

Área de Conocimiento de Ingeniería y Afines

"CÁLCULO DE CURVAS DE INTENSIDAD- DURACIÓN-FRECUENCIA DE LLUVIA PARA MODELACIÓN HIDROLÓGICA E HIDRÁULICA MEDIANTE DATOS SATELITALES DE PRECIPITACIÓN"

Trabajo de Taller Monográfico para optar al título de Ingeniero Civil

Elaborado por:

Br. Carlos Joel Siles Lazo Carnet: 2010-33111 Br. Henry Eleazar Suarez Martínez Carnet: 2012-43260

Tutor:

Dr. Edwin Antonio Oieda Olivares

08 de julio de 2024 Managua, Nicaragua

Agradecimiento

Primeramente, agradecemos a Dios por todas sus bendiciones y por habernos permitido llegar hasta aquí. A nuestros padres por su esfuerzo para darnos un futuro mejor y por siempre brindarnos su apoyo incondicional para poder cumplir con nuestros objetivos tanto personales como académicos. A nuestro tutor el Dr. Edwin Antonio Ojeda Olivares, por su paciencia, apoyo y buena voluntad de compartir sus conocimientos los cuales nos ayudaron a mantenernos motivados en la elaboración de esta investigación. De igual manera queremos agradecer a nuestra universidad por la formación brindada a través de sus docentes que solidificaron nuestros cimientos como profesionales y nos permitieron llegar a la culminación de nuestra carrera.

Resumen

Las curvas de intensidad, duración y frecuencia (IDF) son una fuente de información fundamental para los estudios hidrológicos y diseño de estructuras hidráulicas. Lamentablemente, la escasez de estaciones pluviométricas no permite realizar predicciones en todo el territorio nacional por lo que existe la necesidad de encontrar métodos que permitan obtener datos de precipitación en zonas donde no existen estaciones meteorológicas. El objetivo del presente trabajo es calcular curvas de intensidad-duración-frecuencia de lluvia para modelación hidrológica e hidráulica mediante datos satelitales de precipitación. Se obtuvieron los datos de precipitación diaria recolectada por los satélites CHIRPS y TRMM para el periodo 2002-2019, al igual que los datos de precipitación diaria recolectada por las estaciones meteorológicas de Juigalpa y Managua de INETER del mismo periodo. Se hizo rellenos de datos faltantes mediante el método de promedios aritméticos, se determinó la normalidad de los datos mediante pruebas de Kolmogorov-Smirnov, y se calculó la homogeneidad de las series de tiempo mediante pruebas de Mann Kendall, se hicieron comparaciones entre series de tiempo de datos superficiales y satelitales mediante estadísticos de desempeño (coeficiente de correlación, coeficiente de determinación, RMSE, Sesgo, %Sesgo), se realizaron pruebas de bondad de ajuste mediante Chi-cuadrado y se calcularon las curvas IDF mediante distribuciones de Gumbel, se hizo el cálculo de la precipitación máxima probable para los periodos de retorno 2, 5, 10, 25, 50, 100 y 500 años y para diferentes tiempos de duración de lluvia (1, 2, 3, 4, 5, 6, 8, 12, 18, y 24 horas), posteriormente con un análisis de regresión se calcularon los parámetros de ajuste para realizar el cálculo de intensidad de lluvia y con base en esto generar las curvas IDF. Los resultados obtenidos indican que los datos satelitales TRMM presentan mejor correlación, que los datos CHIRPS, sin embargo, los datos CHIRPS presentaron menores medidas de error, ambas series de datos subestiman las intensidades de lluvia para los periodos de retorno al compararse con las curvas IDF de las estaciones meteorológicas. El factor de ajuste promedio para los datos CHIRPS aeropuerto es de 2.12 y para los datos TRMM es de 4.01. El factor de ajuste promedio para los datos CHRIPS Juigalpa es de 2.32 y para los datos TRMM es de 4.9. Los datos ajustados pueden ser usados para el análisis hidrológico y para el diseño de estructuras hidráulicas ya que ajustadas representan las intensidades de las estaciones en superficie.

Índice

1. Introducción	1
2. Antecedentes	2
3. Justificación	3
4. Objetivos	4
4.1 Objetivo general	4
4.2 Objetivos específicos	4
5. Marco teórico	5
5.1 Descripción de la investigación	5
5.2 Ubicación de zona de estudio	5
5.3 Datos de precipitación satelitales TRMM Y CHIRPS	6
5.4 R para el análisis estadístico de datos	8
5.5 Promedio aritmético para el relleno de datos faltantes	8
5.6 Porcentaje de datos faltantes	8
5.7 Prueba de normalidad (Kolmogorov-Smirnov)	9
5.8 Prueba de homogeneidad (Mann Kendall)	9
5.9 Precipitación máxima y precipitación máxima probable	11
5.10 Varianza y desviación estándar	11
5.11 Coeficiente de correlación de Pearson	12
5.12 Coeficiente de determinación	12
5.13 Raíz del error cuadrático medio (RMSE)	13
5.14 Sesgo	13
5.15 Porcentaje de sesgo	14
5.16 Método de cálculo para curvas IDF	14
5.16.1 Funciones de distribución de probabilidad	14

5.16.2 Prueba de bondad de ajuste (X2-Cuadrado)	.16
5.17 Construcción de curvas IDF	.17
5.18 Método delta para el escalamiento de las intensidades de lluvia	.20
6. Diseño metodológico	.21
6.1 Recolección de información	.21
6.2 Relleno de datos faltantes	.21
6.3 Pruebas de normalidad	.22
6.4 Pruebas de homogeneidad	.22
6.5 Cálculos estadísticos de desempeño	.22
6.6 Cálculo distribución de probabilidades y prueba de bondad de ajuste Chi-Cuadrado	.23
6.7 Cálculo de curvas IDF	.23
6.8 Ajuste de curvas IDF (método delta para el escalamiento de las intensidades de lluvia)	.23
7. Resultados y discusión	.24
7.1 Pruebas de normalidad	.24
7.2 Pruebas de homogeneidad	.24
7.3 Estadísticos de desempeño	.25
7.4 Prueba de bondad de ajuste Chi-cuadrada para la distribución de probabilidades	.25
7.5 Cálculo de curvas IDF	.26
8. Conclusiones	.32
9. Recomendaciones	.33
10. Bibliografía	.34
10. Anexos	.37

Índice de Figuras

Figura 1. Ubicación de estaciones meteorológicas utilizadas
Índice de Tablas
Tabla 1. Valores de μy y σy según el tamaño de la muestra10
Tabla 2. Valores para las relaciones a la lluvia de 24 horas de duración según Campos-Aranda
(1978)
Tabla 3. Cantidad de Datos de Precipitación Diaria (Periodo 2002-2019)2
Tabla 4. Porcentaje de datos faltantes para las estaciones meteorológicas en superficie2
Tabla 5. Resultados de la Prueba de Kolmogorov-Smirnov en el software estadístico R24
Tabla 6. Resultados de la Prueba de Homogeneidad (Mann-Kendall)24
Tabla 7. Estadísticos de desempeño para las estaciones meteorológicas y datos satelitales29
Tabla 8. Prueba de Bondad de Ajuste Chi-Cuadrado20
Tabla 9. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de
retorno para la estación meteorológica Aeropuerto para el periodo 2002-20192
Tabla 10. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de
retorno para los datos CHIRPS Aeropuerto en el periodo 2002-20192
Tabla 11. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de
retorno para los datos TRMM Aeropuerto en el periodo 2002-201928
Tabla 12. Factores de escala para el ajuste de intensidades de lluvia a diferentes tiempos de
duración y periodos de retorno para los datos CHIRPS y TRMM Aeropuerto en el periodo 2002
201928
Tabla 13. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de
retorno para la estación meteorológica Juigalpa para el periodo 2002-201929

Tabla 14. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de
retorno para los datos CHIRPS Juigalpa en el periodo 2002-201930
Tabla 15. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de
retorno para los datos TRMM Juigalpa en el periodo 2002-2019
Tabla 16. Factores de escala para el ajuste de intensidades de lluvia a diferentes tiempos de
duración y periodos de retorno para los datos CHIRPS y TRMM Juigalpa en el periodo 2002-
201931
Índice de Anexos
Anexo 1. Curvas IDF – Estación Aeropuerto 2002-201937
Anexo 2. Curvas IDF - Aeropuerto CHIRPS 2002-2019 sin ajustar37
Anexo 3. Curvas IDF - Aeropuerto CHIRPS 2002-2019 ajustadas
Anexo 4. Curvas IDF - Aeropuerto TRMM 2002-2019 sin ajustar38
Anexo 5. Curvas IDF - Aeropuerto TRMM 2002-2019 ajustadas
Anexo 6. Curvas IDF – Estación Juigalpa 2002-201939
Anexo 7. Curvas IDF - Juigalpa CHIRPS 2002-2019 sin ajustar40
Anexo 8. Curvas IDF - Juigalpa CHIRPS 2002-2019 ajustadas
Anexo 9. Curvas IDF - Juigalpa TRMM 2002-2019 sin ajustar41
Anexo 10. Curvas IDF - Juigalpa TRMM 2002-2019 ajustadas
Anexo 11. Valores críticos para test de Kolmogorov-Smirnov42
Anexo 12. Distribuciones de Chi Cuadrado x ² 43

1. Introducción

La modelación hidrológica es fundamental para la planificación y construcción de obras hidráulicas y para la gestión de los recursos hídricos, y sobre todo para la mitigación de riesgos asociados a eventos extremos, como inundaciones, los cuales son los que más afectan las infraestructuras hidráulicas. Uno de los elementos clave en la modelación hidrológica para la construcción de infraestructuras hidráulicas son las curvas de Intensidad-Duración-Frecuencia (IDF), las cuales describen la relación entre la intensidad de la precipitación, la duración de un evento de lluvia y la frecuencia con que ocurre dicho evento. Estas curvas se calculan de registros históricos de estaciones pluviométricas en superficie, pero la cobertura limitada y la falta de datos en áreas remotas pueden presentar desafíos significativos. La limitada información relacionada a registros históricos de precipitaciones es uno de los mayores impedimentos para muchos países en vías de desarrollo, al momento de realizar estudios hidrológicos. La falta de estaciones meteorológicas en zonas alejadas es una problemática tanto a nivel nacional como internacional, regiones como américa del Sur, África, Asia presentan la misma situación, lo que hace que las estructuras hidráulicas sean vulnerables a eventos climáticos extremos (Courty et al., 2019).

En este contexto, el uso de datos satelitales de precipitación es una alternativa que puede ayudar a resolver el problema de información meteorológica en zonas alejadas. Los datos satelitales de precipitación proporcionan estimaciones de precipitación con una alta resolución espacial y temporal, cubren áreas geográficas extensas, incluidas aquellas donde no hay estaciones disponibles en superficie. Entre los productos satelitales más utilizados se encuentran los datos del Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) y del Tropical Rainfall Measuring Mission (TRMM) (Funk et al., 2015, TRMM, 2011), que ofrecen información valiosa climática que pueden ser usados para la elaboración de curvas IDF. El análisis de datos satelitales para diferentes aplicaciones en la ingeniería hidráulica e hidrológica para la realización de diseños hidráulicos, análisis de riesgos de inundación, descripción de afectaciones rurales por fenómenos meteorológicos, entre otros (Endreny & Imbeah, 2009). El objetivo del presente trabajo es calcular las curvas de Intensidad-Duración-Frecuencia de Iluvia para modelación hidrológica e hidráulica mediante datos satelitales de precipitación, la implementación de este enfoque tiene el potencial de mejorar la precisión y la cobertura de los datos de precipitación, proporcionando una herramienta robusta para la modelación hidrológica e hidráulica, especialmente en regiones remotas.

2. Antecedentes

Las curvas de Intensidad-Duración-Frecuencia (IDF) son relaciones matemáticas que vincula la intensidad de la precipitación con la duración y la frecuencia del evento (o periodo de retorno), y son cruciales para el diseño de infraestructuras hidráulicas. El desarrollo de curvas IDF se realizó en la primera mitad del siglo XX (Bernard, 1932). Desde entonces, se han estimado curvas IDF en varios países y se han presentado como una herramienta para derivar la intensidad de lluvia a partir de varios periodos de retorno y viceversa.

A partir de las curvas IDF se derivan tormentas de diseño para el diseño de sistemas de drenaje urbano, la evaluación y el diseño de estructuras hidráulicas y la evaluación de vulnerabilidades a inundaciones (Chow, 1959, Ridolfi et al., 2019). En la última década se ha observado un aumento notable en la intensidad y frecuencia de fenómenos meteorológicos extremos, como inundaciones, huracanes y tormentas tropicales. En los años 2020 y 2022, Nicaragua experimentó tres tormentas tropicales que se convirtieron en huracanes (ETA e IOTA-2020 y Julia-2022), los que ocasionaron cuantiosos daños materiales y afectaron profundamente a las comunidades, especialmente en las áreas rurales de la costa atlántica y la región central. Estos incidentes han resaltado la necesidad de contar con métodos y herramientas precisas para predecir y gestionar los impactos de estos eventos hidrometeorológicos y que nos permitan diseñar y construir estructuras civiles capaces de resistir estos eventos.

Tradicionalmente, las curvas de Intensidad-Duración-Frecuencia (IDF) se generan utilizando datos obtenidos de estaciones meteorológicas en superficie. Sin embargo, en muchos países en desarrollo, incluyendo Nicaragua, la densidad de estas estaciones es insuficiente, especialmente en regiones rurales y remotas. Esta limitación impide una evaluación precisa y oportuna de las precipitaciones, afectando negativamente la planificación y gestión de recursos hídricos y la implementación de medidas de mitigación ante desastres naturales; ante estas limitantes la percepción remota ha emergido como una herramienta para la recopilación a través de la observación espacial mediante sensores. Los satélites meteorológicos proporcionan una cobertura global y continua, recolectando datos durante décadas, que son esenciales para el análisis de patrones climáticos a corto y largo plazo. Esta tecnología ha sido utilizada con éxito en diversos estudios alrededor del mundo para complementar y, en muchos casos, sustituir los datos de estaciones terrestres, ofreciendo resultados útiles en la modelación hidrológica e hidráulica (Ayman et al., 2011, Lanciotti et al., 2022, Ombadi et al., 2018).

3. Justificación

La necesidad de generar curvas de Intensidad-Duración-Frecuencia (IDF) que cubran el territorio nacional son muy importantes ya que estas son indispensables para la modelación hidrológica y diseño de estructuras hidráulicas, en los últimos años se han visto dos acontecimientos relevantes, el primero el incremento de proyectos de infraestructuras hidráulicas y viales a nivel nacional y el segundo el incremento en la intensidad y frecuencia de fenómenos meteorológicos extremos como lluvias, huracanes y tormentas tropicales. Ejemplos recientes, como los huracanes ETA e IOTA en 2020 y Julia en 2022, han demostrado la vulnerabilidad del país ante estos eventos, causando daños significativos a infraestructuras y afectando gravemente a las familias nicaragüenses con pérdidas materiales cuantiosas, que ponen en peligro la inversión y desarrollo del país.

El uso de datos satelitales de precipitación representa una alternativa para obtener información climatológica en zonas donde no hay estaciones meteorológicas, ya que éstos ofrecen una excelente cobertura espacial y temporal, lo que ayudaría al país en su desarrollo económico y de infraestructura.

4. Objetivos

4.1 Objetivo general

• Calcular curvas de Intensidad-Duración-Frecuencia de Iluvia mediante datos satelitales de precipitación.

4.2 Objetivos específicos

- Evaluar estadísticamente los datos de precipitación en superficie y satelitales mediante análisis descriptivos e inferenciales.
- Elaborar curvas IDF con datos de estaciones meteorológicas y datos satelitales.
- Ajustar estadísticamente los cálculos de intensidades a diferentes duraciones y periodos de retorno de los datos satelitales a los de las estaciones en superficie.

5. Marco teórico

5.1 Descripción de la investigación

En Nicaragua la recopilación de datos para estudios hidrometeorológicos está a cargo del Instituto Nicaragüense de estudios Territoriales (INETER). Actualmente en el país existen 65 estaciones meteorológicas y 11 estaciones hidrométricas. Las 11 estaciones hidrométricas fueron instaladas recientemente por lo que la información de los periodos es limitada, esto demuestra la limitación de centros de recolección de datos de precipitación a lo largo de todo el país (Ramírez-Benavides,1995). (Walter Rast & Kirk P. Rodgers, 1997).

Por lo tanto, esta investigación se enfoca en realizar cálculos de intensidad, duración y frecuencia utilizando datos de precipitación satelitales y datos de precipitación de estaciones meteorológicas para validar la correlación entre ambas bases de datos y poder determinar si es factible la aplicación de los datos satelitales. Lo que permitirá abarcar zonas en las cuales no se recopila datos de precipitaciones, debido a escases de centros de estaciones meteorológicas.

5.2 Ubicación de zona de estudio

Las zonas de estudio se encuentran en la ciudad de Managua y en la ciudad de Juigalpa. La estación meteorológica Aeropuerto se encuentra ubicada a Latitud:12.433°; Longitud: -86.1636° y la estación meteorológica de Juigalpa se encuentra a Latitud: 12.1000°; Longitud: -85.3667°. En la Figura 1, se muestra la ubicación de ambas estaciones.

Figura 1. Ubicación de estaciones meteorológicas utilizadas

5.3 Datos de precipitación satelitales TRMM Y CHIRPS

TRMM es una misión conjunta de la NASA y la Agencia Japonesa de Exploración Aeroespacial (JAXA) que se lanzó en 1997 con el objetivo de medir la precipitación tropical y subtropical a una alta resolución temporal y espacial. Los datos de TRMM se obtienen utilizando una combinación de instrumentos y sensores a bordo del satélite (TRMM, 2011).

Entre los instrumentos más importantes están:

- PR (Precipitation Radar): Proporciona mediciones tridimensionales de la estructura de las tormentas.
- TMI (TRMM Microwave Imager): Genera imágenes mediante microondas, es un sensor pasivo que mide la radiación de microondas emitida por la Tierra y la atmósfera, lo que permite estimar la cantidad de precipitación.

• VIRS (Visible and Infrared Scanner): Proporciona imágenes en el espectro visible e infrarrojo, que ayudan a identificar nubes y precipitaciones.

Los datos de TRMM se procesan para convertir las observaciones de los sensores en estimaciones de precipitación. Esto implica varios pasos matemáticos, incluyendo:

• Conversión de Radiancia a Precipitación: Utilizando algoritmos de inversión que relacionan la radiancia observada por TMI con la tasa de precipitación. Estos algoritmos se basan en relaciones empíricas derivadas de datos de campo y modelos atmosféricos.

$$P = f(R)$$
 ec. 1

Donde, *P* es la precipitación y *R* es la radiancia observada por el sensor.

Calibración y Validación: Los datos satelitales se calibran utilizando mediciones in situ
de las diferentes redes globales de monitoreo y se validan mediante comparaciones con
datos de estaciones en superficie.

En cambio, CHIRPS es un producto de precipitación creado por el Climate Hazards Group (CHG). Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) es un conjunto de datos de precipitación cuasi-global con más de 35 años de información. Abarca desde los 50°S hasta los 50°N (en todas las longitudes) y cubre el período de 1981 al presente. CHIRPS incorpora climatología interna del CHG, CHPclim, imágenes satelitales con una resolución espacial de 0.05° y datos de estaciones in situ para crear series temporales de precipitación en cuadrículas, utilizadas para el análisis de tendencias y el monitoreo estacional de sequías (Funk et al., 2015).

El proceso de generación de datos CHIRPS involucra varios pasos matemáticos y estadísticos, los que incluye conversión de la temperatura infrarroja de las nubes a valores de precipitación, ajuste de precipitaciones calculadas con las precipitaciones de referencia CHPclim e interpolación de datos mediante métodos geoestadísticos como kriging.

5.4 R para el análisis estadístico de datos

R es un lenguaje de programación y un entorno de software para computación y gráficos estadísticos respaldado por R Foundation for Statistical Computing. R es un conjunto integrado de paquetes para la manipulación de datos, cálculo y la visualización gráfica (Team R Core, 2000). Los paquetes de R, permiten realizar análisis estadísticos descriptivos e inferenciales y es apto para calcular y manipular grandes cantidades de datos, como las series de tiempo climatológicas.

5.5 Promedio aritmético para el relleno de datos faltantes

En los registros de lluvias usualmente se tienen datos faltantes, esto puede ocurrir debido a la ausencia de operadores o de fallas instrumentales. Por lo tanto, suele ser necesario realizar cálculos estimados para poder rellenar esos datos.

El promedio aritmético o también conocido como la media aritmética es el valor característico de una serie de datos cuantitativos, se obtiene a partir de la suma de todos sus valores divididos entre el número de datos sumados. Dado los \boldsymbol{n} números (X_1, X_2, \dots, X_n) , la media aritmética se define como:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(X_1, X_2, \dots, X_n)}{n}$$
 ec. 2

Donde; \bar{X} es la media, n total de datos, X_1 hasta X_n son valores individuales de la serie de datos que van desde el valor inicial 1 hasta el valor final n.

5.6 Porcentaje de datos faltantes

Se define como la relación entre la cantidad de datos que faltan en una serie de datos, entre el total de los mismos; los cuales podrían ser útiles o significativos para el análisis de los resultados. Los datos faltantes se pueden deber a fallas en los equipos o por que el operador olvidó tomar

las anotaciones correspondientes. Por lo que es importante saber si la pérdida es aleatoria o específica, las que pueden causar discrepancias e invalidar los resultados (Dagnino, 2014).

5.7 Prueba de normalidad (Kolmogorov-Smirnov)

Conocida como prueba K-S, es una prueba de significación estadística para verificar si los datos de la muestra proceden de una distribución normal. Se emplea para variables cuantitativas continuas y cuando el tamaño muestral es mayor de 50. En definitiva, las pruebas de normalidad permiten verificar qué tipo de distribución siguen nuestros datos y, por tanto, qué pruebas (paramétricas o no) podemos llevar a cabo en el contraste estadístico (Saldaña, 2016).

Las hipótesis que se contrastan son las siguientes:

- H₀: Los datos tienen una distribución normal.
- H₁: Los datos no tienen una distribución normal.

Los valores calculados se comparan con los valores críticos de la tabla de Test de Kolmogorov-Smirnov (Ver Anexo 11)

Si:

- Valor calculado ≥ Valor crítico ⇒ Aceptar H₀
- Valor calculado < Valor crítico ⇒ Rechazar H₀ y aceptar H₁

5.8 Prueba de homogeneidad (Mann Kendall)

La prueba de homogeneidad de Kendall es una prueba de tendencia no paramétrica, la cual sirve para probar la tendencia de las series de tiempo, de tipo climático. La prueba asume que las observaciones de una serie de datos n $(X_1, X_2, ..., X_n)$ son independientes e idénticamente distribuidos, y supone la aceptación previa de la hipótesis nula H_0 que supone la no existencia de la tendencia (da Silva Alves & Nóbrega, 2017, Wang et al., 2019).

Las hipótesis que se contrastan son las siguientes:

- Hipótesis nula (H0): No hay tendencia en los datos (la serie es homogénea).
- Hipótesis alternativa (H1): Hay una tendencia en los datos (la serie no es homogénea).

La prueba de Mann Kendall se define de la siguiente manera:

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} sgn(X_j - X_k) \quad Ec. 3$$

Donde:

$$Sgn(x) = \begin{cases} +1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases} Ec. 4$$

sgn es la función signo, n es el tamaño de la muestra, X_j son los datos ordenados horizontalmente desde k+1 hasta n, X_k son los datos ordenados verticalmente desde 1 hasta n-1.

$$Var(S) = \frac{n(n-1)(2n+5) - \sum_{i=1}^{p} t_i(t_i-1)(2t_i+5)}{18} \quad Ec. 5$$

Donde p es el número de grupos asociados y t_i es el número de valores del i-ésimo grupo.

Para la prueba de hipótesis el valor de Z_calculado se obtiene mediante la siguiente ecuación:

$$Z = \begin{cases} \frac{S-1}{\sqrt{Var(S)}}, si S > 0\\ 0, si S = 0\\ \frac{S+1}{\sqrt{Var(S)}}, si S < 0 \end{cases}$$
 Ec. 6

El valor de Z_crítico está comprendido entre -1.96 y +1.96. Al comparar Z_crítico con Z_calculado, se pueden obtener los siguientes resultados:

- $Z_{\text{calculado}} < -1.96$: Tendencia significativa decreciente (serie no homogénea).
- $Z_{\text{calculado}} > -1.96$: Tendencia no significativa decreciente (serie homogénea).
- $Z_{\text{calculado}} < +1.96$: Tendencia no significativa creciente (serie homogénea).
- Z calculado > +1.96: Tendencia significativa creciente (serie no homogénea).

5.9 Precipitación máxima y precipitación máxima probable

El cálculo de la precipitación máxima se hace utilizando una serie de datos de precipitación de lluvia recopilados diariamente por los pluviómetros ubicados en diferentes zonas, la sumatoria de la precipitación recopilada por estos pluviómetros es la usada para calcular la precipitación máxima ya sea mensual o anual (Aparicio-Mijares, 1992).

La precipitación máxima probable (PMP) es la cantidad de precipitación más alta posible para una duración meteorológicamente viable, para una cuenca o área de drenaje, en una ubicación y en un tiempo particular del año. No se tiene en cuenta las tendencias climáticas a largo plazo (Hansen et al, 1982; WMO, 2009).

En hidrología se usa la magnitud PMP y sus distribuciones espacial y temporal para calcular la avenida máxima probable (probable máximum flood, PMF), que es una de las situaciones de inundación conceptuales utilizada en el diseño de estructuras hidráulicas para la máxima seguridad. La fórmula aplicada para el cálculo de la Precipitación Máxima Probable (PMP) mediante el método de Hershfield (Hershfield, 1961).

$$PMP = P_{max} + K * \sigma \qquad Ec. 7$$

Donde, P_{max} es el mayor valor de precipitación registrado, K es un factor de frecuencia ajustado empíricamente, y σ es la desviación estándar de la serie de datos de precipitación máxima anual.

5.10 Varianza y desviación estándar

La varianza y la desviación estándar son medidas de dispersión o variabilidad, que indican la dispersión o separación de un conjunto de datos (Espejo, 2017). Para realizar el cálculo de Varianza y Desviación Estándar se aplican las siguientes fórmulas:

varianza:

$$Var = \sum_{i=1}^{n} \frac{(x_{i-\bar{x}})^2}{n-1}$$
 Ec. 8

desviación estándar (SD), es:

$$SD = \sqrt{Var}$$
 Ec. 9

Donde, n cantidad de datos, Xi es el dato observado en la posición i, \bar{x} es el promedio de los datos observados.

5.11 Coeficiente de correlación de Pearson

El coeficiente de correlación de Pearson es una prueba que mide la relación estadística entre dos variables continuas. Si la asociación entre los elementos no es lineal, entonces el coeficiente no se encuentra representado adecuadamente. El coeficiente de correlación puede tomar un rango de valores de +1 a -1. Un valor de 0 indica que no hay asociación entre las dos variables. Un valor mayor que 0 indica una asociación positiva. Es decir, a medida que aumenta el valor de una variable, también lo hace el valor de la otra. Un valor menor que 0 indica una asociación negativa; es decir, a medida que aumenta el valor de una variable, el valor de la otra disminuye (Gorgas-García et al., 2011).

La fórmula del coeficiente de correlación de Pearson es la siguiente:

$$R_{pearson} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$
 $Ec. 10$

Donde, σ_{XY} es la covarianza de (X, Y), σ_X es la desviación estándar de la variable X, σ_Y es la desviación estándar de la variable .

5.12 Coeficiente de determinación

El coeficiente de determinación es la proporción de la varianza total de la variable, explicada por la regresión. El coeficiente de determinación, también llamado R cuadrado, refleja la bondad del ajuste de un modelo a la variable que pretende explicar.

Es importante saber que el resultado del coeficiente de determinación oscila entre 0 y 1. Cuanto más cerca de 1 se sitúe su valor, mayor será el ajuste del modelo a la variable que se intenta explicar. De forma inversa, cuanto más cerca de cero, menos ajustado estará el modelo y, por tanto, menos fiable será (Gorgas-García et al., 2011). La fórmula para calcular el coeficiente de Determinación es:

$$R^2 = \frac{\sigma_{XY}^2}{\sigma_X^2 \sigma_Y^2} \qquad Ec. 11$$

Donde, σ_{XY} covarianza de (X, Y), σ_{X}^{2} es la varianza de la variable X, σ_{Y}^{2} es la varianza de la variable Y.

5.13 Raíz del error cuadrático medio (RMSE)

La RMSE (root-mean-square error) representa a la raíz cuadrada de la distancia cuadrada promedio entre el valor real y el valor pronosticado. Indica el ajuste absoluto del modelo a los datos, calcula cuán cerca están los puntos de datos observados de los valores predichos del modelo. El error cuadrático medio o RMSE es una medida absoluta de ajuste. Los valores más bajos de RMSE indican un mejor ajuste. RMSE es una buena medida de la precisión con que el modelo predice la respuesta (Chai & Draxler, 2014).

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2} \qquad Ec. 12$$

Donde, n es el número total de observaciones, y_j valores predichos por el modelo, $\widehat{y_j}$ valores observados.

5.14 Sesgo

El sesgo estadístico, también conocido como Bias, se refiere a la diferencia que se produce entre el estimador matemático y su valor numérico, una vez realizado su análisis. En otras palabras, el SESGO se refiere a la diferencia entre los datos observados y los datos generados por un modelo (Manterola & Otzen, 2015).

$$Sesgo = \sum X_{mod} - X_{obs} \quad Ec. 13$$

Donde, X_{obs} son los datos observados y X_{mod} , son los datos del modelo.

5.15 Porcentaje de sesgo

El porcentaje de Sesgo es el sesgo expresado como un porcentaje de la variación general del proceso. La fórmula para calcular el porcentaje de SESGO es la siguiente.

%Sesgo =
$$100 * \frac{\sum_{i}^{n} (Xmod - Xobs)}{\sum_{i}^{n} Xobs}$$
 Ec. 14

Donde, X_{obs} son los datos observados y X_{mod} son los datos predichos por el modelo.

5.16 Método de cálculo para curvas IDF

5.16.1 Funciones de distribución de probabilidad

Las curvas IDF, es decir Intensidad - Duración - Frecuencia, son curvas que resultan de unir los puntos representativos de la intensidad media en intervalos de diferente duración, y correspondientes todos ellos a una misma frecuencia o período de retorno. Se trata de una representación gráfica de cuan intensa es una precipitación en función de cuánto dura el episodio de lluvia y con que probabilidad puede excederse ese episodio de lluvias.

Para la realización de curvas IDF puede usarse el método de distribución de Gumbel, el cual es utilizado para modelar la distribución del máximo (o el mínimo), por lo que se usa para calcular valores extremos. En hidrología, por ello, se utiliza la distribución de Gumbel para analizar variables aleatorias como valores máximos de la precipitación y la descarga de ríos, además para describir épocas de sequías. Es por esto que resulta muy útil para predecir inundaciones o cualquier otro desastre natural que pueda ocurrir debido a fuertes precipitaciones (Ramírez et al., 2006). Si se tienen N muestras, cada una de las cuales contiene n eventos y se selecciona el máximo de los eventos de cada muestra, es posible demostrar que a medida que aumenta, la función de distribución de probabilidad, ésta tiende a ser una distribución tipo Gumbel (Aparicio-Mijares, 1992).

La función de distribución tipo Gumbel, se expresa de la siguiente manera:

$$F(x) = e^{-e^{\alpha(x-\beta)}} \qquad Ec. 15$$

La función de densidad de probabilidad es entonces:

$$F(x) = \propto^{e^{\left[-\alpha(x-\beta) - e^{-\alpha(x-\beta)}\right]}} Ec. 16$$

donde α y β son los parámetros de la función. Los parámetros α y β se estiman como:

$$\alpha = \frac{1.2825}{S} \qquad Ec. 17$$

$$\beta = \bar{x} - 0.45 S$$
 Ec. 18

Donde, S es la desviación estándar, \bar{x} promedio de los datos.

O bien para muestras muy grandes se usa:

$$\alpha = \frac{\sigma_y}{S}$$
 Ec. 19

$$\beta = \bar{x} - \frac{\mu_y}{\alpha}$$
 Ec. 20

Donde,

 $\sigma_{\rm Y}$ es la desviación estándar de la variable Y,

 $\mu_{y}\,$ es el promedio de los valores de la variable Y.

Para muestras relativamente pequeñas, los valores de $~\mu_y~$ y $~\sigma_y~$ se muestran en la tabla 1.

Tabla 1. Valores de μ_y y σ_y según el tamaño de la muestra.

n	μ_{y}	σ_y
10	0.4952	0.9496
15	0.5128	1.0206
20	0.5236	1.0628
25	0.5309	1.0914
30	0.5362	1.1124
35	0.5403	1.1285
40	0.5436	1.1413
45	0.5463	1.1518
50	0.5485	1.1607
55	0.5504	1.1682
60	0.5521	1.1747
65	0.5535	1.1803
70	0.5548	1.1854
75	0.5559	1.1898
80	0.5569	1.1938
85	0.5578	1.1974
90	0.5586	1.2007
95	0.5593	1.2037
100	0.5600	1.2065

5.16.2 Prueba de bondad de ajuste (X2-Cuadrado)

La X² (Chi-Cuadrado) es una prueba de libre distribución (no paramétrica) que mide la discrepancia entre una distribución de frecuencias observadas y esperadas. Dentro de sus características generales, la prueba X² toma valores entre cero e infinito y no tiene valores negativos porque es la suma de valores elevados al cuadrado. Existen tres usos relevantes de la prueba X²: prueba de bondad de ajuste (una variable), prueba de independencia (dos variables), prueba de homogeneidad (dos variables) (Mendivelso & Rodríguez, 2018).

El valor de Chi-cuadrado se calcula como:

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \qquad Ec. 21$$

Donde, O_i son los datos observados, E_i son los datos esperados del modelo.

Las hipótesis para la prueba de chi-cuadrado son:

- H₀: los datos se ajustan a la distribución teórica.
- H₁: los datos no se ajustan a la distribución teórica.

Para calcular los valores de probabilidades (p-value), se debe calcular primero el valor que corresponde a Chi-Cuadrado (x^2) y también se debe calcular el grado de libertad con la siguiente ecuación:

$$Grado\ de\ Libertad = k - 1 - p$$
 $Ec. 22$

Donde:

k es el número de categorías o clases (o número de cajas o subgrupos de datos)p son los parámetros estimados a partir de los datos (promedio y desviación estándar)

Los valores de probabilidades (p-value), calculados se comparan con la significancia (α) Si:

- P-value $\geq \alpha \Rightarrow$ Aceptar H0
- P-value < α ⇒ Rechazar H0 y aceptar H1

5.17 Construcción de curvas IDF

Para la construcción de las curvas IDF, se establecen los periodos de retorno correspondientes y de los datos de precipitación observados se obtienen las precipitaciones máximas diarias por cada año. Se determinan las precipitaciones máximas probables según el acápite 5.9. Las precipitaciones máximas observadas también pueden ser expresadas en función del periodo de retorno como:

$$P_{max} = -\ln\left(\ln\frac{T}{T-1}\right) \quad Ec. 23$$

Donde, T es el periodo de retorno en años.

También se determinan las probabilidades de no ocurrencia de las precipitaciones máximas probables (PMP) como:

$$F(x) = e^{-e\left(\frac{PMP*\mu}{\alpha}\right)}$$
 Ec. 24

Donde α y μ son parámetros de la función los cuales se determinan como se muestra a continuación:

$$\alpha = S * \frac{\sqrt{6}}{\pi} \quad Ec. 25$$

$$\mu = \bar{X} - 0.5772 \alpha$$
 Ec. 26

Donde: S es la desviación estándar de los datos y \overline{X} es la media de los datos.

Weiss (1964), recomienda hacer una corrección por intervalo fijo a la precipitación máxima probable. Por lo que, para la corrección se establece un factor de 1.13.

Para determinar las intensidades de lluvia (I), se establecen relaciones a la lluvia de 24 horas (precipitación diaria), Campos-Aranda (1978), sugiere las relaciones mostradas en la tabla 2.

Tabla 2. Valores para las relaciones a la lluvia de 24 horas de duración según Campos-Aranda (1978).

Duración	Cociente
24 h	1.00
18 h	0.91
12 h	0.80
8 h	0.68
6 h	0.61
5 h	0.57
4 h	0.52
3 h	0.46
2 h	0.39
1 h	0.30

Existen fórmulas de aproximaciones empíricas que relacionan la intensidad (I), la duración (D) y el período de retorno (T), a partir de ajustes a potencias, entre las que destacan la propuesta de Aparicio-Mijares (1997).

$$I(D,T) = k * \frac{T^m}{(D+c)^n} \qquad Ec. 27$$

Donde, *c*, *k*, *m*, *n* son parámetros de la función los que pueden ser calculados mediante regresión lineal. Para simplificar el cálculo Aparicio-Mijares (1997) establece el parámetro *c* como cero.

$$I(D,T) = k * \frac{T^m}{D^n} Ec.28$$

Donde, *k, m y n* son constantes que se calculan mediante un análisis de regresión lineal, es el período de retorno en años, la duración en minutos, e la intensidad de precipitación en mm/hr.

De la ecuación de intensidad

$$I = \frac{k * T^m}{D^n} \qquad Ec. 29$$

Usando el método de sustitución de variables se define

$$A = k * T^m \quad Ec. 30$$

De modo que

$$I = A * D^{-n}$$
 Ec. 31

Obteniéndose de este modo dos ecuaciones potenciales de la forma, $y = a * x^n$

Aplicando logaritmos (y las propiedades de los logaritmos) a dichas ecuaciones potenciales, se obtienen las siguientes expresiones:

$$I = A * D^{-n}$$
 $Ec. 32$ $A = k * T^m$ $Ec. 35$ $\log(I) = \log(A * D^{-n})$ $Ec. 33$ $\log(A) = \log(k * T^m)$ $Ec. 36$ $\log(I) = \log(A) - n \log(D)$ $Ec. 34$ $\log(A) = \log(k) + m \log(T)$ $Ec. 37$

Realizando los siguientes cambios de variables:

$$\log(I) = I'$$
 $Ec. 38$ $\log(A) = A'$ $Ec. 41$
 $\log(A) = A'$ $Ec. 39$ $\log(k) = k'$ $Ec. 42$
 $\log(D) = D'$ $Ec. 40$ $\log(T) = T'$ $Ec. 43$

Se obtiene las siguientes ecuaciones:

$$I' = A' - n * D'$$
 $Ec. 44$ $A' = k' + m * T'$ $Ec. 45$

5.18 Método delta para el escalamiento de las intensidades de lluvia

El método delta es aplicado para el escalamiento de escenarios de cambio climático, y es la relación entre los valores del modelo de circulación general futuros o predichos y los valores bases o históricos (Galvéz, 2022), y se calcula como:

$$Delta = \frac{Precipitacion Futura modelo}{Precipitacion base} \qquad Ec. 46$$

Para obtener el valor ajustado se debe multiplicar el valor de Delta a los datos del modelo u observados según sea el caso correspondiente.

6. Diseño metodológico

Esta investigación se realizó usando métodos de investigación cuantitativa, estadística descriptiva e inferencial, y funciones de distribución de probabilidades, para analizar datos de precipitaciones en superficie y datos satelitales para el cálculo de curvas de Intensidad-Duración-Frecuencia (IDF).

6.1 Recolección de información

Los datos de precipitación diaria fueron obtenidos del Instituto Nicaragüense de Estudios Territoriales (INETER), de las estaciones meteorológicas Aeropuerto y Juigalpa para el periodo 2002 al 2019. Los datos satelitales CHIRPS y TRMM se obtuvieron de la plataforma https://app.climateengine.com/climateEngine, para los mismos periodos de tiempo de las estaciones meteorológicas brindadas por INETER para analizar los datos en la misma escala temporal. Para el periodo seleccionado se analizaron un total de 6,574 para la estación de managua y 6,542 para la estación de Juigalpa a como se muestran en la tabla 3.

Tabla 3. Cantidad de Datos de Precipitación Diaria (Periodo 2002-2019)

Origen	Estación	Total de Datos
INETER	Aeropuerto	6,574
INCIER	Juigalpa	6,542
CHIRPS	Aeropuerto	6,574
CHIRPS	Juigalpa	6,574
TDMM	Aeropuerto	6,574
TRMM	Juigalpa	6,574

6.2 Relleno de datos faltantes

Se analizaron los datos de las estaciones meteorológicas brindados por INETER y mediante un análisis visual se pudo constatar la ausencia de algunos datos en la estación meteorológica de Juigalpa, 30 datos no registrados en el mes de abril 2008 y 2 datos no registrados en el mes de noviembre 2017, equivalentes al 0.49% de datos faltantes (Ver tabla 4), razón por la cual se decidió utilizar el método de relleno de datos faltantes de promedios aritméticos, método avalado por la OMM (Organización Meteorológica Mundial).

Tabla 4. Porcentaje de datos faltantes para las estaciones meteorológicas en superficie.

Fatasián	Precipitacion	% De Datos		
Estación	Registradas	No Registradas	Totales	Faltantes
Aeropuerto	6,574	0	6,574	0.00 %
Juigalpa	6,542	32	6,574	0.49 %

6.3 Pruebas de normalidad

Para poder determinar si la distribución de los datos de precipitación tanto de estaciones en superficie como de los datos satelitales presentan una distribución normal, se realizó un Test de normalidad. El procedimiento se realizó en el software estadístico R con la aplicación de la librería NORTEST y el comando lillie.test para calcular la normalidad de los datos mediante un análisis de Kolmogorov-Smirnov (Gross & Ligges, 2015).

6.4 Pruebas de homogeneidad

Para determinar si las series de tiempo de precipitación provenían de una sola muestra, se realizó un análisis de homogeneidad a través del método de Mann-Kendall a ambas series de datos (datos en superficie y satelitales), la cual es una prueba de tendencia no paramétrica (Da Silva Alves & Nóbrega, 2017).

6.5 Cálculos estadísticos de desempeño

Se realizaron los cálculos estadísticos de desempeño a los datos de precipitación diaria obtenidos por las estaciones meteorológicas "Aeropuerto" y "Juigalpa", y de los datos satelitales CHIRPS y TRMM. Los estadísticos de desempeño se calcularon en R. Los estadísticos calculados fueron R_{Pearson}, R², RMSE, Sesgo y el porcentaje de Sesgo.

6.6 Cálculo distribución de probabilidades y prueba de bondad de ajuste Chi-Cuadrado

Se seleccionó una distribución de probabilidades de extremos tipo Gumbel y se realizó una prueba de bondad de ajuste de Chi-Cuadrado, para determinar si los valores extremos de precipitación se adecuaban a la distribución seleccionada.

6.7 Cálculo de curvas IDF

Para el cálculo de las curvas IDF se determinó el valor de precipitación máxima diaria por cada año para el periodo 2002-2019. Se seleccionaron siete periodos de retorno (2,5,10,25,50,100 y 500 años). La precipitación máxima diaria (24 h), se transformó a duraciones 18 h, 12 h, 8 h, 6 h, 5 h, 4 h, 3 h, 2 h y 1 h, multiplicándolo por relaciones establecidas según Aparicio-Mijares (1997) y se corrigieron multiplicándolos por el factor de intervalo fijo de 1.13 según Weiss (1964).

La relación intensidad (I), la duración (D) y el período de retorno (T), se realizó según el método propuesto por Aparicio-Mijares (1997). Para determinar los parámetros de la relación IDT se hizo un análisis de regresión y con esto se procedió a elaborar las curvas IDF para los datos en superficie y satelitales.

6.8 Ajuste de curvas IDF (método delta para el escalamiento de las intensidades de Iluvia)

Para ajustar las curvas IDF se determinó el factor de escala delta, y a los valores de intensidad de las estaciones en superficie se les dividió los valores de intensidad calculados para los datos satelitales y esto se hizo para cada periodo de retorno. Para obtener el factor de escala global se determinó el valor promedio.

7. Resultados y discusión

7.1 Pruebas de normalidad

Los resultados de la prueba de normalidad para los datos de precipitación se muestran en la tabla 5, para n=6,574 y un valor de significancia $\alpha=0.05$, el valor crítico es 0.011. Los valores calculados son menores que el valor crítico, por lo que se rechaza la hipótesis nula y se puede decir que los datos diarios de precipitación no presentan una distribución normal, por lo que los métodos de análisis deben ser métodos no paramétricos.

Tabla 5. Resultados de la Prueba de Kolmogorov-Smirnov en el software estadístico R

Origen de los datos	Nivel de	Valor	Valor	Resultado
de precipitación	significancia	crítico	calculado	del análisis
INETER Juigalpa	0.05	0.011	2x10 ⁻¹⁶	No es una distribución normal
CHIRPS Juigalpa	0.05	0.011	2x10 ⁻¹⁶	No es una distribución normal
TRMM Juigalpa	0.05	0.011	2x10 ⁻¹⁶	No es una distribución normal
INETER Aeropuerto	0.05	0.011	2x10 ⁻¹⁶	No es una distribución normal
CHIRPS Aeropuerto	0.05	0.011	2x10 ⁻¹⁶	No es una distribución normal
TRMM Aeropuerto	0.05	0.011	2x10 ⁻¹⁶	No es una distribución normal

7.2 Pruebas de homogeneidad

Debido a que los datos diarios de precipitación tanto para las estaciones en superficie como datos satelitales no son normales, se utilizó una prueba de homogeneidad no paramétrica (Mann-Kendall), en la Tabla 6, se muestran los resultados de la prueba, para una significancia del 0.05 los valores de $Z_{\rm calculado}$ están contenidos dentro del intervalo de $Z_{\rm crítico}$. Los resultados indican que las series de datos de cada muestra provienen de una misma muestra, por lo que estos datos pueden ser usados para el análisis y generación de curvas IDF.

Tabla 6. Resultados de la Prueba de Homogeneidad (Mann-Kendall)

Origen de los datos	Z	Z	Condición de Homogeneidad
Origen de los datos	calculado	crítico	-1.96 < Z calculado <1.96
INETER Juigalpa	0.057	[-1.96 , 1.96]	Homogénea
CHIRPS Juigalpa	-0.560	[-1.96 , 1.96]	Homogénea
TRMM Juigalpa	-1.891	[-1.96 , 1.96]	Homogénea
INETER Aeropuerto	-0.268	[-1.96 , 1.96]	Homogénea
CHIRPS Aeropuerto	-0.003	[-1.96 , 1.96]	Homogénea
TRMM Aeropuerto	-0.250	[-1.96 , 1.96]	Homogénea

7.3 Estadísticos de desempeño

Los estadísticos de desempeño muestran la relación de los datos de precipitación en superficie y satelitales (Ver Tabla 7). Los datos TRMM presentan una correlación lineal moderada (0.58) en cambio los datos CHIRPS presentan una correlación débil (0.35-0.21). Los datos TRMM son los que mejor se ajustan a la regresión lineal. Sin embargo, los datos CHIRPS presentan menor error y menor sesgo en comparación con los datos TRMM. Debido a que se espera una correlación alta al momento de seleccionar una serie datos más confiable, los resultados indican que los datos TRMM serían más apropiados para el cálculo de las curvas IDF, pero los datos CHIRPS serán más cercanos en magnitud a los datos de las estaciones meteorológicas.

Tabla 7. Estadísticos de desempeño para las estaciones meteorológicas y datos satelitales

Relación: DATOS ESTACIONES METEOROLOGICAS vs DATOS CHIRP								
Estación	R _{pearson}	R ² RMSE BIAS		R ²	R ² RMSE BIAS			
Aeropuerto	0.35	0.12	64.84	958.19	52.03%			
Juigalpa	0.21	0.05 52.04 761.73		761.73	48.74%			
Relación: DATOS ESTACIONES METEOROLOGICAS vs DATOS TRMM								
Estación	R _{pearson}	R ²	RMSE	BIAS	%BIAS			
Aeropuerto	0.58	0.34	84.03	1,378.80	74.87%			
Juigalpa	0.58	0.34	71.98	1,190.18	76.15%			

7.4 Prueba de bondad de ajuste Chi-cuadrada para la distribución de probabilidades

Los resultados de la prueba de Chi-Cuadrado para saber si los valores máximos diarios de precipitación anual pueden ser descritos por una distribución de probabilidad de extremos tipos Gumbel se muestran en la Tabla 8. Los valores de probabilidades P-value son mayores o iguales

al valor de significancia (0.05) y los valores de Chi-cuadrada calculados son menores a los Chi-cuadrados de tabla para un grado de libertad igual a 2 (Ver en Anexo.12) por lo que los resultados indican que los valores máximos de precipitación diaria pueden ser expresados mediante una distribución de probabilidades de extremos tipo Gumbel.

Tabla 8. Prueba de Bondad de Ajuste Chi-Cuadrado

Origen de los datos	Prueba de Bondad de Ajuste Chi-Cuadrado					
de precipitación	X ² Calculado	X ² Tabla	Condición X² Cal. < X² Tabla α			Condición P-value ≥ α
INETER Juigalpa	3.92	5.99	Se acepta H₀	0.05	0.08	Se acepta H ₀
CHIRPS Juigalpa	4.44	5.99	Se acepta H₀	0.05	0.06	Se acepta H₀
TRMM Juigalpa	1.2	5.99	Se acepta H₀	0.05	0.28	Se acepta H₀
INETER Aeropuerto	2.76	5.99	Se acepta H₀	0.05	0.13	Se acepta H₀
CHIRPS Aeropuerto	4.64	5.99	Se acepta H₀	0.05	0.05	Se acepta H₀
TRMM Aeropuerto	3.22	5.99	Se acepta H₀	0.05	0.11	Se acepta H ₀

7.5 Cálculo de curvas IDF

En las tablas 9 a la 11, se muestran los valores de Intensidades de Iluvia a diferentes duraciones y periodos de retorno, como se puede observar los datos satelitales subestiman los valores de las estaciones en superficie, siendo los valores CHIRPS los que más se aproximan en magnitud y los valores TRMM son los más alejados. Por lo que es necesario realizar un ajuste a los datos. En la Tabla 12 se muestra el factor de escala delta promedio por el cual debe ser multiplicado cada intensidad de lluvia para que los datos puedan ser usados para el diseño de obras hidráulicas, se puede observar que los datos CHIRPS son dos veces menores que los datos de las estaciones meteorológicas y los datos TRMM aproximadamente 4 veces menores.

Tabla 9. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para la estación meteorológica Aeropuerto para el periodo 2002-2019.

	Tabla de intensidades (mm/h) - Aeropuerto 2002-2019								
Duration	Periodo de retorno (años)								
(min)	2	5	10	25	50	100	500		
5	170.88	203.12	231.48	275.16	313.59	357.39	484.15		
10	111.46	132.49	151.00	179.49	204.55	233.13	315.81		
15	86.81	103.19	117.61	139.79	159.32	181.57	245.97		
20	72.71	86.43	98.50	117.08	133.43	152.07	206.00		
25	63.36	75.32	85.84	102.03	116.29	132.53	179.53		
30	56.63	67.31	76.72	91.19	103.92	118.44	160.45		
35	51.50	61.21	69.76	82.92	94.50	107.70	145.91		
40	47.43	56.38	64.25	76.37	87.04	99.19	134.38		
45	44.11	52.43	59.75	71.02	80.94	92.25	124.97		
50	41.33	49.13	55.99	66.56	75.85	86.45	117.11		
55	38.97	46.33	52.80	62.76	71.53	81.52	110.43		
60	36.94	43.91	50.04	59.48	67.79	77.26	104.66		

Tabla 10. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para los datos CHIRPS Aeropuerto en el periodo 2002-2019.

Tabla de intensidades (mm/h) - Aeropuerto CHIRPS 2002-2019									
Duración		Periodo de retorno (años)							
(min)	2	2 5 10 25 50 100 500							
5	81.69	96.63	109.72	129.78	147.36	167.32	224.72		
10	53.29	63.03	71.57	84.66	96.12	109.14	146.59		
15	41.51	49.09	55.74	65.94	74.87	85.01	114.17		
20	34.76	41.12	46.69	55.22	62.70	71.19	95.62		

25	30.29	35.83	40.69	48.13	54.64	62.05	83.33
30	27.07	32.02	36.36	43.01	48.84	55.45	74.47
35	24.62	29.12	33.07	39.11	44.41	50.42	67.72
40	22.67	26.82	30.45	36.02	40.90	46.44	62.37
45	21.09	24.94	28.32	33.50	38.04	43.19	58.00
50	19.76	23.37	26.54	31.39	35.64	40.47	54.36
55	18.63	22.04	25.03	29.60	33.61	38.16	51.26
60	17.66	20.89	23.72	28.06	31.86	36.17	48.58

Tabla 11. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para los datos TRMM Aeropuerto en el periodo 2002-2019.

Tabla de intensidades (mm/h) - Aeropuerto TRMM 2002-2019								
Duración	Periodo de retorno (años)							
(min)	2	5	10	25	50	100	500	
5	42.88	50.87	57.89	68.67	78.14	88.92	120.02	
10	27.97	33.18	37.76	44.79	50.97	58	78.29	
15	21.79	25.84	29.41	34.89	39.7	45.17	60.98	
20	18.25	21.64	24.63	29.22	33.25	37.83	51.07	
25	15.9	18.86	21.47	25.46	28.98	32.97	44.51	
30	14.21	16.86	19.18	22.76	25.9	29.47	39.78	
35	12.92	15.33	17.44	20.69	23.55	26.8	36.17	
40	11.9	14.12	16.07	19.06	21.69	24.68	33.31	
45	11.07	13.13	14.94	17.72	20.17	22.95	30.98	
50	10.37	12.3	14	16.61	18.9	21.51	29.03	
55	9.78	11.6	13.2	15.66	17.82	20.28	27.38	
60	9.27	11	12.51	14.84	16.89	19.22	25.95	

Tabla 12. Factores de escala para el ajuste de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para los datos CHIRPS y TRMM Aeropuerto en el periodo 2002-2019.

Datas astalitales	Factor escala delta	Factor escala delta	Factor de escala	
Datos satelitales	promedio	mínimo	delta máximo	
Datos CHIRPS	2.12	2.0917	2.1545	
Datos TRMM	4.01	3.9851	4.0339	

En las tablas 13 a la 15, se muestran los valores de Intensidades de Iluvia a diferentes duraciones y periodos de retorno, como se puede observar los datos satelitales subestiman los valores de las estaciones en superficie, siendo los valores CHIRPS los que más se aproximan en magnitud y los valores TRMM son los más alejados. Por lo que es necesario realizar un ajuste a los datos. En la Tabla 16, se muestra el factor de escala delta promedio por el cual debe ser multiplicado cada intensidad de lluvia para que los datos puedan ser usados para el diseño de obras de hidráulicas, se puede observar que datos CHIRPS son dos puntos cinco veces menores que los datos de las estaciones y los datos TRMM aproximadamente cuatro puntos nueve veces menores.

Tabla 13. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para la estación meteorológica Juigalpa para el periodo 2002-2019.

Tabla de intensidades (mm/h) - Juigalpa 2002-2019									
Duración	Periodo de retorno (años)								
(min)	2 5 10 25 50 100								
5	144.21	169.99	192.51	226.93	256.99	291.04	388.53		
10	94.07	110.88	125.58	148.03	167.64	189.85	253.44		
15	73.27	86.36	97.81	115.29	130.57	147.87	197.39		
20	61.36	72.33	81.91	96.56	109.35	123.84	165.32		
25	53.48	63.04	71.39	84.15	95.3	107.93	144.08		
30	47.79	56.34	63.8	75.21	85.17	96.45	128.76		
35	43.46	51.23	58.02	68.39	77.45	87.71	117.09		
40	40.03	47.18	53.43	62.99	71.33	80.78	107.84		
45	37.22	43.88	49.69	58.57	66.34	75.12	100.29		
50	34.88	41.12	46.57	54.89	62.16	70.4	93.98		
55	32.89	38.77	43.91	51.76	58.62	66.38	88.62		
60	31.17	36.75	41.62	49.06	55.56	62.92	83.99		

Tabla 14. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para los datos CHIRPS Juigalpa en el periodo 2002-2019.

	Tabla de intensidades (mm/h) - Juigalpa CHIRPS 2002-2019													
Duración			Peri	odo de reto	orno (años)									
(min)	2	5	10	25	50	100	500							
5	71.97	80.8	88.2	99.03	108.09	117.98	144.59							
10	46.95	52.71	57.53	64.59	70.51	76.96	94.32							
15	36.56	41.05	44.81	50.31	54.92	59.94	73.46							
20	30.62	34.38	37.53	42.14	45.99	50.2	61.52							
25	26.69	29.96	32.71	36.72	40.08	43.75	53.62							
30	23.85	26.78	29.23	32.82	35.82	39.1	47.92							
35	21.69	24.35	26.58	29.84	32.57	35.56	43.57							
40	19.98	22.43	24.48	27.48	30	32.75	40.13							
45	18.58	20.86	22.77	25.56	27.9	30.45	37.32							
50	17.41	19.55	21.33	23.95	26.15	28.54	34.97							
55	16.42	18.43	20.12	22.59	24.65	26.91	32.98							
60	15.56	17.47	19.07	21.41	23.37	25.51	31.26							

Tabla 15. Valores de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para los datos TRMM Juigalpa en el periodo 2002-2019.

	Tabla de intensidades (mm/h) - Juigalpa TRMM 2002-2019													
Duración	Periodo de retorno (años)													
(min)	2 5 10 25 50 100 500													
5	33.53 37.75 41.30 46.50 50.87 55.65													
10	21.87	24.63	26.94	30.33	33.18	36.30	44.71							

15	17.03	19.18	20.98	23.63	25.84	28.27	34.82
20	14.27	16.06	17.57	19.79	21.65	23.68	29.17
25	12.43	14.00	15.31	17.24	18.86	20.64	25.42
30	11.11	12.51	13.69	15.41	16.86	18.44	22.72
35	10.10	11.38	12.45	14.01	15.33	16.77	20.66
40	9.31	10.48	11.46	12.91	14.12	15.45	19.02
45	8.65	9.74	10.66	12.00	13.13	14.36	17.69
50	8.11	9.13	9.99	11.25	12.30	13.46	16.58
55	7.65	8.61	9.42	10.61	11.60	12.69	15.63
60	7.25	8.16	8.93	10.05	11.00	12.03	14.82

Tabla 16. Factores de escala para el ajuste de intensidades de lluvia a diferentes tiempos de duración y periodos de retorno para los datos CHIRPS y TRMM Juigalpa en el periodo 2002-2019.

Datos satelitales	Factor escala	Factor escala	Factor de escala
Datos satemales	delta promedio	delta mínimo	delta máximo
Datos CHIRPS	2.302	2.003	2.687
Datos TRMM	4.900	4.299	5.670

Los resultados obtenidos no son diferentes a los reportados por otros estudios que se han realizado en países en vías de desarrollo donde la limitante al acceso a la información es uno de los principales retos, lo que nos indica la aplicabilidad y potencial de este tipo de bases de datos (Ayman et al., 2011, Noor et al., 2021, Zeri et al., 2023).

Las curvas IDF generadas con los datos estaciones en superficie y datos satelitales sin ajustar y ajustados se presentan en los anexos A1 al A10.

8. Conclusiones

Los valores de intensidad de lluvias generados por los datos CHIRPS y TRMM para la estación Juigalpa pueden ajustarse a su respectiva estación en superficie mediante los factores de ajuste promedios 2.302 y 4.900 respectivamente. Los valores de intensidad de lluvias generados por los datos CHIRPS y TRMM para la estación Aeropuerto pueden ajustarse a su respectiva estación en superficie mediante los factores de ajuste promedios 2.12 y 4.01 respectivamente, lo que indicaría el potencial de aplicaciones prácticas en ingeniería hidráulica y gestión de recursos hídricos de los datos satelitales en el territorio nacional.

Los datos TRMM presentan una mejor correlación lineal al compararlas con las estaciones en superficie Aeropuerto y Juigalpa, sin embargo, los datos CHIRPS presentan menores medidas de error, por lo que el uso de los mismos debe realizarse después de ajustar y corregir los datos.

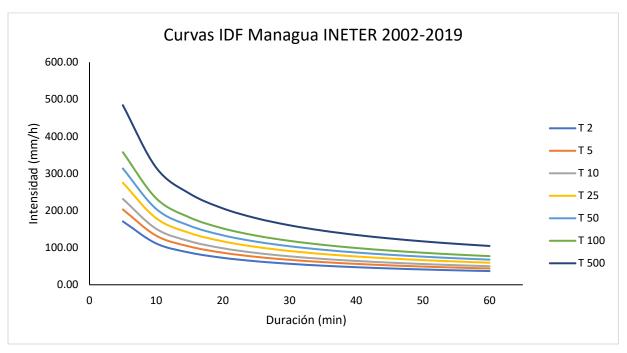
Los datos satelitales de precipitación pueden permitir el cálculo de curvas IDF en zonas remotas y rurales donde no hay presencia de estaciones meteorológicas, lo que facilitarían los estudios hidrológicos, la gestión de los recursos hídricos y el diseño de estructuras hidráulicas. También permitirá tener una mayor cobertura espacial y temporal de información climatológica a nivel nacional.

9. Recomendaciones

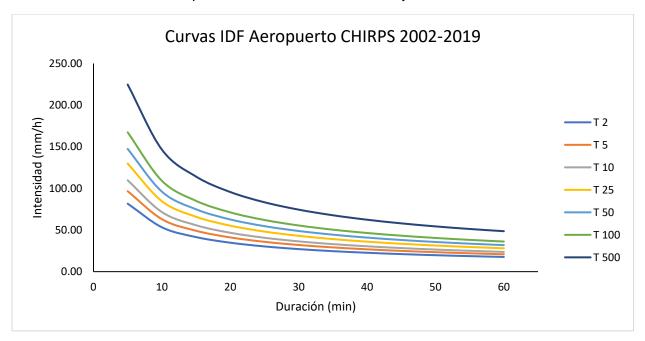
Con base en los resultados obtenidos, se sugieren las siguientes recomendaciones:

- 1. Ampliar la escala temporal de datos para tener resultados más amplios y abarcar posibles eventos extremos que se hayan dado en el pasado y no estén registrados en una zona específica.
- 2. Analizar la red total de estaciones meteorológicas de nicaragua para poder aplicar estas bases de datos a nivel nacional.
- Realizar ajustes con métodos estadísticos más potentes tales como herramientas de Machine Learning y análisis probabilísticos (ej. Mapas de cuantiles).
- **4.** Actualizar constantemente la base de datos.

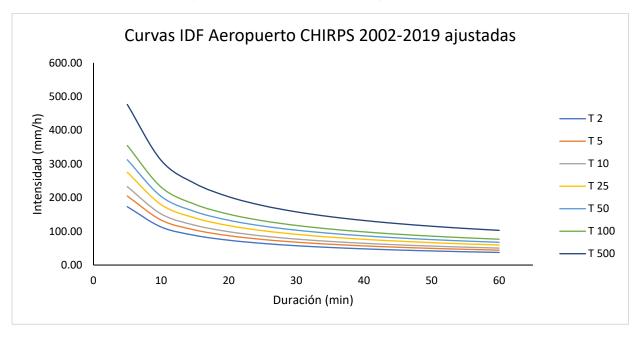
10. Bibliografía

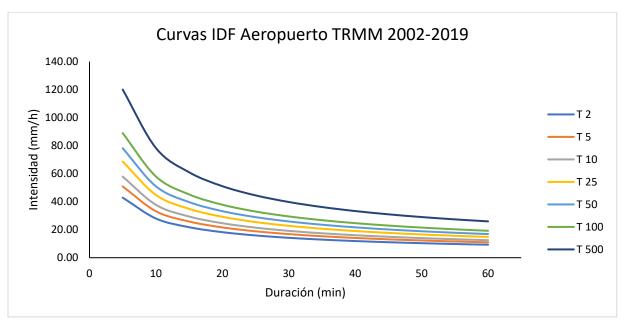

- Aparicio-Mijares, F.J. (1992). Fundamentos de hidrología de superficie. AM Javier Fundamentos de hidrología de superficie, 200-201.
- Aparicio-Mijares, F.J. (1997). Fundamentos de hidrología de superficie (303 pp.). Ed. Limusa, Balderas, México.
- Ayman G, A., Mohamed, E., Ashraf, E., & Hesham, E. (2011). Developing intensity-duration-frequency curves in scarce data region: an approach using regional analysis and satellite data. Engineering, 2011.
- Bernard, M. M. (1932). Formulas for rainfall intensities of long duration. Transactions of the American Society of Civil Engineers, 96(1), 592-606.
- Campos-Aranda, D. F. (2010). Rainfall maximum intensities for urban hydrological design in Mexican republic. Ingeniería, investigación y tecnología, 11(2), 179-188.
- Chai, T., & Draxler, R. R. (2014). Root means square error (RMSE) or mean absolute error (MAE). Geoscientific model development discussions, 7(1), 1525–1534.
- Chow, V. T. (1959). Open-channel hydraulics: New York. US Army Corps of Engineers, Hydrologic Engineering.
- Courty, L. G., Wilby, R. L., Hillier, J. K., & Slater, L. J. (2019). Intensity-duration-frequency curves at the global scale. Environmental Research Letters, 14(8), 084045.
- Dagnino, J. (2014). Datos faltantes (missing values). Rev Chil Anest, 43, 332-4.
- Da Silva Alves, K. M. A., & Nóbrega, R. S. (2017). TENDENCIA PLUVIOMETRICA Y CONCENTRACIÓN ESTACIONAL DE PRECIPITACIÓN EN LA CUENCA HIDROGRÁFICA DEL RÍO MOXOTÓ-PERNAMCUCO-BRASIL. Revista Geográfica de América Central, 1(58), 295–313.
- Endreny, T. A., & Imbeah, N. (2009a). Generating robust rainfall intensity–duration–frequency estimates with short-record satellite data. Journal of hydrology, 371(1–4), 182–191.
- Espejo, M. R. (2017). Estimación de la desviación estándar. Estadística española, 59(192), 37–44.
- Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66

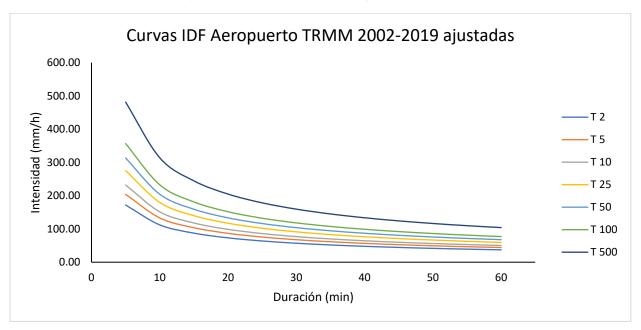
- Gálvez, J. J. G. (2022). Efectos del cambio climático en la precipitación local del Parque Nacional Radal Siete Tazas, República de Chile, empleando un método de downscaling estadístico. Revista Geográfica, (164), 13-20.
- Gorgas-García, J., Cardiel-Lopez, N., Zamorano-Calvo, J (2011). Estadística básica para estudiantes de ciencias.
- Hansen, E.M., Schreiner, L.C, & Miller, J.F. (1982). Application of Probable Maximum Precipitation Estimates. United States East of the 105th Meridian (HMR- 52), NOAA, National Weather Service, Silver Springs, MD, 168 pp.
- Hershfield, D.M. (1961). Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. Weather Bureau Technical Paper 40, U.S. Weather Bureau, Washington, D.C., 115 pp.
- Lanciotti, S., Ridolfi, E., Russo, F., & Napolitano, F. (2022). Intensity–Duration–frequency curves in a data-rich era: a review. Water, 14(22), 3705.
- Manterola, C., & Otzen, T. (2015). Los sesgos en investigación clínica. International Journal of Morphology, 33(3), 1156–1164.
- Mendivelso, F., & Rodríguez, M. (2018). Prueba Chi-Cuadrado de independencia aplicada a tablas 2xN. Revista Médica Sanitas, 21(2), 92-95.
- Noor, M., Ismail, T., Shahid, S., Asaduzzaman, M., & Dewan, A. (2021). Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia. Atmospheric Research, 248, 105203.
- Ojeda-Olivares, E.A., & Rivera-Solís, J.D.(2022). Validación de datos de precipitación CHIRPS v2.0 en el periodo 2011 2021, para Nicaragua.
- Ombadi, M., Nguyen, P., Sorooshian, S., & Hsu, K. L. (2018). Developing intensity-duration-frequency (IDF) curves from satellite-based precipitation: Methodology and evaluation. Water Resources Research, 54(10), 7752-7766.
- Ramírez Benavides, J. M. (1995). Proyecto manejo ambiental y desarrollo sostenible de la cuenca del Río San Juan: diagnóstico sobre el sector agropecuario de la cuenca del Río San Juan perteneciente a Costa Rica.
- Ridolfi, E., Di Francesco, S., Pandolfo, C., Berni, N., Biscarini, C., & Manciola, P. (2019). Coping with extreme events: Effect of different reservoir operation strategies on flood inundation maps. Water, 11(5), 982.
- Saldaña, M. R. (2016). Pruebas de bondad de ajuste a una distribución normal. Revista Enfermería del trabajo, 6(3), 114.

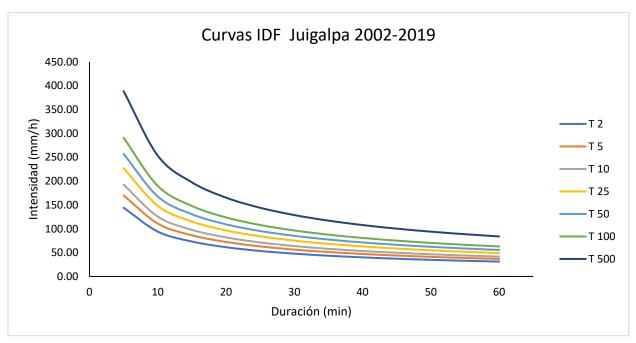

- Ramírez, M., Ghanem, A., & Lárez, H. (2006). Estudio comparativo de los diferentes métodos utilizados para la predicción de intensidades máximas de precipitación para el diseño adecuado de estructuras hidráulicas. SABER. Revista Multidisciplinaria Del Consejo de Investigación de La Universidad de Oriente, 18(2), 189–196.
- Team R Core. (2000). R language definition. Vienna, Austria: R foundation for statistical computing, 3(1), 116.
- Tropical Rainfall Measuring Mission (TRMM). (2011). TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). TRMM_3B42_7 Html.
- Wang, X., He, K., & Dong, Z. (2019). Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern Tibetan Plateau, China. Catena, 176, 81–93.
- World Meteorological Organization WMO. (1986). Manual for Estimation of Probable Maximum Precipitation, Operational Hydrology Report 1, 2nd edition, Publication 332, World Meteorological Organization, Geneva.
- Weiss, L. L. (1964). Ratio of true to fixed-interval maximum rainfall. Journal of the Hydraulics Division, 90(1), 77-82.
- Zeri, S. J., Hamed, M. M., Wang, X., & Shahid, S. (2023). Utilizing Satellite Data to Establish Rainfall Intensity-Duration-Frequency Curves for Major Cities in Iraq. Water, 15(5), 852.

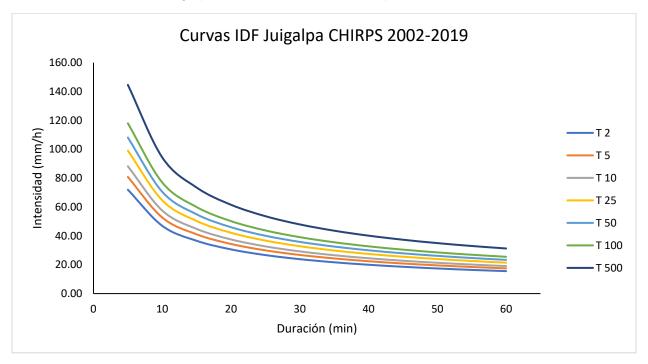
10. Anexos

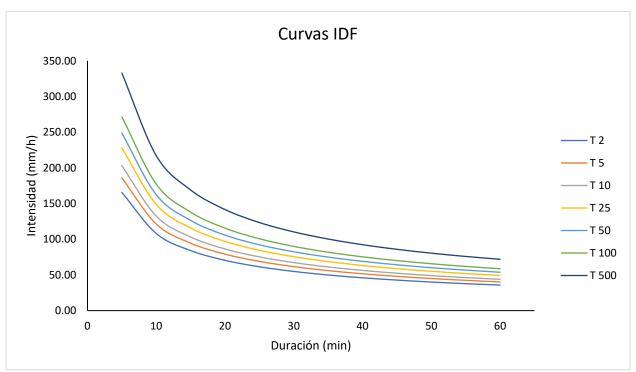

Anexo 1. Curvas IDF - Estación Aeropuerto 2002-2019

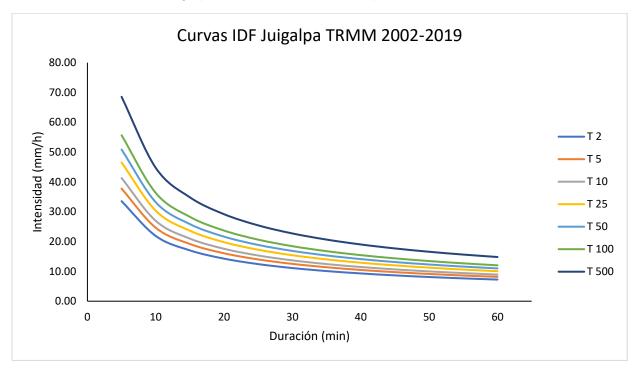

Anexo 2. Curvas IDF - Aeropuerto CHIRPS 2002-2019 sin ajustar

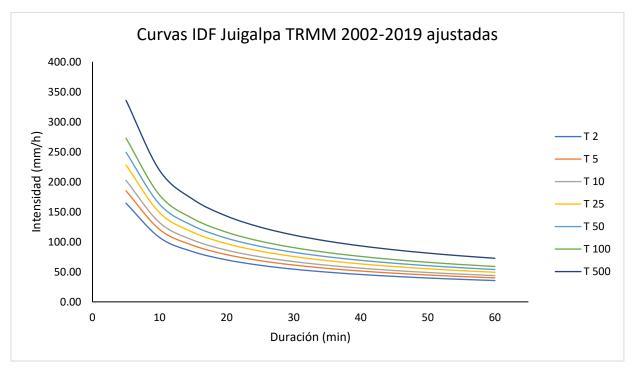

Anexo 3. Curvas IDF - Aeropuerto CHIRPS 2002-2019 ajustadas


Anexo 4. Curvas IDF - Aeropuerto TRMM 2002-2019 sin ajustar


Anexo 5. Curvas IDF - Aeropuerto TRMM 2002-2019 ajustadas


Anexo 6. Curvas IDF – Estación Juigalpa 2002-2019


Anexo 7. Curvas IDF - Juigalpa CHIRPS 2002-2019 sin ajustar


Anexo 8. Curvas IDF - Juigalpa CHIRPS 2002-2019 ajustadas

Anexo 9. Curvas IDF - Juigalpa TRMM 2002-2019 sin ajustar

Anexo 10. Curvas IDF - Juigalpa TRMM 2002-2019 ajustadas

Anexo 11. Valores críticos para test de Kolmogorov-Smirnov

n	α=0.20	α=0.15	α=0.10	α=0.05	α=0.01
4	0,3027	0,3216	0,3456	0,3754	0,4129
5	0,2893	0,3027	0,3188	0,3427	0,3959
5 6	0,2694	0,2816	0,2982	0,3245	0,3728
7	0,2521	0,2641	0,2802	0,3041	0,3504
8	0,2387	0,2502	0,2649	0,2875	0,3331
9	0,2273	0,2382	0,2522	0,2744	0,3162
10	0,2171	0,2273	0,241	0,2616	0,3037
11	0,208	0,2179	0,2306	0,2506	0,2905
12	0,2004	0,2101	0,2228	0,2426	0,2812
13	0,1932	0,2025	0,2147	0,2337	0,2714
14	0,1869	0,1959	0,2077	0,2257	0,2627
15	0,1811	0,1899	0,2016	0,2196	0,2545
16	0,1758	0,1843	0,1956	0,2128	0,2477
17	0,1711	0,1794	0,1902	0,2071	0,2408
18	0,1666	0,1747	0,1852	0,2018	0,2345
19	0,1624	0,17	0,1803	0,1965	0,2285
20	0,1589	0,1666	0,1764	0,192	0,2226
25	0,1429	0,1498	0,1589	0,1726	0,201
30	0,1315	0,1378	0,146	0,159	0,1848
31	0,1291	0,1353	0,1432	0,1559	0,182
32	0,1274	0,1336	0,1415	0,1542	0,1798
33	0,1254	0,1314	0,1392	0,1518	0,177
34	0,1236	0,1295	0,1373	0,1497	0,1747
35	0,122	0,1278	0,1356	0,1478	0,172
36	0,1203	0,126	0,1336	0,1454	0,1695
37	0,1188	0,1245	0,132	0,1436	0,1677
38	0,1174	0,123	0,1303	0,1421	0,1653
39	0,1159	0,1214	0,1288	0,1402	0,1634
40	0,1147	0,1204	0,1275	0,1386	0,1616
41	0,1131	0,1186	0,1258	0,1373	0,1599
42	0,1119	0,1172	0,1244	0,1353	0,1573
43	0,1106	0,1159	0,1228	0,1339	0,1556
44	0,1095	0,1148	0,1216	0,1322	0,1542
45	0,1083	0,1134	0,1204	0,1309	0,1525
46	0,1071	0,1123	0,1189	0,1293	0,1512
47	0,1062	0,1113	0,118	0,1282	0,1499
48	0,1047	0,1098	0,1165	0,1269	0,1476
49	0,104	0,1089	0,1153	0,1256	0,1463
50	0,103	0,1079	0,1142	0,1246	0,1457
n>50	0,724165/√n	0,758905/√n	0,8043545/√n	0,875897/√n	1,0210785/√n

n: tamaño de la muestra α: nivel de significación

Molin, P., Abdi H. (1998). New Tables and numerical approximation for the Kolmogorov-Smirnov/Lillierfors/Van Soest test of normality, University of Bourgogne.

Anexo 12. Distribuciones de Chi Cuadrado x²

P = Probabilidad de encontrar un valor mayor o igual que el chi cuadrado tabulado, v = Grados de Libertad

ν/	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
р															
1	10,8274	9,1404	7,8794	6,6349	5,0239	3,8415	2,7055	2,0722	1,6424	1,3233	1,0742	0,8735	0,7083	0,5707	0,4549
2	13,8150	11,9827	10,5965	9,2104	7,3778	5,9915	4,6052	3,7942	3,2189	2,7726	2,4079	2,0996	1,8326	1,5970	1,3863
3	16,2660	14,3202	12,8381	11,3449	9,3484	7,8147	6,2514	5,3170	4,6416	4,1083	3,6649	3,2831	2,9462	2,6430	2,3660
4	18,4662	16,4238	14,8602	13,2767	11,1433	9,4877	7,7794	6,7449	5,9886	5,3853	4,8784	4,4377	4,0446	3,6871	3,3567
5	20,5147	18,3854	16,7496	15,0863	12,8325	11,0705	9,2363	8,1152	7,2893	6,6257	6,0644	5,5731	5,1319	4,7278	4,3515
6	22,4575	20,2491	18,5475	16,8119	14,4494	12,5916	10,6446	9,4461	8,5581	7,8408	7,2311	6,6948	6,2108	5,7652	5,3481
7	24,3213	22,0402	20,2777	18,4753	16,0128	14,0671	12,0170	10,7479	9,8032	9,0371	8,3834	7,8061	7,2832	6,8000	6,3458
8	26,1239	23,7742	21,9549	20,0902	17,5345	15,5073	13,3616	12,0271	11,0301	10,2189	9,5245	8,9094	8,3505	7,8325	7,3441
9	27,8767	25,4625	23,5893	21,6660	19,0228	16,9190	14,6837	13,2880	12,2421	11,3887	10,6564	10,0060	9,4136	8,8632	8,3428
10	29,5879	27,1119	25,1881	23,2093	20,4832	18,3070	15,9872	14,5339	13,4420	12,5489	11,7807	11,0971	10,4732	9,8922	9,3418
11	31,2635	28,7291	26,7569	24,7250	21,9200	19,6752	17,2750	15,7671	14,6314	13,7007	12,8987	12,1836	11,5298	10,9199	10,3410
12	32,9092	30,3182	28,2997	26,2170	23,3367	21,0261	18,5493	16,9893	15,8120	14,8454	14,0111	13,2661	12,5838	11,9463	11,3403
13	34,5274	31,8830	29,8193	27,6882	24,7356	22,3620	19,8119	18,2020	16,9848	15,9839	15,1187	14,3451	13,6356	12,9717	12,3398
14	36,1239	33,4262	31,3194	29,1412	26,1189	23,6848	21,0641	19,4062	18,1508	17,1169	16,2221	15,4209	14,6853	13,9961	13,3393
15	37,6978	34,9494	32,8015	30,5780	27,4884	24,9958	22,3071	20,6030	19,3107	18,2451	17,3217	16,4940	15,7332	15,0197	14,3389
16	39,2518	36,4555	34,2671	31,9999	28,8453	26,2962	23,5418	21,7931	20,4651	19,3689	18,4179	17,5646	16,7795	16,0425	15,3385
17	40,7911	37,9462	35,7184	33,4087	30,1910	27,5871	24,7690	22,9770	21,6146	20,4887	19,5110	18,6330	17,8244	17,0646	16,3382
18	42,3119	39,4220	37,1564	34,8052	31,5264	28,8693	25,9894	24,1555	22,7595	21,6049	20,6014	19,6993	18,8679	18,0860	17,3379
19	43,8194	40,8847	38,5821	36,1908	32,8523	30,1435	27,2036	25,3289	23,9004	22,7178	21,6891	20,7638	19,9102	19,1069	18,3376
20	45,3142	42,3358	39,9969	37,5663	34,1696	31,4104	28,4120	26,4976	25,0375	23,8277	22,7745	21,8265	20,9514	20,1272	19,3374
21	46,7963	43,7749	41,4009	38,9322	35,4789	32,6706	29,6151	27,6620	26,1711	24,9348	23,8578	22,8876	21,9915	21,1470	20,3372
22	48,2676	45,2041	42,7957	40,2894	36,7807	33,9245	30,8133	28,8224	27,3015	26,0393	24,9390	23,9473	23,0307	22,1663	21,3370
23	49,7276	46,6231	44,1814	41,6383	38,0756	35,1725	32,0069	29,9792	28,4288	27,1413	26,0184	25,0055	24,0689	23,1852	22,3369
24	51,1790	48,0336	45,5584	42,9798	39,3641	36,4150	33,1962	31,1325	29,5533	28,2412	27,0960	26,0625	25,1064	24,2037	23,3367
25	52,6187	49,4351	46,9280	44,3140	40,6465	37,6525	34,3816	32,2825	30,6752	29,3388	28,1719	27,1183	26,1430	25,2218	24,3366
26	54,0511	50,8291	48,2898	45,6416	41,9231	38,8851	35,5632	33,4295	31,7946	30,4346	29,2463	28,1730	27,1789	26,2395	25,3365
27	55,4751	52,2152	49,6450	46,9628	43,1945	40,1133	36,7412	34,5736	32,9117	31,5284	30,3193	29,2266	28,2141	27,2569	26,3363
28	56,8918	53,5939	50,9936	48,2782	44,4608	41,3372	37,9159	35,7150	34,0266	32,6205	31,3909	30,2791	29,2486	28,2740	27,3362
29	58,3006	54,9662	52,3355	49,5878	45,7223	42,5569	39,0875	36,8538	35,1394	33,7109	32,4612	31,3308	30,2825	29,2908	28,3361

TABLA -Distribución Chi Cuadrado χ^2 . (Continuación)

ν / p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
30	59,7022	56,3325	53,6719	50,8922	46,9792	43,7730	40,2560	37,9902	36,2502	34,7997	33,5302	32,3815	31,3159	30,3073	29,3360
31	61,0980	57,6921	55,0025	52,1914	48,2319	44,9853	41,4217	39,1244	37,3591	35,8871	34,5981	33,4314	32,3486	31,3235	30,3359
32	62,4873	59,0461	56,3280	53,4857	49,4804	46,1942	42,5847	40,2563	38,4663	36,9730	35,6649	34,4804	33,3809	32,3394	31,3359
33	63,8694	60,3953	57,6483	54,7754	50,7251	47,3999	43,7452	41,3861	39,5718	38,0575	36,7307	35,5287	34,4126	33,3551	32,3358
34	65,2471	61,7382	58,9637	56,0609	51,9660	48,6024	44,9032	42,5140	40,6756	39,1408	37,7954	36,5763	35,4438	34,3706	33,3357
35	66,6192	63,0760	60,2746	57,3420	53,2033	49,8018	46,0588	43,6399	41,7780	40,2228	38,8591	37,6231	36,4746	35,3858	34,3356
36	67,9850	64,4097	61,5811	58,6192	54,4373	50,9985	47,2122	44,7641	42,8788	41,3036	39,9220	38,6693	37,5049	36,4008	35,3356
37	69,3476	65,7384	62,8832	59,8926	55,6680	52,1923	48,3634	45,8864	43,9782	42,3833	40,9839	39,7148	38,5348	37,4156	36,3355
38	70,7039	67,0628	64,1812	61,1620	56,8955	53,3835	49,5126	47,0072	45,0763	43,4619	42,0450	40,7597	39,5643	38,4302	37,3354
39	72,0550	68,3830	65,4753	62,4281	58,1201	54,5722	50,6598	48,1263	46,1730	44,5395	43,1053	41,8040	40,5935	39,4446	38,3354
40	73,4029	69,6987	66,7660	63,6908	59,3417	55,7585	51,8050	49,2438	47,2685	45,6160	44,1649	42,8477	41,6222	40,4589	39,3353
45	80,0776	76,2229	73,1660	69,9569	65,4101	61,6562	57,5053	54,8105	52,7288	50,9849	49,4517	48,0584	46,7607	45,5274	44,3351
50	86,6603	82,6637	79,4898	76,1538	71,4202	67,5048	63,1671	60,3460	58,1638	56,3336	54,7228	53,2576	51,8916	50,5923	49,3349
55	93,1671	89,0344	85,7491	82,2920	77,3804	73,3115	68,7962	65,8550	63,5772	61,6650	59,9804	58,4469	57,0160	55,6539	54,3348
60	99,6078	95,3443	91,9518	88,3794	83,2977	79,0820	74,3970	71,3411	68,9721	66,9815	65,2265	63,6277	62,1348	60,7128	59,3347
70	112,3167	107,8079	104,2148	100,4251	95,0231	90,5313	85,5270	82,2553	79,7147	77,5766	75,6893	73,9677	72,3583	70,8236	69,3345
80	124,8389	120,1018	116,3209	112,3288	106,6285	101,8795	96,5782	93,1058	90,4053	88,1303	86,1197	84,2840	82,5663	80,9266	79,3343
90	137,2082	132,2554	128,2987	124,1162	118,1359	113,1452	107,5650	103,9040	101,0537	98,6499	96,5238	94,5809	92,7614	91,0234	89,3342
100	149,4488	144,2925	140,1697	135,8069	129,5613	124,3421	118,4980	114,6588	111,6667	109,1412	106,9058	104,8615	102,9459	101,1149	99,3341
120	173,6184	168,0814	163,6485	158,9500	152,2113	146,5673	140,2326	136,0620	132,8063	130,0546	127,6159	125,3833	123,2890	121,2850	119,3340
140	197,4498	191,5653	186,8465	181,8405	174,6478	168,6130	161,8270	157,3517	153,8537	150,8941	148,2686	145,8629	143,6043	141,4413	139,3339
160	221,0197	214,8081	209,8238	204,5300	196,9152	190,5164	183,3106	178,5517	174,8283	171,6752	168,8759	166,3092	163,8977	161,5868	159,3338
180	244,3723	237,8548	232,6198	227,0563	219,0442	212,3039	204,7036	199,6786	195,7434	192,4086	189,4462	186,7282	184,1732	181,7234	179,3338
200	267,5388	260,7350	255,2638	249,4452	241,0578	233,9942	226,0210	220,7441	216,6088	213,1022	209,9854	207,1244	204,4337	201,8526	199,3337
250	324,8306	317,3609	311,3460	304,9393	295,6885	287,8815	279,0504	273,1944	268,5987	264,6970	261,2253	258,0355	255,0327	252,1497	249,3337
300	381,4239	373,3509	366,8439	359,9064	349,8745	341,3951	331,7885	325,4090	320,3971	316,1383	312,3460	308,8589	305,5741	302,4182	299,3336
500	603,4458	593,3580	585,2060	576,4931	563,8514	553,1269	540,9303	532,8028	526,4014	520,9505	516,0874	511,6081	507,3816	503,3147	499,3335
600	712,7726	701,8322	692,9809	683,5155	669,7690	658,0936	644,8004	635,9329	628,8157	622,9876	617,6713	612,7718	608,1468	603,6942	599,3335

TABLA -Distribución Chi Cuadrado χ^2 . (Continuación)

ν / p	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
1	0,3573	0,2750	0,2059	0,1485	0,1015	0,0642	0,0358	0,0158	0,0039	0,0010	0,0002	0,0000	0,0000	0,0000
2	1,1957	1,0217	0,8616	0,7133	0,5754	0,4463	0,3250	0,2107	0,1026	0,0506	0,0201	0,0100	0,0050	0,0020
3	2,1095	1,8692	1,6416	1,4237	1,2125	1,0052	0,7978	0,5844	0,3518	0,2158	0,1148	0,0717	0,0449	0,0243
4	3,0469	2,7528	2,4701	2,1947	1,9226	1,6488	1,3665	1,0636	0,7107	0,4844	0,2971	0,2070	0,1449	0,0908
5	3,9959	3,6555	3,3251	2,9999	2,6746	2,3425	1,9938	1,6103	1,1455	0,8312	0,5543	0,4118	0,3075	0,2102
6	4,9519	4,5702	4,1973	3,8276	3,4546	3,0701	2,6613	2,2041	1,6354	1,2373	0,8721	0,6757	0,5266	0,3810
7	5,9125	5,4932	5,0816	4,6713	4,2549	3,8223	3,3583	2,8331	2,1673	1,6899	1,2390	0,9893	0,7945	0,5985
8	6,8766	6,4226	5,9753	5,5274	5,0706	4,5936	4,0782	3,4895	2,7326	2,1797	1,6465	1,3444	1,1042	0,8571
9	7,8434	7,3570	6,8763	6,3933	5,8988	5,3801	4,8165	4,1682	3,3251	2,7004	2,0879	1,7349	1,4501	1,1519
10	8,8124	8,2955	7,7832	7,2672	6,7372	6,1791	5,5701	4,8652	3,9403	3,2470	2,5582	2,1558	1,8274	1,4787
11	9,7831	9,2373	8,6952	8,1479	7,5841	6,9887	6,3364	5,5778	4,5748	3,8157	3,0535	2,6032	2,2321	1,8338
12	10,7553	10,1820	9,6115	9,0343	8,4384	7,8073	7,1138	6,3038	5,2260	4,4038	3,5706	3,0738	2,6612	2,2141
13	11,7288	11,1291	10,5315	9,9257	9,2991	8,6339	7,9008	7,0415	5,8919	5,0087	4,1069	3,5650	3,1118	2,6172
14	12,7034	12,0785	11,4548	10,8215	10,1653	9,4673	8,6963	7,7895	6,5706	5,6287	4,6604	4,0747	3,5820	3,0407
15	13,6790	13,0298	12,3809	11,7212	11,0365	10,3070	9,4993	8,5468	7,2609	6,2621	5,2294	4,6009	4,0697	3,4825
16	14,6555	13,9827	13,3096	12,6243	11,9122	11,1521	10,3090	9,3122	7,9616	6,9077	5,8122	5,1422	4,5734	3,9417
17	15,6328	14,9373	14,2406	13,5307	12,7919	12,0023	11,1249	10,0852	8,6718	7,5642	6,4077	5,6973	5,0916	4,4162
18	16,6108	15,8932	15,1738	14,4399	13,6753	12,8570	11,9462	10,8649	9,3904	8,2307	7,0149	6,2648	5,6234	4,9048
19	17,5894	16,8504	16,1089	15,3517	14,5620	13,7158	12,7727	11,6509	10,1170	8,9065	7,6327	6,8439	6,1673	5,4067
20	18,5687	17,8088	17,0458	16,2659	15,4518	14,5784	13,6039	12,4426	10,8508	9,5908	8,2604	7,4338	6,7228	5,9210
21	19,5485	18,7683	17,9843	17,1823	16,3444	15,4446	14,4393	13,2396	11,5913	10,2829	8,8972	8,0336	7,2889	6,4467
22	20,5288	19,7288	18,9243	18,1007	17,2396	16,3140	15,2787	14,0415	12,3380	10,9823	9,5425	8,6427	7,8648	6,9829
23	21,5095	20,6902	19,8657	19,0211	18,1373	17,1865	16,1219	14,8480	13,0905	11,6885	10,1957	9,2604	8,4503	7,5291
24	22,4908	21,6525	20,8084	19,9432	19,0373	18,0618	16,9686	15,6587	13,8484	12,4011	10,8563	9,8862	9,0441	8,0847
25	23,4724	22,6156	21,7524	20,8670	19,9393	18,9397	17,8184	16,4734	14,6114	13,1197	11,5240	10,5196	9,6462	8,6494
26	24,4544	23,5794	22,6975	21,7924	20,8434	19,8202	18,6714	17,2919	15,3792	13,8439	12,1982	11,1602	10,2561	9,2222
27	25,4367	24,5440	23,6437	22,7192	21,7494	20,7030	19,5272	18,1139	16,1514	14,5734	12,8785	11,8077	10,8733	9,8029
28	26,4195	25,5092	24,5909	23,6475	22,6572	21,5880	20,3857	18,9392	16,9279	15,3079	13,5647	12,4613	11,4973	10,3907
29	27,4025	26,4751	25,5391	24,5770	23,5666	22,4751	21,2468	19,7677	17,7084	16,0471	14,2564	13,1211	12,1278	10,9861

TABLA -Distribución Chi Cuadrado χ^2 . (Continuación)

ν /p	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
30	28,3858	27,4416	26,4881	25,5078	24,4776	23,3641	22,1103	20,5992	18,4927	16,7908	14,9535	13,7867	12,7646	11,5876
31	29,3694	28,4087	27,4381	26,4397	25,3901	24,2551	22,9762	21,4336	19,2806	17,5387	15,6555	14,4577	13,4073	12,1961
32	30,3533	29,3763	28,3889	27,3728	26,3041	25,1478	23,8442	22,2706	20,0719	18,2908	16,3622	15,1340	14,0555	12,8104
33	31,3375	30,3444	29,3405	28,3069	27,2194	26,0422	24,7143	23,1102	20,8665	19,0467	17,0735	15,8152	14,7092	13,4312
34	32,3219	31,3130	30,2928	29,2421	28,1361	26,9383	25,5864	23,9522	21,6643	19,8062	17,7891	16,5013	15,3679	14,0568
35	33,3065	32,2821	31,2458	30,1782	29,0540	27,8359	26,4604	24,7966	22,4650	20,5694	18,5089	17,1917	16,0315	14,6881
36	34,2913	33,2517	32,1995	31,1152	29,9730	28,7350	27,3363	25,6433	23,2686	21,3359	19,2326	17,8868	16,7000	15,3243
37	35,2764	34,2216	33,1539	32,0532	30,8933	29,6355	28,2138	26,4921	24,0749	22,1056	19,9603	18,5859	17,3730	15,9652
38	36,2617	35,1920	34,1089	32,9919	31,8146	30,5373	29,0931	27,3430	24,8839	22,8785	20,6914	19,2888	18,0501	16,6109
39	37,2472	36,1628	35,0645	33,9315	32,7369	31,4405	29,9739	28,1958	25,6954	23,6543	21,4261	19,9958	18,7318	17,2612
40	38,2328	37,1340	36,0207	34,8719	33,6603	32,3449	30,8563	29,0505	26,5093	24,4331	22,1642	20,7066	19,4171	17,9166
45	43,1638	41,9950	40,8095	39,5847	38,2910	36,8844	35,2895	33,3504	30,6123	28,3662	25,9012	24,3110	22,8994	21,2509
50	48,0986	46,8638	45,6100	44,3133	42,9421	41,4492	39,7539	37,6886	34,7642	32,3574	29,7067	27,9908	26,4636	24,6736
55	53,0367	51,7391	50,4204	49,0554	47,6105	46,0356	44,2448	42,0596	38,9581	36,3981	33,5705	31,7349	30,0974	28,1731
60	57,9775	56,6200	55,2394	53,8091	52,2938	50,6406	48,7587	46,4589	43,1880	40,4817	37,4848	35,5344	33,7909	31,7381
70	67,8664	66,3961	64,8990	63,3460	61,6983	59,8978	57,8443	55,3289	51,7393	48,7575	45,4417	43,2753	41,3323	39,0358
80	77,7631	76,1879	74,5825	72,9153	71,1445	69,2070	66,9938	64,2778	60,3915	57,1532	53,5400	51,1719	49,0430	46,5197
90	87,6661	85,9925	84,2854	82,5111	80,6247	78,5584	76,1954	73,2911	69,1260	65,6466	61,7540	59,1963	56,8918	54,1559
100	97,5744	95,8078	94,0046	92,1290	90,1332	87,9453	85,4406	82,3581	77,9294	74,2219	70,0650	67,3275	64,8571	61,9182
120	117,4041	115,4646	113,4825	111,4186	109,2197	106,8056	104,0374	100,6236	95,7046	91,5726	86,9233	83,8517	81,0726	77,7555
140	137,2476	135,1491	133,0028	130,7657	128,3800	125,7580	122,7476	119,0293	113,6594	109,1368	104,0343	100,6547	97,5908	93,9253
160	157,1019	154,8555	152,5564	150,1583	147,5988	144,7834	141,5475	137,5457	131,7560	126,8700	121,3457	117,6791	114,3496	110,3592
180	176,9652	174,5799	172,1373	169,5879	166,8653	163,8682	160,4206	156,1526	149,9687	144,7413	138,8205	134,8843	131,3050	127,0114
200	196,8359	194,3193	191,7409	189,0486	186,1717	183,0028	179,3550	174,8353	168,2785	162,7280	156,4321	152,2408	148,4262	143,8420
250	246,5387	243,7202	240,8297	237,8085	234,5768	231,0128	226,9048	221,8059	214,3915	208,0978	200,9387	196,1604	191,8020	186,5537
300	296,2700	293,1786	290,0062	286,6878	283,1353	279,2143	274,6901	269,0679	260,8781	253,9122	245,9727	240,6631	235,8126	229,9620
500	495,3734	491,3709	487,2569	482,9462	478,3231	473,2099	467,2962	459,9261	449,1467	439,9360	429,3874	422,3034	415,8081	407,9458
600	594,9938	590,6057	586,0930	581,3623	576,2859	570,6681	564,1661	556,0560	544,1801	534,0185	522,3654	514,5285	507,3385	498,6219