

Facultad de Tecnología de la Construcción

"DISEÑO GEOMÉTRICO DEL TRAMO Y LA ESTRUCTURA DE PAVIMENTO ARTICULADO DE 1.47 KILÓMETROS, EMPALME SANTA ROSA COMUNIDAD LA LAGUNA, UBICADO EN EL MUNICIPIO DE CONDEGA, POR EL MÉTODO DE AASHTO-93".

Trabajo Monográfico para optar al título de Ingeniero Civil

Elaborado por:

Br. Victor Oniel Hernández Valle Carnet: 2015-0413N Br. Jonny Javier Briones Diaz Carnet: 2014-0041N **Tutor:**

Msc.Ing. Gioconda Isabel Juárez Romero

22 de noviembre del 2023 Managua, Nicaragua

CARTA DIRIGIDA A DECANO

INCLUIR CARTA DE APROBACIÓN

DEDICATORIA.

AGRADECIMIENTO.

RESUMEN EJECUTIVO

El presente estudio tuvo como objetivo realizar el diseño geométrico y la estructura de pavimento articulado de 1.47 kilómetros, aplicando el método de AASHTO-93.

CAPÍTULO I: GENERALIDADES.

Este capítulo abordo las generalidades del proyecto su ubicación geográfica, una breve introducción, antecedentes y justificación así como la importancia del diseño y los alcances del estudio.

CAPÍTULO II: LEVANTAMIENTO TOPOGRÁFICO.

Se recopilo la información resultante del levantamiento topográfico del tramo de 1.47 kilómetros (Empalme Santa Rosa, est. 0+000, hasta comunidad La Laguna, est. 1+470). Con respecto a los trabajos desarrollados, se ha incluido el levantamiento de la franja de la vía proyectada, bordes de camino, ubicación de BM's, inventario de todas las estructuras existentes.

CAPÍTULO III: ESTUDIO DE TRÁNSITO.

Se realizó un aforo vehicular en la estación 0+000, para conocer el volumen de vehículos y estimar el TPDiS (Tráfico Promedio Diurno Semanal) el cual se calculó por medio de los datos recolectados, realizado durante 7 días consecutivos 12 horas diurnas (6 am-6 pm), con el objetivo de estimar el TPDA (Tráfico Promedio Diurno Anual), para el cual se utilizaron factores de ajustes de la estación de corta duración (Estación ECD-114 Shell Palacagüina-Emp Yalagüina). Los factores utilizados fueron: FD (Factor día) y FE (Factor expansión).

La metodología empleada fue la del Ministerio de Transporte e Infraestructura (MTI), utilizando el anuario de aforos de tráfico -2020, con la finalidad de estimar una tasa de crecimiento en base a la estación seleccionada. También se utilizaron los registros históricos del PIB y POB para hacer pesar más el resultado final y posterior proyectar el tráfico actual, esto en un periodo de diseño, para finalmente estimar el número de repeticiones por eje equivalente (ESAL s) o W18.

CAPÍTULO IV: ESTUDIO GEOTÉCNICO.

Los estudios de laboratorio fueron realizados EDICO (Ingenieros Consultores), en colaboración con la alcaldía municipal de Condega y sustentantes de esta monografía. Dichos sondeos permitieron la caracterización de las propiedades físicas y mecánicas del suelo existente y bancos de materiales cercanos al proyecto. Se realizaron 8 sondeos en la plataforma vial de trabajo a cada 100 metros, donde se tomaron 25 muestras del terreno natural. Los bancos de préstamos se evaluaron en base a las recomendaciones de la NIC-2019 (Especificaciones generales para la construcción de caminos, calles y puentes), para determinar si pueden ser utilizados como material base granular o subbase.

Posterior se realizó el cálculo del CBR de la subrasante en base a las muestras tomadas utilizando los cortes y rellenos que genero Civil 3D.

CAPÍTULO V: DISEÑO GEOMÉTRICO VIAL.

El presente capítulo describe los métodos y procedimientos utilizados para el trazado del tramo de 1.47 kilómetros, haciendo uso del software Autodesk Civil 3D-version 2022 y adoptando los criterios del Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras Regionales (SIECA-2011, 3ra edición).

Se establecieron controles y criterios de diseño (vehículo de diseño en base a las características del tránsito), elementos de diseño (velocidad de diseño, distancias de visibilidad, alineamiento horizontal y vertical) y elementos de la sección trasversal (calzada, hombros, drenaje longitudinal, bombeo y derecho de vía).

CAPÍTULO VI: DISEÑO DE LA ESTRUCTURA DE PAVIMENTO ARTICULADO.

En este capítulo se presenta el diseño del pavimento rígido según la Guía AASHTO publicada en 1993. La determinación de los espesores de losa se llevó a cabo por medio de ábacos o nomogramas que indica su metodología utilizando los resultados de los capítulos de Tránsito (ESAL's) y Estudio Geotécnico (Modulo Resiliente) que permitieron determinar el espesor de losa y el espesor de la base o subbase. También se incorporó la modulación de la losa en tableros con pasa juntas como lo indica la AASHTO-93.

Posterior se realizó la comprobación de los resultados obtenidos manualmente utilizando el software WinPAS 10 (1.0.4), donde finalmente se determina el espesor de la losa de concreto hidráulico.

CONCLUSIONES Y RECOMENDACIONES

En base a los objetivos específicos se muestran las conclusiones obtenidas al desarrollar cada capítulo propuesto en este documento, de igual manera se reflejan las recomendaciones necesarias acorde a cada conclusión establecida.

ÍNDICE DE CONTENIDO.

CAPÍTULO I GENERALIDADES

1.1 Introducción	1
1.2 Antecedentes.	2
1.3 Justificación	3
1.4 Objetivos.	4
1.4.1. Objetivo General	4
1.4.2. Objetivos Específicos.	4
CAPÍTULO II	
ESTUDIO TOPOGRÁFICO	
2.1. Introducción	5
2.2. Metodología	5
2.3. Localización del proyecto	5
2.4. Sistema de coordenadas	5
2.5. Equipo topográfico	
2.6. Perfil longitudinal	6
2.7. Secciones transversales del camino	7
2.8. Levantamiento topográfico planimétrico	7
2.8.1. Curvas horizontales	8
2.8.2. Tramos rectos	9
2.9. Altimetría del tramo	
2.10. Establecimiento de BMs	
2.11. Desarrollo de planos	11
CAPÍTULO III	
ESTUDIO DE TRÁNSITO	
3.1. Introducción	12
3.2. Generalidades	
3.3. Procesamiento de información	
3.4. Análisis de la información obtenida	
3.5. Consolidado del conteo vehicular	
3.6. Procedimiento de campo	
3.7. Estación de conteo vehicular	13

3.7.1. Duración de conteo y clasificación vehicular	14
3.7.2. Tipos de vehiculos	14
3.7.3 Diagrama de cargas permisibles	15
3.7.4. Cálculo del Tránsito Promedio Diurno Semanal (TPDiS)	16
3.7.5. Cálculo del TPDA	18
3.7.6. Composición vehicular	23
3.8. Determinación de las tasas de crecimiento	24
3.8.1. Evolución del producto interno bruto (PIB)	25
3.8.2. Evolución de los registros de población (POB)	26
3.8.3. Consolidado de las tasas de crecimiento	27
3.9. Selección de la tasa de crecimiento	28
3.10. Determinación del tránsito de diseño	28
3.10.1. Período de Diseño (PD)	28
3.10.2. Factor de crecimiento (Fc)	29
3.10.3. Factor distribución por dirección (Fd)	30
3.10.4. Factor distribución por carril (fc)	30
3.10.5. El índice de serviciabilidad inicial (P ₀)	31
3.10.6. El índice de serviciabilidad final (Pt)	31
3.10.7. Número estructural asumido (SN)	31
3.10.8. Factor de equivalencia (FESAL)	
3.10.9. Ejes equivalentes (ESAL o W18)	34
CAPÍTULO IV	
ESTUDIO GEOTÉCNICO	
4.1. Introducción	36
4.2. Metodología	36
4.3. Sondeos manuales sobre la línea vial	37
4.3.1. Características geotécnicas de los suelos en la línea vial	38
4.3.2. Resumen los resultados de ensayos de laboratorio	42
4.4. Resultados de ensayos a bancos de préstamo	46
4.4.1. Consideraciones para elección del banco a utilizar	48
4.4.2. Consideraciones para la subbase	48
4.5. Evaluación del Banco de préstamo N°1 propuesto para la capa base	49
4.6. Banco de préstamo N°1 propuesto para la capa subbase	49
4.7. Determinación del CBR de Diseño	52

CAPÍTULO V	
DISEÑO GEOMÉTRICO	
5.1. Introducción	57
5.2. Metodología	57
5.3. Ubicación geográfica de la vía	57
5.4. Clasificación funcional de la vía	57
5.5. Criterios de diseño	58
5.5.1. Vehículo de diseño	58
5.6. Criterios de diseño	59
5.6.1. Vehículo de diseño	59
5.7. Elementos de la sección transversal	60
5.7.1. Número de carriles	60
5.7.2. Ancho de carril de rodamiento	60
5.7.3. Corona o plataforma	60
5.7.4. Superficie de rodamiento	6 ²
5.7.5. Pendiente transversal	6 ²
5.7.6. Pendiente de hombro	6 ²
5.8. Elementos de diseño	6 ²
5.8.1. Distancia de visibilidad	6
5.9. Alineamiento horizontal	65
5.9.1. Coeficiente de fricción lateral (f)	66
5.9.2. Sobreelevación máxima	66
5.9.3. Radio mínimo	66
5.9.4. Grado de curva	67
5.9.5. Máxima pendiente relativa	68
5.9.6. Resultados de alineamiento horizontal	68
5.9.7. Peralte (ed)	72
5.9.8. Resultado de Peralte en Civil-3D	73
5.9.9. Sobre anchos en curvas	74
5.9.10. Resultado de Sobreancho en Civil-3D	75
5.10. Diseño altimétrico del proyecto	76
5.11. Alineamiento vertical en autodesk civil 3D	78

CAPÍTULO VI

DISEÑO DE PAVIMENTO

6.1. Introducción	83
6.2. Generalidades	83
6.3. Consideraciones del Diseño AASHTO 93	83
6.3.1. Carga de Ejes Simples Equivalentes (ESAL)	83
6.3.2. Confiabilidad (R)	84
6.3.3. Desviación estándar (So)	85
6.3.4. Serviciabilidad o servicapacidad (Po, Pt, Δ PSI)	86
6.3.5. Coeficiente de Drenaje (mi)	86
6.3.6. Módulo de resiliente de la subrasante (Mr)	87
6.3.7. Coeficientes estructurales o de capa (a _n)	88
6.3.8. Números estructurales (SN)	91
6.4. Cálculo de los números estructurales (SN1, SN2, SN3)	92
6.5. Cálculo de los espesores del pavimento base (D2) y subbase (D3).	95
6.5.1. Espesores finales de diseño	96
RECOMENDACIONES	104
BIBLIOGRAFÍA	106
ANEXOS	I

ÍNDICE DE TABLAS.

Tabla 1: Coordenadas UTM del punto inicial y final del proyecto	6
Tabla 2: Resultados de planimetría del eje principal.	7
Tabla 3: Resultados de planimetría del eje principal (rectas)	8
Tabla 4: Resultados de planimetría del eje principal (rectas)	9
Tabla 5: Consolidado de pendientes por estaciones.	_ 10
Tabla 6: Clasificación de los terrenos en función de las pendientes.	_ 10
Tabla 7: Lista de BM's tramo: empalme Santa Rosa - La Laguna.	_ 11
Tabla 8: Contenido de planos.	_ 11
Tabla 9: Tránsito Promedio Diurno Semanal (TPDiS)/ambos sentidos	_ 16
Tabla 10: Vector geográfico de correspondencia	_ 18
Tabla 11: Porcentajes del volumen vehicular estación (ECD-114)	_ 19
Tabla 12: Dependencia de estaciones (Shell Palacagüina-Emp. Yalagüina).	20
Tabla 13: factores /1er cuatrimestre del año (EMC-1205)	_ 21
Tabla 14: Calculo del TPDA, aplicando factores de ajuste (FD, FE).	_ 22
Tabla 15: Registros históricos del TPDA-114, PIB, y POB	_ 24
Tabla 16: Evolución del TPDA ECD 114 Shell Palacagüina- Emp. Yalagüina.	_ 25
Tabla 17: Tasas de crecimiento anual para PIB	_ 26
Tabla 18: Datos ECD-114 y tasas de crecimiento anual para población.	_ 27
Tabla 19: Consolidado de las tasas de crecimiento calculadas.	_ 27
Tabla 20: Clasificación funcional de la vía	_ 29
Tabla 21: Periodo de diseño (N).	_ 29
Tabla 22: Factor de distribución por dirección (Fd).	_ 30
Tabla 23: Factor de distribución por carril (fc).	_ 30
Tabla 24: Tránsito de diseño.	_ 31
Tabla 25: Factores de ejes kips a interpolar.	_ 32
Tabla 26: Factores equivalente de carga a interpolar para ejes tándem	_ 33
Tabla 27: Cálculo ESAL´S por carril de diseño.	_ 35
Tabla 28: Tipos de ensayos para estudio de suelos.	_ 36
Tabla 29: Trabajos de campo realizados por EDICO.	_ 37
Tabla 30: sondeos manuales.	_ 37

Tabla 31: Sondeos del tramo (Est 0+000, 0+600), (SM-01, SM-07).	_ 43
Tabla 32: Sondeos del tramo (Est 0+700, 0+1400), (SM-08, SM-15).	_ 44
Tabla 33: Bancos de préstamos Identificados.	_ 46
Tabla 34: Normativa para material base granular.	_ 48
Tabla 35: Evaluación Banco N°1 para la capa base	_ 49
Tabla 36: Evaluación Banco N°2 para la capa subbase	_ 50
Tabla 37: Evaluación Banco N°2 para la capa subbase	_ 50
Tabla 38: Bancos Diseño seleccionados.	_ 51
Tabla 39: Altura de corte y relleno de la subrasante.	_ 53
Tabla 40: Ejemplo de toma de muestra en base a subrasante.	_ 53
Tabla 41: Selección de CBR de diseño para la subrasante.	_ 54
Tabla 42: Criterio del Instituto de asfalto para determinar CBR de Diseño.	_ 55
Tabla 43: Clasificación del CBR	_ 55
Tabla 44: Sistema de clasificación funcional.	_ 58
Tabla 45: Dimensiones del vehículo de diseño.	_ 59
Tabla 46: Velocidad de ruedo promedio en base a velocidad de diseño	_ 60
Tabla 47: Coeficiente de fricción en función de la Velocidad.	_ 62
Tabla 48: Distancia de Visibilidad parada en función de la Velocidad	_ 62
Tabla 49: Distancia de Adelantamiento para carreteras de dos carriles.	_ 65
Tabla 50: Coeficiente de fricción lateral en función de la velocidad.	_ 66
Tabla 51: La sobreelevación o peralte según tipo de área	_ 66
Tabla 52: Radios mínimos y grados máximos de Curvas.	_ 67
Tabla 53: Máximas pendientes relativas.	_ 68
Tabla 54: Datos generales de curvas horizontales.	_ 71
Tabla 55: Niveles de confiabilidad r en función del tipo de carretera.	_ 85
Tabla 56: Valores de Zr en función de la confiabilidad R	_ 85
Tabla 57: Desviación Estándar Dependiendo de las Condiciones de Servicio.	86
Tabla 58: Factores de Serviciabilidad.	_ 86
Tabla 59: Capacidad del drenaje para remover la humedad	_ 87
Tabla 60: Niveles de humedad cercanos a la saturación	_ 87
Tabla 61: Correlación entre el CBR y módulo resiliente para sub-rasante	_ 88

Tabla 62: Espesores mínimos sugeridos por capa.	95
Tabla 63: Datos para utilizar en WinPAS versión 1.0.4.	98
Tabla 64: Datos técnicos de levantamiento.	
Tabla 65: Datos técnicos de levantamiento.	VIII
Tabla 66: Datos técnicos de levantamiento.	
Tabla 67: Datos técnicos de levantamiento.	X
Tabla 68: Datos técnicos de levantamiento.	XI
Tabla 69: Datos técnicos de levantamiento.	XII
Tabla 70: Datos técnicos de levantamiento.	
Tabla 71: Datos técnicos de levantamiento.	XIV
Tabla 72: Datos técnicos de levantamiento.	
Tabla 73: Datos técnicos de levantamiento.	XVI
Tabla 74: Datos técnicos de levantamiento.	XVII
Tabla 75: Datos técnicos de levantamiento.	_ XVIII
Tabla 76: Datos técnicos de levantamiento.	XIX
Tabla 77: Datos técnicos de levantamiento.	XX
Tabla 78: Datos técnicos de levantamiento.	XXI
Tabla 79: Tabla de simbología.	XXII
Tabla 80: Formato para conteo de tránsito vehicular por 12 horas diurnas	_ XXIII
Tabla 81: Conteo de Tránsito Vehicular Diurno semanal (lunes).	_XXIV
Tabla 82: Composición vehicular del lunes/ ambos sentidos Est: 0+000	_ XXV
Tabla 83: Conteo de tránsito vehicular diurno semanal (martes).	_ XXVI
Tabla 84: Volumen vehicular del martes/ ambos sentidos Est: 0+000.	XXVII
Tabla 85: Conteo de tránsito vehicular diurno semanal (miércoles)	XXVIII
Tabla 86: Volumen vehicular del miércoles/ ambos sentidos Est: 0+000.	_ XXIX
Tabla 87: Conteo de tránsito vehicular diurno semanal (jueves).	_ xxx
Tabla 88: Volumen vehicular del jueves/ ambos sentidos Est: 0+000.	_ XXXI
Tabla 89: Conteo de tránsito vehicular diurno semanal (viernes).	XXXII
Tabla 90: Volumen vehicular del viernes/ ambos sentidos Est: 0+000.	XXXIII
Tabla 91: Conteo de tránsito vehicular diurno semanal (sábado).	XXXIV
Tabla 92: Volumen vehicular del sábado/ ambos sentidos Est: 0+000	XXX\/

Tabla 93: Conteo de tránsito vehicular diurno semanal (domingo)XXXVI
Tabla 94: Volumen vehicular del domingo / ambos sentidos Est: 0+000 XXXVII
Tabla 95: Factores de ajustes para ECD-114 bajo la EMC-107XXXVIII
Tabla 96: Indicadores macroeconómicos de PIB, POBXXXIX
Tabla 97: Tipología y descripción vehicular de conteos de tránsitoXL
Tabla 98: Listado histórico TPDA ECD-114 XLI
Tabla 99: Crecimiento económico de Nicaragua año-2020XLII
Tabla 100: Diagrama de cargas permisibles (vehículos livianos y pasajeros). XLIII
Tabla 101: Diagrama de cargas permisibles (vehículos pesados) XLIII
Tabla 102: Factores equivalentes de cargas, ejes simples Pt= 2.0 XLIV
Tabla 103: Factores equivalentes de cargas, ejes tándem, Pt= 2.0XLV
Tabla 104: Interpolación lineal para los valores (2.2, 4.4, 8.8) ejes simples. XLVI
Tabla 105: Interpolación lineal (11, 17.60, 22) kips, ejes simples XLVI
Tabla 106: Interpolación lineal (36.30) kips, eje tándem XLVI
Tabla 107: Clasificación de suelos AASHTO M-145XLVII
Tabla 108: Requerimientos de granulometría de subbase-base XLVIII
Tabla 109: Propiedades fisicomecanica de los bancos de préstamos XLIX
Tabla 110: Ensayos desgaste de los ángeles, banco N°1 Adolfo BenavidesLl
Tabla 111: Ensayos desgaste de los ángeles, banco N°2 Bayardo HurtadoLIII
Tabla 112: Muestras tomadas en base a la subrasante propuesta en planos. LIV
Tabla 113: Muestras tomadas en base a la subrasante propuesta en planos LV
Tabla 114: Distribución de peralte para cada uno de los radios presentados. LVII
Tabla 115: Sobre anchos en curvas LVIII

ÍNDICE DE IMÁGENES.

Imagen 1: Ubicación del aforo vehicular.	13
Imagen 2: Ubicación de bancos de materiales existentes.	47
Imagen 3: Detalles de peralte de Curva # 8(PI 8).	73
Imagen 4: Resultado de Peralte Curva # 8(PI 8).	74
Imagen 5: Resultado de sobreancho (curva no. 8).	75
Imagen 6: Herramienta de creación de perfiles.	78
Imagen 7: creación de nuevo perfil (Rasante).	78
Imagen 8: Herramientas de composición de perfil.	79
Imagen 9: Curvas verticales trazadas.	79
Imagen 10: Curva vertical CV-11 (cresta).	80
Imagen 11: Curva vertical CV-13 (columpio).	81
Imagen 12: Alineamiento vertical.	82
Imagen 13: Coeficientes de capa para la estructura de pavimento.	89
Imagen 14: Comprobación del SN ₃ .	94
Imagen 15: Comprobación del SN ₂ .	94
Imagen 16: Estructura Final de Pavimento.	97
Imagen 17: Software de diseño WinPAS	98
Imagen 18: Selección del tipo de pavimento a diseñar.	99
Imagen 19: Introducción de datos en WinPAS	99
Imagen 20: Cálculo de SN requerido en WinPAS.	100
Imagen 21: SN requerido.	100
Imagen 22: Introducción de layers de diseño	101
Imagen 23: Estructura final WinPAS-10.	102
Imagen 24: Estructura final de pavimento articulado	102
Imagen 25. Macro Localización Nicaragua (Departamento de Estelí)	
Imagen 26. Micro localización del tramo en estudio.	
Imagen 27: Banco de préstamo n°1 Adolfo Benavides	L
Imagen 28: Banco de préstamo N°2 Bayardo Hurtado.	LII
Imagen 29: Vehículo de diseño (C3).	LVI
Imagen 30: Características del adoquín tipo tráfico.	LIX

ÍNDICE DE GRÁFICOS.

Gráfico 1: Rango de radios de curvatura predominantes.	_ 8
Gráfico 2: Rango de rectas predominantes.	_ 9
Gráfico 3: Comportamiento del Tránsito Promedio Diurno Semanal por día	17
Gráfico 4: Composición del Tránsito Promedio Diurno semanal por vehículo	17
Gráfico 5: Composición de Tránsito Promedio Diario Anual (TPDA).	23
Gráfico 6: Estratigrafía (Est 0+00-1+400), sondeos (S-1, al S-15)	45
Gráfico 7: Estimación del CBR de diseño.	56
Gráfico 8: Coeficiente estructural a2, para base granular.	90
Gráfico 9: Coeficiente estructural a ₃ , para subbase granular.	91
Gráfico 10: Obtención del número estructural SN ₂ y SN ₃	93

1.1 Introducción.

Estelí departamento de Nicaragua está situado en la Región Las Segovias y está compuesto por seis municipios: Estelí, Condega, La Trinidad, Pueblo Nuevo, San Juan de Limay y San Nicolas. posee una población estimada de 228,766 habitantes. Su extensión territorial es de 2,229.69 km². (Ver Anexos Imagen 25 pág. I). Sus vías poseen 120.91 Kilómetros de adoquín, 72.46 kilómetros de Asfalto, 225.86 kilómetros de revestimiento con Macadán (MTI, Red Vial, 2020).

El proyecto en análisis pertenece al municipio de Condega este a su vez al departamento de Estelí y se encuentra a 185.8 kilómetros de Managua, capital de la República de Nicaragua (Centroamérica). Esta red vial es de significativa importancia, ya que, comunica con otras comunidades aledañas como (Venecia, Canta Gallo y Las Limas), así como a diferentes fincas cafetaleras altamente productivas, por lo que es necesario una vía en buen estado para el traslado de personas y rubros producidos en la zona. (Ver anexos, Imagen 26, págs. II).

El tramo es estudio contemplara la realización del diseño geométrico y espesores de la estructura de pavimento articulado, este pretende comunicar a la comunidad la Laguna con el tramo de carretera Yalí-Condega sobre la Nic-3 situado a 15 kilómetros del casco urbano del municipio de Condega. La propuesta contribuirá al desarrollo de la comunidad además de potenciar el comercio y mejorar en gran medida la calidad de vida de los habitantes.

Esta monografía abordará estudios técnicos como levantamientos de datos de campo, para los capítulos de topografía, tránsito, geotecnia, así como el diseño geométrico de la vía, posterior se procesará la información bajo la metodología de la AASHTO-93, la cual toma en consideración el valor de soporte del suelo, así como las cargas a la cual se diseñara la vía, el diseño cumplirá con las especificaciones generales de la NIC-2019, esta incorpora parámetros y correlaciones para realizar un diseño confiable y duradero, dicho diseño se apegará a las especificaciones del Manual Centro Americano para el Diseño de Pavimento (SIECA, 2002) y (SIECA, 2011).

1.2 Antecedentes.

La comunidad La Laguna se fundó en el año 1974, doce años después de haberse creado el municipio de Condega, los primeros proyectos de desarrollo en la comunidad fueron el suministro de agua potable realizados por la población misma con la excavación de cinco pozos a mano de los cuales extraían el vital líquido de forma manual, así como de manantiales propios de la zona, de los cuales los primeros habitantes sustentaban sus necesidades diarias. (Alcaldia, 2022).

Posterior en el año 2008 el gobierno de reconciliación nacional financió la realización de doce mini acueductos por gravedad de los cuales los pobladores fueron protagonistas, así como otras comunidades cercanas al tramo en estudio, abasteciendo a más de 1,800 personas.

Actualmente los pobladores cuentan con el suministro de energía eléctrica proyecto realizado en el año 2016 por la empresa ENEL en coordinación con la alcaldía municipal de Condega. El proyecto consistió en la electrificación de 480 viviendas beneficiando a todos los habitantes del sector, además de la instalación de bombas eléctricas de succión para los pozos existentes. (Alcaldia, 2022).

Según la líder comunitario Felipe Castillo, (Comunicacion personal, de julio de 2022) en los años setenta la comunidad era una finca la que tenía por nombre La Laguna con una extensión equivalente a 34 hectáreas, en sus inicios solo existían ocho (8) casas las cuales estaban distanciadas unas a otra, la propiedad pertenecía al ganadero Tobías Valenzuela, poco después la propiedad fue lotificada para la venta de lotes a bajos costos.

Los últimos huracanes lota, lan y Julia deterioraron la superficie de rodamiento por lo cual la plataforma vial no posee un nivel de serviciabilidad adecuado para desplazarse a los diferentes destinos, por lo cual es imperativo contar con un diseño que permita realizar la gestión de fondos para dar respuesta a esta problemática. El último mantenimiento realizado en la zona fue en el mes de enero año 2018. (Ver anexos, Fotos 1-8, págs. III-VI).

1.3 Justificación.

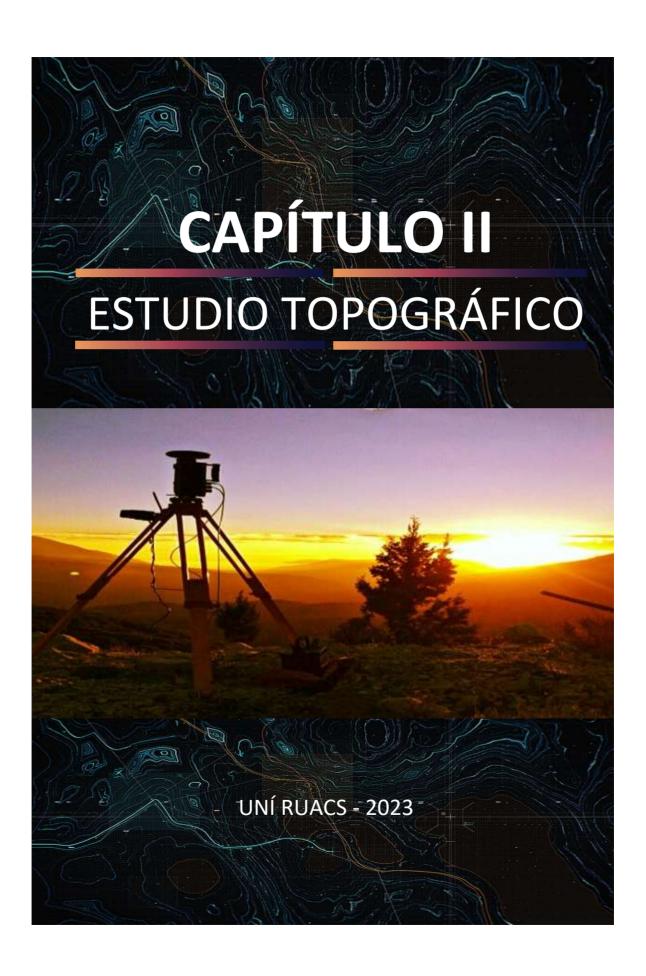
El presente estudio es de vital importancia para el desarrollo socioeconómico de la comunidad y el municipio, ya que, la principal actividad económica es agrícola predominando el cultivo de café, granos básicos y tabaco. Este último abastece a las diferentes fabricas procesadoras de tabaco de Condega y departamento de Estelí. Por lo que contar con una red vial en buenas condiciones para el traslado de esos rubros e insumos es de carácter prioritario para sus habitantes, además de ser una ruta que comunica con diferentes comunidades como: Venecia, El Quebracho, Canta Gallo, El Zapote, y las Limas.

La iniciativa de realizar el diseño geométrico y estructural de la superficie de rodamiento de la comunidad La Laguna es contribuir con un estudio que satisfaga la demanda de la población, el cual mejore las condiciones de tránsito, seguridad y confort de sus habitantes cumpliendo con las normas y especificaciones técnicas para el cual será diseñado.

Es importante mencionar que el tramo en estudio comunica a la reserva natural "Canta Gallo" en la cual hay una afluencia considerable de turistas tanto local como internacional por lo que de realizarse este proyecto se aumentaría su visita maximizando nuevas oportunidades de empleo, así como la venta de productos locales.

El enfoque de este estudio y su aportación al conocimiento tiene un enfoque dinámico para futuras investigaciones a nivel académico, ofrecerá a estudiantes un material de consulta que les permitirá obtener instrucciones de los procedimientos de análisis y criterios de diseño aplicados en este estudio.

Al ejecutarse este proyecto se estará contribuyendo a crear las condiciones necesarias para garantizar una serviciabilidad adecuada a los diferentes usuarios y protagonistas del área de influencia, además de un notable incrementando en la plusvalía de las viviendas, aumentando la calidad de vida de los habitantes. La población directa beneficiada será de 962 habitantes, e indirectamente a 2100 de comunidades aledañas.


1.4 Objetivos.

1.4.1. Objetivo General.

Diseñar geométricamente el tramo y la estructura de pavimento articulado de 1.4 kilómetros, empalme Santa Rosa- comunidad la Laguna, ubicado en el municipio de Condega, departamento de Estelí, por el método de AASHTO-93, 2022.

1.4.2. Objetivos Específicos.

- Realizar el levantamiento topográfico que permita la representación altiplanimétrica del tramo, utilizando el Software Civil 3D 2022, para la definición del tipo de terreno.
- Calcular el Tránsito Promedio Diario Anual, cargas actuales y futuras por medio de un aforo vehicular manual, utilizando el anuario de aforos de tráfico año 2020.
- Analizar el estudio geotécnico existente del tramo, realizado por Ingeniería Geotécnica (INGENICA), así como de los bancos de materiales locales, para el diseño de la estructura de pavimento articulado.
- Diseñar geométricamente el tramo en estudio, aplicando el manual centroamericano de normas para el diseño geométrico de carreras, SIECA 2011, empleando el Software Civil 3D 2022.
- ➤ Determinar los espesores de la estructura de pavimento articulado, aplicando el método de la AASHTO-93 y Software WinPAS 10 (1.0.4), para su comprobación.

2.1. Introducción

La topografía es una ciencia geométrica aplicada a la descripción de la realidad física inmóvil circundante, es plasmar en un plano topográfico la realidad vista en campo, en el ámbito rural ó natural, de la superficie terrestre; en el ámbito urbano, es la descripción de los hechos existentes en un lugar determinado: muros, edificios, calles, entre otros.

2.2. Metodología

El levantamiento topográfico del tramo de 1.47 kilómetros de longitud, se realizó en conjunto con la alcaldía de Condega (área de planificación urbana), iniciando en el empalme Santa Rosa (Estación 0+000), hasta finalizar en la Comunidad La Laguna (Estación 1+470).

El procedimiento utilizado para el levantamiento fue el método de perfil longitudinal y secciones transversales considerando que es el más adecuado para carreteras. Este levantamiento nos permitió conocer las condiciones actuales del terreno, así como su altimetría y planimetría con lo que se obtuvo una descripción exacta de la zona en cuanto a relieve y detalles a escala en el tramo en estudio. Los datos obtenidos fueron procesados mediante el software Autodesk Civil 3D 2022.

2.3. Localización del proyecto

El tramo en estudio está localizado en municipio de Condega, del departamento de Estelí. Ver macro localización y micro localización que se muestra en **Anexos**, **Imagen 25-26**, **pág. I-II**.

2.4. Sistema de coordenadas

Todas las coordenadas establecidas corresponden a un sistema escalado UTM WGS84 (Universal Transversal Mercator/ World Geodetic System 1984), las mediciones fueron realizadas con Estación Total (Leica TS06), este sistema es usado mundialmente, este permite localizar cualquier punto de la tierra por medio de tres unidades dadas (x= Este, y=norte, z=elevación).

Tabla 1: Coordenadas UTM del punto inicial y final del proyecto.

		Sistema de Coordenadas UTM WGS84			
Punto LC No.	Estación	Este (X)	Norte (Y)	Elevación (Z)	
	"Empalme Santa Rosa"				
*PI	0+000	576,799.507	1,482,397.12	379.29 msnm***	
"Comunidad La Laguna"					
**PF	1+470	577,307.565	1,482,367.55	499.04 msnm	
Observación:					
* PI: Punto Inicial. ** PF: Punto Final. *** msnm: metros sobre el nivel del mar.					

Fuente: Elaborado por sustentantes.

2.5. Equipo topográfico

Los trabajos correspondientes al levantamiento topográfico se realizaron en un lapso de 2 días, lo cual fue realizado a partir de la brigada de topografía estructurada por 4 personas:

- Operador de aparato eléctrico (1).
- Ayudante de topografía (2).
- Apuntador (1).

Equipo Topográfico utilizado:

- Estación total (SOKKIA SET 620 K).
- Trípode (1).
- Bastón (1).
- Prisma 30 mm (1).
- Spray (2).
- Cinta métrica (20metros).

2.6. Perfil longitudinal

Se siguió la metodología de levantar puntos iniciando en el punto número (estación 0+000), uno en el eje del camino tomando los datos en secciones transversales a una distancia de 20 metros entre una y otra incluyendo por radiaciones para la infraestructura existente. En **anexos**, se presentan los resultados del levantamiento topográfico para el proyecto en análisis (**Tablas 64-79, pág. VII-XXII**).

2.7. Secciones transversales del camino

Apoyándose en los puntos de la poligonal base se procedió al levantamiento altiplanimétrica de las secciones transversales cada 20 metros. De igual manera para el levantamiento de la infraestructura existente (casas, postes de teléfono y energía, árboles, escuelas, etc.) se utilizó los puntos de la Poligonal Base como amarre de coordenadas.

2.8. Levantamiento topográfico planimétrico

Basados en el levantamiento topográfico, el tramo presenta una geometría planimétrica poco sinuosa con curvas horizontales con radios de curvatura en su mayoría mayores a 100 metros. El eje principal de 1.47 Kilómetros está compuesto por 16 curvas horizontales (P1-P16) y 17 tramos rectos (L1-L17).

Tabla 2: Resultados de planimetría del eje principal.

	EJE PRINCIPAL					EJE PRINCIPAL			
14"	Radio	Longitud	Rumbo	Estacion	No	Radio	Longitud	Rumbo	Estacion
1.1		42.82	N47" 05' 51 55"E	0+000.00	L11		13.85	N26" 31" 32.79"E	1+005.01
PI: 1	150.00	92.94	N29" 20" 50.67"E	0+042.82	Pl: 11	200.00	27.33	N30" 26" 26.91"E	1+018.86
L2		18.48	N11" 35' 49 80"E	0+135.76	L12		14 59	N34" 21' 21.04"E	1+046.19
PI: 2	1000.00	72.94	N9" 30' 27.56"E	0+154.24	Pt: 12	200.00	27.38	N30" 25" 59.86"E	1+060.78
L3		59.12	N7° 25' 05.33°E	0+227.18	L13		12.19	N26" 30" 38.69"E	1+088.17
PI:3	500.00	56.78	N10° 40' 17.10°E	0+286.30	PI:13	200.00	26.62	N30" 19" 25.81"E	1+100.36
L,4		56.33	N13" 55' 28.87"E	0+343.08	L14		69.44	N34" 08" 12.94"E	1+126.98
PI:4	1000.00	36.88	N12" 52' 05.34"E	0+399.41	Pt:14	70.00	30.36	N21" 42" 42.15"E	1+196.42
L5		192.68	N11" 48" 41.81"E	0+436.29	L15		47.95	N9" 17" 11.37"E	1+226.78
PI:5	100.00	25.55	N4" 29" 29.35"E	0+628.97	PI: 15	90.00	75.96	N33" 27' 51.83"E	1+274.73
L6		26.46	N2" 49" 43.12"W	0+654.53	L16		38.92	N57" 38' 32.29"E	1+350.69
PI: 6	70.00	42.54	N14" 34' 59.22"E	0+680 99	Pl:16	200.00	45.16	N64" 06" 39.31"E	1+389.61
L7:		45.23	N31" 59" 41.56"E	0+723.54	L17		34.13	N70" 34" 46.34"E	1+434.77
PI:7	100.00	79.48	N9" 13" 34.17"E	0+768.77	1				
L8		28.22	N13" 32" 33.22"W	0+848.25	RE	CTAS (L1-L17) =	= 730.864 m (49.	72%).
Pt: 8	50.00	43.77	N11" 32' 00.87"E	0+876.46	CURVAS (R1-R16) = 739.163 m (50.28%).).28%).
L9		14.54	N36" 36" 34.97"E	0+920.23					
PI: 9	150.00	27.14	N41° 47′ 36 40″E	0+934.77					
L10		14.54	N46" 58" 37.83"E	0+961.91					
PI 10	80.00	28.56	N36" 45" 05.31"E	0+976.45					

Fuente: Autodesk Civil- 3D (2022).

2.8.1. Curvas horizontales

En el tramo existen 16 curvas horizontales identificadas de las cuales 5 poseen radios menores a 100 metros y 8 poseen radios entre 100 y 500 metros. El radio de curvatura de mayor importancia se ubicada entre las estaciones **0+876.464** y **0+918.846**, con un Radio de **47 metros** y una longitud de **42.382 metros**, los datos de cada curva se presentan en Tabla 3-Grafico 1, pág. 8.

Tabla 3: Resultados de planimetría del eje principal (rectas).

PI	EST PI	EST PC	EST PM	EST PT	R	Lc
1	0+090.840	0+042.824	0+088.555	0+134.285	150.00	91.461
2	0+190.730	0+154.245	0+190.706	0+227.166	1000.00	72.921
3	0+314.720	0+286.299	0+314.674	0+343.049	500.00	56.750
4	0+417.860	0+399.418	0+417.857	0+436.296	1000.00	36.878
5	0+641.820	0+628.974	0+641.716	0+654.457	100.00	25.483
6	0+702.940	0+680.988	0+701.935	0+722.881	70.00	41.893
7	0+810.740	0+768.768	0+807.469	0+846.170	100.00	77.402
8	0+899.860	0+876.464	0+897.655	0+918.846	50.00	42.382
9	0+948.560	0+934.952	0+948.505	0+962.057	150.00	27.105
10	0+991.060	0+976.629	0+990.831	1+005.033	80.00	28.404
11	1+032.730	1+019.043	1+032.699	1+046.354	200.00	27.311
12	1+074.680	1+060.966	1+074.648	1+088.329	200.00	27.363
13	1+113.870	1+100.540	1+113.841	1+127.141	200.00	26.601
14	1+212.030	1+196.607	1+211.669	1+226.730	70.00	30.123
15	1+315.320	1+274.914	1+311.776	1+348.637	90.00	73.723
16	1+412.740	1+390.064	1+412.596	1+435.128	200.00	45.064

Fuente: Autodesk Civil- 3D (2022).

Gráfico- 1: Rango de radios de curvatura predominantes.

Fuente: Elaborado por sustentantes.

2.8.2. Tramos rectos

Se identificaron 17 tramos rectos a lo largo del tramo, de los cuales la recta de mayor importancia se ubicada entre las estaciones 0+436.296 y 0+628.974, con una longitud de 192.678 metros, los datos de cada recta se presentan en la Tabla 4- Gráfico 2:

 Tabla 4: Resultados de planimetría del eje principal (rectas).

N°	LR (Metros)	EST. INICIAL	EST. FINAL		
1	42.824	0+000.000	0+042.824		
2	19.960	0+134.285	0+154.245		
3	59.133	0+227.166	0+286.299		
4	56.369	0+343.049	0+399.418		
5	192.678	0+436.296	0+628.974		
6	26.531	0+654.457	0+680.988		
7	45.887	0+722.881	0+768.768		
8	30.294	0+846.170	0+876.464		
9	15.926	0+918.846	0+934.772		
10	14.572	0+961.877	0+976.449		
11	14.010	1+004.853	1+018.863		
12	14.612	1+046.174	1+060.786		
13	12.211	1+088.149	1+100.360		
14	69.456	1+126.961	1+196.417		
15	48.194	1+226.540	1+274.734		
16	41.157	1+348.457	1+389.614		
17	35.322	1+434.678	1+470.000		
LR= Longitud de Recta. EST= Estación.					

Fuente: Autodesk Civil- 3D (2022).

RANGO DE RECTAS PREDOMINATES TRAMO 1.47km 13 FRECUENCIA DE LOS VALORES DE RECTAS EN LOS RANGOS RANGO DE VALORES DE RECTA ■ 10 - 50 metros ■ 50 - 100 metros 3 ■ 100 - 200 metros FRECUENCIA DE LOS VALORES DE RADIOS DE CURVATURA EN LOS **RANGOS** RANGO DE VALORES DE RECTAS

Gráfico- 2: Rango de rectas predominantes.

Fuente: Elaborado por sustentantes.

2.9. Altimetría del tramo

El tramo de proyecto del Empalme Santa Rosa-comunidad La Laguna, se encuentra enmarcado en una zona que se caracteriza por ser del tipo de terreno **ondulado**, destacando las pendientes entre 10-15%.

Tabla 5: Consolidado de pendientes por estaciones.

N°	INICIO	FIN	PENDIENTE	
1	0+000.00	0+041.45	7.33 %	+
2	0+041.45	0+091.63	11.01%	+
3	0+091.63	0+190.77	8.32%	+
4	0+190.77	0+308.54	9.09%	+
5	0+308.54	0+456.30	4.71%	+
6	0+456.30	0+579.23	12.00%	+
7	0+579.23	0+663.17	8.49%	+
8	0+663.17	0+890.06	14.37%	+
9	0+890.06	1+015.94	11.24%	+
10	1+015.94	1+193.92	11.64%	+
11	1+193.92	1+311.55	11.97%	-
12	1+311.55	1+470.00	0.50%	-

Fuente: Elaborado por Sustentantes.

Tabla 6: Clasificación de los terrenos en función de las pendientes.

Tipo de terreno	Rango de pendientes (%)		
Llano o Plano	P≤5		
Ondulado	5 > P ≤ 15		
Montañoso	15 > P ≥30		

Fuente: SIECA-2011(Normas para el Diseño Geométrico de las Carreteras Regionales, p. 33).

2.10. Establecimiento de BMs

En la **Tabla No.7**, **p.11**, se muestran todos los resultados obtenidos luego del postproceso de los datos recopilados durante la georreferenciación en el sistema de coordenadas geográfico WGS84 (sistema nacional vigente) y su proyección al sistema UTM.

Tabla 7: Lista de BM's tramo: empalme Santa Rosa - La Laguna.

ID	Estación	Norte	Este	Elevación
1	0+022	1,482,409.599	576,819.787	380.751
2	0+137	1,482,504.564	576,879.595	389.937
3	0+311	1,482,678.957	576,897.169	404.375
4	0+397	1,482,761.875	576,926.188	409.269
5	0+685	1,483,046.941	576,979.999	436.212
6	0+794	1,483,144.955	577,011.322	452.940
7	0+980	1,483,305.327	577,066.544	479.892
8	1+124	1,483,436.929	577,130.993	497.360
9	1+209	1,483,501.465	577,185.670	502.850
10	1+312	1,483,608.891	577,200.658	509.330
11	1+432	1,483,674.728	577,302.729	499.261

Fuente: Levantamiento por Sustentantes -Alcaldía de Condega (2022).

Los detalles de la referenciación de BM's se muestran en Anexos/planos (lamina 21-22).

2.11. Desarrollo de planos

En el juego de planos constructivos se incluyen hojas que contienen planta-perfil, secciones transversales, detalles constructivos típicos de adoquinado, sondeos y estratigrafía. Para las secciones trasversales se utilizó la escala (1:200) y para Planta-Perfil (Horizontal 1:1000, Vertical 1:100). Todo ello fue editado en el software Autodesk Civil-3D 2022 y se presentan en 26 láminas formato tabloide, el contenido es el siguiente:

Tabla N° 8: Contenido de planos.

Contenido de Planos	N° Iaminas	
I. Portada.	1	
II. Planta-Perfil.	5	
III. Perfil longitudinal	4	
IV. Secciones transversales.	12	
V. Sección típica vial.	1	
VI. Detalles típicos / Estudios de suelo.		
VII. Referenciación de BM's	2	

Fuente: Elaborado por sustentantes.

3.1. Introducción

La ingeniería de tránsito es la rama de la ingeniería de transporte que tiene que ver con la planeación, el proyecto geométrico y operación del tránsito por calles y carreteras, sus redes, terminales, tierras adyacentes y su relación con otros modos de Transporte. Siendo la ingeniería de tránsito un conjunto de conocimientos, habilidades, destrezas, prácticas profesionales principios y valores necesarios para satisfacer las necesidades sociales sobre movilidad de personas y bienes.

3.2. Generalidades

Este capítulo tuvo como objetivo estimar las cargas equivalentes de cada vehículo que circula por el tramo y que actuaran en la estructura de pavimento articulado (adoquín) durante un periodo de diseño, en función de los volúmenes que circulan por la vía. Para finalmente dar cumplimiento con el alcance de dicho estudio. Para ello se realizaron ciertas actividades que consistieron en la recopilación de datos de campo in situ, con la finalidad de cuantificar el volumen de tráfico que es usuario actual del tramo en estudio en ambos sentidos del flujo.

Metodología del estudio

3.3. Procesamiento de información

Es la etapa de trabajo de gabinete en la cual se procesó toda la información obtenida de los conteos de aforo vehicular mediante el Software Microsoft Excel, esto con la finalidad de simplificar los procedimientos de cálculo, basádos esto en la Revista Anuario de Tránsito del Ministerio de Transporte 2020.

3.4. Análisis de la información obtenida

En esta etapa se usó los criterios del Anuario de Aforos de Tráfico año 2020 y el libro de Ingeniería de Tránsito fundamentos y aplicaciones del Ing. Rafael cal y Mayor año 2017, para comprender de una mejor manera los resultados obtenidos.

3.5. Consolidado del conteo vehicular

De la información obtenida en los conteos, se determinó el volumen de tránsito vehicular diurno a partir de los datos levantados en campo. En la **Tabla-9**, **pág. 16** se presentan los conteos del tránsito, según su composición y clasificación. **Ver Anexos**, **Tabla 81-94 pág. XXIV, XXXVII**

3.6. Procedimiento de campo

Antes de realizar el aforo vehicular se estudió la clasificación vehicular de conformidad al anuario de aforos de tráfico del MTI-2020. También se hizo uso de chaleco reflectivo y cono como dispositivo de seguridad.

3.7. Estación de conteo vehicular

La recolección de los datos de campo para determinar el volumen de vehículos se ubicó en la estación: **0+000 inicio del tramo.** La elección de este punto se basó en que es el único acceso vehicular hacia la comunidad, en el cual se pudo captar el 100%, de los vehículos que ingresaban por dicho tramo. Sus coordenadas geográficas son: Norte: 13°24'29.9", Oeste: 86°17'26.3". Ver a continuación:

Imagen- 1: Ubicación del aforo vehicular.

Fuente: https://earth.google.com/web/search/santa+rosa+condega/@13.41292711,-86.28724588,928.43846425a,2445.22245505d,35y

3.7.1. Duración de conteo y clasificación vehicular

La recolección de datos de campo tuvo una duración de siete (7) días consecutivos, en las fechas del lunes 07 hasta al 13 de noviembre del año 2022, entre las 06:00 horas y las 18:00 horas, a fin de evaluar las condiciones de tránsito normales, basándonos para esto en la Tipología y Descripción Vehicular que brinda la Revista Anuario de Tránsito del Ministerio de Transporte 2020. Para realizar el aforo, se utilizó el formato mostrado en el *Anexos, Tabla 80, pág. XXIII*

3.7.2. Tipos de vehículos

Para el levantamiento de la información de campo fue necesario tener en consideración las características de los vehículos, en nuestro país actualmente hay una gran variedad de vehículos, en total el Ministerio de Transporte e Infra-Estructura MTI presenta una clasificación vehícular compuesta por 17 tipos de vehículos, los que se clasifican en tres categorías. (Ver Anexos, Tabla 97, pág. XL)

Motocicletas

Se incluyen todas las categorías de dos, tres y cuatro ruedas de vehículos motorizados, en esta categoría incluyen scooter, motonetas, motonetas y otros triciclos a motor.

Vehículos livianos

Son los vehículos automotores de cuatro ruedas que incluyen, los Automóviles, Camionetas, Pick – Ups y Jeep.

Vehículos pesados de pasajeros

Son los vehículos destinados al Transporte Público de Pasajeros de cuatro, seis y más ruedas, que incluyen los Microbuses Pequeños (hasta 15 Pasajeros) y Microbuses Medianos (hasta 25 pasajeros) y los Buses medianos y grandes.

Vehículos pesados de carga

Son vehículos destinados al transporte pesado de cargas mayores o iguales a tres toneladas tienen seis o más ruedas en dos, tres, cuatro, cinco y más ejes, estos vehículos incluyen, los camiones de dos ejes (C2) mayores o iguales de tres Toneladas, los camiones de tres ejes (C3), los camiones combinados con remolque del tipo (C2R2), los vehículos articulados de cinco y seis ejes de los tipos (T3S2) y (T3S3) y otros tipos de vehículos especiales, presenta la Tipología y Descripción Vehicular.

3.7.3 Diagrama de cargas permisibles

En el diseño de carreteras tanto en geometría horizontal y vertical, así como en aspectos estructurales es necesario conocer la intensidad de carga, composición y distribución del tránsito. El Ministerio de Transporte e Infraestructura (MTI) ha determinado los límites de carga por tipo de vehículos según su peso y dimensiones. (*Ver Anexos, Tablas 100-101, pág. XLIII,*)

A continuación, se procedió a realizar el cálculo del tránsito promedio diurno semanal (TPDiS), considerando los conteos volumétricos obtenidos en la estación 0+000 (inicio del tramo). **Ver Tabla:9 pág. 16**

3.7.4. Cálculo del Tránsito Promedio Diurno Semanal (TPDiS)

Para el cálculo del Tránsito promedio Diurno semanal (TPDiS), se contó y clasificó el cien por ciento de los vehículos que circularon en ambas direcciones de la vía, durante un período de tiempo específico (7 días).

Para determinar el (TPDiS) fue necesario aplicar la ecuación 1:

$$TPDiS = \frac{Total Diurno}{7 dias}$$
 Ec. 1

Tabla 9: Tránsito Promedio Diurno Semanal (TPDiS)/ambos sentidos.

		ESTACIÓ	ÓN: Est: (0+000) an	nbos sent	idos de la	a via				
		Vel	hículos d	e Pasajer	os		Vehí	culos de C	Carga		TOTAL
Días	Motos	Autos	Jeep	Cta	Mbus	Mb > 15 P	Bus	Liv C2	C2	C3	
Lunes	109	20	24	84	9	4	4	23	24	13	314
Martes	101	16	15	79	14	7	4	30	22	9	297
Miércoles	94	9	18	82	12	4	4	35	17	5	280
Jueves	108	17	22	68	8	6	4	25	25	6	289
Viernes	102	13	17	85	9	5	4	29	17	11	292
Sábado	90	9	12	81	6	7	4	21	15	11	256
Domingo	75	6	7	82	2	4	0	11	11	6	204
Total	679	90	115	561	60	37	24	174	131	61	1932
TPDiS (Vehículos/12 hrs)	97.0	13.0	16.0	80.0	9.0	5.0	3.0	25.0	19.0	9.0	276
% de vehículos	35.14%	4.71%	5.80%	28.99%	3.26%	1.81%	1.09%	9.06%	6.88%	3.26%	100%
Composición	74.64% 25.36%							100%			

Fuente: Elaborado por Sustentantes.

Al finalizar el conteo de 7 días consecutivos durante 12 horas diurnas en la estación de conteo **0+000 (inicio del tramo)** y posterior realizar el consolidado en Microsoft Excel se obtuvo un tránsito promedio Diurno semanal de TPDiS: 276 vpd

Se procedió a realizar un gráfico con los datos obtenidos donde se refleja el comportamiento del tránsito diurno semanal (TPDiS), de igual manera otro Gráfico donde se muestra su composición vehicular en periodo de 7 días y 12 horas diurnas. (Ver gráfico a continuación).

Gráfico- 3: Comportamiento del Tránsito Promedio Diurno Semanal por día.

Fuente: Elaborado por Sustentantes.

En el Gráfico-3 se presenta el comportamiento del tránsito vehicular diurno semanal, donde se aprecia que los días con mayor volumen vehicular es el lunes seguido del martes y en menor cantidad el sábado y domingo.

Gráfico- 4: Composición del Tránsito Promedio Diurno semanal por vehículo.

Fuente: Elaborado por Sustentantes.

En el **Gráfico-4 pág. 17** se aprecia claramente, el comportamiento de la composición vehicular predominando los Vehículos Livianos (motos, autos, camionetas, jeep) seguido de los vehículos pesados (Liv C2, C2, C3), y en menor cantidad los vehículos de pasajeros (bus, micro bus>15p).

3.7.5. Cálculo del TPDA

Para obtener el Tránsito Promedio Diario Anual (TPDA) fue necesario usar factores de ajustes diarios y de expansión, obtenidos del Anuario de Aforos de Tráfico del MTI año 2020, publicado por el Ministerio de Transporte e Infraestructura–DAV. Para expandir (TPDiS_{12 hrs} a TPDA), se consideró utilizar una estación de conteo adecuada que cumpla con características similares al tramo de estudio. para ello se hizo uso de los vectores de correspondencia (vector geográfico, volumen de tránsito vehicular (TPDA) y el porcentaje de tránsito vehicular).

Según el anuario tráfico-2020 del MTI el vector geográfico para el tramo de estudio municipio de Condega, corresponde a la región central norte entre ellos encontramos los departamentos (Nueva Segovia, Madriz, Estelí, Jinotega).

Tabla 10: Vector geográfico de correspondencia.

ANUARIO DE AFOROS DE TRAFICO	Vector	Código	Nombre de Región	Departamentos
AÑO 2020	R1	PS	Pacifico Sur	Masaya, Granada, Carazo, Rivas
	R2	PN	Pacifico Norte	León, Chinandega, Managua
1	R3	CN	Central Norte	Nueva Segovia, Madriz, Esteli, Jinotega Matagalpa, Boaco, Chontales
E RANGE OF THE PARTY OF THE PAR	R4	AS	Atlántico Sur	Región Autónoma del Caribe Sur (RACS), Río San Juan
	R5	AN	Atlántico Norte	Región Autónoma del Caribe Norte (RACN)

Fuente: Anuario de Tráfico 2020. MTI, pág. 15 pdf

Se seleccionó la estación de corta duración **ECD N° 114 Shell Palacagüina- Emp. Yalagüina** la cual se encuentra situado en el departamento de Estelí y está a su vez está bajo la dependencia de la estación de mayor cobertura la EMC-107 Sébaco-Emp. San Isidro.

La elección de la estación seleccionada de corta duración (ECD-114 Shell Palacagüina- Emp. Yalagüina) se sustenta en base a los vectores de correspondencia metodología del anuario de aforos del MTI-2020, la estación se encuentra en la región central norte y los porcentajes de flujo vehicular que presenta son similares a los porcentajes de los conteos de campo del tramo en estudio. Ver tabla a continuación

Tabla 11: Porcentajes del volumen vehicular tramo en estudio y estación seleccionada (ECD-114) Estacion: Em Santa Rosa - comunidad La Laguna Est: (0+000) Dias Vehiculos Livianos Pesados de Pasaleros Pesados de Carga TOTAL Mbus Mb> 15 P **C3** Motos Autos Jeep Cta Liv C2 Lunes Martes Miércoles Jueves Viernes Sábado Domingo Total TPDS(Vehículos/12 hrs) 97.0 13.0 16.0 80.0 9.0 5.0 3.0 25.0 19.0 9.0 276.0 4.71% 5.80% 28.999 3.26% 1.81% 6.88% Porcentajes % 74.64% 100.00% EST. NOMBRE DELTRAMO <15 TPDA reil Palacagúna - Emp. 18 NC-1 3.462 3.089 3.228 1.847 2.189 SIMILAR 2.147 1.430 1.488 EMC:107 3.462 Tasa Crecimiento: 5.49% 969 739 22%

Fuente: sustentantes / Anuario de aforos de tráfico. MTI, Año 2020. Pág. 103.

El Anuario de tráfico del MTI-2020 indica, que se deberá trabajar con una estación de corta duración (ECD) cuando el vector volumen de su TPDA sea de 300 a 5000 Vehículos por día, en este capítulo el estudio da como resultado un TPDA de 336 Vehículos por día, Ver tabla 14, pag.22.

ESTACION DE MAYOR NIC TIPO NOMBRE DEL TRAMO ANUARIO DE AFOROS DE TRAFICO COBERTURA ESTACION ANO 2020 NIC-1 Esteli - Condega Condega - Shell Palacagilina NIC-1 111 FCD Shell Palacaguina - Emp. Yalaguina NIC-1 114 ECD NIC-4 405 ECD Emp. Villa Carlos Fonseca Masachapa(Inte NIC-10 1006 ECD NIC-15 1501 ECD Yalaguina - Ocotal 107 mti NIC-19A 1906 ECS Emp. San Dionisio - San Dionisio Sébaco - Emp. NIC-20A 126 ECD Proincasa - Cofradia San Isidro NIC-218 2109 ECS Rosita - Rio Wawa NIC-248 2401 Rancheria - Villa 15 de Julio 2601 NIC-26 ECD Emp. Telica - Ent. Malgaisillo NIC-26 2502 Los Zarzales - Emp.San Isidro NIC-28 2801 FCD La Paz Centro - Emp. Izapa

Tabla 12: Dependencia de estaciones (Shell Palacagüina-Emp. Yalagüina).

Fuente: Anuario de Aforos de Tráfico, MTI (Año 2020) pág. 41, pdf.

La expansión de Tránsito Promedio Diurno Semanal de 12.0 horas (TPDiS_{12hrs}), se realizó en base a factores de ajuste, estos factores se aplican para estaciones de corta duración o conteo sumario (ECD o ECS) que se encuentran bajo la dependencia de una estación de mayor cobertura.

El anuario de tráfico del MTI-2020 presenta factores para tres cuatrimestres del año, ya que, éstos se realizan en tres periodos enero-abril, mayo-agosto y septiembre-diciembre. Los factores de ajuste utilizados en este estudio para el cálculo del Tráfico Promedio Diario Anual (TPDA), comprenden los del tercer cuatrimestre del año (Septiembre-Diciembre), ya que, los conteos de aforo vehicular se realizaron en el mes de noviembre-2022. Ver Tabla 13, pág. 21

Tabla 13: factores /1er cuatrimestre del año (EMC-1205) Emp. Sébaco San Isidro.

MINISTERIO DE TRANSPORTE E INFRAESTRUCTURA DIVISION GENERAL DE PLANIFICACION DIVISION DE ADMINISTRACION VIAL OFICINA DE DIAGNOSTICO Y EVALUACION DE PAVIMENTOS

ESTACION DE MAYOR COBERTURA 107 SEBACO - EMPALME SAN ISIDRO FACTORES - 2020

Factores del primer cuatrimestre del año Enero - Abril

Descripción	Moto	Carro	Jeep	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	C2	СЗ	Tx- 5xc=4	Tx- 5x=>5	Cx- Rx=<4	Cx- Rx=>5	V.A	V.C	Otros
Factor Dia	1,24	1,28	1,17	1,25	1,18	1,20	1,18	1,30	1,51	1,39	1,00	1,53	1,00	1,00	1,00	1,00	1,06
Factor Semana	1,00	1,02	1,00	0,96	0,94	1,16	1,03	0,85	0,89	0,92	1,00	0,91	1,00	1,00	0,77	1,00	0,86
Factor Fin de Semana	0,99	0,96	0,99	1,13	1,17	0,75	0,94	1,75	1,48	1,26	1,00	1,34	1,00	1,00	4,21	1,00	1,71
Factor Expansión a TPDA	1,16	0,93	1,06	1,03	0,92	1,50	0,84	1,08	0,91	0,94	1,00	0,91	1,00	1,00	1,10	1,00	1,06

Factores del segundo cuatrimestre del año Mayo - Agosto

Descripción	Moto	Carro	Jeep	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	CZ	СЗ	Tx- Sxc=4	Tx- Sx=>5	Cx- Rx=<4	Cx- Rx⇒5	V.A	v.c	Otros
Factor Dia	1,22	1,21	1,25	1,21	1,19	1,26	1,15	1,30	1,44	1,43	1,00	1,52	1,00	1,00	1,00	1,00	1,17
Factor Semana	1,01	0,98	0,97	0,93	0,87	0,93	0,95	0,89	0,91	0,89	1,00	0,88	1,00	1,00	0,95	1,29	0,94
Factor Fin de Semana	0,97	1,06	1,08	1,22	1,64	1,21	1,16	1,46	1,31	1,44	1,00	1,48	1,00	1,00	1,14	0,64	1,18
Factor Expansión a TPDA	0,91	1,19	1,01	1,06	1,03	0,79	1,29	1,00	1,08	0,99	1,00	1,05	1,00	1,00	1,62	0,78	1,29

Factores del tercer cuatrimest		$TPDA = TPDi_{12hrs} * FD * FE $ [Ec. 2]															
Descripción	Moto	Carro	Јеер	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	cz	СЗ	Tx- Sxc=4	Tx- 5x=>5	Cx- Rx=c4	Cx- Rx=>5	V.A	V.C	Otros
Factor Día	1,21	1,25	1,22	1,23	1,25	1,25	1,17	1,31	1,47	1,40	1,00	1,51	1,00	1,00	1,17	1,00	1,33
Factor Semana	0,99	1,02	1,01	0,94	0,94	0,92	0,97	0,88	0,88	0,88	1,00	0,91	1,00	1,00	0,90	1,00	0,93
Factor Fin de Semana	1,02	0,96	0,99	1,19	1,20	1,27	1,07	1,54	1,55	1,51	1,00	1,35	1,00	1,00	1,35	1,00	1,23
Factor Expansión a TPDA	0,96	0,92	0,94	0,93	1,07	0,94	0,97	0,93	1,03	1,08	1,00	1,06	1,00	1,00	0,68	1,40	0.78

Fuente: Anuario de Tráfico 2020. MTI pág. 307 pdf.

Para realizar la expansión del Tráfico Promedio Diurno Semanal TPDiS_{12hrs}, solo se utilizó el Factor Día (FD) y Factor Expansión (FE). Los demás factores no se utilizaron ya que, el conteo vehicular comprendió los siete (7) días de la semana.

El cálculo del TPDA puede verse en la Tabla:14, pág. 22

Se procede a calcular el Tráfico Promedio Diario Anual (TPDA) utilizando la Ecuación 2:

$$TPDA = TPDi_{12hrs} * FD * FE$$
 Ec. 2

TPDiS₁₂:Tránsito Promedio Diurno Semanal de 12 horas.

FD: Factor Día.

FE: Factor Expansión (Expansión a TPDA).

Tabla 14: Calculo del TPDA, aplicando factores de ajuste (FD, FE) / ambos sentidos.

	TRAFICO PROMEDIO DIARIO ANUAL (TPDA). EST: 0+000										
Factor / Tipo de	Moto		Vehíc	Vehículos de Pasajeros				Vehíc	ulos de Ca	ırga	
Vehículo		Auto	Jeep	Cta.	Mbus	Mb> 15 P	Bus	Liv C2	C2	С3	TOTAL
Peso x eje (Ton.met)	-	1.0/1.0	1.0/1.0	1.0/2.0	2.0/4.0	4.0/8.0	5.0/10	4.0/8.0	5.0/10	5/16.5	1
Tipo de eje	-	simple	simple	simple	simple	simple	simple	simple	simple	Simple/doble	
TPDiS _{12HRS}	97	13	16	80	9	5	3	25	19	9	276
FACTOR DIA	1.21	1.25	1.22	1.23	1.25	1.25	1.17	1.31	1.47	1.40	
FACTOR EXPANSIÓN	0.96	0.92	0.94	0.93	1.07	0.94	0.97	0.93	1.03	1.08	
TPDA verano	113	15	19	92	13	6	4	31	29	14	336
%TPDA	33.6%	4.46%	5.65%	27.38%	3.87%	1.79%	1.19%	9.23%	8.63%	4.17%	100%
% Vehículos	% Vehículos 77.98% Livianos								22.02% d	e Carga	100%

Fuente: Elaborado por Sustentantes.

El Tráfico Promedio Diario Anual se estimó utilizando la ecuación 2. El cálculo para el Tránsito Promedio Diario Anual (TPDA) correspondiente al tramo de estudio resultó de: 336 vpd (vehículos por día), posterior se utilizó los registros de la estación de corta duración ECD-114 Shell Palacagüina- Emp Yalagüina para realizar la estimación de una tasa de crecimiento acorde al desarrollo económico del país y proyectar el TPDA calculado a un periodo de años en base a la clasificación funcional de la vía.

3.7.6. Composición vehicular

En base a los resultados del aforo vehicular de campo, se procedió a determinar la composición vehicular de la muestra, la cual está conformada en el siguiente orden: vehículos livianos 77.98%, y vehículos de carga 22.02%, obteniendo así un porcentaje de tránsito vehicular total de 100%, (Ver Gráfico-3)

Gráfico 5: Composición de Tránsito Promedio Diario Anual (TPDA).

Fuente: Elaborado por Sustentantes.

El tramo se clasifica primeramente como una vía local, esta vía es adyacente a la red colectora y se subdivide en rural, esta conecta con comunidades y terrenos aledaños, su velocidad de diseño y nivel de servicio es bajo, tiene como función principal el acceso a la propiedad. El TPDA en este estudio está acorde a su clasificación según el (Estudio de plan Nacional de Transporte de Nicaragua, 2001), esta a su vez concuerda con la clasificación funcional de la SIECA-2011 el cual se define en base a su TPDA (Ver Tabla-20, pág.29)

3.8. Determinación de las tasas de crecimiento

Para determinar las tasas de crecimiento se utilizó la metodología del anuario de aforos del Ministerio de Transporte e Infraestructura MTI, pág. 22, donde se indica la ecuación a utilizar para la determinación de las tasas de crecimiento, en la cual se consideran los registros históricos del TPDA de la estación seleccionada con el fin de ponderar o hacer pesar más el resultado final, también se incorporaron los registros del Producto Interno Bruto (PIB) y población (POB). Se considero utilizar registros de 13 años (2008-2020). (Ver Anexos, Tabla-96, pág. XXXIX), (Ver Anexos, Tabla-98, pág. XLI)

Tabla 15: Registros históricos del TPDA-114, PIB, y POB.

AÑO	TPDA ECD 114	PIB (Miles \$)	POB (Miles de habitantes)
2008	2147	8497	5669
2009	-	8299	5742
2010	2189	8759	5816
2011	-	9774	5997
2012	1847	10533	6071
2013	-	10983	6134
2014	-	11880	6198
2015	3228	12757	6263
2016	-	13286	6328
2017	-	13786	6394
2018	-	13025	6460
2019	3089	12595	6528
2020	3462	12587	5669

Fuente: BCN Informe Anual 2020 y Anuario de Tráfico MTI-2020 pág. 103.

En los registros de la estación ECD N° 114 (Shell Palacagüina- Emp. Yalagüina), se observan crecimientos altos en relación con los años 2010-2012, hasta llegar al año 2015 que se encuentra con una TPDA mucho mayor, elevando su tasa de crecimiento, algunos años no poseen conteos volumétricos, ya que, en esos años no se realizaron. Se procedió a calcular las tasas de crecimiento interanual aplicando la **ecuación-3**

$$TC = \left[\left(\frac{TPDA_i}{TPDA_0} \right)^{1/n} \right] - 1 \qquad Ec. 3$$

Dónde:

TC: Tasa de crecimiento.

TPDA: Tráfico Promedio Diario Actual

TPDA₀: Año anterior.

n= La diferencia de años.

La tabla 15: muestra las diferentes tasas de crecimiento interanuales para los diferentes años del 2008 al 2020, obtenida de la ecuación antes detallada. El TPDA promedio de la estación Shell Palacagüina- Emp. Yalagüina, resultó de 2,500 vehículos. Su tasa promedio corresponde a 4.85%.

Tabla 16: Evolución del TPDA ECD 114 Shell Palacagüina- Emp. Yalagüina.

AÑO	TPDA ECD-114	Diferencia de años	Aplicando la Ec-3		TCA
2008	2147				
2009	-				
2010	2189	2	1.020	1.010	0.97%
2011	-				
2012	1847	2	0.844	0.919	-8.14%
2013	-				
2014	-				
2015	3228	3	1.748	1.205	20.45%
2016	-				
2017	-				
2018	-				
2019	3089	4	0.957	0.989	-1.09%
2020	3462	1	1.121	1.121	12.08%
Promedio	2,500	TC Pro	4.85%		

Fuente: Revista Anuario de Aforo 2020, MTI- DAV pág. 103).

3.8.1. Evolución del producto interno bruto (PIB)

Utilizando el informe anual del Banco Central de Nicaragua (BCN), se elaboró una tabla con los datos históricos existentes del producto interno bruto (PIB), de los últimos 13 años, donde se refleja el comportamiento histórico, desde el año 2008 al año 2020. Se procede a calcular las diferentes tasas interanuales (Ver Tabla-17, Pág. 26)

El PIB promedio de los últimos 13 años que presenta el informe de Banco Central de Nicaragua BCN corresponde a \$ 11,289 Millones de dólares, con una tasa de crecimiento promedio de 3.45%. La determinación de esta se calculó usando la **ecuación N° 3.**

Tabla 17: Tasas de crecimiento anual para PIB.

AÑO	TPDA ECD-114	PIB (\$Miles)	Diferencia de años	Aplicand	Aplicando la Ec-3	
2008	2147	8497	1	-	-	-
2009	-	8299	1	0.977	0.977	-2.33%
2010	2189	8759	1	1.055	1.055	5.54%
2011	-	9774	1	1.116	1.116	11.60%
2012	1847	10533	1	1.078	1.078	7.76%
2013	-	10983	1	1.043	1.043	4.28%
2014	-	11880	1	1.082	1.082	8.17%
2015	3228	12757	1	1.074	1.074	7.38%
2016	-	13286	1	1.041	1.041	4.15%
2017	-	13786	1	1.038	1.038	3.76%
2018	-	13025	1	0.945	0.945	-5.52%
2019	3089	12595	1	0.967	0.967	-3.30%
2020	3462	12587	1	0.999	1.000	-0.03%
Promedio	2,500	\$ 11,289 millones	TC F	3.45%		

Fuente: BCN Informe Anual 2019 y Anuario de Tráfico MTI-2020 pág. 103.

3.8.2. Evolución de los registros de población (POB)

Partiendo de la información del Banco Central de Nicaragua, se elaboró una tabla con los datos históricos existentes de población (POB) de los últimos 13 años, donde se aprecia el comportamiento histórico, desde el año 2008 al año 2020.

El POB promedio es de 6,133 Miles de habitantes, con una tasa de crecimiento promedio de 1.29%. Las tasas de crecimiento interanual de los últimos 13 años se calcularon usando la **ecuación Nº 3.** (Ver Tabla-18, Pág. 27)

Tabla 18: Datos ECD-114 y tasas de crecimiento anual para población.

AÑO	TPDA ECD 114	POB (Miles/Hab)	Ар	licando la	Tasa Crecimiento Anual (POB)	
2008	2147	5669				
2009	-	5742	1	1.01	1.01	0.013
2010	2189	5816	1	1.01	1.01	0.013
2011	-	5997	1	1.03	1.03	0.031
2012	1847	6071	1	1.01	1.01	0.012
2013	-	6134	1	1.01	1.01	0.010
2014	-	6198	1	1.01	1.01	0.010
2015	3228	6263	1	1.01	1.01	0.010
2016	-	6328	1	1.01	1.01	0.010
2017	-	6394	1	1.01	1.01	0.010
2018	-	6460	1	1.01	1.01	0.010
2019	3089	6528	1	1.01	1.01	0.010
2020	3462	5669	1	1.01	1.01	0.013
Promedio	2,500	6,133	тс	Promedio	1.29%	

Fuente: BCN Informe Anual 2020 y Anuario de Tráfico MTI-2020 pág. 103.

3.8.3. Consolidado de las tasas de crecimiento

A continuación, se realizó el consolidado de las tasas de crecimientos calculadas (TPDA ECD-114, PIB, POB)

Tabla 19: Consolidado de las tasas de crecimiento calculadas (TPDA, PIB, POB).

TPDA-114	PIB	РОВ						
TC= 4.85%	TC= 4.85% TC= 3.45%							
Alto	Alto alto Muy bajo							
	Promedio							
TASA DE CRECIMIENTO TC: 3.20% Aceptable								

Fuente: Elaborado por Sustentantes.

Se obtuvieron tres tasas de crecimiento sin embargó ninguna de las tres se ajusta para la proyección del tránsito en el tramo de estudio, por lo que se decidió, realizar un promedio obteniendo una tasa de crecimiento más acorde considerando el promedio histórico del TPDA, PIB y POB. Obteniéndose una tasa de crecimiento de 3.20%, la cual es aceptable.

3.9. Selección de la tasa de crecimiento

La tasa seleccionada de 3.20% se sustenta en base al crecimiento económico

histórico del PIB de los últimos 10 años del país, el cual es de 3.39%, (Ver anexos

Tabla 99, Pág. XLII). similar a la tasa calculada la cual posee un valor promedio

de 3.20%.

3.10. Determinación del tránsito de diseño

Acorde a lo indicado por Heberto Hernández, 2011, El tránsito de Diseño (TD),

determina la cantidad de vehículos que circularán en una vía, para obtener un

acumulado de vehículos y proyectar su vida útil. De manera general el Tránsito

de diseño a emplear para fines de este proyecto está dada por la ecuación:

TD = TPDA * FC * FD * fc * 365Ec. 4

Donde:

TPDA: Tránsito Promedio Diario Anual.

FC: Factor Crecimiento.

FD: Factor Dirección.

Fc: Factor Carril

365: Días del año.

3.10.1. Período de Diseño (PD)

Es el número de años para el cual se diseña específicamente el pavimento;

generalmente varía entre los ocho (8) y veinte (20) años, dependiendo del tipo de

vía. En este caso el tramo tiene una clasificación funcional Local Rural definido

por el TPDA: 336 vpd y el número de carriles (2), según lo estipulado en la

(SIECA 2011, pág. 13). El cual indica que debe estar en un rango de 500 a 3000

vpd. En dependencia a su clasificación funcional la vía se diseñó a N=20 años.

Ver tabla 20 y 21, pág. 29.

28

Tabla 20: Clasificación funcional de la vía.

función	clase de carretera	abrev.	TPDA	no. de carriles
Arteria	Autopista	AA	> 20,000	6-8
principal	Arteria Rural	AR	10,000-20,000	4-6
printolpai	Arteria Urbana	AU	10,000-20,000	4-6
Arteria menor	Arteria Menor Rural	AMR	3,000-10,000	2
Arteria menor	Arteria Menor Urbana	AMU	3,000-10,000	2
Colectora	Colectora Mayor Rural	CMR	10,000-20,000	4-6
mayor	Colectora Mayor Urbana	CMU	10,000-20,000	4-6
Colectora	Colectora Menor Rural	CR	500-3,000	2
menor	Colectora Menor Urbana	CU	500-3,000	2
	Local Rural	LR	100-500	2
Local	Local Urbana	LU	100-500	2
	Rural	R	<100	1-2

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales (SIECA 2011, pág. 33).

Tabla 21: Periodo de diseño (N).

Tipo de carretera	Período de diseño (años)					
Autopista Regional	20 – 40					
Troncales Sub-Urbanas	15 – 30					
Troncales Rurales	15 – 30					
Colectora menor urbana	10 – 20					
Colectoras Rurales	10 – 20 (20 años)					

Fuente: Manual Centroamericano de Normas para Diseño de Carreteras Regionales, SIECA 2002.

3.10.2. Factor de crecimiento (Fc)

Está en función de la tasa anual de crecimiento y el período de diseño de la estructura de pavimento. El tránsito acumulado durante los "n" años se determina a través de un factor de crecimiento el cual varía según el método de diseño. Así por ejemplo para el método de AASHTO 93. Se determina mediante la siguiente **Ecuación N°5:**

$$FC = \left(\frac{(1+i)^n - 1}{i}\right)$$
 Ec. 5

Dónde:

Fc: Factor de crecimiento.

i: Tasa de crecimiento anual :3.20%

n: Periodo de años al cual está proyectando: 20 años

$$F_c = \left(\frac{(1+0.0320)^{20}-1}{0.0320}\right) = 27.20$$

3.10.3. Factor distribución por dirección (Fd)

Este valor se pude deducir del estudio de tránsito (conteo), es la relación entre la cantidad de vehículos que viajan en una dirección y la cantidad de vehículos que viajan en la dirección opuesta, por lo general es 0.5 ya que la cantidad de vehículos es la misma en ambos sentidos. Ver tabla a continuación

Tabla 22: Factor de distribución por dirección (Fd).

Núm	ero de carriles en ambas direcciones	FD %	
	2	50	
	4	45	
	6 o más	40	

Fuente: Manual Centroamericano de Normas para Diseño de Carreteras Regionales, SIECA 2002.

3.10.4. Factor distribución por carril (fc)

El carril de diseño es por el que circulan el mayor número de ejes equivalentes (ESAL'S), se elige un valor de 1.0. Ver tabla a continuación

Tabla 23: Factor de distribución por carril (fc).

		1 /	
Nú	mero de carriles en una sola dirección	Fc'	
	1	1.00	
	2	0.80 - 1.00	
	3	0.60 - 0.80	
	4	0.50 - 0.75	

Fuente: Manual Centroamericano de Normas para Diseño de Carreteras Regionales, SIECA 2002.

Se tomó el valor de **Fc' = 1.00** puesto que la vía posee un solo carril para un sentido direccional. En base a los datos anteriormente definidos se realizó la determinación del Tránsito de Diseño (TD), aplicando la ecuación-4, pág. 28.

En la **tabla 24 pág. 31**, se presenta el cálculo del tránsito de diseño (TD) por clasificación vehicular y por su promedio total en ambos casos da el mismo resultado obteniendo un tránsito por carril de diseño de **1,106,972.0 Vehículos**, durante un periodo de 20 años. Este cálculo no toma en consideración el TPDA de las motos.

Tabla 24: Tránsito de diseño.

Tipo de vehículos	TPDA (2022)	F.C.	Días del año	Factor por carril (Fc)	Factor de Dirección (FD)	Tránsito para el carril de diseño				
Calculo por clasifica										
Autos	15	27.20	365	1.00	0.50	74,460.0				
Јеер	19	27.20	365	1.00	0.50	94,316.0				
Camionetas	92	27.20	365	1.00	0.50	456,688.0				
McBus<15 pas	13	27.20	365	1.00	0.50	64,532.0				
MnBus 15-30 pas	6	27.20	365	1.00	0.50	29,784.0				
Bus	4	27.20	365	1.00	0.50	19,856.0				
C2 Liv	31	27.20	365	1.00	0.50	153,884.0				
C2 5 +ton	29	27.20	365	1.00	0.50	143,956.0				
C3	14	27.20	365	1.00	0.50	69,496.0				
TOTAL, DE DISEÑO EN UN PERIODO DE 20 AÑOS 1,106,972.0										
Calculo en base al	promedio									
Transito Promedio	223	27.20	365	1.00	0.50	1,106,972.0				

Fuente: Elaborado por Sustentantes.

3.10.5. El índice de serviciabilidad inicial (P₀)

Es la condición inmediata después de la construcción, (AASHTO-93 en su capítulo 8, Pág. 181) define que para pavimentos articulados este valor inicial es de

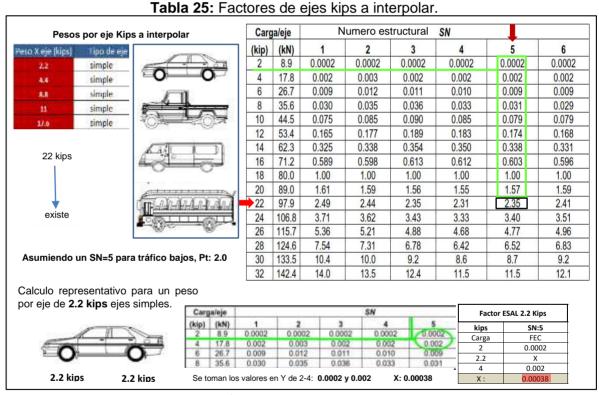
P₀= 4.2. (definido en función del pavimento y la calidad de construcción)

3.10.6. El índice de serviciabilidad final (Pt)

Es el valor más bajo que puede ser tolerado por los usuarios de la vía antes de que sea necesario el tomar acciones de rehabilitación, reconstrucción o repavimentación, y generalmente varía con la importancia o clasificación funcional de la vía. El valor sugerido por la AASHTO-93 en su capítulo 8, Pág. 181 es:

pt=2.0. (para vías de tránsito menor)

3.10.7. Número estructural asumido (SN)

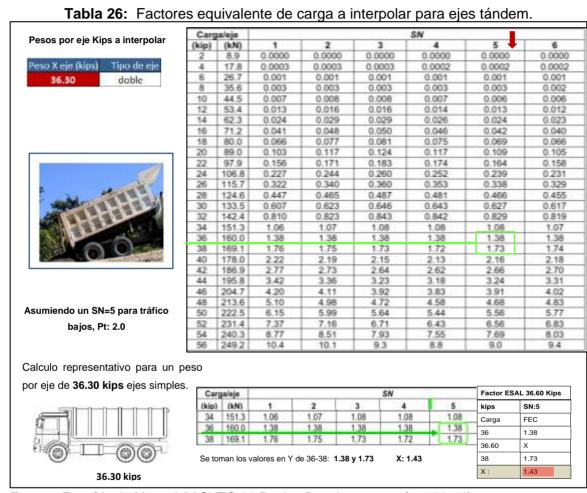

El diseño para el pavimento flexible según la AASHTO está basado en la determinación del Número Estructural "SN" que debe soportar el nivel de carga exigido por el proyecto, el cual está relacionado con la determinación del número de ejes equivalentes de 18 Kips. Para este Diseño seleccionamos el valor **SN=5.**

3.10.8. Factor de equivalencia (FESAL)

Los factores equivalentes de carga de la AASHTO están tabulados en función de cuatro parámetros: tipo de eje (simple, tándem, trídem), índice de serviciabilidad final (2.0), carga por eje, y número estructural SN (5"). Para determinar los factores Fesal de cada vehículo en este estudio se interpolaron los pesos por ejes, ya que, estos no se encontraron en las tablas 3.1 y 3.2 de factores equivalentes de carga.

(Ver Anexo Tabla 102-103, Pág. XLIV- XLV)

Factores de cada vehículo interpolado según su clasificación tanto para ejes simples como para ejes dobles.



Fuente: Elaborado por Sustentantes (Aplicando Interpolación Lineal).

En la **Tabla-25** se muestra cada uno de los factores de equivalencia de carga a calcular, según el tipo de vehículo y su peso en Kips para cada eje. Considerando un numero estructural SN=5 y una serviciabilidad final de 2.0, estos se determinaron según interpolación lineal. Los cálculos representativos se pueden ver en **Anexos Tabla 104-106**, **Pág. XLVI**)

En el caso del factor de **22 Kips** para el eje doble del vehículo Bus, no fue necesario interpolarlo, ya que, este se encuentra en la tabla factores equivalentes de carga ejes simple (2.35). **(Ver Anexo Tabla 102, Pág. XLIV)**

En la Tabla: 26, se presenta un ejemplo de la estimación del valor de 36.30 kips para eje tándem.

Fuente: Extraído de Manual AASHTO-93 Design Requirements. pág. 172 pdf

Considerando un número estructural SN=5 y una serviciabilidad final de 2.0, se determinó el factor FESAL resultando de **1.43**.

3.10.9. Ejes equivalentes (ESAL o W18)

En el Método AASHTO los pavimentos se proyectan para que resistan

determinado número de cargas durante su vida útil. El transito está compuesto

por vehículos de diferente peso y número de ejes, y a los efectos del cálculo, se

los transforma un número equivalente de ejes tipo de 80 KN o 18 KN o 18 Kips,

los cuales se les denomina "equivalent simple axial load" o ESAL. Se calcula

utilizando la siguiente expresión:

ESAL o W18= TD*FESAL Ec. 6

Dónde:

TD: Transito de Diseño.

FESAL: Factor de Equivalencia de carga por eje.

Ya conocido los valores del Tránsito de Diseño (TD) por tipo de vehículo cuyos

resultados se muestran en la Tabla 24 de la pág. 31. En donde el TPDA para

motos no se tomó en cuenta en el cálculo del tránsito de Diseño, ya que, se

considera que el daño causado por este tipo de vehículo es imperceptible.

El cálculo de los ejes equivalentes a 18 Kips para cada clasificación de vehículos

se estimó en base al tránsito de diseño y los factores **ESAL** para cada eje, este

último se determinó utilizando las tablas 102-103, Pág. XLIV- XLV de factores

equivalentes de carga, considerando una serviciabilidad final de pt=2.0 y un

SN=5, para lo cual se debió conocer los pesos de cada eje en toneladas y luego

pasarlo a Kips fue necesario utilizar la tabla de diagramas de carga permisibles

para la conversión. Ver Anexos Tablas 100-101 pág. XLIII.

Se interpolaron cinco (5) valores FESAL para ejes Simples (2.2, 4.4, 8.8, 11,

17.60), y un valor FESAL para ejes Dobles (36.30). Solo el peso de 22 Kips no se

interpoló ya que, el FESAL (2.35), si se muestra en el cuadro AASHTO- 93, para

ejes Sencillos. El cálculo del ESAL o W18 se muestra a continuación, en la Tabla

27 pág. 35:

34

Tabla 27: Cálculo ESAL'S por carril de diseño.

Tipo de vehículos	Peso X eje (Ton.met)	Peso X eje (Kips)	Tipo de eje	TPDA 2022	TD	Factor ESAL	ESAL de diseño
A 1	1.00	2.20	Simple	4 =	74.460.0	0.00038	28
Autos	1.00	2.20	Simple	15	74,460.0	0.00038	28
1	1.00	2.20	Simple	10	04.216.0	0.00038	36
Jeep	1.00	2.20	Simple	19	94,316.0	0.00038	36
Camalanataa	1.00	2.20	Simple	0.2	456,600,0	0.00038	174
Camionetas	2.00	4.40	Simple	92	456,688.0	0.0034	1553
McBus<15	2.00	4.40	Simple	13	64 522 0	0.0034	219
pas	4.00	8.80	Simple	13	64,532.0	0.0502	3240
MnBus > 15	4.00	8.80	Simple		20.704.0	0.0502	1495
pas	8.00	17.60	Simple	6	29,784.0	0.9206	27419
Due	5.00	11.00	Simple	4	10.056.0	0.1265	2512
Bus	10.00	22.00	Simple	4	19,856.0	2.3500	46662
60.15-	4.00	8.80	Simple	21	152.004.0	0.0502	7725
C2 Liv	8.00	17.60	Simple	31	153,884.0	0.9206	141666
62.5.14	5.00	11.00	Simple	20	142.056.0	0.1265	18210
C2 5 +ton	10.00	22.00	Simple	29	143,956.0	2.35	338297
62	5.00	11.00	Simple	1.4	60.406.0	0.1265	8791
C3	16.50	36.30	Doble	14	69,496.0	1.433	99553
	ТОТ	AL		223	1,106,972.0		697,644.00

Para el tramo en estudio se obtuvo un ESAL´S de 6.976E+05 o 697,644.00 repeticiones equivalentes a 18 Kips o 18, 000 lbs para el carril de diseño, en un periodo de 20 años. Trabajando con Po=4.2, Pt=2.0, ΔPsi=2.2 y un SN: 5".

Fuente: Elaborado por Sustentantes

4.1. Introducción

En los proyectos de Ingeniería, tanto en obras horizontales como en obras verticales, se necesita tener información veraz acerca de las propiedades físicomecánica de los suelos donde se pretende cimentar la obra. Por lo que deberá hacerse un plan de exploración y muestreo en el área donde se desea realizar el proyecto. La exploración deberá consistir en la investigación del subsuelo, con el objetivo de poder obtener muestras de suelo a la que se le realizaran en el laboratorio ensayes básicos de clasificación, densidad, humedad, etc.

4.2. Metodología

En este capítulo se detallarán los procedimientos llevados a cabo a lo largo del tramo en análisis, con el propósito de evaluar y analizar las características físicas, mecánicas y condiciones de soporte del suelo, y así poder contar con la información básica necesaria para la determinación de los espesores de la estructura de pavimento articulado. Los ensayos de laboratorio y caracterización física de los suelos fueron proporcionados por la Alcaldía municipal de Condega, de un Estudio realizado por el laboratorio EDICO (Estudios y Diseños Ingenieros Consultores) en el mes de enero del año 2018.

Todos los ensayos se realizaron en conformidad a lo establecido en las Normas de la ASTM (Asociación Internacional para la Prueba de Materiales), y AASHTO, los cuales se detallan a continuación:

Tabla 28: Tipos de ensayos para estudio de suelos.

Ensayo	Especificación ASTM	Especificación AASHTO			
Análisis Granulométrico	D 422	T – 2788			
Humedad natural	D 2216				
Límite Líquido	D 4318	T –8990 y 9087			
Índice de Plasticidad	D 4318	T – 9097			
Clasificación de suelos AASHTO	D 3282	M-145			
Ensayo Próctor Modificado	D 422	T 180			
Ensayo CBR.	D1883	T – 193 – 81			
Peso volumétrico seco suelto	C29	T-19			
Peso volumétrico seco compacto	C29	T-19			
Desgaste de los ángeles	C131	T-96			
Intemperismo	C88	T-104			

Fuente: AASHTO, Tercero Edición. Año 2003. Páginas 53-85.

Los trabajos de gabinetes fueron los siguientes:

- Analizar los sondeos de los suelos que conforman la plataforma vial.
- Realizar perfil estratigráfico.
- Evaluar las propiedades de los bancos de préstamos.
- Determinar la capacidad de soporte (CBR) de la subrasante

Tabla 29: Trabajos de campo realizados por EDICO.

Actividad	Designación ASTM	Designación AASHTO
Sondeos Manuales con profundidad de 1.50 m a cada 100 metros.	D420	T86
identificación visual de los suelos en campo.	D2488	
Búsqueda de bancos de préstamo.	D420	T86

Fuente: Alcaldía municipal de Condega-Laboratorio EDICO.

4.3. Sondeos manuales sobre la línea vial

Los sondeos de línea es un método de exploración de la capa de rodamiento y el subsuelo en sitios espaciados donde descansara la estructura de pavimento, con la finalidad de conocer la columna estratigráfica y los tipos de materiales que conforman los estratos.

En este estudio los sondeos fueron ejecutados con pala y palín, se tomaron muestras representativas alternadas a uno y otro lado de la vía, cada sondeo espaciado a 100 metros con una profundidad de hasta 1.50 metros, dicho procedimiento se inició en la estación 0+000 del tramo hasta la estación 1+47.

La investigación del suelo del tramo vial se realizó por medio de 15 sondeos manuales, en estos sondeos se encontraron 33 muestras representativas. Ver tabla a continuación

Tabla 30: sondeos manuales.

Actividad	Total
Sondeos de línea	15
Muestras tomas	33

Fuente: Elaborado por sustentantes.

4.3.1. Características geotécnicas de los suelos en la línea vial

El análisis de los suelos de la plataforma vial se realizó de 15 sondeos manuales espaciados a cada 100 metros uno del otro, con una profundidad de 1.50 metros, clasificados según la AASHTO M 145. (Ver Anexos, Tablas 107, págs. XLVII)

Sonde N°1, Est: 0+000 hasta Sondeo N°6, Est:0+500

A lo largo de la línea vial iniciando en la estación 0+000 inicio del tramo sondeo manual (Sm-01), hasta la estación 0+500- sondeo manual (Sm-6), se encuentran presentes cinco tipos de suelos A-1-a (0), A-2-4 (0), A-2-6 (0), A-2-7(0), A-1-b(0).

Primer estrato: En la estratigrafía del primer sustrato predomina un suelo del tipo **A-1-a (0),** con índice de grupo cero, este suelo subyace a una profundidad que varía entre 0.0-0.25 metros, situado en las estaciones (0+000–0+100), este suelo está clasificado según la AASHTO como un suelo de excelente calidad, se encuentra dentro del grupo A-1, posee un límite liquido determinado de 20%, su índice de plasticidad de 3%, presenta un valor de CBR al 95% próctor modificado de 50%.

En las estaciones **0+200** ala **0+400** predomina un suelo del tipo **A-2-6 (0)** con índice de grupo cero, subyace a una profundidad que va desde los 0.00-0.35 metros, catalogado según la AASHTO de mala calidad, se encuentra dentro del grupo A-2, posee un límite liquido de 33% y un índice de plasticidad de 12%. Su CBR al 95% Proctor modificado es de 16.9%.

De manera puntual en el sondeo manual (Sm-06) en la estación (0+500) se encuentra un tipo de suelo **A-1-b** (0) con índice de grupo cero, subyace a una profundidad que va desde los 0.00-0.25 metros, catalogado según la AASHTO de excelente calidad, se encuentra dentro del grupo A-1, posee un límite liquido de 21% y un índice de plasticidad de 1%. Su CBR al 95% Proctor modificado es de 12.9%.

Segundo estrato: Se encuentran un tipo de suelo a lo largo del tramo, desdé la estación (0+000 ala 0+200), con un tipo de suelo **A-2-4(0)** con índice de grupo cero, este suelo subyace a una profundidad que varía entre 0.15-1.50 metros, presenta una descripción visual de un material de grava con arcilla y arena, este tipo de suelo según su clasificación AASHTO pertenece al grupo A-2, catalogado como un material de regular calidad, posee un límite líquido de26%, posee un índice de plasticidad de 10%, su CBR al 95% próctor modificado de 12 a 41%.

Sonde N°7, Est: 0+600, hasta Sondeo N°11, Est:1+000

A lo largo del S-7 al S-11 se encuentran cuatro (4) tipos de suelos **A-2-6(0)**, **A-2-7(2)**, **A-1-a (0)**, **A-2-4(0)**.

Primer estrato: En la estratigrafía del primer sustrato predomina un suelo del tipo **A-2-6(0)**, con índice de grupo cero, este suelo se encuentra presente desde la estación 0+600, Sondeo N°7, a la Estación 1+000, sondeo N°11, se encuentra a una profundidad desde los 0.00 m a los 0.10 metros, catalogado según la clasificación de la AASHTO como un suelo de regular calidad, se encuentra del grupo A-2. Posee un límite liquido de 32%, y un índice de plasticidad de 13%, su valor CBR al 95% próctor modificado es de 23.8%.

De manera puntual en la estación 0+700, sondeo N°8, se encuentra un tipo de suelo **A-1-a (0)**, con índice de grupo cero, este material presente las mismas características físico-mecánicas descritas en el primer estrato de la estación 0+000 ala 0+100, su CBR al 95% próctor modificado es de 54%.

De manera puntual en la estación 0+800, sondeo N°9, se encuentra un tipo de suelo **A-2-4 (0)**, con índice de grupo cero, este material pertenece al grupo A-2 de la clasificación de la AASHTO, su límite liquido de 30%, y su índice de plasticidad de 7%, su CBR al 95% próctor modificado es de 7.4%.

De la estación 0+900 a la estación 1+000 predomina un tipo de suelo **A-2-6(0)** con índice de grupo cero, posee una capa delgada de 0.10 metros, pertenece al grupo **A-2,** según la clasificación de la AASHTO.

Posee un límite líquido que va de 32% a 39%, y un índice de plasticidad de 12 a 13%, su valor CBR al 95% próctor modificado es de 16.9%.

Segundo estrato: se encuentra tres tipos de suelo A-2-7(2), A-2-6(0) y A-2-4 (0). El suelo A-2-7(2) con índice de grupo dos, se encuentra de manera puntual en la estación 0+600, está a una profundidad de 0.10 m a 0.60 metros, la descripción del material corresponde a arena arcillosa con grava, pertenece al grupo A-2.

Según la clasificación de la AASHTO, es un material de mala calidad, posee un límite liquido de 47% e índice de plasticidad alto de 22%.

En los sondeos S-8, S-9 ubicados en las estaciones **0+700**, a la estación **0+800**, se encuentra presente el tipo de suelo **A-2-6(0)**, con índice de grupo cero, se encuentra a una profundidad desde los 0.10 m a 1.50 metros, su descripción corresponde a grava con arcilla y arena, posee un límite liquido de 34%, su índice de plasticidad de 12%, posee un CBR al 95 próctor modificado es de 23.8%.

En los sondeos S-10, S-11 ubicados en las estaciones **0+900**, a la estación **1+000**, se encuentra presente el tipo de suelo **A-2-4(0)**, con índice de grupo cero, se encuentra a una profundidad desde los 0.05 m a 0.40 metros, su descripción corresponde a arena limosa con grava, posee un límite liquido ni índice de plasticidad, su CBR al 95 próctor modificado es de 14.3%.

Tercer estrato: se encuentran presentes dos tipos de suelos **A-2-7(1)**, **A-2-6 (0)**, **(1)**. El suelo A-2-7(1) con índice de grupo uno, se encuentra en la estación 0+600 sondeo S-7, se encuentra a una profundidad de 0.60 m a 1.50 metros, según la clasificación de la AASHTO es de mala calidad, pertenece al grupo A-2, la descripción visual del material corresponde a una arena arcillosa, posee un límite liquido de 42% y un índice de plasticidad de 19%, su CBR de 16.9%

El suelo A-2-6(1) con índice de grupo uno, se encuentra a una profundidad que va desde los 0.40 m a 1.50 metros, pertenece **A-2**, posee un límite liquido de 36% y su índice de plasticidad de 13%, su calidad es deficiente.

Sonde N°12, Est: 1+100, hasta Sondeo N°15, Est:1+400

A lo largo del sondeo manual S-12 al S-15 se encuentran cinco (5) tipos de suelos A-2-6 (0), A-7-5 (10), A-1-b (0), A-2-7(0), A-2-5 (0).

Primer estrato: se encuentran presente los suelos A-2-6 (0), A-1-b (0), A-2-5 (0).

El suelo **A-2-6 (0),** con índice de grupo cero, se encuentra de manera puntual en la estación 1+100, este se encuentra a una profundidad de 0.0 m a 0.5 metros.

Presenta las mismas características físico mecánica del sondeo 1+000 estrato tres. En la estación 1+200, sondeo S-13, se encuentra de manera puntual un suelo **A-1-b (0),** con índice de grupo cero, a diferencia del descrito en la estación 0+500, este suelo no posee limite líquido, ni índice de plasticidad, pertenece al grupo **A-1,** según la clasificación de la AASHTO es de excelente calidad.

Suelos limosos se ubican en las estaciones 1+300 ala 1+400, estos se encuentran a una profundidad de 0.0 m a 1.50 metros, pertenecen al grupo A-2, son suelos que contiene alto contenido de humedad, por lo cual son deficientes.

Segundo estrato: se encuentran presente dos tipos de suelo A-7-5(10), A-2-7(0).

El suelo **A-7-5(10)**, con índice de grupo diez, es un suelo de muy mala calidad, perteneciente al grupo **A-7**, este se encuentra a una profundidad de 0.50 m a 1.50 metros, posee un límite liquido de 46% un índice de plasticidad de 15%, se descripción visual corresponde a un material de limo con arena.

El suelo **A-2-7(0)**, con índice de grupo cero, se encuentra de manera puntual en la estación 1+200, a una profundidad de 0.15 m a 1.50 metros, su límite liquido corresponde a 51% y su índice de plasticidad 22%, su CBR al 95% próctor modificado es de 19.1%. La descripción de las propiedades físico mecánica de cada sondeo sobre la plataforma vial pueden verificarse en las **Tablas 31-32**, **pág. 43-44**.

4.3.2. Resumen los resultados de ensayos de laboratorio

Los suelos predominantes a lo largo del tramo corresponden al tipo A-2-4(0), A-2-6(0), A-2-7(0). son suelos de baja resistencia con calidad de regular a deficientes, limites líquidos e índices de plasticidad altos según su clasificación y características físico - mecánicas de la AASHTO MT-141. En menor cantidad subyacen los suelos A-1-a (0), A-1-b (0), son suelos de buena calidad según la clasificación de la AASHTO. Para detallar los tipos de suelos y su profundidad, se realizó la secuencia estratigráfica del sitio en análisis. (Ver Anexos, Gráficos-6, pág. 45)

Tabla 31: Sondeos del tramo en estudio (Est 0+000, 0+600), (SM-01, SM-07).

CLIENTE:	EDICO, In	genieros Coi	nsultores															1	Edica	IN	STUDIOS Y E GENIEROS		
PROYECTO:	Emp. La L	Emp. La Laguna- Comunidad Santa Rosa Fecha: 18/01/2018																					
ROCEDENC	IA: Muestra	as alteradas t	omadas de	el cam	ino med	iante sonde	os n	anu	ales														
SONDEO	ESTACION KM+m	UBICACIÓN	MUESTRA No.	_	UNDIDA (cm)	ESPESOR			,	GRAN	IULO	МЕТ	RIA				Lim %	ites ⁄₀	Clasific AASH		valo	or de CB	R
No.	KIVITIII		110.	De	A	CAPA cm	3"	2"	1	1/2"1"	3/4"	3/8"	4"	10	40	200	LL	IP	Grupo	IG	90%	95%	100%
1	0+000	LC	1	0	15	15	100	91	91	70	57	40	28	20	12	9	20	3	A-1-a	0	40	50	60
1	0+000	LC	2	15	150	135	100	97	88	75	67	46	30	24	14	8	29	8	A-2-4	0	9.2	15.7	22
2	0+100	LC	3	0	25	25	100	100	100	97	89	72	55	36	23	15	NP	NP	A-1-a	0	35	45	50
2	0+100	LC	4	25	150	125	100	95	87	73	63	43	30	22	13	8	26	10	A-2-4	0	11.3	14.3	19.3
3	0+200	DER	5	0	15	15	91	79	71	66	61	48	35	29	20	13	38	16	A-2-6	0	6.7	12.4	18.2
3	0+200	DER	6	15	150	135	100	95	87	73	63	43	30	22	13	8	26	10	A-2-4	0	8	12	16
4	0+300	LC	7	0	25	25	94	78	71	62	57	47	26	18	12	8	36	12	A-2-6	0	11	18.5	25.5
4	0+300	LC	8	25	150	125	72	62	57	49	47	39	32	28	23	19	47	20	A-2-7	0	15	16.9	23
5	0+400	IZQ	9	0	35	35	100	81	73	60	54	40	30	21	14	10	33	12	A-2-6	0	30	16.9	36
5	0+400	IZQ	10	35	150	115	100	89	89	89	86	83	74	61	49	30		NP	A-2-4	0	33	39	45
6	0+500	LC	11	0	25	25	100	100	96	92	89	78	67	58	36	16	21	1	A-1-b	0	8.8	12.9	17.9
6	0+500	LC	12	25	150	125	100	100	100	95	91	83	75	57	29	16	28	7	A-2-4	0	35	41	47
7	0+600	DER	13	0	10	10	100	100	83	66	60	46	33	20	10	7	32	13	A-2-6	0	19	23.8	28.4
7	0+600	DER	14	10	60	50	100	100	100	100	100	100	100	90	60	34	47	22	A-2-7	2	7.4	13	18

Fuente: Alcaldía Municipal de Condega -Laboratorio EDICO.

DER

0+600

Sondeo manual (Sm-1 al Sm-7) se tomaron un total de 6 muestras, las cuales se utilizaron para la estimación del CBR de la subrasante.

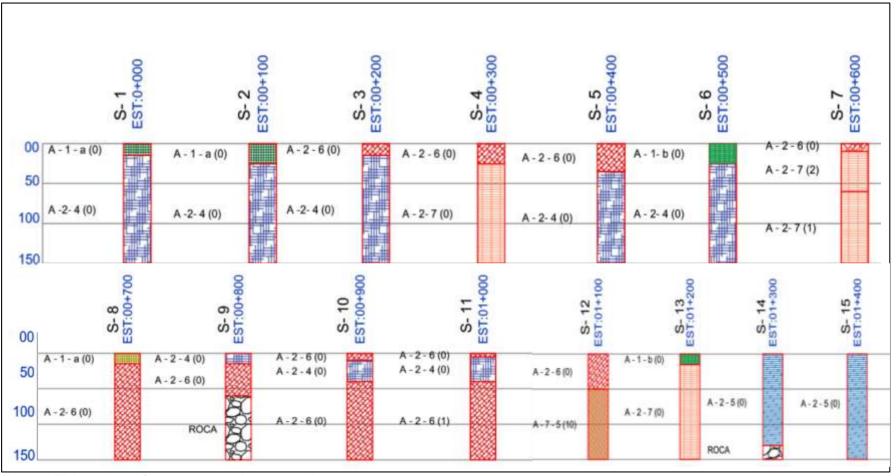
Tabla 32: Sondeos del tramo en estudio (Est 0+700, 0+1400), (SM-08, SM-15).

CLIENTE: EDICO, Ingenieros Consultores

ESTUDIOS Y DISEÑOS INGENIEROS CONSULTORES

PROYECTO: Emp. La Laguna- Comunidad Santa Rosa

Fecha: 18/01/2018


PROCEDENCIA: Muestras alteradas tomadas del camino mediante sondeos manuales

SONDEO	ESTACION		MUESTRA		UNDIDA (cm)	ESPESOR	GRANULOMETRIA						nites %	Clasificación AASHTO		valor de CBR							
No.	KM+m	UBICACIÓN	No.	De	(cm)	CAPA cm	3"	2"	1	1/2"1"	3/4"	3/8"	4"	10	40	200	LL	ΙP	Grupo	IG	90%	95%	100%
140.				De	A	CAI A CIII	٠	2	'	/2 1	/4	3/0	-	10	40	200							
8	0+700	LC	16	0	15	15	100	74	67	54	47	36	19	16	14	12		NP	A-1-a	0	46	54	62
8	0+700	LC	17	15	150	135	100	100	86	75	67	48	34	25	15	9	34	11	A-2-6	0	19	23.8	28.4
9	0+800	LC	18	0	15	15	100	95	89	79	77	69	61	51	28	13	30	7	A-2-4	0	2.8	7.4	12.1
9	0+800	IZQ	19	15	60	45	100	83	74	59	56	44	33	24	14	0	37	23	A-2-6	0	30	16.9	36
9	0+800	IZQ	20	60	0 150 90 ROCA						R												
10	0+900	IZQ	21	0	10	10	100	81	73	60	54	40	30	21	14	10	33	12	A-2-6	0	30	16.9	36
10	0+900	LC	22	10	40	30	100	95	87	73	63	43	30	22	13	8	26	10	A-2-4	0	11.3	14.3	17.3
10	0+900	DER	23	40	150	110	100	100	83	66	60	46	33	20	10	7	32	13	A-2-6	0	11	13	16
11	1+000	LC	24	0	5	5	100	100	100	100	100	100	99	88	36	19	39	12	A-2-6	0	28	14.5	34
11	1+000	IZQ	25	5	40	35	100	100	100	100	97	93	82	76	49	35		NP	A-2-4	0	6.6	10.6	15.6
11	1+000	IZQ	26	40	150	110	100	100	100	100	100	100	100	90	62	33	36	13	A-2-6	1	30	17.2	36
12	1+100	LC	27	0	50	50	100	100	100	100	100	100	99	88	36	19	39	12	A-2-6	0	28	14.5	34
12	1+100	LC	28	50	150	100	100	100	100	100	100	100	100	97	84	71	46	15	A-7-5	10	3.7	6	8.3
13	1+200	LC	29	0	15	15	100	89	82	76	72	61	49	41	26	19		NP	A-1-b	0	48	57	66
13	1+200	DER	30	15	150	135	90	70	67	60	57	46	32	26	19	16	51	22	A-2-7	0	7.4	19.1	30.7
14	1+300	DER	31	0	130	130	86	83	78	75	71	58	40	38	35	31	44	8	A-2-5	0	32	38	44
14	1+300	DER	32	130	150	20											RC	CA					
15	1+400	IZQ	33	0	150	150	86	83	78	75	71	58	40	38	35	31	44	8	A-2-5	0	32	38	44

Fuente: Alcaldía Municipal de Estelí -Laboratorio EDICO.

Sondeo manual (Sm-8 al Sm-15) se tomaron un total de 5 muestras, de las cuales se utilizaron para la estimación del CBR de la subrasante.

Gráfico-6: Estratigrafía (Est 0+00-1+400), sondeos (S-1, al S-15).

Fuente: Elaborado por Sustentantes en base a sondeos.

Nota: La línea subrasante propuesta se muestra en el perfil longitudinal (Ver planos, laminas 7-10)

4.4. Resultados de ensayos a bancos de préstamo

Según los ensayos de laboratorio se exploraron Bancos en explotación y zonas potenciales para encontrar nuevos Banco a lo largo de la línea vial en base a la experiencia y la geomorfología de los sitios a una distancia máxima de 5 km se realizaron ensayos de laboratorio determinándose el uso de acuerdo con las características determinadas para ser ocupados en la conformación de capas de terracería y base para el pavimento articulado propuesto en este estudio.

Tabla 33: Bancos de préstamos Identificados.

Banco	Banco N°1 Adolfo Benavidez	Banco N°2 Bayardo Hurtado					
Estación	Est: 0+000, 0.9 km al noreste, 30m lzq.	Est: 0+000, 2.0 km al Sureste, 30m lzq.					
Dueño	Adolfo Benavidez	Bayardo Hurtado					
Volumen Aproximado (m³)	72,716.00 m³	96,000.00 m³					
Uso probable	Relleno, Base- Subbase	Relleno, Base- Subbase					
clasificación	A-1-a (0)	A-1-a (0)					
Altura	28.00	32.00					
Ancho	49.00	58.00					
Largo	53.00	52.00					

Fuente: Alcaldía municipal de Condega- Laboratorio EDICO.

El Banco de Préstamo Adolfo Benavidez N°1 se localiza a 0.9 kilómetros al noreste de la estación inicial 0+000, a 30 metros lado Izquierdo, en las coordenadas UTM WGS84 X= 570437, coordenada Y= 1480176. El propietario de este banco es el Sr. Adolfo Benavidez. El volumen aproximado de este banco es de 72,716.0 m³, sus dimensiones corresponden a 28 metro de altura, 49 metros de ancho, 53 metros de largo, este banco ha sido usado. (Ver Anexos Imagen-27, pág. L)

El material de este banco corresponde visualmente arena con grava de baja comprensibilidad color rojizo del tipo **A-1-a (0)**. No posee Límite Líquido ni índice de plástico, sus partículas pasan 94% el tamiz de 1 1/2", 51% el tamiz N°.4, y 8% el tamiz N°.200. El PVS máx. es de 2,325 kg/m³, su humedad optima de 9.5%, su PVSS es de 1,288 kg/m³, y su Factor de Abundamiento de 1.40. El resultado de ensayo de CBR en muestras saturadas y compactadas al 90, 95 y 100% Próctor Modificado, es de **61, 86 y 94**%, respectivamente. *(Ver Anexos, Tabla 109, Pág. XLIX)*

Los ensayes de Desgate de los Ángeles dio como resultado 23% y el ensaye de Intemperismo acelerado dio como resultado 7.20%. (Ver Anexos, Tabla 110, Pág. LI)

Banco de Préstamo Bayardo Hurtado N°2, se localiza a 2.0 kilómetros al sureste de la estación inicial 0+000, a 30 metros lado Izquierdo, en las coordenadas UTM WGS84 X= 579288, coordenada Y= 1480280. El propietario de este banco es el Sr. Bayardo Hurtado. El volumen aproximado de este banco es de 96,000 m³, sus dimensiones corresponden a 32 metro de altura, 58 metros de ancho, 52 metros de largo, Este banco ha sido usado. (Ver anexos Imagen-28, pág. LII)

El material de este banco corresponde visualmente a arena con limo y grava color café claro tipo **A-1-a (0)**. Su límite liquido de 17% y un índice plástico de 5%, sus partículas pasan 100% el tamiz de 2", 49% el tamiz No.4, y 5% el tamiz No.200. El PVS máx. es de 1,826 kg/m³, su humedad optima de 10.8%, su PVSS es de 1,013 kg/m³, y su Factor de Abundamiento de 1.33. El resultado de ensayo de CBR en muestras saturadas y compactadas al 90, 95 y 100% Próctor Modificado, es de **43, 55 y 67%**, respectivamente. (*Ver Anexos, Tabla 109, Pág. XLIX*). El ensaye de Desgate de los Ángeles dio como resultado 27%, el ensayo de Intemperismo dio 8.5%. (*Ver Anexos, Tabla 111, Pág. LIII*)

Fuente: Fuente: Alcaldía municipal de Condega- Laboratorio EDICO.

4.4.1. Consideraciones para elección del banco a utilizar

Consideraciones para la base

Esta es la capa que se encuentra colocada por debajo de la carpeta de rodamiento, por lo que su ubicación muy cercana a la aplicación de las cargas requiere materiales de gran calidad y resistencia. Por lo tanto, deben de cumplir las especificaciones mínimas de la NIC-2019 que se muestran en la siguiente tabla:

Tabla 34: Normativa para material base granular.

BASE										
ENSAYO	REQUERIMIENTOS	NORMA DE PRUEBA								
Límite líquido	25% Máx.	AASHTO T-89								
Índice de Plasticidad	0% Máx. (NP)	AASHTO T-90								
CBR	80% Mín.	AASHTO T-193								
Desgaste de los Ángeles	35% Máx.	AASHTO T-96								
Intemperismo Acelerado	12% Máx.	AASHTO T-104								
Compactación	95% Próctor Modificado	AASHTO-191								

Cumplir con requerimientos de granulometría (E) (Base) Cuadro 1003-6.

Ver Anexos, Tabla-108, Pág. XLVIII.

Fuente: Especificaciones NIC-2019 Sección 1003. 8 (inciso a y b, pág. 809-810 Doc).

4.4.2. Consideraciones para la subbase

Esta se puede definir como aquella capa que se coloca por debajo de la capa base y está alejada de las cargas que resiste directamente la capa de rodamiento, no se requieren materiales de gran resistencia como los de la capa base, por lo que su módulo de elasticidad es menor. Debe de cumplir las especificaciones mínimas de la NIC-2019 que se muestran en la siguiente tabla:

Tabla-1: Especificaciones de los materiales para la subbase.

SUB-BASE					
Ensayo	Requerimientos	Norma de Prueba			
Límite líquido	25% Máx.	AASHTO T-89			
Índice de plasticidad	6% Max	AASHTO T-90			
CBR	30% Mín.	AASHTO T-180			
Desgaste de los Ángeles	35% Máx.	AASHTO T-96			
Intemperismo Acelerado	12% Máx.	AASHTO T-104			
Compactación	95% min del peso	AASHTO-191 Y/O T-238			
	volumétrico seco máx.	(In Situ)			
Cumplir con requerimientos de granulometría (B) (Subbase) Cuadro 1003-6./ AASHTO-T27					

Fuente: Especificaciones NIC-2019 Sección 1003. 8 (inciso a y b, pág. 809-810 Doc.).

4.5. Evaluación del Banco de préstamo N°1 propuesto para la capa base

El **Banco de préstamo Adolfo Benavidez N°1** posee un CBR al 95% Proctor modificado de 86% el más alto, se utilizó para hacer la comparativa con los requerimientos mínimos establecidos por la Nic-2019, los cuales debe cumplir un banco para poder utilizarse como base granular. Ver tabla a continuación

Tabla 35: Evaluación Banco N°1 para la capa base.

Capa Base					
ensayo		requerimientos	Banco Adolfo Benavides N°1	valoración	
Límite líqu	uido	25% Máx.	No posee	cumple	
Índice de Plas	sticidad	0% Máx.	No posee	cumple	
CBR		80% Mín.	86%	cumple	
Desgaste de los	Desgaste de los Ángeles 35% Máx. 23%		23%	cumple	
Intemperismo Acelerado 12% Máx. 7.2%		cumple			
Graduaci	ón				
75	100	100	Cumple		
4.75	47-59	51	Cumple		
0.075	4-8	8	Cumple		

Fuente: Especificaciones NIC-2019 Sección 1003. 8 (inciso a y b, pág. 809-810- Doc).

El banco de préstamo **Adolfo Benavidez N°1** cumplió con el ensayo de desgaste de los ángeles, ensayo de Intemperismo acelerado según la sección 1003.8 de la NIC 2019. También, cumple con el parámetro mínimo del ensayo CBR al 95% próctor modificado (86%) y con los requisitos de graduación, este banco se puede utilizar como material base granular ya que cumplió con todas las normativas para su uso como material base.

4.6. Banco de préstamo N°1 propuesto para la capa subbase

El Banco de préstamo Adolfo Benavides N°1, se utilizó para hacer la comparativa con los requerimientos mínimos de la Nic-2019, que debe cumplir un banco para poder utilizarse como material subbase. Ver Tabla: 36, Pag.50

Tabla 36: Evaluación Banco N°2 para la capa subbase.

	Capa subbase					
	ensayo	requerimientos Adolfo Benavides N°1		valoración		
L	ímite líquido	25% Máx.	No posee	cumple		
Índio	ce de Plasticidad	6% Máx. (NP)	No posee	cumple		
	CBR	30% Mín.	86%	cumple		
Desga	ste de los Ángeles	35% Máx.	23%	cumple		
Intem	perismo Acelerado	12% Máx.	7.2%	cumple		
tamiz (mm)	% que debe pasar por los tamices (E)/Base	Banco Adol	fo Benavides N°1	VALORACIÓN subbase		
75	100		Cumple			
4.75	40-60		Cumple			
0.075 0-12 8			8	Cumple		

Fuente: Especificaciones NIC-2019 Sección 1003. 8 (inciso a y b, pág. 809-810 Doc).

De acuerdo la **Tabla-36** el Banco de préstamo **Adolfo Benavides N°1** cumple con los requerimientos mínimos establecidos por la Nic-2019 como lo son graduación, limite líquido, desgate de los ángeles, intemperismo acelerado y CBR Proctor modificado al 95%, para utilizarse como fuente de material para la capa subbase granular.

El Banco de préstamo Bayardo Hurtado N°2 posee un CBR de 55% al 95% próctor modificado, se utilizó para hacer la comparativa con los requerimientos mínimos de la Nic-2019, que debe cumplir un banco para poder utilizarse como material subbase.

Tabla 37: Evaluación Banco N°2 para la capa subbase.

	Capa subbase					
ensayo		requerimientos	Banco Bayardo Hurtado N°2	valoración		
L	ímite líquido	25% Máx.	17%	cumple		
Índio	ce de Plasticidad	6% Máx. (NP)	5%	cumple		
	CBR	30% Mín.	55%	cumple		
Desga	ste de los Ángeles	35% Máx.	27%	cumple		
Intem	perismo Acelerado	12% Máx.	8.5%	cumple		
tamiz (mm)	% que debe pasar por los tamices (E)/Base	Banco Baya	ardo Hurtado N°2	VALORACIÓN subbase		
75	100		Cumple			
4.75	40-60		Cumple			
0.075	0-12		5	Cumple		

Fuente: Especificaciones NIC-2019 Sección 1003. 8 (inciso a y b, pág. 809-810-8011 Doc).

De acuerdo la **Tabla 37, pág. 50** el Banco de préstamo **Bayardo Hurtado N°2** cumple con los requerimientos mínimos establecidos por la Nic-2019 como lo son graduación, limite líquido, desgate de los ángeles, intemperismo acelerado y CBR Proctor modificado al 95%, para utilizarse como fuente de material para la capa subbase granular.

4.6.1. Resultados de evaluación de material propuesto para base

Se evaluó el banco de préstamo banco **Adolfo Benavides N°1**, según las normativas de NIC-2019, conociendo que posee el CBR al 95% próctor modificado más alto (86%) de los bancos identificados, este cumple para utilizarse como material base granular. No se considerará estabilizar.

4.6.2. Resultados de evaluación de material propuesto para subbase

Se evaluaron los 2 bancos identificados (Adolfo Benavides N°1, Bayardo Hurtado N°2), según las normativas de la NIC-2019 Sección: 1003.8. tomo II inciso (a y b), para subbase granular, estos cumplen con los ensayos necesarios para poder utilizarse como material de la capa subbase granular.

En base a lo anterior los bancos de diseños propuestos quedan de la siguiente manera:

Tabla 38: Bancos Diseño seleccionados.

BANCO	CAPA	CONDICIÓN	RESISTENCIA	volumen
Adolfo Benavides N°1	Base	No estabilizado compactado al 95%	CBR 84%	72,716.0 m³
Bayardo Hurtado N°2	Subbase	No estabilizado compactado al 95%	CBR 55%	96,000.0 m³

Fuente: Elaborado por Sustentantes.

Los bancos de diseños propuestos se utilizarán en el diseño de pavimento articulado (Adoquín) tomando en consideración todos los parámetros que incorpora el método de la AASHTO-93.

4.7. Determinación del CBR de Diseño

El Ensayo CBR (California Bearing Ratio): Ensayo de Relación de Soporte de California, mide la resistencia al esfuerzo cortante de un suelo y sirve para poder evaluar la calidad del terreno para subrasante, subbase y base de pavimentos. Se efectúa bajo condiciones controladas de humedad, densidad, y esta normado por la ASTM-D1883 y por la AASHTO T-193. Para la aplicación de este ensayo las muestras se sometieron a saturación por un periodo de 96 horas de anticipación.

La Metodología para la determinación del CBR de Diseño consiste en:

- 1) Identificar los Valores CBR de las muestras a utilizar.
- 2) Ordenar los Valores de Menor a Mayor.
- Determinar la frecuencia de cada valor CBR así como el porcentaje de valores iguales o mayores.
- 4) Graficar los valores de CBR y los porcentajes calculados.
- 5) Estimar el CBR de diseño con la curva obtenida, utilizando el percentil de 75%, en dependencia del número de ejes equivalentes por carril de diseño.

4.7.1. CBR de la subrasante

Subrasante se denomina al suelo que sirve como fundación para todo el paquete estructural de un pavimento en este caso articulado. Para determinar el CBR de la subrasante se utilizaron las profundidades con respecto al terreno existente queda claro que los valores de CBR a utilizados son las de los suelos A-2-6(0) y A-2-4(0), A-2-5(0), y el material de relleno del banco N°2, los cortes utilizados fueron los generados por el software Civil 3D 2022.

En los tramos donde hay corte se seleccionó la capa inmediata mientras que donde hay relleno se propuso material del banco de préstamo **Bayardo Hurtado N°2**, esto en dependencia de su ubicación y propiedades físico-mecánicas. Las muestras tomadas pueden verificarse en los **Anexos Tabla 112-113**, **Pag LIV-LV**).

Se realizó una tabla la cual presenta el resumen de las alturas de corte y relleno que genero el software Civil 3D para cada sondeo sobre la plataforma vial en base a la subrasante propuesta en planos. Ver tabla a continuación.

Tabla 39: Altura de corte y relleno de la subrasante.

Sondeo No.	Altura de Corte	Altura de Relleno	Tipos de Suelos tomados
S1-0+000	-	42 cm	Banco N°2
S2-0+100	-	18 cm	Banco N°2, A-1-a(0)
S3-0+200	51 cm	-	A-2-4(0)
S4-0+300	-	12 cm	Banco N°2, A-2-7(0)
S5-0+400	-	25 cm	Banco N°2
S6-0+500	-	18 cm	Banco N°2, A-1-b(0)
S7-0+600	5cm	-	A-2-6(0), A-2-7(0),
S8-0+700	43 cm	-	A-2-6(0)
S9-0+800	-	76 cm	Banco N°2
S10-0+900	-	163 cm	Banco N°2
S11-1+000	64 cm	-	A-2-6(0)
S12-1+100	3 cm	-	A-2-6(0)
S13-1+200	-	142 cm	Banco N°2
S14-1+300	114 cm	-	A-2-5(0)
S15-1+400	70 cm	-	A-2-5(0)

Fuente: Elaborado por Sustentante.

A continuación, se presenta un ejemplo demostrativo de la selección de la muestra estación 0+100, sondeo N°2.

Tabla 40: Ejemplo de toma de muestra en base a subrasante. ALTURA DE ALTURA DE Nº de Muestras **CBR Tomodo ESTACIONES** CORTE RELLENO: Clasificacion al 95% Tomadas (metros) (metros) Subrasante Relleno 0.18 cm 0+100 0.18 A-1-a(0) 45% 0+100 4 A-1-a (0) Capa inmediata Clasificación valor de CBR AASHTO ESTACION SONDEO KM+m 90% 95% 100% A-2-4 (0) 50 0+000 A-1-a 0 60 15.7 1 0+000 A-2-4 0 9.2 22 2 0+100 50 A-1-a 35 113 0+100 A-2-4 143 19.3

Fuente: Elaborado por Sustentantes.

ώ

LEYENDA

DESCRIPCION RASANTE SUBRASANTE TERRENO EXISTENTE

SIMBOLO

En base al grafico anterior se conoce que hay un relleno de 18 centímetros de espesor por lo que se selecciona la capa inmediata el suelo tipo **A-1-a (0)** considerando una profundidad máxima de 0.20 metros para su selección, ya que, las cargas puntuales de los ejes de los vehículos no llegaran más allá de esta profundidad, en este caso se toma la muestra y su valor CBR al 95% Proctor modificado de **45**%.

Tomando en consideración el proceso anterior, se realizó un consolidado de los valores de CBR de diseño tomados y el tipo de suelo al que corresponde el material existente en la subrasante. Ver tabla a continuación

Tabla 41: Selección de CBR de diseño para la subrasante.

	Table 41. Goldonia de Cart de discrip para la subrasario.					
CLASIFICACIÓN AASHTO T-180	CBR AL 95%	FRECUENCIA	CANTIDAD DE VALORES IGUALES O MAYORES	PORCENTAJES		
A-2-4, (0)	12	1	19	100.0%		
A-1-b, (0)	12.9	1	18	94.7%		
A-2-7, (2)	13	1	17	89.5%		
A-2-6, (0)	14.5	1	16	84.2%		
A-2-6, (1)	16.9	1	15	78.9%		
A-2-6, (0)	17.2	1	14	73.7%		
A-2-6, (0)	23.8	2	13	68.4%		
A-2-5, (0)	38	2	11	57.9%		
A-1-a, (0)	45	1	9	47.4%		
A-1-a, (0) banco N°2	55	8	8	42.1%		
Total	Se toma	aron 19 muestras d	el total de 33.			

Elaborado por Sustentantes.

Posterior se aplicó el criterio expuesto por el Instituto del Asfalto para la determinación del valor del CBR de Diseño de la subrasante, el cual recomienda tomar un valor adecuado, ya sea de 60%, 75% o el 87.5%, tomando en consideración que el ESAL's previsto por el carril de diseño previsto será de 697,644.00 por tanto, para el estudio en análisis se tomó percentil de 75%, tal y como se indica en la tabla 42 pág. 55.

Tabla 42: Criterio del Instituto de asfalto para determinar CBR de Diseño.

Cargas Equivalentes Totales (ESAL´s)	Percentil de Diseño (%)
< de 10,000 ESAL´s	60%
Entre 10,000 y 1,000,000 de ESAL´s	75%
> de 1,000,000 ESAL´s	87.5%

Fuente: Instituto de Asfalto. (MS-1) 1,991, pág. 168.

Teniendo los valores CBR de menor a mayor, los porcentajes de las cantidades iguales o mayores y definido el percentil (75 %) se procede a graficar el CBR de Diseño de la Subrasante, iniciando con una línea horizontal se intercepta la curva de la Subrasante luego con una línea vertical en 90 grados se intercepta el valor calculado en este caso el CBR resultante es de **19.60%. Ver Gráfico-7. Pag 56**

El cual de acuerdo con la clasificación de CBR de la **Tabla 43**, clasifica a la subrasante existente como buena, como se muestra a continuación:

Tabla 43: Clasificación del CBR.

CBR	CLASIFICACIÓN
0-5	Subrasante mala
5-10	Subrasante regular
10-20	Subrasante buena
20-30	Subrasante muy buena
30-50	Subbase buena
50-80	Base buena
80-100	Base muy buena

Fuente: Mecánica de suelos y cimentaciones Crespo Villalaz, C. (2004).

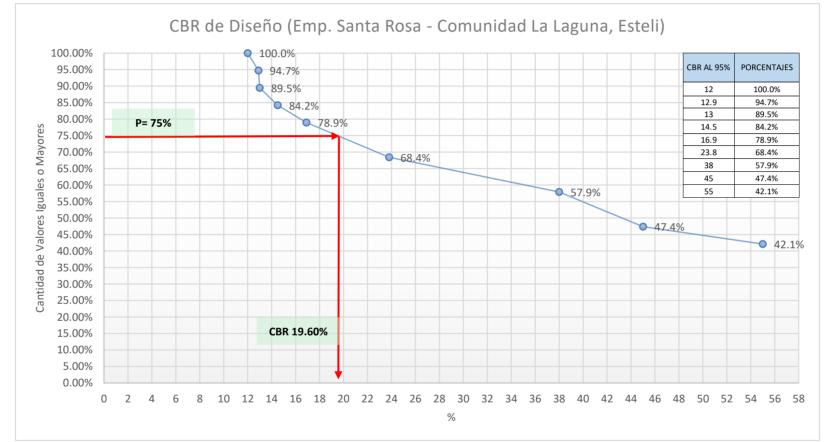
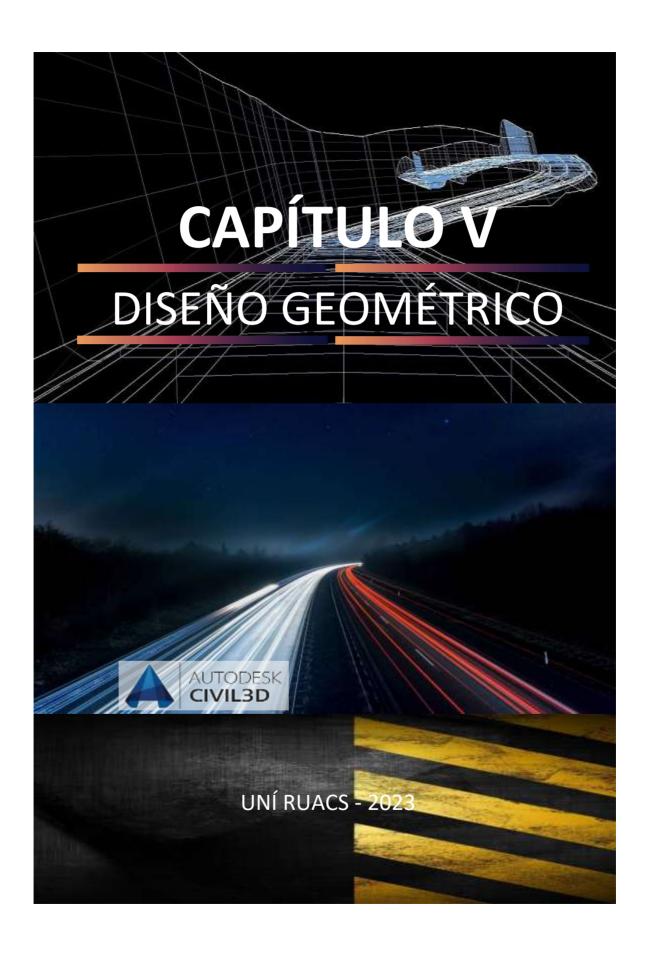



Gráfico 7: Estimación del CBR de diseño.

Fuente: Elaborado por Sustentante

5.1. Introducción

El diseño geométrico de una carretera está compuesto por tres elementos bidimensionales que se ejecutan de manera individual, pero dependiendo unos de otros, y que al unirlos finalmente se obtiene un elemento tridimensional que corresponde a la vía propiamente. Estos tres elementos, que se muestran en la, son:

- Alineamiento horizontal: compuesto por ángulos y distancias formando un plano horizontal con coordenadas norte y este.
- Alineamiento vertical: compuesto por distancias horizontales y pendientes dando lugar a un plano vertical con abscisas y cotas.
- **Diseño transversal:** consta de distancias horizontales y verticales que a su vez generan un plano transversal con distancias y cotas.

5.2. Metodología

Las normas de Diseño Geométrico que se implementarán serán contenidas en el Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras Regionales (2011, 3ra Edición). Se hará uso del software Civil 3D año 2022, el cual servirá de apoyo para el diseño geométrico de la vía, optimizando en gran medida el trabajo y documentación de planos.

5.3. Ubicación geográfica de la vía

El proyecto se ubica una zona Rural en el departamento de Estelí y corresponde a la ruta actual que comunica al casco urbano de Condega y las comunidades de Santa Rosa y La laguna. El inicio del Subtramo (**Est. 0+000**), de camino se localiza a **14.9 kilómetros** del municipio de Condega.

5.4. Clasificación funcional de la vía

La aplicación del criterio de clasificación funcional de las carreteras es útil dividir la red vial en segmentos de características similares en función de la demanda expresada por el TPDA.

Según los resultados obtenidos en el capítulo III, el tramo de carretera presenta volúmenes de tránsito entre 100 a 500 vehículos (TPDA=480 Veh/día) y de acuerdo con la sección típica propuesta contara con dos (2) carriles, localizada en una zona rural. Considerando los criterios antes mencionados la clasificación funcional será Local Rural (LR).

Tabla 44: Sistema de clasificación funcional.

Función	Clase de carretera	Nomenclatura	TPDA	Número de Carriles
Arteria	Autopista	AA	> 20,000	6-8
7 11 10 1 101	Arteria Rural	AR	10,000-20,000	4-6
Principal	Arteria Urbana	AU	10,000-20,000	4-6
Arteria Menor	Arteria Menor Rural	AMR	3,000-10,000	2
Arteria Menor	Arteria Menor Urbana	AMU	3,000-10,000	2
Colectora	Colectora Mayor Rural	CMR	10,000-20,000	4-6
Mayor	Colectora Mayor Urbana	CMU	10,000-20,000	4-6
Colectora	Colectora Menor Rural	CR	500-3,000	2
Menor	Colectora Menor Urbana	CU	500-3,000	2
	Local Rural	LR	100-500	2
Local	Local Urbana	LU	100-500	2
	Rural	R	∢100	1-2

Fuente: SIECA-2011 (Normas para el Diseño Geométrico de las Carreteras Regionales, p. 33).

5.5. Criterios de diseño

Considerando que en el **capítulo III**, se determinaron las características del tránsito entre las cuales destacan el volumen, tipo de vehículo y la velocidad, los cuales nos sirvieron para establecer criterios de diseño tales como:

5.5.1. Vehículo de diseño

Debido a las dimensiones tan variables de los vehículos, que circulan por la carretera, en base a los resultados obtenidos en el aforo vehícular, se estableció como vehículo representativo el camión **SU** (C3 clasificación según MTI), dado que este destaca por ser el que tiene mayores dimensiones físicas y de radios de giros mayores, ideal para diseñar con estándares altos que proporcionen mayor seguridad vial.

5.6. Criterios de diseño

Considerando que en el **capítulo III**, se determinaron las características del tránsito entre las cuales destacan el volumen, tipo de vehículo y la velocidad, los cuales nos sirvieron para establecer criterios de diseño tales como:

5.6.1. Vehículo de diseño

Debido a las dimensiones tan variables de los vehículos, que circulan por la carretera, en base a los resultados obtenidos en el aforo vehicular, se estableció como vehículo representativo el camión **SU** (C3 clasificación según MTI), dado que este destaca por ser el que tiene mayores dimensiones físicas y de radios de giros mayores, ideal para diseñar con estándares altos que proporcionen mayor seguridad vial. (**Ver anexos imagen-29, pág. LVI**)

Tabla 45: Dimensiones del vehículo de diseño.

	iubi	u +0. D		100 001	remedie de	aloci io.		
Tipo vehículo	Símbolo	Altura	Ancho	Largo	Voladizo	Voladizo	WB1	WB2
					Delantero	trasero		
Vehículo	Р	1.3	2.1	5.8	0.90	1.50	3.40	
Liviano								
Camión	SU	4.10	2.40	9.20	1.20	1.80	6.10	
Bus	BUS	3.70	2.60	12.20	1.80	2.60	7.30	
Bus Articulado	BUS-14	3.40	2.60	18.30	3.10	6.70	5.90	
Cabezal con semirremolque	WB-15	4.10	0.60	16.80	0.60	4.50	10.80	
Cabezal con semirremolque	WB-19	4.10	2.60	20.90	0.90	0.60	4.50	10.80
Cabezal con semirremolque	WB-20	4.10	2.60	22.40	1.20	1.40-0.80	6.60	13.20-13.80

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales (SIECA 2011, pág. 38).

5.6.2. Velocidad de diseño (VD)

Para establecer la velocidad de diseño (VD), se tomó en consideración la Condiciones del terreno (Ondulado – Montañoso, Pendiente predomínate entre 5 -15%), el uso de la tierra adyacente (derecho de vía de 15 metros) y tipo de área (Local Rural, 100-500 Veh/día). Por lo tanto, se decidió adoptar una velocidad de diseño de **40km/h** (**VD**), ya que entra dentro del rango de velocidades bajas aplicables para vías locales y vecinales (20-60km/h, según Sieca-2011, p.56). En la tabla 45, p.56, se muestra la velocidad promedio de ruedo (VD):

Tabla 46: Velocidad de ruedo promedio en base a velocidad de diseño.

Velocidad de diseño (VD)	Velocidad de Ruedo (VR)
20	20
30	30
40	40
50	47
60	55
70	63
80	70
90	77
100	85

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales (SIECA 2011, pág. 85).

5.7. Elementos de la sección transversal

La Sección Transversal de una carretera o calle en área urbana, muestra sus características geométricas, según un plano normal vertical a la superficie que contiene el eje de la carretera o calle. A continuación, se muestra cada uno de los componentes de la que estará compuesta:

5.7.1. Número de carriles

Según lo recomendado por la Tabla-44, p.58, para una vía con una clasificación funcional de **Local Rural** (**LR**), se recomienda un máximo de **2 carriles**.

5.7.2. Ancho de carril de rodamiento

Dado las condiciones del tramo, la propuesta de un ancho de carril de **3.00 metros** por sentido, es el más adecuado dado las restricciones de derecho de vial sobre el tramo, el cual ofrecerá condiciones oprimas de circulación para el vehículo de diseño (**SU**).

5.7.3. Corona o plataforma

En nuestro caso se propuso un ancho de corona de **7.30 metros**, compuesto por **2** carriles de **3.00 metros** por sentido, bordillo de concreto de **0.15 metros** por sentido, hombro de **0.50 metros** por sentido y cunetas tipo II de **1.15 metros** de ancho. *Ver Imagen 16, pág. 97*

5.7.4. Superficie de rodamiento

La superficie de rodamiento está contemplando el uso de adoquín tipo cruz, con una resistencia a la compresión de 3,500 PSI y un peso promedio de 9.5 Kilogramos.

5.7.5. Pendiente transversal

En cuanto al bombeo transversal, se adoptó una pendiente de **3.00%**, un valor adecuado para este tipo de pavimento (Adoquín tipo cruz, 3500 PSI).

5.7.6. Pendiente de hombro

La pendiente de los hombros será la misma proyectada para el bombeo normal, un valor de pendiente de **3.00%.**

5.8. Elementos de diseño

Según la SIECA (2011, 3er edición), las distancias de visibilidad, la sobreelevación o peralte, el ancho de calzada, los alineamientos horizontal y vertical y algunos otros, son elementos comunes para todas las clases de calles y carreteras. Dichos elementos de diseño son fundamentales para efectuar el diseño geométrico:

5.8.1. Distancia de visibilidad

Para los fines de diseño del proyecto hemos considerado dos distancias: La distancia de visibilidad de parada y la distancia de visibilidad de rebase.

5.8.1.1. Distancia de visibilidad de parada

Esta es la distancia requerida por un conductor para detener su vehículo en marcha, cuando surge una situación de peligro o percibe un objeto imprevisto adelante de su recorrido la distancia de visibilidad de parada en su primer componente, d1, se calcula involucrando la velocidad y el tiempo de percepción y reacción del conductor, mediante la siguiente expresión matemática:

$$D_p = 0.278 * V * t + \frac{V^2}{254.14(f \pm P)}$$
 Ec.7

Donde:

V: velocidad de diseño (Km/h).

t: tiempo de reacción (segundos)

f: coeficiente de fricción.

P: pendiente (%).

Para una velocidad de diseño de **40 km/h**, el resultado del coeficiente de fricción (f), es de **0.40**, tal y como se muestra en la tabla-47:

Tabla 47: Coeficiente de fricción en función de la Velocidad.

Velocidad de	Velocidad de	Tiempo de	Distancia de	Coeficiente de
Diseño (Km/h)	Marcha (Km/h)	percepción (s)	Reacción (m)	fricción (f)
30	30 - 30	2.5	20.8 – 20.8	0.40
40	40 - 40	2.5	27.8 – 27.8	0.38
50	47 - 50	2.5	32.6 – 34.7	0.35
60	55 - 60	2.5	38.2 – 41.7	0.33
70	67 - 70	2.5	43.8 - 48.6	0.31
80	70 - 80	2.5	48.6 – 55.6	0.30
90	77 -90	2.5	53.5 - 62.4	0.30
100	85 - 100	2.5	59.0 - 69.4	0.29

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales (SIECA 2004, p.4-28).

Para una velocidad de diseño de **40 km/h**, el resultado de distancia de visibilidad de parada (DVP), es de **50.0 metros**, tal y como se muestra en la tabla-48:

Tabla 48: Distancia de Visibilidad parada en función de la Velocidad.

Velocidad de	Distancia de	Distancia de	Distancia de Visibilidad parada	
Diseño (Km/h)	Reacción	Frenado (m)	Calculada (m)	Diseño (m)
	(m)			, ,
20	13.9	4.6	18.5	20
30	20.9	10.3	31.2	35
40	27.8	18.4	46.2	50
50	34.8	28.7	63.5	65
60	41.7	41.3	83	85
70	48.7	56.2	104.9	105
80	55.6	73.4	129	130
90	62.6	92.9	155.5	160
100	69.5	114.7	184.2	185

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales, SIECA 2004.

5.8.1.2. Distancia de visibilidad de adelantamiento

La distancia de visibilidad de adelantamiento equivale a la visibilidad mínima que requiere un conductor para adelantar un vehículo que se desplaza a velocidad inferior a la velocidad de proyecto. La distancia de visibilidad de adelantamiento (DVA), está compuesta por:

 La distancia preliminar de demora (d1), se calculó utilizando la siguiente ecuación:

$$d1 = 0.278 t1 [(v - m + a(\frac{t1}{2}))]$$
 Ec. 8

Dónde:

t1 = Tiempo de maniobra inicial (segundos).

v = velocidad promedio del vehículo de Adelantamiento (km/h).

m = Diferencia de velocidad entre el vehículo que rebasa y el rebasado (km/h).

a = Aceleración promedio del vehículo que rebasa (km/h).

• Distancia de adelantamiento (d2) expresado por:

$$d2 = 0.278 \text{ v } t_2$$
 Ec. 9

Dónde:

v= velocidad promedio del vehículo que ejecuta el adelantamiento, kilómetros por hora

t2= Tiempo de ocupación del carril opuesto, segundos.

- La Distancia de Seguridad (d3), la experiencia ha demostrado que valores entre
 35 y 90 metros son aceptables para esta distancia.
- La Distancia recorrida por el vehículo que viene en el carril contrario (**d4**), es práctica corriente fijar esta distancia en dos tercios (2/3) de la distancia d2.

5.8.1.3. Resultado de distancia de visibilidad para CV-1

Para realizar los cálculos de distancia de visibilidad, se tomó como ejemplo la curva vertical-1, se utilizaron los siguientes datos:

DATOS DE CURVA VERTICAL:

Curva=	Columpio	
Est. PVI=	0+045.09	
f =	0.38	
$V_D =$	40	Km/h
P =	3.48	%
a ₁ =	3.2	m / Seg2
a ₂ =	2.25	m / Seg2
t ₁ =	3.6	Seg
m =	15	Km/h
t ₂ =	9.3	Seg.
d 3 =	40	metros
d 4 =	97	metros

a- DISTANCIA DE VISIBILIDAD DE PARADA, CV-1=

$$D_p = 0.278 * V * t + \frac{V^2}{254.14(f \pm P)}$$
 Ec.10

$$D_p = 0.278 * (40) * (2.5) + \frac{(40)^2}{254.14(0.38+0.0348)} = 42.96 m \approx 50 \text{ metros}$$

b- DISTANCIA DE VISIBILIDAD DE ADELANTAMIENTO, CV-1=

d1 (Distancia de demora):

d2 (Distancia de adelantamiento):

$$d2 = 0.278 \text{ v } t_2$$
 Ec. 12
 $d2 = 0.278* (40) (9.3)$
 $d2 = 103.42 \text{ metros}.$

d3 (Distancia de Seguridad): es de 60 metros.

d4 (Distancia recorrida por el vehículo que viene en sentido contario):

$$d4 = \left(\frac{2}{3}\right) d2$$

$$d4 = \left(\frac{2}{3}\right) 103.42$$

$$d4 = 68.94 \text{ metros}$$

Por consiguiente, la Distancia de Visibilidad de adelantamiento (**Da**), queda establecida de la siguiente forma:

Da=
$$d1 + d2 + d3 + d4$$
 Ec. 14
Da= $29.10 + 103.4 + 60 + 68.94$
Da= 261.44 metros ≈ 270 metros

Los resultados se ajustan a lo recomendado por la Sieca-2011, tal y como se muestra en la **tabla 49**:

Tabla 49: Distancia de Adelantamiento para carreteras de dos carriles.

Velocidad de Diseño (Km/h)	Distancia mínima de Adelantamiento (m)
30	200
40	270
50	345
60	410
80	485
90	540
100	615
110	617
120	695

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales, SIECA 2011, pág.125.

5.9. Alineamiento horizontal

Las principales consideraciones que controlan el diseño del alineamiento horizontal son:

- Categoría de la carretera.
- Topografía del área.
- Velocidad de Proyecto.
- Distancias de visibilidad.
- Coordinación con el perfil.
- Costos de construcción, operación y mantenimiento.

5.9.1. Coeficiente de fricción lateral (f)

Para el caso del proyecto en estudio, para la velocidad establecida de 40 Kilómetros/hora, le corresponde un valor $\mathbf{f} = \mathbf{0.23}$.

Tabla 50: Coeficiente de fricción lateral en función de la velocidad.

Velocidad de Diseño (Km/h)	Factor de Fricción Máxima (f)
30	0.28
40	0.23
50	0.19
60	0.17
70	0.15
80	0.14

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales, SIECA 2011, p. 89.

5.9.2. Sobreelevación máxima

Se estableció una Sobreelevación o peralte máximo del **8.0** % porque se considera que está pendiente no presenta ningún inconveniente relacionado con la construcción, operación y mantenimiento del tipo de vía.

Tabla 51: La sobreelevación o peralte según tipo de área.

Tasa de Sobreelevación e (%)	Consideración por Área.
12	Nieve o Hielo
10	Áreas Rurales Montañosas
8	Áreas Rurales Onduladas
4	En áreas Urbanas

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales, SIECA 2011, p. 83.

5.9.3. Radio mínimo.

Una vez establecido el máximo factor de sobreelevación (e), los radios mínimos de curvatura horizontal se calcularon utilizando la fórmula siguiente, que es la siguiente:

$$R_{min} = \frac{v^2}{127 \text{ (e+f)}}$$
 Ec. 15

Dónde:

R = Radio mínimo de curva, en metros

e= Tasa de sobreelevación en fracción decimal.

f = Factor de fricción lateral, que es la fuerza de fricción dividida por la masa perpendicular al pavimento.

V = Velocidad de diseño, en kilómetros por hora.

5.9.4. Grado de curva

El grado de curva o de curvatura (**Gc**), es el ángulo sustentado en el centro de un círculo de radio R por un arco de 100 pies ó de 20 metros, según el sistema de medidas utilizado, se utiliza la siguiente expresión para el cálculo:

$$\mathbf{G_c} = \frac{1145.92}{R}$$
 (Grados Decimales). Ec. 16

Dónde:

R = Radio mínimo de curva, en metros.

Para una Velocidad de Diseño de **40 km/h** y un peralte máximo de **8.00%**, en la tabla-52 se muestran los valores recomendados por la Sieca-2011:

Tabla 52: Radios mínimos y grados máximos de Curvas para distintas velocidades.

Velocidad de Diseño	Factor de Fricción	icción Peralte Máximo 8%		
(Km/h)	Máxima (f) Radio (m) G		Grado de Curva	
20	0.35	7.3	7	163° 42′
`30	0.28	19.7	20	57° 18′
40	0.23	40.6	41	27° 57
50	0.19	72.9	73	15° 42′
60	0.17	113.4	113	10° 08′
70	0.14	167.8	168	06° 49′
80	0.14	229.1	229	05° 00′

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales, SIECA 2011, p. 89.

Radio mínimo y grado máximo de la curvatura:

$$\mathbf{R_{min}} = \frac{40^2}{127 (0.08 + 0.23)}$$

 $R_{min} = 41.00 \text{ metros}.$

Para una velocidad de **40 Kilómetros/hora**: sustituyendo en la **ecuación 15**, se obtuvo un radio mínimo de **41.0** metros.

Grado de curvatura:

$$G_c = \frac{1145.92}{R}$$
 $G_c = \frac{1145.92}{41.00} = 27^{\circ} 57'$

5.9.5. Máxima pendiente relativa

La máxima pendiente relativa varia con la velocidad de diseño, para proveer longitudes largas en velocidades altas y longitudes cortas en velocidades bajas. De acuerdo con la tabla-52, en base a la velocidad de 40 km/h se determinó un valor de pendiente relativa equivalente de **1:143**, cuyo porcentaje es de 0.70%.

Tabla 53: Máximas pendientes relativas.

Diseño (km/h)	Pendiente relativa	Pendiente relativa máxima
	máxima (%)	equivalente
20	0.80	1:125
30	0.75	1:133
40	0.70	1:143
50	0.65	1:154
60	0.60	1:167
70	0.55	1:182
80	0.47	1:200
90	0.44	1:213
100	0.41	1:227

Fuente: Normas para el Diseño Geométrico de las Carreteras Regionales, SIECA 2011, p. 94.

5.9.6. Resultados de alineamiento horizontal

En el tramo se trazaron 16 curvas horizontales, de las cuales 5 poseen radios menores a 100 metros y 8 poseen radios entre 100 y 500 metros. El radio de curvatura de mayor importancia se ubicada entre las estaciones **0+876.464** y **0+920.23**, con un Radio de **50 metros**.

A continuación, se presentan los resultados de estacionamientos obtenidos para la curva horizontal (**PI-8**):

DATOS DE CURVA HORIZONTAL:

R= 50 m

VD= 40 Km/h

 Δ = 50° 09' 8.28"

EST PI= 0+899.86

DATOS A CALCULAR:

Lc= Longitud de curva

Ts = Tangente Ts= Tangente

Es= External Mo= Media Ordenada

PC= Principio de Curva PM= Punto Medio de la Curva

PT= Principio de Tangente

Longitud de curva:

$$L_{\mathcal{C}} = \frac{\Delta R \pi}{180}$$

$$L_C = \frac{(50^{\circ} 09'8.28") * (50) * 3.1416}{180} = 43.766m$$

Externa:

$$E = R * \left(\frac{1}{\cos^{\frac{\Lambda}{2}}} - 1\right)$$

$$E = 50 * \left(\frac{1}{\cos^{\frac{50^{\circ}09'8.28"}{2}}} - 1\right) = 5.203m$$

Longitud de cuerda:

$$Lcd = 2 * R \sin \frac{\Delta}{2}$$
 Ec. 19

$$Lcd = 2 * (50) * \sin\left(\frac{50^{\circ} 09'8.28''}{2}\right) = 42.382$$

Media Ordenada:

$$Mo = R * \left(1 - \cos\frac{\Delta}{2}\right)$$
 Ec. 20

$$Mo = 50 * \left(1 - \cos\left(\frac{50^{\circ} \ 09'8.28''}{2}\right)\right)$$

$$Mo = 4.713m$$

Tangente:

$$T = R * \tan \frac{\Delta}{2}$$
 Ec. 21

$$T = (50) * \tan\left(\frac{50^{\circ} \ 09'8.28''}{2}\right) = 23.396m$$

T = 23.396m

Componentes de la Curva (PI-7):

Estación de PC (Principio de Curva):

$$EST PC = Est PI - Tg$$

$$Ec. 22$$

EST PC = 0+876.464

Estación de PM (Punto medio de la curva):

EST. PM = EST. PC + (
$$Lc/2$$

EST. PM = 0 + 876.464 + (42.382/2)

EST. PM = 0 + 897.66

Estación de PT (Principio de tangente):

$$EST PT = Est PC + Lc$$

$$\underline{Ec. 24}$$

EST. PT = 0 + 876.464 + 43.766

EST. PT = 0+920.23

A continuación, en la tabla-54, se presentan los resultados del alineamiento horizontal para las 16 curvas trazadas a lo largo del tramo:

Tabla 54: Datos generales de curvas horizontales.

PI	Δ	R	Тд	Мо	E	Lc	Lcd	EST PI	EST PC	EST PM	EST PT
1	46 57' 36.1054"	150.00	48.016	7.141	48.016	92.940	91.461	0+090.84	0+042.82	0+088.555	0+135.76
2	49 43' 14.5792"	1000.00	36.485	0.665	36.485	72.938	72.921	0+190.73	0+154.24	0+190.706	0+227.18
3	44 16' 11.1020"	500.00	28.421	0.806	28.421	56.780	56.750	0+314.72	0+286.30	0+314.674	0+343.08
4	85 44' 32.8181"	1000.00	18.442	0.170	18.442	36.880	36.878	0+417.86	0+399.41	0+417.857	0+436.29
5	01 11' 52.9469"	100.00	12.846	0.815	12.846	25.552	25.483	0+641.82	0+628.97	0+641.716	0+654.53
6	22 50' 30.1834"	70.00	21.952	3.207	21.952	42.545	41.893	0+702.94	0+680.99	0+701.935	0+723.54
7	10 07' 27.1290"	100.00	41.972	7.793	41.972	79.478	77.402	0+810.74	0+768.77	0+807.469	0+848.25
8	43 15' 58.2596"	50.00	23.396	4.713	23.396	43.766	42.382	0+899.86	0+876.46	0+897.655	0+920.23
9	46 57' 36.1054"	150.00	13.608	0.613	13.608	27.142	27.105	0+948.38	0+934.77	0+948.505	0+961.91
10	49 43' 14.5792"	80.00	14.431	1.271	14.431	28.556	28.404	0+990.88	0+976.45	0+990.831	1+005.01
11	44 16' 11.1020"	200.00	13.687	0.467	13.687	27.332	27.311	1+032.55	1+018.86	1+032.699	1+046.19
12	85 44' 32.8181"	200.00	13.714	0.469	13.714	27.385	27.363	1+074.50	1+060.78	1+074.648	1+088.17
13	01 11' 52.9469"	200.00	13.330	0.443	13.330	26.620	26.601	1+113.69	1+100.36	1+113.841	1+126.98
14	22 50' 30.1834"	70.00	15.423	1.640	15.423	30.361	30.123	1+211.84	1+196.42	1+211.669	1+226.78
15	10 07' 27.1290"	90.00	40.406	7.895	40.406	75.957	73.723	1+315.14	1+274.73	1+311.776	1+350.69
16	43 15' 58.2596"	200.00	22.676	1.273	22.676	45.159	45.064	1+412.29	1+389.61	1+412.596	1+434.77

Fuente: Sustentantes-Autodesk Civil 3D-2022.

5.9.7. Peralte (ed)

Cuando los vehículos atraviesan las curvas horizontales, estos experimentan una fuerza centrífuga que tiende a sacarlo de la carretera; este problema se lo ha solucionado dándole una inclinación adecuada a la calzada de tal forma que la componente de su peso que es paralela a la calzada contrarreste el efecto de la fuerza centrífuga.

$$ed = \frac{e_{m\acute{a}x}}{(G_{m\acute{a}x})^2} (2 * G_{m\acute{a}x} - Gc) * Gc$$
 Ec. 25

$$Gc_{m\acute{a}x} = \frac{145,692.26*(e_{m\acute{a}x}+f)}{V^2}$$
 Ec. 26

Dónde:

V = Velocidad de Diseño, km/h.

R = Radio mínimo, m.

Rc = Radio de la curva, m.

f: Coeficiente de fricción lateral, S/D.

emax= Sobreelevación máxima, m/m.

Gcmáx= Grado de curvatura máximo.

Gc= Grado de curvatura.

Se procedo a calcular el grado de curvatura para la **Curva # 8**(Pl 8), con un Radio de curva de **50 metros**, utilizando la **ecuación 16** el resultado es:

$$Gc = \frac{1145.92}{Rc}$$

$$Gc = \frac{1145.92}{50} = 22.918 \approx 22^{\circ} 55'4.8''$$

Se procedo a calcular el grado de curvatura máximo para la **Curva # 8**(Pl 8), utilizando la **ecuación 26** el resultado es:

$$Gc_{m\acute{a}x} = \frac{145,692.26 * (e_{m\acute{a}x} + f)}{V^2}$$

$$Gc_{m\acute{a}x} = \frac{145,692.26 * (0.08 + 0.23)}{(40)^2} = 28.228 \approx 28^{\circ} \, 13' \, 40.8''$$

Se precedió a calcular el peralte para la **Curva # 8**(Pl 8), utilizando la **ecuación 25** el resultado es:

$$ed = \frac{0.08}{(28.228)^2} [2(28.228) - 22.918] * 22.918$$
$$ed = 0.077 \times 100 \approx 7.7\%$$

En la *Tabla 114, pág. LVII* se presentan los resultados obtenidos para proyección de peraltes en el tamo.

5.9.8. Resultado de Peralte en Civil-3D

Se precedió a comprobar el resultado de peralte para la **Curva # 8**(PI 8), a través del software Civil-3D-2022

₩ Ned >> Tv ||e | € << Previous Ourve.8 (5) Toggle resi-time pen Superelevation Curve Details Curve Name Curve Definition Design Speed 40 km/h H Eaction 50:000m Direction 0+876.46 Start Station End Station 0+920.23m Transition In Details Tangent, Curve(Left), Tangent Entities Before Transition Method Reverse transition Overlag With previous curve Transition Out Details Transition Method Overlag Superelevation Criteria

Imagen- 3: Detalles de peralte de Curva # 8(PI 8).

Fuente: Software Autodesk Civil 3D -2022.

vitoit 🕻 Cor 0=833.760 Tr. 0+890 13m Ti 13.375m 0+833.76m S-04840.13m 0+833.79m 0+833.76m 1.00% 0+849.13m 0.00% DOO's 3.00% 1.00% Ti: 41.000v 0-249.15m 0+864.31m 3.00% 3.00% 3.00% 3.00% 1) 56,375m 7) 41,000m 0+996 57w 0494757m O -1.00% End Full Su 0+9063/h End Full Super 3.00% Law Shoulder ... 0=932.19W *Co 3.00% 3.00% Revenu Crown D=947 57m 0.00% 1.00% 1.00%

Imagen- 4: Resultado de Peralte Curva # 8(PI 8).

Fuente: Software Autodesk Civil 3D -2022.

5.9.9. Sobre anchos en curvas

Se adoptarán los sobre anchos en cada una de las curvas horizontales, de acuerdo con la SIECA, considerando que los conductores experimentan dificultades en mantener los vehículos en el centro del carril porque estos utilizan un espacio mayor cuando transitan en curvas que cuando transitan en rectas. Una de las expresiones empíricas más utilizadas para calcular el sobreancho en las curvas horizontales es la siguiente:

$$Sa = n[R - (\sqrt{R^2 - L^2})] + \frac{0.10V}{\sqrt{R}}$$
 Ec. 27

Donde:

Sa = Valor sobreancho, metros.

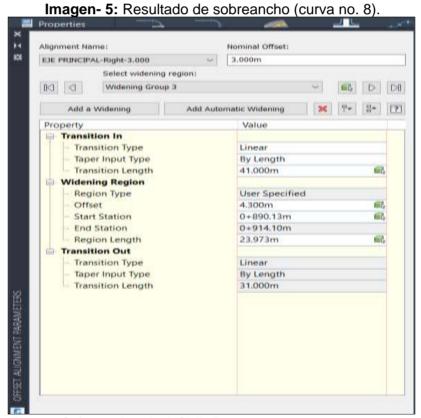
n = Número de carriles de la superficie de rodamiento, 2 carriles.

L = Longitud entre el eje frontal y el eje posterior del vehículo de diseño, 6.10 metros.

R = Radio de curvatura, 105 metros.

V = Velocidad de diseño de la carretera, 40 kilómetros / hora.

Se procedió a calcular el Sobreancho (Sa) para la Curva N°8:


$$Sa = 2[50 - (\sqrt{50^2 - 6.1^2})] + \frac{0.10(40)}{\sqrt{50}}$$

Sa = 1.30 metros.

5.9.10. Resultado de Sobreancho en Civil-3D

Se adopto un Sobreancho (**Sa**) para la **Curva N°8** (PI 8), de 1.30 metros. A continuación, se muestra la comprobación del cálculo del sobreancho mediante el software Civil-3D:

Los resultados obtenidos para la curva No. 8 (R:50.00 metros), considerada por sus características como la de mayor importancia (Ver imagen-5).

Fuente: Software Autodesk Civil 3D -2022.

En la *Tabla 115, pág. LVIII*, se presentan los resultados obtenidos para proyección de sobreanchos en el tamo.

5.10. Diseño altimétrico del proyecto

En el diseño altimétrico del tramo, se proyectaron 12 curvas verticales (6 curvas verticales en Cresta y 6 en Columpio.

A continuación, se muestra los cálculos de control altimétrico para la CV-11:

Datos:

Est. PIV: 1+405.99 Vd: 40 Km/h Elev. PIV: 499.725 m K: 4.36 P1: -11.97% P2: -0.50%

△ (Diferencia de Pendiente):

$$\Delta = P1 - P2.$$
 Ec. 28
$$\Delta = -11.97\% - 0.50\%$$

$$\Delta = -11.47\%.$$

Longitud de Curva Vertical Mínima que correspondería aplicar es $\mathbf{K} = \mathbf{4}$ (Sieca-2011, p125):

$$Lcv - 11 = Kmin(\Delta)$$
 Ec. 29
 $Lcv - 11 = 4(18.03\%)$
 $Lcv - 11 = 72.12 \approx 73 m$.

En base a **K= 4.436** metros resultante para **CV-11**, la longitud de curva vertical es:

$$Lcv - 11 = K(\Delta)$$
 Ec. 30
 $Lcv - 11 = 4.436(18.03)$
 $Lcv - 11 = 79.98 \approx 80 m.$

Comprobación:

$$\Delta < 0$$
 Ec. 31
$$-18.03 < 0$$
 Curva Vertical en Cresta o Convexa.

A continuación, se muestra los cálculos de control altimétrico para la CV-12:

Datos:

Est. PIV: 1+315.19 **Vd:** 40 Km/h

Elev. PIV: 510.595 m **K:** 4.436

P1: 11.97% **P2:** -0.50%

△ (Diferencia de Pendiente):

$$\Delta = P1 - P2$$
.

$$\Delta = 11.97 - 0.50$$

$$\Delta = 11.47\%$$
.

Longitud de Curva Vertical Mínima que correspondería aplicar es $\mathbf{K} = \mathbf{4}$ (Sieca-2011, p125):

$$Lcv - 11 = Kmin(\Delta$$

$$Lcv - 11 = 4(11.47\%)$$

$$Lcv - 11 = 45.88 \approx 46m$$
.

En base a **K= 4.436** metros resultante para **CV-11**, la longitud de curva vertical es:

$$Lcv - 11 = K(\Delta)$$

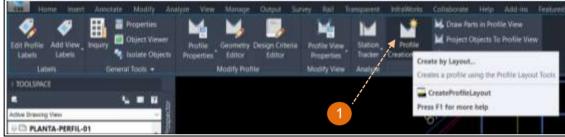
$$Lcv - 11 = 4.36(11.47)$$

$$Lcv - 11 = 50.0 m.$$

Comprobación:

$$\Delta > 0$$

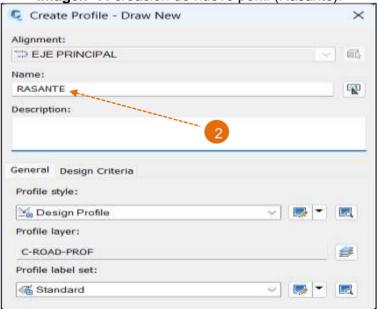
11.47 > 0 Curva Vertical en Columpio o Cóncava.


5.11. Alineamiento vertical en autodesk civil 3D

En este alineamiento se representan tanto el perfil del terreno natural como el perfil terminado del eje de la carretera, al cual se le llama rasante, o el perfil del eje terminado de la terracería, también conocido como subrasante. A continuación, se muestra los resultados de control altimétrico en civil-3D:

Crear un perfil:

Clic en la ficha Inicio > grupo Crear diseño > elemento desplegable Perfil
 Herramientas de creación de perfiles (imagen-6).



Fuente: Software Autodesk Civil 3D -2022.

2. En el cuadro de diálogo <u>Crear perfil - Dibujar nuevo</u>, introduzca un Nombre exclusivo para el perfil (imagen-7).

Imagen- 7: creación de nuevo perfil (Rasante).

Fuente: Software Autodesk Civil 3D -2022.

- Utilizando los comandos de la barra de <u>Herramientas de composición de</u> <u>perfil</u> para dibujar el perfil. Se utilizo el siguiente método para diseñar el perfil:
 - El comando Dibujar tangentes con curvas permite precisar VAV para las tangentes, y crea automáticamente curvas entre las tangentes con los parámetros especificados (imagen-8).

Imagen- 8: Herramientas de composición de perfil.

Fuente: Software Autodesk Civil 3D -2022.

En el perfil trazado (Rasante), se proyectaron 12 curvas verticales (6 curvas verticales en Cresta y 6 en Columpio (imagen-9).

Imagen- 9: Curvas verticales trazadas.

entities .oo		PVI Station	PVI Elevation	Profile Curve Type
	1	0+000.00m	379.286m	
	2	0+045.09m	382.681m	Sag
2	3	0+095.27m	388.206m	Crest
	4	0+194.41m	396.452m	Sag
	5	0+312.17m	407.155m	Crest
	6	0+459.94m	414.111m	Sag
	7	0+582.87m	428.857m	Crest
	8	0+666.81m	435.987m	Sag
	9	0+893.70m	468.600m	Crest
	10	1+019.58m	482.754m	Sag
	11	1+197.56m	503.464m	Crest
	12	1+315.19m	510.595m	Crest
	13	1+405.99m	499.725m	Sag
	14	1+501.87m	499.246m	

Fuente: Software Autodesk Civil 3D -2022.

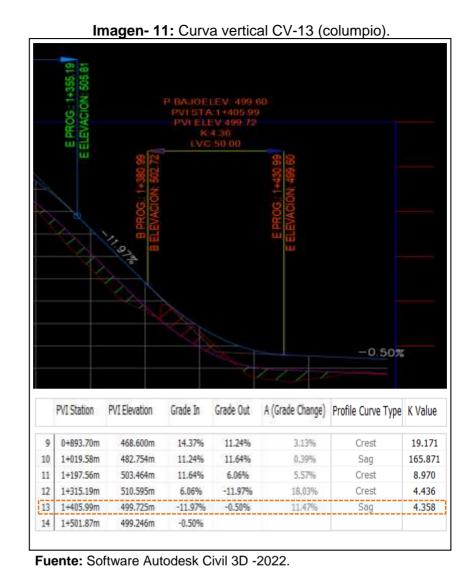
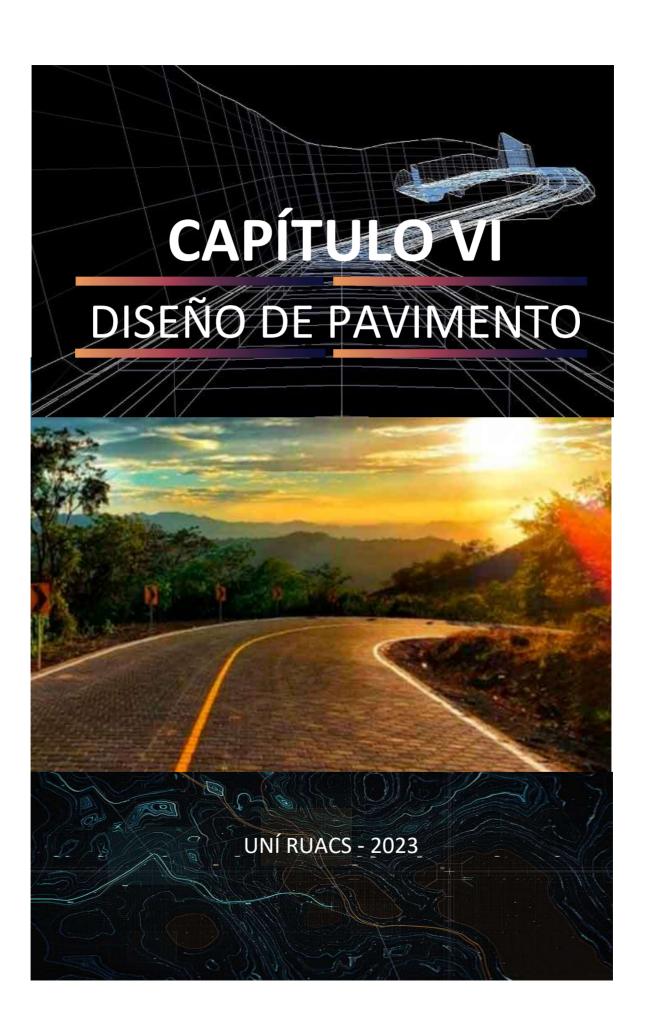

Se proyectaron 6 curvas verticales en cresta. A continuación, se muestra el resultado de control altimétrico para la **CV-11** (imagen-10):

Imagen- 10: Curva vertical CV-11 (cresta). PVI STA 1+197 56 PVI ELEV 503 46 K-8.97 LVC:50.00 6.06% 11.6400 Grade Out A (Grade Change) Profile Curve Type K Value PVI Station PVI Elevation Grade In 11.24% 0+893.70m 468.600m 14.37% 3.13% Crest 19.171 1+019.58m 11.24% 482.754m 11.64% 0.39% 165.871 Sag 1+197.56m 503.464m 11.64% 6.06% Crest 8.970 510.595m -11.97% 18,03% Crest 4.436 12 1+315.19m 6.06% 13 1+405.99m 499.725m -11.97% -0.50% 11.47% 4.358 Sag 1+501.87m 499.246m -0.50%

Fuente: Software Autodesk Civil 3D -2022.

Los resultados del diseño altimétrico para la curva vertical (CV-11), son similares al mostrado en la seccion-5.9, p. 76, capítulo V.

Se proyectaron 6 curvas verticales en columpio. A continuación, se muestra el resultado de control altimétrico para la **CV-11** (imagen-11, p.81):


Los resultados del diseño altimétrico para la curva vertical (CV-13), son similares al mostrado en la seccion-5.9, p. 77, capítulo V.

A continuación, se presentan en la imagen-12, p.82, los resultados del diseño altimétrico del tramo, se proyectaron 12 curvas verticales (6 curvas verticales en Cresta y 6 en Columpio:

Imagen- 12: Alineamiento vertical.

NO.		PVI Station	PVI Elevation	Grade In	Grade Out	A (Grade Change)	Profile Curve Type	Profile Curve Length	K Value	Curve Radius	Asymmetric Length 1	Asymme
No.	1	0+000.00m	379.286m		7,53%							
	2	0+045.09m	382.681m	7.53%	11.01%	3,48%	Sag	35.000m	10.054	1005.373m		
	3	0+095,27m	388.206m	11.01%	8.32%	2.69%	Crest	20.000m	7.425	742.521m		
	4	0+194.41m	396.452m	8.32%	9.09%	0.77%	Sag	85.000m	110.245	11024.456m		
	5	0+312.17m	407,155m	9.09%	4.71%	4.38%	Crest	50.000m	11,413	1141.286m		
	б	0+459,94m	414.111m	4.71%	12.00%	7.29%	Sag	75.000m	10.289	1028.875m		
	7	0+582.87m	428.857m	12.00%	8.49%	3,50%	Crest	35.000m	9,989	998.944m		
	8	0+666,81m	435.987m	8.49%	14,37%	5.88%	Sag	58.000m	8.502	850.189m		
	9	0+893.70m	468.600m	14.37%	11.24%	3.13%	Crest	60.000m	19.171	1917.076m		
	10	1+019.58m	482,754m	11.24%	11.64%	0.39%	Sag	65.000m	165.871	16587.136m		
	11	1+197.56m	503,464m	11.64%	6.06%	5.57%	Crest	50.000m	8.970	896.985m		
	12	1+315.19m	510.595m	6.06%	-11.97%	18.03%	Crest	80.000m	4.436	443.598m		
	13	1+405.99m	499.725m	-11,97%	-0.50%	11.47%	Sag	50.000m	4.358	435.793m		
	14	1+501.87m	499.246m	-0.50%								
	14	1+501.87m	499.246m	-0.50%								

Fuente: Software Autodesk Civil 3D -2022.

6.1. Introducción

Un pavimento de una estructura, asentado sobre una fundación apropiada tiene por finalidad proporcionar una superficie de rodamiento que permita el tráfico seguro y confortable de vehículos, a velocidades operacionales deseadas y bajo cualquier condición climática. Hay una gran diversidad de tipos de pavimentos, dependiendo del tipo de vehículos que transitaran y del volumen de tráfico.

6.2. Generalidades

El método de Diseño de Espesores de pavimento que se empleó para este estudio fue la AASHTO 1993, es el más usado y cuenta con técnicas de diseño para estructuras de pavimentos rígidos, semi-rígidos, flexibles y articulados. Se ha elegido el método AASHTO, porque a diferencia de otros métodos introduce el concepto de Serviciabilidad en el diseño de pavimentos como una medida de su capacidad para brindar una superficie lisa y suave al usuario. Seguidamente se utilizaron los nomogramas de la AASHTO, y criterios de diseño ajustados a la Buena Práctica en Ingeniería (BPI).

En Nicaragua se utilizan 4 tipos de carpeta de rodamiento en la construcción de carreteras: macadam, asfáltica, de concreto hidráulico y adoquinado. Debido a su fácil manejo y otras características en este estudio se eligió adoquines, en todo caso resulta una alternativa económica y de fácil mantenimiento.

6.3. Consideraciones del Diseño AASHTO 93

6.3.1. Carga de Ejes Simples Equivalentes (ESAL)

Se refiere al deterioro que produce cada vehículo en un pavimento, éste corresponde al número de ejes equivalentes llamado también "eje estándar", el cual tiene un peso de 8.2 ton. (18,000 libras) y se presentará en el carril de diseño. Se considera que el "eje estándar" tiene un factor de daño F=1.

Al realizar el estudio de tránsito, se clasifican todos los vehículos livianos y pesados según su peso por eje, encontrando así los volúmenes de tránsito, luego dichos volúmenes se proyectan a un período de diseño en concordancia a una tasa de crecimiento que se determina según las condiciones económicas y sociales de la zona, el proceso anterior nos permite determinar el tránsito de diseño (TD), posteriormente se afecta este tránsito de diseño por un factor de equivalencia de carga, la sumatoria de todos los procesos anteriores para cada vehículo clasificado se denomina ESAL de diseño. En el tramo en estudio, el ESAL de diseño es 697,644.00

6.3.2. Confiabilidad (R)

La confiabilidad se define como la probabilidad de que el sistema de pavimento durante todo el período de diseño se comporte de manera satisfactoria bajo las condiciones de carga.

Esta variable trata de llegar a cierto grado de certeza en el método de diseño, cuyo valor depende de variaciones al azar tanto en la predicción del tránsito como en la predicción del comportamiento, del nivel de confiabilidad elegido y del error estándar combinado, para asegurar que las diversas alternativas de la sección estructural que se obtengan se desempeñarán satisfactoriamente sobre las cargas de tránsito y condiciones ambientales que durarán como mínimo el período de diseño.

De acuerdo con la clasificación funcional de la vía, el Manual Centroamericano de Normas para el Diseño Geométrico de las carreteras Regionales, SIECA 2004 recomienda diferentes niveles de confiabilidad. Para el tramo en estudio se utilizará un valor de confiabilidad R del 80%, que corresponde a un valor recomendado para una Carretera Colectora Rural lo cual se muestra en la Tabla 55. Esta confiabilidad seleccionada de acuerdo con el grado funcional del tipo de la carretera presenta una desviación Zr de -0.841, lo cual se muestra en la Tabla 56, Pág. 85.

Tabla 55: Niveles de confiabilidad r en función del tipo de carretera.

	Niveles de confiabilidad R		
Tipo de Carretera	Suburbanas	Rurales	
Autopista Regional	85-99.9	80-99.9	
Troncales	80-95	75-95	
Colectoras	50-80	→ 50-80	

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 195.

Tabla 56: Valores de Zr en función de la confiabilidad R.

Tabla 50: Valores de El cirrancion de la connabilidad 11:			
Confiabilidad R (%)	Desviación normal estándar (Zr)		
50	0		
60	-0.253		
70	-0.524		
75	-0.674		
80	-0.841		
85	-1.037		
90	-1.282		
91	-1.34		
92	-1.405		
93	-1.476		
94	-1.555		
95	-1.645		
96	-1.751		
97	-1.881		
98	-2.054		
99	-2.327		
99.9	-3.09		
99.99	-3.75		

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 194.

6.3.3. Desviación estándar (So)

La desviación estándar aplicada en este modelo se identifica como la variación en la predicción del comportamiento de los niveles de servicio del tránsito teniendo en cuenta los errores en la predicción de este. Para la estimación de la deviación estándar, la AASHTO ha dispuesto ciertos valores que fueron desarrollados a partir de un análisis de varianza que existía en el Road Test y en base a predicciones futuras del tránsito. En este estudio se tomó un valor de 0.45.

Tabla 57: Desviación Estándar Dependiendo de las Condiciones de Servicio.

Condición	Pavimento Rígido	Pavimento Articulado	
En construcción nueva	0.35	→ 0.45	
En sobre capas	0.39	0.49	

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 144.

6.3.4. Serviciabilidad o servicapacidad (Po, Pt, △ PSI)

La serviciabilidad se define como la capacidad del pavimento para brindar un uso confortable y seguro a los usuarios. Para su determinación se realizan estudios de calidad en dependencia del tipo de carpeta de rodamiento a evaluar.

El método AASHTO 93 predice el porcentaje de pérdidas de serviciabilidad (Δ PSI), para varios niveles de tránsito y cargas de ejes, entre mayor sea la pérdida de serviciabilidad (Δ PSI), mayor será la capacidad de carga del pavimento antes de fallar. Los valores recomendados por la AASHTO y por experiencia son:

Tabla 58: Factores de Serviciabilidad.

Serviciabilidad Inicial	Serviciabilidad Final
Po= 4.5 para pavimentos rígidos	Pt= 2.5 o más para caminos principales
Po= 4.2 para pavimentos flexibles	Pt= 2.0 para caminos de Tránsito menor

Fuente: Manual de Centroamericano para el Diseño de Pavimentos (SIECA-2002, pág. 143).

Se decidió tomar una **serviciabilidad inicial** de **4.2** para pavimento (Articulado) y una **serviciabilidad final** de **2.0** considerando un volumen de vehículos bajo en el tramo. Por lo tanto, el valor de la pérdida de la Serviciabilidad sustituyendo la Ecuación N° 32:

Perdida de serviciabilidad
$$\triangle$$
 PSI = $4.2 - 2.0$ Ec. 32 \triangle PSI = 2.2

6.3.5. Coeficiente de Drenaje (mi)

El drenaje de agua en los pavimentos es un aspecto importante por considerar en el diseño de las carreteras. De lo contrario el exceso de agua combinado con el incremento de volúmenes de tránsito y cargas podrían anticipar los daños a la estructura del pavimento.

La AASHTO 93 recomienda ciertos coeficientes de drenaje que son usados para los cálculos en la estimación de los espesores de los miembros de los paquetes estructurales, la forma de consideración de los coeficientes se muestra en la **Tabla 59**.

Tabla 59: Capacidad del drenaje para remover la humedad.

Capacidad del drenaje para remover la humedad				
Calidad del drenaje	Aguas removidas en:			
Candad dei drenaje	50% de saturación	85% de saturación		
Excelente	2 horas	2 horas		
Bueno 1 día		2 a 5 horas		
Regular	1 semana	5 a 10 horas		
Pobre	1 mes	De 10 a 15 horas		
Malo	No drena	Mayor de 15 horas		

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 125.

En este estudio se consideró un coeficiente de drenaje **m=1.00**, dado que se asume que cada una de las capas que conforman el pavimento tendrá una buena capacidad para drenar el agua de la vía expuesto a un porcentaje de saturación cercanos al 25%. Ver tabla a continuación

Tabla 60: Niveles de humedad cercanos a la saturación.

Calidad del drenaje	P= % del tiempo que el pavimento está expuesto a niveles de humedad cercanos a la saturación.				
	< 1% 1% - 5% 5% - 25% > 25%				
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20	
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00	
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80	
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60	
Muy Pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40	

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 125.

6.3.6. Módulo de resiliente de la subrasante (Mr)

En la guía de diseño AASHTO-93, el módulo resiliente reemplaza al CBR de diseño como variable para caracterizar la subrasante, subbase y base. El Módulo Resiliente (MR) es el resultado de un ensayo dinámico, y se define como la relación entre el esfuerzo repetido masivo (\emptyset) y la deformación axial recuperable (Σ a).

Se han establecido correlaciones para calcularlo a partir de otros ensayos, la guía de diseño de la AASHTO establece las siguientes correlaciones para encontrar el Módulo Resiliente de la subrasante. Ver tabla a continuación

Tabla 61: Correlación entre el CBR y módulo resiliente para sub-rasante.

Valor de CBR	Consideración	
CBR < 10%	Mr= 1500 * CBR <u>Ec. 33</u>	
CBR > 10%	Mr= 4326* Ln (CBR) + 241	<u>Ec. 34</u>

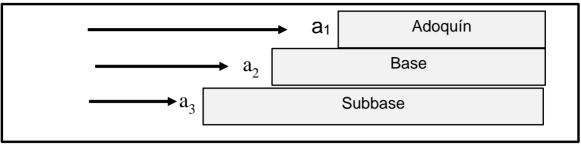
Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 60.

En este estudio se obtuvo un CBR de diseño para la subrasante de **19.60%**, se utilizó la segunda correlación para calcular el Módulo Resiliente de la subrasante, por tanto:

6.3.7. Coeficientes estructurales o de capa (a_n)

El método asigna a cada capa del pavimento un coeficiente (an), los cuales son requeridos para el diseño estructural normal de los pavimentos. Estos coeficientes permiten convertir los espesores reales a números estructurales SN. Estos están representados con la siguiente simbología:

a1: Para la carpeta de rodamiento (Adoquín de concreto 3500 psi).


a2: Para la base granular (Banco Nº1)

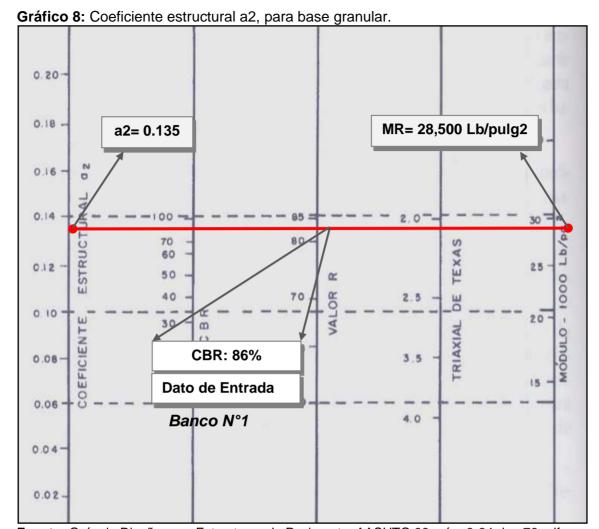
(Est 0+000 Adolfo Benavides A-1-a, (0)), CBR al 95% de 86%.

as: Para la Subbase (Banco Nº2)

(Est 0+00, Bayardo Hurtado A-1-a (0)) CBR al 95% de 55%.
 Ver Imagen-13, Pág. 89

Imagen 13: Coeficientes de capa para la estructura de pavimento.

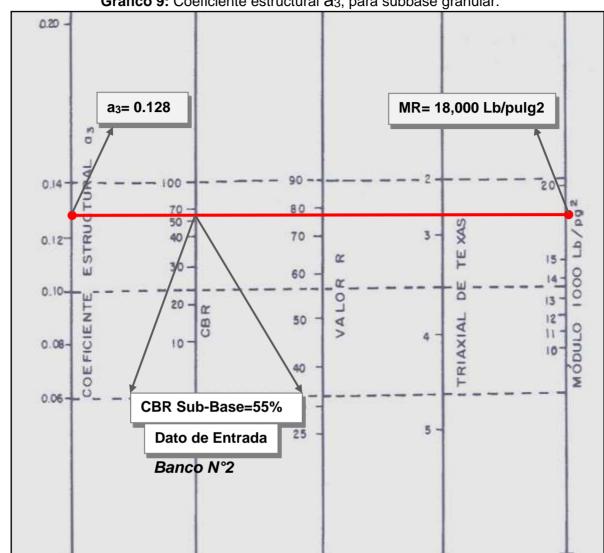
Fuente: Elaborado por Sustentante.


6.3.7.1. Coeficiente estructural a₁

La capa de rodamiento estará conformada por elementos uniformes compactos de concreto, denominados adoquines, que se colocan ensamblados y que, debido a su entrelazado y a la conformación de sus caras laterales, permiten una transferencia de cargas desde el elemento que las recibe hacia varios de sus adyacentes, trabajando sólidamente y sin posibilidad de desmontaje individual.

Cuando se utiliza adoquín como carpeta de rodamiento el coeficiente estructural será de **a**₁= **0.45**, valor tomado del Manual Centroamericano para Diseño de Pavimentos, Capítulo 7, Diseño de espesores con adoquín, Método AASHTO, página 107. El adoquín por utilizarse será tipo tráfico cuya resistencia será de 3500 PSI.

6.3.7.2. Coeficiente estructural a₂ para base granular


La determinación del coeficiente estructural a_2 se realizó en base a la aplicación del nomograma para base granular proporcionado por la Guía para diseño de estructura de pavimento (AASHTO 1993 Pág. 3-36 doc) y tomando como parámetro de entrada el valor CBR del banco de préstamo **Adolfo Benavides N°1**. El CBR del banco propuesto es de **86%** clasificado como un material de muy buena calidad, este corresponde a un material tipo **A-1-a (0)** con índice de grupo cero, de acuerdo con la línea horizontal trazada en el nomograma se obtuvo en la escala izquierda un coeficiente estructural de $a_2 = 0.135$ y en la escala derecha un módulo resiliente para base granular de **Mr = 28,500 psi. (Ver Gráfico-8 pág. 90)**

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 3-34 doc-76 pdf.

6.3.7.3. Coeficiente estructural a₃ para subbase granular

La determinación del coeficiente estructural a_3 se realizó en base a la aplicación del nomograma para base granular proporcionado por la Guía para diseño de estructura de pavimento (AASHTO 1993 Pág. 3-35 doc) y tomando como parámetro de entrada el valor CBR del banco de préstamo **Adolfo Benavides N°2**. El CBR del banco propuesto es de **55%** clasificado como un material de muy buena calidad, este corresponde a un material tipo **A-1-a (0)** con índice de grupo cero, de acuerdo con la línea horizontal trazada en el nomograma se obtuvo en la escala izquierda un coeficiente estructural de $a_3 = 0.128$ y en la escala derecha un módulo resiliente para base granular de **Mr = 18,000 psi. (Ver Gráfico-9 pág. 91)**

Gráfico 9: Coeficiente estructural **a**₃, para subbase granular.

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 3-35doc -76 pdf.

6.3.8. Números estructurales (SN)

Es un número asignado para poder representar la capacidad de soporte de un pavimento. Este número indica la cantidad de espesores o capas que requiere un pavimento para soportar las cargas a las que será sometido durante su vida útil. Para cada capa se consideran coeficientes relativos que dependen del material que las conforman, por lo tanto, podemos decir que el pavimento tendrá mayor capacidad de soporte mientras mayor sea el número estructural y viceversa.

El número estructural (SN) se puede expresar por medio de la siguiente ecuación:

$$SN = a_1^* D_1 + a_2^* D_2^* m_2 + a_3^* D_3^* m_3$$
 Ec. 35

Dónde:

D₁, 2, 3= espesores de capas asfálticas, base y subbase respectivamente en (pulgadas).

ai= coeficiente estructural de capa i, dependiente de su módulo

m_i= coeficientes de drenaje para capas no estabilizadas, dependiente del tiempo requerido para drenar y del tiempo en que la humedad se encuentre en niveles cercanos a la saturación.

6.4. Cálculo de los números estructurales (SN₁, SN₂, SN₃)

El espesor D1 para nuestro caso está definido, debido que se utilizará adoquín como carpeta de rodamiento, por lo tanto, D_1 = 4 pulgadas y el coeficiente estructural a_1 : 0.45. Se calcula el número estructural SN_1 correspondiente a la capa de la siguiente forma:

Determinar SN₁

Teniendo en cuenta

$$SN_1 = a_1 * D_1$$
 Ec. 36

$$SN_1 = (0.45) X (4.00)$$

SN₁=1.8 pulg. Para protección de la base

A continuación, se determinó los números estructurales requeridos para proteger cada capa, utilizando el módulo resiliente de la capa que se encuentra inmediatamente por debajo, por ejemplo, para obtener el espesor **D**₂ (**Base**) de la carpeta se considera el módulo resiliente (MR) de la capa subbase y así se obtiene el **SN**₂ que será absorbido por la carpeta de Adoquín y capa base. **Ver a Grafico 10- pág. 93**

Para el cálculo de SN₂ y SN₃ (SN_{requerido}), se utilizó el Ábaco establecido por la Guía para diseño de estructura de pavimento (AASHTO 1993).

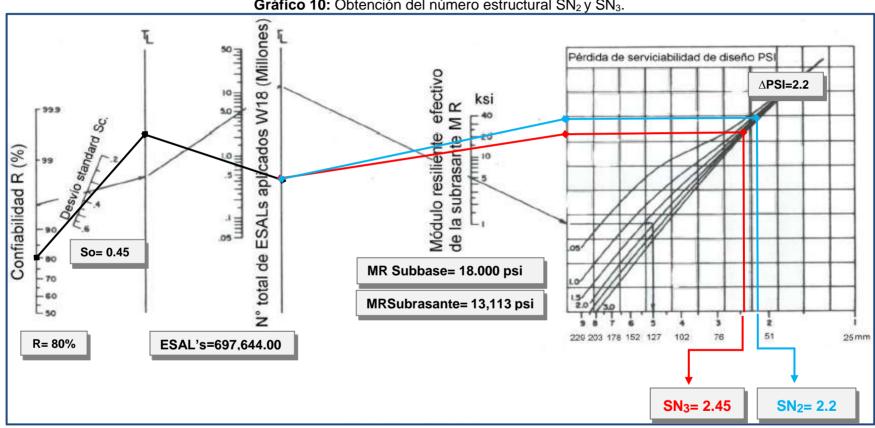


Gráfico 10: Obtención del número estructural SN₂ y SN₃.

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 145.

De acuerdo con los módulos resilientes se obtiene: $SN_2 = 2.2$ pulg para proteger la base y $SN_3 = 2.45$ pulg para proteger la subbase.

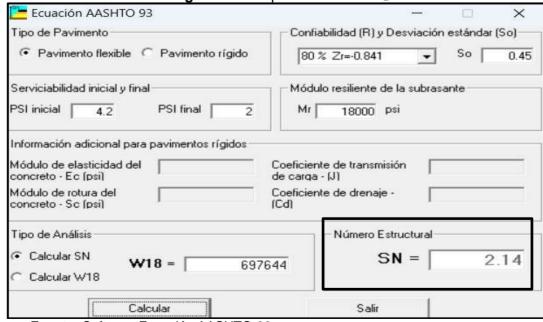

Se procedió a realizar la comprobación de los números estructurales calculados anteriormente utilizando el **Software Ecuación AASHTO-93**, donde se de muestran que son correctos. Ver imágenes a continuación

Imagen 14: Comprobación del SN₃.

Fuente: Software Ecuación AASHTO-93.

Imagen 15: Comprobación del SN₂.

Fuente: Software Ecuación AASHTO-93.

6.5. Cálculo de los espesores del pavimento base (D2) y subbase (D3).

Teniendo en cuenta que es conocido el valor de **SN1=1.8 pulg (Adoquín)**, se procede a calcular el espesor de la base granular.

Determinar el espesor para la base granular (D₂):

SN₂ (Base) D₂= (SN₂-SN₁) / (a₂*m₂) Ec. 37

$$D_2= (2.2-1.8) / (0.135*1.00)$$
D₂= 2.96" pulgadas. "No cumple con espesor mínimo"

Comprobando espesor de la Base en función del SN₃ =2.45.

Las **4.81** "pulgadas" será el espesor que se requiere para que **D**₂ (Base), para que resista las tensiones verticales excesivas que producirán las deformaciones permanentes, comprobando este espesor de acuerdo con la **Tabla-62**, de espesores mínimos resulta que para el ESAL's de diseño de **697,644.0** se necesita como mínimo una base granular con un espesor de **6.00 pulgadas**. Por lo cual se procedió hacer la corrección en base al espesor mínimo sugerido por la AASHTO-93.

Tabla 62: Espesores mínimos sugeridos por capa.

Numero de ESAL´s	Espesor mínimo (pulgadas)		
Numero de ESAL S	Asfalto	Base Granular	
Menos de 50,000	1	4	
50,000 - 150,000	2	4	
150,000 - 500,000	2.6	4	
500,000 - 2,000,000	3	→ 6	
2,000,000 - 7,000,000	3.6	6	
Más de 7,000,000	4	6	

Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93, pág. 147.

Se recalcula el número estructural de la base utilizando el espesor sugerido de 6 pulgadas:

$$SN_2 = a_2 * D_2 * m_2$$
 Ec.39
 $SN_2 = (0.135) * (6.00) * (1.00)$
 $SN_2 = 0.810$.

El número estructural (SN₂) corregido valor para la base resulta de 0.810.

SN₃ (Subbase granular)

Los criterios de la AASHTO 93, indican que, si el resultado del espesor para la subbase posee un valor negativo, este no necesita dicha capa.

Comprobación:

6.5.1. Espesores finales de diseño

La estructura de pavimento articulado quedaría de la siguiente forma:

- Adoquín (EAC= 3500 psi.) = 4 pulgadas
- Cama de arena= 2 pulgadas
- Base granular (MR=28,000 psi) = 6 pulgadas

El total de la estructura de pavimento articulado para la comunidad empalme Santa Rosa comunidad -La Laguna es de 12 pulgadas equivalente a 30.48 centímetros. conformada por una cama de arena de 2" pulgadas una base granular de 6" pulgadas y su adoquín de 4" pulgadas con una resistencia de 3500 psi. Ver anexos, Imagen 30, Pág. LIX

A continuación, se realizó una imagen final del paquete estructural de pavimento

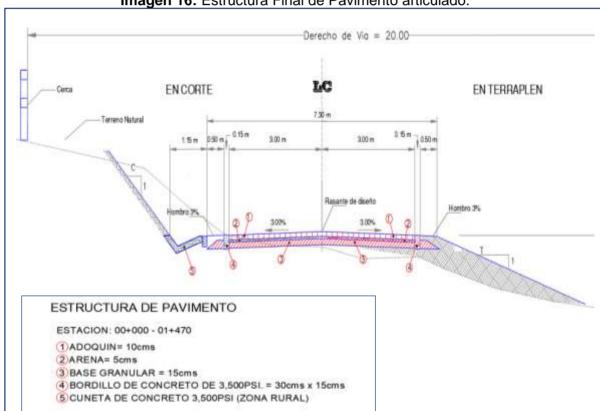


Imagen 16: Estructura Final de Pavimento articulado.

Fuente: Elaborado por Sustentante.

6.6. Programa WinPAS 10 (Pavement Analysis Software)

Para verificar los resultados obtenidos anteriormente se procede a hacer uso del programa WinPAS (Pavement Analysis Software, versión 1.0.4), para el cual se requieren los siguientes datos:

Tabla 63: Datos para utilizar en WinPAS versión 1.0.4.

Datos Para Utilizar en WinPAS.				
Confiabilidad (R)	80%			
Capacidad de Servicio Inicial (Po)	4.2			
Capacidad de Servicio Final (Pt)	2.0			
Pérdida de Serviciabilidad Δ PSI	2.2			
Número de Ejes Equivalentes (ESAL's)	697,644.00			
C.B.R. de Diseño	19.60%			
Módulo Resiliente Sub-rasante (MRSr)	13,113.1PSI			
Coeficiente de Drenaje (m _{1,2,3})	1.00			
Coeficiente de Capa a ₁	0.45			
Coeficiente de Capa a ₂	0.135			

Fuente: Elaborado por Sustentantes.

El primer paso es seleccionar la pestaña diseño/evaluación, donde se nos abrirá una nueva ventana que nos mostrará tres opciones de diseño, en este caso se eligió la opción uno (1) de diseño/análisis de pavimento rígido.

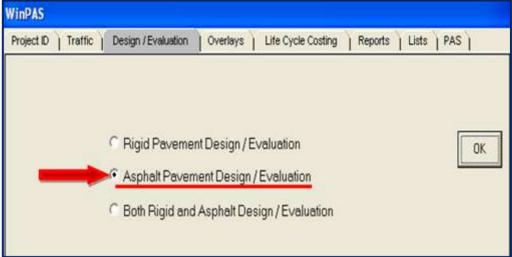
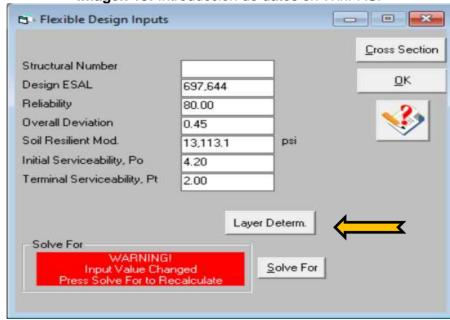

WinPAS Project ID | Traffic Design / Evaluation Overlays) Life Cycle Costing PAS Reports Lists WinPAS AICAN CONC Pavement Analysis Software Version 1.0.4 **American Concrete Pavement** Association 5420 Old Orchard Road, Suite A100 Skokie, Illinois 60077 www.pavement.com

Imagen 17: Software de diseño WinPAS.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

El primer paso es seleccionar la pestaña de diseño/evaluaciones, donde se nos abrirá una nueva ventana que nos mostrará tres opciones de diseño, donde en este caso se tendrá que elegir la opción 2 de diseño/evaluaciones de pavimento asfaltico.


Imagen 18: Selección del tipo de pavimento a diseñar.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

Luego se abrirá otra ventana que es donde se deben introducir los datos iníciales para el diseño. No se debe escribir el número estructural, ya que este lo calcula el programa después de haber digitado el resto de los datos, dando click en la pestaña resolver (Solve for).

Imagen 19: Introducción de datos en WinPAS.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

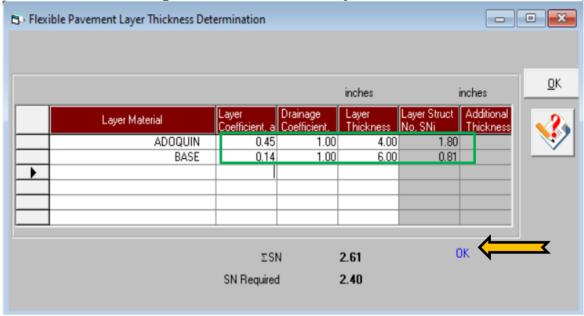
Después de haber dado click en la pestaña *resolver* (Solve for). Según el software WinPAS se requiere un **SN=2.40**.

Flexible Design Inputs Cross Section Structural Number 2.40 <u>o</u>K Design ESAL 697,644 Reliability 80.00 Overall Deviation 0.45 Soil Resilient Mod. psi 13,113.1 Initial Serviceability, Po 4.20 Terminal Serviceability, Pt 2.00 Layer Determ. Solve For Structural Number Solve For 2.40

Imagen 20: Cálculo de SN requerido en WinPAS.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

Lo siguiente será proponer la estructura de pavimento, entrando en la pestaña Layer Determ.


Solve For
Structural Number
2.26
Solve For

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

Se procede a introducir los coeficientes estructurales $(a_1, y a_2)$, los coeficientes de drenaje $(m_1 y m_2)$, y por último los espesores $(D_1 y D_2)$. Se puede observar que,

al proponer los espesores calculados manualmente, estos cumplen, ya que ΣSN=2.61, es mayor que el SN requerido=2.40.

Imagen 22: Introducción de layers de diseño.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

Procedemos a calcular el espesor para cada capa de la Estructura de Pavimento por medio del programa WinPAS, que de acuerdo con sus características estructurales proporcionen la capacidad correspondiente al Número Estructural.

Según el programa WinPAS el **S**SN requerido es mayor que el SN de diseño lo cual significa que este cumple.

ΣSN ≥ SN requerido

2.61 ≥ 2.40 **¡O.K CUMPLE!**

Por último, el software WinPAS nos muestra los espesores de pavimento **Ver imagen-23 pág. 102.**

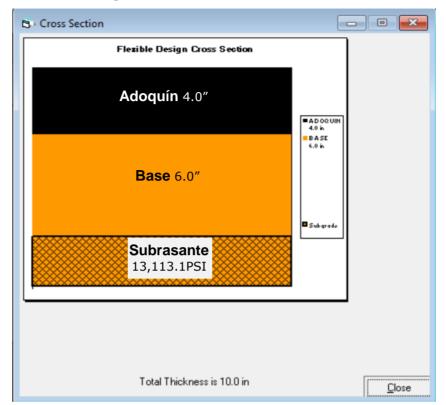


Imagen 23: Estructura final WinPAS-10.

Fuente: WinPAS (Pavement Analysis Software 1.0.4).

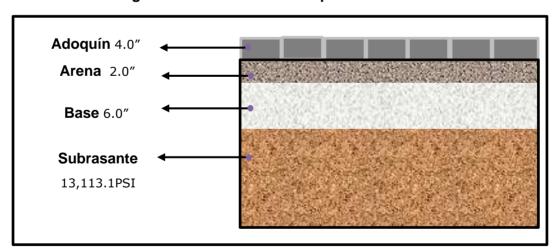


Imagen 24: Estructura final de pavimento articulado.

Fuente: Elaborado por sustentantes.

CONCLUSIONES.

De acuerdo con los objetivos planteados se ha concluido que:

El Tramo presenta un terreno **ondulado**, predominan las pendientes entre 5.00-15.00%. En cuanto a la planimetría del tramo, se identificaron 16 curvas y 17 rectas, el radio de curvatura de mayor importancia se ubicada entre las estaciones **0+876.464** y **0+920.23**, con un Radio de **50 metros** y una longitud de **42.382 metros**.

Los resultados obtenidos para el cálculo del **TPDA** corresponden a 336 Vehículos/día. La estimación del ESAL's resulto de: 697,644.00 equivalentes a ejes de 18,000 lbs o 80 KN.

Mediante los ensayos de laboratorio de los suelos sobre la línea vial y su clasificación AASHTO se concluye que los más predominantes son los del tipo: A-2-4(0), A-2-6(0), A-2-7(0), suelos de regular a deficientes calidad y en menor cantidad los suelos del tipo A-1-a (0), A-1-b (0), éstos corresponden a suelos de muy buena calidad, compuestos por fragmentos de piedra grava y arena.

Se propone el banco de préstamo N°1 Adolfo Benavides para su uso como material base en la estructura de pavimento articulado. El cual cumplió con las normativas de la NIC-2019. El **CBR** de diseño de la subrasante resultó de 19.60%.

El alineamiento horizontal que nos permitió conocer las distancias de visibilidad (dp=50 metros, da=270 metros), radio mínimo (Rm=41 metros), grado de curvatura (Gc= 27° 57´), peralte máximo (emax=0.08) y coeficiente de fricción (f=0.23), a partir de una velocidad de diseño de 50km/h.

El diseño geométrico cumple con los parámetros de diseño de la SIECA 2011 y el software Autodesk Civil-3D-2022. En el alineamiento vertical, se trazaron 6 curvas en cresta y 6 en columpio.

Los espesores que conformarán la estructura del pavimento articulado serán: Adoquín: 4.0 pulgadas ≈ 10.16 centímetros, cama de arena 2.0 pulgadas ≈ 5.08 centímetros y base granular: 6.0 pulgadas ≈ 15.24 centímetros.

RECOMENDACIONES.

- ➤ Realizar un corte de 0.30 metros de profundidad a lo largo de los 1.47 kilómetros del tramo para colocar la estructura de pavimento diseñada. (Ver planos, laminas 7-10)
- ➤ El material cortado deberá ser desalojado en su totalidad y reemplazado por el material de los bancos analizados en el estudio.
- Controlar durante el proceso de construcción, cualquier afloramiento posible de materiales indeseables no detectado en el estudio geotécnico.
- ➤ Para los suelos arcillosos A-2-5, (0) más superficiales presentes en las estaciones 1+300 hasta la Est 1+400, se recomienda realizar un corte de 15 centímetros extra y reemplazar con material del banco de material N°2 (Bayardo Hurtado), ya que, este material servirá de aislante para que el material base no se contamine. (Ver planos, lamina 10)
- Se debe constatar que el material la capa base esté libre de cualquier otro material contaminante, como basura, trozos de árboles o rocas muy grandes, ya que esto podría afectar la resistencia de la estructura.
- Utilizar adoquín tipo tráfico de 3,500 PSI, este deberá cumplir con los requerimientos de la NIC 2019 sección 504.2.1 y (NTON) Fabricación de adoquines de concreta sección 12 009-10.
- La arena que servirá de colchón a los adoquines deberá ser arena lavada, dura, angular y uniforme y no deberá contener más del 3% (en peso) de limo, arcilla o de ambos. Su gradación será tal que pase totalmente por el tamiz No. 4 y no más del 15% sea retenido en el tamiz No. 10. El espesor de esta capa no deberá ser menor de 3 centímetros ni mayor de 4 centímetros, según la NIC 2019 sección 504.2.3.

- ➤ El espesor suelto correspondiente a la capa de arena deberá estar entre 3 a 5 centímetros. Se deberán hacer frecuentes comprobaciones del nivel de la superficie del adoquinado para asegurarse de que el espesor que se está colocando de arena sin compactar es el correcto, según la NIC 2019 sección 504.2.3.
- ➤ El sello de Arena usado para rellenar las juntas de adoquines deberá estar libre de impurezas y de todo material inadecuado en las juntas (maleza, limo, arcilla o cualquier material orgánico), se colocarán de manera uniforme 0.035 m3/m2 de material, siendo esparcido finalmente con cepillo de fibra, de manera que las juntas queden completamente llenas, debiendo retirar el material sobrante, según la NIC 2019 sección 504.2.5.
- ➤ El banco de préstamo seleccionado para material base deberá cumplir con lo especificado en la sección 1003.21.4 de la NIC 2019.
- Los requisitos para la construcción de la estructura de pavimento articulado (adoquín) deberá cumplir con la sección 504.3 de la NIC 2019.
- La estructura final de pavimento articulado debe cumplir con los espesores de diseño que en este caso son, 6 pulgadas de base granular, 2.00 pulgadas de Arena y adoquín de 4 pulgadas.
- ➤ El contratista ejecutante deberá gestionar el permiso acreditado por INAFOR si se requiere realizar corte de árboles sobre la vía o extracción de material, según la sección 1101.1 (9), de la NIC 2019.
- Antes de iniciar la ejecución del proyecto, se deberá asegurar que el Contratista obtuvo los permisos de aprovechamiento de los bancos de materiales a utilizarse, según la sección 1101.1 (8), de la NIC 2019.

BIBLIOGRAFÍA.

- AASHTO. (93). Guide for Design of Pavement Structures. American Association of state Highways and Transportation Officials. (3.a ed.). Washington, D.C.: Instituto Nacional de Carreteras de Estados Unidos.
- Agudelo, J. (2002). *Diseño Geometrico de Vias.* Medellín: Universidad Nacional De Colombia.
- Alcántara, D. (2014). *Topografía y sus aplicaciones (1.er ed.)*. México D.F: Compañía Editorial Continental.
- Cal y Mayor, R. (2007). *Ingeniería de Transito Fundamentos y Aplicaciones.* México: 8va Edición Alfaomega, Grupo Editorial, S.A.
- Cárdenas, J. (2013). *Diseño geométrico de carreteras. (2. a ed.).* Bogotá: ECOE Ediciones.
- Casanova, L. (2002). Topografía plana. Universidad de los Andes facultad de ingeniería departamento de vías. Mérida: Taller de Publicaciones Facultad de ingeniería, ULA.
- MTI & PAST DANIDA. (2008). Manual para la Revisión de Estudios Hidrotécnicos de drenaje menor. *Ministerio de Transporte e Infraestructura*. Managua: Division General de Planificación DGP.
- MTI & PAST DANIDA. (2008). Manual para la Revisión de Estudios Topográfico, Ministerio de Transporte e Infraestructura. Managua: Division General de Planificación DGP.
- MTI & PAST DANIDA. (2008). *Manual para Revisión de Estudios Geotécnicos, Ministerio de Transporte e Infraestructura*. Managua: Division General de Planificación DGP.
- MTI. (2020). Anuario de Aforos de Tráfico, Ministerio de Transporte e Infraestructura. Managua: División de Administración Vial.
- MTI. (2019). Red Vial de Nicaragua. Ministerio de Transporte e Infraestructura. Managua: División de Administración Vial.
- NIC. (2019). Especificaciones Generales para construcción de caminos, calles y puentes. Ministerio de Transporte e Infraestructura. Managua.
- SIECA. (2002). *Manual Centroamericano para diseño de pavimentos*. Guatemala: USAID/SIECA No. 0596-0184.20.
- SIECA. (2011). Manual Centroamericano de normas para el Diseño Geométrico de Carreteras, Secretaria de Integración Económica (3.a ed.). Guatemala: USAID/SIECA.

República de Honduras Mar º Caribe Océano Pacífico República de Costa Rica

Imagen- 25. Macro Localización Nicaragua (Departamento de Estelí).

Fuente: Red vial de Nicaragua 2020.

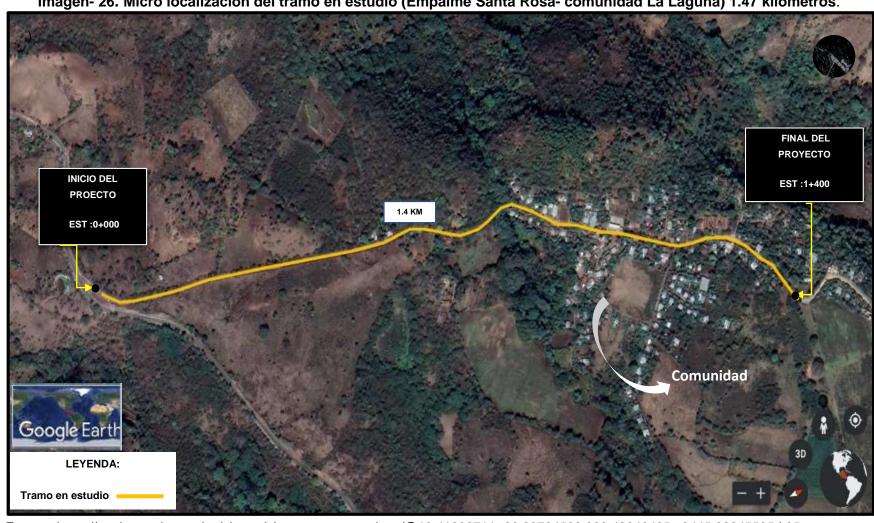


Imagen- 26. Micro localización del tramo en estudio (Empalme Santa Rosa- comunidad La Laguna) 1.47 kilómetros.

Fuente: https://earth.google.com/web/search/santa+rosa+condega/@13.41292711,-86.28724588,928.43846425a,2445.22245505d,35y

Fotos: Situación actual del tramo.

Foto 1. Inicio del tramo, (Est. 0+000) hacia comunidad La Laguna.

Fuente: Levantado por Sustentantes.

Foto 2. Inexistencia de drenajes (Est. 0+100).

Foto 3. Desgastes de la superficie de rodamiento (Est. 0+240).

Fuente: Levantado por Sustentantes.

Foto 4. Ancho de la vía 5.90 metros (Est. 0+300).

Foto 5. Estancamiento de agua en la vía (Est. 0+360).

Fuente: Levantado por Sustentantes.

Foto 6. Inexistencia de drenaje longitudinal (Est. 0+640).

Foto 7. Mal estado de la superficie de rodamiento (Est. 1+000).

Fuente: Levantado por Sustentantes.

Foto 8. Final del tramo en estudio (Est. 1+400).

Tabla 64: Datos técnicos de levantamiento.

	Table 0 II	Datos tecinico	o do loval	itairii oritoi
N°	Este	Norte	Cota	Descripción
	1482400.0448			
	1482399.3038			
	1482398.2918			
	1482397.6838			
	1482396.6578			
6	1482394.8048	576801.1764	378.4460	"oc"
7	1482393.9458	576802.1064	378.1310	"TN"
8	1482393.1328	576803.1184	378.5490	"TN"
9	1482392.0448	576804.9024	378.6720	"CER"
1	0 1482412.4240	576804.4971	1 380.567	0 "CER"
1	2 1482412.1040	576806.2741	1 380.507	0 "TN"
1	3 1482411.0870	576807.4691	1 380.260	0 "TN"
14	4 1482410.3390	576808.3601	1 380 . 484	ø "oc"
1	5 1482408.7710	576810.4261	1 380.510	0 "LC"
	6 1482407.0430			
	7 1482406.5310			
1	8 1482405.8290	576814.5241	1 380.480	0 "TN"
1	9 1482404.0970	576816.8081	1 380.590	0 "CER"
1	1 1482418.8770	576810.0121	381.278	0 "PCE"
2	0 1482418.5978	576831.1595	382.263	0 "CER"
	1 1482419.6268			
2	2 1482420.7668	576828.0585	381.879	0 "TN"
2	3 1482421.5928	576827.2065	382.176	ø "oc"
2	4 1482423.1248	576825.3525	382.179	0 "LC"
2	5 1482424.7298	576823.2915	382.226	0 "oc"
2	6 1482425.4268	576822.5415	382.000	0 "TN"
2	7 1482426.4868	576821.4055	382.374	0 "TN"
2	8 1482427.8388	576819.9175	382.314	0 "CER"
2	9 1482438.172 3	576833.3356	385.561	0 "CER"
3	0 1482439.199 3	576835.7286	384.367	0 "TN"
3:	1 1482438.2143	576837.0336	383.741	0 "TN"
3:	1482437.685 3	576837.7396	383.842	0 "oc"
	3 1482435.9363			
	4 1482434.2593			
	5 1482433.9063			
3	6 1482432.27 33	576844.0556	383.934	
	7 1482432.124 3			
	8 1482462.4909			
	9 1482452.8489			
4	0 1482452.291 9	576844.9645	386.630	
	1 1482451.3349			
4	2 1482450.8639	576848.3725	385.785	
4	3 1482449.3279	576851.0045	385.832	0 "LC"
	4-1			

Tabla 65: Datos técnicos de levantamiento.

N.10		Name -		
N°	•	Norte		
	1482448.0949			
	1482447.5349			
	1482446.8449			
	1482446.2219			
	1482464.5201			
	1482465.5007			
	1482465.8940			
	1482467.0674			
	1482468.3746			
53	1482468.8971	576856.2911	387.8190	"TN"
54	1482470.0197	576854.1622	388.7850	"TN"
55	1482472.2029	576851.2830	391.9830	"TN"
56	1482517.8141	576874.0681	392.0590	"PCE"
57	1482490.9983	576862.7885	393.4810	"TN"
58	1482490.0644	576866.3694	390.2130	"TN"
59	1482489.2028	576868.3847	389.3950	"TN"
60	1482488.8550	576869.1848	389.5530	"OC"
61	1482488.0019	576871.8923	389.4720	"LC"
62	1482486.7612	576874.7210	389.3300	"OC"
63	1482486.3333	576875.8932	388.9920	"TN"
64	1482485.5786	576878.1580	389.2240	"TN"
65	1482470.6493	576891.4921	388.4920	"TN"
66	1482471.9103	576888.1796	387.6980	"TN"
67	1482472.2311	576887.0819	387.0210	"BCA"
68	1482472.2336	576887.0358	382.0230	"PCA"
69	1482472.4395	576879.6704	381.3310	"PCA"
70	1482472.1860	576879.6968	386.2950	"BCA"
71	1482472.3347	576877.1107	386.6350	"TN"
72	1482472.5557	576874.6722	387.6310	"TN"
73	1482504.0190	576884.9045	387.8660	"IMVERALC"
74	1482502.8850	576884.8628	389.0950	"ALCA"
75	1482503.3949	576884.8461	389.0990	"ALCA"
76	1482502.9681	576886.2380	388.1110	"ALCA"
77	1482502.9695	576886.1539	387.7610	"ALCB"
78	1482503.8645	576886.2967	387.7660	"ALCB"
79	1482503.9791	576886.3560	388.0840	"ALCA"
80	1482504.5020	576884.8487	389.1020	"ALCA"
81	1482504.9854	576884.7751	389.1110	"ALCA"
82	1482505.2985	576884.7562	389.4090	"ALCC"
83	1482502.8956	576884.9091	389.4090	"ALCC"
84	1482502.9635	576884.4383	389.4240	"ALCC"
85	1482504.0719	576882.8162	390.3490	"TN"
86	1482504.4283	576881.6903	390.5410	"TN"

Tabla 66: Datos técnicos de levantamiento.

NIO Foto		Norte		
		Norte		Descripción "OC"
87 1482504.8				
88 1482506.0				
89 1482507.3				
90 1482508.9				
91 1482509.4				
92 1482529.2				
93 1482528.9				
94 1482530.0				
95 1482530.8				
96 1482529.4				
97 1482530.				
98 1482509.0				
99 1482508.0				
100 1482509				
101 1482508				
102 1482508				
103 1482510				
104 1482511				
105 1482510				
106 1482510				
107 1482508				
108 1482521				
109 1482522				
110 1482522				
111 1482522				
112 1482522				
113 1482523				
114 1482524	.0723 5	76877.5760	392.7680	"oc"
115 1482525	.2470 5	76874.4823	392.3810	"TN"
116 1482525	.4269 5	76870.8121	393.3620	"TN"
117 1482525				
118 1482506	.6188 5	76870.9095	391.2650	"CER"
119 1482538	.7093 5	76893.4370	393.6740	"CER"
120 1482539	.3193 5	76890.0445	394.1710	"TN"
121 1482539	.6286 5	76888.2734	393.8380	
122 1482539	.7770 5	76886.8247	394.1600	
123 1482540	.4617 5	76883.2730	394.4090	"LC"
124 1482540	.6583 5	76880.8108	394.6040	"oc"
125 1482540	.9822 5	76879.2105	394.3670	"TN"
126 1482541	.4603 5	76877.3785	394.7110	"TN"
127 1482542	.2148 5	76874.3506	395.1160	"TN"
128 1482542	.4210 5	76873.2370	396.0810	"CER"
129 1482559	. 1167 5	76877 <mark>.</mark> 0904	398.6590	"CER"

Tabla 67: Datos técnicos de levantamiento.

N°	Este	Norte	Cota	Descripción		
150	1482587.9916	576920.4897	390.0870	"PCA"		
	1482586.9221					
	1482586.5090					
153	1482584.7777	576919.6493	391.3910	"TN"		
154	1482580.7324	576918.5774	391.4390	"TN"		
155	1482593.9285	576902.2905	395.0850	"IMVERALC"		
156	1482593.6844	576902.2667	395.1350	"ALCB"		
157	1482594.2062	576902.3627	395.1550	"ALCB"		
158	1482594.6214	576902.6531	395.9680	"ALCA"		
159	1482594.2604	576902.4621	395.9870	"ALCA"		
160	1482594.4089	576903.5772	395.2600	"ALCA"		
161	1482593.9639	576903.4519	395.2610	"ALCA"		
162	1482593.9325	576903.3684	394.9260	"ALCB"		
163	1482593.4299	576903.2568	394.9240	"ALCB"		
164	1482593.3784	576903.2931	395.2390	"ALCA"		
165	1482592.8912	576903.1390	395.2410	"ALCA"		
166	1482593.6141	576902.4067	395.9870	"ALCA"		
167	1482593.2119	576902.2338	395.9940	"ALCA"		
168	1482593.2616	576901.6343	396.3970	"ALCC"		
	1482593.1680					
	1482594.7701					
	1482594.9035					
	1482594.0611					
	1482594.8652					
	1482594.8498					
	1482595.3707					
	1482595.8364					
	1482596.5369					
	1482596.8689					
	1482596.9035					
	1482597.0610					
	1482596.8571					
	1482597.5543					
	1482597.4017					
	1482596.3744					
	1482596.5009					
	1482597.5114					
	1482597.6475					
	1482597.7269					
	1482597.6775					
	1482596.2591 1482596.4749					
_ 192 1482608.2517 576899.2696 399.5370 "CER" Fuente: Levantamiento por Sustentantes - Alcaldía de Condega.						
i delite. Levantamiento poi oustentantes - Alcalula de Condega.						

Tabla 68: Datos técnicos de levantamiento.

N°	Este	Norte	Cota	Descripción
		,		'
	1482625.6989			
201	1482625.2555	576891.0551	401.6210	
	1482624.5821			
	1482623.8379			
	1482623.4866			
	1482623.3582			
	1482622.9926			
	1482643.1775			
	1482642.9241			
	1482642.2734			
	1482641.7633			
	1482640.7392			
	1482639.8525			
	1482639.4442			
214	1482639.0826	576903.7285	403.7050	
	1482750.4440			
	1482745.1376			
	1482741.6581			
	1482741.1771			
219	1482740.5817	576947.1229	395.2830	
220	1482740.3701	576947.1015	396.8850	
	1482736.1495			
	1482730.8796			
	1482726.8131			
	1482657.8253			
	1482657.9768			
	1482658.2994			
	1482659.0036			
	1482659.6017			
	1482660.1374			
	1482660.9339			
	1482661.5189			
	1482679.2032			
	1482679.4443			"TN"
	1482679.4210			"TN"
	1482679.2230			"OC"
	1482679.0491			"LC"
	1482678.5704			"OC"
	1482678.6237			"TN"
	1482678.1200			"CER"
	1482697.8768			
	1482698.0135			
	1482698.1313	576908.7555		

Tabla 69: Datos técnicos de levantamiento.

N°	Este	Norte	Cota	Descripción
250	1482716.1788	576904.7031	408.7050	"TN"
	1482715.7866			
252	1482715.6561	576907.8280	408.3000	"oc"
253	1482715.2752	576910.8670	408.3680	"LC"
	1482714.8288			
	1482714.8142			
	1482714.7050			
257	1482737.6598	576904.1900	411.2900	"CER"
258	1482737.4588	576904.7969	410.8180	"TN"
259	1482737.2439	576906.0376	410.0010	"TN"
260	1482733.2625	576925.0038	404.1090	"IMVERALC"
270	1482733.7595	576926.1480	404.3320	"ALCA"
271	1482733.4052	576926.0628	404.3010	"ALCA"
272	1482733.3786	576926.0113	403.9290	"ALCB"
273	1482732.2720	576925.7940	404.3220	"ALCA"
274	1482732.6219	576925.8945	404.3120	"ALCA"
275	1482732.6817	576925.8433	403.9900	"ALCB"
276	1482732.9213	576925.0017	404.1180	"ALCA"
277	1482732.4499	576924.8113	405.0040	"ALCA"
278	1482732.8416	576924.8720	405.0410	"ALCA"
279	1482733.6275	576925.0953	405.1240	"ALCA"
	1482734.0240			
281	1482734.2079	576924.6622	405.3970	"ALCC"
	1482734.1481			
	1482732.5796			
	1482732.6094			
	1482733.8326			
	1482734.4688			
	1482734.7802			
	1482735.3332			
	1482735.7256			
	1482736.4175			
	1482738.8302			
	1482739.1224			
	1482739.4038			
	1482736.5947			
	1482737.3512			
	1482737.0893			
	1482736.3608			
	1482736.5393			
	1482736.5578			
	1482737.7301			
	1482737.4276			

Tabla 70: Datos técnicos de levantamiento.

Γ	N°	Este	Norte		
F			Norte	Cota	Descripción
		1482874.6439			
		1482875.0987			
		1482875.4466			
		1482875.5219			
		1482875.7530			
		1482875.7772			
		1482876.1576			
		1482876.1220			
		1482876.3105			
		1482876.1843			
		1482859.2390			
		1482859.4982			
		1482859.5304			
1		1482856.8489			
		1482856.7178			
		1482854.6295			
		1482854.7094			
		1482855.6406			
		1482855.2259			
		1482855.4193			
	421	1482856.6247	576935.7293	416.2180	"ALCB"
		1482856.4620			
	423	1482856.4382	576937.0608	416.6200	
	425	1482855.1685	576936.9299	416.6580	
	426	1483327.3945	577071.7871	481.1080	
		1482937.4722			""
		1482892.0629			
		1482892.5516			
	436	1482892.8079	576954.7796	421.7100	"TN"
		1482893.2045			
		1482893.7701			
	439	1482894.2882	576947.6272	421.3980	"oc"
1	440	1482894.5839	576946.5009	421.0330	"TN"
	441	1482894.7425	576944.5463	421.7270	"TN"
I	442	1482891.7690	576939.0768	426.0620	"CER"
I	443	1482911.9792	576941.5280	431.1680	"CER"
I	444	1482912.1457	576949.1572	424.3700	"TN"
	445	1482912.2241	576950.3639	423.9140	"TN"
I	446	1482912.0401	576951.4100	423.5310	"TN"
I	447	1482911.5243	576952.2945	423.8890	"oc"
I	448	1482910.6470	576955.3418	424.1090	"LC"
I	449	1482909.9668	576958.2959	424.3550	"oc"
L	450	1482909.4559	576959.7950	424.1840	"TN"
-		e: Levantamient	_		

Tabla 71: Datos técnicos de levantamiento.

		. Datos toornoc		
N°	Este	Norte	Cota	Descripción
	1483009.1122			
	1483013.7022			
	1483016.0012			
	1483018.6222			
	1483022.6762			
	1483010.5742			
	1483007.6462			
	1483007.3182			
	1483008.1782			
	1483007.7122			
	1483006.4332			
	1483004.3992			
	1483002.7742			
	1483002.4892			
	1483002.1752			
	1483002.9082			
	1483000.9552			
	1483001.1562			
	1483000.4332			
	1483003.2772			
	1483002.6052			
	1483001.9582			
	1483012.9532			
	1483011.2842			
	1483009.6472			
	1483007.5082			
	1483007.0192			
	1483012.3962			
	1483012.0592			
	1483011.8562			
	1483022.3238			
	1483022.8016			
	1483022.7134			
	1483022.7575			
	1483023.0723			"LC"
	1483023.1845			"OC"
	1483023.1480			
	1483023.1705			
	1483023.1785			
	1483023.3624			
	1483023.4395			
	1483039.6797			
543	1483039.8291	576965.4855	437.5330	"TN"
			taa Alaald	

Tabla 72: Datos técnicos de levantamiento.

			Dates teernee	0 0.0 .0 .0	-
ſ	N°	Este	Norte	Cota	Descripción
J	550	1483039.7501	576976.0978	436.9250	"TN"
		1483039.5308			
		1483050.2976			
	553	1483050.7579	576979.5719	439.6070	"TN"
	554	1483050.9478	576978.1444	439.8110	"TN"
	555	1483051.4814	576976.4465	439.5080	"TN"
	556	1483051.8072	576975.3921	439.7150	"oc"
		1483052.0966			
		1483052.6213			
		1483052.6943			
	560	1483052.8289	576968.9152	439.5110	"VCUNETA"
	561	1483052.9347	576968.1736	439.8570	"VCUNETA"
	562	1483052.3880	576966.5817	444.1300	"TN"
	563	1483069.6938	576968.2117	444.1290	"TN"
	564	1483069.0996	576969.7349	442.5570	"TN"
	565	1483070.9627	576971.0812	442.5780	"VCUNETA"
		1483070.8188			
	567	1483070.3671	576972.7278	442.5470	"VCUNETA"
	568	1483070.1494	576973.0181	442.5460	"oc"
	569	1483069.0686	576975.7812	442.4300	"LC"
	570	1483068.1990	576978.7674	442.3670	"oc"
	571	1483067.8544	576979.4776	442.2530	"TN"
	572	1483067.5921	576980.0448	442.0500	"TN"
	573	1483066.2909	576981.4724	441.9880	"TN"
	574	1483065.5800	576983.4405	440.9440	"CER"
	575	1483081.0094	576990.9071	443.2390	"CER"
	576	1483082.1974	576989.5831	444.2680	"TN"
	577	1483082.9704	576988.5421	444.3100	"TN"
	578	1483083.6744	576987.6281	444.5510	"oc"
	579	1483085.7584	576985.3571	444.7020	"LC"
	580	1483087.7434	576983.1481	444.7680	"oc"
		1483088.6364			
		1483089.1244			
		1483089.5844			
	584	1483091.3014	576979.3221	445.0890	
	585	1483092.9184	576977.2851	445.2290	
	586	1483092.6824	576977.1941	449.4800	
		1483112.5734			
		1483111.4024			
		1483109.2244			
	590	1483108.5284	576995.4217	447.3030	
		1483107.6654			
Ĺ		1483105.2284			
	Fuent	a. I evantamient	o por Sustentan	tes - Alcald	ía de Condega

Tabla 73: Datos técnicos de levantamiento.

F		Tubiu Tu	Daios lecilico	o do lovali	tarrii or itor
ŀ	N°		Norte		Descripción
		1483123.2233			
		1483124.7660			
		1483125.3040			
		1483126.9170			
		1483127.2524			
		1483142.6382			
		1483142.2559			
		1483141.7974			
		1483141.4216			
		1483140.2493			
		1483139.3363			
		1483138.9361			
		1483138.5276			
	613	1483139.3111	577025.9590	451.2100	"CER"
	614	1483155.1936	577029.2522	454.8890	"CER"
	615	1483155.3511	577027.5771	455.4870	"TN"
	616	1483155.7202	577024.9218	455.1760	"TN"
	617	1483155.7259	577023.7037	455.4640	"oc"
		1483156.1896			
	619	1483156.4577	577017.0247	455.4880	"oc"
	620	1483156.6682	577015.5761	455.0830	"TN"
	621	1483156.9016	577013.6083	455.6980	"TN"
	622	1483156.7359	577011.2920	459.8880	"TN"
	623	1483173.6428	577013.9016	461.5670	"TN"
	624	1483173.6489	577015.6913	457.9090	"TN"
	625	1483173.6290	577017.4708	457.3370	"TN"
		1483173.5615			
	627	1483173.3067	577021.7473	457.7770	"LC"
	628	1483173.2448	577025.0196	457.8190	"oc"
	629	1483173.2208	577026.8905	457.4430	"TN"
	630	1483173.1691	577029.3965	457.6010	"TN"
	631	1483172.3962	577031.3885	456.8850	"CER"
	632	1483190.9760	577028.5560	465.4660	"CER"
	633	1483189.9735	577025.4597	461.5020	"TN"
	634	1483189.9692	577023.7223	460.9380	"TN"
	635	1483189.8761	577022.9331	461.1230	"oc"
	636	1483189.5547	577019.8020	460.9960	"LC"
	637	1483189.2763	577016.2399	460.9210	"oc"
	638	1483189.1862	577015.3353	460.6650	"TN"
Į	639	1483189.0810	577013.1129	461.4350	"TN"
	640	1483189.0039	577013.3320	462.9480	"TN"
	641	1483215.7278	577023.1840	467.3080	"CER"
	642	1483215.2630	577018.8597	463.1100	"TN"

Tabla 74: Datos técnicos de levantamiento.

N°		Norte	_	Descripción
	1483266.8211			
	1483268.8555			
	1483271.1825			
	1483272.0801			
	1483273.4274			
	1483274.3919			
	1483286.9359			
	1483285.5495			
	1483283.9907			
	1483283.4801			
	1483280.9758			
	1483278.9297			
	1483277.9898			
	1483275.7994			
	1483273.4214			
	1483284.2197			
	1483289.2698			
	1483290.6510			
	1483291.3328			
	1483293.8046			
	1483296.0196			
	1483296.9638			
	1483299.6212			
	1483300.1906			
	1483301.9577			
	1483302.9450			
	1483304.4113			
	1483305.8024			
	1483306.4344			
	1483307.6205			
	1483308.9186			
	1483309.4687			
	1483310.3058			
	1483310.7068			
	1483311.3754			
	1483324.6220			
	1483323.8265			
	1483323.3847			
	1483322.7163			
	1483321.1422			
	1483319.3115			
	1483318.8949			
	1483317.4182			

Tabla 75: Datos técnicos de levantamiento.

N°		Este	Cota	Descripción
	I.			
	1483358.120			
	1483358.774			
	1483360.596			
	1483362.458			
	1483363.309			
	1483364.989			
	1483374.423			
	1483370.519			
	1483379.360			
	1483376.863			
	1483376.378			
811	1483375.944	5 577095.19	35 487.2	
812	1483375.376	9 577096.27	71 487.5	
813	1483374.394	8 577099.00	37 487.6	
814	1483372.835	9 577101.85	90 487.7	
	1483372.351			
	1483371.789			
817	1483370.826	6 577106.53	72 487.3	
818	1483385.278	5 577116.34	22 489.3	220 "CER"
819	1483386.251	9 577113.53	09 489.5	
820	1483386.559	1 577112.34	34 489.7	
821	1483386.598	4 577111.87	89 489.8	
822	1483387.429	8 577109.25	13 489.7	
823	1483388.445	2 577105.93	92 489.5	
824	1483388.454	0 577105.94	74 489.5	
825	1483388.909	3 5 77104. 95	43 489.1	
	1483389.744			
827	1483391.582	6 577085.98	60 502.2	
828	1483414.620	0 577096.12	72 506.0	
	1483412.897			
	1483412.286			
	1483411.969			
832	1483411.130	3 577119.87	84 491.6	
833	1483410.383	9 577122.92	31 491.7	810 "OC"
834	1483409.759	7 577125.07	24 491.5	
835	1483410.367	2 577126.16	90 492.0	330 "A"
836	1483408.813	4 577129.05	41 491.5	
837	1483408.220	4 577131.15	45 491.8	
838	1483408.237	2 577125.03	57 491.3	
839	1483408.116	6 577132.27	90 492.1	
840	1483417.642	8 577140.24	77 495.5	
841	1483424.867	9 577136.14	75 494.9	
842	1483422.981	6 577138.04	81 495.4	010 "CER"

Tabla 76: Datos técnicos de levantamiento.

N°	Norte	Este	Cota	Descripción
900	1483409.7597	7 577125.072	4 491.501	LØ "TN"
901	1483410.3672	2 577126.169	0 492.033	30 "A"
902	1483408.8134	1 577129.054	1 491.556	50 "TN"
903	1483408.2204	1 577131.154	5 491.847	70 "TN"
904	1483408.237	2 577125.035	7 491.35	30 "TN"
905	1483408.1166	5 577132.279	0 492.151	lø "CER"
906	1483417.6428	3 577140.247	7 495.571	lø "CER"
907	1483440.791	1 577140.943	1 495.302	20 "LC"
908	1483689.3043	1 577334.198	6 492.948	30 "CERCO"
909	1483672.487	1 577343.879	5 495.566	50 "CERCO"
100	0 1483687.770	02 577336.21	32 494.18	350 "TN"
100	2 1483685.463	11 577337.50	75 494.65	30 "OCD"
100	3 1483679.819	99 577340.51	97 494.71	150 "OCD"
100	4 1483682.37	74 577339.16	28 494.80	930 "LC"
100	5 1483686.470	06 577326.55	34 493.32	230 "CERCO"
100	6 1483672.27	23 577331.46	98 495.29	
100	7 1483673.71	17 577330.12	38 494.72	
100	8 1483683.370	33 5773 27.1 4	55 494.46	
1009	9 1483681.23	71 577327.58	82 494.77	
101	0 1483675.10	39 577329.84	83 494.70	
101	1 1483678.108	38 577328.73	31 494.85	
101	2 1483669.054	13 577320.02	30 495.30	
101	3 1483681.21 3	19 577316.00	60 494.11	
101	4 1483670.563	15 577319.05	23 494.50	
	5 1483679.56			
	6 1483672.458			
	7 1483675.348			
	8 1483676.17			
	9 1483674.746			
	0 1483664.62			
	1 1483673.198			
	2 1483666.184			
	3 1483669.274			
	4 1483672.958			
	5 1483653.965			
	6 1483670.969			
	7 1483656.431 8 1483658.300			
	8 1483658.300 9 1483667.802			
	9 1483657.80. 0 1483659.23			
	0 1483659.23 1 1483664.27			
	2 1483665.39			
	3 1483645,27			
103.	J 1403043.Z/.	ا/، 3//203	UZ 43/•Z/	OU CENCO

Tabla 77: Datos técnicos de levantamiento.

NIO		Datos tecinico		
N°		Este		
	0 1483565.0096			
	1 1483566.2597			
	2 1483565.2567			
	3 1483566.0158			
	4 1483565.3263			
110	5 1483565.7215	577191.7382	510.0900	"LC"
110	6 1483549.6342	577182.6736	509.4690	"CERCO"
110	7 1483548.8160	577198.9046	507.9970	"CERCO"
110	8 1483549.972	3 577185.1622	508.5590	"TN"
110	9 1483549.0781	577196.3190	508.2280	"TN"
111	0 1483550.1852	577186.6741	507.9130	"TN"
111	1 1483549.4931	577194.9175	507.9100	"TN"
111	2 1483549.9211	577187.8603	508.0910	"OCD"
111	3 1483549.6275	577194.2061	508.1340	"OCD"
111	4 1483549.9760	577191.1906	508.1730	"LC"
	5 1483534.0468			
	6 1483534.7006			
	7 1483533.3093			
	8 1483534.9131			
	9 1483533.0377			
	0 1483535.2633			
	1 1483532.5360			
	2 1483535.4834			
112	3 1483531.8054	577195.2204	506.7200	"CERCO"
	4 1483534.3179			
	5 1483525.9901			
	6 1483517.8947			
112	7 1483518.4223	577175.4216	506.0440	"CERCO"
112	8 1483518.9263	577177.4101	505.5470	"TN"
	9 1483518.2316			
	0 1483517.8124			
	1 1483517.3012			
113	2 1483516.3063	577186.7411	504.0220	"OCD"
	3 1483516.1258			
113	4 1483515.9132	577190.0090	504.4450	"TN"
113	5 1483514.6833	577192.9655	507.2100	"CERCO"
113	6 1483503.6895	577170.0129	504.2520	"CERCO"
113	7 1483503.4506	577173.2052	502.5230	"TN"
113	8 1483502.4596	577175.8342	501.9310	"OCD"
113	9 1483501.6616	577178.4358	502.0460	"LC"
	0 1483500.8102			
114	1 1483500.6221	577182.0332	501.7930	"TN"
114	2 1483499.7009	577184.7980	502.6160	"TN"
4		o por Sustantan		, , , , ,

Tabla 78: Datos técnicos de levantamiento.

N LO	namiento.			
N°	Este	Norte	Cota	Descripción
1120	1483518.2316	577180 2045	501 0760	"TN"
	1483517.8124			
	1483517.8124			
	1483517.3012			
	1483516.1258			
	1483515.9132			
	1483514.6833			
	1483503.6895			
	1483503.4506			
	1483502.4596			
	1483501.6616			
	1483500.8102			
	1483500.6221			
	1483499.7009			
	1483497.7386			
	1483490.9030			
	1483489.4189			
	1483488.0454			
	1483486.8197			
	1483484.9644			
	1483483.3608			
	1483482.8065			
	1483481.1712			
1152	1483478.4514	577175.6181	503.6450	"CERCO"
1153	1483482.2730	577165.5163	499.2260	"OCD"
1154	1483478.8199	577162.7767	499.0430	"LC"
1155	1483475.0218	577161.9619	498.7780	"OCD"
1156	1483463.2532	577180.8224	497.5000	"OCD"
1157	1483465.8899	577183.1012	497.3810	"OCD"
	1483464.8599			
	1483454.8230			
	1483455.7861			
	1483454.0965			
1162	1483466.8153	577168.8852	497.6260	
1163	1483472.5142	577147.5491	499.3950	
1164	1483468.2490	577166.1456	498.1440	"TN"
	1483472.6795			
1166	1483468.8172	577163.2559	498.3260	
1167	1483472.3148	577153.3117	497.8160	
1168	1483471.8805	577154.5597	497.8980	
	1483469.4829			
1170	1483470.5300	577158.0588	498.1360	"LC"

Tabla 79: Tabla de simbología.

ABREV.	DESCRIPCIÓN
CER	CERCO
BM	BENCH MARK
OC	ORILLA DEL CAMINO
ECA	ESQUINA DE CASA
LC	LÍNEA CENTRAL
BCA	BORDILLO CUNETA
IMVERALC	IMVER ALCANTARILLA
OCI	ORILLA DE CAMINO IZQUIERDA
PCE	POSTE DE CONCRETO ELÉCTRICO
PCT	POSTE DE CONCRETO TELEFÓNICO
TN	TERRENO NATURAL
TUAP	TUBO DE AGUA POTABLE
PCUNETA	PRINCIPIO DE CUNETA

Tabla 80: Formato para conteo de tránsito vehicular por 12 horas diurnas

	<u> </u>	i i omia	o para	oonto	<u> </u>		reos v		_		OS I	DE T	rafi	CO					
		Departamento: Estelí -Condega Estación de conteo: 0+000 Aforador: Jonny Javier y Víctor Oniel										niel	Hoi	ra: 06:00 an	n - 06:00 pm				
		Tramo:	Emp. Sa	nta Ros	a- Comi	unidad la	Laguna	Sentido:	N-S/S-	N	Fecha	a de Co	onteo: Lu	nes 07 a	l Domin	go 13 Mes/Año: Noviembre-2022			
но	RA			V	eh. Pasa	ajeros					Veh	nículos	de Carga	l		Ed	quipo F	Pesado	
	Mo		Autos	Jeep	Cam.	McBus	MnBus	Bus	C2 Liv.	C2	СЗ	C4	C2-R2	C2-R3	T3-S2	V.A.	v.c.	Otros	Total
				_		<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.									
06:00	07:00																		
07:00	08:00																		
08:00	09:00																		
09:00	10:00																		
10:00	11:00																		
11:00	12:00																		
12:00	13:00																		
13:00	14:00																		
14:00	15:00																		
15:00	16:00																		
16:00	17:00																		
17:00	18:00																		
TOT	ΓAL																		

Fuente: Anuario de tráfico 2020.

Tabla 81: Conteo de Tránsito Vehicular Diurno semanal (lunes 07/11/2022).

		Depart	tamento	o: Este	lí -Conc	lega E	stación d	e con	teo:	0+000		Aforado	or: Jonny	/ Javier y	Víctor	Oniel		Hora: 06:0	0 am - 06:00 pm
		Tramo:	Emp. Sa	anta Ro	osa- Co	munidad	l la Lagun	na Se	entido:	N-S/S	S-N	Fecha	de Conte	o: Lunes	07 al E	Oomin	go 13	Mes/Año:	Noviembre-2022
но	RΔ			Vel	h. Pasa	jeros					Ve	hículos	de Carga			E	quipo	Pesado	
						McBus	MnBus	Bus	C2 Liv.	C2	С3	C4	C2-R2	C2-R3	T3- S2		,	a.	Total
06:00 07:00		Motos	Autos	Jeep	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.					52	V.A.	V.C.	Otros	
06:00	07:00	10	3	0	15	0	1	0	2	2	2	0	0	0	0	0	0	0	35
07:00	08:00	8	0	1	9	1	0	1	4	3	1	0	0	0	0	0	0	0	28
08:00	09:00	6	2	0	4	0	0	0	2	1	1	0	0	0	0	0	0	0	16
09:00	10:00	7	5	1	3	0	0	0	1	4	2	0	0	0	0	0	0	0	23
10:00	11:00	5	3	0	6	0	1	1	3	2	0	0	0	0	0	0	0	0	21
11:00	12:00	12	0	5	5	2	1	0	0	1	1	0	0	0	0	0	0	0	27
12:00	13:00	13	0	1	8	0	0	0	2	2	2	0	0	0	0	0	0	0	28
13:00	14:00	8	4	4	10	0	1	1	1	2	1	0	0	0	0	0	0	0	32
14:00	15:00	7	2	3	4	1	0	0	3	3	0	0	0	0	0	0	0	0	23
15:00	16:00	9	0	2	5	2	0	0	2	1	2	0	0	0	0	0	0	0	23
16:00	17:00	11	1	4	6	0	0	1	1	1	1	0	0	0	0	0	0	0	26
17:00	18:00	13	0	3	9	3	0	0	2	2	0	0	0	0	0	0	0	0	32
TO		109	20	24	84	9	4	4	23	24	13	0	0	0	0	0	0	0	314

Tabla 82: Composición vehicular del lunes/ ambos sentidos Est: 0+000.

COMPOSICIÓN DEL TRÁFICO PROMEDIO DIA LUNES/AMBOS SENTIDOS EST: 0+000

LUNES AMBO	S SENTIDOS
TIPO DE VEHÍCULO	VOLUMEN (12 HRS DIURNAS)
Moto	109
Autos	20
Jeep	24
Camionetas PicK UPs	84
Mcbus	9
MB >15 P	4
Bus	4
C2 Liv	23
C2 > 5 ton	24
C3	13
TPDiS	314

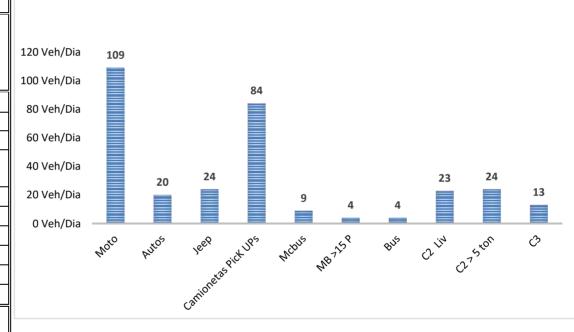
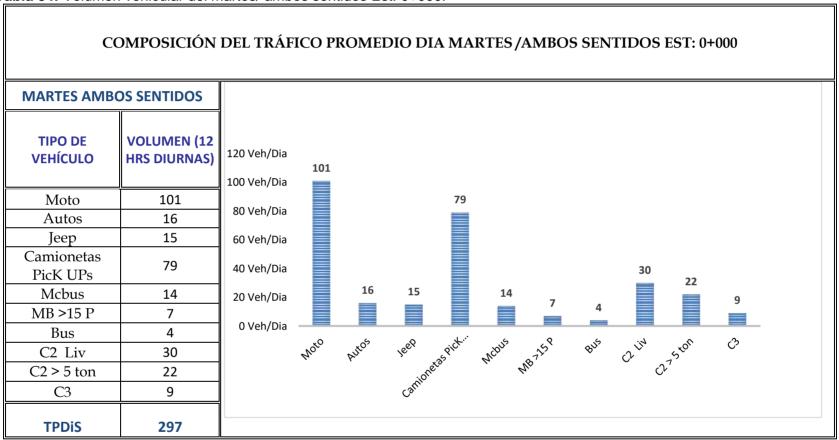
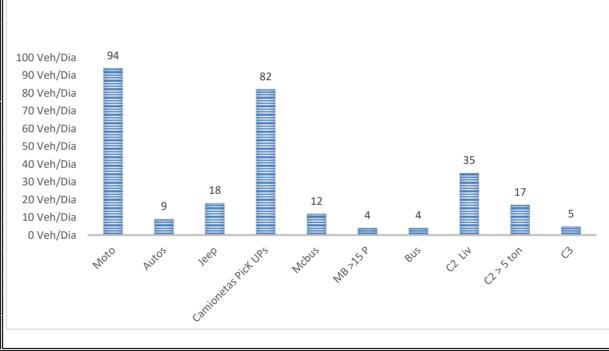


Tabla 83: Conteo de tránsito vehicular diurno semanal (martes 08/11/2022).

		Depart	amento	: Est	elí -Cor	ndega	Estación	de co	nteo:	0+0	00	Afora	dor: Jo	nny Javi	ery V	/íctor (Oniel	Hora: 06:	:00 am - 06:00 pm
		Tramo:	Emp. S	anta R	osa- Co	munida	d la Lagu	na S	entido	: N-S	/S-N	Fech	a de Con	nteo: Ma	artes ()8 al D	oming	go 13 Mes	:/Año: Noviembre-2022
но	ORA Veh. F				n. Pasa	jeros					Veh	ículos	de Carga	9		E	quipo	Pesado	
						McBus	MnBus	Bus	C2 Liv.	C2	СЗ	C4	C2-R2	C2-R3	T3-				Total
		Motos	Autos	Jeep	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.					S2	V.A.	V.C.	Otros	
06:00	07:00	7	2	3	8	2	1	0	1	2	1	0	0	0	0	0	0	0	27
07:00	08:00	6	1	1	4	1	1	1	3	1	1	0	0	0	0	0	0	0	20
08:00	09:00	7	1	2	1	0	0	0	1	3	1	0	0	0	0	0	0	0	16
09:00	10:00	4	1	1	9	3	0	0	6	2	0	0	0	0	0	0	0	0	26
10:00	11:00	8	0	2	7	1	0	1	3	2	0	0	0	0	0	0	0	0	24
11:00	12:00	9	1	0	4	0	0	0	1	3	2	0	0	0	0	0	0	0	20
12:00	13:00	11	1	4	8	2	1	0	2	2	0	0	0	0	0	0	0	0	31
13:00	14:00	5	3	0	4	0	1	1	2	2	0	0	0	0	0	0	0	0	18
14:00	15:00	8	0	1	4	0	0	0	1	3	2	0	0	0	0	0	0	0	19
15:00	16:00	15	4	1	8	1	0	0	4	2	0	0	0	0	0	0	0	0	35
16:00	17:00	12	2	0	12	1	1	1	2	0	2	0	0	0	0	0	0	0	33
17:00	18:00	9	0	0	10	3	2	0	4	0	0	0	0	0	0	0	0	0	28
то	TAL	101	16	15	79	14	7	4	30	22	9	0	0	0	0	0	0	0	297

Tabla 84: Volumen vehicular del martes/ ambos sentidos Est: 0+000.




Tabla 85: Conteo de tránsito vehicular diurno semanal (miércoles 09/11/2022).

		De	partam	ento:	Estelí	-Condega	a Estac	ión de	e conte	o: 0+0	00	Aforad	or: Jonn	y Javier y	Vícto	r Onie	l Ho	ora: 06:00 am	ı - 06:00 pm
		Tramo:	Emp. Sa	anta Ro	osa- Co	munidad	l la Lagun	a Se	ntido:	N-S/S	-N Fe	cha de	Conteo:	Miércole	s 09 al	Domir	ngo 13	Mes/Año: I	Noviembre-2022
				Vel	h. Pasa	jeros					Vel	nículos	de Carga			E	quipo	Pesado	
но	RA					McBus	MnBus	Bus	C2 Liv.	C2	C3	C4	C2-R2	C2-R3	T3-	.,,	., .	0:	Total
06:00 07:00 07:00 07:00 08:00	Motos	Autos	Jeep	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.					S2	V.A.	V.C.	Otros		
06:00	07:00	13	1	2	7	1	1	0	1	1	1	0	0	0	0	0	0	0	28
07:00	08:00	5	0	1	2	1	0	1	2	1	1	0	0	0	0	0	0	0	14
08:00	09:00	3	2	1	6	3	0	0	3	3	0	0	0	0	0	0	0	0	21
09:00	10:00	4	0	3	4	0	0	0	1	1	0	0	0	0	0	0	0	0	13
10:00	11:00	8	1	3	6	0	1	1	3	3	0	0	0	0	0	0	0	0	26
11:00	12:00	9	0	1	5	1	0	0	2	0	2	0	0	0	0	0	0	0	20
12:00	13:00	10	1	0	10	1	0	0	3	1	0	0	0	0	0	0	0	0	26
13:00	14:00	13	0	3	9	0	0	1	9	3	0	0	0	0	0	0	0	0	38
14:00	15:00	8	0	0	8	1	0	0	3	2	0	0	0	0	0	0	0	0	22
15:00	16:00	6	0	2	6	0	0	0	3	0	0	0	0	0	0	0	0	0	17
16:00	17:00	7	3	1	11	0	1	1	2	1	0	0	0	0	0	0	0	0	27
17:00	18:00	8	1	1	8	4	1	0	3	1	1	0	0	0	0	0	0	0	28
TO	ΓAL	94	9	18	82	12	4	4	35	17	5	0	0	0	0	0	0	0	280

Tabla 86: Volumen vehicular del miércoles/ ambos sentidos Est: 0+000.

COMPOSICIÓN DEL TRÁFICO PROMEDIO DIA MIÉRCOLES/AMBOS SENTIDOS EST: 0+000

MIÉRCOLES SENTII	
TIPO DE VEHÍCULO	VOLUMEN (12 HRS DIURNAS)
Moto	94
Autos	9
Jeep	18
Camionetas PicK UPs	82
Mcbus	12
MB >15 P	4
Bus	4
C2 Liv	35
C2 > 5 ton	17
C3	5
TPDiS	280

Tabla 87: Conteo de tránsito vehicular diurno semanal (jueves 10/112022).

		Departa	amento	: Esteli	í -Cond	lega E	stación d	le con	teo: 0	+000	Afo	rador:	Jonny	Javier y	Victo	or Oni	el H	lora: 06:00	am - 06:00 pm
			Tramo:	Emp.	Santa F	Rosa- Coi	munidad	la Lag	•			: N-S/ iembr	'S-N e-2022	Fecha	de Coi	nteo:	Jueve	s 10 al Dom	ingo 13
но	RA			Vel	n. Pasa	jeros					Veh	ículos	de Carg	a		E	quipo	Pesado	Total
		Motos	A		Com	McBus	MnBus	Bus	C2 Liv.	C2	С3	C4	C2-R2	C2-R3	T3- S2	\ A	V 6	Otros	
	06:00 07:00		Autos	зеер	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.					32	V.A.	V.C.	Otros	
06:00	07:00	11	0	1	2	1	1	0	1	2	1	0	0	0	0	0	0	0	20
07:00	08:00	10	2	0	5	1	0	1	2	3	0	0	0	0	0	0	0	0	24
08:00	09:00	6	3	4	6	0	0	0	1	3	2	0	0	0	0	0	0	0	25
09:00	10:00	8	2	1	2	1	0	0	3	3	0	0	0	0	0	0	0	0	20
10:00	11:00	9	2	3	7	2	0	1	3	2	0	0	0	0	0	0	0	0	29
11:00	12:00	11	1	3	4	0	2	0	2	1	1	0	0	0	0	0	0	0	25
12:00	13:00	8	2	0	10	1	0	0	2	2	0	0	0	0	0	0	0	0	25
13:00	14:00	9	4	2	1	0	0	1	3	1	1	0	0	0	0	0	0	0	22
14:00	15:00	4	1	3	3	0	1	0	2	3	0	0	0	0	0	0	0	0	17
15:00	16:00	8	0	2	9	1	0	0	4	2	0	0	0	0	0	0	0	0	26
16:00	17:00	11	0	2	7	0	1	1	1	1	1	0	0	0	0	0	0	0	25
17:00	18:00	13	0	1	12	1	1	0	1	2	0	0	0	0	0	0	0	0	31
TO	ΓAL	108	17	22	8	6	4	25	25	6	0	0	0	0	0	0	0	289	

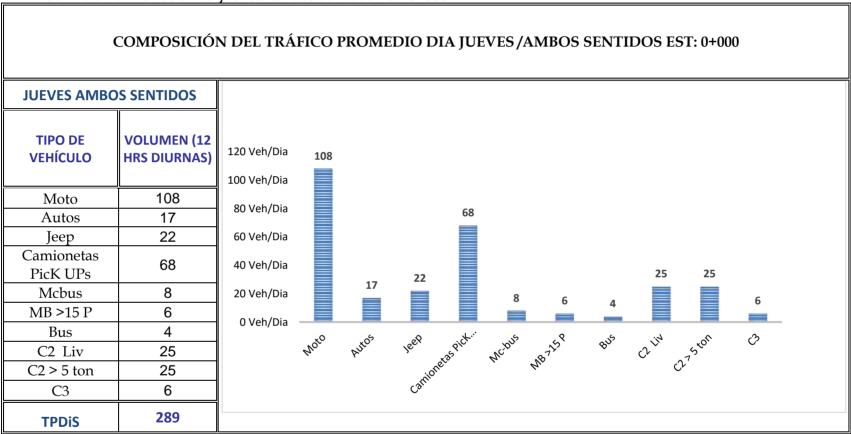


Tabla 89: Conteo de tránsito vehicular diurno semanal (viernes 11/11/2022).

		Departa	mento:	Estelí	-Conde	ga	Estación	de coı	nteo:0-	+000	Af	orador:	Jonny	lavier y	Victor	Oniel		Hora: 06:00) am - 06:00 pm
		Tramo: 2022	Emp. Sa	ınta Ro	sa- Co	munidad	la Laguna	a Se	ntido:	N-S/S	5-N	Fecha	de Cont	eo: Vier	nes 11	al Doi	mingo	13 Mes/	Año: Noviembre-
но	RA			Vel	n. Pasaj	eros					Vel	nículos	de Carga			E	quipo	Pesado	Total
						McBus	MnBus	Bus	C2 Liv.	C2	СЗ	C4	C2-R2	C2-R3	T3- S2		.,,	0.	
		Motos	Autos	Jeep	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.						V.A.	V.C.	Otros	
06:00	07:00	11	2	2	5	1	1	0	3	1	2	0	0	0	0	0	0	0	28
07:00	08:00	9	0	2	6	1	0	1	2	2	1	0	0	0	0	0	0	0	24
08:00	09:00	8	3	1	8	1	0	0	3	1	1	0	0	0	0	0	0	0	26
09:00	10:00	9	1	0	8	2	0	0	4	0	2	0	0	0	0	0	0	0	26
10:00	11:00	7	0	2	5	0	1	1	1	2	0	0	0	0	0	0	0	0	19
11:00	12:00	10	0	4	4	1	1	0	5	0	0	0	0	0	0	0	0	0	25
12:00	13:00	9	1	1	11	1	0	0	2	2	2	0	0	0	0	0	0	0	29
13:00	14:00	8	1	0	7	0	0	1	3	0	0	0	0	0	0	0	0	0	20
14:00	15:00	9	3	0	5	1	0	0	2	1	1	0	0	0	0	0	0	0	22
15:00	16:00	6	0	1	3	0	0	0	1	3	1	0	0	0	0	0	0	0	15
16:00	17:00	9	2	2	7	0	1	1	2	2	0	0	0	0	0	0	0	0	26
17:00	18:00	7	0	2	16	1	1	0	1	3	1	0	0	0	0	0	0	0	32
TO	ΓAL	102	13	17	85	9	5	4	29	17	11	0	0	0	0	0	0	0	292

Tabla 90: Volumen vehicular del viernes/ ambos sentidos Est: 0+000.

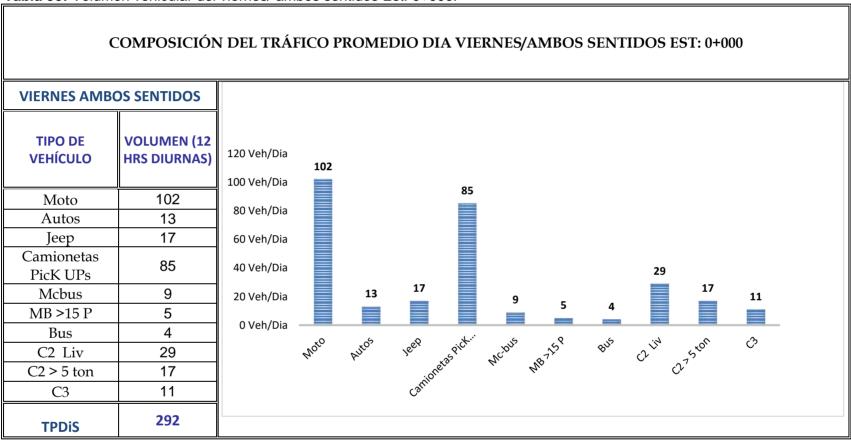


Tabla 91: Conteo de tránsito vehicular diurno semanal (sábado 12/11/2022).

		Departa	mento:	Estelí -(Condeg	a Es	tación de	conte	eo: 0+0	00	Afo	rador:	Jonny Ja	avier y \	/íctor On	iel	Н	ora: 06:00 a	m - 06:00 pm
		Tramo:	Emp. Sar	nta Ros	a- Com	unidad la	Laguna	Sent	ido: N	I-S/S-N	l Fe	cha de	Conteo:	sábado :	12 al Dor	ningo	13	Mes/Año: N	loviembre-2022
				Vel	h. Pasaj	eros					Ve	hículos	de Carg	a		Е	quipo	Pesado	
но	RA				6	McBus	MnBus	Bus	C2 Liv.	C2	СЗ	C4	C2-R2	C2-R3	T3-S2		v.c.	01	Total
		Motos	Autos	Jeep	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.						V.A.	0 0	Otros	
06:00	07:00	7	2	1	3	0	0	0	0	1	2	0	0	0	0	0	0	0	16
07:00	08:00	5	0	2	7	1	0	1	1	1	1	0	0	0	0	0	0	0	19
08:00	09:00	4	2	0	3	0	0	0	5	3	0	0	0	0	0	0	0	0	17
09:00	10:00	2	1	1	5	0	0	0	0	2	1	0	0	0	0	0	0	0	12
10:00	11:00	6	0	0	2	0	1	1	1	2	1	0	0	0	0	0	0	0	14
11:00	12:00	10	0	2	9	1	2	0	1	1	0	0	0	0	0	0	0	0	26
12:00	13:00	8	0	2	11	0	2	0	2	1	1	0	0	0	0	0	0	0	27
13:00	14:00	7	1	0	3	1	1	1	3	2	2	0	0	0	0	0	0	0	21
14:00	15:00	12	0	0	8	0	1	0	2	0	0	0	0	0	0	0	0	0	23
15:00	16:00	8	1	1	12	2	0	0	4	1	2	0	0	0	0	0	0	0	31
16:00	17:00	11	2	1	8	0	0	1	0	1	1	0	0	0	0	0	0	0	25
17:00	18:00	10	0	2	10	1	0	0	2	0	0	0	0	0	0	0	0	0	25
	ΓAL	90	9	12	81	6	7	4	21	15	11	0	0	0	0	0	0	0	256

Tabla 92: Volumen vehicular del sábado/ ambos sentidos Est: 0+000.

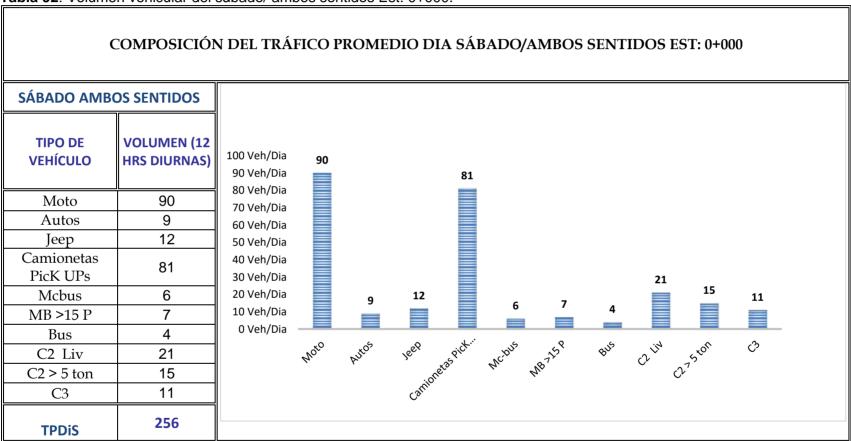


Tabla 93: Conteo de tránsito vehicular diurno semanal (domingo 13/11/2022).

		De	partam	ento: E	stelí -C	ondega	Estacio	ón de (conteo:	0+000		Aforado	r: Jonny	Javier y	Víctor	Oniel	Н	ora: 06:00 ar	m - 06:00 pm
		Tramo:	Emp. Sa	nta Ro	sa- Cor	nunidad	la Laguna	Sen	tido:	N-S/S-I	N Fech	a de Co	nteo: Do	mingo 13	al Dor	ningo	13 M	es/Año: Novi	embre-2022
				Vel	h. Pasa	jeros					Ve	hículos	de Carga			E	quipo	Pesado	Total
НО	KA					McBus	MnBus	Bus	C2 Liv.	C2	С3	C4	C2-R2	C2-R3	T3-				
		Motos	Autos	Jeep	Cam.	<15 s.	15-30 s.	30+ s.	2-5 t.	5+ t.					S2	V.A.	V.C.	Otros	
06:00	07:00	5	1	2	7	0	0	0	1	2	2	0	0	0	0	0	0	0	20
07:00	08:00	6	0	0	5	1	0	0	0	0	1	0	0	0	0	0	0	0	13
08:00	09:00	4	3	1	4	1	1	0	0	1	0	0	0	0	0	0	0	0	15
09:00	10:00	5	0	0	5	0	0	0	1	3	1	0	0	0	0	0	0	0	15
10:00	11:00	7	1	1	7	0	2	0	2	2	0	0	0	0	0	0	0	0	22
11:00	12:00	3	0	0	10	0	0	0	2	0	1	0	0	0	0	0	0	0	16
12:00	13:00	7	0	0	5	0	1	0	0	2	0	0	0	0	0	0	0	0	15
13:00	14:00	3	0	2	8	0	0	0	0	0	0	0	0	0	0	0	0	0	13
14:00	15:00	8	0	1	11	0	0	0	0	0	1	0	0	0	0	0	0	0	21
15:00	16:00	6	0	0	6	0	0	0	1	0	0	0	0	0	0	0	0	0	13
16:00	17:00	5	0	0	8	0	0	0	2	1	0	0	0	0	0	0	0	0	16
17:00	18:00	16	1	0	6	0	0	0	2	0	0	0	0	0	0	0	0	0	25
TO	ΓAL	75	6	7	82	2	4	0	11	11	6	0	0	0	0	0	0	0	204

Tabla 94: Volumen vehicular del domingo / ambos sentidos Est: 0+000.

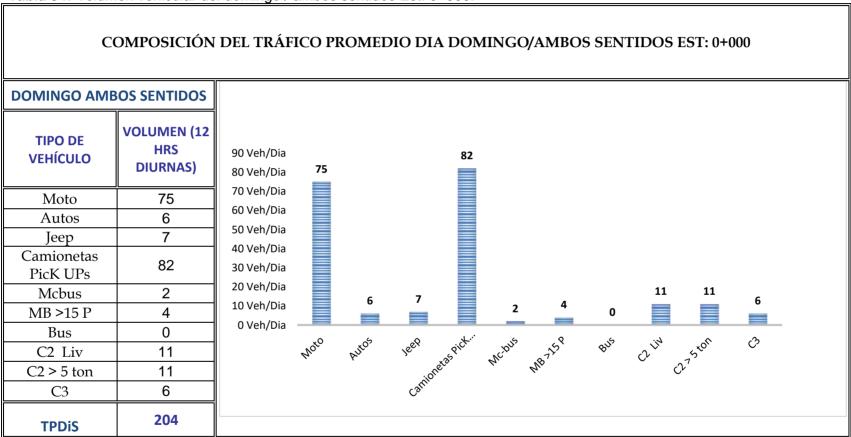



Tabla 95: Factores de ajustes para ECD-114 bajo la dependencia de la EMC-107 Sébaco-Emp. San Isidro.

MINISTERIO DE TRANSPORTE E INFRAESTRUCTURA DIVISION GENERAL DE PLANIFICACION DIVISION DE ADMINISTRACION VIAL OFICINA DE DIAGNOSTICO Y EVALUACION DE PAVIMENTOS

ESTACION DE MAYOR COBERTURA 107 SEBACO - EMPALME SAN ISIDRO FACTORES - 2020

Factores del primer cuatrimestre del año Enero - Abril

Descripción	Moto	Carro	Jeep	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	CZ	C3	Tx- 5x<=4	Tx- Sx=>5	Cx- Rx=<4	Cx- Rx=>5	V.A	V.C	Otros
Factor Dia	1,24	1,28	1,17	1,25	1,18	1,20	1,18	1,30	1,51	1,39	1,00	1,53	1,00	1,00	1,00	1,00	1,06
Factor Semana	1,00	1,02	1,00	0,96	0,94	1,16	1,03	0,85	0,89	0,92	1,00	0,91	1,00	1,00	0,77	1,00	0,86
Factor Fin de Semana	0,99	0,96	0,99	1,13	1,17	0,75	0,94	1,75	1,48	1,26	1,00	1,34	1,00	1,00	4,21	1,00	1,71
Factor Expansión a TPDA	1,16	0,93	1,06	1,03	0,92	1,50	0,84	1,08	0,91	0,94	1,00	0,91	1,00	1,00	1,10	1,00	1,06

Factores del segundo cuatrimestre del año Mayo - Agosto

Descripción	Moto	Carro	Jeep	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	cz	C3	Tx- Sxc=4	Tx- Sx=>5	Cx- Rx=<4	Cx- Rx=>5	V.A	v.c	Otros
Factor Dia	1,22	1,21	1,25	1,21	1,19	1,26	1,15	1,30	1,44	1,43	1,00	1,52	1,00	1,00	1,00	1,00	1,17
Factor Semana	1,01	0,98	0,97	0,93	0,87	0,93	0,95	0,89	0,91	0,89	1,00	0,88	1,00	1,00	0,95	1,29	0,94
Factor Fin de Semana	0,97	1,06	1,08	1,22	1,64	1,21	1,16	1,46	1,31	1,44	1,00	1,48	1,00	1,00	1,14	0,64	1,18
Factor Expansión a TPDA	0,91	1,19	1,01	1,06	1,03	0,79	1,29	1,00	1,08	0,99	1,00	1,05	1,00	1,00	1,62	0,78	1,29

Factores del tercer cuatrimestre del año septiembre - Diciembre

Descripción	Moto	Carro	Jeep	Camioneta	Micro Bus	Mini Bus	Bus	Liv. 2-5 t.	CZ	C3	Tx- Sx<=4	Tx- 5x=>5	Cx- Rx=c4	Cx- Rx=>5	V.A	v.c	Otros
Factor Dia	1,21	1,25	1,22	1,23	1,25	1,25	1,17	1,31	1,47	1,40	1,00	1,51	1,00	1,00	1,17	1,00	1,33
Factor Semana	0,99	1,02	1,01	0,94	0,94	0,92	0,97	0,88	0,88	0,88	1,00	0,91	1,00	1,00	0,90	1,00	0,93
Factor Fin de Semana	1,02	0,96	0,99	1,19	1,20	1,27	1,07	1,54	1,55	1,51	1,00	1,35	1,00	1,00	1,35	1,00	1,23
Factor Expansión a TPDA	0,96	0,92	0,94	0,93	1,07	0,94	0,97	0,93	1,03	1,08	1,00	1,06	1,00	1,00	0,68	1,40	0,78

Fuente: Revista Anuario de Aforo 2020, Ministerio de Transporte e Infraestructura (MTI) Pág. 322.

Nota: se utilizaron los factores de ajustes del tercer cuatrimestre del año, Factor Dia (FD), Factor Expansion (FE),

Tabla 96: Indicadores macroeconómicos de PIB, POB.

Conceptos-Concept	2008	2009	2010	2011	2012	2013	
PIB (a precios constantes)- Real GDP	129161	124908	130416	138654	147661	154937	
PIB (córdobas corrientes) - Nominal GDP	164602	168791	187053	219182	247994	271530	
PIB (en millones US\$) - GDP (million of US\$)	8497	8299	8759	9774	10533	10983	
Población (miles de habitantes) ^{10/-} Population (thousands) ^{10/}	5669	5742	5816	5997	6071	6134	
Base monetaria - Monetary base	10370	12426	14550	18278	19174	20467	
Depósitos totales ^{11/-} Total deposits ^{11/}	48776	56489	70400	82044	86550	98592	
de crédito bruta ^{12/} - Gross credit portfolio ^{12/}	47199	44242	45289	53852	69457	84282	
Balance del SPNF a/d - Balance of NFPS (before grants)	-4875	-6577	-4122	-3457	-4145	-5803	
Balance del SPNF d/d - Balance of NFPS (after grants)	-1028	-2196	-1102	354	-627	-3057	
Conceptos-Concept	2014	2015	2016	2017	2018	2019	2020
PIB (a precios constantes)- Real GDP	162351	170132	177895	186134	179873	173074	169977
PIB (córdobas corrientes) - Nominal GDP	308403	347707	380261	414279	410988	417223	432263
PIB (en millones US\$) - GDP (million of US\$)	11880	12757	13286	13786	13025	12595	12587
n (miles de habitantes) ^{10/-} Population (thousands) ^{10/}	6198	6263	6328	6394	6460	6528	6596
Base monetaria - Monetary base	23503	29661	29138	33114	30133	34478	43668
Depósitos totales 11/ - Total deposits11/	117346	133636	145144	160719	127434	128855	149636
de crédito bruta ^{12/} - Gross credit portfolio ^{12/}	100712	123839	146722	167150	152240	132386	127645
Balance del SPNF a/d - Balan f NFPS (before grants)	-7957	-9905	-11823	-12810	-18893	-9182	-13260
Balance del SPNF d/d - Balan IFPS (after grants)	-4450	-5450	-7500	-8488	-16110	-6567	-10960

Fuente: Informe Anual del BCN -2020. (Descarga de archivo de Excel digital)

Registros Periodo de años 2008-2020.

Tabla 97: Tipología y descripción vehicular de conteos de tránsito.

CLASIF. VEHICULAR	TIPOS DE VEHICULOS	ESQUEMA VEHICULAR	DESCRIPCIÓN DE LA TIPOLOGÍA VEHICULAR
	MOTOCICLETAS		Incluye todos los tipos de Motocicleta tales como, Minimotos, Cuadraciclos, Moto Taxis, Etc. Este último fue modificado para que pudiera ser adaptado para e traslado de personas, se encuentran más en zonas Departamentales y Zonas Urbanas. Moviliza a 3 personas incluyendo al conductor.
	AUTOMOVILES	ゆるり	Se consideran todos los tipos de automóviles de cuatro y dos puertas, entre los que podemos mencionar, vehículos cope y station wagon.
VEHICULOS	JEEP		Se consideran todos los tipos de vehículos conocidos como 4*4. En diferente tipos de marcas, tales como TOYOTA, LAND ROVER, JEEP, ETC.
DE PASAJEROS	CAMIONETA		Son todos aquellos tipos de vehículos con tinas en la parte trasera, incluyendo las que transportan pasajeros y aquellas que por su diseño están diseñadas a trabajos de carga.
PASADEROS	MICROBUS	70.0 30.0 40.0	Se consideran todos aquellos microbuses, que su capacidad es menor o igual a 14 pasajeros sentados.
	MINIBUS		Son todos aquellos con una capacidad de 15 a 30 pasajeros sentados.
	BUS	S Indiana	Se consideran todos los tipos de buses, para el transporte de pasejeros con una capacidad mayor de 30 personas sentadas.
	LIVIANO DE CARGA		Se consideran todos aquellos vehículos, cuyo peso máximo es de 4 toneladas menores a ellas.
	CAMIÓN DE CARGA C2 - C3		Son todos aquellos camiones tipos C2 (2 Ejes) y C3 (3 Ejes), con un pesi mayor de 5 toneladas. Tambien se incluyen las fugonetas de carga liviana.
VEHICULOS	CAMIÓN DE CARGA PESADA Tx-Sx<≃4		Camiones de Carga Pesada, son vehículos diseñados para el transporte di mercancía liviana y pesada y son del tipo Tx-Sx<=4.
CARGA	Tx-Sx>=5	The same of the	Este tipo de camiones son considerados combinaciones Tractor Camión y semi Remolque, que sea igual o mayor que 5 ejes.
	Cx-Rx<≃4		Camión Combinado, son combinaciones camión remolque que sea menor o igual a 4 ejes y están clasificados como Cx-Rx<=4
	Cx-Ro>=5		Son combinaciones iguales que las anteriores pero iguales o mayore cantidades a 5 ejes.
EQUIPO	VEHICULOS AGRÍCOLAS	0	Son vehículos provistos con llantas especiales de hule, de gran tamaño. Mucho de estos vehículos poseen arados u otros tipos de equipos, con los cuale realizar las actividades agrícolas. Existen de diferentes tipos (Tractores Arados - Cosechadoras)
PESADO	VEHICULOS DE CONSTRUCCIÓN	000	Generalmente estos tipos de vehículos se utilizan en la construcción de obra civiles. Pueden ser de diferentes tipos, Motoniveladoras, retroexcavadoras Recuperador de Caminos/Mezclador, Pavimentadora de Asfalto, Tractor d Cadenas, Cargador de Ruedas y Compactadoras.
OTROS	REMOLQUES Y/O TRAILERS	0000	Se incluye remolques o trailers pequeños halados por cualquier clase di vehículo automotor, tambien se incluyen los halados por tracción anima (Semovientes).

Fuente: Anuario de aforos de tráfico. MTI, Año 2020, pag. 36 pdf.

 XL

Tabla 98: Listado histórico TPDA ECD-114 Shell Palacagüina- Emp. Yalagüina. REPUBLICA DE NICARAGUA MINISTERIO DE TRANSPORTE E INFRAESTRUCTURA MINISTERIO DE TRANSPORTE E INFRAESTRUCTURA mti **DIVISION GENERAL DE PLANIFICACION** DIVISION DE ADMINISTRACION VIAL OFICINA DE DIAGNOSTICO, EVALUACION DE PAVIMENTOS Y PUENTES TRAFICO PROMEDIO DIARIO ANUAL HISTORICO POR TIPO DE VEHICULO DIVISION GENERAL DE PLANIFICACION DIVISION DE ADMINISTRACIÓN VIAL AÑO 2020 OFICINA DE DIAGNÓSTICO, EVALUACIÓN DE PAVIMENTOS Y PUENTES CODIGO TIPO NOMBRE DEL TRAMO NIC ANUARIO DE AFOROS DE TRAFICO ANO 2020 Shell Palacagüina - Emp. NIC-1 RZ-KT Cx-Rx Cx-Rx Jeep Cmfa. <15 V.C Otros TPDA 15-30 L 2-5 Ton ># 5e 3,462 3.089 1.79 3.228 1.847 2.189 2.147 :3 1,630 1.488 . 1 3,462 LIV. Pasaj. Pesado 73% 4% 22%

Fuente: Anuario de aforos de tráfico. MTI, Año 2020. Pág. 103.

Tabla 99: Crecimiento económico de Nicaragua año-2020.

eptos - Concepts	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Actividad económica 1/ y empleo 2/ · Economic activity/1 and employment/2											
ecios constantes (tasas de crecimiento) - Real GDP growth (%)	4.4	6.3	6.5	4.9	4.8	4.8	4.6	4.6	(3.4)	(3.8)	
cápita (en US\$) - GDP per cápita (US\$)	1,506.1	1,630.0	1,734.9	1,790.4	1,916.8	2,036.9	2,099.6	2,156.1	2,016.2	1,929.5	1,9
cápita (tasas de crecimiento) - GDP per cápita growth (%)	4.2	8.2	6.4	3.2	7.1	6.3	3.1	2.7	(6.5)	(4.3)	
desempleo abierto - Unemployment rate (%)	7.9	5.9	5.9	5.7	6.6	5.9	4.5	3.7	5.4	5.6	
aje de ocupados con subempleo - Underemployment as a percent of employed persons (%)	50.5	51.8	51.0	50.1	49.9	50.2	44.4	42.9	45.6	47.5	
y tipo de cambio - Prices and exchange rate											
anual acumulada nacional (IPC año base=2006) - National annual inflation (CPI 2006=100)	9.2	8.0	6.6	5.7	6.5	3.1	3.1	5.7	3.9	6.1	
anual acumulada (Managua) ^{3/-} Managua annual inflation ^{3/}	9.1	8.6	7.1	5.4	6.5	2.8	3.1	5.8	3.3	6.5	
ción anual (%) ^{/4/5} - Annual devaluation (%) ^{/4/5}	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.7	
cambio oficial promedio (C $$x$ US $$$) - Average exchange rate (C $$x$ US $$$)	21.4	22.4	23.5	24.7	26.0	27.3	28.6	30.1	31.6	33.1	
cambio oficial a fin de período (C\$ x US\$) - Exchange rate, end of period (C\$ x US\$)	21.9	23.0	24.1	25.3	26.6	27.9	29.3	30.8	32.3	33.8	
monetario (tasas de crecimiento) - Monetary sector (percentage growth)											
netaria - Monetary base	17.1	25.6	4.9	6.7	14.8	26.2	(1.8)	13.6	(9.0)	14.4	
se monetaria (número de veces) - Gross international reserves/monetary base (number of times)	2.7	2.4	2.4	2.5	2.6	2.3	2.5	2.6	2.4	2.4	
)s totales - Total deposits	24.4	17.6	5.5	13.9	19.0	13.9	8.6	10.7	(20.7)	1.1	
de crédito bruta - Banks' gross portfolio	2.4	18.9	29.0	21.3	19.5	23.0	18.5	13.9	(8.9)	(13.0)	
ereservas internacionales netas (millones US\$) - Net international reserve balance (million of US\$)	1,631.6	1,710.5	1,718.1	1,840.0	2,153.2	2,401.2	2,387.5	2,716.2	2,038.9	2,208.5	3
ereservas internacionales brutas (millones US\$) - Gross international reserve balance (million of US\$)	1,799.0	1,892.3	1,887.2	1,993.0	2,276.2	2,492.3	2,447.8	2,757.8	2,261.1	2,397.4	3
Público No Financiero (% del PIB) $^{6/}$ - Non-financial public sector - NFPS (as % GDP) $^{6/}$											
antes de donaciones - Balance of Non-Financial Public Sector (before grants)	(2.2)	(1.6)	(1.7)	(2.1)	(2.6)	(2.8)	(3.1)	(3.1)	(4.6)	(2.2)	
después de donaciones - Balance of NFPS (after grants)	(0.6)	0.2	(0.3)	(1.1)	(1.4)	(1.6)	(2.0)	(2.0)	(3.9)	(1.6)	
miento externo - External financing NFPS	2.5	1.9	2.0	2.3	2.5	2.6	2.3	3.2	1.9	3.0	
miento interno ^{7/ -} Internal financing NFPS ^{7/}	(1.9)	(2.0)	(1.7)	(1.1)	(1.1)	(1.0)	(0.3)	(1.2)	2.0	(1.4)	

Fuente: Informe Anual BCN-2020 Pág. 11 pdf.

Nota: promedio de los últimos 10 años corresponde a 3.39%.

Tabla 100: Diagrama de cargas permisibles (vehículos livianos y pasajeros).

TIPO DE VEHÍCULO	PESO POR EJE (TON)	PESO POR EJE (LBS)
AUTOMÓVIL	1/1.	2200/2200
JEEP	1/1.	2200/2200
CAMIONETA	1/2.	2200/4400
MC-15	2/4.	4400/8800
MC-15-30	4/8.	8800/17600
C-2 LIV	4/8.	8800/17600
BUS=C2	5/10.	11000/2200

Fuente: Departamento de Vialidad MTI /Doc. Clasificación Vehicular.

Tabla 101: Diagrama de cargas permisibles (vehículos pesados).

TIPO	ESQUEMAS	PESO MAXIMO AUTORIZADO 1er. Eje 2do. Eje 3er. Eje 4to. Eje 5to. Eje 6to. Eje Peso Máximo								
DE VEHICULOS	DE VEHICULOS	1er. Eje	2do. Eje	3er. Eje	4to, Eje	5to. Eje	6to. Eje	Peso Máximo Total (1) Ton - Me		
C2		4.50	9.00					13.50		
C3		5.00	16	.00				21.00		
12	*O OO		8.00	8.00						
C4	4	5.00	20.00					25.00		
Tx-Sx<4	6 000		6.67	6.66	6.66					
T2-S1 Tx-Sx<4		5.00	9.00	9.00				23.00		
T2-S2		5.00	9.00	16	.00			30.00		
Tx-Sx<4	0 0	5.00	9,00	8.00	8.00			30.00		
T2-S3	1270	5.00	9.00		20.00	y	34.00			
Tx-Sx>5	0 000			6.67	6.66	6.66				
T3-S1	6	5.00	16	.00	9.00			30.00		
Tx-Sx<4	0 00 0		8.00	8.00						
T3-S2	At I	5.00	16	.00	16	.00] [37.00		
Cx-Rx<4	0 00 00		8.00	8.00	8.00	8.00				
T3-S3	AST .	5.00	16	.00		20.00		41.00		
Cx-Rx>5	0 00 000	48 8	8.00	8.00	6.67	6.66	6.66	2000A-CA		
C2-R2	HATI	4.50	9.00	4.0 a	4.0 a			21.50		
Cx-Rx<4	0 0 0	4.50	9.00	6.5 b	6.5 b		90 3	26.50		
C3-R2	-4F	5.00	16	.00	4.0 a	4.0 a		29.00		
Cx-Rx>5	0 00 0 0	5.00	8.00	8.00	6.5 b	6.5 b	90 3	34.00		
C3-R3	H47	5.00	16	.00	4.0 a	5.0 a	5.0 a	35.00		
Cx-Rx>5	0 00 00	5.00	8.0 b	8.0 b	6.5 b	5.0 b	5.0 b	37.50		

Fuente: Departamento de Vialidad MTI /Doc. Clasificación Vehicular.

Tabla 102: Factores equivalentes de cargas, ejes simples Pt= 2.0.

	Carg	a/eje		v .		SN		
	(kip)	(kN)	1	2	3	4	5	6
2.2	2	8.9	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
	4	17.8	0.002	0.003	0.002	0.002	0.002	0.002
4.4	6	26.7	0.009	0.012	0.011	0.010	0.009	0.009
8.8	8	35.6	0.030	0.035	0.036	0.033	0.031	0.029
11	10	44.5	0.075	0.085	0.090	0.085	0.079	0.079
•	12	53.4	0.165	0.177	0.189	0.183	0.174	0.168
	14	62.3	0.325	0.338	0.354	0.350	0.338	0.331
17.6	16	71.2	0.589	0.598	0.613	0.612	0.603	0.596
	18	80.0	1.00	1.00	1.00	1.00	1.00	1.00
	20	89.0	1.61	1.59	1.56	1.55	1.57	1.59
	22	97.9	2.49	2.44	2.35	2.31	2.35	2.41
	24	106.8	3.71	3.62	3.43	3.33	3.40	3.51
	26	115.7	5.36	5.21	4.88	4.68	4.77	4.96
	28	124.6	7.54	7.31	6.78	6.42	6.52	6.83
	30	133.5	10.4	10.0	9.2	8.6	8.7	9.2
	32	142.4	14.0	13.5	12.4	11.5	11.5	12.1
	. 34	151.3	18.5	17.9	16.3	15.0	14.9	15.6
	36	160.0	24.2	23.3	21.2	19.3	19.0	19.9
	38	169.1	31.1	29.9	27.1	24.6	24.0	25.1
	40	178.0	39.6	38.0	34.3	30.9	30.0	31.2
	42	186.9	49.7	47.7	43.0	38.6	37.2	38.5
	44	195.8	61.8	59.3	53.4	47.6	45.7	47.1
	46	204.7	76.1	73.0	65.6	58.3	55.7	57.0
	48	213.6	92.9	89.1	80.0	70.9	67.3	68.6
	50	222.5	113	108	97	86	81	82

Fuente: Extraído de Manual AASHTO-93 Design Requirements. pág. 172 pdf.

Utilizando un espesor asumido SN =5" se interpolaron los factores equivalentes de carga para ejes simples 2.2,4.4,8.8, 11, 17.60, y ejes dobles 36.60 utilizando la tabla para ejes Tándem.

Nota: El valor de 22 kips no se interpola, ya que, existe en la tabla factores equivalente de carga para pavimento articulado.

Tabla 103: Factores equivalentes de cargas, ejes tándem, Pt= 2.0.

	Caro	ja/eje				SN	-	
	(kip)	(kN)	1	2	3	4	5	6
•	2	8.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	4	17.8	0.0003	0.0003	0.0003	0.0002	0.0002	0.0002
•	6	26.7	0.001	0.001	0.001	0.001	0.001	0.001
	8	35.6	0.003	0.003	0.003	0.003	0.003	0.002
	10	44.5	0.007	0.008	0.008	0.007	0.006	0.006
•	12	53.4	0.013	0.016	0.016	0.014	0.013	0.012
•	14	62.3	0.024	0.029	0.029	0.026	0.024	0.023
,	16	71.2	0.041	0.048	0.050	0.046	0.042	0.040
•	18	80.0	0.066	0.077	0.081	0.075	0.069	0.066
	20	89.0	0.103	0.117	0.124	0.117	0.109	0.105
•	22	97.9	0.156	0.171	0.183	0.174	0.164	0.158
•	24	106.8	0.227	0.244	0.260	0.252	0.239	0.231
•	26	115.7	0.322	0.340	0.360	0.353	0.338	0.329
	28	124.6	0.447	0.465	0.487	0.481	0.466	0.455
	30	133.5	0.607	0.623	0.646	0.643	0.627	0.617
	32	142.4	0.810	0.823	0.843	0.842	0.829	0.819
•	34	151.3	1.06	1.07	1.08	1.08	1.08	1.07
	36	160.0	1.38	1.38	1.38	1.38	1.38	1.38
36.30	38	169.1	1.76	1.75	1.73	1.72	1.73	1.74
	40	178.0	2.22	2.19	2.15	2.13	2.16	2.18
•	42	186.9	2.77	2.73	2.64	2.62	2.66	2.70
•	44	195.8	3.42	3.36	3.23	3.18	3.24	3.31
•	46	204.7	4.20	4.11	3.92	3.83	3.91	4.02
•	48	213.6	5.10	4.98	4.72	4.58	4.68	4.83
•	50	222.5	6.15	5.99	5.64	5.44	5.56	5.77
•	52	231.4	7.37	7.16	6.71	6.43	6.56	6.83
	54	240.3	8.77	8.51	7.93	7.55	7.69	8.03
•	56	249.2	10.4	10.1	9.3	8.8	9.0	9.4
Í	58	258.1	12.2	11.8	10.9	10.3	10.4	10.9
	60	267.0	14.3	13.8	12.7	11.9	12.0	12.6
ľ	62	275.9	16.6	16.0	14.7	13.7	13.8	14.5
	64	284.7	19.3	18.6	17.0	15.8	15.8	16.6
ŀ	66	293.6	22.2	21.4	19.6	18.0	18.0	18.9
	68	302.5	25.5	24.6	22.4	20.6	20.5	21.5
-	70	311.4	29.2	28.1	25.6	23.4	23.2	24.3
<u> </u>	72	320.3	33.3	32.0	29.1	26.5	26.2	27.4
ŀ	74	329.2	37.8	36.4	33.0	30.0	29.4	30.8
	76	338.1	42.8	41.2	37.3	33.8	33.1	34.5
-	78	347.0	48.4	46.5	42.0	38.0	37.0	38.6
	80	355.9	54.4	52.3	47.2	42.5	41.3	43.0
-	82	364.8	61.1	58.7	52.9	47.6	46.0	47.8
-	84	373.7	68.4	65.7	59.2			53.0
-			76.3		66.0	53.0	51.2	
-	86	382.6	7.5.5.2	73.3		59.0	56.8	58.6
-	88	391.5	85.0	81.6	73.4	65.5	62.8	64.7
	90	400.4	94.4	90.6	81.5	72.6	69.4	71.3

Fuente: Extraído de Manual AASHTO-93 Design Requirements. pág. 172 pdf

En las **Tablas 104, 105 y 106** se realizaron los cálculos de interpolación obteniendo los factores ESAL para cada peso por eje por cada tipo de vehículo.

Tabla 104: Interpolación lineal para los valores de (2.2, 4.4, 8.8) kips, ejes simples.

Factor	ESAL 2.2 Kips	Factor Facto	r ESAL 4.4 Kips	Factor Factor ESAL 8.8 Kips		
kips	SN:5	kips	SN:5	kips	SN:5	
Carga	FEC	Carga FEC		Carga	FEC	
2	0.0002	4	0.002	4	0.031	
2.2	Х	4.4	Х	4.4	Х	
4	0.002	6	0.009	6	0.079	
X :	0.00038	X:	0.0034	X:	0.0502	
To I						

Fuente: Elaborado por Sustentantes.

Tabla 105: Interpolación lineal (11, 17.60, 22) kips, ejes simples.

		(,			
Factor Factor	or ESAL 11 Kips	Factor Factor	ESAL 17.60Kips	Factor Factor	or ESAL 22 Kips
kips	SN:5	kips	SN:5	kips	SN:5
Carga	FEC	Carga	FEC	Carga	FEC
10	0.079	16	0.603		
11	Х	17.60	Х	22	Existe
12	0.0174	18	1.00	,	
X :	0.1265	X:	0.9206	X :	2.35

Fuente: Elaborado por Sustentantes

Tabla 106: Interpolación lineal (36.30) kips, eje tándem.

Factor	ESAL 36.60 Kips
kips	SN:5
Carga	FEC
36	1.38
36.60	X
38	1.73
X:	1.43

Fuente: Elaborado por Sustentantes.

Tabla 107: Clasificación de suelos AASHTO M-145.

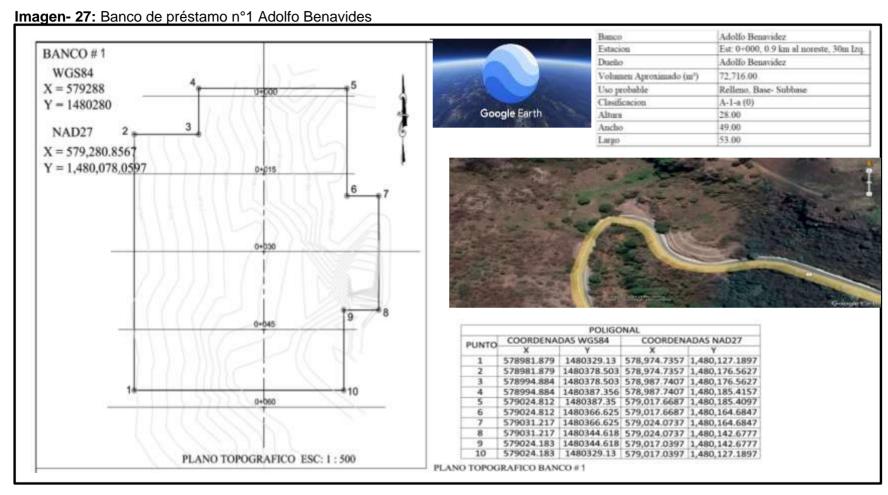
CLASIFICACION GENERAL	Materiales Granulares							Materiales Limo - Arcillosos			
		(igua	al o menor del	35% pasa	el tamiz N	° 200)		(más de	135% que p	asa el tami	z Nº 200
GRUPOS	А	-1			A	-2				ľ	A-7
SUB - GRUPOS	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5
300 - SKOP 03	A-1-a	A-1-0		7.24	7-2-5	7-2-0	7-2-1				A-7-6
% que pasa el Tamiz:											
Nº 10	50 máx.										
Nº 40	30 máx.	50 máx.	51 máx.								
Nº 200	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mí
Características del Material que pasa el tamiz Nº 40											
Límite Líquido			NO	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 mín.	40 máx.	41 má
Índice de Plasticidad	6máx	6 máx.	PLÁSTICO	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mí
Índice de Grupo	0	0	0	0	0	4 máx.	4 máx.	8 máx.	12 máx.	16 máx.	20 má
Tipos de Material	piedra	ntos de grava y ena	Arena fina	Grava	, arenas lin	nosas y arc	cillosas	Suelos	Limosos	Suelos A	Arcilloso
Terreno de Fundación		E	celente a Bue	no				Regular a	Deficiente		

NOTA: El índice de plasticidad de los suelos A-7-5 es igual o menor que su Límite Líquido 30, el de los A-7-6 mayor que su Límite Líquido (fig. 1) se halla indicada la relación ente lo LL e IP de los materiales finos. Dicho de otro modo, el grupo A-7 es subdividido en A-7-5 ó A-7-6 dependiendo del Límite Plástico (L.P.)

Si el LP ≥ 30, la clasificación es A-7-6 Si el LP < 30, la clasificación es A-7-5

Fuente: Libro de diseño de pavimentos, (Norma AASHTO M-145).

 Tabla 108: Requerimientos de granulometría de subbase-base.

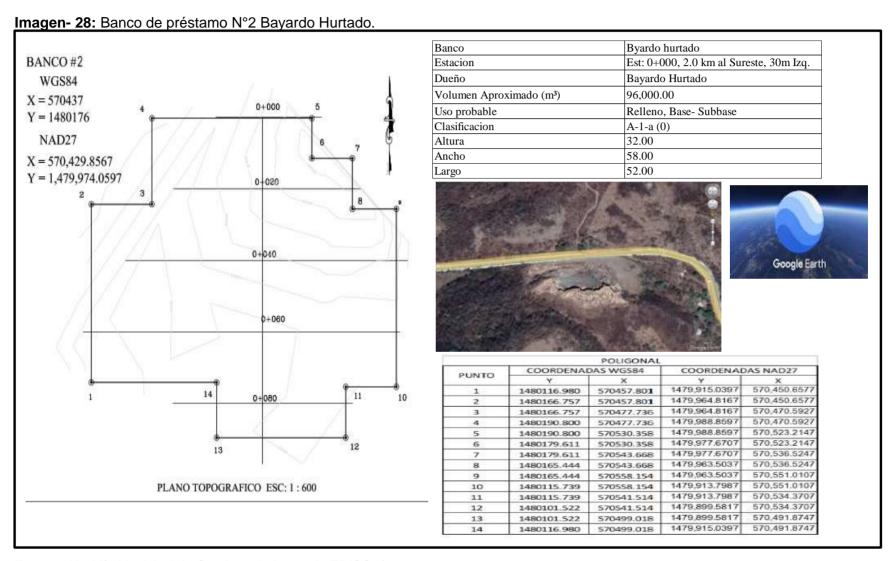

Fuente: Especificaciones NIC-2019 Sección 1003-6. Pag 811.

Nota: Las granulometrías a emplear para subbase y base serán respectivamente las columnas B y E.

Tabla 109: Propiedades fisicomecanica de los bancos de préstamos.

PROYEC	TO: <u>Diseño de pavimento A</u>	rticulado de 1.47	km. Emp. S	anta Rosa	Comunidad La I	aguna.												and the last					-1
Ubicación	Municipio de Condega-Dep	artamento de Esteli																I		ESTUDIO INGENIER			220
Cliente:	Alcaldia Municipal de Conde	rga.															()	Edi	00	HYDENIE	100.001	NOUL I OI	ma
Proyecto	1.47 kilometros de pavimen	to articulado.			Procedencia:	1	Banco	Nº1-1	lanco	Nº2	Fecha	t 13	de Febre	ro 201	8								
	BANCO	OS DE PRESTAMOS	IDENTIFICA	LDOS					% Q	UE PAS	A EL 1	TAMIZ	AST AS	TM D-	422 A	ASHTO T	88		1000000	ETODO	200 A 11	Clasif	-
Banco	Estación (km +m)	Distancia del	Muestra				3"	2 1/2"	2"	11/2"	1"	3/4"	1/2"	3/8"	No. 4	No. 10	0.40 N	o. 200	Limiti	ies de Att	erberg		-
Danco	Estacion (km +m)	camino (m,iz/De)	No	DESCRPCION DEL MATERIAL			75	63	50	37.5	25	19	12.5	5 9.5	4.75	2	0.425	0.075	LL	PL.	IP		IG: Grupo indice
No. 1	Est: 0+00 a 0.9 km al noreste	30 m., Izq.	1			12	0.5	20	31.3	-		16.07	2-3	4.75		lines.	0,075	(%)	(%)	(%)	2707/50		
Banco de Prestamo N°1: Adolfo Benavidez Arena con grava y arcilla congrensibilidad color							100	100	100	94	86	77	71	62	51	32	14	8	NP	NP	NP.	A-1	-a (0)
% Desgaste de los angeles 23%					100		170									***							
% Intemperismo acelerado 7.20%						ANALISIS	GRA	NUON	ETRI	CO DE	GRE	GADO	S GRUE	SOS Y	FINO	S ASTM	D- 422 A	ASHTO	T-88				
Factor de abundamiento 1.40																							
Banco de Prestamo N°2: Bayardo Hurtado			DESCR	PCION DEL MATE	RIAL -	3" 75	2 1/2" 63	2" 50	1 1/2" 37.5	1" 25	3/4" 19	-		No. 4 4.75	The second second	Married Williams	o. 200 0.075	LL (%)	PL (%)	IP (%)	Clasif AAS	ficaci STHC	
No.2	Est: 0+00 a 2 km al noreste	20 m. Izq.	1			O' Marie	100	100	100	98	02	86	74	55	49	20	44	5	17	44	5		- (0
% Desgaste de los angeles 27%		27%	Arena con	limo y grava color ca	te caro	100	100	100	00 30	92	60	71	55	49	20	12	3	17	12	5	A-1	-a (0)	
internacione, es eller	erismo acelerado		8.5%	EL - Limite Fir	guido, PL. Plasticidad	E Prindred	le Plac	ticidad	NP N	n nosee s	alor 10	Indice	de Grano	m m	etros k	m Kinmet	os bor by	nienta	Der De	recha			
Factor de	abundamiento		1.33									, ,,,,,,,,,,		.,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		Resume	n de res	sultado	s de Valor	de Sopo	rte	(CE	R)	en B	ince	os de	Mat	eria	les								
	Diseño de pavimento Ar Municipio de Esteli - Depa Alcaldia Municipal de Conc	rtamento de Esteli	km. Emp. S	anta Rosa	a Comunidad La	Laguna.										3		E	ESTU	JDIOS Y I NIEROS	DISEÑOS	TORES	
	: 1.47 kilometros de pavime						Pr	ocede	ncia:		В	anco l	N°1- Ba	nco N	2		Fecha	: 17 d	e Febr	ero 2011	3		
		BANCOS DE P	RESTAMO	OS IDENT	TIFICADOS		- 653	vio nelta	250 112		- 10	1000	cación	Deni	sidad	Humedi	P.V.S	S P.1	/.s.c	P.V.S	Va	lor de	0E 340
Banco	Estación (ki	n +m)	0.000000	cia del (m.iz/De)	Muestra No	DESCRP	CIO	N DEL	MAT	TERIAL	-		тно		Seca Optima Kg/m³ (%)	Kg/r	30	/m³	Max.	90%	95%		
Nº 1	Est: 0+00 a 0.9 km	n al noreste	777	, Izq.	1	2000				2000	1	Grupo,	indice	Kg/m²		1 1/2/ NE/MP 1			10.	100			
Banco de Prestamo N°1: Adolfo Benavidez						GRAVA be	n grad	lada co	n Lima	s y Aren		A-1	a,(0)	21	184	9.5	128	8 1	372	2325	61	86	9
Nº 2	Est; 0+00 a 2 km	al sureste	20 m	, Izq.	1.												117						
	Banco de Pres	stamo N*2: Bayar	do Hurtado	0		GRAVA po	breme	nte ora	dada c	on Arena		A-1-	a,(0)	19	36	10.8	101	1 1	240	1826	43	55	6
							-							5.00		0.000	73350	100	1.000		367		

Fuente: Alcaldía Municipal de Condega- Laboratorio EDICO.



Fuente: Alcaldía Municipal de Condega- Laboratorio EDICO. /Google Earth 2022.

Tabla 110: Ensayos desgaste de los ángeles, intemperismo acelerado, Limite Liquido banco Nº1 Adolfo Benavides.

Ubicación: Cliente:	Municipio de Condes Alcaldia Municipal de	iento de Esteli							dico	NGENIEROS CONS	SULTORES		
Proyecto:	1.47 kilometros de p	iculado.	Procedencia: Banco N°1 Fecha: 13 de Febrero 201										
		N. C. S.	ENS	AYOS DE LABORATOR	IO-EDIC	0					UU-)		
Banco No. 1	***************************************	NGO DE AGREG	ADOS COLUCTOS V	ENSAYE DESGASTE DE LOS ANGELES									
Banco: Adolfo Benavidez	ANALISI GRANUOMETE FINOS ASTE	M D- 422AASHT		MUESTRA					1				
	Tamices	mm	Banco: N*2	UBICACIÓN				Banco #1, [e la Est; 0+000, 0.9	kilometro a	al noreste		
	3*	75	100	DUEÑO			Adolfo Benavidez						
	2 1/2"	63	100	CLASIFICACIÓN AASI	ITO:		A-1-a(0)						
	2*	50	100	SONDEO			Stock						
	1 1/2"	37.5	94						ALTERNA		-		
	1*	25	86	DETERMICACION No.	2000-00	10057-00100						1	
	3/4*	19	77	PESO DE LA MUESTRA ORI	10.2 (5.500)			ORNO			50		
% QUE PASA EL TAMIZ	1/2"	12.5	71	PESO DEL MATERIAL SECO	RETENID	DEN MAL	LA No.12				14		
ASTM D-422 AASHTO T-88	3/8*	9.5	62	DIFERENCIA							35	15	
	No. 4	4.75	51	% APROXIMADO DE DESGA	ASTE						21	5	
	No. 10	No.10 2 32			DO Y SECA	DO AL HO	RNO, RETE	NIDO MALL	No.12		35	00	
	No: 40	0.425	14	% DEFINITIVO DE DESGAST	E						23	%	
	No. 200	0.075	8										
	Clasificacion AASHTO	A-1-a (0)	Grupa										
	CBR al 95%	86%	A-1	-	ULTADO	DE INTE	7.2	7.20%					
Vúmero de la tara	CBK at 95%	X-3	R-I	LIMITE LIQ	UIDO		LIMITE	PLASTICO	Curva de Fluidez				
eso de tara		0		AASHTO T 89, N	ETODO A	8	AASH	TO T 90	41.6				
eso de tara + material húmedo		150		No. Golpes de cierre:	17	25	700000		41.4				
eso de tara + material seco		138		Factor	0.954	- 1			41.2		/		
leso de material húmedo		150		No. Tara:	P-36	P-54	R-12	T-6	41		/		
leso de material seco		138		Peso de Tara (gr):	11	11.23	2	11.1	¥ 48.8		/		
eso del agua		12		P de Tara + Mat. Hilmedo (gr)	32.8	32.01	29	29.2	40.6		/		
6 de humedad		9.5		P de Tara + Mat. Seco (gr)	29.3	27	25.8	25.4	40.4				
avado	.9	.695652174		Peso del Material Humedo (gr)	21.8	20.78	27	18.1	40.2	72	20	1724	
eso Seco (grs)	151.5			Peso del Material Seco (gr)	18.3	16.77	23.6	14.9	0	10	30		
eso seco lavado (grs)		121.6		Peso del Agua (gr):	3.5	5.01	3.2	3.8		N* DE GO	LPES .		
iferencia (grs)		29.9		% Limite Liquido:	18.25	31.77	13.45	26.57	- 3		<u></u>		
asa N° 200 (grs)		-0.3		RESULTADO	LL	NP	LP	NP	IP	NP	Tipo de Suelo	Plasto	
Western Control of the Control of th		and the second		LT-30	97.5	100	Clasificaci	on AASHTO	A-1-a		INDICE	0	

Fuente: Alcaldía Municipal de Estelí-Laboratorio EDICO.

Fuente: Alcaldía Municipal de Condega- Laboratorio EDICO. /Google Earth 2022.

Tabla 111: Ensayos desgaste de los ángeles, intemperismo acelerado, limite liquido banco Nº2 Bayardo Hurtado.

Ubicación:	Municipio de Condes	45 5	iento de Esteli					1	Edico	INGENIER	S Y DISEÑOS IOS CONSULTORI	ES	
Cliente:	Alcaldia Municipal de	Condega.			- Commission	-5-							
Proyecto:	1.47 kilometros	de paviment	o articulado,	Procedencia:	Fecha: 13 de Febrero 2018								
Banco No.2	ANALISI GRANUOMETI	MUESTRA											
Banco: Bayardo Hurtado	FINOS ASTI	M D- 422 AASH	TO T-88	UBICACIÓN Banco #2, De la Est: 0+000, 2.0 kilometro al r							al noreste		
0	Tamices	mm	Banco; N°2	DUEÑO					Bayardo Hi	urtado			
	3"	75	100	CLASIFICACIÓN AASHTO			A-1-a(0)						
	2 1/2"	63	100	SONDEO			Stock						
	2*	50	100	ENSAVES ADJONALES IN	CTARL								
	1 1/2"	37.5	98	ENSAYES ADICNALES (A.S.T.M.).							36		
	1"	25	92	DETERMICACION No.					1				
	3/4+	19	86	PESO DE LA MUESTRA ORI	VADA Y SE	CADA AL F	50	000					
% QUE PASA EL TAMIZ	1/2"	12.5	71	PESO DEL MATERIAL SECO	RETENID	D EN MAL	LA No.12				13	300	
ASTM D-422 AASHTO T-88	3/8"	9.5	55	DIFERENCIA							3	700	
	No. 4	4.75	49	% APROXIMADO DE DESGA	ASTE							20	
	No. 10	2	20	PESO DE MATERIAL, LAVA	DO Y SECA	DO AL HO	RNO, RET	ENIDO MALLA	A No.12		34	650	
	No. 40	0.425	12	% DEFINITIVO DE DESGAST	E						2	7%	
	No. 200	0.075	5		RES	ULTADO	DE INTE	MPERISMO			8.	5%	
	Clasificacion AASHTO	A-1-a (0)	Grupa										
	CBR al 95 %	55%	A-1										
Número de la tara		X-90		LIMITE LIQUIDO LIMITE PLASTICO					0.000				
eso de tara		0		AASHTO T 89, N	METODO A		AASH	TO T 90		Curva d	e Fluidez		
Peso de tara + material húmedo		150		No. Golpes de cierre:	17	25			41.6				
leso de tara + material seco		136.6		Factor	0.954	1			41.4		- 0	,	
eso de material húmedo		150		No. Tara:	p-77	p-49	p-45	p-50	41.2		/		
eso de material seco		136.6		Peso de Tara (gr):	7.4	7.37	11,13	11.34	S 40.6		/		
eso del agua		13.4		P de Tara + Mat. Húmedo (gr)	31,62	30.04	26.4	25.2	40.0				
de humedad	9.80966325		P de Tara + Mat. Seco (gr)	24.41	23.4	22.5	22.4	40,4		1			
avado	10.80966325		Peso del Material Humedo (gr)	24.22	22.67	14.27	13.86	40.2					
eso Seco (grs)	178.2		Peso dei Material Seco (gr):	17:01	16.03	11,37	11.06	n	10	20	30		
eso seco lavado (grs)	146.7		Peso del Agua (gr):	the state of the s		2.9	2.8		N° DE G	N° DE GOLPES			
liferencia (grs)		31.5		% Limite Liquido:	40.44	41.42	25.51	25.32	116.114	1100000		_	
Pasa N* 200 (grs)		0		RESULTADO	LL	17	LP	12	IP	6	Tipo de Suelo:	Plastic	

Fuente: Alcaldía Municipal de Estelí-Laboratorio EDICO.

Tabla 112: Muestras tomadas en base a la subrasante propuesta en planos.

ESTACIONES	SONDEO	Muestras Tomadas	ALTURA DE CORTE	ALTURA DE RELLENO	CBR Tomado al 95%	terracería / Relleno
0+000	CONDEO 1	1		0.42		55%, Banco N°2
0+000	SONDEO-1	2				55%, Banco N°2
0+100	SONDEO-2	3		0.18		45%
0+100		4				
0+200	SONDEO-3	5	0.51			
0+200		6				12%
0+300	SONDEO-4	7		0.12		55%, Banco N°2
0+300		8				16.9%
0+400	CONDEC	9		0.25		55%, Banco N°2
0+400	SONDEO-5	10				
0+500	SONDEO-6	11		18		55%, Banco N°2
0+500	30INDEO-6	12				12.90%
0+600		13	0.05			23.8%
0+600	SONDEO-7	14				13.0%
0+600]	15				
0+700	CONDEO 9	16	0.43			
0+700	SONDEO-8	17				23.8%

Elaborado por Sustentantes.

De los sondeos manuales (Sm-1 al Sm-8) se tomaron un total de 12 muestras de las cuales cinco (5) de ellas corresponde al banco de préstamo Bayardo Hurtado.

Tabla 113: Muestras tomadas en base a la subrasante propuesta en planos.

ESTACIONES	SONDEO	Muestras Tomadas	ALTURA DE CORTE	ALTURA DE RELLENO	CBR Tomado al 95%	terracería / Relleno
0+800	SONDEO-9	18		0.76		55%
0+800		19				
ROCA						
0+900	SONDEO-10	21		1.63		55%
0+900		22				
0+900		23				
1+000	SONDEO-11	24	0.64			
1+000		25				
1+000		26				16.9%
1+100	SONDEO-12	27	0.03			14.5%
1+100		28				
1+200	SONDEO-13	29		1.42		55%
1+200		30				
1+300	SONDEO -15	31	1.14			38%
			ROCA			
1+400	SONDEO -15	33	0.70			38%

Elaborado por Sustentantes.

De los sondeos manuales (Sm-9 al Sm-15) se tomaron un total de 7 muestras de las cuales tres (3) de ellas corresponde al banco de préstamo Bayardo Hurtado.

Fuente: Imágenes recopiladas-SIECA 2011, pág. 38

Tabla 114: Distribución de peralte para cada uno de los radios presentados.

Nº CURVA	PI	PC	PT	Radio de la Curva (mt)	Gc	Peralte Calculado en %.	Peralte Asumido en %.
1	0+090.84	0+042.82	0+135.76	150.000	7.639	3.7	3.7
2	0+190.73	0+154.24	0+227.18	1000.000	1.146	0.6	C.N.
3	0+314.72	0+286.30	0+343.08	500.000	2.292	1.3	C.N.
4	0+417.86	0+399.41	0+436.29	1000.000	1.146	0.6	C.N.
5	0+641.82	0+628.97	0+654.53	100.000	11.459	5.2	5.2
6	0+702.94	0+680.99	0+723.54	70.000	16.370	6.6	6.6
7	0+810.74	0+768.77	0+848.25	100.000	11.459	5.2	5.2
8	0+899.86	0+876.46	0+920.23	50.000	22.918	7.7	7.7
9	0+948.38	0+934.77	0+961.91	150.000	7.639	3.7	3.7
10	0+990.88	0+976.45	1+005.01	80.000	14.324	6.1	6.1
11	1+032.55	1+018.86	1+046.19	200.000	5.730	2.9	C.N.
12	1+074.50	1+060.78	1+088.17	200.000	5.730	2.9	C.N.
13	1+113.69	1+100.36	1+126.98	200.000	5.730	2.9	C.N.
14	1+211.84	1+196.42	1+226.78	70.000	16.370	6.6	6.6
15	1+315.14	1+274.73	1+350.69	90.000	12.732	5.6	5.6
16	1+412.29	1+389.61	1+434.77	200.000	5.730	2.9	C.N.

^{*} C.N=Corona Normal (seccion con bombeo del 3.0%).

^{**} C.I=Corona Inversa (seccion con peralte minimo del 3.0%).

Fuente: Elaborado por Sustentantes.

Tabla 115: Sobre anchos en curvas.

CURVA No.	ESTACION DEL PI	Δ	RADIO (m)	ESTACION DEL PC	ESTACION DEL PT	ESTACION DEL CENTRO DE LA CURVA	SOBRE ANCHO CALCULADO (m)	SOBRE ANCHO A USAR (m)
1	0+090.84	35.5005	150.00	0+042.82	0+135.76	0+088.55	0.60	0.60
2	0+190.73	4.179	1000.00	0+154.24	0+227.18	0+190.71	0.20	0.00
3	0+314.72	6.5065	500.00	0+286.30	0+343.08	0+314.67	0.30	0.00
4	0+417.86	2.1131	1000.00	0+399.41	0+436.29	0+417.86	0.20	0.00
5	0+641.82	14.6403	100.00	0+628.97	0+654.53	0+641.72	0.80	0.80
6	0+702.94	34.8235	70.00	0+680.99	0+723.54	0+701.93	1.00	1.00
7	0+810.74	45.5374	100.00	0+768.77	0+848.25	0+807.47	0.80	0.80
8	0+899.86	50.1523	50.00	0+876.46	0+920.23	0+897.66	1.30	1.30
9	0+948.38	10.3675	150.00	0+934.77	0+961.91	0+948.50	0.60	0.60
10	0+990.88	20.4514	80.00	0+976.45	1+005.01	0+990.83	0.90	0.90
11	1+032.55	7.8301	200.00	1+018.86	1+046.19	1+032.70	0.50	0.00
12	1+074.50	7.8451	200.00	1+060.78	1+088.17	1+074.65	0.50	0.00
13	1+113.69	7.6262	200.00	1+100.36	1+126.98	1+113.84	0.50	0.00
14	1+211.84	24.8504	70.00	1+196.42	1+226.78	1+211.67	1.00	1.00
15	1+315.14	48.3558	90.00	1+274.73	1+350.69	1+311.78	0.80	0.80
16	1+412.29	12.9372	200.00	1+389.61	1+434.77	1+412.60	0.50	0.00

Fuente: Elaborado por Sustentantes.

Imagen- 30: Características del adoquín tipo tráfico.

Adoquín tipo Tráfico

Adoquines tipo cruz

· Resistencia 28 días: 3500 PSI

Ventajas

- Fácil manejo en el transporte y la colocación, ya que no requieren de mano de obra especializada
- Fabricados a base de concreto de alta resistencia.
- Resistentes a la absorción, intemperie y humedad, generando un pavimento casi indestructible.
- Superficie es autoderrapante, todo ello con una apariencia agradable y a un costo más accesible.
- Su capacidad de transmitir carga permite pesos y tráficos que sobre sub-bases que requieran espesores mayores de concreto o en su defecto refuerzo de acero.

Dimensiones

Largo: 24 CM Ancho: 22 CM Espesor: 10 CM

Fuente: CEMEX Managua- Nicaragua (Elementos de concreto 2023).