

Monografía

"SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE PARA LA COMUNIDAD EI CIPRÉS, MUNICIPIO DE WASLALA, DEPARTAMENTO DE RACCN"

Para optar al título de Ingeniero Civil

Elaborado por

Br. Leibniz Jordy Barrera Calderón

Br. Danis Mauricio Gámez Lanuza

Br. José Francisco Martínez Guevara

Tutor

M. Sc. Ing. Ricardo Javier Fajardo González

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN DEPARTAMENTO DE HIDRÁULICA Y MEDIO AMBIENTE

Managua, octubre 02 de 2021

Dr. Ing. Oscar Isaac Gutiérrez Somarriba DECANO F.T.C. Su despacho

Estimado Dr. Ing. Gutiérrez Somarriba:

Por este medio hago de su conocimiento que he concluido la tutoría del Trabajo Monográfico titulado "DISEÑO DE ABASTECIMIENTO DE AGUA POTABLE PARA LA COMUNIDAD EL CIPRÉS, MUNICIPIO DE WASLALA, DEPARTAMENTO DE RACCN", elaborado por el (los) Bachiller(es): Leibniz Jordy Barrera Calderón, Danis Mauricio Gámez Lanuza y José Francisco Martínez Guevara, para optar al título de Ingeniero Civil de la Facultad de Tecnología de la Construcción (FTC) de la Universidad Nacional de Ingeniería (UNI).

No omito manifestarle que el(los) bachiller(es) en mención desarrolló con absoluta independencia el contenido de su trabajo investigativo, lo cual le da un gran valor científicotécnico para futuros estudiantes interesados en la temática presentada, por lo tanto, recomiendo la conformación del jurado examinador y se reconozca el esfuerzo y dedicación que el(los) bachiller(es) Barrera Calderón, Gámez Lanuza y Martínez Guevara emplearon en la culminación de tan importante trabajo monográfico.

Sin más a qué referirme, me suscribo de usted reiterándole las más altas muestras de consideración y respeto.

Atentamente,

M. Sc. Ing. Ricardo Javier Fajardo González e-mail riavierfajardog@yahoo.com

Celular: (505) 8876-4913; (505) 7887-7723

Tutor

CC:

Br. Leibniz Jordy Barrera Calderón Br. Danis Mauricio Gámez Lanuza

Br. José Francisco Martínez Guevara

Archivo cronológico

Sustentante

Sustentante Sustentante

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

DEC-FTC-REF-No.10 Managua, 25 Enero del 2021

Bachilleres
LEIBNIZ JORDY BARRERA CALDERON
DANIS MAURICIO GAMEZ LANUZA
JOSE FRANCISCO MARTINEZ GUEVARA
Estimados (as) Bachilleres:

Es de mi agrado informarles que el PROTOCOLO de su Tema MONOGRAFICO, titulado: SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE PARA LA COMUNIDAD EL CIPRES, MUNICIPIO DE WASLALA, DEPARTAMENTO DE RACCN.Ha sido aprobado por esta Decanatura.

Asimismo les comunico estar totalmente de acuerdo que el Ing. Ricardo Javier Fajardo González. Sea el tutor de su trabajo final.

La fecha límite, para que presenten concluido su documento final, debidamente revisado por el tutor guía será el 25 de Julio del 2021

Esperando puntualidad en la entrega de la Tesis, me despido.

Atentamente,

Dr. Ing. Oscar Gutierrez Somarriba

CC: Protocolo

Tutor – Ing. Ricardo Javier Fajardo González. Archivo*Consecutivo

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION DECANATURA

DEC.FTC.REF No. 039 Managua, 27 de Julio del 2021

Bachilleres
LEIBNIZ JORDY BARRERA CALDERON
DANIS MAURICIO GAMEZ LANUZA
JOSE FRANCISCO MARTINEZ GUEVARA
Estimados (as) Bachilleres:

En atención a su carta de solicitud de AMPLIACION DEL TIEMPO DE ENTREGA, para efectuar la pre-defensa de su trabajo de Monografía titulado: "SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE PARA LA COMUNIDAD EL CIPRES, MUNICIPIO DE WASLALA, DEPARTAMENTO DE RACCN". Esta Decanatura le aprueba 3 MESES DE AMPLIACION, considerando los problemas planteados en su comunicación.

La fecha límite, para que presenten concluido su documento, debidamente revisado por el tutor guía será el **27 Octubre del 2021.** Para la programación de su fecha de pre-defensa.

Esperando de ustedes puntualidad en la entrega de su trabajo final, me despido.

Atentamente,

Dr. Ing. Oscar Gutiérrez Somarriba

REIDAD NACIONAL DE INGENIE

MANAGUA, HICARAGUDECANO

CC. Prorroga

Tutor – Ing. Ricardo Fajardo González.

Archivo-Consecutivo

Dedicatoria

Este trabajo monográfico es dedicado primeramente a nuestro **Dios todo poderoso, Jesucristo y el espirito santo**; por guiarnos en buenos pasos y brindarnos sabiduría, entendimiento para hacer las cosas bien cada día.

A nuestros padres, por apoyarnos en todo momento por sus consejos, sus valores, por la motivación constante que nos permiten ser una persona de bien, por los ejemplos de perseverancia y constancia que los caracterizan y que influyen siempre, pero más que nada, por su amor.

A nuestros hermanos y familiares, por brindarnos su cariño y por su motivación incondicional para ser alguien mejor en la vida.

Br. Leibniz Jordy Barrera Calderón
Br. Danis Mauricio Gámez Lanuza
Br. José Francisco Martínez Guevara

Agradecimiento

Agradezco primeramente a Dios por regalarme sabiduría para realizar las cosas bien cada día y culminar esta etapa importante en mi vida, que sin su ayuda nada hubiera sido posible.

A mis padres: Agustín Barrera Hernández y Dora del Carmen Calderón Romero; por haberme dado todo su apoyo para lograr mi formación universitaria y durante todo el proceso del trabajo monográfico.

A mis hermanos: Andersson Agustín Barrera Calderón y Dora Johandra Barrera Calderón; por ser parte incondicional de mi motivación para ser un profesional exitoso.

A mi tía: **Ana Dora Saldívar Casco**; por sus enseñanzas, y por haberme apoyado durante los 5 años del trayecto académico, que fue fundamental para terminar mi carrera.

Expresando toda mi gratitud a la **Ingeniera María Laura** por haber contribuido y apoyarnos en la realización de esta tesis.

Agradezco a nuestro tutor: **M.Sc. Ing. Ricardo Javier Fajardo González**; por sus consejos y apoyo incondicional tanto en el diseño como en la elaboración de esta tesis.

A la universidad **(UNI-RUACS)** por haberme brindado la beca A durante toda la formación académica, dándome la oportunidad de formarme como uno de ellos y servirle a mi país como un pilar en el área de la ingeniería.

Br. Leibniz Jordy Barrera Calderón

Agradecimiento

Agradezco primeramente a Dios mi padre y hermano Jesús y La virgen María por darme sabiduría, perseverancia y la capacidad de realizar y terminar este trabajo monográfico para concluir una fase muy importante en mi vida la que es haber podido concluir mis estudios mediante este trabajo.

A mi Madre: María Salvadora Lanuza López y a mi tío Humberto López; a mi segunda madre Mirna Salgado Castillo por el esfuerzo que han hecho para darme su apoyo, tanto económico como moral en toda mi formación universitaria y durante la realización del presente trabajo monográfico.

A mi novia: Eveling Teresa Pastrana por brindarme su amor, comprensión y motivarme a que luchara por mi sueño y por aportar en mi desarrollo. Y a su madre Teresa Del Socorro Moreno pastrana por siempre apoyarme a que no dejara mis estudios abandonados, por su apoyo incondicional tanto económico como moral y a Mario Pastrana por hacerme reír siempre que estaba estresado.

A mi hermano Geldin Francisco Gamez Lanuza, y a mi tía Mercedes tía Reyna Lanuza y tía Janais Lanuza mi prima América Lanuza y Jessy Nayeriz Lanuza, por estar siempre dispuestos a aportar en mi desarrollo y motivarme para cumplir mis objetivos y con su ayuda, cariño y comprensión han colaborado a concluir con esta etapa.

Agradezco A mis primas, primos: Yocasta Lanuza, Janixia Lanuza, Grisel Lanuza Scarleth Lanuza, Everth Lanuza, Diego Lanuza, Leo Lanuza, Enoc Lanuza kennen lanuza, Randal Lanuza, Steven Lanuza, Ilka Lanuza, tía Tania Lanuza, tío José, tío Alex Pastor tía María tío Melvin tío Evin Lanuza, tío Ronal Lanuza, tío Alex Lanuza, tío Miguel, tía Karen, Julissa, Maudiel, Ixa Acuña y su familia por el apoyo brindado.

Br. Danis Mauricio Gamez Lanuza

Agradecimiento

A Dios, señor y dador de vida y sabiduría, por permitirme culminar este trabajo monográfico y no desampararme nunca.

A mis padres, José Francisco Martínez Hernández y Dominga del Socorro Guevara López, por brindarme su apoyo incondicional, por todos los sacrificios que han hecho porque yo salga adelante, muchas gracias padres.

A mis hermanos, Yilmer, Kenia, Jelson y Rony; gracias por su apoyo que me han brindado de muchas maneras, gracias por ser parte de mi motivación para ser un profesional exitoso.

A mis tí@s, Amada Guevara, Esperanza Guevara, Alba Guevara, Lucila Guevara, Reyno Guevara y a mi padrino Pedro Benjamín Espinoza Galindo por ser mis pilares en mi educación desde temprana edad, por sus enseñanzas que hoy me permiten culminar otra etapa en mi crecimiento, mi carrera académica.

A la Ingeniera María Laura, por darnos la oportunidad de iniciar e indagar en el compromiso dentro de la carrea y por aportar ayuda para la realización de esta tesis.

A Katty Ruiz Cruz, por estar incondicionalmente con respecto a mi carrera y deseos profesionales, por sus ayudas y enseñanzas que con fe sé que me servirán, "Eunoia".

Al ingeniero, master Oscar Ulises Calderón Moreno, por permitirme ser parte de su equipo en su empresa, por la oportunidad de desempeñarme profesionalmente, brindarme confianza y apoyarme en la preparación de esta tesis.

A mis compañeros de tesis, Leibniz Jordy Barrera Calderón y Danis Gámez, por su paciencia, gran conocimiento y desempeño como persona y como profesional que sirvieron de mucho para la culminación de este trabajo monográfico, ¡espero tengan éxito!

Br. José Francisco Martínez Guevara

Resumen ejecutivo

El presente informe contiene de forma concisa, la propuesta de "Diseño de Mini Acueducto por Gravedad (MAG), en la comunidad El Ciprés, municipio de Waslala, departamento de RACCN", tiene como objetivo solucionar la necesidad del agua potable que sufre la comunidad. Esta comunidad es de 354 habitantes y no tiene ningún sistema de agua potable que se haya instalado en el pasado.

Con el apoyo de la empresa el Porvenir de Waslala, se ha realizado el estudio topográfico, en el cual se ha propuesto la fuente adecuada. Se realizaron análisis del agua para conocer el estado actual, con el apoyo de la empresa mencionada, los resultados indican que el líquido es vital y apta para el consumo humano.

El sistema se ha realizado de acuerdo a la Norma Técnica Obligatoria Nicaragüense para el abastecimiento de agua rural, y diferentes libros citados para que tenga una gran eficiencia. La propuesta de diseño se basa en una obra de captación superficial de ladera, en la cual se recolecta el agua, seguidamente al tanque de almacenamiento.

La línea de conducción por gravedad tiene 69 metros de tubería de PVC de 2 ½" con cédula SDR-26. En la línea se encuentran diversos accesorios tales como: Codo, válvula de aire y vacío, las cuales están especificadas en el documento.

El tanque de almacenamiento es sobre la tierra de forma rectangular, de concreto reforzado, al cual se le instalara un hipoclorador para llevar el proceso de tratamiento al agua. La red de distribución partirá del tanque, la cual contiene una red principal y 5 ramales secundarios, tiene una longitud total de 6,342 metros y se ha propuesto 2 diámetros diferentes: 2" y 1 1/"2" en tuberías de PVC SDR-26.

El nivel de servicio será a través de 58 tomas domiciliares de patio y 1 puesto público con du debido dispositivo de medición.

El diseño hidráulico de la red se realizó con el software EPANET, bajos las condiciones requeridas. El costo total del proyecto es de C\$ 5,184,331.94 (5 millones, ciento ochenta y cuatro mil, trecientos treinta y un córdobas, y noventa y cuatro centavos).

INDICE DE CONTENIDO

Capítulo I: Generalidades	1
1.1. Introducción	1
1.2. Antecedentes	2
1.3. Justificación	3
1.4. Objetivos	4
1.4.1. Objetivo general	4
1.4.2. Objetivos específicos:	4
Capitulo II: Información general de la comunidad	5
2.1. Límites y descripción general de la comunidad	5
2.2. Localización	6
2.3. Socioeconómico	7
2.4. Económico social	7
2.5. Educación	7
2.6. Salud	7
2.7. Abastecimiento de agua	8
Capitulo III: Marco teórico	9
3.1. Normas jurídicas y técnicas	9
3.2. Estudio socioeconómico	9
3.3. Aforo de la fuente	9
3.3.1. Tipos de aforo	10
3.4. Estudio de la población, dotación y demanda	11
3.4.1. Dotación	11
3.4.2. Cálculo de la población	11
3.4.3. Demanda	11
3.5. Estudio de topografía	12
3.5.1. Metodología para el levantamiento topográfico	12
3.6. Calidad del agua	12
3.6.1. Parámetros indicadores de calidad del agua	13
3.6.2. Inspección sanitaria	13
3.6.3. Tipos de fuentes	13
3.7 Mini acueducto por gravedad	14

	3.8. Fuente de abastecimiento	. 14
	3.9. Captación de manantial	. 15
	3.10. Línea de conducción y red de distribución	. 15
	3.10.1. Línea de conducción	. 15
	3.10.1.1. Línea de conducción por gravedad	. 16
	3.10.2. Red de distribución	. 16
	3.11. Sobrepresión por golpe de ariete	. 17
	3.12. Almacenamiento	. 17
	3.12.1. Capacidad	. 17
	3.13. Hidráulica del acueducto	. 18
	3.13.1. Línea de conducción	. 18
	3.14. Parámetro de diseño	. 18
	3.14.1. Periodo de diseño	. 18
	3.14.2. Variaciones de consumo	. 19
	3.14.3. Presiones máximas y mínimas	. 19
	3.14.4. Velocidades permisibles en tuberías	. 20
	3.14.5. Coberturas de tuberías	. 20
	3.14.6. Pérdida de agua en el sistema	. 20
	3.15. Nivel de servicio	. 20
	3.15.1. Puestos públicos	. 20
	3.15.2. Conexiones domiciliares	. 20
	3.16. Presupuesto	. 21
	3.17. Tarifa	. 21
C	apitulo IV: Diseño metodológico	. 22
	4.1. Fase exploratoria y recopilación de datos	. 22
	4.2. Visita al sitio	. 22
	4.3. Estudio socioeconómico	. 22
	4.4. Aforo de la fuente de abastecimiento	. 23
	4.5. levantamiento topográfico	. 23
	4.5.1. Consideraciones generales	. 23
	4.5.2. Cálculos	. 23
	4.6. Estudio de calidad del aqua	. 23

4.6.1.1. Tratamiento	24
4.7. Análisis y cálculo hidráulico del sistema	24
4.7.1. Periodo de diseño	24
4.7.2. Población de diseño	25
4.7.3. Seleccionar la dotación de agua	25
4.7.4. Variaciones de consumo	25
4.7.4.1. Consumo promedio diario	26
4.7.4.2. Pérdidas de agua en el sistema	26
4.7.4.3. Consumo máximo día	26
4.7.4.4. Consumo máximo hora	27
4.8. Criterios para el diseño para el sistema	27
4.8.1. Dimensionamiento del depósito de captación	27
4.8.2. Línea de conducción	27
4.8.2.1. Coeficientes de rugosidad para materiales de acueducto	
4.8.3. Golpe de ariete	28
4.8.4. Tanque de almacenamiento	29
4.8.5. Diseño de la red de distribución	30
4.8.5.1. Demandas nodales	30
4.8.5.2. Introducción y procesamiento de los datos	30
4.8.5.3. Velocidades permisibles	30
4.8.5.4. Presión en el sistema	31
4.8.5.5. Diámetro	31
4.8.5.6. Cobertura y localización de la tubería	31
4.8.6. Hidráulica operacional	31
4.9. Estimación del presupuesto de la obra	31
4.10. Tarifa	32
Capitulo V: Análisis y presentación de resultados	33
5.1. Conceptualización del proyecto	33
5.2. Estudio socioeconómico	33
5.2.1. Población	33
5.2.2. Economía	35
5.2.3. Recursos y servicios de agua	39

5.2.4. Programa de agua potable, saneamiento e higiene	40
5.2.5. Situación de salud en las viviendas	41
5.3. Aforo de la fuente de abastecimiento	42
5.4. Estudio de proyección de población y demanda	43
5.4.1. Demanda de agua para la comunidad	43
5.4.2. Dotación	44
5.4.3. Variaciones de consumo	44
5.5. Estudio topográfico	45
5.6. Calidad de agua de la fuente	45
5.7. Diseño de los componentes del MAG	46
5.7.1. Obra de captación	46
5.7.1.1. Cálculo de la longitud entre el punto afloramiento y la cá	
5.7.1.2. Cálculo de pantalla de la captación	47
5.7.1.3. Cálculo del número de orificios (NA)	47
5.7.1.4. Ancho de la pantalla	48
5.7.1.5. Cálculo de la cámara húmeda (Ht)	48
5.7.1.6. Dimensionamiento de la canastilla	49
5.7.1.7. Rebose y limpieza	50
5.7.1.8. Resumen del dimensionamiento de la captación	51
5.7.2. Línea de conducción	51
5.7.2.1. Análisis hidráulico de la línea de conducción	51
5.7.2.2. Accesorios en la línea de conducción	57
5.7.3. Diseño del tanque de almacenamiento	57
5.7.3.1. Cálculo de momentos	58
5.7.3.2. Paredes	59
5.7.3.3. Losa superior	59
5.7.3.4. Losa inferior	61
5.7.3.5. Resumen del dimensionamiento del tanque de almacenamier	nto 63
5.7.4. Tratamiento y desinfección	63
5.7.5. Red de distribución	64
5.7.5.1. Demandas nodales	67
5.7.5.2. Presiones máximas y mínimas	68

5.7.5.3. Análisis con consumo máximo hora en la red	68
5.7.5.4. Análisis sin consumo en la red	73
5.7.5.5. Conexiones domiciliares	76
5.7.5.6. Accesorios en la red de distribución	76
5.8. Presupuesto final del proyecto	77
5.9. Tarifa	78
Conclusiones	81
Recomendaciones	82
Bibliografía	83
Índice de gráficos	
Gráfico 1 Clasificación de la población por el sexo	33
Gráfico 2 Rango de edades de comunidad	34
Gráfico 3 Nivel de escolaridad de la población	34
Gráfico 4 Sexo de los jefes del hogar	35
Gráfico 5 Materiales de las viviendas de la comunidad	35
Gráfico 6 Material de piso utilizado en los hogares de la comunidad	36
Gráfico 7 Material utilizado en los techos de las viviendas	36
Gráfico 8 Estado de las viviendas de la comunidad	36
Gráfico 9 Personas que trabajan	37
Gráfico 10 Ingresos económicos.	37
Gráfico 11 Ocupación de los habitantes de la comunidad	38
Gráfico 12 Cultivos que realizan en la comunidad	38
Gráfico 13 Almacenamiento del agua en la comunidad	39
Gráfico 14 Opiniones de la calidad del agua en la comunidad	39
Gráfico 15 Opiniones sobre las condiciones del agua	40
Gráfico 16 Conocimiento sobre el programa de agua potable y saneamiento d	le la
Alcaldía	40
Gráfico 17 Servicio a pagar por el agua potable	41
Gráfico 18 Enfermedades que padecieron en la comunidad	41
Gráfico 19 Enfermedades padecidas con respecto a las edades	42

Gráfico 20 Línea piezométrica	. 54
Índice de ilustraciones	
maios do nacinaciones	
Ilustración 1 Ubicación de la comunidad el Ciprés en el mapa del país	
Nicaragua	6
Índice de tablas	
Tabla 1 Períodos de diseños de un sistema de abastecimiento de agua pota	able
	. 24
Tabla 2 Coeficientes de rugosidad para materiales de acueducto	. 28
Tabla 3 Resultados de aforo volumétrico	. 42
Tabla 4 Variaciones de consumo	. 45
Tabla 5 Datos para el cálculo de la longitud de afloramiento a la cámara húme	eda
	. 46
Tabla 6 Datos para el cálculo de la pantalla	. 47
Tabla 7 Datos para el dimensionamiento de la canastilla	. 49
Tabla 8 Dimensiones y características de la captación	. 51
Tabla 9 Dimensión del diámetro de la tubería	. 52
Tabla 10 Resumen de la línea piezométrica	. 54
Tabla 11 Resumen del golpe de ariete	. 57
Tabla 12 Datos para el diseño de almacenamiento	. 58
Tabla 13 Factores para el cálculo de momento para 1.5	. 58
Tabla 14 Momentos para el diseño del almacenamiento	. 58
Tabla 15 Datos para determinar el espesor de la losa útil	. 60
Tabla 16 Datos para el dimensionamiento de la losa inferior	. 61
Tabla 17 Resumen del cálculo estructural y distribución de armadura	. 63
Tabla 18 Tramos en que se dividió la Red de Distribución	. 65
Tabla 19 Caudales en la red de distribución	. 67
Tabla 20 Velocidades y caudales calculados en la red de distribución para el C	МН
	. 69

Tabla 21 Presiones calculadas con CMH en la Red de Distribución	71
Tabla 22 Presiones calculadas sin consumo en la Red de Distribución	74
Tabla 23 Accesorios RD	76
Tabla 24 Gasto total anual en salarios y prestaciones sociales	78
Tabla 25 Costo total anual en mantenimiento	79
Tabla 26 Gastos anuales de administración	79
Tabla 27 Rango de consumo de acuerdo al metro cubico	80

Glosario

Q: Caudal

R: Tasa de crecimiento poblacional

Pn: Población proyectada

CPD: Consumo promedio diario

CMD: Consumo máximo día

CMH: Consumo máximo hora

Captación

Ho: Altura entre el afloramiento y el orificio de entrada (0.4 a 0.5 m)

V2: Velocidad de pase (0.5 a 0.6 m/s)

Cd: Coeficiente de descarga (0.8)

V1: Velocidad teórica en m/s

Hf: Perdida de carga

L: Longitud entre el punto de afloramiento y el diámetro de entra a la cámara húmeda

Qmax: Caudal del aforo

V: Velocidad de paso (0.50 m/s)

A: Área de la tubería en m2

g. Aceleración gravitacional (9.81m/s2)

h: Carga sobre el centro del orificio (m)

NA: Numero de orificios

D: Diámetro del orificio

B: Ancho de la pantalla

Ht: Altura de la cámara húmeda

A: Altura mínima (10cm)

B: Mitad del diámetro de la canastilla de salida

H: Altura del agua

D: Desnivel mínimo entre el nivel de ingreso del agua de afloramiento y el nivel de agua de la cámara húmeda (3 cm)

E: Borde libre (10 a 30 cm)

Ar: Área de ranura

Ac: Área transversal de la línea de conducción

At: Área total de ranura

Tanque de almacenamiento

V: Volumen

B: Ancho de la pared

H: Altura del agua

BL: Borde libre

H: Altura total

ya: Peso específico del agua

yt: Peso específico del terreno

σt: Capacidad de carga del terreno

M: Momento máximo absoluto en Kg.m

e: Espesor de las paredes

L: Luz de calculo

C: 0.036

d: Espesor útil

As: Área de acero

Fs: Fatiga de trabajo en Kg/cm2

j: Relación entre la distancia de la resultante de los esfuerzos de compresión al centro de gravedad de los esfuerzos de tensión

Tratamiento y desinfección

A: Cantidad de solución diluida a agregar, en ml/min.

B: Dotación de cloro igual a 1.5 mg/lt.

Q: Consumo máximo diario para cada año comprendido entre el periodo de diseño (CMD) en litros/seg.

C: Concentración de la solución (1%).

Tarifa

CP: Costo promedio de proveer un m³ de agua potable.

SP: Gasto total anual en salarios y prestaciones sociales.

PQ: Costo total anual de productos químicos.

CM: Costo total anual en mantenimiento.

GA: Gastos de admiración.

CAPITULO I: GENERALIDADES

Capítulo I: Generalidades

1.1. Introducción

La comunidad El Ciprés se localiza a 6 kilómetros de la cabecera municipal de Waslala, a 309 kilómetros de la Ciudad de Puerto Cabezas (Cabecera regional) y a 233 km de la Ciudad de Managua (Capital de Nicaragua).

Con la construcción del proyecto de agua potable se pretende dar solución al problema de abastecimiento que enfrentan 354 habitantes distribuidos en 58 viviendas sin incluir 1 escuela, para un total de 59 conexiones.

La comunidad El Ciprés, no cuenta con un sistema de agua potable para abastecerse de agua, para el consumo hace uso de fuente superficial sin ningún tipo de tratamiento.

En la comunidad El Ciprés, la propuesta más viable para resolver de forma definitiva el problema de agua potable, consiste en la construcción de un sistema de abastecimiento de agua potable utilizando la fuente superficial, como fuente única de abastecimiento ubicada en las coordenadas de 13º19`34.0" Norte, 85º24`20.08" Oeste, con una elevación de 475.00m/1558.40 ft en la propiedad ya comprada con el aporte de cada uno de los habitantes de la comunidad.

Sistema de Abastecimiento de Agua:

Para abastecer al 100% de la comunidad El Ciprés se construirá un sistema de agua potable utilizando la fuente con los siguientes componentes:

La obra consiste en una captación de ladera, construcción de línea de conducción, red de distribución, clorador CTI-8 con hipoclorito de calcio, para tratamiento de agua potable, un tanque de almacenamiento a base de concreto armado, y construcción de conexiones domiciliares con micro medición para abastecer este 100% de la población.

1.2. Antecedentes

En Nicaragua según los registros de SIASAR, hay un total en la actualidad de 1480 sistemas de Mini Acueductos por Gravedad (MAG), siendo 122 de este construidos en la RACCN, por supeditado, 44 en el municipio de Waslala.

Desde tiempos anteriores el suministro de agua potable se ha convertido en uno de los factores que ha venido perjudicando al ser humano, de tal manera que el agua es un componente fundamental para la existencia de vida en nuestro planeta. El problema de la falta de agua potable en las regiones rurales es el más común en la actualidad, esta comunidad es una de ellas ya que actualmente no existe sistema de abastecimiento agua potable.

La comunidad El Ciprés pertenece al Municipio de Waslala de la Región Autónoma de la Costa Caribe Norte (RACCN), para llegar al sitio se recorren 6 km sobre la carretera entre Waslala y Rancho Grande, se localiza en las coordenadas de 13º19`34.0" Norte, 85º24`20.08" Oeste, con una altura de 475.00m/1558.40 ft y una extensión territorial de 0.32 km².

La Comunidad El Ciprés de Waslala – RACCN, se ha visto afectado por el abastecimiento de agua debido a que no cuenta con un sistema de agua potable. El 100% de la población de esta localidad se abastece de nacimientos de agua que la hacen llegar a través de mangueras sin tener ningún tratamiento alguno, ya que se asume que el costo de este proyecto en relación a su magnitud, número de habitantes y situación económica de estos no es factible su elaboración, sino es por un intermediario que participe como donante, que sea capaz de cubrir los costos y procesos, o parte de estos.

El proceso de purificación del vital líquido lo realizan mujeres, utilizando métodos convencionales como es el exponer el agua a altos grados de temperatura para eliminar bacterias y luego almacenarlo en recipientes, pero antes debe pasar por una vasija de barro para filtrar el agua de los residuos de limos o basuras, cabe mencionar que no todos en la comunidad utilizan filtros.

1.3. Justificación

En la comunidad El Ciprés, es necesario un sistema de abastecimiento de agua potable, la razón es que no existe ninguno y debe ser una de las necesidades primordiales que se debe solucionar, porque de esta manera se va preservar la salud de estos habitantes.

Emplear los conocimientos alcanzados en la clase de Ingeniería sanitaria, donde realizar este sistema en la comunidad sería una solución para reducir la contaminación, que pueden causar grandes efectos en la salud de las personas, teniendo en cuenta la prescripción de enfermedades comunes según el MINSA, que es la hipertensión en un 44.7%, enfermedades reumáticas con 18.7%, diabetes 12.9%, epilepsia 8.6% y enfermedades cardiacas con 4.9%. Estas son las enfermedades crónicas en los años 2017, 2018, 2019 y 2020.

Al realizar este proyecto se estaría aportando al objetivo número 6 del desarrollo del programa de naciones unidas, agua limpia y saneamiento. Constituye en cumplir una meta en la republica de Nicaragua proporcionando instalaciones sanitarias y fomentar prácticas de higiene con el fin de garantizar el acceso universal al agua potable segura y asequible para todos en 2030, llegando a más de 800 millones de personas como meta que se pretende cumplir a nivel global.

Se pretende realizar el Diseño de un Mini Acueducto por Gravedad (MAG) como propuesta a esta problemática, que se proyectará con un periodo de 20 años como establece la Norma Técnica Obligatoria Nicaragüense (NTON 09-001-99), del cual se tendrá beneficios excelentes para mejorar la calidad de vida de las personas de esta comunidad, así mismo disminuyendo las enfermedades, suministrando agua en cantidad y calidad durante todo el año.

1.4. Objetivos

1.4.1. Objetivo general

Diseñar un sistema Mini Acueducto por Gravedad (MAG) para la comunidad El Ciprés ubicado en el municipio de Waslala-RACCN.

1.4.2. Objetivos específicos:

- Efectuar un estudio socioeconómico de la comunidad acerca de la situación actual en la que se encuentra.
- > Aforar la fuente de abastecimiento existente en la comunidad.
- Realizar estudio de proyección de población y demanda.
- Ejecutar levantamiento topográfico para verificar la altimetría de la zona en estudio.
- Analizar la calidad del agua de la fuente propuesta.
- Diseñar los componentes del Mini Acueducto por Gravedad (MAG), de acuerdo a la normativa nacional, software EPANET.
- Calcular Take off y presupuesto de las obras.
- Calcular la tarifa de acuerdo a la normativa establecida por INAA.

CAPITULO II: DESCRIPCIÓN DEL ÁREA DE ESTUDIO

Capitulo II: Información general de la comunidad 2.1. Límites y descripción general de la comunidad

La comunidad de El Ciprés está ubicada en el kilómetro 236 de la carretera hacia Waslala en la microrregión número #16 denominada "El Ciprés" del municipio de Waslala según la división política administrativa del municipio, la microrregión número XVI o microrregión "El Ciprés", se ubica al Sur oeste de la ciudad Waslala, esta comunidad está rodeada al norte con Los Módulos de Waslala, Al Sur con La Posolera, Este Rio Waslala y Los Chiles al Oeste con la cordillera Izabelia.

Esta comunidad se ubica, en la zona rural carretera a Matagalpa y colinda con la comunidad de La Posolera y Los Módulos del municipio de Waslala y es una zona alta en ganadería, la cual se caracteriza por una comunidad en producción de granos básicos por los tipos de suelos bastantes infértiles pobre de minerales y la otra razón es porque las personas que viven en la comunidad son personas que solo tienen sus solares en la comunidad más su casa, las personas se dedican más a la producción de cacao y de ganado y en su gran mayoría de los comunitarios trabajan para otras personas en la comunidad.

Dispone de escuela primaria la cual atiende a niños hasta 6to grado, no cuentan con un puesto de salud y con servicios de energía eléctrica comercial. La población de esta comunidad hace uso del transporte colectivo viajando a la cabecera municipal de Waslala.

La situación socio-económica de la población se encuentra en un nivel de pobreza medio alta, su principal actividad económica es el cultivo de granos básicos. No hay fuentes de empleos por lo cual algunos laboran vendiendo su mano de obra en los cultivos agrícolas. La mayor parte de las viviendas de la comunidad son de madera con diseños típicos del campo, para albergar una población menor de seis personas.

2.2. Localización

Ilustración 1 Ubicación de la comunidad El Ciprés en el mapa del país de Nicaragua

La comunidad El Ciprés pertenece al Municipio de Waslala Departamento de RACCN, encontrándose a 6 km de la carretera de Rancho Grande a Waslala. El acceso a la comunidad es por medio de una carretera de tierra, aunque presenta dificultad a la circulación en algunos puntos.

Desde las dimensiones políticas y social Humana e-institucional la comunidad El Ciprés, se denomina como una comunidad "rural" la comunidad tiene un buen acceso a la ciudad de Waslala y el transporte colectivo urbano es fluido cada media hora pasan los autobuses ya sea de Matagalpa a Waslala y viceversa también, el tener accesos todo el tiempo es fácil sacar la producción de cacao es una comunidad de fácil acceso a la ciudad e inclusos hay pobladores de esta comunidad que viajan caminando de la comunidad a Waslala.

No son una comunidad de muchos recursos naturales, ni de gran potencial de producción de granos básicos, pero sí producen caco y la venta de ganado en la comunidad.

La comunidad de El Ciprés, está conformada un caserío sobre la vía principal hacia Waslala y también el caserío está distribuido en donde era la carretera principal y se encuentran concentradas en sus mayorías, tiene una población de 354 habitantes, distribuidos en 59 viviendas, concentradas en su mayoría a la orilla de vía y otras que no están en la vía, pero son de fácil acceso ya que esas

casas están ubicadas en donde era la vía principal antes. La población corresponde a un 49.8% son hombres y el 50.2% son mujeres, siendo una población relativamente joven y también en la comunidad hay familias emprendedoras que producen chocolates naturales de cacao.

2.3. Socioeconómico

El área de influencia del proyecto de abastecimiento de agua potable estará integrada por El Ciprés, donde se hicieron 59 encuestas socio-económicas en 59 viviendas de la comunidad. Representando el 100% del total de las viviendas. El instrumento de la encuesta fue facilitado por El Porvenir empresa situada en el municipio de Waslala.

Los datos obtenidos en la encuesta socioeconómica permitieron conocer los aspectos, socioeconómicos, demográficos, de educación, y toda la situación que se relacionada con el agua potable, los que a continuación se detallan.

2.4. Económico social

Las fuentes de ingresos de la población no se sujetan a una sola actividad, una combinación que va desde la agricultura, ganadería, pulpería, comercio. La producción principalmente consiste en la siembra de maíz, café, frijoles y hortalizas.

2.5. Educación

En la comunidad existe una escuela con preescolar y primaria completa, donde laboran maestros del municipio de Waslala. En pocos casos los que continúan sus estudios de secundaria acuden al municipio de Waslala, o el colegio situado en la comunidad la Pozolera que cuenta con secundaria completa, del cual en su mayoría lo hacen los fines de semana.

2.6. Salud

La situación de la salud, la población padece de enfermedades como la diarrea, tos, dengue, de las más comunes que se pueden mencionar. Los pobladores practican hábitos higiénicos para disminuir estas enfermedades.

2.7. Abastecimiento de agua

Las personas de la comunidad El Ciprés no cuentan con un sistema de abastecimiento de agua potable, por los que se ven obligados abastecerse de aguas superficiales. Del total de los pobladores de la comunidad se abastecen de agua para tomar de manantiales, quebradas, pero también hay personas que se abastecen con sus propios medios.

CAPITULO III: MARCO TEÓRICO

Capitulo III: Marco teórico

3.1. Normas jurídicas y técnicas

Para los diseños de abastecimiento de agua potable, existen normas que están establecidas, y que se deben de seguir cada uno de estos parámetros como están estipulados, diferenciándolos ya sea por la zona en la que se encuentra, urbana o rural, del cuales son:

NTON 09-001-99 Norma Técnica Obligatoria Nicaragüense para el abastecimiento de agua rural.

3.2. Estudio socioeconómico

Este estudio es de suma importancia al momento de realizar una propuesta de diseño, ya que permite conocer las características de la población en cómo se encuentra, tanto económica como social que permite evaluar los posibles impactos en los parámetros socioeconómicos y de interés humano generados por el proyecto propuesto, donde Gómez (1988, pág. 2) explica los siguientes parámetros:

"En concreto, el estudio socioeconómico debe pretender obtener en forma ordenada conocimiento sobre las características económicas y sociales de la zona que será influida por el proyecto, como requisito para prever los conflictos que al respecto generará su ejecución y poder así recomendar acciones que posibiliten el diseño, la construcción y operación de dicho proyecto con el mínimo de impactos traumáticos, en beneficio del desarrollo de la zona y del bienestar de las comunidades afectadas las situaciones creadas con su ejecución".

3.3. Aforo de la fuente

El aforo de la fuente es fundamental para saber las capacidades que tiene, y conocer el límite de abastecimiento, (Asociación Servicios Educativos Rurales;, 2008), establece:

"Es necesario medir la cantidad de agua de la fuente, para saber la cantidad de población para la que puede alcanzar. El aforo es la operación de la medición del volumen de agua en un tiempo determinado. Esto es, el caudal que pasa por una sección de un curso de agua. El valor del caudal mínimo debe ser mayor que el consumo máximo diario con la finalidad de cubrir la demanda de agua de la población futura. Lo ideal sería que los aforos se efectúen en las temporadas críticas de los meses de estiaje (los meses secos) y de lluvia, para conocer caudales mínimos y máximos".

3.3.1. Tipos de aforo

El aforo es un método para medir caudales, estos se pueden realizar de muchas maneras, ya sea por la característica de la fuente que se encuentra donde se va a realizar el diseño, según (ADASA, 1994) explica:

"La medición del caudal, a lo que también llamamos aforo, se puede desarrollar de diferentes formas y su elección depende del objetivo del monitoreo, la facilidad de acceso o tiempo con que se cuente y, por supuesto, de las características de la fuente superficial que se pretenda medir, sus formas y movimientos. Las características del sitio y las condiciones ambientales al momento de su realización, también son fundamentales para definir cómo se hará la medición del caudal en ese momento específico".

Aforo volumétrico: "Es usado para corrientes pequeñas como nacimientos de agua o riachuelos, siendo el método más exacto, a condición de que el depósito sea bastante grande y de que pueda medir su capacidad de forma precisa". (Alvarado, Erick, 2017, pág. 3).

Aforo químico: "Un trazador a concentración conocida se inyecta en la corriente a una dosificación controlada, una muestra del agua es colectada aguas abajo del punto de inyección y se analiza la concentración diluida del trazador a mezcla completa del mismo en la corriente". Sanchez & Casillas (1997).

3.4. Estudio de la población, dotación y demanda

3.4.1. Dotación

Para la realización de un diseño es necesario tomar en cuenta la población actual, de esta manera poder establecer las exigencias necesarias para suministrar el agua a toda la población en estudio, del cual (NTON 09 001-99, pág. 11) establece los siguientes criterios:

"La dotación de agua, expresada como la cantidad de agua por persona por día está en dependencia de: Nivel de Servicio adoptado, factores geográficos, factores culturales, uso del agua.

- a) Para sistemas de abastecimiento de agua potable, por medio de puestos públicos, un caudal de 30 a 40 lppd.
- b) Para sistemas de abastecimiento de agua potable por medio de conexiones domiciliares de patio, un caudal de 50 a 60 lppd.
- c) Para los pozos excavados a mano y pozos perforados se asignará una dotación de 20 a 30 lppd".

3.4.2. Cálculo de la población

Básicamente depende de la proyección de población a cuantos se pretende realizar el diseño, así mismo estableciendo la tasa de crecimiento, donde (Comisión Nacional del Agua, pág. 4) explica los siguientes criterios de diseño:

"La población de proyecto es la cantidad de personas que se espera tener en una localidad al final del período de diseño del sistema de agua potable. Se basaban en una extrapolación de datos históricos de crecimiento de la población, que suponen que la población crecerá en el futuro con las mismas tendencias como en el pasado".

3.4.3. Demanda

"Es la parte del suministro de agua potable que generalmente utilizan los usuarios, sin considerar las pérdidas en el sistema. Se expresa en unidades de

m3/día o l/día, o bien cuando se trata de consumo per cápita se utiliza l/Hab/día" (Comisión Nacional del Agua, pág. 8).

3.5. Estudio de topografía

Es un estudio técnico y descriptivo de un determinado terreno, del cual refleja con detalle la zona y de esta ayuda a la planificación de un diseño, del cual Casanova (2019) establece lo siguiente:

"Los levantamientos topográficos se realizan con el fin de determinar la configuración del terreno y la posición sobre la superficie de la tierra, de elementos naturales o instalaciones construidas por el hombre. Se toman datos necesarios para la representación gráfica del mapa del área en estudio".

3.5.1. Metodología para el levantamiento topográfico

Planimetría: Trata de un estudio donde se establecen los puntos que se van a proyectar en un determinado plano, este se puede realizar con un teodolito y cinta o haciendo uso de estación total, en el cual Navarro Hudiel (2008, pág. 16) explica las siguientes definiciones:

"Representación horizontal de los datos de un terreno que tiene por objeto determinar las dimensiones de este. Se estudian los procedimientos para fijar las posiciones de puntos proyectados en un plano horizontal, sin importar sus elevaciones. Para la planimetría se puede usar cinta o el teodolito como instrumento universal. Las distancias con que se trabaja y que se marcan en planos, siempre son horizontales".

3.6. Calidad del agua

El agua utilizada en el hogar, debe estar lo más potabilizada posible, puesto que, es para el consumo humano y se debe brindar calidad por el grado de responsabilidad que sobrelleva esto (CAPRE, 1994), establece lo siguiente:

"Es el conjunto de procedimientos que se emplean para determinar las características físicas, químicas, biológicas y microbiológicas del

agua en un sistema de potabilización. De esta manera se puede estudiar las magnitudes de las transformaciones que sufre la calidad del agua, durante los procesos de tratamiento".

3.6.1. Parámetros indicadores de calidad del agua

"Los parámetros mínimos de control para el sector rural serán: Coliforme total, coliforme fecal, olor, sabor, color, turbiedad, temperatura, concentraciones de iones de hidrógeno y conductividad". (INAA, pág. 12)

3.6.2. Inspección sanitaria

"Es el conjunto de actividades dirigidas a la promoción, prevención, tratamiento y control sanitario del ambiente, siendo su principal objetivo mantener las condiciones higiénico sanitarias básicas, que garanticen el mejoramiento continuo de la salud de la población". (República, 1989, pág. 2)

3.6.3. Tipos de fuentes

Aguas superficiales: Este tipo de agua son los que se utilizan para los diseños por gravedad, según (ADASA, 1994) afirma:

"Son aguas que circulan sobre la superficie del suelo. El agua superficial se produce por la escorrentía generada a partir de las precipitaciones o por el afloramiento de aguas subterráneas. Una vez producida, el agua superficial sigue el camino que le ofrece menor resistencia pudiéndose presentar en forma corrientosa, como en el caso de ríos y arroyos, o quietas si se trata de lagos o embalses".

Aguas subterráneas: "Es aquella parte del agua existente bajo la superficie terrestre que puede ser colectada mediante perforaciones, túneles o galerías de drenaje o la que fluye naturalmente hacia la superficie a través de manantiales o filtraciones a los cursos fluviales". (Gálvez, 2012)

Altimetría: Se refiere a la obtención de los diferentes puntos de elevación respecto a un determinado lugar, del cual Navarro Hudiel (2008, pág. 1) establece lo siguiente:

"Conjunto de operaciones por medio de las cuales se determina la elevación de uno o más punto respecto a una superficie horizontal de referencia dada o imaginaria la cual es conocida como superficie. El objetivo primordial es referir una serie de puntos a un mismo plano de comparación para poder deducir los desniveles entre los puntos observados. Se dice que dos o más puntos están a nivel cuando se encuentran a la misma cota, en caso contrario se dice que existe un desnivel entre estos".

3.7. Mini acueducto por gravedad

Es un sistema donde el agua es captada superficialmente, de manera que se encuentre a una elevación mayor para abastecer a la comunidad que se está estudiando, del cual Agüero Pittman (1997, pág. 53), afirma lo siguiente:

"En un sistema de abastecimiento de agua potable por gravedad es el conjunto de tuberías, válvulas, accesorios, estructuras y obras de arte encargados de la conducción del agua desde la captación hasta el reservorio. Debe utilizarse al máximo la energía disponible para conducir el gasto deseado, en la mayoría de los casos llevara a la selección del diámetro mínimo que permita presiones iguales a la resistencia física que el material".

3.8. Fuente de abastecimiento

Específicamente trata de abastecer de una buena manera a la población, teniendo una correcta capacidad del fluido y brindar una calidad de agua, donde Orellana (2005, pág. 1) explica los siguientes parámetros:

"Para poder realizar un correcto abastecimiento de agua potable debemos contar con las fuentes correspondientes, de las que se deben considerar dos aspectos fundamentales a tener en cuenta, la capacidad de suministro, condiciones de sanidad. La capacidad de suministrar debe ser la necesaria para proveer la cantidad necesaria en volumen y tiempo que requiere el proyecto de abastecimiento. Las condiciones de sanidad o calidad del agua son claves para definir las obras necesarias de potabilización".

3.9. Captación de manantial

Se puede realizar ya sea de laderas, reservorios o de fondo, este último se obtiene del subsuelo, se trabaja con criterios y métodos adecuadas para brindar un mejor servicio a las personas de una determinada comunidad, donde García (2011) explica lo siguiente:

"Son fuentes de agua subterránea que afloran en superficie, y a las que más se recurre al momento de decidir de dónde captar el agua. Esto se debe principalmente a que aseguran una determinada calidad de agua frente a potenciales procesos de contaminación, mínimo o nulo contenido de sedimentos en suspensión y una mayor seguridad y facilidad en el diseño de la obra".

3.10. Línea de conducción y red de distribución

3.10.1. Línea de conducción

Todo es de acuerdo en cómo es la estructura de la naturaleza en base a la comunidad, para poder transportar el agua de una manera eficiente y poder abastecerla, del cual (NTON 09 001-99, pág. 32), estable la siguiente definición.

"La línea de conducción es el conjunto de ductos, obras de arte y accesorios destinados a transportar el agua procedente de la fuente de abastecimiento, desde la captación hasta la comunidad. Su capacidad deberá ser suficiente para transportar el gasto de máximo día. Se le deberá proveer de los accesorios y obras de arte necesarios para su buen funcionamiento, conforme a las presiones de trabajo especificadas para las tuberías, tomándose en consideración la protección y mantenimiento de las mismas".

3.10.1.1. Línea de conducción por gravedad

Es uno de los métodos más eficaces para el transporte del agua, donde se deben de tomar en cuenta ciertos parámetros establecidos en la (NTON 09 001-99, pág. 32) donde establece lo siguiente:

"En el diseño de una línea de conducción por gravedad se dispone, para transportar el caudal requerido aguas abajo, de una carga potencial entre sus extremos que puede utilizarse para vencer las pérdidas por fricción originadas en el conducto al producirse el flujo. Se deberá tener en cuenta los aspectos siguientes:

- a) Se diseñará para la condición del consumo de máximo día al final del período de diseño, aplicar el factor de 1.5 al consumo promedio diario, más las perdidas.
- b) En los puntos críticos se deberá mantener una presión de 5m por lo menos.
- c) La presión estática máxima estará en función de las especificaciones técnicas de la clase de tubería a utilizarse, sin embargo, se recomienda mantener una presión estática máxima de 70 mts".

3.10.2. Red de distribución

Es un vínculo de tuberías que capta el fluido desde la fuente hasta los hogares, del cual Moliá (1987, pág. 3) explica lo siguiente:

"Una red de distribución de agua potable es el conjunto de instalaciones que la empresa de abastecimiento tiene para transportar desde el punto o puntos de captación y tratamiento hasta hacer llegar el suministro al cliente en unas condiciones que satisfagan sus necesidades. Este grado de satisfacción tiene un elevadísimo número de componentes, unos medibles y otros no, y entre los que podemos destacar la calidad, el caudal, la presión, la continuidad del suministro y el precio".

3.11. Sobrepresión por golpe de ariete

"Se denomina "Golpe de ariete", el efecto de choque violento o sobre presión súbita producido sobre las paredes del conducto forzado, al modificarse de manera instantánea el movimiento del fluido, puede ocurrir en el caso del cierre repentino de una válvula".(AMANCO, 2010)

3.12. Almacenamiento

Para un diseño de abastecimiento de agua potable ya sea por gravedad o por bombeo, se debe realizar el diseño adecuado del tanque que cumpla con los criterios necesarios para almacenar y preservar el agua, la (NTON 09 001-99, pág. 38) comenta lo siguiente:

"Los depósitos para el almacenamiento en los sistemas de abastecimiento de agua, tienen como objetivos; suplir la cantidad necesaria para compensar las máximas demandas que se presenten durante su vida útil, brindar presiones adecuadas en la red de distribución y disponer de reserva ante eventualidades e interrupciones en el suministro de agua".

3.12.1. Capacidad

Debe satisfacer las condiciones necesarias del cual (NTON 09 001-99, pág. 38), establece los siguientes parámetros:

- a) Volumen compensador: El volumen necesario para compensar las variaciones horarias del consumo, se estimará en 15% del consumo promedio diario.
- b) Volumen de reserva El volumen de reserva para atender eventualidades en caso de emergencia, reparaciones en línea de conducción u obras de captación, se estimará igual al 20 % del consumo promedio diario.

3.13. Hidráulica del acueducto

Específicamente trata acerca del diseño de los conductos de las redes de distribución, de igual manera los conductos, que no se prolongue un sobre diseño que llegue a elevar los costos, (NTON 09 001-99, pág. 34), establece lo siguiente:

"El análisis hidráulico de la red y de la línea de conducción, permite dimensionar los conductos que integran dichos elementos. La selección de los diámetros es de gran importancia ya que, si son muy grandes, además de encarecer el sistema, las bajas velocidades provocarán problemas de depósitos y sedimentación; pero si es reducido puede originar pérdidas de cargas elevadas y altas velocidades las cuales podrían causar erosión a las tuberías".

3.13.1. Línea de conducción

Para el dimensionamiento de la tubería de las líneas de conducción se aplicará la formula exponencial de Hazen – Williams, ampliamente utilizada, donde se despeja la gradiente hidráulica. (NTON 09 001-99, págs. 7-1)

$$\frac{H}{L} = S = \frac{10.549Q^{1.85}}{C^{1.85}D^{4.87}}$$
 (1)

Donde:

H: Pérdida de carga en metros.

Q: Caudal en metros cúbicos por segundo.

D: Diámetro en metros.

L: Longitud en metros.

C: Coeficiente de Hazen – Williams, cuyo valor depende del tipo de tubería utilizada.

3.14. Parámetro de diseño

3.14.1. Periodo de diseño

Para la elaboración de un diseño de un proyecto de abastecimiento de agua potable es necesario establecer la vida útil del sistema del cual se proyectará,

dando una buena calidad de vida a la comunidad futura, del cual Jiménez Terán

(2013, pág. 26) explica lo siguiente:

"Es el tiempo que se supone la obra estará trabajando al 100% de

su capacidad. El periodo de diseño, está ligado a los aspectos

económicos, por lo que no se deben desatender los aspectos

financieros. Esto tiene como consecuencia que el ingeniero, trate de

diseñar las obras modularmente para que la construcción de los

sistemas se vaya realizando conforme se requiera".

3.14.2. Variaciones de consumo

Las variaciones están expresadas en porcentajes donde cada una de ellas se

basa en el sitio donde se encuentra la propuesta de diseño, de tal manera que la

(NTON 09 001-99, pág. 15) establece los siguientes criterios:

"Las variaciones de consumo estarán expresadas como factores de

la demanda promedio diario, y sirven de base para el

dimensionamiento de la capacidad de: Obras de captación, línea de

conducción y red de distribución, etc. Estos valores son los

siguientes: Consumo máximo día (CMD)= 1.5 CPD (consumo

promedio diario), más perdidas y consumo máximo hora (CMH)= 2.5

CPD (consumo promedio diario), más perdidas".

3.14.3. Presiones máximas y mínimas

"Para brindar presiones adecuadas en el funcionamiento del sistema de

abastecimiento se recomienda que éstas se cumplan dentro de un rango

permisible". (NTON 09 001-99, págs. 4-2)

Presión mínima: 5 metros

Presión máxima: 50 metros

19

3.14.4. Velocidades permisibles en tuberías

"Se recomienda fijar valores de las velocidades del flujo en los conductos en un rango para evitar erosión interna o sedimentación en las tuberías" (NTON 09 001-99, págs. 4-2)

Velocidad mínima = 0.4 m/s

Velocidad máxima = 2.0 m/s"

3.14.5. Coberturas de tuberías

"Para sitios que correspondan a cruces de carreteras y caminos con mayor afluencia de tráfico se recomienda mantener una cobertura mínima de 1.20 metros sobre la corona de las tuberías, y en caminos de poco tráfico vehicular, una cobertura de 1.0 metro sobre la corona del tubo" (NTON 09 001-99, pág. 16).

3.14.6. Pérdida de agua en el sistema

En todo diseño de agua potable existe un desperdicio de este mismo, del cual (NTON 09 001-99, pág. 17) establece el porcentaje que debe de existir:

"Cuando se proyectan Sistemas de Abastecimiento de Agua Potable, es necesario considerar las pérdidas que se presentan en cada uno de sus componentes, la cantidad total de agua perdida se fija como un porcentaje del consumo promedio diario cuyo valor no deberá ser mayor del 20%".

3.15. Nivel de servicio

3.15.1. Puestos públicos

"Son tomas de agua que se implantan particularmente en el sector rural para abastecer dos a un máximo de 20 casas" (NTON 09 001-99, pág. 12).

3.15.2. Conexiones domiciliares

"Son tomas de agua que se aplican en el sector rural, pero en ocasiones esporádicas y sujetas a ciertas condiciones, tales como disponibilidad suficiente de agua, bajos costos de operaciones (sistemas por gravedad), capacidad de

pago de la población, y número de usuarios del servicio " (NTON 09 001-99, pág. 13).

3.16. Presupuesto

De los aspectos más importantes a señalar, ya que este determina el costo que tiene el diseño realizado, tratando de acoplar dicho deseño a las rutas más económicas, Ramirez Molinares (2018, pág. 76) establece la siguiente definición.

"El presupuesto en sí, es un plan básicamente numérico que se anticipa a las operaciones que se pretenden llevar a cabo; pero la obtención de resultados razonablemente correctos, dependerá de la información estadística que se posea en el momento de llevar a cabo la estimación, ya que además de los datos históricos, es indispensable enterarse de todo aquello que se procura realizar, y que afecte de algún modo lo que se planea, para que con base en las experiencias anteriores, puedan proyectarse los posibles resultados a futuro. Entre los métodos más usuales para conseguirlo, está el de las tendencias y el de las correlaciones".

3.17. Tarifa

La tarifa es una herramienta vital para el proyecto, dado que, sustenta el proyecto una vez que se ha realizado, pues de este dependerán los mantenimientos del sistema, del cual (INAA, 1998) explique lo siguiente:

"La fijación de las tarifas de los servicios públicos de agua potable y de alcantarillado sanitario, sean de empresas propiedad del Estado o de empresas privadas, tanto para usuarios finales como para otros que actúen como intermediarios respecto de aquellos, en adelante llamados los prestadores o el prestador, será efectuada por INAA, de acuerdo con las disposiciones de esta norma que en adelante se denominará Decreto Tarifario".

CAPÍTULO IV: DISEÑO METODOLÓGICO

Capitulo IV: Diseño metodológico

El estudio del sistema de abastecimiento de agua potable se desarrolló a través del desempeño de las siguientes actividades descritas de forma secuencial.

4.1. Fase exploratoria y recopilación de datos

Se realizaron visitas de campo al lugar para una debida inspección, localización y se visitaron las instituciones locales correspondientes (tales como Alcaldía Municipal de Waslala, Hospital Fidel Ventura, El Porvenir, entre otros), para contar con la información necesaria sobre el sitio, documentación de la caracterización de la zona, enfermedades de transmisión hídrica, etc.

4.2. Visita al sitio

Se hizo una inspección física de la zona de estudio, para ver las variaciones topográficas, recorriendo algunos puntos críticos para el sistema. Se realizaron bocetos con la ayuda de las personas de la comunidad para el recorrido y llevar un orden de las encuestas socioeconómicas, así mismo para trazar la red de distribución del sistema de abastecimiento de agua potable.

4.3. Estudio socioeconómico

Se realizó la evaluación socioeconómica de la comunidad de acuerdo al formato de El Porvenir, el mismo que es proporcionado por el FISE para conocer las condiciones de vida actuales, su economía, grados de educación y acceso a ella, conocer sobre los problemas de salud y dificultades relacionados al consumo del agua.

Este estudio se hizo con el fin de adoptar las técnicas constructivas más adecuadas para el diseño del sistema. La evaluación de la comunidad fue el resultado de procesamiento de datos de 59 encuestas levantadas, para dicho objetivo se utilizó el software de Excel para digitalizar los datos recopilados y realizar los gráficos correspondientes aplicables a este tipo de análisis.

4.4. Aforo de la fuente de abastecimiento

Consiste en la realización de aforos de caudal en la zona de captación del agua para ver si puede suplir la demanda diaria de los consumidores, se buscó y evaluó otras posibles fuentes de abastecimiento.

La fuente seleccionada fue aforada en marzo del 2020 y en abril del 2021. El método que se utilizó para medir el caudal en la fuente fue el método volumétrico, el cual consiste en llenar un recipiente con el volumen conocido y medir el tiempo en que tarda en llenarse completamente.

En el mes de agosto del 2020 se tomó una muestra de agua para realizar el análisis de agua de la fuente propuesta, donde se determinó que es de buena calidad, por lo que el proceso de tratamiento consiste en desinfección con cloro. La muestra fue analizada en el laboratorio del Programa de Investigación Estudios Nacionales y Servicios Ambientales (PIENSA), de la Universidad Nacional de Ingeniería de Managua, Nicaragua.

4.5. levantamiento topográfico

4.5.1. Consideraciones generales

El levantamiento topográfico se efectuó con el fin de estudiar la naturaleza y las circunstancias del terreno en donde se sitúa el proyecto; dicho levantamiento proporcionó la información necesaria para seleccionar el método de cálculo más beneficiosos, ajustando el diseño de la red y línea de conducción a las restricciones propias del lugar y evitar el mal funcionamiento del sistema una vez que sea instalado.

4.5.2. Cálculos

Los datos del levantamiento se procesaron y se calcularon en Excel, donde fueron cargados en Civil 3D para ubicar los estacionamientos y diseñar los perfiles.

4.6. Estudio de calidad del agua

Para llevar a cabo las pruebas de calidad de agua, se tomó una muestra la fuente seleccionada para su debido análisis. Los procedimientos de muestreo, realizados en el laboratorio PIENSA, de la Universidad Nacional de Ingeniería (UNI) ubicado

en la ciudad de Managua-Nicaragua. Se realizaron análisis físicos-químicos completos y microbiológicos. Según los resultados obtenidos, se determinó que la fuente es apta para consumo humano, de acuerdo a los criterios establecido del CAPRE.

4.6.1.1. Tratamiento

Si la calidad del agua satisface la Norma deberá someterse a un tratamiento de potabilización, donde toda agua que se va utilizar para el consumo humano debe someterse a una desinfección sea superficial o subterránea. El cloro es el desinfectante más utilizado a nivel mundial. En Nicaragua casi todos los sistemas de abastecimiento de agua potable, utilizan el cloro debido a su eficacia y economía. La dosificación a utilizar para la desinfección del agua se realizó en base al documento de Ricardo Alfredo López Cualla, donde establece un método adecuado.

4.7. Análisis y cálculo hidráulico del sistema

El análisis hidráulico del sistema se realizó de acuerdo a los resultados del estudio topográfico, así mismo el consumo diario y horario de la comunidad de diseño, donde el cálculo hidráulico se realizó de acuerdo a la Norma Técnica Obligatoria Nicaragüense para el abastecimiento de agua rural.

El análisis y calculo hidráulico comprende las siguientes condiciones establecidas por la norma:

4.7.1. Periodo de diseño

Tabla 1 Períodos de diseños de un sistema de abastecimiento de agua potable

Tipos de componentes	Periodos de diseño
Captaciones superficiales y manantiales	20 años
Líneas de conducción	15 años
Tanque de almacenamiento	20 años
Red de distribución	15 años

Fuente: (NTON 09 001-99, 1999)

El periodo en los sistemas de abastecimiento de agua potable se definió en base a la vida útil de los componentes del sistema que tengan la capacidad para satisfacer las demandas de la comunidad. En la siguiente tabla se muestran los periodos de diseños establecidos:

4.7.2. Población de diseño

La población a servir es el parámetro básico con el cual se diseñan los elementos de las obras de abastecimiento de agua, pudiéndose establecer diferentes criterios para la estimación de la misma, dependiendo de las características de la población objeto de estudio, el tipo y configuración de la localidad. Se utilizó el método de proyección geométrico y se asignó un periodo de 20 años a como establece la norma, que tiene la siguiente expresión:

$$Pn = Po(1+r)^n \tag{2}$$

Donde:

Pn: Población del año "n".

Po: Población al inicio del período de diseño.

r: Tasa de crecimiento en el periodo de diseño expresado en notación decimal.

n: Número de años que comprende el período de diseño.

4.7.3. Seleccionar la dotación de agua

La dotación de agua, es la cantidad de agua de cada persona por día, de acuerdo a la norma según para sistemas de abastecimiento de agua potable por medio de conexiones domiciliares especifica las diferentes dotaciones, al cual se le asignó una dotación de 60 lppd, así mismo se consultó al plan de desarrollo de la comunidad para asignar los consumos públicos o institucionales, los cuales según NTON 09-003-99, son el 7% de la dotación doméstica diaria.

4.7.4. Variaciones de consumo

Este estudio se realizó en base a los parámetros que establece la Norma Técnica para el Abastecimiento de Agua en el medio Rural.

4.7.4.1. Consumo promedio diario

La demanda promedio diario, sirve de base para el almacenamiento de la capacidad de la obra de captación, línea de conducción, tanque de almacenamiento y red de distribución, por resultante, la ecuación.

$$CPD = CD + CC + CI + CP \tag{3}$$

Donde:

CD: Consumo doméstico.

CC: Consumo comercial.

CI: Consumo industrial.

CP: Consumo público.

4.7.4.2. Pérdidas de agua en el sistema

Para la determinación de las variaciones de consumo diario y horario, es necesario introducir el caudal contra fuga, como lo recomienda la norma. La cantidad total de agua perdida se fija en porcentaje del consumo promedio diario, cuyo valor no deberá ser mayor del 20%.

$$Qf = 20\%CPD \tag{4}$$

Donde:

CPD: Consumo promedio diario.

4.7.4.3. Consumo máximo día

Para el consumo máximo diario se basa en el sitio donde se encuentra ubicado, en este caso haciendo uso de la Norma NTON para zona rural, se estableció la siguiente ecuación.

$$CMD = 1.5CPD + Qf \tag{5}$$

Donde:

CMD: Consumo máximo día.

CPD: Consumo promedio diario.

Qf: Pérdidas por Fuga.

4.7.4.4. Consumo máximo hora

El consumo máximo horario en base a la demanda promedio diario, establecido por la Norma NTON, del cual se utilizó la ecuación para dicho estudio.

$$CMH = 2.5CPD + Qf (6)$$

Donde:

CMH: Consumo máximo hora.

CPD: Consumo promedio diario.

Qf: Pérdidas por fuga.

4.8. Criterios para el diseño para el sistema

Para el diseño del Mini Acueducto por Gravedad se ha citado a las Normas Técnicas Obligatorias Nicaragüenses para el diseño de abastecimientos de agua potable rural.

4.8.1. Dimensionamiento del depósito de captación

El dimensionamiento de la captación se ejecutó con base en la topografía del punto y de la clase de manantial; buscando no alterar la calidad del agua, ni cambiar la corriente y el caudal natural del manantial, el diseño se efectuó en base al documento de Roger Agüero Pittman, quien establece todos los criterios para obras sanitarias.

4.8.2. Línea de conducción

En el diseño de una línea de conducción por gravedad se dispone, para transportar el caudal requerido aguas abajo, de una carga de potencial entre sus extremos que puede utilizarse para vencer las pérdidas de fricción originadas en el conducto al producirse el flujo, de la misma manera haciendo uso de la formula exponencial de Hazen- Williams que es la más utilizada ampliamente.

4.8.2.1. Coeficientes de rugosidad para materiales de acueducto

Para la obtención de las pérdidas de fricción dentro de la línea de conducción es necesario tomar en cuenta el material que será utilizado en el diseño, la Norma NTON establece los siguientes coeficientes.

Tabla 2 Coeficientes de rugosidad para materiales de acueducto

Material del acueducto	Coeficiente de Rugosidad (C)
Tubo de Hierro Galvanizado (Hº. Gº)	100
Tubo de concreto	130
Tubo de asbesto cemento	140
Tubo de Hierro Fundido (Hº. Fº)	130
Tubo plástico (PVC)	150

Fuente: (NTON 09 001-99, 1999)

4.8.3. Golpe de ariete

Para determinar el golpe de ariete se realizó en base a las consideraciones técnicas necesarias para prevenirlo, como lo establece Amanco.

La celeridad debe cumplir criterios de acuerdo al tipo de tubería, del cual se determinó con la siguiente ecuación:

$$a = \frac{9900}{\sqrt{48.3 + K \times \frac{D}{e}}}$$

Donde:

a: Celeridad de la onda de presión (m/s)

D: Diámetro interno del tubo (mm)

e: Espesor de la tubería (mm)

K: Para determinar el coeficiente, se tiene en cuenta el módulo de elasticidad de la tubería, donde se realizó con la siguiente ecuación:

$$K = \frac{10^{10}}{E}$$

Para determinar el tiempo de cierre se realizó en base a la siguiente consideración:

Tiempo de cierre
$$Tc > \frac{2L}{a}$$
; es cierre lento

De lo contrario será cierre rápido.

La sobrepresión se calculó con la ecuación de Michaud:

$$\Delta H = \frac{2 \times L \times V}{g \times Tc}$$

Donde:

ΔH: Sobrepresión de golpe de ariete (mca)

V: Velocidad media del flujo en la tubería (m/s)

g: Aceleración gravitatoria (m/s^2)

4.8.4. Tanque de almacenamiento

Para el diseño de abastecimiento de agua potable, el tanque será ubicado en la elevación mayor para que tenga la capacidad de suministrar el agua necesaria a la comunidad, donde se utilizará un tanque que no sobrepase tener una altura mayor a 2.5 m. todos estos criterios basándose en la Norma Técnica para el Abastecimiento de Agua en el medio Rural.

El diseño estructural del tanque se realizó en base al documento de Roger Agüero Pittman, donde establece un método adecuado en base a las obras sanitarias.

Los criterios de dimensionamiento que se utilizaron son los que señala la norma, cual el depósito debe tener un volumen compensador equivalente al 15 % del consumo promedio diario, también un volumen de reserva equivalente al 20% del consumo promedio diario.

De tal manera que la capacidad del tanque de almacenamiento se estimará igual al 35% del consumo promedio diario. Donde se propone un tanque sobre el suelo ya que la topografía de la comunidad es adecuada. El nodo donde se construirá tiene una elevación de 768 m.

4.8.5. Diseño de la red de distribución

El diseño hidráulico de la red se realizó en el software de análisis y modelación hidráulica EPANET obteniendo las velocidades, presiones aceptables de acuerdo a la norma.

Se diseñó para la condición del consumo de hora máxima al final del periodo de diseño, el cual resulta de aplicar el factor de 2.5 al promedio diario (CHM= 2.5CPD), más perdidas.

4.8.5.1. Demandas nodales

Las demandas nodales se calcularon en dependencia de la cantidad de viviendas actuales de la población, del cual el caudal total debe ser igual al consumo máximo horario calculado.

4.8.5.2. Introducción y procesamiento de los datos

Para realizar el análisis se introdujeron datos como en el nodo, sus respectivas elevaciones y demanda nodal.

En los tramos introducir su respectivo diámetro, longitud, coeficiente de rugosidad, también es necesario colocar cajas rompe presión cuando sea necesario, así mismo las válvulas de aire y de limpieza, para dar un equilibrio en todo el sistema.

Todo este proceso de los datos es importante y está enfocado principalmente a los resultados de velocidades en los tramos y la presión en cada nodo, si los resultados no están de acuerdo a la norma, se deben proponer otros diámetros y así sucesivamente hasta obtener resultados óptimos.

4.8.5.3. Velocidades permisibles

Se permitirán velocidades de flujo de 0.4 m/s a 2.00 m/s.

4.8.5.4. Presión en el sistema

Es uno de los criterios más importantes en todo diseño de sistema de abastecimiento de agua potable, la norma establece el rango de presiones permisibles de 5 a 50 metros. Las presiones de cada nodo se obtuvieron por medio de la simulación de Epanet.

4.8.5.5. Diámetro

Al momento de agregar una válvula reguladora de presión en la red de distribución en algunas partes las presiones bajaban, por lo cual el sistema no estaba equilibrado ya que daban presiones negativas; del cual se utilizó una serie de diámetros en las presiones en toda la red, se trabajó con diámetros de 1.5 y 2 pulg, donde se obtuvo valores aceptables en velocidades y presiones como establece la norma.

4.8.5.6. Cobertura y localización de la tubería

Para sitios que corresponden a cruce de carreteras y caminos con mayor afluencia de tráfico se recomienda una cobertura mínima de 1.20 m sobre las coronas de la tubería, y en caminos de poco tráfico vehicular, una cobertura de 1.0 metros sobre la corona del tubo.

4.8.6. Hidráulica operacional

El diseño hidráulico será realizado por medio del software Excel como herramienta para poder tener mayores resultados. Además, un análisis en EPANET. Este programa trabaja mediante la simulación de las características hidráulicas de una red de distribución abierta o cerrada. Su diseño en generalmente consiste en definir el diámetro en función de las pérdidas de carga, a partir del gasto que se conducirá y el material de la tubería.

4.9. Estimación del presupuesto de la obra

Para la realización del presupuesto, se han determinado los costos directos e indirectos del Mini acueducto por gravedad, tomando en cuenta el precio unitario de los materiales, herramientas y transporte de los mismos en la ciudad Waslala. El presupuesto está dividido de acuerdo a las etapas y sub-etapas, haciendo uso

del "Catálogo de Etapas y Sub -etapas del Nuevo FISE al 15 de agosto de 2008", donde todos los resultados fueron obtenidos mediante el software Excel.

4.10. Tarifa

La tarifa se estableció con el objetivo que el proyecto sea autosostenible, porque este tipo de proyecto tiene un alto impacto social por lo que la normativa no exige la recuperación de la inversión, pero si la autosostenibilidad del proyecto.

CAPITULO V: ANÁLISIS Y PRESENTACIÓN DE RESULTADOS

Capitulo V: Análisis y presentación de resultados

5.1. Conceptualización del proyecto

Para resolver la problemática de abastecimiento de agua potable en la comunidad El Ciprés se propone un sistema del tipo fuente-tanque-red.

5.2. Estudio socioeconómico

Se realizó un censo poblacional de la comunidad El Ciprés con el objetivo de valorar y conocer la situación en la que se encuentran los pobladores, utilizando el instrumento de encuesta facilitado por El Porvenir, mismo formato del FISE, con temáticas específicas como: Salud, educación, genero, economía, etc. Según el resultado de la encuesta aplicadas a los jefes de familia, refleja una población de 354 habitantes, distribuidos en 59 viviendas que se encuentran dispersas en la comunidad proyectada.

5.2.1. Población

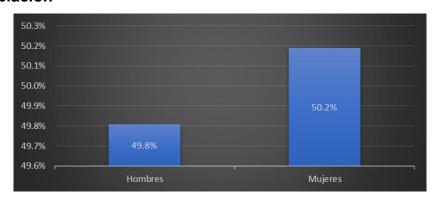


Gráfico 1 Clasificación de la población por el sexo. Fuente: Elaboración propia.

Del total de 354 habitantes de la población encuestada, el 49.8% son hombres y el 50.2% son mujeres, donde se puede observar de acuerdo al gráfico que el sexo predominante es el femenino.

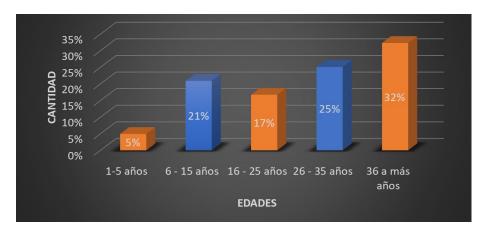


Gráfico 2 Rango de edades de comunidad. Fuente: Elaboración propia.

Actualmente, las personas que más habitan en las viviendas son jóvenes, de acuerdo al gráfico en el rango de edades de 1-25 años de edad tienen un 43%, seguido de 26 a 35 años con un 25% y por ultimo las personas mayores de 36 años a más con un 32%.

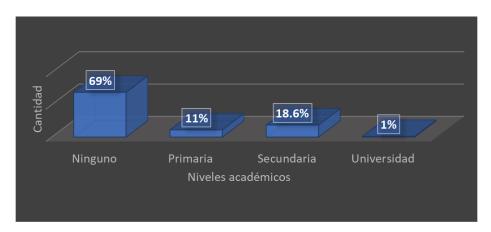


Gráfico 3 Nivel de escolaridad de la población. Fuente: Elaboración propia.

Los datos obtenidos en la encuesta nos revelan que existen un considerable índice de analfabetismo en las personas, representando el 69%, de las personas que no tienen ningún nivel de escolaridad. La comunidad cuenta con un bajo 1% en la obtención de títulos universitarios ya que es una comunidad muy pobre, la mayoría no alcanza el nivel secundario que representa el 18.6% y el nivel primario con un 11%, tomando como prioridad las habilidades de saber leer y escribir.

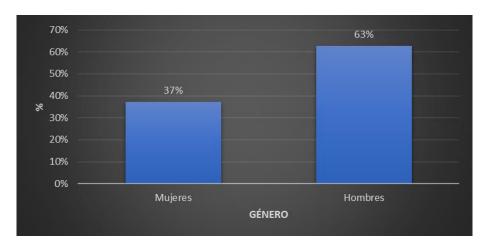


Gráfico 4 Sexo de los jefes del hogar. Fuente: Elaboración propia.

Es importante destacar que un 100% de todos los habitantes censados son propietarios de las viviendas. De los dueños/as de las viviendas el 63% está en manos del hombre, y el 37% en mano de la mujer.

5.2.2. Economía

Gráfico 5 Materiales de las viviendas de la comunidad. Fuente: Elaboración propia.

Mediante el gráfico, la mayor parte de las paredes son construidas de madera, lo que corresponde al 80% de las paredes de las viviendas son de madera, no obstante, el 20% son de bloque.

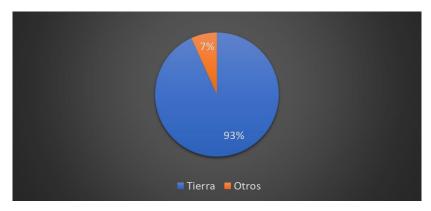


Gráfico 6 Material de piso utilizado en los hogares de la comunidad. Fuente: Elaboración propia.

El gráfico demuestra que la mayor parte de las viviendas tienen un piso de tierra, lo que corresponde al 93%, no obstante, un 2% con otro tipo de material.



Gráfico 7 Material utilizado en los techos de las viviendas. Fuente: Elaboración propia.

Mediante el gráfico, detalla que la mayor parte de las viviendas están hecho de zinc, lo que corresponde que el 98%, y seguido con un 2% hecho de palmas.

Gráfico 8 Estado de las viviendas de la comunidad. Fuente: Elaboración propia.

Según el gráfico, la mayor parte de las viviendas se encuentran en condiciones regulares con un 80%, seguido con un 12% buena, no obstante, con un 8% se localizan en situaciones malas.

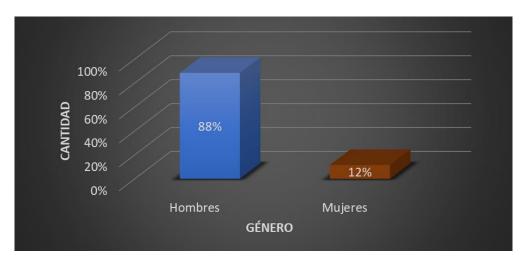


Gráfico 9 Personas que trabajan. Fuente: Elaboración propia.

La mayoría de las personas que trabajan actualmente en la comunidad son del sexo masculino con un 88%, el sexo femenino se conforma por el 12%.

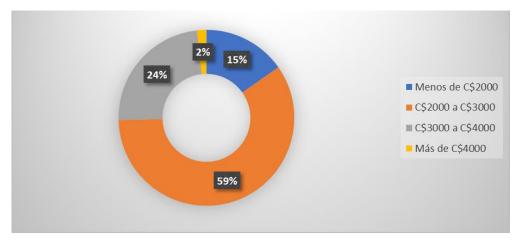


Gráfico 10 Ingresos económicos. Fuente: Elaboración propia.

El 59% de la población tiene ingresos mensuales de C\$ 2000 a C\$ 3000 córdobas, el 24% expresa que sus ingresos oscilan entre C\$ 3000 a C\$ 4000 córdobas, seguido de un 15% que cuenta con menos de C\$ 2000 córdobas mensuales, y con un 2% tienen un sueldo mayor a C\$ 4000.

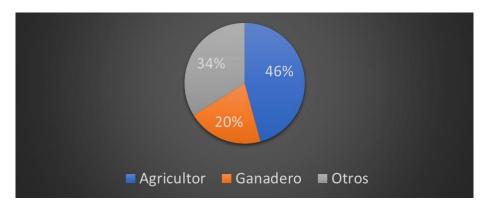


Gráfico 11 Ocupación de los habitantes de la comunidad. Fuente: Elaboración propia.

El 46% de la población se dedican a la agricultura, teniendo esta como única fuente de ingresos en la familia específicamente en la producción de hortalizas y granos básicos. El 20% se dedican a la ganadería, siendo esta con el propósito de la venta de leche y carne. El 34% de los pobladores tienen diferentes ocupaciones, entre ellas el comercio, algunos propietarios de pulperías y algunos reciben dinero del exterior.

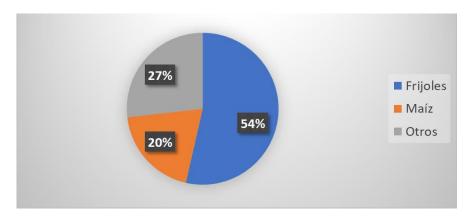


Gráfico 12 Cultivos que realizan en la comunidad. Fuente: Elaboración propia.

La mayor parte de los habitantes de la comunidad producen los frijoles con un 54%, seguido de un 20% del maíz, y con un 27% entre otros cultivos.

5.2.3. Recursos y servicios de agua

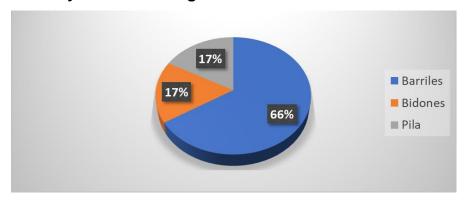


Gráfico 13 Almacenamiento del agua en la comunidad. Fuente: Elaboración propia.

La mayor parte de las personas almacenan el agua en barriles con un 66%, mientras que el resto de la población almacenan el agua en bidones y barriles con un 17% respectivamente cada uno.

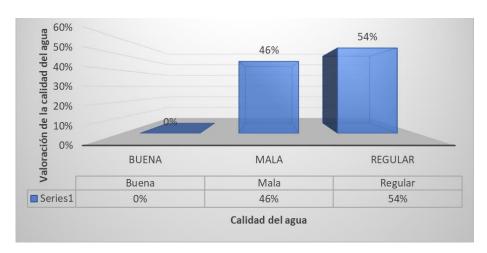


Gráfico 14 Opiniones de la calidad del agua en la comunidad. Fuente: Elaboración propia. Según la opinión de las personas reflejados en el gráfico, el 54% de las personas opinan que el agua tiene una calidad regular con un 54%, seguido de un 46% como referencia que es mala.

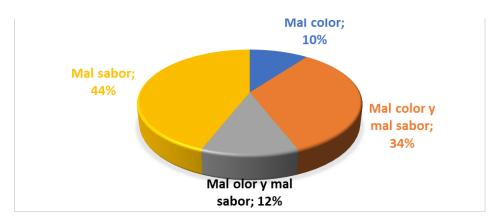


Gráfico 15 Opiniones sobre las condiciones del agua. Fuente: Elaboración propia.

El sabor del agua es un aspecto importante, el 44% de las personas opinan que el agua tiene un mal sabor, seguido de un 34% tienen un mal olor y sabor, con un 12% tiene mal olor y sabor, y por último un 10% de las personas de la población opinan que tienen un mal color.

5.2.4. Programa de agua potable, saneamiento e higiene

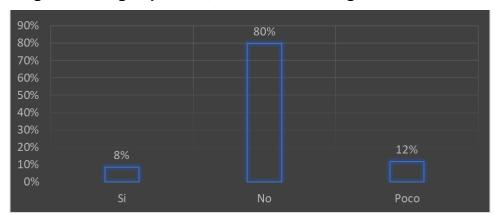


Gráfico 16 Conocimiento sobre el programa de agua potable y saneamiento de la Alcaldía. Fuente: Elaboración propia.

La mayor parte de las personas no tienen conocimientos sobre el programa que establece la Alcaldía sobre el agua potable y saneamiento, representado con un 80% como se puede observar en el gráfico, seguido de un 12% de que saben un poco, y por último con una pequeña parte de la población si sabe de los programas con un 8%.

Gráfico 17 Servicio a pagar por el agua potable. Fuente: Elaboración propia.

La mayor cantidad de personas opinan por pagar un precio entre 20 a 30 córdobas con un 68%, no obstante, con un 32% de las personas pagarían de 36 a 50 córdobas.

5.2.5. Situación de salud en las viviendas

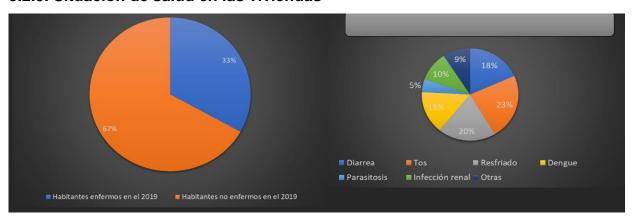


Gráfico 18 Enfermedades que padecieron en la comunidad. Fuente: Elaboración propia. Por medio del gráfico se establece que durante el periodo 2019 las personas no padecieron ninguna enfermedad con un 67%, y un 33% padecieron enfermedades, entre estas personas enfermas se pueden ver en el gráfico de la parte derecha, donde se establece que el 23% de la mayor parte de estos fue de tos, mientras que la menor parte de las personas sufrió de parasitosis con un 5%.

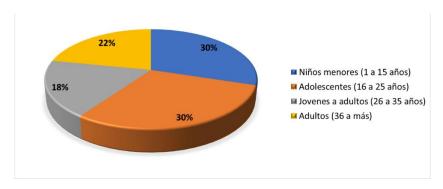


Gráfico 19 Enfermedades padecidas con respecto a las edades. Fuente: Elaboración propia.

Las enfermedades que padecieron durante el 2019 con respecto a las edades, el gráfico muestra que es bastante joven ya que representa el 60% de las personas de acuerdo en un rango de edades de 1 a 25 años, seguido de un 26 a 35 años de edad con un 18%, y por último con un 22% de las personas con la edad de 36 años a más.

5.3. Aforo de la fuente de abastecimiento

La fuente constituida por un afloramiento superficial ubicado en la parte más alta del sistema, del cual presenta las características adecuadas para la explotación de las aguas. Se procedió a medir el caudal el 9 de marzo del 2021 haciendo uso del balde de 20 litros y un cronómetro para medir el tiempo de llenado, este proceso se realizó 3 veces para obtener un valor preciso. Los resultados que se obtuvieron son los siguientes:

Tabla 3 Resultados de aforo volumétrico

N.º veces	Comunidad	Tiempo (seg)
1		13.9
2	El Ciprés	14.01
3		13.8

Fuente: Elaboración propia

Promedio: 13.903 seg

Volumen del balde: 20 litros

Aplicando la ecuación de terminación de caudal por el método volumétrico, se obtiene:

$$Q = \frac{20 \text{ litros}}{13.903 \text{ seg}} = 1.44 \text{ lts/seg}$$

Teniendo una productividad de 1.44 lt/seg; lo que indica que posee condiciones excelentes para el aprovechamiento y poder abastecer a la comunidad proyectada.

5.4. Estudio de proyección de población y demanda

5.4.1. Demanda de agua para la comunidad

Se ha utilizado el método de proyección geométrico, tomando un periodo de diseño de 20 años como estipula la norma. Además de la información obtenida en el censo del 2021, se ha recopilado información del último censo existente en la comunidad, proporcionada por la Alcaldía Municipal de Waslala, que corresponde al año 2004.

Población 2004: 299 habitantes

Población 2021: 354 habitantes

Con estos datos, se procesó a calcular la tasa de crecimiento poblacional, por medio de la formula establecida por la norma:

$$r = \left(\frac{P_n}{P_o}\right)^{\frac{1}{n}} - 1$$

Para la tasa entre los años 2004-2021:

$$r = \left[\left(\frac{354 \text{ hab}}{299 \text{ hab}} \right)^{\frac{1}{17 \text{ años}}} \right] - 1 = 1\%$$

El resultado de la tasa de crecimiento da un valor por debajo al mínimo establecido por la norma que es 2.5%, pero, al analizar más a fondo el crecimiento socioeconómico que en estos momentos experimenta la comunidad, se pronosticó un crecimiento demográfico más alto a los resultados que arrojaron los datos de

las encuestas actuales, puesto que, hay proyectos que se ejecutan en simultaneo dentro y cerca de esta comunidad como lo es el pavimento de 30.5 km de Rancho grande a Waslala y el proyecto de cobertura eléctrica en El Ciprés, donde por primera vez gozaran de este suministro energético. Entre otros aportes que asisten a esta comunidad en su desarrollo, es la implementación de nuevas rutas de transporte de Waslala a Pozolera. Mediante el último censo que se realizó por parte de la Alcaldía Municipal de Waslala del año 2004 en la comunidad se determinó una tasa de crecimiento del 4%.

Analizando estos factores que claramente alteran el crecimiento monográfico en esta localidad, se optó por una taza de crecimiento promedia entre el rango mínimo y máximo establecido por la norma, resultando un 3.25% siendo rentable para la proyección de los 20 de diseño.

$$P_n = 354 \times (1 + 3.25\%)^{20} = 671 \, hab$$

La población proyectada para el periodo del 2041 será de 671 habitantes

5.4.2. Dotación

La norma establece los diferentes valores de dotaciones, del cual se asignó un caudal de 60 lppd, ya que es por medio de conexiones domiciliares de patio.

5.4.3. Variaciones de consumo

Las variaciones de consumo han sido calculadas tomando en cuenta el 7% de consumo público, debido a la escuela existente en la comunidad, así mismo tomando en cuenta las perdidas en el sistema donde la norma establece utilizar un 20% del CPD, del cual se ve a continuación:

Tabla 4 Variaciones de consumo

		Proyección	Consumo Promedio Diario (CPD)		Pérdidas	Consumo	Máximo	Día (CMD)	Consumo N	/láxima H	ora (CMH)
Periodo	Año	de la población	Consumo Doméstico (LPD)	Consumo Público (7%)	Totales 20%(LPPD)	Lt/día	LPS	GPM	Lt/día	LPS	GPM
0	2021	354	21240	1487	4545	38635.56	0.45	7.10	61362.36	0.71	11.27
1	2022	366	21930	1535	4693	39891.22	0.46	7.33	63356.64	0.73	11.64
2	2023	377	22643	1585	4846	41187.68	0.48	7.57	65415.73	0.76	12.02
3	2024	390	23379	1637	5003	42526.28	0.49	7.81	67541.74	0.78	12.41
4	2025	402	24139	1690	5166	43908.38	0.51	8.07	69736.85	0.81	12.81
5	2026	415	24923	1745	5334	45335.41	0.52	8.33	72003.29	0.83	13.23
6	2027	429	25733	1801	5507	46808.81	0.54	8.60	74343.40	0.86	13.66
7	2028	443	26570	1860	5686	48330.09	0.56	8.88	76759.56	0.89	14.10
8	2029	457	27433	1920	5871	49900.82	0.58	9.17	79254.25	0.92	14.56
9	2030	472	28325	1983	6061	51522.60	0.60	9.47	81830.01	0.95	15.03
10	2031	487	29245	2047	6258	53197.08	0.62	9.77	84489.48	0.98	15.52
11	2032	503	30196	2114	6462	54925.99	0.64	10.09	87235.39	1.01	16.03
12	2033	520	31177	2182	6672	56711.08	0.66	10.42	90070.54	1.04	16.55
13	2034	537	32190	2253	6889	58554.19	0.68	10.76	92997.84	1.08	17.09
14	2035	554	33237	2327	7113	60457.20	0.70	11.11	96020.26	1.11	17.64
15	2036	572	34317	2402	7344	62422.06	0.72	11.47	99140.92	1.15	18.21
16	2037	591	35432	2480	7582	64450.78	0.75	11.84	102363.00	1.18	18.81
17	2038	610	36584	2561	7829	66545.43	0.77	12.23	105689.80	1.22	19.42
18	2039	630	37772	2644	8083	68708.16	0.80	12.62	109124.72	1.26	20.05
19	2040	650	39000	2730	8346	70941.17	0.82	13.03	112671.27	1.30	20.70
20	2041	671	40268	2819	8617	73246.76	0.85	13.46	116333.09	1.35	21.37

Fuente: Elaboración propia

Con los datos obtenidos, la fuente tiene la capacidad para la demanda y el consumo de la comunidad, ya que todos los consumos son menores que el caudal de la fuente.

5.5. Estudio topográfico

Se realizó el estudio topográfico haciendo uso de la estación total, con el fin de trazar la línea de conducción, y su red distribución, así mismo todos los puntos necesarios que van a introducirse en el sistema.

5.6. Calidad de agua de la fuente

Una vez realizado el aforo, se prosiguió en tomar la muestra de agua y enviarla al laboratorio el PIENSA, ubicado a la ciudad de Managua, se llevaron a cabo los respectivos los análisis, del cual los resultados se pueden ver en anexos.

5.7. Diseño de los componentes del MAG

5.7.1. Obra de captación

La captación propuesta se realizó bajo los criterios de diseño de (Agüero Pittman, 1997), específicamente una captación de agua de manantiales concentrada de ladera u ojo de agua.

5.7.1.1. Cálculo de la longitud entre el punto afloramiento y la cámara húmeda

Tabla 5 Datos para el cálculo de la longitud de afloramiento a la cámara húmeda

Valores recomendados a utilizar				
ho=H 0.4 m a 0.5 m				
V_2	0.5 m/s a 0.6 m/s			
Cd	0.8			

Fuente: Elaboración propia

$$V_1 = \frac{V_2}{Cd}$$

$$V_1 = \frac{0.50 \, m/s}{0.8} = 0.63 \, m/s$$

$$h_o = \frac{V_1^2}{2g}$$

$$h_o = \frac{(0.63 \, m/s)^2}{2(9.81 \, m/s^2)} = 0.020 \, m$$

$$H_f = H - h_0$$

$$H_f = 0.50 \, m - 0.020 \, m = 0.48 \, m$$

La altura desde la mitad del diámetro de entrada de la cámara húmeda a la parte superior de la misma es de 0.48 m.

$$L = \frac{H_f}{0.30}$$

$$L = \frac{0.48 \, m}{0.30} = 1.60 \, m$$

La longitud entre el punto de afloramiento y al diámetro de entrada a la cámara húmeda es de 1.60 m.

5.7.1.2. Cálculo de pantalla de la captación

Para el cálculo del diámetro de la tubería de entrada se requieren los siguientes datos, entre ellos utilizando el caudal máximo que es el que se obtuvo del aforo de la fuente de abastecimiento.

Tabla 6 Datos para el cálculo de la pantalla

Valores recomendados a utilizar			
Qmax= 0.0014 m^3/s			
V=	0.5 m/s		
Cd	0.8		

Fuente: Elaboración propia

$$A = \frac{Qmax}{Cd \times V} = \frac{\pi D^2}{4}$$

$$A = \frac{0.0014 \, m^3/s}{0.8 \times 0.50 \, m/s} = 0.00360 \, m^2$$

$$D = \sqrt{\frac{4 \times A}{\pi}}$$

$$D_{calculado} = \left(\sqrt{\frac{4 \times 0.00360 \ m^2}{\pi}}\right) \times 39.3701 = 2.67 \ in \approx 2.5 \ in$$

Obteniendo un diámetro de entrada de 2.5 in.

5.7.1.3. Cálculo del número de orificios (NA)

Para el cálculo del número de orificios se propone un diámetro comercial menor con respecto al diámetro calculado, en este caso de 2 in y que también es utilizado para determinar el ancho de la pantalla.

$$NA = \left(\frac{D_{calculado}}{D_{comercial}}\right)^2 + 1$$

$$NA = \left(\frac{2.5 \ in}{2 \ in}\right)^2 + 1 = 2.56 \approx 3$$

Como resultado, se ubicarán 3 orificios.

5.7.1.4. Ancho de la pantalla

La normativa establece la longitud máxima para el ancho de la pantalla es de 1.10 m, el resultado es el siguiente:

$$b = 2(6D) + NA(D) + 3D(NA - 1)$$

$$b = ((2(6 \times 2 in)) + (3 \times 2 in) + ((3 \times 2 in)(3 - 1))) \times 0.0254$$

$$b = 1.07 m \approx 1.05 m$$

El ancho de la pantalla es de 1.05 m.

5.7.1.5. Cálculo de la cámara húmeda (Ht)

Para determinar el área de la tubería de salida, será de acuerdo al diámetro de entrada de 2.5 in, del cual se determina con la siguiente expresión.

$$A = \pi \times \frac{D^2}{4}$$

$$A = \pi \times \frac{(2.5 \text{ in} \times 0.0254)^2}{4} = 0.003167 \text{ m}^2$$

Para determinar el valor H, que corresponde a la altura del agua dentro de la cámara húmeda, hacemos uso del caudal máximo diario de 0.85 lt/s.

$$H = \frac{1.56 \times Qmd^2}{2 \times g \times A^2}$$

$$H = \frac{1.56 \times (0.00085 \text{ m}^3/\text{s})^2}{2 \times (9.81 \text{ m}/\text{s}^2) \times (0.003167 \text{ m}^2)^2} = 0.01 \text{ m}$$

Como el valor es muy bajo, se ocupó el valor mínimo de 0.30 metros que establece la norma. Para determinar la altura de la cámara húmeda, se ocuparon algunos criterios como lo establece la normativa.

A= Una altura mínima de 10 cm, que permite la sedimentación de la arena dentro de la cámara húmeda.

B= Se considera la mitad del diámetro de la canastilla de salida.

H= 0.30 m, que corresponde a la altura del agua.

D= Desnivel mínimo del nivel de ingreso del agua de 3 cm.

E= Utilizando un borde libre de 50 cm, por encima de lo establecido por la normativa, ya que constructivamente es más fácil entrar y darle su debida limpieza.

$$Ht = A + B + H + D + E$$

$$Ht = 10 cm + (2.5 in \times 2.54) + (0.30 \times 100) + 3 cm + 50 cm$$

$$Ht = 99.35 cm \approx 1 m$$

La altura de la cámara húmeda es de 1 metro.

5.7.1.6. Dimensionamiento de la canastilla

Tabla 7 Datos para el dimensionamiento de la canastilla

Diametro	D. CALCULADO	D. COMERCIAL
Diametro conduccion DC:	2.50 in	3"
Diametro canastilla 2DC:	5.00 in	4"

Fuente: Elaboración propia

Para determinar la longitud de la canastilla se realizó en base al siguiente criterio;

$$3DC \leftarrow L \rightarrow 6DC$$

$$19.05 \ cm \leftarrow L \rightarrow 38.10 \ cm$$

Entre los 2 resultados, se determinará un promedio entre ellos, del cual nos da una longitud de 29 cm, proponiendo un ancho de la ranura de 5 mm y el largo de 7 mm.

Obteniendo un área de ranura (Ar);

$$Ar = \frac{5mm \times 7 \ mm}{1000^2} = 3.50 \times 10^{-5} m^2$$

Considerando Ac como el área transversal de la línea de conducción.

$$Ac = \frac{\pi \times Dc^2}{4}$$

$$Ac = \frac{\pi \times (2.5 \text{ in}/39.37)^2}{4} = 3.17 \times 10^{-3} \text{ m}^2$$

El área total de ranura se considera como e veces el área transversal de la tubería de la línea de conducción.

$$At = 2Ac$$

$$At = 2 \times 3.17 \times 10^{-3} = 6.33 \times 10^{-3} m^2$$

Para determinar el número de ranuras de la canastilla se realizó con la siguiente ecuación.

$$N^{\circ}$$
 de ranuras = $\frac{Area \ total \ de \ ranura}{Area \ de \ ranura}$

$$N^{\circ} de \ ranuras = \frac{6.33 \times 10^{-3} \ m^2}{3.50 \times 10^{-5} m^2} = 180$$

El número de ranuras en la canastilla es de 180.

5.7.1.7. Rebose y limpieza

El rebose se instala directamente a la tubería de limpia y para realizar la limpieza y evacuar el agua de la cámara húmeda, se levanta la tubería de rebose. La tubería de rebose y limpia tienen el mismo diámetro y se calculan mediante la siguiente ecuación.

$$D = \frac{0.71 \times Q^{0.38}}{hf^{0.21}}$$

Utilizando una pendiente asumida el 1.5%

$$D = \frac{0.71 \times (1.44 \ lt/seg)^{0.38}}{(0.015 \ m/m)^{0.21}} = 1.97 \ in$$

Como resultado una tubería de rebose de 2 in y su cono de 4 in, ya que este debe ser el doble.

5.7.1.8. Resumen del dimensionamiento de la captación

Tabla 8 Dimensiones y características de la captación

Nº ORDEN	Dimensiones y características de la captación	Calculadas		Asumidos	Criterio
1)	Distancia entre el punto de	1=	1.60 m	1.6 m	
1,	afloramiento y cámara húmeda	L-	1.00 111	1.0111	
2)	Cálculo de la pantalla de captación				
2.1	Diámetro de tubería de entrada	D=	2.67 in	2 1/2 in	Diámetro calculado
2.2	Numero de orificios	NA=	2.56	3 orf	Redondeo al máximo superior
2.3	Ancho de la pantalla	B=	1.07 m	1.05 m	Criterio proyectista
3)	Altura de la cámara húmeda	HT=	99.35 cm	100 cm	Criterio constructivo
4)	Dimensión de la canastilla				
4.1	Diámetro de conducción	Dc=	2.50 in	3 in	Diámetro comercial
4.2	Diámetro de canastilla	Dg=	5.00 in	4 in	Diámetro comercial
4.3	Numero de ranuras	Nr=	180.97	181 r	Redondeo al máximo superior
5)	Rebose y limpieza	Dr=	2.0 pulg	2 in	Diámetro comercial

Fuente: Elaboración propia

Como resultado, las dimensiones de la captación cumplen todas las condiciones para el sistema. Para esto ver en la sección de anexos, juegos de planos.

5.7.2. Línea de conducción

La línea de conducción tiene una longitud de 69 m, con una tubería propuesta de PVC, que conducirá caudales de 0.62 lps en los primeros 10 años, y de 0.85 lps correspondiente al segundo periodo de diseño (a los 20 años).

5.7.2.1. Análisis hidráulico de la línea de conducción

Según la norma, la línea de conducción debe analizarse para la demanda máxima diario CMD al final de su periodo de diseño, la línea se analizó para un caudal de 0.85 lps, según Tabla No 2.

Calculo hidráulico del tramo 1

1. Carga disponible

$$Carga D = 782 m - 776.3 m = 5.7 m$$

2. Gradiente

$$S = \frac{Carga\ D}{L}$$

$$S = \frac{5.7\ m}{12.21\ m} = 0.47\ m$$

3. Diámetro calculado

$$D = \left(\frac{10.674 \times Q^{1.85} \times L}{C^{1.85} \times S}\right)^{4.87}$$

$$D = \left(\frac{10.674 \times \left(\frac{0.85 \ lps}{1000}\right)^{1.85} \times 12.21 \ m}{(150)^{1.85} \times (0.47 \ \frac{m}{m})}\right)^{4.87} \times 39.37 = 1.27 \ in$$

Utilizando un diámetro comercial de 2 in

A continuación, la propuesta para el diseño de la línea de conducción.

Tabla 9 Dimensión del diámetro de la tubería

TR	AMO	0	LONGITUD	COTA	۱S		DIÁMETRO	DIÁMETRO
Estación	TRAMO	DISEÑO LPS EN PLANTA (m) INICIO FINAL S (m/m		S (m/m)	CALCULADO (IN)	PROPUESTO (IN)		
LINEA DE	t1	0.85	12.21	782	776.3	0.47	1.27	2
CONDUCCIÓN	t2	0.85	13.2	776.267	774.434	0.14	1.66	2
CONDUCCION	t3	0.85	20.97	774.434	768	0.31	1.55	2

Fuente: Elaboración propia

De acuerdo al análisis hidráulico de la línea de conducción se propone un diámetro de 2 pulgadas de PVC, el cual es el inmediato superior del diámetro calculado.

Calculo hidráulico para la línea piezométrica

Calculo para el tramo 1.

1. Perdida de carga

HF =
$$10.674 * \left(\frac{Q^{1.85}}{C^{1.85} * D^{4.87}}\right) * L$$

HF =
$$10.674 * \left(\frac{\left(\frac{0.85 lps}{1000}\right)^{1.85}}{(150)^{1.85} * \left(\frac{2in}{39.37}\right)^{4.87}} \right) * 12.21 m = 0.05142 m$$

2. Velocidad

$$V = \frac{Q}{A} = \frac{\left(\frac{0.85 lps}{1000}\right)}{\left(\frac{\pi \times \left(\frac{50}{1000}\right)^2}{4}\right)} = 0.433 \text{ m/s}$$

3. Cabezal de velocidad

$$\frac{V^2}{2g} = \frac{(0.433 \text{ m/s})^2}{2(9.81 \text{ m/s}^2)} = 0.010 \text{ m}$$

4. Cota de energía

$$782 \text{ m} - 0.05142 = 781.95 \text{ m}$$

5. Cota piezométrica

$$Hz = 781.95 \text{ m} - 0.010 \text{ m} = 781.94 \text{ m}$$

6. Presión estática

$$781.94 \text{ m} - 776.267 \text{ m} = 5.67 \text{ m}$$

Tabla 10 Resumen de la línea piezométrica

	LINEA PIEZOMÉTRICA									
ID linea	Q	Q COTAS Velocidad		V2//2=\ (==\	Pérdidas	Linea de	Linea Piezométrica	Presión estática		
	DISEÑO LPS	INICIO	FINAL	m/s	V2/(2g) (m)	HF (m)	energia mca	mca	mca	
Tramo 1	0.85	782	776.267	0.433	0.010	0.05142	781.94858	781.94	5.67	
Tramo 2	0.85	776.267	774.434	0.433	0.010	0.05559	781.89299	781.88	7.45	
Tramo 3	0.85	774.434	768	0.433	0.010	0.08831	781.80467	781.80	13.80	

Por medio del análisis, las velocidades en la línea de conducción son aceptables, debido a las especificaciones en la norma rural son de 0.4 - 2 m/s. La topografía de la zona por donde se trazará la línea no tiene muchas pendientes, lo que provoca presiones bajas y aceptables de acuerdo a la normativa.

Gráfico 20 Línea piezométrica. Fuente: Elaboración propia.

Calculo hidráulico del golpe de ariete

Cálculo de sobrepresión para tubería SDR-26 utilizando el consumo máximo día de 0.85 lps, como se muestra en la Tabla No 2.

Características de la tubería.

Diámetro: 50 mm

Diámetro interior: 55.71 mm

Espesor: 2.31 mm

De acuerdo a las especificaciones de Amanco el módulo de elasticidad para tuberías de PVC es de 2.81X10^8 kg/m^2.

$$K = \frac{10^{10}}{E}$$

$$K = \frac{10^{10}}{2.81X10^8 \text{kg/m}^2} = 35.6$$

$$a = \frac{9900}{\sqrt{48.3 + K \times \frac{D}{e}}}$$

$$a = \frac{9900}{\sqrt{48.3 + 35.6 \times \frac{55.71 \text{ mm}}{2.31 \text{ mm}}}} = 329 \text{ m/s}$$

Obteniendo una celeridad de 329 m/s, del cual es aceptable ya que la celeridad máxima par tuberías de PVC SDR-26 es de 330 m/s.

Para determinar la velocidad del agua, se realizó utilizando la ecuación de continuidad:

$$V = \frac{Q}{A}$$

$$V = \frac{0.85/1000}{\frac{\pi \times \left(\frac{50}{1000}\right)^2}{4}} = 0.433 \text{ m/s}$$

Obteniendo una velocidad de 0.433 m/s.

Para determinar el tiempo de cierre de la válvula, es con la siguiente ecuación:

$$tc = \frac{2L}{a}$$

$$tc = \frac{2(69m)}{329 \text{ m/s}} = 0.42 \text{ seg}$$

Asumiendo un tiempo de cierre critico de 5 seg para verificar las condiciones de que tipo de cierre que se necesitara.

Si el tiempo de cierre critico > tc; es cierre lento, de lo contrario será un cierre rápido, por lo cual de acuerdo a los resultados es un cierre lento.

Para determinar la sobrepresión de golpe de ariete se propuso un tiempo de cierre lento de la válvula de 20 segundos, debido a que la longitud de la línea de conducción y la diferencia de altura es pequeña, por el cual no se recomienda utilizar un tiempo de cierre rápido, de la misma manera se realizó un cálculo de tiempo promedio de cierre lento de una válvula de compuerta, donde se obtuvo un tiempo de 15.7 seg.

Para calcular la sobrepresión por cierre lento es en base a la ecuación de Michaud, del cual es la siguiente:

$$\Delta H = \frac{2 \times L \times V}{g \times Tc}$$

$$\Delta H = \frac{2 \times 69 \text{ m} \times 0.433 \text{ m/s}}{9,81 \text{ m/s}^2 \times 20 \text{ seg}}$$

$$\Delta H = 0.304 \text{ mca}$$

Sumándole la presión estática máxima de 13.80 mca en la línea de conducción para determinar la sobrepresión existente.

$$\Delta H = (0.304 \text{ mca} + 13.80 \text{ mca}) \times 1.422 = 20.054 \text{ psi}$$

Obteniendo una sobrepresión de 20.054 psi.

Tabla 11 Resumen del golpe de ariete

GOLPE DE ARIETE PVC SDR-26								
CMD LPS	Diamétro (m)	Diam. Int (mm)	Espesor (mm)	K	a (m/s)	V m/s	TC	ΔH (PSI)
0.85	0.05	55.71	2.31	35.6	329	0.433	0.42	20.054

Fuente: Elaboración propia

La sobrepresión por golpe de ariete es aceptable de acuerdo a las condiciones de Amanco, que establece que para tuberías de PVC SDR-26 la sobrepresión máxima es de 160 psi.

5.7.2.2. Accesorios en la línea de conducción

La longitud de la línea de conducción es pequeña por lo cual la cantidad de accesorios es pequeña, de la misma manera con la ayuda de la topografía, se necesita un codo de 45° de 2" PVC en la estación 0+025.41 y una válvula limitadora de caudal.

5.7.3. Diseño del tanque de almacenamiento

El agua se trasladará hacia un tanque sobre el suelo, el almacenamiento es de 2 metros de altura, con un rebose de 0.5 m, 3 metros de ancho de la pared y una longitud de 2.5 m, teniendo una capacidad de 18.75 metros cúbicos. Estará provisto de tuberías de entrada, salida, limpieza, rebose, escalera y una tapa de visita metálica para dar acceso interior. Ver detalles en anexos, memoria de cálculo en apéndice E.

5.7.3.1. Cálculo de momentos

Tabla 12 Datos para el diseño de almacenamiento

DATOS	
Volumen (V):	15.1 m^3
Ancho de la pared (b):	3.00 m
Altura del agua (h) :	2.00 m
Borde libre (BL) :	0.50 m
Altura total (H):	2.50 m
Peso especifico del agua (γa):	1000 Kg/m3
Peso especificio del terreno(γt):	1800 Kg/m3
Capacidad de carga del terreno(σt):	1 Kg/cm2

Fuente: Elaboración propia

Relación entre el ancho de la pared con respecto a la altura del agua.

$$\frac{b}{h} = \frac{3 m}{2 m} = 1.5$$

Esta relación sirve para determinar los factores k que se van ocupar para el cálculo de los momentos, del cual es el siguiente como está establecido en el documento.

Tabla 13 Factores para el cálculo de momento para 1.5

b/h	x/h	y= 0		y= b/4		y= b/2	
		Mx	Му	Mx	Му	Mx	Му
	0	0	0.021	0	0.005	0	-0.04
	1/4	0.008	0.02	0.004	0.007	-0.009	-0.044
1.5	1/2	0.016	0.016	0.01	0.008	-0.008	-0.042
	3/4	0.003	0.006	0.003	0.004	-0.005	-0.026
	1	-0.06	-0.012	-0.041	-0.008	0	0

Fuente: (Agüero Pittman)

Para obtener los momentos que se van a utilizar se realizaron con la siguiente ecuación.

$$M = k \times \gamma a \times h^3$$

Aplicando la formula anterior, se obtuvieron los siguientes resultados.

Tabla 14 Momentos para el diseño del almacenamiento

	x/h		y=0		y= b/4		y= b/2	
b/h	X/11	Mx	Му	Mx	My	Mx	Му	
	0	0.00	168.00	0.00	40.00	0.00	-320.00	
	1/4	64.00	160.00	32.00	56.00	-72.00	-352.00	
1.5	1/2	128.00	128.00	80.00	64.00	-64.00	-336.00	
	3/4	24.00	48.00	24.00	32.00	-40.00	-208.00	
	1	-480.00	-96.00	-328.00	-64.00	0.00	0.00	

El momento que se va utilizar en el eje x es de 480 kg/m, y en el eje y es de 352 kg/m.

5.7.3.2. Paredes

$$ft = 0.85(f'c)^{1/2}$$

Utilizando un fc de 175 kg/cm2

$$ft = 0.85(175 \text{ kg/cm}^2)^{1/2} = 11.2444 \text{ kg/cm}^2$$

$$e = \left[\frac{6M}{ft \times b}\right]^{\frac{1}{2}}$$

Para determinar el espesor de las paredes se realiza con una longitud de 1 metro como establece la normativa.

$$e = \left[\frac{6(480 \text{ kg/m})}{11.2444 \text{ kg/cm}^2 \times 100 \text{ cm}}\right]^{\frac{1}{2}} = 16 \text{ cm} \approx 20 \text{ cm}$$

El espesor de las paredes del tanque de almacenamiento es de 20 cm.

5.7.3.3. Losa superior

Para determinar el valor se calculó la luz de cálculo (L), con la siguiente ecuación.

L = Luz interna +
$$\left(\frac{2 \times \text{E. pared}}{2}\right)$$

L = 3 m + $\left(\frac{2 \times 0.20 \text{ m}}{2}\right)$ = 3.20 m

$$L = 3 \text{ m} + \left(\frac{1}{2}\right) = 3.20 \text{ m}$$

espesor
$$e = \frac{L}{36}$$

$$e = 0.09 \text{ m} \approx 0.15 \text{ m}$$

Estableciendo un espesor de la losa de 15 cm.

Seguido de esto, se procedió a calcular el espesor de la losa útil.

Tabla 15 Datos para determinar el espesor de la losa útil

Datos				
C= Valor establecido de 0.036				
f`c: 175 Kg/cm2				
fs:	1400 Kg/cm2			
fc:	79 Kg/cm2			
w:	2.40 Ton/m3			

Fuente: Elaboración propia

$$MA = MB = CWL^2$$

$$W = (0.15m \times 2400 \text{ kg/m}^3) + 150 \text{ kg/m}^2 = 510 \text{kg/m}^2$$

$$MA = MB = (0.036 \times 510 \text{kg/m}^2) \times (3.20 \text{ m})^2 = 188.01 \text{ kg. m}$$

Condiciones para el cálculo del espesor.

1)
$$n = \frac{Es}{Ec} = (2.1 \times 10^6) (W^{1.5} \times 4200 \times (f'c)^{1/2})$$

$$n = (2.1 \times 10^6) ((2.4)^{1.5} \times 4200 \times (175)^{1/2}) = 10.17$$

$$k = \frac{1}{\left(1 + \frac{fs}{(nfc)}\right)}$$

$$k = \frac{1}{\left(\frac{1 + 1400 \text{ kg/cm}^2}{(10.17 \times 79 \text{ kg/cm}^2)}\right)} = 0.36$$

3)
$$J = 1 - \frac{k}{3}$$

$$J = 1 - \frac{0.36}{3} = 0.878$$

4)
$$R = \frac{1}{2} \times fc \times j \times k$$

$$R = \frac{1}{2} \times 79 \text{ kg/cm}^2 \times 0.878 \times 0.36 = 12.65$$

$$d = \left[\frac{M}{(R \times b)}\right]^{\frac{1}{2}}$$

Par determinar el espesor útil d se le debe sumar un recubrimiento de 2.5 cm.

$$d = \left[\frac{188.01 \text{ kg. m}}{(12.65 \times 1)}\right]^{\frac{1}{2}} + 2.5 \text{ cm} = 6.36 \text{ cm}$$

El espesor de la losa es de 15 cm, restándole el recubrimiento es 12.5 cm, comparado con el calculado de 6.36 cm, del cual se utiliza el valor de d=12.5 cm.

5.7.3.4. Losa inferior

Para determinar la dimensión de la losa inferior, se asumió un espesor de 15 cm, para realizar los cálculos.

Tabla 16 Datos para el dimensionamiento de la losa inferior

Datos	
P. propio de agua=	2000 Kg/m2
P. propio del concreto=	360 Kg/m2
WT=	2360 Kg/m2

Fuente: Elaboración propia

Para determinar el espesor se realizan las condiciones siguientes:

Momento de empotramiento en los extremos.

$$M = -\frac{W L^2}{192}$$

$$M = -\frac{\left(2360 \frac{\text{Kg}^2}{\text{cm}}\right) (3\text{m})^2}{192} = -111 \text{ kg. m}$$

2. Momento en el centro

$$M = \frac{W L^3}{384}$$

$$M = -\frac{\left(2360 \frac{\text{Kg}^2}{\text{cm}}\right) (3\text{m})^3}{384} = 55 \text{ kg. m}$$

3. Momentos finales

Para determinar los momentos finales, la normativa establece ciertos factores que se deben considerar, para el empotramiento utilizar un valor de 0.529, en el centro un valor de 0.0513. obteniendo como resultados lo siguiente expresado.

Empotramiento (Me)= -58.52 kg.m

Centro (Mc)= 2.84 kg.m

Para determinar el espesor de la losa se utilizó el momento mayor sin importar el signo, del cual se realizó con la siguiente formula;

$$e = \left[\frac{6M}{(ft \times b)}\right]^{\frac{1}{2}}$$

$$e = \left[\frac{6(58.52 \text{ kg. m})}{(11.24 \times 1)} \right]^{\frac{1}{2}} = 6 \text{ cm}$$

Utilizando un recubrimiento de 4 cm, el factor d es igual a 2 cm, en comparación con el valor asumido de 15 cm, es de 11 cm, por lo cual se utilizó el valor mayor.

5.7.3.5. Resumen del dimensionamiento del tanque de almacenamiento

Tabla 17 Resumen del cálculo estructural y distribución de armadura

	RESULTADOS						
DESCRIPCION	DESCRIPCION						
DESCRIPCION	VERTICAL	HORIZONTAL	LOSA DE CUBIERTA	LOSA DE FONDO			
Momentos "M" (Kg.m)	480.00 Kg.m	352.00 Kg.m	188.01 Kg.m	58.52 Kg.m			
Espesor Util	20 cm	20 cm	15 cm	15 cm			
Espesor Util "d" (cm)	12.5 cm	12.5 cm	12.5 cm	11 cm			
fs(Kg/cm^2)	900 Kg/cm2	900 Kg/cm2	1400 Kg/cm2	900 Kg/cm2			
n	10	10	10	10			
fc(Kg/cm^2)	79 Kg/cm2	79 Kg/cm2	79 Kg/cm2	79 Kg/cm2			
$K = \frac{1}{1 + fs/(nfc)}$	0.467	0.467	0.365	0.467			
$J = 1 - \left(\frac{K}{3}\right)$	0.84	0.84	0.88	0.84			
Arrea de acero: $As = \frac{100 \times M}{fs \times j \times d} (cm2)$	5.05	3.71	1.22	0.70			
С	0.0015	0.0015	0.0017	0.0017			
b (cm)	100 cm	100 cm	100 cm	100 cm			
e (cm)	20 cm	20 cm	15 cm	15 cm			
Cuantia Minima: As min= $C \times b \times e$ (cm2)	3.00 cm2	3.00 cm2	2.55 cm2	2.55 cm2			
Area Efectiva de As (cm2)	5.68 cm2	4.26 cm2	2.84 cm2	2.84 cm2			
Area Efectiva de As min (cm2)	3.55 cm2	3.55 cm2	2.84 cm2	2.84 cm2			
DISTRIBUCION DETERMINADO	22 cm de 1/2	30 cm de 1/2	25 cm de 3/8	25 cm de 3/8			
DISTRIBUCION DETERMINADO	25 cm de 1/2	30 cm de 1/2	25 cm de 3/8	25 cm de 3/8			

Fuente: Elaboración propia

El tanque de almacenamiento cumple con todos los criterios establecidos, utilizando acero número 4 en la parte horizontal y vertical de las paredes, seguido de la losa inferior tanto superior haciendo uso del acero número 3. Para esto ver en la sección de anexos, juego de planos.

5.7.4. Tratamiento y desinfección

Para que el agua sea apta y tenga todas las condiciones para el consumo humano, se ha propuesto el uso del hipoclorito de calcio que es para comunidades rurales, cuando el agua no tiene tanta afectación. Para realizar su dosificación se utilizó la siguiente formula:

$$A = \frac{B \times Q}{C \times 10}$$

Donde:

A: Cantidad de solución diluida a agregar, en ml/min.

B: Dotación de cloro igual a 1.5 mg/lt.

Q: Consumo máximo diario para cada año comprendido entre el periodo de diseño (CMD) en litros/seg.

C: Concentración de la solución (1%).

Donde:

$$A = \frac{1.5 \text{ mg/lt} \times 0.848 \text{ lt/seg}}{1\% \times 10} = 12.716 \text{ ml/min}$$

Para determinar la cantidad de cloro en kg se realizó una relación de que en 5.5 ml/min equivalen a 0.70 kg, obteniendo un valor de 1.62 kg que es la cantidad que se necesita para el último periodo de diseño.

5.7.5. Red de distribución

La red de distribución estará conformada por tubería de PVC SDR-26 con una longitud de 6114.475 metros en diámetro que van de 50 mm, 38 mm. El sistema global de la red se dividió en 83 tramos.

Debido a las características topográficas que presenta el terreno, el sistema global de la red, se dividió en ochenta y tres tramos. Ver tabla (Tramos en que se dividió la Red de Distribución).

Tabla 18 Tramos en que se dividió la Red de Distribución.

ID linea	Longitud C		Diámetro
ID lilled	m	ر	mm
Tubería t4	11.03	150	50
Tubería t5	15.86	150	50
Tubería t6	42.12	150	50
Tubería t7	53.01	150	50
Tubería t8	156.42	150	50
Tubería t9	27.46	150	50
Tubería t10	61.04	150	50
Tubería t11	145.98	150	50
Tubería t12	38.48	150	50
Tubería t13	141.45	150	50
Tubería t14	67.03	150	50
Tubería t15	37.91	150	50
Tubería t16	202.21	150	50
Tubería t17	165.62	150	50
Tubería t18	39.04	150	50
Tubería t19	37.86	150	50
Tubería t20	65.71	150	50
Tubería t21	89.86	150	50
Tubería t22	109.77	150	50
Tubería t23	60.34	150	50
Tubería t24	118.9	150	50
Tubería t25	63.46	150	50
Tubería t26	37.5	150	50
Tubería t27	68.96	150	50
Tubería t28	79.6	150	50
Tubería t29	68.09	150	50
Tubería t30	30.77	150	50
Tubería t31	28.45	150	50
Tubería t32	79.7	150	50
Tubería t33	135.36	150	50
Tubería t34	83.37	150	50
Tubería t35	51.06	150	50
Tubería t36	64.52	150	50
Tubería t37	82.95	150	50
Tubería t38	18.16	150	50
Tubería t39	55.84	150	50
Tubería t40	29.37	150	50

ID lines	Longitud	C	Diámetro
ID linea	m	С	mm
Tubería t41	9.94	150	50
Tubería t42	12.02	150	50
Tubería t43	48.49	150	50
Tubería t44	20.83	150	50
Tubería t45	60.36	150	50
Tubería t46	21.5	150	50
Tubería t47	48.32	150	38
Tubería t48	12.91	150	38
Tubería t49	38.36	150	38
Tubería t50	55.18	150	38
Tubería t51	59.78	150	38
Tubería t52	101.39	150	38
Tubería t53	96.72	150	38
Tubería t54	88.17	150	38
Tubería t55	64.81	150	50
Tubería t56	57.49	150	50
Tubería t57	60.88	150	50
Tubería t58	58.07	150	38
Tubería t59	68.4	150	38
Tubería t60	1.556	150	38
Tubería t61	94.81	150	38
Tubería t62	51.67	150	38
Tubería t63	106.36	150	38
Tubería t64	126.31	150	38
Tubería t65	85.46	150	38
Tubería t66	85.64	150	38
Tubería t67	35.79	150	38
Tubería t68	98.05	150	38
Tubería t69	126.53	150	38
Tubería t70	94.16	150	38
Tubería t71	43.86	150	38
Tubería t72	10.78	150	38
Tubería t73	20.5	150	38
Tubería t74	92.89	150	38
Tubería t75	69.44	150	38
Tubería t76	17.45	150	38

ID linea	Longitud	C	Diámetro
ID lillea	m	Ü	mm
Tubería t77	73.25	150	38
Tubería t78	559.628	150	38
Tubería t79	51.435	150	38
Tubería t80	26.807	150	38
Tubería t81	102.919	150	38
Tubería t82	21.32	150	38
Tubería t83	28.37	150	38
Tubería t84	206.04	150	38
Tubería t85	19.84	150	38
Tubería t86	215.73	150	38

5.7.5.1. Demandas nodales

Las demandas nodales se han determinado en dependía de la cantidad de las viviendas y nodos concentrados en cada tramo, donde el caudal total debe ser igual al consumo máximo horario que se determinó.

Tabla 19 Caudales en la red de distribución

Distribución nodal			
ID NODO	Viviendas	Demanda	
ID NODO	c/u	LPS	
Conexión N8	1	0.023	
Conexión N17	3	0.068	
Conexión N21	1	0.023	
Conexión N27	3	0.068	
Conexión N33	2	0.046	
Conexión N42	2	0.046	
Conexión N44	1	0.023	
Conexión N48	1	0.023	
Conexión N51	1	0.023	
Conexión N54	3	0.068	
Conexión N57	1	0.023	
Conexión N60	3	0.068	

Distribución nodal			
ID NODO	Viviendas	Demanda	
ID NODO	c/u	LPS	
Conexión N61	2	0.046	
Conexión N64	4	0.091	
Conexión N68	3	0.068	
Conexión N69	1	0.023	
Conexión N70	3	0.068	
Conexión N73	1	0.023	
Conexión N74	2	0.046	
Conexión N77	1	0.023	
Conexión N83	1	0.023	
Conexión N84	3	0.068	
Conexión N87	1	0.023	
Conexión N90	1	0.023	
Conexión N91	4	0.091	
Conexión N92	4	0.091	
Conexión N94	2	0.046	
Conexión N95	1	0.023	
Conexión N96	3	0.068	
TOTAL	59	1.35	

5.7.5.2. Presiones máximas y mínimas

El análisis hidráulico de la red de distribución se realizó en el software de análisis y simulación hidráulica EPANET, bajo las condiciones de consumo máximo horario (CMH) y sin consumo en la red, para verificar que las presiones y las velocidades se mantengan dentro del rango permitido.

5.7.5.3. Análisis con consumo máximo hora en la red

El nodo con la menor presión en la red es el número 10, el cual tiene una cota topográfica de 732 m y la presión es de 5 m según el análisis realizado.

El nodo con la mayor presión en la red es el número 79 con una cota topográfica de 462 m y la presión es de 45.54 m. Dichos valores quedan dentro de la Norma Técnica para el Diseño de Abastecimiento de Agua en el medio Rural y Saneamiento básico Rural.

Tabla 20 Velocidades y caudales calculados en la red de distribución para el CMH

ID linea	Longitud	С	Diámetro	Caudal	Velocidad
1D lillea	m	C	mm	LPS	m/s
Tubería t4	11.03	150	50	1.35	0.69
Tubería t5	15.86	150	50	1.35	0.69
Tubería t6	42.12	150	50	1.35	0.69
Tubería t7	53.01	150	50	1.35	0.69
Tubería t8	156.42	150	50	1.32	0.67
Tubería t9	27.46	150	50	1.32	0.67
Tubería t10	61.04	150	50	1.32	0.67
Tubería t11	145.98	150	50	1.32	0.67
Tubería t12	38.48	150	50	1.32	0.67
Tubería t13	141.45	150	50	1.32	0.67
Tubería t14	67.03	150	50	1.32	0.67
Tubería t15	37.91	150	50	1.25	0.64
Tubería t16	202.21	150	50	1.25	0.64
Tubería t17	165.62	150	50	1.25	0.64
Tubería t18	39.04	150	50	1.25	0.64
Tubería t19	37.86	150	50	1.23	0.63
Tubería t20	65.71	150	50	1.23	0.63
Tubería t21	89.86	150	50	1.23	0.63
Tubería t22	109.77	150	50	1.23	0.63
Tubería t23	60.34	150	50	1.23	0.63
Tubería t24	118.9	150	50	1.16	0.59
Tubería t25	63.46	150	50	1.16	0.59
Tubería t26	37.5	150	50	1.16	0.59
Tubería t27	68.96	150	50	1.16	0.59
Tubería t28	79.6	150	50	1.16	0.59
Tubería t29	68.09	150	50	1.12	0.57
Tubería t30	30.77	150	50	1.12	0.57
Tubería t31	28.45	150	50	1.12	0.57
Tubería t32	79.7	150	50	1.12	0.57
Tubería t33	135.36	150	50	1.12	0.57
Tubería t34	83.37	150	50	1.12	0.57
Tubería t35	51.06	150	50	1.12	0.57
Tubería t36	64.52	150	50	1.12	0.57
Tubería t37	82.95	150	50	1.07	0.55
Tubería t38	18.16	150	50	1.07	0.55
Tubería t39	55.84	150	50	1.05	0.53
Tubería t40	29.37	150	50	1.05	0.53

ID II	Longitud		Diámetro	Caudal	Velocidad
ID linea	m	С	mm	LPS	m/s
Tubería t41	9.94	150	50	1.05	0.53
Tubería t42	12.02	150	50	1.05	0.53
Tubería t43	48.49	150	50	1.03	0.52
Tubería t44	20.83	150	50	1.03	0.52
Tubería t45	60.36	150	50	1.03	0.52
Tubería t46	21.5	150	50	1	0.51
Tubería t47	48.32	150	38	0.16	0.14
Tubería t48	12.91	150	38	0.16	0.14
Tubería t49	38.36	150	38	0.09	0.08
Tubería t50	55.18	150	38	0.09	0.08
Tubería t50	59.78	150	38	0.09	0.08
Tubería t52	101.39	150	38	0.07	0.06
Tubería t52	96.72	150	38	0.07	0.06
Tubería t54	88.17	150	38	0.07	0.06
Tuberia t54	64.81	150	50	0.84	0.43
Tubería t56	57.49	150	50	0.8	0.43
Tubería t57	60.88	150	50	0.8	0.41
Tubería t57	58.07	150	38	0.71	0.62
Tubería t58	68.4	150	38	0.71	0.62
Tuberia t59	1.556	150	38	0.71	0.62
Tubería t60	94.81	150	38	0.71	0.02
Tuberia t61	51.67	150	38	0.09	0.08
Tuberia t62	106.36	150	38	0.62	0.02
Tuberia t63	126.31	150	38	0.55	0.48
					0.48
Tubería t65	85.46	150	38	0.55	
Tubería t66	85.64	150	38	0.52	0.46
Tubería t67	35.79	150	38	0.48	0.42
Tubería t68	98.05	150	38	0.43	0.38
Tubería t69	126.53	150	38	0.11	0.1
Tubería t70	94.16	150	38	0.09	0.08
Tubería t71	43.86	150	38	0.09	0.08
Tubería t72	10.78	150	38	0.09	0.08
Tubería t73	20.5	150	38	0.09	0.08
Tubería t74	92.89	150	38	0.02	0.02
Tubería t75	69.44	150	38	0.07	0.06
Tubería t76	17.45	150	38	0.32	0.28
Tubería t77	73.25	150	38	0.23	0.2
Tubería t78	23.38	150	38	0.14	0.12
Tubería t79	15.74	150	38	0.07	0.06
Tubería t80	54.67	150	38	0.02	0.02
Tubería t81	55	150	38	0.07	0.06
Tubería t82	16.4	150	38	0.05	0.04
Tubería t83	28.37	150	38	0.05	0.04
Tubería t84	206.04	150	38	0.05	0.04
Tubería t85	19.84	150	38	0.02	0.02
Tubería t86	215.73	150	38	0.02	0.02

Tabla 21 Presiones calculadas con CMH en la Red de Distribución

ID NODO	Cota	Presión
ID NODO	m	m
Depósito D4	768	10
Conexión N5	770.151	7.73
Conexión N6	767.675	10.04
Conexión N7	761.377	15.9
Conexión N8	751.833	24.89
Conexión N9	734.043338	41.1
Conexión N10	732	5
Conexión N11	727.005936	9.72
Conexión N12	714	22.11
Conexión N13	692.816298	41.81
Conexión N14	690	44.24
Conexión N15	687.173	20
Conexión N16	679.074	26.67
Conexión N17	681.071071	24
Conexión N18	683.415497	21.3
Conexión N19	694.899408	7.97
Conexión N20	692.663	8.69
Conexión N21	694.0425	6.95
Conexión N22	693.924	6.73
Conexión N23	678	22.08
Conexión N24	660	39.28
Conexión N25	654	5
Conexión N26	645.777	12.25
Conexión N27	645.999	11.5
Conexión N28	630	26.55
Conexión N29	612	44.04
Conexión N30	610	5
Conexión N31	600	14.7
Conexión N32	594	20.15
Conexión N33	584.41661	29.1
Conexión N34	576	37.01
Conexión N35	576	36.79
Conexión N36	577.114758	35.46
Conexión N37	579.457	32.53
Conexión N38	570.545553	40.44
Conexión N39	570	5
Conexión N40	560.8556	13.53

	Cota	Presión
ID NODO	m	m
Conexión N41	551.535	22.47
Conexión N42	542.3595	31.17
Conexión N43	540.484943	32.48
Conexión N44	540.835	32
Conexión N45	539.1	33.37
Conexión N46	536.896851	35.38
Conexión N47	537.925067	34.29
Conexión N48	537.861	34.27
Conexión N49	541.219	30.61
Conexión N50	543.631	28.06
Conexión N51	548.583758	22.73
Conexión N52	549.641386	21.54
Conexión N53	556.153	14.99
Conexión N54	558	13.14
Conexión N55	560.718	10.41
Conexión N56	559.849	11.26
Conexión N57	558	13.1
Conexión N58	549.369145	21.71
Conexión N59	552.914277	18.15
Conexión N60	556.133671	14.92
Conexión N61	540	30.9
Conexión N62	530.095	40.58
Conexión N63	528	10
Conexión N64	518.392	19.37
Conexión N65	513.600249	23.46
Conexión N66	502.272	33.96
Conexión N67	502.272	33.94
Conexión N68	499.102297	37.09
Conexión N69	497.279	38.91
Conexión N70	498.889	36.33
Conexión N71	490.455574	43.82
Conexión N72	489.552435	20
Conexión N73	486.164	22.75
Conexión N74	486	22.32
Conexión N75	483.1695	24.94
Conexión N76	482.753854	24.88
Conexión N77	476.644	30.93
Conexión N78	468	39.55
Conexión N79	462	45.54
Conexión N80	460.96407	15

ID NODO	Cota	Presión
ID NODO	m	m
Conexión N81	459.59825	16.36
Conexión N82	459.411595	16.54
Conexión N83	457.3795	18.57
Conexión N84	466.457611	9.49
Conexión N85	482.67708	25.43
Conexión N86	483.856013	24.25
Conexión N87	471.184	36.9
Conexión N88	468	40.09
Conexión N89	456	5
Conexión N90	424.599046	36.4
Conexión N91	484.528602	23.05
Conexión N92	490.275457	17.2
Conexión N93	493.432123	14.03
Conexión N94	496.447597	11.01
Conexión N95	496.8075	10.65
Conexión N96	491.7035	15.75

5.7.5.4. Análisis sin consumo en la red

La presión mínima en la red es de 5 m donde está registrado en el nodo 10, y la presión máxima es de 47.55 m que se encuentra en el nodo 79.

Este análisis se hizo con el objetivo de saber si en los ramales secundarios de la red de distribución hay nodos que no les llegue agua, donde se demostró que en todos los nodos de la red les alcanza.

Tabla 22 Presiones calculadas sin consumo en la Red de Distribución

ID NODO	Cota	Presión
ID NODO	m	m
TANQUE	768	10
Conexión N5	770.151	7.85
Conexión N6	767.675	10.32
Conexión N7	761.377	16.62
Conexión N8	751.833	26.17
Conexión N9	734.043338	43.96
Conexión N10	732	5
Conexión N11	727.005936	9.99
Conexión N12	714	23
Conexión N13	692.816298	44.18
Conexión N14	690	47
Conexión N15	687.173	20
Conexión N16	679.074	28.1
Conexión N17	681.071071	26.1
Conexión N18	683.415497	23.76
Conexión N19	694.899408	12.27
Conexión N20	692.663	14.51
Conexión N21	694.0425	13.13
Conexión N22	693.924	13.25
Conexión N23	678	29.17
Conexión N24	660	47.17
Conexión N25	654	5
Conexión N26	645.777	13.22
Conexión N27	645.999	13
Conexión N28	630	29
Conexión N29	612	47
Conexión N30	610	5
Conexión N31	600	15
Conexión N32	594	21
Conexión N33	584.41661	30.58
Conexión N34	576	39
Conexión N35	576	39
Conexión N36	577.114758	37.89
Conexión N37	579.457	35.54
Conexión N38	570.545553	44.45
Conexión N39	570	5
Conexión N40	560.8556	14.14

Elaboración propia

ID NODO	Cota	Presión
ID NODO	m	m
Conexión N41	551.535	23.46
Conexión N42	542.3595	32.64
Conexión N43	540.484943	34.52
Conexión N44	540.835	34.16
Conexión N45	539.1	35.9
Conexión N46	536.896851	38.1
Conexión N47	537.925067	37.07
Conexión N48	537.861	37.14
Conexión N49	541.219	33.78
Conexión N50	543.631	31.37
Conexión N51	548.583758	26.42
Conexión N52	549.641386	25.36
Conexión N53	556.153	18.85
Conexión N54	558	17
Conexión N55	560.718	14.28
Conexión N56	559.849	15.15
Conexión N57	558	17
Conexión N58	549.369145	25.63
Conexión N59	552.914277	22.09
Conexión N60	556.133671	18.87
Conexión N61	540	35
Conexión N62	530.095	44.9
Conexión N63	528	10
Conexión N64	518.392	19.61
Conexión N65	513.600249	24.4
Conexión N66	502.272	35.73
Conexión N67	502.272	35.73
Conexión N68	499.102297	38.9
Conexión N69	497.279	40.72
Conexión N70	498.889	39.11
Conexión N71	490.455574	47.54
Conexión N72	489.552435	20
Conexión N73	486.164	23.39
Conexión N74	486	23.55
Conexión N75	483.1695	26.38
Conexión N76	482.753854	26.8
Conexión N77	476.644	32.91
Conexión N78	468	41.55

Elaboración propia

ID NODO	Cota	Presión
ID NODO	m	m
Conexión N79	462	47.55
Conexión N80	460.96407	15
Conexión N81	459.59825	16.37
Conexión N82	459.411595	16.55
Conexión N83	457.3795	18.58
Conexión N84	466.457611	9.51
Conexión N85	482.67708	26.88
Conexión N86	483.856013	25.7
Conexión N87	471.184	38.37
Conexión N88	468	41.55
Conexión N89	456	5
Conexión N90	424.599046	36.4
Conexión N91	484.528602	25.02
Conexión N92	490.275457	19.28
Conexión N93	493.432123	16.12
Conexión N94	496.447597	13.1
Conexión N95	496.8075	12.74
Conexión N96	491.7035	17.85

Elaboración propia

5.7.5.5. Conexiones domiciliares

Para la instalación de las conexiones, el nivel de servicio brindado a la comunidad es de 59 conexiones domiciliares.

5.7.5.6. Accesorios en la red de distribución

Los accesorios en la red de distribución, se muestran en la siguiente tabla:

Tabla 23 Accesorios RD

Accesorios RD			
Descripción	Estación	PUNTO T	TRAMO
Válvulas reguladoras de presión 2"	0 + 351.37	t19	RD
	0 + 626.12	t28	RD
	1 + 484.02	t61	RD
	1 + 838.9	t74	RD
	2 + 371.6	t94	RD
Válvulas reguladoras de presión 1 1/2"	3 + 559.829	t162	RD
	4 + 136.145	t203	RD
	4 + 706.96	t229	RD
	0 + 262.359	t267	Ramal 3

Accesorios RD			
Descripción	Estación	PUNTO T	TRAMO
	2 + 932.704	t125	RD
	3 + 752.055	t174	RD
Tee 90 1 1/2"	4 + 344.654	t214	RD
166 90 1 1/2	4 + 443.084	t218	RD
	0 + 114.383	t246	Ramal 4
	4 + 147	t233	RD
	0 + 148.427	t187	Ramal 2
	4 + 718.02	t232	RD
Codo 90 1 1/2"	0 + 185.64	t240	Ramal 5
	0 + 184.913	t250	Ramal 4
	0 + 036.15	t257	Ramal 3
Reductor 2" a	2 + 932.704	t125	RD
1.5"	3 + 622.109	t165	RD
Válvula de aire	1+010.96	t40	RD
y vacío 2"	2 + 334.02	t92	RD
	0 + 80.01	t5	RD
	2 + 737.584	t111	RD
Codo 45 2"	2 + 758.354	t113	RD
	2 + 768.294	t114	RD
	2 + 785.114	t116	RD
	0 + 317.842	t146	Ramal 1
Codo 45 1 1/2"	0 + 327.435	t147	Ramal 1
	3 + 750.499	t173	RD
	0 + 105.73	t238	Ramal 5
Válvula de	0 + 017.45	t241	Ramal 4
limpieza 1 1/2"	0 + 484.489	t274	Ramal 3
	2 + 932.704	t125	RD
	2 + 933	t125	RD
	0 + 453.045	t154	Ramal 1
Válvula de pase 1 1/2"	0 + 5.514	t175	Ramal 2
	0 + 5.52	t175	Ramal 2
	0 + 017.45	t241	Ramal 4
	0 + 130.123	t247	Ramal 4
	0 + 208.783	t251	Ramal 4
	0 + 225.989	t255	Ramal 3

5.8. Presupuesto final del proyecto

El costo aproximado para la ejecución del proyecto "Diseño de Mini Acueducto por Gravedad (MAG), en la comunidad El Ciprés, municipio de Waslala, departamento

de RAACN, asciende a un monto en moneda nacional de C\$ 5,184,331.94 (5 millones, ciento ochenta y cuatro mil, trecientos treinta y uno córdobas, y noventa y cuatro centavos). Todos estos costos se calcularon en cuanta, a la cotización de los materiales, transporte y mano de obra actual en el país, para esto ver la memoria de cálculo en la sección de anexos, del apéndice: H,I,J.

5.9. Tarifa

La tarifa se realizó en base a la norma INNA, tomando en cuenta los criterios que establece en la constitución acerca del tema, haciendo uso de la siguiente formula:

$$CP = \frac{SP + PQ + CM + GA}{V}$$

Donde:

CP: Costo promedio de proveer un m3 de agua potable.

SP: Gasto total anual en salarios y prestaciones sociales.

PQ: Costo total anual de productos químicos.

CM: Costo total anual en mantenimiento.

GA: Gastos de admiración.

V: Volumen de agua producido anual expresado en m3.

Tabla 24 Gasto total anual en salarios y prestaciones sociales

SP: Costos Anuales en Salarios y prestaciones		
sociales		
Salarios	C\$87,600.00	
Horas extras	C\$486.67	
Vacaciones	C\$7,300.00	
Inatec	C\$1,752.00	
Aguinaldo	C\$7,300.00	
Seguro social patronal	C\$13,140.00	
TOTAL	C\$117,578.67	

Estos costos fueron realizados en base a una sola persona en el área laboral, utilizando el 2% para Inatec y el 15% en el seguro social patronal, utilizando con un salario por encima del mínimo como está constituido.

El costo total anual del producto químico es de acuerdo al tratamiento se estableció, utilizando hipoclorito de calcio, con una cantidad de 1.62 kg anual, que cuesta 1,079 córdobas con un total de 12 pastillas de 140 gramos.

Tabla 25 Costo total anual en mantenimiento

CM: Costos Anuales de Mantenimiento		
Materiales PVC	C\$7,200.00	
Cemento, arena, pega PVC	C\$5,580.00	
Herramientas menores	C\$1,375.00	
Servicio de mantenimiento de	C¢8 000 00	
válvulas, medidores	C\$8,000.00	
ervicio de mantenimiento de C\$14,500.0		
válvulas, medidores	C\$14,300.00	
TOTAL	C\$36,655.00	

Fuente: Elaboración propia

Estos costos son de acuerdo a las partes del sistema, dándole un mantenimiento apto mensualmente.

Tabla 26 Gastos anuales de administración

GA: Gastos Anuales de Administración		
Combustibles y lubricantes	C\$11,200.00	
Pago de transporte	C\$1,150.00	
Fotocopias y empastados	C\$1,778.00	
Papelería y útiles de oficina	C\$7,832.00	
Otros	C\$900.00	
TOTAL	C\$22,860.00	

Fuente: Elaboración propia

Se obtuvieron C\$ 22,860 córdobas previstos en el área de administración.

Se determinaron gastos en salarios y prestaciones sociales, costos anuales de químicos, costos anuales de mantenimiento, gastos anuales de administración, obteniendo un total de C\$ 178,122.67 córdobas anual, y unos C\$ 14,843.56 córdobas mensual.

Obteniendo un volumen de consumo en base a las personas de cada vivienda, que son 354 personas. La norma de consumo establece que una persona consume 24 gal por día, para ello aplicando la siguiente operación.

Consumo =
$$\frac{354 \times 24 \times 30}{264}$$
 = 965 m³

Por lo cual;

Tarifa =
$$\frac{\text{C$ 14,843.56}}{965 \text{ m}^3}$$
 = C\$ 15 cordobas/ m³

Proponiendo la siguiente tarifa de acuerdo al metro cubico consumido

Tabla 27 Rango de consumo de acuerdo al metro cubico

RANGOS DE CONSUMO POR M3		
0 a 10 m3	C\$15	
11 a 20 m3	C\$18.00	
20 a màs	C\$22.00	

Elaboración propia

Conclusiones

- 1- El caudal que aporta la fuente selecciona es de 1.44 lt/s en época de estiaje, lo que indica que es suficiente para abastecer a la población de la comunidad, durante la vida útil del proyecto.
- 2- Los resultados obtenidos de calidad de agua de la fuente, indican que es apta para el consumo humano, siempre y cuando se haga uso los tratamientos y desinfecciones necesarios.
- 3- El estudio socioeconómico realizado en la comunidad, se interesa en proporcionar las mejores condiciones del sistema de agua potable de calidad, que mejore la vida de sus habitantes.
- 4- La tasa poblacional se ha realizado por medio del método geométrico, y las dotaciones de acuerdo a la normativa. En el año 2041 se ha proyectado una población de 671 habitantes. Así mismo, se calcula un CMD igual a 0.85 lt/s y el CMH a 1.35 lt/s.
- 5- Los tubos y accesorios propuestos fueron cuidadosamente seleccionados, tomando en cuenta la eficiencia de trabajo y la economía del proyecto.
- 6- El análisis realizado con el software EPANET, presento un alto porcentaje de efectividad, lo que garantiza que todos los elementos del sistema de abastecimiento de agua potable por gravedad (MAG), funcionan a la perfección, obteniendo presiones y velocidades aceptables según la normativa.
- 7- El presupuesto se realizó en base al catálogo de etapas y sub-etapas del FISE, con una inversión total del proyecto de C\$ 5,184,331.94 (5 millones, ciento ochenta y cuatro mil, trecientos treinta y uno córdobas, y noventa y cuatro centavos).

Recomendaciones

- 1- Promover la reforestación en el área de afloramiento de la fuente, para prevenir deterioros, y de esta manera conservar la estabilidad del agua potable.
- 2- Capacitar a la comunidad para la formación de un Comité de Agua Potable (CAP) para la organización, operación y mantenimiento durante la ejecución del proyecto.
- 3- Utilizar mano de obra de la comunidad para la ejecución del proyecto, de esta manera reducir costos.
- 4- Realizar obras de mantenimiento para garantizar la vida útil y la capacidad operativa de la captación, el tanque de almacenamiento, así como los demás accesorios en el sistema.
- 5- Tener una eficiente supervisión de la ejecución de la obra, para que todo se realice de acuerdo a los planos constructivos.
- 6- Actualizar constantemente los precios de los materiales utilizados en el sistema, para tener una aproximación del costo total del proyecto, debido a la elevación de los costos en el mercado.

Bibliografía

- ADASA. (1994). Monitorizacion en el tiempo real de la calidad de las aguas . Mexico.
- Agüero Pittman, R. (1997). Agua potable para las comunidades rurales. Lima: Asociacion Servicios Educativos Rurales(SER).
- Alvarado, Erick. (2017). Manual de Medición de Caudales. Guatemala.
- Asociación Servicios Educativos Rurales;. (2008). Orientaciones sobre agua y saneamiento para zonas rurales. *Asociación Servicios Educativos Rurales*.
- Bateman, A. (2007). *HIDROLOGIA BASICA Y APLICADA*. Grupo de Investigacion en Transporte de Sedimentos.
- CAPRE. (1994). Normas de calidad del agua para el consumo humano. San José, Costa Rica: Norma Regional CAPRE.
- Casanova, L. (2019). Levantamientos topográficos.
- Comisión Nacional del Agua. (2007). *Manual de Agua Potable, Alcantarillado y Saneamiento*. Mexico: Secretaría de Medio Ambiente y Recursos Naturales.
- Fernández Cirelli, A. (2012). El agua: un recurso esencial. Química Viva, 153.
- Gálvez, D. J. (Septiembre de 2012). Cartilla Tecnica de Aguas Subterraneas Acuiferos. Lima: IBEGRAF.
- García, J. A. (2011). Sistema de captaciones de agua en manantiales y pequeñas quebradas para la Región Andina. *Colección Agricultura Familiar 08*, 116.
- Gómez, J. (1988). Guía para la elaboración de estudios socioeconómicos de proyectos de interés público. GUÍA PARA LA ELABORACION DE ESTUDIOS SOCIOECONOMICOS.
- INAA. (1970). Diseño de abastecimiento de Agua Potable en el Medio Rural y Saneamiento Basico Rural. Managua.
- INAA. (1998). Decreto Tarifario. 2.
- Jiménez Terán , J. (2013). MANUAL PARA EL DISEÑO DE SISTEMAS DE AGUA POTABLE Y ALCANTARILLADO SANITARIO. XALAPA.
- MINISTERIO DE DESARROLLO URBANO Y VIVIENDA SUBSECRETARIA DE AGUA POTABLE Y SANEAMIENTO. (2003). GUIA PARA LA PREPARACION DE TARIFAS SERVICIOS DE AGUA POTABLE Y SANEAMIENTO. MIDUVI. Guía Tarifaria Agua Potable y Saneamiento.

- Moliá, R. (1987). REDES DE DISTRIBUCIÓN. EOI.
- Navarro Hudiel, S. (2008). Manual de Topografía Planimetría.
- NTON 09 001-99. (1999). NORMAS TECNICAS PARA EL DISEÑO DE ABASTECIMIENTO Y POTABILIZACIÓN DEL AGUA. Managua: INAA.
- Orellana, J. (2005). *ABASTECIMIENTO DE AGUA POTABLE.* Ingeniería Sanitaria- UTN FRRO.
- Ramirez Molinares, C. (2018). LOS PRESUPUESTOS: SUS OBJETIVOS E IMPORTANCIA. *Revista Cultural UNILIBRE*.
- República, A. N. (1989). Reglamento de Inspecccion sanitaria. Managua: La Gaceta.
- Sanchez, G. B., & Casillas, I. G. (1997). Aforo del agua en canales y tuberías . Mexico: Trillas, S.A.

Anexos

Apéndice A. Formato de encuesta FISE aplicada

Esta encuesta se realizó con el fin de conocer y analizar la población que habita la comunidad El Ciprés, municipio de Waslala, departamento de RACCN, como parte del trabajo monográfico: "Diseño de Mini Acueducto por Gravedad (MAG).

ENCUESTA SOCIOECONÓMICA DE AGUA POTABLE RURAL

Departamento:	_Municipio:
Comunidad:	Fecha:
Quién es el responsable del hogar: PadreMadreOtro_	
Nombre de la persona Encuestada:	
Tipo de Proyecto:	

<u>Datos personales:</u> (Iniciar con persona responsable del o los hogares)

		Se	хo							
Nombre y Apellidos	Parentesco	М	F	1 a 5	6 a 15	16 a 25	26 a 35	36 +	Escolaridad	Ocupación

<u>I. CONDICIONES DE LA VIVIENDA</u> (Preg. 2, 3, 4, marcar con x una o más repuestas)

1. La vivienda e	s: a) Propia	b) Prestada_	c) Alquilada	
2. Las paredes son	de: a) Bloque	b) Ladrillo	c) Madera	_
d) Otros				
3. El piso es de:	a) Madera	b) Tierra	_c) Ladrillo	_
d) Otros				

4. El techo es de: a) Zincb) Tejac) Madera
d) Palma
5. Cuantas divisiones tiene la vivienda: a) Tresb) Dosc) No tiene
, <u>——</u> , ——, ———
6. Resumen del estado de la vivienda: a) Buenab) Regularc) Mala
o. Resumen dei estado de la vivienda. a) Duenab) Regulaie) Maiae
H CITHACIÓN ECONOMICA DE LA FAMILIA
II. SITUACIÓN ECONOMICA DE LA FAMILIA
7. Cuantas Personas del hogar trabajan?
Dentro de la Comunidad: H MTotal
Fuera de la comunidad: H MTotal
¿Cuál es el ingreso económico promedio mensual, en esta vivienda?
a) Menos de C\$2000 b) C\$2000 a C\$3000 c) C\$3000 a C\$4000
d) Más deC\$4000
¿De cuánto fue el último pago de energía eléctrica, realizado en la vivienda?
8. En que trabajan las personas del hogar? a) Ganaderíab) Agricultura
c) JornalerosOtrosCual?
9. Que cultivos realizan? a) Arrozb) Frijolesc) Maízd) Otros

10. Tienen Ganado? SiCuanto: a) Vacunob) Equinoc) Caprino
No
11. Tienen animales Domésticos? SiCuantos: a) Cerdosb) Gallinas
No
12. Los animales domésticos están? a) Encerradosb) Amarrados
c) Sueltos
13. Los animales domésticos se abastecen de agua en? a) Del Río
b) La Quebradac) El Pozo
III <u>. RECURSOS Y SERVICIOS DE AGUA</u>
20. Cuentan con servicio de agua? a) SiCual:
b) NoComo se abastecen?
c) Cuanto pagan de agua al mes?
21. Quién busca o acarrea el agua? a) La mujerb) El hombre
c) Los niños/asd) OtrosQuien?
22. Cuantos viajes realizan diario para buscar el agua que utilizan?
23. En qué almacena el agua? a) Barrilesb) Bidonesc) Pilas

24. Los recipientes en que se almacena el agua los mantienen:	
a) Tapadosb) Destapadosc) Como	_ (verificar)
25. La calidad del agua que consumen en el hogar, la considera:	
a) Buenab) Regularc) Mala	
26. Qué condiciones tiene el agua que consumen (Puede marcar varias	s situaciones)
a) Tiene mal saborb) Tiene mal olorc) Tiene mal color_	
IV. PROGRAMA DE AGUA POTABLE, SANEAMIENTO E HIGIE	<u>NE</u>
27. Conoce el Programa de Agua Potable y Saneamiento Rural de la A	Alcaldía?
a) Sib) _Noc) PocoQue sabe?	
28. Le gustaría tener Servicio de Agua Potable en su hogar?	
a) Si b) Noc) Porque	
29. Cuanto estaría dispuesto/a en pagar por este servicio? (Marcar un	a opción)
a) C\$ 20 a 35b) C\$ 36 a 50 c) C\$ 51 a mas	
d) No estaría dispuesto/a pagar Por qué?	

V. <u>ORGANIZACIÓN COMUNITARIA:</u>
30. Las personas que habitan en esta vivienda pertenecen a alguna organización comunitaria?
Si Que tipo? a) Productiva
b) Socialc) Religiosad) Otra
No Por qué?
31. Cuantos y quienes de la vivienda participan en alguna organización comunitaria?
a) Hombresb) Mujeresc) Total
32. Las personas que habitan en esta vivienda PARTICIPARIAN de forma organizada en la construcción de un proyecto de agua potable para su comunidad.
a) Sib) Noc) Por qué?

VI. <u>SITUACION DE SALUD EN LA VIVIENDA</u>

Enfermedades padecidas por personas de la vivienda el pasado año (Cuantos).

Enfermedades	Grup	os de eda	ıd		
	0 a 5	6 a 15	16 a 25	+ 26	Observaciones
Diarrea					
Tos					
Resfriados					
Malaria					
Dengue					
Parasitosis					
Infección renal					
Tifoidea					
Hepatitis					
Infecciones dérmicas(piel)					
Otras					

34. Las personas que habitan e	en esta viv	ienda practi	ican hábitos de higiene como:
¿Lavado de manos	a) Si	b) No	c) Por qué?
¿Hacer buen uso del Agua	a) Si	b) No	c) Por qué?

pasado?

Vivos/as:	Niñas	Niños	Total	al		
Fallecidos	s/as: Niñas	Niños	Total			
36. En la vivier	nda habitan p	ersonas co	n capacidades di	iferentes?		
Mujeres	Cuar	ntas	Edad			
Varones _	Cua	intos	Edad			
Nombre del En	ncuestador(a)	Fi	rma del Encuest	ador (a)		

Apéndice B. Pruebas de calidad de agua

Universidad Nacional de Ingeniería
Vicerrectoría de Investigación y Desarrollo
Programa de Investigación, Estudios Nacionales y Servicios del Ambiente
Managua, Nicaragua

0.7

LABORATORIOS AMBIENTALES

CLIENTE					DE ENSA			FQAN-2008-01	
WaterAid		DIRECCION							
			Bilwi/Puerto Ca	abezas				2792-1559	
ATENCIÓN			C/	ARGO		E	MAIL	CELULAR	
Javier Flores			Gerente de	Operac	iones	javier flores	@wateraid.org		
	DATOS	DE LA MUESTRA		1		NTROL DEL LABO		8842-9223	
Fecha y Hora	de recolección		04:40 a m					_	
		13/08/2020; 04:40			Ingreso	de muestra	13/08/2020		
Fuente		Cordillera	Izabelia	9	Inicio de	análisis	14/08/2020		
Tipo de mues	tra	Agua Su	perficial	Fecha	Finaliza	ción de análisis	25/08/2020	Rango o valor	
Ubicación de l	la fuente	Comunidad Cipres	Wasiala, RACCN	7	Emisión	del certificado	26/08/2020	máximo permisible	
Coordenadas		N	R	No. Ca	adena de d	custodia	4096	recomendado	
Recolectada p	or	Juan Dan	iel I ónez	CARLES As a second			-		
Supervisor en	campo			-		stra	LA-2008-1160		
METODO	Campo	César	López	Muest	Muestra No. Uno (1)		Uno (1)		
SM // EPA// HACH	ENSA	YO REALIZADO	UNIDAD	RESULTADOS		Norma CAPRE			
Visual	Aspecto		NE	Claro con poca materia en suspensión			NE		
4500-B	Potencial de Hid	frógeno	pH	7.08					
2510-B	Conductividad E	Eléctrica	μS/cm	A SECTION	100	28.40	Water and William Parkets	6.5 - 8.5**	
2130-B	Turbiedad	- 55 50	UNT	0.106			5		
2120-C	Color Verdadero		mg/L (Pt-Co)	- V		11.00	APPROVED THE REAL PROPERTY.	15	
2320-B	Alcalinidad	和級 問題	mg/L CaCO ₃			10.20	AND DESCRIPTION OF THE PERSON NAMED IN	NE.	
2320-B	Carbonatos		mg/L CaCO ₃			<0.40		NE	
2320-B	Bicarbonatos		mg/L CaCO ₃	10.20				NE NE	
4500-B	Nitratos		mg/L	3.57				50	
4500-B	Nitritos		mg/L	<0.009				0.1	
4500-D	Cloruros		mg/L	6.30				250	
3500-B	Hierro Total		mg/L	0.195				0.3	
4500-D	Sulfatos		mg/L	3.94			250		
2340-C	Dureza Total		mg/L CaCO ₃	11.60			400**		
2340-C	Dureza Calcica		mg/L CaCO ₃	9.90			NE		
3500-B	Calcio		mg/L	3.97			100**		
3500-B	Magnesio		mg/L			0.41		50	
3500-B	Manganeso		mg/L			0.008		0.5	
3500-X	Sodio		mg/L			6.25		200	
3500-C	Potasio		mg/L			0.831		10	
8155	Amonio		mg/L			<0.02		0.05	
8027	Cianuro		mg/L			<0.001		0.05	
4500-C	Flúor		mo/l			0.000		0.00	

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parámetro de acuerdo a la Unidad que se indica en la columna y linea respectiva.

Abreviaturas y simbolos: s' menor al Límite de Detección que se especifica por parámetro, NE= No especificada en la Norma, NR= No Reporta

Metodos, Normas y/o Decreto empleados: SM = Standard Methods for the Examination of Water & Wastevater 23 RD 2017

EPA = Environmental Protection Agency, * Normas de Calidad del Agua Para Consumo Humano: Norma Reportar (CEPRE HACH = Metodología HACH

OBSERVACIONES: La muestra fue recolectada, custodiada e ingresada al laboratorio por el cliente.

**Acceptation of the Consumer Consumer California (CEPRE HACH = Metodología HACH OBSERVACIONES): La muestra fue recolectada, custodiada e ingresada al laboratorio por el cliente.

Los resultados reportados corresponden a los ensayes solicitados por el cliente Ang. Maria Lidia Gómiez

Coordinadora de Laboratorios Ambientares PIENSA-UNI

0 01743

Dirección: (505) 22781462 • Área Académica 2270-5613 y 8886-6702 (M); Atención al Cliente: 2270-1517 y 8152-7314 (M) Coordinación de Laboratorios 8100-0421 (M) • e-mail: atencion.cliente@piensa.uni.edu.ni, infopiensa@uni.edu.ni• Web: www.piensa.uni.edu.ni

Universidad Nacional de Ingeniería
Vicerrectoría de Investigación y Desarrollo
Programa de Investigación, Estudios Nacionales y Servicios del Ambiente
Managua, Nicaragua

LABORATORIOS AMBIENTALES

CERTIFICADO DE ENSAYOS

MP-2008-0098

CLIENTE			ININEANAN				FTP-7.82.1		
			DIRECCION	DIRECCION					
WaterAid			Bilwi/ Puerto Ca	bezas			2792-1559		
ATENCIÓN			CA	RGO		EMAIL	CELULAR		
Javier Flores			Gerente de	Operac	iones javier.flor	es@wateraid.org	8842-9223		
DATOS DE LA MUESTRA				CONTROL DEL LABORATORIO					
Fecha y Hora de recolección 13/8/2020; 4 Fuente Cordillera la Tipo de muestra Agus Supe Ubicación de la fuente Comunidad El Ciprés N Coordenadas NR		; 4:40 am		Ingreso de muestra	14/08/2020				
		Izabelia	Fecha de	Inicio de análisis	27/08/2020 28/08/2020	Rango o valor			
		Agua Su	Agua Superficial				Finalización de análisis		
		Comunidad El Cipré	s Wasiala, RACCN	-	Emisión del certificado	31/08/2020	máximo permisible d		
		R	No. Cadena de custodia		4096	recomendado			
Recolectada p	olectada por Juan Daniel López		iel López	Códig	o de muestra	-			
Supervisor en campo César Ló		López			LA-2008-1160	-			
METODO SM // EPA	TODO ENSAVO PEALIZADO		UNIDAD	RESULTADO		Una (01)	Norma CAPRE		
G.H	Arsénico	REP. 1831 1931	mg/L	1	<0.002	7 July William	The second lines of the second		
3500-C	Mercurio	_AST DEL DEL	mg/L		<0.002	ACTIVITY AS A SECOND STREET, SALES ASSESSMENT	0.01		

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parámetro de acuerdo a la Unidad que se indica en la columna y línea respectiva.

Abreviaturas y simbolos: 5 menor al Límite de Detección que se especifica por parámetro, NR= No Reporta
Metodos, Normas y/o Decreto empleados: SM = Standard Methods for the Examination of Water & Wastewater 23 RD 2017
EPA = Environmental Protection Agency, *Normas de Calidad del Agua Para Consumo Humano: Norma Regional CAPRE
G.H: Generador de Hidruros, Utilizando ARSENATOR

OBSERVACIONES: La muestra fue recolectada, custodiada e ingresada al laboratorio por el cliente.

Los resultados reportados corresponden a los ensayos solicitados por el cliente

Ing. Maria Lidia Górbez
Coordinadora de Laboratorios Ambientafi

Universidad Nacional de Ingeniería
Vicerrectoría de Investigación y Desarrollo
Programa de Investigación, Estudios Nacionales y Servicios del Ambiente Managua, Nicaragua

LABORATORIOS AMBIENTALES

CERTIFICADO DE ENSAYOS

MB-2008-0139

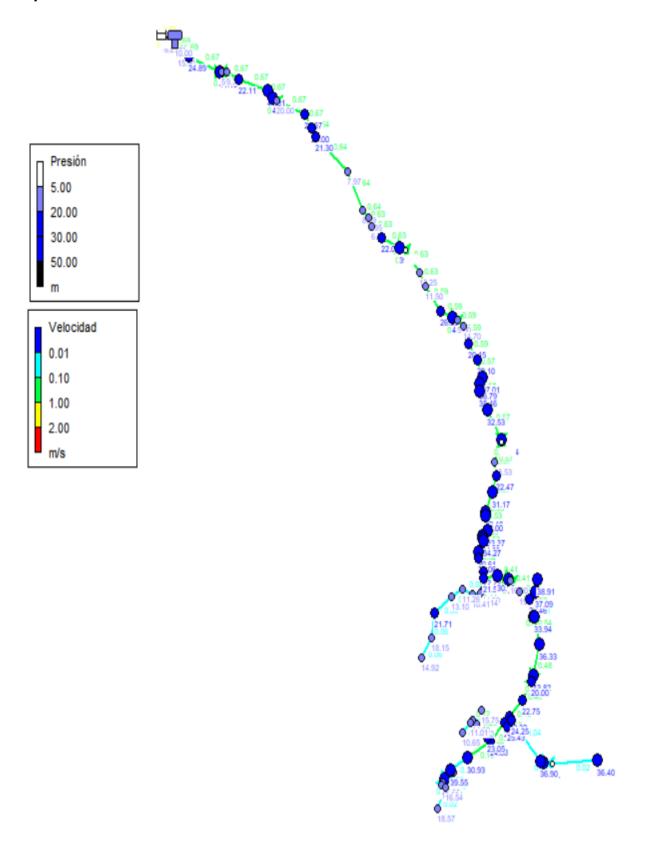
CLIENTE			DIRECCION					FTP-7.8.2.1
			DIRECCION					TELEFONO
Water Aid Bilwi / Puerto Cabezas					NR			
ATENCIÓN			CA	RGO		E	MAIL	CELULAR
Javier Flores			Gerente de	Gerente de Operaciones javier.flores@		@wateraid.org	8842-9223/ 2792-1559	
	DATOS	DE LA MUESTRA			CO	NTROL DEL LABO	RATORIO	2702 1000
Fecha y Hora	de recolección	13/08/20 ;	04:40 am		Ingreso	de muestra	13/08/2020	
Fuente		Cordillera	Izabelia	g.	Inicio de	análisis	13/08/2020	
Tipo de muest	tra	Agua Su	perficial	Fecha	Finalización de análisis		17/08/2020	Rango o valor
Ubicación de I	a fuente	Comunidad El Cipres, Waslala RACCN		1	Emisión	del certificado	25/08/2020	máximo permisible o
Coordenadas		NI	2	No. C	adena de d	ustodia	4096	recomendado
Recolectada p	or	Juan Dani	iel López	Códig	o de mues	itra	LA-2008-1160	
Supervisor en campo		César	López	Muest	tra No.	4	Uno (01)	
METODO SM // EPA	ENSA	O REALIZADO	UNIDAD		I AS	RESULTADO		Norma CAPRE*
9221-B	Coliforme Total	THE ROLL BY	NMP/100mL		4 100	1,6*10 ³	V Con Thinsteen In	Negativo
9221-E	Coliforme Fecal	ASS EN LINE	NMP/100mL			1.1°10²	A THE PERSON NAMED IN	Negativo

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parámetro de acuerdo a la Unidad que se indica en la columna y línea respectiva.

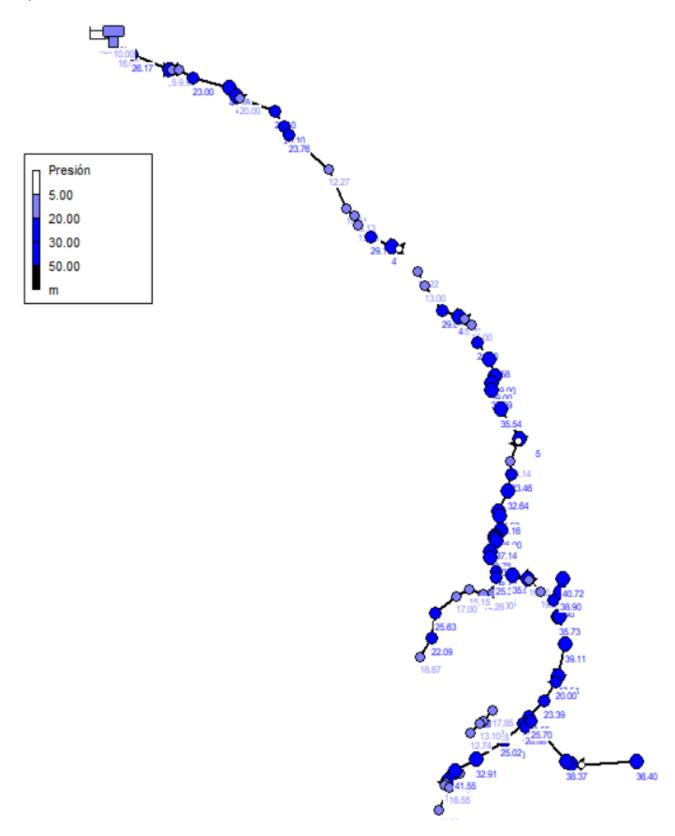
Abreviaturas y simbolos; ≤ menor al Límite de Detección que se especifica por parámetro, NR≈ No Reporta

Metodos, Normas y/o Decreto empleados: SM = Standard Methods for the Examination of Water & Wastewater 23 RD 2017

EPA = Environmental Protection Agency, * Normas de Calidad del Agua Para Consumo Humano: Norma Regional CAPRE


OBSERVACIONES: La muestra fue recolectada, custodiada e ingresada al laboratorio por el cliente

Los resultados reportados corresponden a los ensayos solicitados por el cliente


Declaramos que este informe de resultados será de uso exclusivo del cliente al la

ENSA-UN

Apéndice C. Análisis del sistema con consumo máximo hora

Apéndice D. Análisis del sistema sin consumo

Apéndice E. Memoria de cálculo tanque de almacenamiento

			Consumo Prome	edio Diario (CPD)	ALMAC	ENAMIENTO
Periodo	Periodo Año Proyeccion de la poblacion		Consumo Domestico (LPD)	Consumo Publico (7%)	Galones	M ³
0	2021	354	21240	1487	2101	8.0
1	2022	366	21930	1535	2170	8.2
2	2023	377	22643	1585	2240	8.5
3	2024	390	23379	1637	2313	8.8
4	2025	402	24139	1690	2388	9.0
5	2026	415	24923	1745	2466	9.3
6	2027	429	25733	1801	2546	9.6
7	2028	443	26570	1860	2629	10.0
8	2029	457	27433	1920	2714	10.3
9	2030	472	28325	1983	2802	10.6
10	2031	487	29245	2047	2893	11.0
11	2032	503	30196	2114	2987	11.3
12	2033	520	31177	2182	3084	11.7
13	2034	537	32190	2253	3185	12.1
14	2035	554	33237	2327	3288	12.5
15	2036	572	34317	2402	3395	12.9
16	2037	591	35432	2480	3505	13.3
17	2038	610	36584	2561	3619	13.7
18	2039	630	37772	2644	3737	14.2
19	2040	650	39000	2730	3858	14.6
20	2041	671	40268	2819	3984	15.1

Apéndice H: Presupuesto

		PRESUPUE	STO MAG EL C	IPRES			
Etapa	Descripcion	U/M	Cantidad	Materiales	Transporte	Mano de obra	Costo Total
1.0	PRELIMINARES	GLB	1			214,980.00	214,980.00
2.0	CAPTACION	C/U	1	261,818.70	8,863.54	84,228.16	354,910.40
3.0	LINEA DE CONDUCCION	ML	191.3	30,693.70	494.00	7,932.70	39,120.40
4.0	TANQUE DE ALMACENAMIENTO	C/U	1	191,773.26	13,957.80	96,113.37	301,844.43
5.0	RED DE DISTRIBUCION	ML	5437.5	1,136,975.40	27,480.00	877,776.00	2,042,231.40
6.0	CONEXIONES	C/U	59	143,011.00	9,295.00	20,650.00	172,956.00
7.0	LIMPIEZA Y ENTREGA	GLB	1			66,280.00	66,280.00
	COSTO TOTAL DIRECTO			1,764,272.06	60,090.34	1,367,960.23	3,192,322.63
Costos indir	rectos de operación (15% del total de costos directos en C\$)		15%	264,640.81	9,013.55	205,194.03	478,848.39
Immprevisto	s (10% del total de costos directos en C\$)		10%	176,427.21	6,009.03	136,796.02	319,232.26
Administracio	òn y utlidades (15% del total de costos directos en C\$)		15%	264,640.81	9,013.55	205,194.03	478,848.39
	SUB-TOTAL			2,469,980.9	84,126.5	1,915,144.3	4,469,251.7
IVA (15%	del total de costos directos en C\$)		15%	370,497.1	12,619.0	287,271.6	670,387.8
Impuestos mu	nicipales (1% del subtotal de costos directos en C\$)		1%	24,699.81	841.26	19,151.44	44,692.52
CC	OSTO TOTAL DE LA OBRA			2,865,177.82	97,586.71	2,221,567.42	5,184,331.94

Apéndice I: Costo totales de materiales y transporte

Concepto Materiales U/N Control Costo Unit Costo Total Costo Unit Costo Total Costo Unit Co					Mat	eriales	Transp	porte			
1. Captacon de 1.44 lps Regis 1"x" x" x x y x x x 6 0.0 350.0 10.0 60.0 7.0	N Concepto	Materiales	U/M	Cantidad					Costo Unit	Costo Total	
1.1 Captacion de 1.44 lps	1 Captacion					261,818.7				270,682.2	
Clearbone 2"x" 5"x vrs	-							8,543.5		261,278.2	
Claves de 21/2" Bit 15 37.0 70.03 5.0 56.0 42.0		Reglas 1"x 3"x 4 vrs	c/u	6	60.0	360.0	10.0	60.0	70.0	420.0	
Material selection		Cuartones 2"x2"x5 vrs	c/u	26	219.0	5,694.0	10.0	260.0	229.0	5,954.0	
Tables 1" 12" 5 vars		Clavos de 2 1/2"	lbs	19	37.0	703.0	5.0	95.0	42.0	798.0	
Tables 1's 1's 4's 4's		Material selecto	m3	1.62	650.0	1,053.0			850.0	1,377.0	
Tables 1'x 8'x 4wrs		Tablas 1"x 12"x 5vrs	c/u			6,000.0	20.0	400.0	320.0	6,400.0	
Tablas 1"-6" Now										620.0	
Tablas 1"x 6"x 4wrs										480.0	
Tables 11-67-5 pro										620.0	
Cuartones 2** 2** 2** 4 vs										1,380.0	
Alembro de amarre N 3										250.0	
Alambre de amarre Nº 18										458.0	
Cemento								-		199,860.0	
Area Motatepe		1	_							188.0	
Grave 1/2"										14,789.6	
Piedra bolon		<u> </u>						_		2,829.5 2,233.0	
Tapa metalica 0, Grimo Gimo Cim Cylu 2 1,330.0 2,600.0 1,000.0 2,000.0 1,300.0 1,000.0				+						2,667.4	
Tuberia Galvanizado 2" c/u 2 1.338.0 2.676.0 100.0 200.0 1.438.0 1 Tuberia Galvanizado 2" 1/2" c/u 1 3266.0 100.0 100.0 3.366.0 1 Cono 4" x2" c/u 1 450.0 450.0 10.0 10.0 10.0 3.366.0 1 Valvula de compuerta 2" c/u 3 3.275.6 9,820.7 50.0 150.0 3.265.0 1 PVC Adaptador hembra 2" c/u 3 3.275.6 9,820.7 50.0 150.0 3.223.6 5 PVC Adaptador hembra 2" c/u 3 3.675.6 198.0 10.0 30.0 75.0 1 PVC Codo de 50° x 2" c/u 1 77.0 10.0 10.0 38.0 PVC Codo de 50° x 2" c/u 1 77.0 10.0 10.0 38.0 PVC Codo de 50° x 2" c/u 1 77.0 10.0 10.0 37.0 10.0 10.0 37.0 10.0 10.0 37.0 10.0 10.0 37.0 10.0 10.0 57.0 10.0 10.0 37.0 10.0 10.0 37.0 10.0 10.0 37.0 10.0 10.0 10.0 37.0 10.0 10.0 10.0 37.0 10.0 10.0 10.0 37.0 10.0 10.0 10.0 37.0 10.0 10.0 10.0 37.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1								,		2,800.0	
Tuberia Galvanizado 2"1/2"										2,876.0	
Cono 4"x2" C/u										3,366.0	
Valvula de compuerta 2" C/U 3 3,273.6 9,880.7 50.0 150.0 3,323.6 16.0 16.0 3.0 76.0 16.0 3.0 76.0 16.0		,								460.0	
HG Codo 45 % 2"										9,970.7	
PVC Adaptator hembra 2"		<u> </u>								228.0	
PVC Codo de 90° x 2"										166.0	
1.1 Cerca perimetral		<u> </u>								87.0	
Cargas	1.1.1 Cerca perimetral					9,084.0		320.0		9,404.0	
2.1 Tuberlas Tuberla PVC de 2" SDR 26 x 6m C/u 14 574.0 8,036.0 8,036.0 25.0 350.0 599.0 8 22,657.7 144.0 PVC Codo de 45 x 2" C/u 1 1 66.0 66.0 5.0 5.0 7.1.0 HF Valvula de aire y vacio 2" C/u 1 1 8,000.0 18,000.0 50.0 50.0 18,050.0 11 HF Valvula de aire y vacio 2" C/u 1 1 8,000.0 18,000.0 50.0 50.0 18,050.0 11 Silleta C/u 1 1 12.0 12.0 5.0 5.0 71.0 Tuberia PVC de 1/2" SDR 26 X 6m C/u 1 1 60.0 60.0 0.5 5.0 7.0 127.0 PVC pegamento Gal Caja de concreto a 2500 PSi M3 1.08 3,490.0 3,769.2 50.0 54.0 3,540.0 1. 3 Tratamiento Hipoclorito de calcio kg 1.62 1,029.0 1,667.0 20.0 32.4 1,049.0 1. 4 Tanque de Almacenamiento 15.1 m3 Material selecto Regiss 1" x 3" x 5 vrs m1 6 90.0 540.0 10.0 60.0 10.0 60.0 10.0 Regiss 1" x 1" x 5 vrs m1 6 90.0 540.0 10.0 60.0 10.0 60.0 10.0 Regiss 1" x 1" x 5 vrs c/u Tablas 1" x 12" x 4 vrs C/u Tablas 1" x 12" x 4 vrs C/u Clavos de 2 1/2" Ibs Acero estandar № 3 qq Acero estandar № 3 Arena Motastepe M3 8.02 880.0 7,057.6 400.0 3,00.0 1,200	·	Grapas	lbs	24	50.0	1,200.0	5.0	120.0	55.0	1,320.0	
Tuberias		Alambre de puas #13 de 300vrs	rollo	4	1,971.0	7,884.0	50.0	200.0	2,021.0	8,084.0	
Tuberia PVC de 2" SDR 26 x 6m	2 Linea de Conduccion					30,693.7		494.0		31,187.7	
2.2 Valvulas y Accesorios	2.1 Tuberias					8,036.0		350.0		8,386.0	
PVC Codo de 45° x 2"		Tuberia PVC de 2" SDR 26 x 6m	c/u	14	574.0	8,036.0	25.0	350.0	599.0	8,386.0	
HF Valvula de aire y vacio 2" c/u 1 18,000.0 18,000.0 50.0 50.0 18,050.0 18 Silleta c/u 1 122.0 122.0 5.0 5.0 127.0 Tuberia PVC de 1/2" SDR 26 X 6m c/u 1 600.0 600.0 25.0 25.0 650.0 PVC pegamento Gal 0.25 402.0 100.5 20.0 5.0 422.0 Caja de concreto a 2500 PSI m3 1.08 3,490.0 3,769.2 50.0 54.0 3,540.0 3 Tratamiento Hipoclorito de calcio kg 1.62 1,029.0 1,667.0 20.0 32.4 1,049.0 3 4 Tanque de Almacenamiento 15.1 m3 Material selecto M3 7 650.0 4,550.0 200.0 1,400.0 850.0 5 Reglas 1"x 3"x 5 vrs ml 6 90.0 540.0 10.0 60.0 100.0 100.0 100.0 17 ablas 1"x 12"x 6 vrs c/u 28 350.0 9,800.0 20.0 560.0 370.0 11 1ablas 1"x 12"x 6 vrs c/u 26 150.0 9,800.0 20.0 560.0 370.0 11 1ablas 1"x 12"x 6 vrs c/u 26 150.0 3,900.0 20.0 550.0 170.0 40.0 170.0 12	2.2 Valvulas y Accesorios									22,801.7	
Silleta		PVC Codo de 45º x 2"								71.0	
Tuberia PVC de 1/2" SDR 26 X 6m		,			·					18,050.0	
PVC pegamento Caja de concreto a 2500 PSI Bipoclorito de calcio Bipoclorito Bipoc										127.0	
Caja de concreto a 2500 PSI		·								625.0	
3 Tratamiento kg 1,667.0 32.4 1 4 Tanque de Almacenamiento 15.1 m3 Hipoclorito de calcio kg 1,62 1,029.0 1,667.0 20.0 32.4 1,049.0 2 4.1 Tanque de Almacenamiento 15.1 m3 191,773.3 13,957.8 205 4.1 Tanque de Almacenamiento 15.1 m3 166,837.6 13,267.8 18 4.1 Tanque de Almacenamiento 15.1 m3 Material selecto M3 7 650.0 4,550.0 200.0 1,400.0 850.0 1,400.0 850.0 1,400.0 1,400.0 850.0 1,400.0 1,400.0 32.4 1,040.0 1,040.0 32.5 1,040.0 1,040.0 1,040.0 1,040.0 1,040.0 1,050.0 1,050.0 1,050.0 1,050.0 1,050.0 1,050.0 1,050.0 <th cols<="" td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>105.5</td></th>	<th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>105.5</td>										105.5
Hipoclorito de calcio Kg 1.62 1,029.0 1,667.0 20.0 32.4 1,049.0 24.1		Caja de concreto a 2500 PSI	m3	1.08	3,490.0		50.0		3,540.0	3,823.2	
4 Tanque de Almacenamiento 15.1 m3 191,773.3 13,957.8 205 4.1 Tanque de Almacenamiento 15.1 m3 Material selecto M3 7 650.0 4,550.0 200.0 1,400.0 850.0 5 Massilia 1"x 12"x 5 vrs ml 6 90.0 540.0 10.0 60.0 100.0 Tablas 1"x 12"x 5 vrs c/u 29 390.0 11,310.0 20.0 580.0 410.0 12 Tablas 1"x 12"x 4 vrs c/u 28 350.0 9,800.0 20.0 560.0 370.0 16 Tablas 1"x 12"x 6 vrs c/u 2 450.0 900.0 20.0 40.0 470.0 Clavos de 2 1/2" lbs 15 37.0 555.0 5.0 75.0 42.0 Acero estandar № 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar № 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,660.0 16 Arena Motastepe <	3 Tratamiento									1,699.4	
4.1 Tanque de Almacenamiento 15.1 m3 Material selecto M3 7 650.0 4,550.0 200.0 1,400.0 850.0 5 Image: Company of the compa		Hipoclorito de calcio	kg	1.62	1,029.0		20.0		1,049.0	1,699.4	
Material selecto M3 7 650.0 4,550.0 200.0 1,400.0 850.0 250.0 Reglas 1"x 3"x 5 vrs ml 6 90.0 540.0 10.0 60.0 100.0 Tablas 1"x 12"x 5 vrs c/u 29 390.0 11,310.0 20.0 580.0 410.0 12 Tablas 1"x 12"x 4 vrs c/u 28 350.0 9,800.0 20.0 560.0 370.0 12 Tablas 1"x 12"x 6 vrs c/u 2 450.0 900.0 20.0 40.0 470.0 Cuarton 2"x 2"x 6 vrs c/u 26 150.0 3,900.0 21.0 546.0 171.0 4 Clavos de 2 1/2" lbs 15 37.0 555.0 5.0 75.0 42.0 Acero estandar Nº 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar Nº 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>205,731.1</th>										205,731.1	
Reglas 1"x 3"x 5 vrs ml 6 90.0 540.0 10.0 60.0 100.0 Tablas 1"x 12"x 5 vrs c/u 29 390.0 11,310.0 20.0 580.0 410.0 11 Tablas 1"x 12"x 4 vrs c/u 28 350.0 9,800.0 20.0 560.0 370.0 10 Tablas 1"x 12"x 6 vrs c/u 2 450.0 900.0 20.0 40.0 470.0 Cuarton 2"x 2"x 6 vrs c/u 26 150.0 3,900.0 21.0 546.0 171.0 4 Clavos de 2 1/2" lbs 15 37.0 555.0 5.0 75.0 42.0 Acero estandar Nº 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar Nº 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Alambre de amarre Nº 18 lbs 20 37.0 740.0 10.0 200.0 47.0 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 </td <th>4.1 Tanque de Almacenamiento 15.1 m3</th> <td>Matarial calcata</td> <td>8.40</td> <td>_</td> <td>CEO 2</td> <td></td> <td>200.0</td> <td>-</td> <td>050.0</td> <td>180,105.4</td>	4.1 Tanque de Almacenamiento 15.1 m3	Matarial calcata	8.40	_	CEO 2		200.0	-	050.0	180,105.4	
Tablas 1"x 12"x 5 vrs								_		5,950.0	
Tablas 1"x 12"x 4 vrs			_							600.0	
Tablas 1"x 12"x 6 vrs c/u 2 450.0 900.0 20.0 40.0 470.0 Cuarton 2"x 2"x 6 vrs c/u 26 150.0 3,900.0 21.0 546.0 171.0 4 Clavos de 2 1/2" lbs 15 37.0 555.0 5.0 75.0 42.0 Acero estandar № 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar № 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Alambre de amarre № 18 lbs 20 37.0 740.0 10.0 200.0 47.0 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 35 Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 6 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 1 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0		!								11,890.0 10,360.0	
Cuarton 2"x 2"x 6 vrs c/u 26 150.0 3,900.0 21.0 546.0 171.0 4 Clavos de 2 1/2" lbs 15 37.0 555.0 5.0 75.0 42.0 Acero estandar № 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar № 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Alambre de amarre № 18 lbs 20 37.0 740.0 10.0 200.0 47.0 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 35 Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 6 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 559.0 559.0 559.0 559.0 12,790.0 25 Pintura impermeavilizante g											
Clavos de 2 1/2" lbs 15 37.0 555.0 5.0 75.0 42.0 Acero estandar № 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar № 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Alambre de amarre № 18 lbs 20 37.0 740.0 10.0 200.0 47.0 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 35 Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 6 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 159.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 2 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0										4,446.0	
Acero estandar Nº 3 qq 4 1,980.0 7,920.0 20.0 80.0 2,000.0 8 Acero estandar Nº 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Alambre de amarre Nº 18 lbs 20 37.0 740.0 10.0 200.0 47.0 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 35 Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 6 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 1,790.0 2 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>630.0</td></t<>										630.0	
Acero estandar № 4 qq 8 2,040.0 16,320.0 20.0 160.0 2,060.0 16 Alambre de amarre № 18 lbs 20 37.0 740.0 10.0 200.0 47.0 Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 35 Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 6 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 22 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2										8,000.0	
Alambre de amarre Nº 18 Ibs 20 37.0 740.0 10.0 200.0 47.0									_	16,480.0	
Cemento bolsas 94 350.0 32,900.0 25.0 2,350.0 375.0 335.0 Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 66 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 25 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2										940.0	
Arena Motastepe M3 6.222 650.0 4,044.3 400.0 2,488.8 1,050.0 6 Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 25 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2			_							35,250.0	
Grava M3 8.02 880.0 7,057.6 400.0 3,208.0 1,280.0 10 Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 25 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2										6,533.1	
Sika Kg 22 534.0 11,748.0 25.0 550.0 559.0 12 Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 25 Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2		<u> </u>						,		10,265.6	
Pintura impermeavilizante galon 2 12,780.0 25,560.0 10.0 20.0 12,790.0 25,560.0 10.0 20.0 12,790.0 25,560.0 10.0 20.0 12,790.0 25,560.0 20.0			_	+						12,298.0	
Tapa metalica de 0.8mx0.8m c/u 1 1,400.0 1,400.0 100.0 100.0 1,500.0 1 Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2										25,580.0	
Tapa metalica de 0.70mx0.70m c/u 2 1,250.0 2,500.0 100.0 200.0 1,350.0 2		·	_							1,500.0	
										2,700.0	
		Pintura de aceite	galon	2			10.0				

Tubers PC 2* 50% 26 % 50	5	Red de distribucion					1,136,975.4		27,480.0		1,164,455.4
Tournamy C1 1/12 S0020 x 6m	5.1	Tuberias					487,893.0		24,000.0		511,893.0
Valvatis de pase de pase de 1/2" Cyu 7 155.0 250.0 50			Tuberia PVC 2" SDR 26 X6 m	c/u	572	574.0	328,328.0	25.0	14,300.0	599.0	342,628.0
Vavious de passe de passe de 1/2" Cru 7 105.0 735.0 30.0 350.0 155.0 126.0			Tuberia PVC 1 1/2 SDR26 x 6m	c/u	485	329.0	159,565.0	20.0	9,700.0	349.0	169,265.0
valuals regulators 2"	5.2	Acesesorios					_		3,480.0		652,562.4
Manametros Cyu 10 0 0 5.											1,085.0
See 2" Color 3" 54 9 F S H 40			· ·			52,326.0					261,880.0
Codox 2* 5 A P SCH 40											50.0
Sub or Column C											820.0
Valvalia de compuerta 2"											710.0
Valvulus Regulations of ct 1/2"											2,995.0
Manometros 11/2			'								49,853.4
PVC Test 1/2"											
Code 45 11/2"											7,140.0
Tubo 1.1/2"			·								376.0
Valvulas de compuerta 11/2	-										424.0
Valvula de aire y Vacio 1.1/2"											
Adaptador Hembra 1 1/2"											
Silleta 2"						-					54.0
Caja de proteccion											254.0
Vahuda de l'Impièra C/U 4 6500.0 2600.0 500.0 200.0 6550.0 2650.0	-										15,860.0
Valvula de compuerta 1 1/2				 							-
tee 1.1/2"											18,200.0
code 11/2" c/u 4 52.0 208.0 5.0 20.0 57.0 22.0											188.0
niple HG 11/2"											228.0
Code 90 HG 1 1/2											1,020.0
adaptador hembra 1 1/2"			• • • • • • • • • • • • • • • • • • • •								228.0
pvc pegamento Galones S 1,328.0 6,640.0 20.0 100.0 1,348.0 6,744			· ·								108.0
pvc codo 45 2"			·								6,740.0
Codo 1 1/2 90				c/u						-	355.0
Tee 1 1/2			codo 1 1/2 90	c/u		52.0	260.0	5.0	25.0	57.0	285.0
Reductor 2" a 1 1/2"			codo 1 1/2 45	c/u	2	48.0	96.0	5.0	10.0	53.0	106.0
Tee de 2"			Tee 1 1/2	c/u	1	42.0	42.0	5.0	5.0	47.0	47.0
143,011.0 9,295.0 152,300			Reductor 2" a 1 1/2"	c/u	2	39.0	78.0	5.0	10.0	44.0	88.0
Conexiones domiciliares Llave de chorro tipo globo 1/2" C/u 58 198.0 11,484.0 25.0 1,450.0 223.0 1,293.0			Tee de 2"	c/u	4	77.0	308.0	5.0	20.0	82.0	328.0
Llave de chorro tipo globo 1/2"	6	Conexiones de servicio					143,011.0		9,295.0		152,306.0
Llave de pase tipo globo 1/2" C/u 58 890.0 51,620.0 25.0 1,450.0 915.0 53,070	6.1	Conexiones domiciliares					140,731.0		9,155.0		149,886.0
Tee 2			, , ,								12,934.0
Reductor de 2 a 1/2											53,070.0
Reductor de 1 1/2 a 1/2											738.0
micro medidor de 1/2" (incluye caja protectora c/u 58 890.0 51,620.0 30.0 1,740.0 920.0 53,361											369.0
Description	-										527.0
Pvc codo 90 x 1/2 C/u 58 9.0 522.0 5.0 290.0 14.0 81.5	-										53,360.0
Pvc codo 90 x1/2 con rosca C/u 58 9.0 522.0 5.0 290.0 14.0 81.5	-										3,480.0
Pvc pegamento galon 1 1,328.0 1,328.0 20.0 20.0 1,348.0 1,	-		'								812.0
Pvc tubo 1/2" SDR-26 C/u 158 122.0 19,276.0 20.0 3,160.0 142.0 22,436	-										812.0
6.2 Conexiones publicas 2,280.0 140.0 2,421 Llave de chorro tipo globo 1/2" c/u 1 198.0 198.0 25.0 25.0 223.0 223.0 Illave de pase tipo globo 1/2" c/u 1 890.0 890.0 25.0 25.0 915.0 915.0 micro medidor de 1/2" (incluye caja protectora c/u 1 890.0 890.0 30.0 30.0 920.0 920.0 pvc adaptador Hembra 1/2 c/u 1 25.0 25.0 5.0 5.0 30.0 30.0 pvc codo 90x1/2 c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc codo 90 x12 con rosca c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc Tee 1/2 c/u 1 15.0 15.0 5.0 5.0 20.0 20.0 Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 28.0											
Llave de chorro tipo globo 1/2" c/u 1 198.0 198.0 25.0 25.0 223.0 223.0 Illave de pase tipo globo 1/2" c/u 1 890.0 890.0 25.0 25.0 915.0 915.0 micro medidor de 1/2" (incluye caja protectora c/u 1 890.0 890.0 30.0 30.0 920.0 920.0 pvc adaptador Hembra 1/2 c/u 1 25.0 25.0 5.0 5.0 30.0 36.0 pvc codo 90x1/2 c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc codo 90x1/2 con rosca c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc Tee 1/2 c/u 1 15.0 15.0 5.0 5.0 20.0 20.0 Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 286.0	6.2	Coneviones nublicas	VC (UDO 1/2 3DIN-20	c/u	138	122.0		20.0		142.0	
Illave de pase tipo globo 1/2"	0.2	Correxiones publicas	Llave de chorre tipo globo 1/2"	c/u	1	109.0		25.0		222.0	223.0
micro medidor de 1/2" (incluye caja protectora c/u 1 890.0 890.0 30.0 30.0 920											915.0
pvc adaptador Hembra 1/2 c/u 1 25.0 25.0 5.0 5.0 30.0 30 pvc codo 90x1/2 c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc codo 90 x12 con rosca c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc Tee 1/2 c/u 1 15.0 15.0 5.0 5.0 20.0 20.0 Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 286											920.0
pvc codo 90x1/2 c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc codo 90 x12 con rosca c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc Tee 1/2 c/u 1 15.0 15.0 5.0 5.0 20.0 20.0 Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 286											30.0
Pvc codo 90 x12 con rosca c/u 1 9.0 9.0 5.0 5.0 14.0 14.0 Pvc Tee 1/2 c/u 1 15.0 15.0 5.0 5.0 20.0 20.0 Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 286.0											14.0
Pvc Tee 1/2 c/u 1 15.0 15.0 5.0 5.0 20.0 20 Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 286											14.0
Tubo 1/2 SDR 26 c/u 2 122.0 244.0 20.0 40.0 142.0 286											20.0
											284.0
		TOTAL		-, -	_		1,764,272.1	_5.0	60,090.3	2.0	1,824,362.4

Apéndice J: Costo totales de la mano de obra

EDT	Descripción	Ud	Cantidad	Precio Unitario	Mano de obra
1	PRELIMINARES				C\$214,980.00
	Limpieza manual de la linea de conducción y red de	m²	5,628.00	C\$15.00	C\$84,420.00
	distribución Trazo de tuberia de agua potable	ml	5628	C\$20.00	C\$112,560.00
	Rotulo	c/u	2	C\$9,000.00	C\$18,000.00
2	CAPTACION				C\$84,228.16
	Limpieza manual del predio de captación	m²	38.14	C\$23.30	C\$888.66
	Hacer Niveletas	ml	38.75	C\$15.00	C\$581.25
	Colocar niveletas Excavacion Estrucutural	c/u	6.00 34.29	C\$95.00 C\$1,200.00	C\$570.00
	Relleno y compactacion	m³ m³	5.41	C\$1,200.00 C\$100.00	C\$41,148.00 C\$541.00
	Fundir concreto simple	m³	0.76	C\$400.00	C\$304.00
	Hacer formaleta para muros	m²	3.95	C\$100.00	C\$395.00
	Colocacion	m²	3.95	C\$100.00	C\$395.00
	Hacer muros de concreto ciclopio	m3	6.35	C\$3,000.00	C\$19,050.00
	Alistar y colocar Acero 3/8	kg	1.77	C\$25.00	C\$44.25
	Fundir losa superior	m²	3.42	C\$400.00	C\$1,368.00
	Colocacion de tuberia y accesorios	ml	5.00	C\$2,500.00	C\$12,500.00
	Hacer repello corriente y fino	m²	31.62	C\$150.00	C\$4,743.00
	Instalar valvula de aire Hacer caja de proteccion de valvulas con tapa	c/u c/u	1.00	C\$500.00 C\$1,200.00	C\$500.00 C\$1,200.00
3	LÍNEA DE CONDUCCIÓN	C/U	1.00	∪φ1,∠00.00	C\$7,200.00
3.1	Excavación para tuberia				C + 1,002110
	Excavación manual de zanja en terreno natural, ancho	mal	68.98	C\$40.00	C\$2.7E0.20
	de 0.50 m y 0.80 m de profundidad	ml	08.98	C\$40.00	C\$2,759.20
3.2	Tuberia				
	instalación de Tubería de 2" PVC SDR-26 y accesorios	c/u	68.98	C\$35.00	C\$2,414.30
3.3	Relleno y compactación	c/u		******	
	Relleno y compactación manual	m³	27.59	C\$100.00	C\$2,759.20
4	TANQUE DE ALMACENAMIENTO Hacer niveletas	ml	37.00	15.00	C\$96,113.37 C\$555.00
	Colocar niveletas	c/u	4.00	95.00	C\$380.00
	Excavacion Estrucutural	m³	8.12	1200	9744
	Relleno y Compactacion	m³	12.19	C\$100.00	C\$1,219.00
	colocacion de formaleta	m²	91.16	C\$100.00	C\$9,116.00
	Alistar y Armar Acero 1/2	kg	339.85	C\$65.00	C\$22,090.25
	Alistar y Armar Acero 3/8	kg	94.00	C\$65.00	C\$6,110.00
	Fundir losa de fondo	m²	9.24	C\$400.00	C\$3,696.00
	fundir muros	m²	14.50	C\$400.00	C\$5,800.00
	Fundir losa superior Colocacion de tuberia y accesorios	m² Global	9.24	C\$400.00 2500	C\$3,696.00 C\$2,500.00
	Hacer repello corriente y fino	m ²	182.32	C\$130.00	C\$23,701.60
	Pintar tanque parte interna y externa	m²	91.16	C\$22.00	C\$2,005.52
	Hacer caja de proteccion de valvulas con tapa	c/u	2.00	C\$1,250.00	C\$2,500.00
	Hacer caja de proteccion de clorador	c/u	1.00	C\$1,000.00	C\$1,000.00
	Intalacion del clorador y Accesorios	c/u	1.00	C\$2,000.00	C\$2,000.00
5	RED DE DISTRIBUCIÓN				C\$877,776.00
5.1	Excavación para tuberia				
	Excavación manual de zanja en terreno natural ancho=de 0.50m a 1.00m	ml	6342.00	C\$40.00	C\$253,680.00
5.2	Tuberías				
J.2	Instalar Tubería de PVC diám.= 2" (sdr-26)	c/u	572	30	17160
	Tubería de PVC diám.= 1 1/2" (sdr-26)	c/u	485.00	C\$30.00	C\$14,550.00
	Hacer caja de protecion de valvulas 2" y 1 1/2"	c/u	9.00	C\$1,000.00	C\$9,000.00
	Instalar Valvulas y accesorios 2" y 1 1/2"	c/u	38.00	C\$1,500.00	C\$57,000.00
5.4	Relleno y compactación				
_	Relleno y compactación manual	m³	5263.86	C\$100.00	C\$526,386.00
6	CONEXIONES DOMICILIARES	,		202	C\$20,650.00
	Instalaciones de Conexiones Domiciliares	c/u	58	300	17400
	Instalacion de puestos publicos Instalacion de Medidor y accesorios	c/u c/u	59	300 50	300 2950
	LIMPIEZA FINAL Y ENTREGA	C/U	39	30	C\$66,280.00
7					
7 7.1					
7.1	Limpieza final Limpieza manual final	m²	5628	C\$10	C\$56,280
	Limpieza final	m² Global	5628 1	C\$10 C\$10,000	C\$56,280 C\$10,000

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN SECRETARIA

SECRETARÍA DE FACULTAD

F-8: CARTA DE EGRESADO

El Suscrito Secretario de la FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION hace constar que:

BARRERA CALDERÓN LEIBNIZ JORDY

Carne: 2016-0145N Turno Diurno Plan de Estudios 2015 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente CARTA DE EGRESADO, a solicitud del interesado en la ciudad de Managua, a los dieciseis días del mes de julio del año dos mil veinte y uno.

Atentamente,

Dr. Francisco Efraín Chamorro Blandón

Secretario de Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN SECRETARIA

SECRETARÍA DE FACULTAD

F-8: CARTA DE EGRESADO

El Suscrito Secretario de la FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION hace constar que:

GÁMEZ LANUZA DANIS MAURICIO

Carne: 2015-0279N Turno Diurno Plan de Estudios 2015 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente CARTA DE EGRESADO, a solicitud del interesado en la ciudad de Managua, a los dieciseis días del mes de julio del año dos mil veinte y uno.

Atentamente,

Dr. Francisco Efraín Chamorro Blandón Secretario de Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN SECRETARIA

SECRETARÍA DE FACULTAD

F-8: CARTA DE EGRESADO

El Suscrito Secretario de la FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION hace constar que:

MARTÍNEZ GUEVARA JOSÉ FRANCISCO

Carne: 2016-0147N Turno Diurno Plan de Estudios 2015 de conformidad con el Reglamento Académico vigente en la Universidad, es EGRESADO de la Carrera de INGENIERIA CIVIL.

Se extiende la presente CARTA DE EGRESADO, a solicitud del interesado en la ciudad de Managua, a los dieciseis días del mes de julio del año dos mil veinte y uno.

Atentamente,

Dr. Francisco Efraín Chamorro Blandón

Secretario de Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE UNI-NORTE SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2021

No. Recibo 40310

No. Inscripción 529

NOMBRES Y APELLIDOS: Leibniz Jordy Barrera Calderón

CARRERA: INGENIERIA CIVIL

CARNET: 2016-0145N

TURNO: Diurno

PLAN DE ESTUDIO:

2015

SEMESTRE: SEGUNDO SEMESTRE FECHA: 26/10/2021

2021

No.	THE PROPERTY OF	ASIGNATURA	The state of the s	GRUPO	AULA	CRED.	F	R
1								
-			ULTIMA LINEA					
-				100		1 56		
							35 4	
						71 (3)		
				181-19				
					100-			
					1			
					13.5			
								1800
								800
			SCIONAL /		1 2 3		Jan Ell	
			188					

F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.

NARELVIS

GRABADOR

FIRMA Y SELLO DEL

FUNCTONARIO

REGISTRO

FIRMA DEL ESTUDIANTE

CC:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 26-oct-2021

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE UNI-NORTE SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2021

No. Recibo 40312

No. Inscripción 530

NOMBRES Y APELLIDOS: Danis Mauricio Gámez Lanuza

CARRERA: INGENIERIA CIVIL

CARNET: 2015-0279N

TURNO: Diurno

PLAN DE ESTUDIO:

2015

SEMESTRE: SEGUNDO SEMESTRE FECHA: 26/10/2021

2021

No.	ASIGNATURA	GRUPO	AULA	CRED.	F	R
1						
-	ULTIMA LINEA					
						100
4.5						
				Fe In		
			T. III			
			-			
						11 19
			241			
	MACION	IAL DE W	-	Eastern St.	1836	

F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.

NARELVIS

GRABADOR

FIRMA Y SELLO DEL

FIRMA DEL ESTUDIANTE

cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 26-oct-2021

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE UNI-NORTE SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2021

No. Recibo 40311

No. Inscripción 528

NOMBRES Y APELLIDOS: José Francisco Martínez Guevara

CARRERA: INGENIERIA CIVIL

CARNET: 2016-0147N

TURNO: Diurno

PLAN DE ESTUDIO:

2015

SEMESTRE: SEGUNDO SEMESTRE FECHA: 26/10/2021

2021

No.	ASIGNATURA	1	GRUPO	AULA	CRED.	F	R
1							
		ULTIMA LINEA					-
			1330			175	1
			The second				
*			A STATE OF THE PARTY OF THE PAR				
		, aci	ONALDE	-			
		SHO WAS	A TE COL				-

F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.

NARELVIS

GRABADOR

FIRMA Y SELEC DEL FUNCIONARIO

ES

FIRMA DEL ESTUDIANTE

cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 26-oct-2021

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN

Lider en Ciencia y Tecnología	SOLVENCIA ECONOMICA
	Fecha: 26/7/2021
Nombre del Estudiante:	Barrera Calderon Leibniz Jordy
Numero de Carnet:	2016-0145N
Carrera: Ingenieria Cir	vil
Taller Monografico:	Servicios monograficos UNI-NORTE
	UNIVERSAL DI NAME DE LINGENICAL DE LA COMPANION DE LA ALLO A OMINISTRATIVO DELLA ALLO ALLO ALLO ALLO ALLO ALLO ALLO
	Firma y Seflo
	Ing. Lesther Lara Corea
	Delegado Administrativo FTC

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN SOLVENCIA ECONOMICA

Fecha: 26/7/2021 Nombre del Estudiante: Gamez Lanuza Danis Mauricio Numero de Carnet: 2015-0279N Carrera: Ingenieria Civil Taller Monografico: Servicios monograficos UNI-NORTE Firma y Sello

Taller Monografico:

UNIVERSIDAD NACIONAL DE INGE+A1105:H1159NIERÌA FACULTAD DE TECNOLOGÍA DE LA CONSTRUCCIÓN SOLVENCIA ECONOMICA

Ing. Lesther Lara Corea Delegado Administrativo FTC

> Fecha: 26/7/2021

Nombre del Estudiante: Martinez Guevara Jose Francisco

Numero de Carnet: 2016-0147N

Carrera: Ingenieria Civil

Firma y sello

Servicios monografices UNI-NORTE

Ing. Lesther Lara Corea **Delegado Administrativo FTC**