.555	PE
145	5532813008	14880247533	858.749	
146	5532834808	14880309733	859.724	
147	5532948108	14880234233	858.489	
148	5533101408	14880202833	858.118	
149	5533033608	14880291033	858.943	
150	5533142208	14880269433	858.133	
151	5533293908	14880194433	857.958	
152	5533321308	14880178833	857.739	
153	5533556308	14879949233	855.179	12 FAUSTINO CUADRA
154	5533412008	14880230833	857.014	
155	5533402108	14880208233	857.093	
156	5533406508	14880316333	856.775	
157	5533639408	14880400633	851.894	
158	5533569608	14880339333	854.012	
159	5533553408	14880391633	853.298	
160	5533694508	14880347833	852.314	13 NATHALIA SANCHEZ
161	5532122708	14880368133	865.888	
162	5533271208	14880207233	858	
163	5532084208	14880009833	859.912	
164	5532035108	14879897333	858.416	
165	5532194008	14879473333	851.114	06 JESUS CAZCO
166	5532131608	14879589833	851.847	

167	5532074508	14879631533	853.094	
168	5532142608	14879779133	854.738	
169	5532098308	14879808433	855.731	
170	5532121608	14879895233	857.152	
171	5532089408	14880007133	859.805	
172	5532069408	14880012333	860.111	
173	5532069808	14880172133	863.48	
174	5532096608	14880248033	864.55	
175	5532149208	14880347133	865.508	
176	5532077908	14880348333	866.088	
177	5532082608	14880323433	865.851	
178	5532022308	14880120233	862.786	
179	5532017008	14880012533	860.604	
180	5532017408	14879981233	860.1	
181	5531982408	14879911233	859.208	
182	5531983908	14879809733	857.115	
183	5531908308	14879739733	857.152	03 ISABEL GONZALEZ
184	5531586408	14879799733	863.873	02 EMILIO AMADOR
185	5532033808	14879889733	858.248	
186	5532073208	14879869333	857.276	
187	5532040908	14879833233	856.82	05 CANDIDA AMADOR
188	5532198508	14879867833	855.558	07 SIRIACO GONZALEZ
189	5532115408	14879552333	851.806	
190	5532128008	14879830533	855.878	
191	5532079508	14879930633	858.487	
192	5531857808	14879852633	859.766	
193	5531703308	14879800633	861.406	
194	5531833108	14879792633	859.202	PE
195	5532031708	14880030333	860.771	
196	5532047508	14880188733	864.118	
197	5532037608	14880026233	860.658	
198	5532008308	14879930633	859.363	
199	5531913708	14879958233	860.562	
200	5531941808	14880054033	861.88	
201	5531922008	14880091433	862.649	
202	5531964408	14880070533	862.026	
203	5519202136	14874285812	867.756	
204	5519210336	14874222812	866.796	
205	5519408036	14874290812	866.191	
206	5519490036	14874288712	865.506	
207	5519646536	14874206512	862.925	
208	5545185343	14879683645	861.586	
209	5545197243	14879684145	861.515	

210	5545227843	14879681045	861.202	
211	5545229443	14879587945	859.527	
212	5545185143	14879620745	860.483	
213	5545177643	14879628245	860.663	
214	5545133843	14879639845	861.199	
215	5545094543	14879656945	861.787	
216	5545066343	14879671545	862.241	
217	5545047043	14879614445	861.631	
218	5545030943	14879558045	861.123	
219	5545081843	14879551245	860.253	
220	5545097143	14879601945	860.886	
221	5545160743	14879587845	860.152	
222	5545152643	14879550445	859.618	
223	5545163343	14879549345	859.515	
224	5545177143	14879579145	859.882	
225	5545225443	14879567945	859.245	
226	5545222043	14879535545	858.71	
227	5545011543	14879727945	863.287	04 APOLONIA AMADOR
228	5545165443	14879851545	864.942	08 MARTA HERNANDEZ
229	5545175343	14880056245	867.421	09 NO SE ANOTO NOMBRE
230	5545066943	14879942045	866.39	PE
231	5544963043	14879962345	866.726	
232	5544951143	14880009145	867.57	
233	5545108343	14880036445	867.756	
234	5545116543	14879973445	866.796	
235	5545314243	14880041445	866.191	
236	5545396243	14880039345	865.506	
237	5545552743	14879957145	862.925	
238	5545270343	14879977645	866.032	
239	5543989543	14879303445	878	Tanque
240	5545809443	14879915145	860.194	
241	5545193043	14879600745	860.1	Pozo
242	5544791243	14879331445	862.465	01 HIPOLITO AMADOR
243	5545413843	14879965745	864.422	
244	5545523243	14879955045	863.127	
245	5545568343	14880013045	863.694	
246	5545675143	14879902645	860.954	10 INDALECIO GONZALEZ
247	5545695343	14879916945	861.135	
248	5546236743	14879776245	857.869	11 LIDIA ALFARO
249	5545756743	14879966845	861.448	
250	5545752443	14879911145	860.555	PE
251	5545988643	14879867045	858.749	
252	5546010443	14879929245	859.724	

253	5546123743	14879853745	858.489	
254	5546277043	14879822345	858.118	
255	5546209243	14879910545	858.943	
256	5546317843	14879888945	858.133	
257	5546469543	14879813945	857.958	
258	5546496943	14879798345	857.739	
259	5546731943	14879568745	855.179	12 FAUSTINO CUADRA
260	5546587643	14879850345	857.014	1217(0011110 007,0101
261	5546577743	14879827745	857.093	
262	5546582143	14879935845	856.775	
263	5546815043	14880020145	851.894	
264	5546745243	14879958845	854.012	
265	5546729043	14880011145	853.298	
266	5546870143	14879967345	852.314	13 NATHALIA SANCHEZ
267	5545298343	14879987645	865.888	10 10 11 11 12 11 07 11 12 12
268	5546446843	14879826745	858	
269	5545259843	14879629345	859.912	
270	5545210743	14879516845	858.416	
271	5545369643	14879092845	851.114	06 JESUS CAZCO
272	5545307243	14879209345	851.847	00 02000 07 1200
273	5545250143	14879251045	853.094	
274	5545318243	14879398645	854.738	
275	5545273943	14879427945	855.731	
276	5545297243	14879514745	857.152	
277	5545265043	14879626645	859.805	
278	5545245043	14879631845	860.111	
279	5545245443	14879791645	863.48	
280	5545272243	14879867545	864.55	
281	5545324843	14879966645	865.508	
282	5545253543	14879967845	866.088	
283	5545258243	14879942945	865.851	
284	5545197943	14879739745	862.786	
285	5545192643	14879632045	860.604	
286	5545193043	14879600745	860.1	
287	5545158043	14879530745	859.208	
288	5545159543	14879429245	857.115	
289	5545083943	14879359245	857.152	03 ISABEL GONZALEZ
290	5544762043	14879419245	863.873	02 EMILIO AMADOR
291	5545209443	14879509245	858.248	
292	5545248843	14879488845	857.276	
293	5545216543	14879452745	856.82	05 CANDIDA AMADOR
294	5545374143	14879487345	855.558	07 SIRIACO GONZALEZ
295	5545291043	14879171845	851.806	

296	5545303643	14879450045	855.878	
297	5545255143	14879550145	858.487	
298	5545033443	14879472145	859.766	
299	5544878943	14879420145	861.406	
300	5545008743	14879412145	859.202	PE
301	5545207343	14879649845	860.771	
302	5545223143	14879808245	864.118	
303	5545213243	14879645745	860.658	
304	5545183943	14879550145	859.363	
305	5545089343	14879577745	860.562	
306	5545117443	14879673545	861.88	
307	5545097643	14879710945	862.649	
308	5545140043	14879690045	862.026	
309	5519364136	14874227012	866.032	
310	5518083336	14873552812	878	TANQUE
311	5519903236	14874164512	860.194	
312	5519286836	14873850112	860.1	POZO
313	5518885036	14873580812	862.465	01 HIPOLITO AMADOR
314	5519507636	14874215112	864.422	
315	5519617036	14874204412	863.127	
316	5519662136	14874262412	863.694	
317	5519768936	14874152012	860.954	10 INDALECIO GONZALEZ
318	5519789136	14874166312	861.135	
319	5520330536	14874025612	857.869	11 LIDIA ALFARO
320	5519850536	14874216212	861.448	
321	5519846236	14874160512	860.555	PE
322	5520082436	14874116412	858.749	
323	5520104236	14874178612	859.724	
324	5520217536	14874103112	858.489	
325	5520370836	14874071712	858.118	
326	5520303036	14874159912	858.943	
327	5520411636	14874138312	858.133	
328	5520563336	14874063312	857.958	
329	5520590736	14874047712	857.739	
330	5520825736	14873818112	855.179	12 FAUSTINO CUADRA
331	5520681436	14874099712	857.014	
332	5520671536	14874077112	857.093	
333	5520675936	14874185212	856.775	
334	5520908836	14874269512	851.894	
335	5520839036	14874208212	854.012	
336	5520822836	14874260512	853.298	
337	5520963936	14874216712	852.314	13 NATHALIA SANCHEZ
338	5519392136	14874237012	865.888	

339	5520540636	14874076112	858	
340	5519353636	14873878712	859.912	
341	5519304536	14873766212	858.416	
342	5519463436	14873342212	851.114	06 JESUS CAZCO
343	5519401036	14873458712	851.847	00 02000 07.200
344	5519343936	14873500412	853.094	
345	5519412036	14873648012	854.738	
346	5519367736	14873677312	855.731	
347	5519391036	14873764112	857.152	
348	5519358836	14873876012	859.805	
349	5519338836	14873881212	860.111	
350	5519339236	14874041012	863.48	
351	5519366036	14874116912	864.55	
352	5519418636	14874216012	865.508	
353	5519347336	14874217212	866.088	
354	5519352036	14874192312	865.851	
355	5519291736	14873989112	862.786	
356	5519286436	14873881412	860.604	
357	5519286836	14873850112	860.1	
358	5519251836	14873780112	859.208	
359	5519253336	14873678612	857.115	
360	5519177736	14873608612	857.152	03 ISABEL GONZALEZ
361	5518855836	14873668612	863.873	02 EMILIO AMADOR
362	5519303236	14873758612	858.248	
363	5519342636	14873738212	857.276	
364	5519310336	14873702112	856.82	05 CANDIDA AMADOR
365	5519467936	14873736712	855.558	07 SIRIACO GONZALEZ
366	5519384836	14873421212	851.806	
367	5519397436	14873699412	855.878	
368	5519348936	14873799512	858.487	
369	5519127236	14873721512	859.766	
370	5518972736	14873669512	861.406	
371	5519102536	14873661512	859.202	PE
372	5519301136	14873899212	860.771	
373	5519316936	14874057612	864.118	
374	5519307036	14873895112	860.658	
375	5519277736	14873799512	859.363	
376	5519183136	14873827112	860.562	
377	5519211236	14873922912	861.88	
378	5519191436	14873960312	862.649	
379	5519233836	14873939412	862026	
380	5519279136	14873933012	861.586	
381	5519291036	14873933512	861.515	

5519321636	14873930412	004 000	
00.00=.000	1407 39304 12	861.202	
5519323236	14873837312	859.527	
5519278936	14873870112	860.483	
5519271436	14873877612	860.663	
5519227636	14873889212	861.199	
5519188336	14873906312	861.787	
5519160136	14873920912	862.241	
5519140836	14873863812	861.631	
5519124736	14873807412	861.123	
5519175636	14873800612	860.253	
5519190936	14873851312	860.886	
5519254536	14873837212	860.152	
5519246436	14873799812	859.618	
5519257136	14873798712	859.515	
5519270936	14873828512	859.882	
5519319236	14873817312	859.245	
5519315836	14873784912	858.71	
5519105336	14873977312	863.287	04 APOLONIA AMADOR
5519259236	14874100912	864.942	08 MARTA HERNANDEZ
5519269136	14874305612	867.421	09 NO SE ANOTO NOMBRE
5519160736	14874191412	866.39	PE
5519056836	14874211712	866.726	
5519044936	14874258512	867.57	
	5519278936 5519271436 5519227636 5519188336 5519160136 5519140836 5519124736 5519175636 5519190936 5519254536 5519254536 5519257136 5519270936 5519270936 5519315836 5519315836 5519105336 5519269136 5519160736 5519056836	5519278936 14873870112 5519271436 14873877612 5519227636 14873889212 5519188336 14873906312 5519160136 14873863812 5519140836 14873807412 5519175636 14873800612 551919936 14873837212 5519254536 14873799812 5519257136 14873828512 5519319236 14873828512 5519315836 14873977312 5519259236 14874100912 5519269136 14874191412 5519056836 14874211712	5519278936 14873870112 860.483 5519271436 14873877612 860.663 5519227636 14873889212 861.199 5519188336 14873906312 861.787 5519160136 14873920912 862.241 5519140836 14873863812 861.631 5519124736 14873800612 860.253 5519175636 14873851312 860.886 5519254536 14873837212 860.152 5519246436 14873799812 859.618 5519270936 14873828512 859.882 5519319236 14873817312 859.245 5519315836 14873977312 863.287 5519259236 14874100912 864.942 5519269136 14874305612 867.421 5519056836 14874211712 866.726

Tabla 36: Derrotero de predio de caseta

	DERROTERO DE PREDIO DE CASETA									
Lado					Coorde	enadas				
Est	Pv	Rumbo	Distancia	V	X	Υ				
				1	550605.9255	1467419.162				
1	2	S 73° 49′ 41.62" E	10	2	550615.5298	1467416.377				

2	3	N 16° 10′ 18.38" E	10	3	550618.315	1467425.981
3	4	N 73° 49′ 41.62" W	10	4	550608.7107	1467428.766
4	1	N 16° 10′ 18.38" W	10	1	550605.9255	1467419.162
		Sı	perficie total =	100.00 r	n ²	

Tabla 37: Derrotero de tanque de almacenamiento

	DERROTERO DEL TANQUE DE ALMACENAMIENTO											
Lado					Coordenadas							
Est	Pv	Rumbo	Distancia	V	X	Υ						
				5	550594.8998	1467409.865						
5	6	S 73° 49′ 41.62" E	5	6	550599.702	1467408.472						
6	7	N 16° 10′ 18.38" E	5	7	550601.0946	1467413.274						
7	8	N 73° 49′ 41.62" W	5	8	550596.2924	1467414.667						
8	5	N 16° 10′ 18.38" W	5	5	550594.8998	1467409.865						
		Su	perficie total =	25.00 m ²	2							

Anexo III: Aforo

	DISEÑO Y	CONSTRUCCION DEL POZO			
	Nombre del pozo: Perforación de un po	ozo en la comunidad de Santa			
Identificación:	Bárbara		Coordenadas	: N 13°27'15" -	W 86°31'56"
Pozo Nº 1	Municipio: Somoto	Fecha de	perforación: 07	/09/2016.	
Método de per	foración: Rotativo con martillo al fondo				

Metodo de perforación: Rotativo con martillo al fondo

Anexo IV: Estudio fisicoquímico y bacteriológico

Tabla 38: Parámetros bacteriológico (a)

Origen	Parámetro (b)	Valor Recomendado	Valor máximo Admisible	Observaciones
A. Todo tipo de agua de bebida	Coliforme fecal	Neg	Neg	
B. Agua que	Coliforme fecal	Neg	Neg	
entra al sistema de distribución	Coliforme total	Neg	≤ 4	En muestras no consecutivas
C. Agua en el sistema de distribución.	Coliforme total	Neg	≤ 4	En muestras puntuales No debe ser detectado en el 95% de las muestras anuales (c)
	Coliforme fecal	Neg	Neg	

Tabla 39: Parámetros físico - químicos

			Valor
Parámetros	Unidad	Valor recomendado	máximo Admisible
Temperatura	°C	18 a 30	
Concentración de Iones Hidrogeno	Valor pH	6.5 a 8.5 (a)	
Cloro Residual	mg/L	0.5 a 1.0 (b)	(c)
Cloruros	mg/L	25	250
Conductividad	μS/cm	400	
Dureza	mg/L CaCo3	400	
Sulfatos	mg/L	25	250
Aluminio	mg/L		0.2
Calcio	mg/L CaCo3	100	
Cobre	mg/L	1	2
Magnesio	mg/L CaCo3	30	50
Sodio	mg/L	25	200
Potasio	mg/L		10
Solidos Disueltos Totales	mg/L		1000
Zinc	mg/L		3

Universidad Nacional de Ingeniería

Vicerrectoría de Investigación y Desarrollo

Programa de Investigación, Estudios Nacionales y Servicios del Ambiente Managua, Nicaragua

LABORATORIOS AMBIENTALES

		CERTIFICAD	O DE ENSA	AYOS			MP-2006-0076
CLIENTE		DIRECCION	DIRECCION				
Fabricio Davi	d Garcia	UNI-RUAC	UNI-RUACS			NR	
ATENCIÓN			CARGO		EM/	AIL	CELULAR
Fabricio Davi	o David Garcia		Tesista		garciacorral		5845-7822
	CHAS DE PROCESAMIENTO DE MUESTRA E		-		EMISION DE	CADENA	NUMERO DE
INGRESO 16/06/2020	INICIO DE ANALISIS 23/06/2020		ANALISIS 5/2020		0 DE ANALISIS 6/2020	4008	Una (01)
Fecha y Hora		20/0	T		8:20 am	1000	Ona (O1)
Muestreado p			Fabricio David Garcia				
Supervisor de	Muestreo en Campo		Indalecio González				Rango o valo
Fuente			Pozo Santa Bárbara				máximo
Tipo de mues	tra			Agua Subterránea			permisible
Observations	s de Ubicación		Comunidad Santa Bárbara, sector el Plane, Departamento de Madriz			el Plane,	o recomendado
Observacione	s de Obicación						
Coordenadas				1	IR .	Total Control	1
Codificación PIENSA			LA-2006-0779				
METODO	ENSAYO REALIZADO	UNIDAD	VALOR DE CONCENTRACION PUNTO DE MUESTREO 1		Norma		
SM // EPA	PARAMETRO	UNIDAD			and the same	CAPRE*	
G.H	Arsénico	mg/L	<0.002			0.01	

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parámetro de acuerdo a la Unidad que se indica en la columna y línea respectiva.

Abreviaturas y simbolos: <= menor al Límite de Detección que se especifica por parámetro. NR= No Reporta,

Metodos, Normas y/o Decreto empleados: SM = Standard Methods for the Examination of Water & Wastewater 23 RD 2017

EPA = Environmental Protection Agency, * Normas de Calidad del Agua Para Consumo Humano: Norma Regional CAPRE

G.H: Generador de Hidruros, Utilizando ARSENATOR

OBSERVACIONES: La muestra fue recolectada, custodiada e ingresada al laboratorio por el cliente.

Los resultados reportados corresponden a los ensayos solicitados por el cliente

Ing.Maria Ligia Gomez

Coordinadora de Laboratorios Ambientales PIENSA(UN) N

TECNICA ©

Declaramos que este informe de resultados será de uso exclusivo del cliente, el laboratorio garantiza la confidencialidad e imparcialidad del informe.

0001138

Universidad Nacional de Ingeniería

Vicerrectoría de Investigación y Desarrollo

LABORATORIOS AMBIENTALES

TELEFONO				DIRECCIÓN		LIENTE
NR				UNI-RUACS	García	abricio David
CELULAR	IL.	CARGO EMAIL				
FO 4F 7000	lesf@gm	garciacorra				ATENCIÓN
5845-7822		ail.co	Tesista		l García	abricio David
NUMERO DE	CADENA			N EL LABORATORIO	CHAS DE PROCESAMIENTO DE MUESTRA E	FEC
MUESTRAS	CUSTODIA	ERTIFICADO DE ANALISIS		FINAL DE A	INICIO DE ANALISIS	INGRESO
Una (1)	4008	26/06/2020	2020	25/06/2	19/06/2020	-16/06/2020
		5/06/2020 08:20 a.m.		, A	le Muestreo	Fecha y Hora d
Barrer a mala		Fabricio David García Indalesio González			or	/luestreado po
Rango o valo máximo		Pozo Santa Bárbara			Muestreo en Campo	
permisible		Agua Subterránea				uente
0	El Plane	Santa Bárbara, Sector	Comunida		ra	Tipo de muesti
recomendad	Li i idilo,	epartamento de Madriz.				
		NR			s de Ubicación	
		LA-2006-0779			WELLO A	Coordenadas
Norma	1	LOR DE CONCENTRACION			ENSAYO REALIZADO	Codificación P
CAPRE*	PUNTO DE MUESTREO 1			UNIDAD	PARAMETRO	METODO SM // EPA
NE	Claro con materia en suspensión			NE	Aspecto	Visual
6.5 - 8.5**	7.97		pH	Potencial de Hidrógeno	4500-B	
400**		499.00		μS/cm	Conductividad Elèctrica	2510-B
5		0.189	The Marie	UNT	Turbiedad	2130-B
15		<1.00		mg/L (Pt-Co)	Color Verdadero	2120-C
NE		270.80	55 pm	mg/L CaCO ₃	Alcalinidad	2320-B
NE		<0.40		mg/L CaCO ₃	Carbonatos	2320-B
NE	TO THE REAL PROPERTY.	270.80		mg/L CaCO ₃	Bicarbonatos	2320-B 2320-B
50		0.61		mg/L	Nitratos	
0.1		<0.009		mg/L	Nitratos	4500-B
250		5.86		mg/L	Cloruros	4500-B
0.3		0.146		mg/L	Hierro Total	4500-D
250		9.93		mg/L		3500-B
400**		188.80		mg/L CaCO ₃	Sulfatos Dureza Total	4500-D
NE		161.80		mg/L CaCO ₃	Dureza Calcica	2340-C
100**		64.85				2340-C
50		6.56		mg/L	Calcio	3500-B
0.5		0.037		mg/L	Magnesio	3500-B
200		29.25		mg/L	Manganeso	3500-B
10		6.05		mg/L	Sodio	3500-X
		0.00	1	mg/L	Potasio	3500-C

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parámetro de acuerdo a la Unidad que se indica en la columna y línea respectiva Abreviaturas y símbolos: <= menor al Límite de Detección que se especifica por parámetro, NE= No especificada en la Norma, NR= No Reporta Metodos, Normas y/o Decreto empleados: SM = Standard Methods for the Examination of Water & Wastewater 23 RD 2017, EPA = Environmental Protection Agency, * Normas de Calidad del Agua Para Consumo Humano: Norma Regional CAPRE, ** Valor recomendado

OBSERVACIONES: La muestra fue recolectada, custodiada e ingresada al laboratorio por el cliente Los resultados reportados corresponden a los ensayos solicitados por el cliente

Ing. María Lidia Gómez

Coordinadora de Laboratorios Ambientales PIENSA-UNI

C C 1 fectarione que este informe de resultados será de uso exclusivo del cliente, el laboratorio garantiza la confidencialidad e imparcialidad del informe.

Dirección: (505) 22781462 • Área Académica 2270-5613 y 8886-6702 (M); Atención al Cliente: 8496-8568 (C) y 8152-7314 (M) Coordinación de Laboratorios 8100-0421 (M) • e-mail: piensa@uni.edu.ni• Web: www.piensa.uni.edu.ni

Universidad Nacional de Ingeniería

Vicerrectoría de Investigación y Desarrollo

LABORATORIOS AMBIENTALES

		CERTIFICADO	DE ENSA	AYOS			MB-2006-0107
CLIENTE		DIRECCION					TELEFONO
Fabricio Davi	d García	UNI-RUACS					NR
ATENCIÓN			CARGO		EM/	AIL	CELULAR
Fabricio Davi	bricio David García		Tesista		garciacorra ail.c		5845-7822
FE	ECHAS DE PROCESAMIENTO DE MUESTRA	EN EL LABORATORIO		FECHA DE	EMISION DE	CADENA	NUMERO DE
INGRESO	INICIO DE ANALISIS	FINAL DE	ANALISIS	CERTIFICAD	O DE ANALISIS	CUSTODIA	MUESTRAS
16/06/2020	16/06/2020	22/06/		23/0	6/2020	4008	Una (01)
Fecha y Hora				15/06/20	; 08:20 am		
Muestreado p			Fabricio David García				Rango o valor máximo permisible
CONTRACTOR OF THE PARTY OF THE	Muestreo en Campo		Indalesio González				
Fuente			Pozo Santa Bárbara				
Tipo de muest	tra		Agua Subterránea				
Observacione	s de Ubicación		Comunidad Santa Bárbara, Sector el Plane, Departamento de Madriz			o recomendado	
Coordenadas			NR				1
Codificación F	PIENSA			LA-20	06-0779		
METODO	ENSAYO REALIZADO	UNIDAD		VALOR DE CO	NCENTRACION		Norma CAPRE
SM // EPA	PARAMETRO	UNIDAD	PUNTO DE MUESTREO 1		Norma CAPRE		
9221-B	Coliforme Total	NMP/100mL	26.0		Negativo		
9221-E	Coliforme Fecal	NMP/100mL	Negativo			Negativo	
9221-F	E. coli	NMP/100mL	Negativo			NE	

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parámetro de acuerdo a la Unidad que se indica en la columna y línea respectiva.

Abreviaturas y simbolos: <= menor al Límite de Detección que se especifica por parámetro. NE= No especificada en la Norma, NR= No Reporta, Metodos, Normas y/o Decreto empleados: SM = Standard Methods for the Examination of Water & Wastewater 23 RD 2017

EPA = Environmental Protection Agency, * Normas de Calidad del Agua Para Consumo Humano: Norma Regional CAPRE

OBSERVACIONES: La muestra fue recolectada, custodiada y entregada al laboratorio por el cliente.

Los resultados reportados corresponden a los ensayos solicitados por el cliente

Ing. Maria Lidia Gómez

Coordinadora Laboratorios Ambientales PIENSA-UNI

Declaramos que este informe de resultados será de uso exclusivo del cliente, el laboratorio gerentiza la confidencialidad e imparcialidad del informe.

0001187

Anexo v: Caudales de diseño para el periodo 2020 – 2040

Tabla 43: Caudales de diseño 2020/2040

	Proyeccion de poblacion con tasa de crcimiento de	Cobertura total del	Dotacion asignada al	Consumo Domestico	Consumo publico o	Caudal por	Consumo promedio diario	Consumo maximo dia (CMD)
Año	2.5%	sector (%)	sector (lpd)	(CD) (lps)	institucional (CP)(7%)	fuga (20%)	lps	lps
2020	234	100	60	0.163	0.011	0.035	0.17	0.30
2021	240	100	60	0.167	0.012	0.036	0.18	0.30
2022	246	100	60	0.171	0.012	0.037	0.18	0.31
2023	252	100	60	0.175	0.012	0.037	0.19	0.32
2024	258	100	60	0.179	0.013	0.038	0.19	0.33
2025	265	100	60	0.184	0.013	0.039	0.20	0.33
2026	271	100	60	0.188	0.013	0.040	0.20	0.34
2027	278	100	60	0.193	0.014	0.041	0.21	0.35
2028	285	100	60	0.198	0.014	0.042	0.21	0.36
2029	292	100	60	0.203	0.014	0.043	0.22	0.37
2030	300	100	60	0.208	0.015	0.045	0.22	0.38
2031	307	100	60	0.213	0.015	0.046	0.23	0.39
2032	315	100	60	0.219	0.015	0.047	0.23	0.40
2033	323	100	60	0.224	0.016	0.048	0.24	0.41
2034	331	100	60	0.230	0.016	0.049	0.25	0.42
2035	339	100	60	0.235	0.016	0.050	0.25	0.43
2036	347	100	60	0.241	0.017	0.052	0.26	0.44
2037	356	100	60	0.247	0.017	0.053	0.26	0.45
2038	365	100	60	0.253	0.018	0.054	0.27	0.46

2039	374	100	60	0.260	0.018	0.056	0.28	0.47
2040	383	100	60	0.266	0.019	0.057	0.28	0.48

									Consumo		
	Proyeccion de						Consumo	Consumo	maximo		
	poblacion con		Dotacion		Consumo	Caudal	promedio	maximo	hora	Almacena	miento
	tasa de	Cobertura	asignada	Consumo	publico o	por	diario	dia (CMD)	(CMH)	total "El	Plan"
	crcimiento de	total del sector	al sector	Domestico	institucional	fuga					
Año	2.5%	(%)	(lpd)	(CD) (lps)	(CP)(7%)	(20%)	lps	lps	lps	gpd	m³/d
2020	234	100	60	0.163	0.011	0.035	0.17	0.30	0.47	1389.2	0.77
2021	240	100	60	0.167	0.012	0.036	0.18	0.30	0.48	1423.9	0.79
2022	246	100	60	0.171	0.012	0.037	0.18	0.31	0.49	1459.5	0.81
2023	252	100	60	0.175	0.012	0.037	0.19	0.32	0.51	1496.0	0.83
2024	258	100	60	0.179	0.013	0.038	0.19	0.33	0.52	1533.4	0.85
2025	265	100	60	0.184	0.013	0.039	0.20	0.33	0.53	1571.7	0.87
2026	271	100	60	0.188	0.013	0.040	0.20	0.34	0.54	1611.0	0.89
2027	278	100	60	0.193	0.014	0.041	0.21	0.35	0.56	1651.3	0.92
2028	285	100	60	0.198	0.014	0.042	0.21	0.36	0.57	1692.6	0.94
2029	292	100	60	0.203	0.014	0.043	0.22	0.37	0.59	1734.9	0.96
2030	300	100	60	0.208	0.015	0.045	0.22	0.38	0.60	1778.2	0.99
2031	307	100	60	0.213	0.015	0.046	0.23	0.39	0.62	1822.7	1.01
2032	315	100	60	0.219	0.015	0.047	0.23	0.40	0.63	1868.3	1.04
2033	323	100	60	0.224	0.016	0.048	0.24	0.41	0.65	1915.0	1.06
2034	331	100	60	0.230	0.016	0.049	0.25	0.42	0.66	1962.9	1.09
2035	339	100	60	0.235	0.016	0.050	0.25	0.43	0.68	2011.9	1.12
2036	347	100	60	0.241	0.017	0.052	0.26	0.44	0.70	2062.2	1.14
2037	356	100	60	0.247	0.017	0.053	0.26	0.45	0.71	2113.8	1.17
2038	365	100	60	0.253	0.018	0.054	0.27	0.46	0.73	2166.6	1.20

2039	374	100	60	0.260	0.018	0.056	0.28	0.47	0.75	2220.8	1.23
2040	383	100	60	0.266	0.019	0.057	0.28	0.48	0.77	2276.3	1.26

Anexo VI: Presupuesto

Tabla 44: Presupuesto del proyecto

	PROYECTO: DISEÑO DE UN SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE EN EL SECTOR "EL PLAN" COMARCA SANTA BARBARA MUNICIPIO DE SOMOTO DEPARTAMENTO DE MADRIZ									
		Fecha : Diciembre 2020		Tasa d	e Cambio = C	\$ 34 .70				
Etapa	Sub Etapa	DESCRIPCIÓN	U/M	CANTIDAD	P/UNIT	COSTE TOTAL C\$				
010	010	Preliminares				6354.08				
	01	Limpieza inicial	m²	794.26	4	3177.04				
	01	Limpieza inicial para predio de captación	m²	100	4	400				
	08	Limpieza inicial para línea de conducción y distribución	ml	669.26	4	2677.04				
	01	Limpieza inicial para predio de tanque	m²	25	4	100				
	02	Trazo y nivelación				0				
	02	Trazo de eje de tubería de agua potable	m	669.26	15	10038.9				
	05	Rótulos				8725.41				
	05	Rótulo tipo fise de 1,22m x 2,44m (estructura metálica & zinc liso) con base de concreto	c/u	1	8725.41	8725.41				
O20	O20	OBRA DE CAPTACIÓN				101807.75				
	01	EQUIPAMIENTO DE POZO				73500				
		EQUIPAMIENTO DE POZO ENCAMIZADO	PIE	210	350	73500				
	02	SARTA				28307.753				
		CODO DE HIERRO GALVANIZADO = 1 1/2" H.F x 90 º	C/U	1	86.168	86.168				
		UNION DRESSER DE 1 1/2"	C/U	2	857.24	1714.48				
		TEE HIERRO GALVANIZADO DE 1 1/2"	C/U	1	194.53	194.53				
		LLAVE DE CHORRO DE 1/2"	C/U	2	50	100				
		MANOMETRO DE 0-200PSI	C/U	1	270	270				

		NIPLE HIERRO GALVANIZADO DE 1/2" L = 0.20 m	C/U	2	51.5463	103.0926
		ABRAZADERA HF 1 1/2"	C/U	2	368	736
		VALVULA DE AIRE Y VACIO DE HIERRO FUNDIDO = 1/2" + ABRAZADERA DE HIERRO GALVANIZADO +				
		UNION DE BRONCE	C/U	1	2342.41	2342.41
		MEDIDOR DE CAUDAL 1 1/2"	C/U	1	1716	1716
		VALVULA CHECK DE BRONCE = 1 1/2" + ADAPTADOR HEMBRA DE PVC = 1" (2 C/U)	C/U	1	829.2697	830.2697
		CRUZ DE HIERRO FUNDIDO = 1 1/2"	C/U	1	301	301
		CODO DE HIERRO GALVANIZADO = 1 1/2" x 45	C/U	2	115.604	231.208
		UNION PVC DE 1 1/2"	C/U	1	30	30
		VALVULA DE LIMPIEZA 1 1/2"	C/U	1	7500	7500
		VALVULA DE COMPUERTA DE BRONCE = 1 1/2"	C/U	1	1232.5947	1232.5947
		VALVULA DE ALIVIO DE 1 1/2"	C/U	1	5000	5000
		TUBO DE HIERRO FUNDIDO DE 1 1/2"	ML	4	230	920
		INSTALAR SARTA	GLB	1	5000	5000
	О3	OTROS				16083.675
	03	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP	C/U	3	5050.42	16083.675 15151.26
	03		C/U C/U	3	5050.42 932.415	
O30	O3 O30	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP	 			15151.26
O30		Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO	 			15151.26 932.415
030	030	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción	C/U			15151.26 932.415
O30	O30 O0	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras	C/U m³	1	932.415	15151.26 932.415 16171.81
O30	030 00 01	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras Excavación de zanjas 1m de profundidad	C/U m ³ m ³	1 61.4424	932.415	15151.26 932.415 16171.81 4915.392
O30	030 00 01 04	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras Excavación de zanjas 1m de profundidad Relleno y compactación	m ³ m ³ m ³	1 61.4424 40.4568	932.415	15151.26 932.415 16171.81 4915.392
030	030 00 01 04 00	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras Excavación de zanjas 1m de profundidad Relleno y compactación Obras sanitarias	m ³ m ³ GLB	1 61.4424 40.4568	932.415	15151.26 932.415 16171.81 4915.392
030	030 00 01 04 00	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras Excavación de zanjas 1m de profundidad Relleno y compactación Obras sanitarias Tubería y accesorios de agua potable	m³ m³ m³ GLB	1 61.4424 40.4568 1	932.415 80 75	15151.26 932.415 16171.81 4915.392 3034.26
030	030 00 01 04 00	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras Excavación de zanjas 1m de profundidad Relleno y compactación Obras sanitarias Tubería y accesorios de agua potable Tubería de PVC Diámetro = 1 1/2" (SDR -26) (NO INCLUYE EXCAVACION)	m³ m³ m³ GLB mI	1 61.4424 40.4568 1 108	932.415 80 75 39.827	15151.26 932.415 16171.81 4915.392 3034.26
030	030 00 01 04 00	Bomba sumergible Franklin Electric Serie BT4 -15 GPM con potencia de ½ HP INSTALACIONES ELECTRICAS PARA ESTACION DE BOMBEO Línea de conducción Movimiento de tierras Excavación de zanjas 1m de profundidad Relleno y compactación Obras sanitarias Tubería y accesorios de agua potable Tubería de PVC Diámetro = 1 1/2" (SDR -26) (NO INCLUYE EXCAVACION)	m³ m³ GLB ml c/u	1 61.4424 40.4568 1 108	932.415 80 75 39.827	15151.26 932.415 16171.81 4915.392 3034.26

		Prueba y desinfección de tuberìa	c.u.	1	500	500
	O5	Bloque de reacción de Concreto	C.u.	3	214.6215	209.2875
		Hacer concreto	m³	0.05	0	0
		Cemento	Bolsa	0.44	250	110.7421875
		Arena	M ³	0.03	500	14.625
		P. Triturada (1/2")	M ³	0.04	250	9.2390625
		Agua	M ³	0.01	1200	16.0875
		Acarreo de materiales	M ³	0.05	1200	56.25
		Fundir Concreto	M ³	0.05	50	2.34375
	06	Transporte (5% de materiales)	%	0.05	10809.5022	540.4751094
040	O40	Red de distribución				92348.40
	01	Excavación para tubería	m³			
		Excavación manual en terreno natural para tubería de distribución	m³	182.9988	64	11711.92
	02	Tubería y Accesorios de Línea de Distribución	m.l.	440		80636.47889
		Tubería de PVC Diámetro = 1 1/2" (SDR-26) (NO INCLUYE EXCAVACION)	ml	440	39.827	17523.88
		Instalación de tuberia de PVC Diámetro = 1 1/2" (sdr-26) (solo mano de obra)	m	440	20	8800
		Tee lisa de PVC Diámetro = 1 1/2"	C.U.	3	185.718	557.154
		Codo liso de PVC Diámetro = 1 1/2" x 90°	C.U.	43	51.7952	2227.1936
		Tapón hembra liso de PVC Diámetro = 1 1/2"	C-U	5	18.7234	93.617
		Yee lisa de PVC Diámetro = 1 1/2"	C.U.	1	110.328	110.328
		Válvula (o llave) de pase de Bronce Diámetro = 1 1/2"	C.U.	1	798.9336	798.9336
		Válvula de limpieza HF de 1 1/2"	C.U.	2	3330	6660
		Válvula de aire y vacío de hierro fundido Diámetro = 1 1/2" (INCLUYE ACCESORIOS)	C.U.	5	2726.04	13630.2
			1/4			
		Pegamento PVC	gln	3	125	375
		Prueba hidrostática (con bomba manual) en tubería hasta Diámetro = 4", I hasta 300m para				
		proyecto. A. P	c/u	10	1800	18000
	03	Relleno y compactación manual para tubería	m³	204.5	58	11860.17269

050	050	SISTEMA DE ALMACENAMIENTO				245671.12
	01	TANQUE DE PLASTICO CAPACIDAD = 10,000 LITROS (NO INCLUYE ACCESORIOS)	C.U	1	37814.13	37814.13
	01	LOSA DE CONCRETO (INCLUYE MATERIAL Y MANO DE OBRA)	C/U	1	133208.69	133208.6897
	02	ALMACENAMIENTO DE AGUA (TANQUE ROTOPLAS)	C.u.	1	23000	23000
	02	OBRAS COMPLEMENTARIAS DE TANQUE				51648.30142
	01	Caseta de protección	C.u.	1	1524.19	1524.19
		Madera de 2" x 4" x 1.25m	Pieza	2	36	72
		Madera de 2" x 4" x 0.95m	Pieza	2	27.36	54.72
		Madera de 2" x 4" x 1.10m	Pieza	2	31.68	63.36
		Madera de 2" x 4" x 1.20m	Pieza	2	34.56	69.12
		Madera de 2" x 2" x 1.15m	Pieza	2	33.12	66.24
		Clavos de acero de 4"	c.u.	20	3	60
		Zinc Corrugado cal. 26 de 4'	lam.	1	200	200
		Clavos de zinc	lbs	0.25	25	6.25
		Pintura para curar madera	gln	0.25	150	37.5
		Pintura de aceite	gln	0.25	180	45
		Hacer y pintar caseta	C.u.	1	500	500
	02	Hipoclorador de plástico Cap. = 33 galones	C.u.	1	3000	3000
		Bidón plástico de 5 galones con tapa	c.u.	1	100	100
		Manguera plástica de 1/4"	pies	3	10	30
		Regulador de flujo	c.u.	1	10	10
		Niple PVC de 1/2" L = 0.40m	c.u.	1	10	10
		Instalar clorinador	C.u.	1	1200	1200
	О3	Cerco de alambre de púa	m.l.	20	972.86	19457.2
		Poste de concreto pretensado	C.u.	28	600	16800
		Alambre de Púas Calibre 13 1/2	Rollo	1.24	500	620
		Grapas galvanizadas	lbr	1.24	30	37.2
		Hacer cerco de alambre de púa	m.l.	20	92.7217	1854.434

	04	Portón de alambre de púa L =2m	c.u.	1	1538	1538
		Poste de concreto pretensado	c.u.	2	600	1200
		Madera de 2" x 2" x 2 vrs	c.u.	3	70	210
		Alambre de púa	rollo	0.1	70	7
		Grapas galvanizadas	Lbr	0.1	15	1.5
		Hacer y colocar portón de alambre de púa	c.u.	1	120	120
	O5	Base de concreto para cerco y portón	c.u.	30	0	0
		Hacer concreto	m³	0.384	0	0
		Cemento	Bolsa	3.6288	250	907.2
		Arena	M^3	0.239616	500	119.808
		P. Triturada (1/2")	M^3	0.3027456	250	75.6864
		Agua	M^3	0.109824	1200	131.7888
		Acarreo de materiales	M ³	0.384	1200	460.8
		Fundir Concreto	M ³	0.384	50	19.2
	06	Transporte de materiales	%	0.05	20802.0844	1040.10422
O60	O60	CONEXIONES DOMICILIARES				159606.98
	01	Excavación y relleno de zanjas	m³	374.4	127.75	47829.6
		Excavación de zanja conexión Domiciliar	m³	187.2	60	11232
		Relleno y compactación de zanja	m³	187.2	195.5	36597.6
	02	Tubería y accesorios de Conexión Domiciliar	m.l.	26	1044.782	27164.332
		Abrazaderas de 1 1/2 "x1/2" de PVC/con rosca	c/u	0	130	0
		Adaptador Macho PVC 1/2"	c/u	13	7	91
		Codo de 1/2" x 90	c/u	39	6	234
		Válvula de pase 1/2" de Br.	c/u	13	365.115	4746.495
		Medidor	c/u	13	1000	13000
		Caja de medidor con tapa	c/u	13	455.468	5921.084
		Tubería de 1/2" PVC (No Incluye Excavación)	m.l.	26	28.3029	735.8754
		Adaptador Hembra PVC 1/2"	c.u.	26	7	182

		Tubo de concreto de Sin Reforzado (ASTM) C-14 con Campana Diámetro = 10" (No Incluye				
		Excavación)	ml	3	370.1192	1110.3576
		Reductor de 1" a 1/2"	c.u.	19	12	228
		Tubo Hierro Galvanizado Diámetro = 1/2 con codo de Hierro + Tee de H.O (No incluye excavación)	ml	3	66.5069	199.5207
		Codo de 1/2" x 90 HG	c.u.	13	86.168	1120.184
		Adaptador Macho PVC 1/2"	c.u.	13	10	130
		Llave de Choro de 1/2"	c.u.	13	65	845
		Pegamento PVC	Gln	0.65	360	234
		Instalación de tubo de 1/2" PVC-SDR-13.5	m.l.	26	5	130
		Instalación de medidor de 1/2"	c/u	13	50	650
		Transporte de materiales	%	0.05	24254.62	1212.731
	03	Base de concreto de 0.50*0.20*0.50m	c.u.	13	231.277	3006.601
		Hacer concreto	m³	0.65	0	0
		Cemento	Bolsa	6.1425	250	1535.625
		Arena	M ³	0.4056	500	202.8
		P. Triturada (1/2")	M ³	0.51246	250	128.115
		Agua	M ³	0.1859	1200	223.08
		Acarreo de materiales	M ³	0.65	1200	780
		Fundir Concreto	M ³	0.65	50	32.5
	04	Transporte (5% de materiales)	%	0.05	2089.62	104.481
070	070	SISTEMA DE TRATAMIENTO				332085.42
	01	Lavandero con Sistema de tratamiento	c.u.	13	23220	301860
		Lavandero	c.u.	13	600	7800
		Coladera de 2"	c.u.	13	30	390
		Codo PVC de 2" x 90º	c.u.	26	50	1300
		Bidon plástico de 5glns	c.u.	13	100	1300
		Tubo PVC de 2"	c.u.	2.6	350	910

	02	Zanja de infiltración	m.l.	78		0
		Excavación	m³	12.48	60	748.8
		Grava	m³	12.48	250	3120
		Tubo de 2" perforado	c.u.	0	400	0
		Codo PVC de 2" x 90º	c.u.	0	80	0
		Codo PVC de 2" x 45º	c.u.	0	80	0
	О3	Pozo de infiltración	c.u.	13	0	0
		Excavación	m³	0	60	0
		Grava	m³	0	250	0
	04	Tapa de concreto de 0.8x0.80x0.05	c.u.	13	0	0
		Hacer concreto	m³	0.104	0	0
		Cemento	Bolsa	0.9828	250	245.7
		Arena	M^3	0.064896	500	32.448
		P. Triturada (1/2")	M^3	0.0819936	250	20.4984
		Agua	M^3	0.029744	1200	35.6928
		Acarreo de materiales	M ³	0.104	1200	124.8
		Fundir Concreto	M ³	0.104	50	5.2
		Acero 3/8"	QQ	2.78571429	2500	6964.285714
	05	Instalar sistema de tratamiento	c.u.	13	500	6500
	06	Transporte	%	0.05	14560	728
080	080	LIMPIEZA FINAL	m²	794.26	2.81	2229.48
		Limpiar y botar escombros de construcción	m²	794.26	1	794.26
		Conformación de calles	m²	1132.98	1	1132.98

Subtotal	956275.05
Administración 10%	95627.50525
Transporte 5%	47813.75263
Utilidades 15%	143441.2579
Costo total	C\$1,243,157.57
Costo total del proyecto en dólares (34.70 tasa de cambio por dólar americano)	\$35,825.87

PROPUESTA DE PLANOS