

Facultad de Tecnología de la Construcción

"DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y SANEAMIENTO RURAL PARA LA COMUNIDAD PUERTAS DE PARÍS, MUNICIPIO DE SAN PEDRO DE LÓVAGO, DEPARTAMENTO DE CHONTALES"

Protocolo Monográfico para optar al título de Ingeniero Civil

Elaborado por: Tutor:

Br. Enock del Rosario
Jarquín Rodríguez
Carnet:

Br. Sebastián Eliécer Morales

Carnet

Ing. María Elena Baldizón Aguilar

04 de septiembre de 2023 Managua, Nicaragua

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE TECNOLOGIA DE LA CONSTRUCCION **DECANATURA**

DEC-FTC-REF-No.011 Managua, 28 Enero del 2022

Bachilleres ENOCK DEL ROSARIO JARQUIN RODRIGUEZ SEBASTIÀN ELIÈSER MORALES Estimados Bachilleres:

Es de mi agrado informarles que el PROTOCOLO de su Tema MONOGRAFICO, titulado: "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE Y SANEAMIENTO RURAL PARA LA COMUNIDAD PUERTAS DE PARÍS. MUNICIPIO DE SAN PEDRO DE LÓVAGO, DEPARTAMENTO DE CHONTALES". Ha sido aprobado por esta Decanatura.

Asimismo les comunico estar totalmente de acuerdo, que el Ing. María Elena Baldizòn Aguilar. Sea el tutor de su trabajo final.

La fecha límite, para que presenten concluido su documento final, debidamente revisado por el tutor guía será el 28 de Julio del 2022

Esperando puntualidad en la entrega de la Tesis, me despido.

Atentamente,

Dr. Ing. Oscar Gutiérrez Somarriba

GUA, NICARAGUA

CC: Protocolo

Tutor - Ing. María Elena Baldizòn Aguilar.

Archivo*Consecutivo

DEDICATORIA

Quiero agradecer infinitamente ante todo primeramente a Dios por la salud, fortaleza y el coraje que me regalo para por concederme realizar esta carrera y obtener mi más grande logro.

A mi madre quien con su amor, paciencia y esfuerzo me ha apoyado en llegar a cumplir hoy mi más grandiosa meta, por inculcar en mí el ejemplo de esfuerzo y valentía, de no temer las adversidades porque Dios está conmigo siempre.

A mi hija Nathalia que ha sido mi inspiración, para sacar adelante este sueño y que hoy en día estoy culminando.

Mi hermana Francis, mis tíos (Jorge, Enrique Rodríguez, Luis Zeledon QED) por cariño y apoyo incondicional, durante todo este proceso, por estar conmigo en todo momento gracias. A toda mi familia porque con sus oraciones, consejos y palabras de aliento hicieron de mí una mejor persona y de una u otra forma me acompañan en todos mis sueños y metas.

También dedico muy especial esta Monografía a todos mis profesores, Ing. Carlos Molina, Ing. Rubel Mendoza, Ing. Mijaíl Chamorro, Ing. Mario Castellón, Ing. Dennis Largaespada, Ing. Manuel Gonzales, Ing. Ana Báez, Lic. Eduardo Lanzas,

Lic. Maricela Gatica, Lic. Leonarda Laguna, Lic. Miriam Téllez Lic. Maryuri Oporta Lic. Pavón Dr. julio Oporta y a mis profesoras que enseñaron mis primeras letras y dieron forma a lo que hoy soy, Lesbia Cruz e Isabel Martínez, a mi tutora Ing. María Elena Baldizón Aguilar, que estuvieron siempre atentos a mis consultas e inquietudes y que con mucho esmero me dieron su apoyo incondicional, por extender su mano en momentos difíciles.

Finalmente quiero hacer mención especial a nuestro decano Dr. Oscar Gutiérrez que me ha dado su apoyo y así poder llegar a completar mi más grande logro,

gracias por la oportunidad de poder llegar a ser ingeniero y estar siempre atento cuando se necesita de su colaboración.

Br. Enock del Rosario Jarquín Rodríguez

DEDICATORIA

La presente tesina es dedicada primeramente al **Todopoderoso**, **DIOS**; ya que es el único que nos mantiene de pie en esta lucha del día a día y nos guía por el camino correcto dándonos salud, sabiduría e inteligencia. Seguidamente se lo dedicamos a nuestros seres queridos, quienes llenos de paciencia, entendimiento y raciocinio han sido el motor de motivación para seguir adelante y conquistar nuestras metas.

También es meritorio dedicarle esta tesina a nuestra tutora la **Ing. María Elena Baldizón Aguilar**; por brindarnos sus conocimientos y experiencia en gran medida en cada uno de los aspectos que nos evaluaba de la manera amable y efectiva pues dicha información nos servirá durante el transcurso de nuestra vida para tener conocimiento más amplio sobre el manejo del agua.

Br. Sebastián Eliecer Morales

AGRADECIMIENTOS

A Dios por darnos salud, fortaleza, sabiduría y entendimiento y guiarnos por el sendero del conocimiento y así permitirnos lograr nuestro anhelado objetivo, convertirnos en profesionales y poder obtener mayores logros que permita un desarrollo mejor para nuestro bienestar y el de nuestras familias, que siempre aportaron con el respaldo incondicional en los momentos difíciles en el desarrollo de la carrera, ya que siempre existió la motivación para vencer los obstáculos que se presentaron.

A nuestros padres, esposas e hijos que siempre estuvieron a nuestro lado motivándonos a continuar, dándonos fe, confianza y alimentándonos, para lograr en conjunto el objetivo principal obtener una carrera profesional que permita un mejor desarrollo económico y social en la vida del núcleo familiar, que permita mejores oportunidades en nuestro desarrollo como profesionales.

A nuestros profesores que tuvieron la capacidad y la paciencia de explicarnos una y otra vez las materias hasta lograr el objetivo de cada clase impartida y en algunas ocasiones dedicar horas extras para sustentar la enseñanza que día a día impartían con la esperanza de vernos convertidos en profesionales.

A las autoridades universitarias ya que siempre atendieron nuestros problemas y que constantemente nos ayudaron a resolver las necesidades planteadas en especial nuestra tutora ingeniera María Elena Baldizón Aguilar, por aceptar a tutorarnos y darnos los aportes necesarios, para el desarrollo exitoso de nuestra monografía y de esta forma no ayuda a obtener nuestro título profesional.

Resumen ejecutivo

El presente documento muestra el diseño del sistema de abastecimiento de agua potable y saneamiento en la comunidad puertas de Paris en el Municipio de San Pedro de Lóvago Departamento de Chontales. con el propósito principal de ayudar al mejoramiento de las condiciones higiénico - sanitarias y a la implementación de un servicio de calidad, en el que se retoma como criterio principal la viabilidad y sostenibilidad; ya que el sistema quedará a cargo de la localidad.

La comunidad tiene una población de 262 habitantes distribuidos en 63 - viviendas (4.15873 ≈ 5 hab/vivienda), con una proyección a 20 años de 429 personas; actualmente presenta problemas con el abastecimiento de agua, suministrándose de pozos comunitarios excavados a mano, accionados con bombas de mecate y con altos riesgos de contaminación; por lo que la población demanda un sistema de abastecimiento de agua potable que les garantice la salud.

El estudio inicia con la identificación del proyecto donde se aborda la situación actual de la comunidad, la cual se abastece de agua de pozos excavados a mano y un pozo perforado, la encuesta socioeconómica realizada y la recopilación de información, se determinó que el problema central de la comunidad de Puertas de Paris, es la incidencia de enfermedades diarreicas y parasitarias, provocadas por el consumo de agua de mala calidad, malos hábitos de higiene y la disposición de excretas al aire libre.

El sistema fue diseñado a partir de las Normas Técnicas para el diseño de abastecimiento y potabilización del agua NTON 09 007-19, considerando a la comunidad rural debido a las particularidades y características que posee la comunidad en la zona. Para su diseño se tomaron criterios hidráulicos que garanticen el funcionamiento eficiente durante la vida útil de la obra.

La demanda promedio de consumo de agua actual es de 0.24 l/s y una demanda futura para el año 20 de 0.40 l/s. Con el proyecto se garantizará el vital líquido al

100% de la población, partiendo con una demanda inicial de 25.5712 m³/día y

alcanzando una demanda futura para el año 20 de 41.9014 m³/día.

Se elaboró un estudio demográfico de la comunidad con el objetivo de determinar

a través del método geométrico la proyección futura para el periodo de diseño de

este sistema, obteniendo así el consumo máximo diario de 0.6837 lps y un

consumo máximo horario de 1.08 lps requerido por la población para el año 2042.

El diseño comprende la línea de conducción desde la fuente, en este caso, un

pozo perforado hasta un tanque de almacenamiento donde el vital líquido circulará

a presión utilizando una bomba sumergible de 2.5 HP de potencia. Se

dimensionaron las tuberías en la red de distribución con sus válvulas necesarias.

velocidades y presiones para que garanticen el flujo en los domicilios. El análisis

hidráulico se realizó en el programa EPANET y de acuerdo con los resultados del

estudio realizado en la comunidad, ésta presenta condiciones favorables para la

implementación del sistema de agua potable.

El costo total de las obras es de C\$.3,720,437.74 Para darle curso a la

construcción de este proyecto se realizan los planos, especificaciones técnicas, la

planificación.

El trabajo se clasifica en seis capítulos, los que presentan la siguiente secuencia

lógica:

Capítulo 1: Aspectos Generales.

Capítulo 2: Marco Teórico.

Capítulo 3: Metodología.

Capítulo 4: Cálculos y Resultados.

Capítulo 5: Conclusiones y Recomendaciones.

Contenido

Ge	ne	rali	ida	ide	c
uc		aı	ıuc	uc.	3

1.1	Introducción	1
1.2	Antecedentes	2
1.3	Justificación	3
1.4	Objetivo general	4
1.4.1	Objetivos específicos	4
II Marc	co teorico	
2.1	Normas y criterios utilizados para el diseño del proyecto	5
2.2	Estudio Socioeconómico	5
2.3	Aforo y calidad de agua	6
2.4	Estudios Topográficos	6
2.5	Diseño de Abastecimiento de Agua en el medio Rural	7
2.6	Fuentes de Abastecimiento	7
2.6.1	Manantiales	7
2.6.2	Pozo Excavado a Mano (PEM)	8
2.6.3	Pozo Perforado (PP)	8
2.7	Mini Acueductos por Bombeo Eléctrico (MABE)	8
2.7.1	Estaciones de Bombeo	8

2.7.2	Caseta de Control 8	
2.7.3	Equipo de Bombeo y Motor8	
2.8	Demanda10	
2.9	Líneas de Conducción y Red de Distribución10	
2.9.1	Línea de Conducción	
2.9.2	Golpe de ariete11	
2.9.3	Red de Distribución11	
2.9.4	Hidráulica del Acueducto12	
2.10	Almacenamiento12	
2.11	Tratamiento y Desinfección12	
2.12	Modelación en EPANET12	
2.13	Letrinas13	
2.13.1	Soluciones básicas de saneamiento	
Tipo		
Ámbito		
Descripción14		
Condici	iones de implementación:14	
2.14	Costo y presupuesto19	

III Diseño metodologico

3.1	Estudio Básicos	20
3.1.1	Estudio Socioeconómico	20
3.1.2	Aforo y calidad del agua	21
3.1.3	Levantamiento topográfico	21
3.1.4	Diseño hidráulico del sistema de agua potable	21
3.1.5	Cálculo de población	22
3.2	Período de Diseños	23
3.2.1	Dotación de agua	23
3.3	Variaciones de consumo	23
3.3.1	Consumo doméstico	24
3.3.2	Consumo institucional	24
3.3.3	Pérdidas (Hf)	24
3.4	Estaciones de bombeo	24
3.4.1	Fundaciones de equipos de bombeo	25
3.4.2	Diseño de bomba	25
3.4.3	Línea de Conducción	26
3.4.4	Golpe de ariete	27
3.4.5	Almacenamiento	28

3.4.6	Tratamiento y desinfección	29
3.4.7	Red de distribución	31
3.4.8	Sistema de Saneamiento.	34
3.4.9	Elaboración de planos	34
3.4.10	Especificaciones técnicas de construcción	34
3.4.11	Elaboración del presupuesto	35
IV Re	esultados del estudio	
4.1	Caracterización del municipio de San pedro de Lóvago	36
4.1.1	Límites de municipio	36
4.1.2	Referencia Geográfica	36
4.1.3	Posición geográfica	36
4.1.4	Población	38
4.1.5	Categoría de pobreza	38
4.2	Caracterización de la comunidad Puertas de Paris	38
4.2.1	Límites	38
4.2.2	Clima y relieve predominante	39
4.2.3	Acceso, a la comunidad	39
4.3	Resultados socioeconómicos	40
4.3.1	Población	40

4.3.2	Vivienda42	
4.3.3	Situación actual del suministro de agua	
4.3.4	Calidad del agua de consumo actual44	
4.3.5	Disposición de excretas	
4.3.6	Educación47	
4.3.7	Organización comunitaria48	
4.3.8	Situación Ocupacional49	
4.3.9	Ingreso mensual por familia50	
4.3.10	Servicios básicos51	
4.4	Estudios básicos51	
4.4.1	Aforo51	
4.4.2	Calidad de agua51	
4.5	Estudios topográficos53	
4.6	Proyección de población y consumo53	
4.6.1	Proyección de la población54	
4.6.2	Variaciones de Consumo54	
4.7	Componente del sistema de agua potable56	
4.7.1	Fuente de abastecimiento57	
4.7.2	Estación de bombeo	

VI	Bibliografia	
5.2	Recomendaciones	86
5.1	Conclusiones	85
V	Conclusiones y recomendaciones	
4.10	Costo total del proyecto	83
4.9.1	Selección del sistema de saneamiento	80
4.9	Sistema de saneamiento	80
4.8.2	2 Tratamiento químico del agua (desinfección)	76
4.8.1	1 Caudal concentrado en los nodos	69
4.8	Red de distribución	69
4.7.4	Tanque de almacenamiento	68
4.7.3	3 Sistema operativo FUENTE-TANQUE	59

Índice de gráficos

Gráfico Nº 1. Población34
Gráfico Nº 2. Estado de la vivienda35
Gráfico Nº 3. Abastecimiento de agua36
Gráfico Nº 4. Acarreo de agua37
Gráfico Nº 5. Calidad del agua
Gráfico Nº 6. Características físicas del agua
Gráfico Nº 7. Situación de letrinas40
Gráfico Nº 8. Estado de letrinas40
Gráfico Nº 9. Nivel académico41
Gráfico Nº 10. Gráfico de las enfermedades en la población Puertas de Paris
Gráfico Nº 11. Actividades económicas de la comunidad Puertas de Paris
Gráfico Nº 12. Presión en la línea de conducción58
Gráfico Nº 13. Presiones en la red de distribución del tanque salida hacia Santo
Gráfico Nº 14. Presiones en la red de distribución del tanque hacia la
Liberta62
Gráfico Nº 15. Presiones en la red de distribución del tanque salida hacia caserío los Chavarría

Gráfico Nº 16. Esquema de Red Proyecto Puertas de París64
Gráfico Nº 17. Esquema de un clorador CTI - 869
INDICE DE TABLAS
Tabla Nº 1. Período de diseño12
Tabla Nº 2. Volúmenes necesarios de soluciones al 1% para dosificar 1.P.P.M
(Una pare por millón de cloro a diferentes volúmenes de agua)
Tabla Nº 3. Coeficiente de rugosidad31
Tabla Nº 4. Población34
Tabla Nº 5. Rango de edades de la población34
Tabla Nº 6. Estado de la vivienda35
Tabla Nº 7. Abastecimiento de agua36
Tabla Nº 8. Acarreo del agua37
Tabla N° 9. Calidad del agua
Tabla Nº 10. Características físicas del agua
Tabla Nº 11. Situación del saneamiento básico39
Tabla Nº 12. Estado de las letrinas39
Tabla Nº 13. Nivel académico40
Tabla Nº 14. Enfermedades en la población de comunidad Puertas de París41
Tabla Nº 15. Actividades económicas de la población Puertas de Paris42

Tabla Nº 16 Resultados analíticos Físico – Químicos45
Tabla Nº 17. Datos para la proyección de la población y consumo47
Tabla Nº 18. Consumo promedio diario49
Tabla Nº 19. Consumo máximo día50
Tabla Nº 20. Consumo máxima hora y almacenamiento51
Tabla Nº 21. Fuente de abastecimiento52
Tabla Nº 22. Características de línea de impulsión53
Tabla Nº 23. Datos para el diseño de bomba y longitudes equivalentes54
Tabla Nº 24. Tubería de línea de conducción56
Tabla Nº 25. Datos para el cálculo del golpe de ariete y resultados56
Tabla Nº 26. Caudal en los Nodos60
Tabla Nº 27. Presiones y demanda base en la red de distribución (CMH)65
Tabla Nº 28 Velocidades y diámetros de tubería en la red de distribución
(CMH)66
Tabla Nº 29. Presiones y demanda base en la red de distribución
(Sin Consumo)66
Tabla Nº 30. Presiones y demanda base en la red de distribución (Sin Consumo)
Tabla Nº 31. Tubería de red de distribución67
Tabla Nº 32. Materiales para fabricar el clorador CTI - 869

Tabla Nº 33. Consumo de cloro	70
Tabla Nº 33. Costos de administración, operación y	
Mantenimiento	72
INDICE DE ANEXOS	
Anexo 1 Costos de administración anual	II
Anexo 2. Costos de operación anual	III
Anexo 3. Costos de mantenimiento anual y tarifa	IV
Anexo 4: Presupuesto del proyecto	V
Anexo 5. Especificaciones técnicas de materiales y equipos	XII
Anexo 6. Formato de encuesta socioeconómica de agua y	
saneamiento	xxx
Anexo 7. Análisis de metal pesado	xxxv
Anexo 8. Análisis físico químico para potabilidad	XXXVI
Anexo 9. Análisis bacteriológico sanitario	xxxvII
Anexo 10. Informe de prueba de bombeo	xxxvIII
Anexo 11. Esquema de golpe de Ariete	XLII
Anexo 12. Estudio hidrogeológico	XLII

Lista de abreviaturas y siglas

IVA: Impuesto al valor agregado.

VAC: Valor actual de consumo.

ICE: Índice costo efectividad.

ACI: American concrete institute.

ASTM: American society for testing and materials.

CAPRE: Comité coordinador regional del instituto de agua y saneamiento de

Centro América, Panamá y República Dominicana.

CAPS: Comité de agua potable y saneamiento.

CETA: Centro de educación técnica agropecuaria.

CPC: Concejo del poder ciudadano.

CEMA: Control y erradicación de la malaria y el Aedes.

CARE: Cooperación de ayuda de remesas del exterior

CMD: Consumo máximo día.

CMH: Consumo máxima hora.

CPD: Consumo promedio diario.

CPDT: Consumo promedio diario total.

ENACAL: Empresa nicaragüense de acueductos y alcantarillados.

ENEL: Ministerio de transporte e infraestructura.

ENITEL: Empresa nicaragüense de telecomunicaciones.

EDA: Enfermedades Diarreicas Agudas.

FISE: Fondo de inversión social de emergencia.

GPS: Siglas en ingles global positioning system, sistema de posicionamiento

global.

Ho. Go: Hierro galvanizado.

Ho. Fo: Hierro fundido.

INAA: Instituto nicaragüense de acueductos y alcantarillados.

IDH: Índice de desarrollo humano.

INEC: Instituto nacional de estadísticas y censos.

INIFOM: Instituto nicaragüense de fomento.

IRA: Infecciones respiratorias agudas.

LFV: Letrina de foso ventilado.

NE: Nivel estático.

MABE: Mini acueducto por bombeo eléctrico.

MAG: Mini acueducto por gravedad.

MCT: Ministerio de construcción y transporte.

MINSA: Ministerio de salud.

MTI: Ministerio de transporte e infraestructura.

MINED: Ministerio de educación.

ONGs: Organismos no gubernamentales.

OMS: Organización mundial de la salud.

PVC: Cloruro de polivinilo.

PC: Pozos comunales.

PCEM: Pozos comunales excavados a mano.

PCP: Pozos comunales perforados.

PEM: Pozos excavados a mano.

PFEM: Pozos familiares excavados a mano.

PP: Pozos perforados.

SNIP: Sistema nacional de inversiones públicas

Glosario

Cloración: Es la aplicación de cloro al agua, generalmente con fines de desinfección.

Clorador: Es un dispositivo para aplicar cloro al agua en proporción conocida y controlada.

Corte: Es la excavación que se realiza en terreno natural para las fundaciones y tuberías de los componentes del proyecto.

Cemento: Es un material que tiene las propiedades de adhesión y cohesión necesarias para unir agregados inertes y conformar una masa sólida de resistencia y durabilidad adecuada.

Conexiones domiciliares: Son tomas de agua que se aplican en el sector rural, pero en ocasiones esporádicas y sujetas a ciertas condiciones, tales como disponibilidad suficiente de agua, bajos costos de operaciones.

Estación total: instrumento que combina un teodolito y un instrumento EDM, (por tanto, tiene capacidad para medición angular y de distancia). Conocido también como taqueómetro o taquímetro.

Especificaciones: En general se denomina con este nombre a la compilación de estipulaciones y requisitos detallados para la construcción de las obras de un proyecto o el suministro de bienes y servicios.

Golpe de ariete: Se denomina a la sobrepresión que reciben las tuberías, por efecto del cierre brusco del flujo de agua.

GPS: Siglas en ingles globales positioning system, sistema de posicionamiento global consiste en satélites artificiales y equipo terrestre que se emplea para convertir señales de radio emitidas por satélites en posiciones tridimensionales sobre la superficie terrestre.

Niple: Tubería que no tiene la longitud completa de fabricación.

Obras de conducción: Estas se encargan de transportar el agua captada desde la fuente hasta el lugar de su almacenamiento, de su tratamiento o distribución.

Obras de regularización y almacenamiento: En estas estructuras se almacena el agua que no se consume en las horas de demanda mínima, para aprovecharla después en las horas de máximas demandas. Además del volumen de regularización, sirven para almacenar un volumen adicional.

Obras de purificación: Cuando las condiciones del agua no son las adecuadas, se recurre a las obras de purificación que la adecúan a los fines requeridos.

Obras de distribución: Esta tiene como objeto repartir el agua en los volúmenes y presiones adecuadas a los distintos sectores y calles de la comunidad.

Prismoide: Figura sólida con caras paralelas unidas por superficies planas o con una curvatura continua.

Plomada óptica: Dispositivo especial del telescopio con el cual el topógrafo puede visar verticalmente desde el centro de un instrumento hasta el terreno sobre el cual está apoyado el instrumento.

Teodolito: Es un instrumento para la medición de ángulos que tiene tres tornillos de nivelación, círculo vertical y horizontal que se pueden leer en forma directa o con un micrómetro óptico. También los mismos instrumentos que presentan los resultados de las lecturas angulares en pantallas digitales.

Topografía: Es la ciencia de la determinación de las dimensiones y características tridimensionales de la superficie terrestre a través de la medición de distancias, direcciones y elevaciones.

Taquimetría: Mediciones rápidas

1.1 Introducción

El agua es un elemento esencial para la vida humana, para la salud básica y para la supervivencia, así como para la producción de alimentos y para las actividades económicas. En algunos casos el agua no se ha considerado como lo que realmente es: un bien común universal, patrimonio vital de la humanidad.

El acceso al agua debe ser considerado como un derecho básico, individual y colectivamente inalienable. Este recurso es importante tanto en el área urbana como para el área rural ya que de éste dependen todas las actividades de la población.

Sin embargo, en la comunidad Puertas de Paris, municipio de San Pedro de Lóvago departamento de Chontales, presenta dificultad en el acceso del agua de consumo humano, ya que las fuentes existentes y manantiales de agua disminuyen su caudal con facilidad en época de verano y no abastecen a toda la población.

Para llevar el vital líquido a los pobladores en calidad y cantidad es necesario proporcionar sistemas de abastecimiento capaces de funcionar eficazmente.

La red de abastecimiento de agua potable "es un sistema de obras de ingeniería, concatenadas que permiten llevar hasta la vivienda de una ciudad, pueblo o área rural relativamente densa, el agua potable".

Para mejorar esta situación se diseñó un sistema de abastecimiento de agua potable por bombeo eléctrico (MABE). Dicho sistema se abastecerá por un pozo perforado ubicado en la comunidad de Puertas de Paris, esto debido a que se adolece de un sistema de conducción, almacenamiento y red de distribución de agua potable que asegure el volumen y la calidad, de acuerdo a las demandas de consumo de la población usuaria de este servicio.

1.2 Antecedentes

La población de la comunidad Puertas de Paris se ha abastecido por años de agua de manantiales, pequeños riachuelos cercanos a la comunidad y algunos pozos perforados a mano, esta agua no es potable ya que no recibe ningún tipo de tratamiento.

La población está concentrada en dos puntos, un sector tiene pozo perforado, en buen estado, el que se utilizaba para alimentación de una pequeña planta industrial y no se encuentra conectado a un sistema de redes, por lo que toda la comunidad se abastece de riachuelos y pozos excavados a mano y de una quebrada (fuentes superficiales) que las atraviesa.

En el año 2000 se perforó un pozo ubicado en la Comunidad Puertas de Paris en coordinación de una cooperativa comunitaria que manejaba el proyecto de tenería, el que se encuentra al sur de la comunidad sobre la vía principal. Este pozo se encuentra en una formación que le permite producir grandes volúmenes de agua, es un acuífero artesiano o confinado.

1.3 Justificación

Actualmente el agua que está consumiendo la población no es segura ya que contiene bacterias por el hecho que no es tratada, aún más se incrementa en las épocas del invierno donde las quebradas crecen y el agua sale sucia. Por este motivo los niños y ancianos son los más afectados ya que están más expuestos a enfermarse y si no se trata a tiempo podrían llegar a tener muchos efectos negativos. Sumado a ello la escasez del vital líquido para satisfacción de necesidades básicas para la higiene personal y del hogar, que también tiene sus implicaciones en el campo de la salud pública.

Recientemente el presidente ejecutivo de la Empresa Nicaragüense de Acueductos y Alcantarillados (ENACAL), confirmó que el problema del agua es grave a nivel nacional y que unos 30 municipios, sectores y barrios que están en zonas elevadas y alejadas de los sistemas de bombeo se encuentran desabastecidos.

Con la estructuración del diseño del sistema de abastecimiento de agua potable teniendo en cuenta los datos obtenidos de los estudios realizados, se determinó el grado de importancia que tiene la realización del proyecto que beneficiará directamente a los pobladores de la Comarca Puertas de Paris, contribuyendo de forma satisfactoria con la demanda de desabastecimiento, la que repercute en mejora de gran manera de impactos del desarrollo social de los habitantes de la comarca en estudio que estabiliza el ritmo de vida de cada uno de las personas.

El propósito de este estudio monográfico consiste en satisfacer la necesidad que tiene la comunidad de consumo de agua potable, es decir en hacer un estudio en las fuentes de agua existentes en la comunidad para determinar las condiciones de ésta y si está apta para el consumo humano.

Llevando a cabo este proyecto se pretende resolver el problema de la falta de agua potable y beneficiar directamente a la población de la comunidad.

1.4 Objetivo general

Diseñar el sistema de abastecimiento de agua potable, y saneamiento rural para la comunidad Puertas de París, municipio de San Pedro de Lóvago, departamento de Chontales"

1.4.1 Objetivos específicos

- ✓ Realizar el estudio socioeconómico para conocer las necesidades básicas de la población.
- ✓ Practicar aforos o pruebas de bombeo a las fuentes existentes, para optimizar la oferta de agua y suplir las demandas generadas por los habitantes en comunidad Puertas de París.
- ✓ Hacer levantamiento topográfico planimétrico y altimétrico de la comunidad.
- ✓ Analizar hidráulicamente la Red de Abastecimiento de Agua Potable propuesta mediante el uso del Software EPANET.
- ✓ Dimensionar las obras hidráulicas y cada uno de los elementos que requiere el acueducto, para mejorar la calidad del Servicio de Agua Potable de la comunidad.
- ✓ Revisar y diseñar el tipo de letrina más apropiado para cada vivienda, según las características del lugar.
- ✓ Elaborar planos y especificaciones técnicas del proyecto.
- ✓ Estimar los costos directos de las obras propuestas.

2.1 Normas y criterios utilizados para el diseño del proyecto

Los criterios utilizados en el diseño para los diferentes elementos del proyecto, están de acuerdo a lo establecido en los parámetros de diseños, comprendidos en los documentos siguientes:

- NTON 09 007-19. Norma obligatoria nicaragüense. Diseño de sistemas de Abastecimiento de agua potablei
- NTON 09 001-99. Norma técnica obligatoria nicaragüense para el Abastecimiento de agua potable en la zona rural.
- NTON 09 002-99. Saneamiento básico rural.
- NTON 09 003-99: Normas técnicas para el diseño de abastecimiento y potabilización del agua.
- NTON 09 007-19. Manual de operación y mantenimiento de sistemas de suministro de agua en el medio rural. Rural - INAA.
- GUIA FISE: Guía metodológica para la formulación y diseño de proyectos de agua potable y saneamiento.

2.2 Estudio Socioeconómico

Para obtener un óptimo desarrollo del proyecto, es necesario realizar un estudio socioeconómico que permita conocer las necesidades básicas y situación actual de la población en esta comunidad. Esta información se basará en el Manual de Administración del Proyecto – MACPM. Capítulo II PREINVERSION. (NUEVO FISE, 2007).

2.3 Aforo y calidad de agua

La necesidad creciente de utilizar el agua disponible, hacen necesario que ésta sea aprovechada con menores costos y sin desperdicio. Esto no puede lograrse si no se utilizan sistemas de medición adecuados (Ing. Mario Bazán, 2005).

Esto hace que para manejar el recurso hídrico de un curso de agua (río, canal, etc.) con distintos propósitos (agua potable, energía, riego, atenuación de crecidas, etc.) de una manera eficiente, requiera del conocimiento de la cantidad de agua que pasa por un lugar en un tiempo determinado, durante un período de años lo más largo posible.

De ahí que es menester lograr datos de campo confiables y lo suficientemente precisos que permitan estudiar y proyectar manejos del agua con el menor grado de incertidumbre posible para satisfacer las demandas cada vez más crecientes que tiene la humanidad.

Así, para una utilización eficiente del recurso hídrico de un curso de agua en su área de influencia, como primer paso se deben colocar las necesarias estaciones de medición del caudal (Estaciones de Aforos).

2.4 Estudios Topográficos

Es el conjunto de datos obtenidos en el campo y operaciones y cálculo realizados en gabinete, que se dibujan gráficamente en un plano elaborado a una escala determinada y que sirven para proyectar el sistema de agua potable.

El levantamiento topográfico del terreno debe reflejar con precisión los puntos principales, alturas, detalles y curvas de nivel. Se debe realizar una visita de campo al sitio, con el objeto de reconocer el área perimetral y preseleccionar los tipos de fuentes de abastecimientos probables que hay en el sitio.

También se investiga los sitios donde se pueden instalar los tanques de almacenamientos y de regulación. Una vez obtenida la información se procede a

realizar los levantamientos topográficos a detalle, elaboración de planos indicando carreteras, caminos, cambios de pendientes, altimetría y planta perfiles de las posibles líneas de conducción y distribución para la ubicación de válvulas de alivio y de limpieza.

2.5 Diseño de Abastecimiento de Agua en el medio Rural

El cálculo hidráulico se realizará siguiendo las Normas Técnicas obligatorias Nicaragüense de Sistemas de Abastecimiento de Agua Potable en el medio rural (NTON 09-001-99). Este documento ha sido actualizado y ampliado por el INAA (Instituto Nicaragüense de Acueductos y Alcantarillados), el cual contiene los principales criterios de diseño, para la elaboración de Proyectos de Agua Potable en la zona rural dispersa, y que comprende: Mini Acueductos por Gravedad (MAG), Mini Acueducto por Bombeo Eléctrico (MABE), Captaciones de Manantial (C.M), Pozo Excavado a Mano (PEM) y Pozo Perforado (PP) (INAA, 1999)

2.6 Fuentes de Abastecimiento

La fuente de abastecimiento para el suministro de agua potable, constituye el elemento más importante de todo el sistema, por tanto: debe estar lo suficientemente protegida y debe cumplir dos propósitos fundamentales.

- Suministrar agua en cantidad suficiente para abastecer la demanda de la población durante el período de diseño considerado.
- Mantener las condiciones de calidad necesarias para garantizar la potabilidad de la misma.

2.6.1 Manantiales

Los manantiales son puntos localizados en la corteza terrestre por donde aflora el agua subterránea Generalmente este tipo de fuentes, sufre variaciones en su producción, asociadas con el régimen de lluvia en la zona. En la mayoría de los casos, es de esperar que el caudal mínimo del manantial coincida con el final del período seco en la zona.

2.6.2 Pozo Excavado a Mano (PEM)

Esta opción resulta ser una solución tecnológica bastante apropiada para el suministro de agua para el sector rural disperso.

2.6.3 Pozo Perforado (PP)

Esta elección se considerará únicamente si las opciones PEM, MAG Y CM no se pueden aplicar. Corresponde a la utilización de un pozo perforado empleando una bomba manual.

2.7 Mini Acueductos por Bombeo Eléctrico (MABE)

Esta opción será considerada solo en los casos en que exista: (1) Disponibilidad de fuente de abastecimiento; (2) Disponibilidad de energía eléctrica y (3) Capacidad de pago de la comunidad. Si no se puede aplicar esta opción se procurará adoptar cualquiera de los otros tipos de sistemas. Si no existe otra opción técnica y económicamente más aceptable entonces se realizará la perforación de uno o más pozos.

2.7.1 Estaciones de Bombeo

En las estaciones de bombeo para pozos perforados deben considerarse los elementos que la forman lo que consiste en; caseta de protección de conexiones eléctricas, o mecánicas, conexión de bomba o sarta, fundación y equipo de bombeo (bomba y motor) y el tipo de energía.

2.7.2 Caseta de Control

La caseta de control se diseña de mampostería reforzada acorde a un modelo típico, incluyéndose la iluminación, ventilación y desagüe, tiene la función de proteger los equipos eléctricos y mecánicos.

2.7.3 Equipo de Bombeo y Motor

Bombas verticales

Los equipos de bombeo que generalmente se emplean para pozos perforados son los de turbina de eje vertical y sumergible.

Bombas Horizontales

Las bombas centrifugas horizontales generalmente se emplean para pozos llanos y con un nivel de agua no mayor de 5.5 m por debajo del centro de la bomba y con un límite máximo de aspiración que se fija con la presión atmosférica (INAA, 2004).

Motores Eléctricos

De acuerdo con el tipo de bomba a instalarse se tienen motores eléctricos verticales que se emplean para bombas centrifugas en pozos profundos, motores eléctricos sumergibles y motores para bombas horizontales con capacidad de uso corriente dados por los fabricantes que oscilan desde los 3, 5, 7, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125 hasta 200 HP, y de mayor capacidad.

Energía

De acuerdo a la capacidad de los motores eléctricos se recomienda los tipos de energía siguiente:

Para motores de 3 a 5 HP, emplear 1/60/110 energía monofásica.

Para motores mayores de 5 HP y menores de 50 HP se usará 3/60/220 y mayores de 50 HP se empleará 3/60/440, energía trifásica.

Conexión de sarta

La conexión de las bombas requiere de una serie de accesorios complementarios para lograr un funcionamiento satisfactorio del equipo de bombeo pueden ser los siguientes: Válvulas, caudalímetro, supresores del golpe de ariete, juntas, derivaciones, manómetros, niples, bloques de reacción tubos etc. Son elementos

que integrados a la estación mantienen el control de las diversas condiciones de operación

Se establecen los siguientes períodos para cada elemento del sistema:ii5. Según tabla **Nº** 1.

Tabla 1 - Período de diseño

Tipos de componentes	Período de diseño
Pozos perforados	20 años
Líneas de conducción	20 años
Tanque de almacenamiento	20 años
Red de distribución	20 años

Fuente. NTON 09 007 – 19. Norma Obligatoria Nicaragüense Inciso 6.5 Tabla 6

2.8 Demanda

Se define como la necesidad de adquirir un servicio de agua potable y saneamiento a la población de un área geográfica determinada que no dispone de asistencia o, dispone de él en forma deficiente y lo requiere para múltiples usos, como bebestible, alimentación, higiene personal, lavado de ropa, etc.

2.9 Líneas de Conducción y Red de Distribución

La línea de conducción y red de distribución, junto con la fuente, forman la parte más importante del sistema de abastecimiento de agua, ya que por su medio el agua puede llegar hasta los usuarios.

2.9.1 Línea de Conducción

La línea de conducción es el conjunto de ductos, obras de arte y accesorios destinados a transportar el agua procedente de la fuente de abastecimiento, es de la captación hasta la comunidad, formando el enlace entre la obra de captación

y la red de distribución. Su capacidad deberá ser suficiente para transportar el gasto de máximo día. Se le deberá proveer de los accesorios y obras de arte necesarios para su buen funcionamiento, conforme a las presiones de trabajo especificadas para las tuberías, tomándose en consideración la protección y mantenimiento de las mismas.

2.9.2 Golpe de ariete

Se le llama golpe de ariete al choque violento que se produce sobre las paredes de un conducto forzado (presión) cuando el movimiento del fluido (líquido) es modificado. Ocurre cuando el bombeo es interrumpido bruscamente, la columna de agua escurrirá en sentido viajando hacia la bomba.

El cierre rápido y automático de la válvula de retención creará condiciones para la presión en el punto más bajo, la sarta de la bomba, se eleve bastante, comprimido por la columna restante y animada por el movimiento invertido en el sentido de arriba hacia abajo (T-bomba). Es la fase de sobrepresión del golpe de ariete.

Al cerrarse una válvula, la parte final aguas debajo de una tubería crea una onda de presión que se mueve hacia el tanque de almacenamiento. El cerrar una válvula en menos tiempo del que toma las oscilaciones de presión en viajar hasta el final de la tubería y en regresar se llama "cierre repentino de la válvula". El cierre repentino de la válvula cambiará rápidamente la velocidad y puede resultar en una oscilación de presión. (Ver anexo 11). La oscilación de presión resultante de una abertura repentina de la válvula usualmente no es tan excesiva.7

2.9.3 Red de Distribución

La red de distribución es el sistema de conductos cerrados, que permite distribuir el agua bajo presión a los diversos puntos de consumo, que pueden ser conexiones domiciliares o puestos públicos.

2.9.4 Hidráulica del Acueducto

El análisis hidráulico de la red y de la línea de conducción, permite dimensionar los conductos que integran dichos elementos. La selección de los diámetros es de gran importancia, ya que, si son muy grandes, además de encarecer el sistema, las bajas velocidades provocarán problemas de depósitos y sedimentación; pero si es reducido puede originar pérdidas de cargas. La hidráulica del acueducto se calculará utilizando las normas rurales publicadas por el Instituto Nicaragüense de Acueductos y Alcantarillados (INAA).

2.10 Almacenamiento

Los depósitos para el almacenamiento en los sistemas de abastecimiento de agua tienen como objetivos; suplir la cantidad necesaria para compensar las máximas demandas que se presenten durante su vida útil, brindar presiones adecuadas en la red de distribución y disponer de reserva ante eventualidades e interrupciones en el suministro de agua.

2.11 Tratamiento y Desinfección

El suministro de Agua Potable para el sector rural procedente de fuentes superficiales, sean éstas pequeños ríos o quebradas, o afloramientos de agua subterráneas como los manantiales, pueden presentar características fisicoquímicas y bacteriológicas no aptas para el consumo humano, esto implica que se requiere de una serie de procesos unitarios con el objeto de corregir su calidad y convertirla en agua potable acorde con las normas establecidas.

Estos procesos unitarios se clasifican en pre tratamiento, tratamiento y post tratamiento.

2.12 Modelación en EPANET

EPANET es un programa de ordenador que realiza simulaciones en periodos prolongados del comportamiento hidráulico y de la calidad del agua en redes de

suministro a presión. Una red puede estar constituida por tuberías, nudos (uniones de tuberías), bombas, válvulas y depósitos de almacenamiento o embalses.

2.13 Letrinas

Se seleccionará el tipo de letrina a construir en cada una de las viviendas de la comunidad Se seleccionará un sistema sanitario adecuado que cumpla con las normas de salud, y que garantice una efectiva funcionalidad al momento de su uso para garantizar una mejor calidad de vida a los habitantes de la comunidad puertas de parís en el municipio de San Pedro de Lóvago en el departamento de Chontales.

Se seleccionará un sistema sanitario adecuado que cumpla con las normas de salud, y que garantice una efectiva funcionalidad al momento de su uso para garantizar una mejor calidad de vida a los habitantes de la comunidad puertas de parís en el municipio de San Pedro de Lóvago en el departamento de Chontales.

2.13.1 Soluciones básicas de saneamiento

Se consideran soluciones básicas de saneamiento en este menú, las destinadas a resolver las necesidades de tratamiento, disposición de excretas y lavado de manos en las comunidades rurales, encontrándose dentro de estas, las soluciones técnicas siguientes:

✓ Soluciones Secas

Incluye los diferentes modelos de letrinas secas mejoradas, acompañadas en cualquiera de sus variantes, por un lavamanos, Comprende todos los tipos de letrinas existentes; Letrinas de foso estándar sencilla sin revestir (LFE-SR), letrinas de fosa estándar sencilla con revestimiento (LFE –CR), letrina semi-elevada (LSE), Letrina Fosa Elevada (LE), Letrinas aboneras secas familiares (LASF) y Letrinas Aboneras Solares.

✓ Soluciones Húmedas

Consiste en un sistema con Inodoro de descarga hidráulica manual reducido, con una taza sanitaria de cerámica con sello hidráulico, con altura adecuada y anatómicamente confortable, un lavamanos, una red de recolección de aguas residuales (Grises y negras o solo negras), a través de una red de recolección de 4" Φ, PVC sanitario que conduce las aguas servidas provenientes del inodoro, ducha, lavamanos, lavanderos hacia un pozo séptico revestido parcial o totalmente.

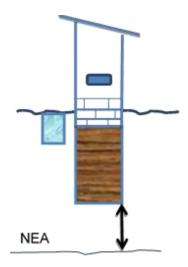
✓ Letrinas secas mejoradas

Tipo: Soluciones mejoradas de saneamiento in situ sin tratamiento.

Ámbito: Rural disperso, periferia pequeñas localidades, comunidades dispersas o concentradas en las que no se cuenta con un sistema de abastecimiento de agua potable o donde las soluciones de arrastre hidráulicas no son técnica o económicamente viables.

Descripción: Cualquier tipo de Letrina ventilada, con banco (anatómicamente confortable) de concreto, plástico o fibra de vidrio, con tapa; con descarga a un foso estándar, acompañada siempre de un lavamanos de material plástico, siempre adosado a la letrina, que descarga las aguas grises hacia un pequeño pozo de infiltración. En lugares donde exista servicio de agua domiciliar, este será equipado con llaves de suministro de agua.

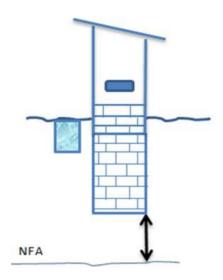
En todos los casos, la letrina debe ser construida alejada de la vivienda, usando en cada caso para las casetas, los materiales de cerramiento correspondiente; estructura metálica y forro de zinc liso o los materiales locales disponibles o accesibles en la zona (madera, fibrocemento, bambeo, etc)


Condiciones de implementación:

- Las viviendas o comunidad, no cuentan con un suministro de agua suficiente y permanente.
- Los suelos investigados exhiben tasas de infiltración efectivas nulas o menores que 10 litros/m2/día.
- Las fuentes de agua (pozos excavados, perforados o corrientes de agua superficial), se encuentran a distancias mayores que 20 metros del punto de localización final de la letrina.
- El terreno donde se construirá la letrina está libre de riesgo de inundaciones, derrumbes o anegamiento periódico.
- La vivienda cuenta con suficiente espacio para garantizar una separación mínima con relación a la vivienda de no menos de 5 metros.
- Las soluciones de arrastre hidráulico no resultan viable técnica ni económicamente.

A continuación, se describen los posibles tipos de letrinas que podrán ser ofrecidas a las familias rurales como soluciones básicas secas.

- LS 1 Letrina de Foso estándar sencilla sin revestir (LFE-SR) + Lavamanos
 - Foso excavado a partir del nivel natural del terreno.
 - Profundidad del nivel freático en época de lluvia mayor a 6 m
 - Terrenos estables.
 - Separación del fondo del foso con relación al nivel freático: 3 metros (mínimo).


Figura 1 - Letrina de Foso estándar sencilla sin revestir

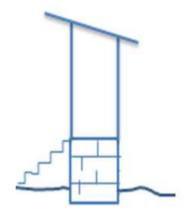
LS - 2 Letrina de Foso estándar sencilla Icon revestimiento + Lavamanos

- Foso excavado a partir del nivel natural del terreno.
- Profundidad del nivel freático en época de lluvia mayor a 6 m
- Terrenos inestables.
- Separación del fondo del foso con relación al nivel freático: 3 metros (mínimo).
- Revestimiento de mampostería


Figura 2 - Letrina de Foso estándar sencilla Icon revestimiento

LS -3. Letrina de Foso estándar sencilla semi elevada + lavamanos

- Foso con 1 m excavado a partir del nivel natural del terreno y 1 m construido sobre el nivel de terreno natural.
- Revestimiento de mampostería
- Condiciones geotécnicas del suelo sean adversas, cuando el nivel freático en invierno es muy somero (NF≥1.00m) o los resultados de las investigaciones de campo indican que los suelos en estado natural son extremadamente arcillosos, (sonsocuite) o muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.


Figura 3 - Letrina de Foso estándar sencilla semi elevada

LS -4 Letrina de Foso estándar sencilla

 Las letrinas elevadas se construirán cuando el nivel freático en invierno es muy somero (0.00 a 0.50m) o los resultados de las Investigaciones de campo indican que los suelos en estado natural son extremadamente arcillosos, (sonsocuite) o muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.

Figura 4 - Letrina de Foso estándar sencilla

LS -5 Letrina Abonera Seca Familiar

 Se construirán cuando el nivel freático es muy somero (0.00 a 0.50m), los resultados de las Investigaciones de campo indican que los suelos en estado natural son extremadamente arcillosos, (sonsocuite) o muy inestables (arenosos o gravosos sueltos), rocosos o muy difíciles de excavar.

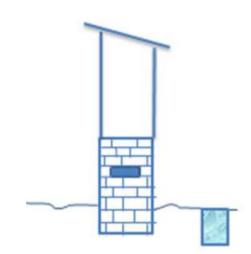


Figura 5 - Letrina Abonera Seca Familiar

2.14 Costo y presupuesto

Es el cálculo anticipado del costo total estimado para ejecutar la construcción, reparación o mantenimiento de un proyecto generalmente identificado en un período de tiempo determinado.

3.1 Estudio Básicos

El diseño del sistema de agua potable y saneamiento, se llevó en dos partes, una de estudios básicos de campo y la otra parte para procesamiento de datos, de gabinete.

3.1.1 Estudio Socioeconómico

Para obtener un óptimo desarrollo del proyecto, es necesario realizar un estudio socioeconómico que permita conocer las necesidades básicas y situación actual de la población en esta comunidad. Esto se realizará a través de una Encuesta Socioeconómica para proyectos de agua, facilitada por el Nuevo FISE

- a) Verifica usuarios beneficiarios.
- b) Procesa y analiza Encuestas de Beneficiarios
- c) Recoge información sobre la forma y costo del abastecimiento actual.
- d) Recoge información sobre los aportes comunitarios.
- e) Verifica la voluntad o disposición al pago de los beneficiarios.
- f) Estima los ingresos por vivienda beneficiaria.
- g) Estima la tarifa que puede ser pagada por el servicio.
- h) Evalúa la sostenibilidad económica del proyecto.
- i) Verifica situación de saneamiento (eliminación de excretas).

Este estudio se realizará principalmente para obtener la población actual y realizar la proyección futura para un periodo de 20 años. Esta información fue complementada con datos del Instituto Nicaragüense para la Información y Desarrollo (INIDE). El censo y encuesta socioeconómica en la comunidad Puertas de Paris del municipio de San Pedro de Lóvago fue realizada en el mes de

noviembre de 2021, casa a casa con el propósito de obtener datos reales y actualizados de la población, vivienda y aspectos socioeconómicos de la población para la realización del estudio. Con esta información se generaron datos básicos para desarrollar los cálculos y proyecciones necesarias para el proyecto.

La información recopilada en el campo mediante la encuesta socioeconómica fue procesada y los resultados obtenidos están representados por medio de gráficos y se pueden apreciar en el capítulo V a continuación.

3.1.2 Aforo y calidad del agua

Se realizó un aforo el 28 de septiembre de 2013 durante el cual se probaron tres (3) caudales diferentes. Cada caudal se mantuvo constante durante cuatro (4) horas, de manera que la prueba duró doce (12) horas. La relación de cada caudal con respecto al anterior fue de 1.5 a 2.0. litros por segundo, La prueba a caudal constante duró 12 horas. Al terminar ésta, se hizo medidas de recuperación durante un tiempo mínimo de cuatro (4) horas. Anexo III.

3.1.3 Levantamiento topográfico

Se realizará un levantamiento topográfico (altimetría, planimetría), con estación total, de la captación, la línea de conducción y el tanque, esto con el fin de ubicar los puntos de mayor y menor elevación que permita analizar la ubicación de la fuente y del tanque de almacenamiento.

Los estudios topográficos permitirán elaborar los planos topográficos, proporcionar información de base para los estudios de hidrología e hidráulica, posibilitar la definición precisa de la ubicación y establecer puntos de referencia para el replanteo durante la construcción.

3.1.4 Diseño hidráulico del sistema de agua potable

Con los datos poblacionales obtenidos del censo y los estudios básicos realizados, se realizó análisis hidráulico del sistema tomando en cuenta el estudio

topográfico y de la demanda de la población se diseñaron las obras hidráulicas del sistema para un periodo de 20 años.

El cálculo hidráulico se realizó siguiendo la NTON 09 007 – 19 Norma obligatoria Nicaragüense de Sistemas de Abastecimiento de Agua Potable, la NTON 09001-99 Norma de sistemas de abastecimiento de agua potable en el medio rural, la NTON 09003-99, Normas Técnicas para el Diseño de Abastecimiento y Potabilización del Agua brindadas por INAA, ente regulador del sector de agua potable y alcantarillado sanitario.

Con los resultados del análisis hidráulico, se procedió a diseñar cada uno de los componentes que conforman el sistema, así como tanque de almacenamiento, que corresponde al 35% del consumo promedio diario, según normas técnicas rurales de INAA, línea de conducción y red de distribución diseñada años.

3.1.5 Cálculo de población

Para el cálculo de las poblaciones futuras se aplicar el método geométrico, proyectado a 20 años y utilizando una tasa de crecimiento mínimo según normas de INAA del 2.5%, ya que el crecimiento proyectado según el INIDE del año (2015 al año 2021) es de 1 % en el municipio de San Pedro de Lóvago.

El crecimiento poblacional está expresado por la fórmula siguiente:

$$P_n = P_0 (1+r)^n$$

Dónde:

Pn = Población del año "n"

Po = Población al inicio del período de diseño

r = Tasa de crecimiento en el periodo de diseño expresado en notación decimal.

n = Número de años que comprende el período de diseño.

3.2 Período de Diseños

Para la selección del periodo de diseño se tomará como referencia lo especificado en la normativa vigente

Tabla 2 - de los diferentes componentes del sistema de abastecimiento de agua potable

Tipos de Componentes	Período de diseño
Pozos excavados	10 años
Pozos perforados	15 años
Captaciones superficiales y manantiales	20 años
Desarenador	20 años
Líneas de Conducción	15 años
Tanque de almacenamiento	20 años
Red de distribución	15 años

3.2.1 Dotación de agua

Se consideró una población servida directamente del 100% en todo el período de diseño por conexiones domiciliares, para lo cual, la NTON 09 007-19 establece una dotación de 80 lppd para población rural dispersa (Tabla 3 inciso 6.2.1.4).

3.3 Variaciones de consumo

Las variaciones de consumo se expresaron como factores de la demanda promedio diario, y sirvieron de base para el dimensionamiento de la capacidad de: obras de captación, línea de conducción, red de distribución y almacenamiento etc. Estos valores son los siguientes:

Consumo domestico (CD) = Pob * Dotac

Consumo promedio diario (CPD) = CD + CI + CInd + CC

Fugas (P) = 20% CPD

Consumo máximo día (CMD) = 1.5 CPD + P

Consumo máximo hora (CMH) = 2.5 CPD + P

3.3.1 Consumo doméstico

Consumo destinado para las necesidades de la vivienda ya sea preparación de alimentos, bebida, lavado de ropa, baño etc.¹⁵

3.3.2 Consumo institucional

Para diseños de sistemas rurales, el diseñador deberá considerar las demandas puntuales de instituciones que pudieran existir o estuvieran proyectadas en el área de influencia del proyecto, a fin de dotar las capacidades requeridas al sistema (Inciso 6.2.2 de la NTON 09 007 -19. En este caso no existen por lo que no fue considerado para los consumos de agua.

3.3.3 Pérdidas (Hf)

Son parte del agua que se produce en un sistema de agua potable y se pierde en cada uno de sus componentes, a esto se conoce con el nombre de fugas y/o desperdicio en el sistema. Dentro del proceso de diseño, esta cantidad de agua se puede expresar como un porcentaje del consumo del día promedio. En el caso de localidades con menos 500 viviendas, el porcentaje se fija en un 15% (NTON 09 007-19).

3.4 Estaciones de bombeo

En las estaciones de bombeo para pozos perforados deben considerarse los elementos que la forman lo que consiste en; caseta de control y protección de conexiones eléctricas, o mecánicas, conexión de bomba, sarta, fundación y equipo de bombeo (bomba y motor) y el tipo de energía.

3.4.1 Fundaciones de equipos de bombeo

La fundación del equipo de bombeo se diseña de acuerdo a las dimensiones y característica del equipo, generalmente es de concreto reforzado con una resistencia a la comprensión de 210 kg/cm² a los 28 días.

✓ Equipo de bombeo y motor

√ Bombas verticales

Los equipos de bombeo que generalmente se emplean para pozos perforados son los de turbina de eje vertical y sumergible multicelulares.

El caudal de explotación de bombeo estará en función de un período de bombeo mínimo de 12 horas y un máximo de 16 horas.

3.4.2 Diseño de bomba

✓ Pérdidas en la succión y descarga

Para el cálculo de las pérdidas en la succión y descarga de la bomba se aplicó la formula exponencial de Hazen – Williams, ampliamente utilizada, donde se despeja la gradiente hidráulica.

$$hf = 10.674 * \left(\frac{Q}{C}\right)^{1.852} * \frac{L}{D^{4.87}}$$

Dónde:

H= Pérdida de carga en metros

L= Longitud en metros

Q= Gasto en m³/seq

D= Diámetro en metros

C= Coeficiente de Hazen-Williams, cuyo valor depende del tipo de tubería utilizada.

✓ Carga Total dinámica

El cálculo de la carga total dinámica se realizó con las pérdidas en la tubería, la diferencia de nivel entre el tanque y el pozo, la altura de rebose del tanque y la profundidad del pozo.

$$CDT = Z + hf + hr + hp$$

Donde:

Z: Diferencia de Nivel.

hf: Pérdidas de carga.

hr: Altura de rebose de tanque.

hp: Profundidad del nivel de ubicación de la bomba en el pozo.

✓ Potencia

La potencia de la bomba se calculó con la ecuación.

$$NB = \frac{\text{y} * CTD * Q}{0.736 * 1000 * \varepsilon_B} * FM$$

Donde,

Y: peso específico N/m³.

CDT: carga dinámica total.

Q: caudal de diseño m³/s.

ε_B: eficiencia de la bomba %.

FM: factor de mayoración.

✓ Energía

Para motores de 3 a 5 HP, emplear 1/60/110 energía monofásica.

3.4.3 Línea de Conducción

La Norma "Diseño de Abastecimiento de Agua en el Medio Rural" (NTON 09-001-99) establece en el acápite 7.2 Línea de Conducción, que la capacidad de

abastecimiento deberá ser suficiente para transportar el gasto de máximo día (CMD) de los próximos 20 años.¹⁵

Para determinar el mejor diámetro (más económico) puede aplicarse la formula siguiente, ampliamente usada en los Estados Unidos de Norte América. (Similar a la de Bresse, con K=0.9 y n=0.45)

$$D = 0.9 (Q)^{0.45}$$

D= metros

 $Q = m^3/seq$.

Para el dimensionamiento de la tubería de las líneas de conducción se aplicará la fórmula exponencial de Hazen – Williams, ampliamente utilizada, donde se despeja la gradiente hidráulica.

$$\frac{H}{L} = S = \frac{10.67Q^{1.85}}{C^{1.85}D^{4.87}}$$

Donde:

H = Pérdida de carga en metros

L = Longitud en metros

S = Pérdida de carga en mt/mt

Q = Gasto en m³/seg

D = Diámetro en metros

C = Coeficiente de Hazen-Williams, cuyo valor depende del tipo de tubería utilizada.

Así mismo, se crearon las consideraciones necesarias para prevenir las condiciones de golpe de ariete.

3.4.4 Golpe de ariete

Considerando un cierre brusco de energía la presión máxima que se da en el punto más bajo de la línea el que se ubica al nivel de la estación de bombeo, el golpe de ariete se calculó aplicando la fórmula 23 de Lorenzo de Allievi:

$$\Delta H = \frac{CV}{g}$$

$$C = \frac{9900}{\sqrt{48.3 + k\frac{\emptyset}{e}}}$$

Dónde:

C: Celeridad (m/s). Considerando C ≤ 1000 m/s.

D: Diámetro de la tubería (m).

e: espesor de la tubería (m).

k: 18. Cálculo del Coeficiente K, que tiene en cuenta los módulos de elasticidad

ΔH: Sobrepresión o Golpe de Ariete (m).

V: Velocidad media del agua (m/s).

g: Aceleración de la Gravedad (m/s²).

El cálculo del tiempo de cierre (T) se realiza suponiendo las peores condiciones de funcionamiento; la cual indicaría un cierre inmediato de la válvula de presión, obteniendo la sobrepresión máxima.

$$T = \frac{2L}{C}$$

$$Pt = \Delta H + CED$$
,

donde

Pt: Presión máxima total.

3.4.5 Almacenamiento

La capacidad del tanque de almacenamiento se estimará un 20% del consumo promedio diario, (volumen compensador) y un 15% del consumo promedio diario, (volumen de reserva) de tal manera que la capacidad del tanque de almacenamiento se estimará igual al 35% del CPD. Estará ubicado lo más cercano

posible de la comunidad, el área deberá estar cercada y se localizará a una altura que permita regular la presión de servicio.

En el diseño de los tanques sobre el suelo de concreto ciclópeo (mampostería de piedra bolón), y debe considerarse lo siguiente.

- a) La entrada y salida de agua es por medio de tubería compartida, esta se ubicará en un extremo del tanque.
- b) La tubería de rebose descargará libremente sobre una plancha de concreto para evitar la erosión del suelo.
- c) Se instalarán válvulas de compuerta en todas las tuberías, limpieza, entrada y salida con excepción de la de rebose, y se recomienda que las válvulas y accesorios sean tipo brida.
- d) Se debe de considerar los demás accesorios como; escaleras, respiraderos, indicador de niveles y acceso con su tapadera.
- e) Se recomienda que los tanques tengan una altura máxima de 3 metros, con un borde libre de 0.50 metros y deberán estar cubiertos con una losa de concreto.

3.4.6 Tratamiento y desinfección

✓ Calidad del agua

La fuente de agua a utilizarse en el proyecto, se le deberá efectuar por lo menos un análisis físico, químico, de metales pesados cuando se amerite y bacteriológico antes de su aceptación como tal.

b) Los parámetros mínimos de control para el sector rural serán: coliforme total, coliforme fecal, olor, sabor, color, turbiedad, temperatura, concentraciones de iones de hidrógeno y conductividad.

c) El análisis de las fuentes de agua tales como manantiales, pozos perforados, pozos excavados a mano deberán cumplir con las normas de calidad del agua vigente aprobada por el INAA y MINSA.

✓ Aplicación de cloro

El hipoclorito de sodio se aplicará diluyendo previamente la solución concentrada de fábrica hasta una concentración máxima de 1% al 3%. Para su dosificación se usará un clorador de fabricación nacional (CTI – 8).

√ Tiempo de contacto

Se recomienda que el tiempo de contacto entre el cloro y el agua sea de 30 minutos antes de que llegue al primer consumidor; en situaciones adversas se puede aceptar un mínimo de 10 minutos.¹⁶

La concentración de cloro residual que debe permanecer en los puntos más alejados de la red de distribución deberá ser 0.2-0.5 mg/l después del período de contacto antes señalado.

Dentro de la selección de alternativas de saneamiento consideramos dos tipos de alternativas, cada una de las cuales tiene a su vez diferentes tipos de soluciones, para seleccionar la alternativa adecuada hemos hecho uso del Menú de soluciones básicas de saneamiento facilitado por FISE.

El Menú considera aspectos socios económicos de la comunidad y las familias; así como, condiciones y criterios técnicos hidrológicos, hidrogeológicos, geotécnicos y ambientales tales como:

- Disponibilidad de agua en cantidades suficientes y permanentes.
- Características geotécnicas de los suelos
- Permeabilidad y Tasa de infiltración de los suelos.

Tabla 3 Volúmenes necesarios de soluciones al 1% para dosificar 1.P.P.M (Una parte por millón de cloro a diferentes volúmenes de agua.)17

Volumen de agua por tratar en Litros	Volumen de la solución al 1%		
100	10 mililitros		
200	20		
300	30		
400	40		
500	50		
1000	100		
2000	200		
3000	300		
10000	1.0 Litros		
15000	1.5		
20000	2.0		

3.4.7 Red de distribución

La red de distribución es una red abierta, la cual se analizó para que funcionara por gravedad.

Para su diseño se realizó para las condiciones más desfavorables, con el fin de asegurar su correcto funcionamiento para el período de diseño. Se consideraron los aspectos siguientes:

El sistema **Fuente-Tanque-Red** (red por gravedad) se diseñó para la condición del consumo de hora máxima al final del periodo de diseño.

El caudal correspondiente al consumo máximo diario es bombeado hacia el tanque de almacenamiento. La red demandará del tanque el consumo de máxima hora.

El tanque trabajará con una altura que permitirá dar presiones residuales mínimas establecidas en todos los puntos de la red.

✓ Diámetro mínimo

El diámetro mínimo debe ser de 50 mm, según NTON 09 007-19, siempre y cuando se demuestre que su capacidad sea satisfactoria para atender la demanda máxima. En zonas rurales donde se determine que no habrá crecimiento poblacional se puede usar en diámetro mínimo de 37.5 mm.

El diámetro de las conexiones y de los grifos serán de ½" (12 mm).

✓ Análisis y cálculo hidráulico de la red

Para el análisis hidráulico de la red se utilizó el software EPANET 2.0 español, utilizando la fórmula de Hazen Williams que dispone el programa, se efectuó el análisis para CMH (consumo máxima hora) y cero horas de la red de distribución y CMD (consumo máximo día) en la línea de conducción, a través del cual se obtuvo el comportamiento hidráulico del sistema, determinando las velocidades y presiones a las que estarán sometidas las tuberías en el sistema.

Aunque el modelo EPANET, permite analizar el comportamiento en un periodo de tiempo determinado, se tendría que contar con datos adicionales como lo son curvas de tiempo de zonas cercanas que permitan evaluar la variación de consumo de la población en el sitio, para establecer un análisis en periodo de tiempo extendido. Dichos datos no se encontraron disponibles para la comunidad de Puertas de París, ni para San Pedro de Lóvago.

Habiendo aclarado lo descrito anteriormente, los resultados que se presentan corresponden a los análisis en períodos permanentes.

✓ Presiones máximas y mínimas.

Para dar presiones adecuadas en el funcionamiento del sistema de abastecimiento se recomienda que éstas se cumplan dentro de un rango permisible, en los valores siguientes:

Presión mínima: 5.0 m. Presión máxima: 50.0 m.

Tabla 4 Coeficiente de rugosidad

Material del conducto	Coeficiente de rugosidad (C)
Tubo de hierro galvanizado (HºGº)	100
Tubo de hierro fundido (H°F°)	130
Tubo de cloruro de polivinilo (PVC)	150

Fuente: NTON 09001-99. Norma técnica obligatoria nicaragüense para el abastecimiento de agua potable en la zona rural.

√ Velocidades permisibles en tuberías

Las velocidades del flujo para evitar erosión interna o sedimentación en las tuberías estarán entre los valores permisibles siguientes (NTON 09001-99):

Velocidad mínima = 0.40 m/s Velocidad máxima= 2.00 m/s

√ Cobertura de tuberías

En cruces de carreteras y caminos con mayor afluencia de tráfico, se mantendrá una cobertura mínima de 1.20 m sobre la corona de la tubería y en caminos de poco tráfico una cobertura de 1 m sobre la corona del tubo.¹⁵

√ Pérdidas de agua en el sistema

Dentro del proceso de diseño, esta cantidad de agua se puede expresar como un porcentaje del consumo del día promedio. En el caso de ciudades y localidades

con menos de 500 viviendas, el porcentaje se fija como un porcentaje del consumo promedio diario cuyo valor no deberá ser mayor del 15%. (NTON 09 007-19).

3.4.8 Sistema de Saneamiento.

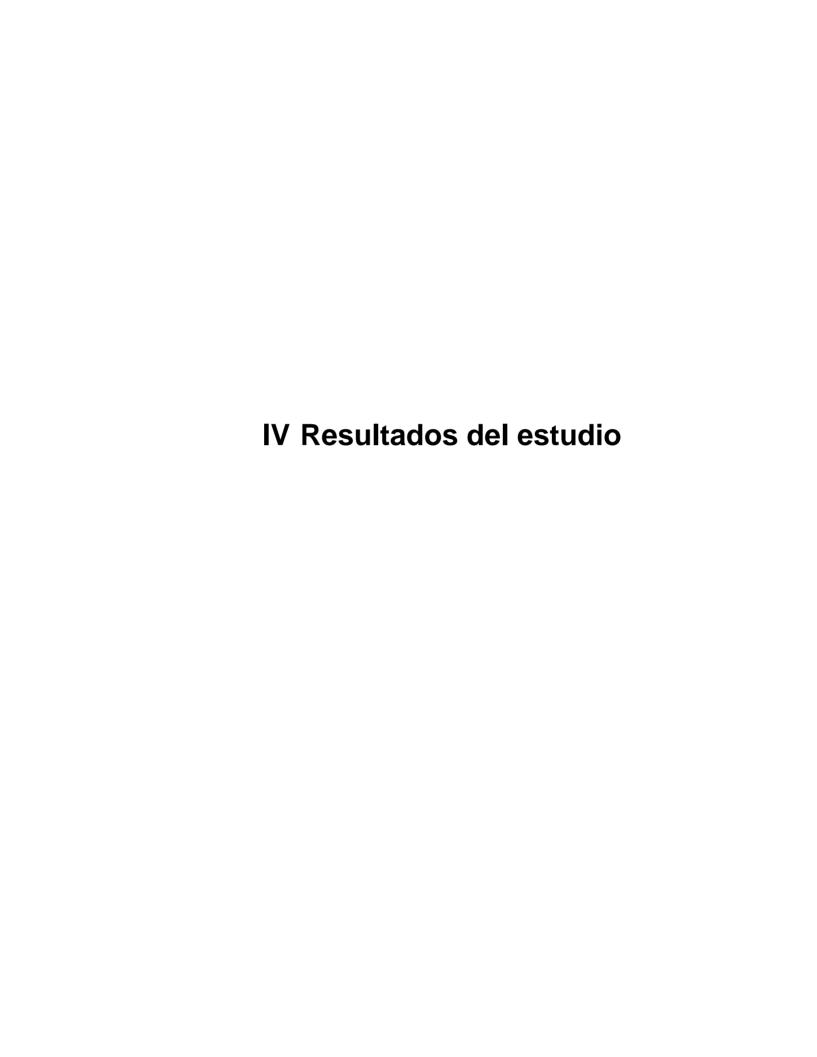
Dentro de la selección de alternativas de saneamiento se consideraron la alternativas, cada una de las cuales tiene a su vez diferentes tipos de soluciones, para seleccionar la alternativa adecuada se hizo uso del Menú de soluciones básicas de saneamiento del FISEiii.

El Menú considera aspectos socios económicos de la comunidad y las familias; así cómo, condiciones y criterios técnicos hidrológicos, hidrogeológicos, geotécnicos y ambientales tales como:

- Disponibilidad de agua en cantidades suficientes y permanentes.
- Características geotécnicas de los suelos
- Permeabilidad y Tasa de infiltración de los suelos
- Profundidad del nivel freático, riesgo de contaminación de las fuentes de aguas y obras de agua potable.

Para elegir la solución adecuada, se hizo uso de la matriz de selección, del menú de soluciones básicas del FISE.

3.4.9 Elaboración de planos


Se elaboraron los planos en AutoCAD para el diseño del proyecto de agua y saneamiento en forma general, que demuestre cada una de las dimensiones de los elementos que componen el sistema.

3.4.10 Especificaciones técnicas de construcción

Se elaboraron según los planos correspondientes a cada obra a ejecutarse en el proyecto y normas que rigen a los proyectos de agua potable y saneamiento.

3.4.11 Elaboración del presupuesto

Se elaboró por medio del cálculo de volúmenes de obra conveniente a cada etapa a desarrollarse a lo largo del proyecto y sus respectivos costos. Se cotizó los precios unitarios en diferentes sitios de distribución de materiales; entre ellos: sitios ferreteros y agro servicios además se utilizó la guía de costos maestros 2018 del FISE.

4.1 Caracterización del municipio de San pedro de Lóvago

El municipio de San Pedro de Lóvago se localiza a 181 kilómetros al sur este de la ciudad capital Managua, tiene una superficie de 467 km² y una población de 7650 habitantes con una densidad poblacional de 16.38 hab/km². La ciudad de San pedro de Lóvago es conocida como "La capital de la paz". (Fuente: Alcaldía Municipal).

La topografía del municipio de San Pedro de Lóvago es ondulada con elevaciones montañosas y mesetas de considerable altura.

El relieve es variado, el cual está condicionado a las particularidades morfo estructurales que presenta el territorio. Con altura promedio de 326 msnm

4.1.1 Límites de municipio

San pedro de Lóvago limita al norte, con los municipios de la Libertad y Santo Domingo al sur con municipios de Santo Tomas y Acoyapa, al este con el municipio de Santo Tomas y al oeste con el municipio de Juigalpa (Figura. 1).

4.1.2 Referencia Geográfica

La comunidad Puertas de Paris pertenece al municipio de San Pedro de Lóvago, departamento de Chontales, ubicad a 8 Km de la cabecera municipal San Pedro de Lóvago, a 14 km del municipio de Santo Tomas, a 53 Km del municipio de Juigalpa y a 181 km de capital Mangua (Figura. 2).

4.1.3 Posición geográfica

A mayor escala, podemos precisar que la comunidad Puertas de Paris, se encuentra localizada en las coordenadas. Latitud: 12.1366 Longitud: -85.1686.

Figura 6 Macro localización

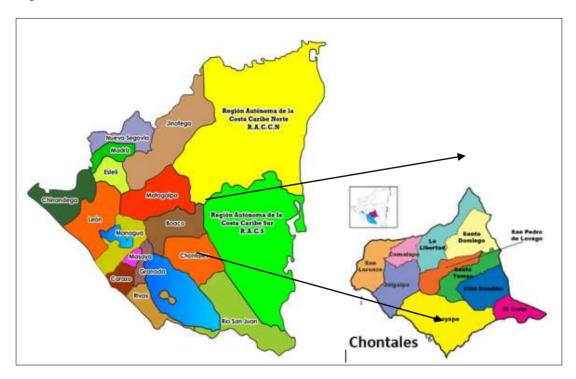
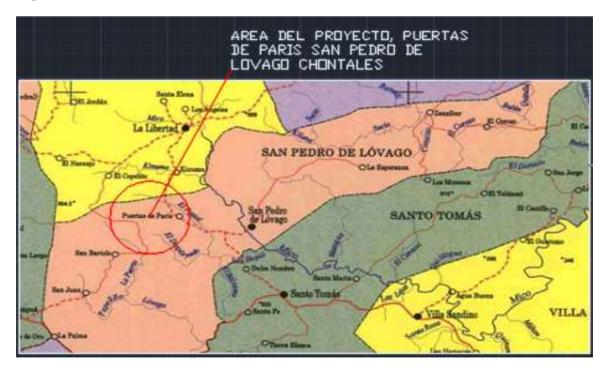



Figura 7 Macro localización

4.1.4 Población

La población actual de la comunidad Puertas de Paris es de 262 habitantes, a la

fecha de acuerdo a datos levantados casa a casa en noviembre de 2022 en que

se detalla los siguientes datos, correspondiente a 105 mujeres y 157 hombres,

equivalente a 63 familias.

4.1.5 Categoría de pobreza

La comunidad es considerada como un asentamiento humano espontaneo con

altos índices de hacinamiento, construcciones en lugares vulnerables y altos

índice de pobreza.

4.2 Caracterización de la comunidad Puertas de Paris

La comunidad Puertas de Paris se encuentra ubicada en el municipio de San

Pedro de Lóvago, en el departamento de Chontales.

En dicha comunidad la mayoría de la población vive de la agricultura y ganadería.

El acceso a la comunidad se da por una carretera de todo tiempo. Una de los

mayores problemas que más afectan a la población es el suministro de agua

potable, ya que se abastece de pozos artesanales que reducen su caudal en la

época de verano y no cumplen con los parámetros aptos para consumo humano.

4.2.1 Limites

La comunidad Puertas de Paris, se ubica en el municipio de San Pedro de Lóvago,

departamento de Chontales y sus límites son:

Norte: Con las comunidades de Quinuma y Palo Solo

Sur: Con la comunidad de Cunaqua

Este: Con las comunidades de Cunagua y Palo Solo

Oeste: Con la comunidad de San Bartolo

38

4.2.2 Clima y relieve predominante

✓ Clima

El clima que se manifiesta en la comunidad es tropical húmedo, al igual que todo el municipio de San Pedro de Lóvago. Este clima se caracteriza por presentar un régimen de lluvias entre los 1500 y 2000 mm anuales, con una temperatura media anual de 26°C con un máximo de 34°C en el mes de abril y un mínimo de 23°C en los meses de noviembre a enero. La humedad relativa media anual es aproximadamente de 66.8%, siendo las humedades relativas más bajas se registran en el mes de abril con 43% y las más altas en el mes de octubre con 88%.

✓ Relieve (Geomorfología)

El relieve de esta comunidad se caracteriza por presentar una formación de relieve de tipo, zona montañosa cuya altitud varía entre 315 y 600 msnm; las pendientes son mayores al 12%, características de los sistemas montañosos. En esta zona predomina el cultivo de pastos asociados a la ganadería, y la agricultura temporal.

4.2.3 Acceso, a la comunidad

✓ Vialidad

La principal vía de acceso a la comunidad es sobre la carretera panamericana Managua, hacia el Rama, girando a la izquierda en el municipio de Santo Tomas ubicándose a 14 km hasta la comunidad Puertas de Paris carretera de todo tiempo que conduce del Municipio del Santo Tomas al municipio de la Libertad Chontales.

✓ Saneamiento

La comunidad Puertas de Paris cuenta con servicio de agua de un pozo comunal perforado dotado con bomba de mecate, ubicado <u>a 1546.2 metros del sitio donde se ubicó el tanque de almacenamiento</u>. El 47.62% de la población se abastece del pozo comunal y el resto de pozos privados, de quebrada entre otros. El acarreo del agua lo realizan las mujeres y los niños.

La mayor parte de la población poseen letrina, pero en su mayoría se encuentran de en mal estado y algunas familias no poseen letrinas y defecan al aire libre.

Además, existen tenerías, las cuales carecen de un sistema de manejo y tratamiento de los desechos residuales producidos. La forma en que se manejan los desechos residuales está causando la contaminación de fuentes de agua como el río Mico, en el cual son depositados y vertidos los desechos sólidos y líquidos producto de la actividad tendera. Esto además fomenta la proliferación de focos infecciosos, poniendo en peligro la salud de los habitantes de la Comunidad, principalmente la población infantil que sufre de enfermedades diarreicas e infecciosas.

4.3 Resultados socioeconómicos

4.3.1 Población

La localidad de Puertas de París, en el año 2022 contaba con una población aproximada de 262 habitantes, con una densidad de (4.15 a 5 hab/vivienda). La población se encuentra ubicada en viviendas concentradas y otras semi dispersas.

La principal actividad de los pobladores es la agricultura y ganadería, en menor escala el comercio. Según encuestas aplicadas a las familias, el ingreso promedio familiar es de C\$ 2000/mes.

En la comunidad Puertas de Paris existe una población de 262 habitantes de los cuales 105(40%) son mujeres y 157 (60%) son varones. (Tabla 5, 6 y figura 8).

Tabla 5 Población

Población					
Hombres 157 60%					
Mujeres 105 40%					
Total	262	100%			

Fuente: Encuesta socioeconómica realizada en la comunidad Puertas de Paris

Figura 8 Población por sexo

Tabla 6 - Rango de edades de la población

	Rango de edades					
Comunidad	De 1 a 5 años	De 6 a 15 años	De 16 a 25 años	De 26 a 60 años	> de 60 años	Población total
Puertas de París	37	54	46	91	34	262

Fuente: Encuesta socioeconómica realizada en la comunidad Puertas de Paris

En la comunidad Puertas de Paris a mayor población se ubica en el rango entre 26 a 60 años de edad teniendo este rango un 34.73% de la población, seguida por un 20.61% de la población entre 6 a 15 años, con un 17.6% la población mayor de 16 a 25, con un 14.12% la población igual o menor de 5 años de edad. Y con un 13% la población mayor de 60 años.

4.3.2 Vivienda

Las viviendas demandantes del proyecto de agua y saneamiento son 63, una escuela y una iglesia que albergan a igual número de familias, de las cuales el 100% pertenecen a la comunidad Puertas de París. (Tabla 7 y figura 9).

Tabla 7 Estado de vivienda

Estado de la vivienda				
Viviendas totales	63	100.00%		
Buen estado	20	31.75%		
Regular 28 44.44%				
Mal estado	15	23.81%		

Fuente: Encuesta de la comunidad Puertas de París

Figura 9 Estado de la vivienda

4.3.3 Situación actual del suministro de agua

La comunidad Puertas de Paris cuenta con servicio de agua de un pozo comunal perforado. Este pozo está en la comunidad a la orilla del camino de acceso que cruza la localidad, en las coordenadas E 699637.195 y N 1341570.984 con una elevación de 331 msnm. Está dotado de una bomba de mecate.

El 47.62% de la población Puertas de Paris se abastece de agua de un pozo comunal perforado, el 33.33% de pozos privados, el 7.94% de quebrada y el 11.11% de la población se abastece del vital líquido de ojos de agua, el acarreo de agua no es equitativo, ya que el 52.38% la acarrean las mujeres, un 25.40% los niños y el 22.22% la acarrean los hombres (Tabla 8, 9 y figura 10, 11).

Tabla 8 Abastecimiento de agua

Abastecimiento de agua						
Quebrada Pozo comunal perforado Pozo privado De ojo de agua Total						
5	30	21	7	63		
7.94%	47.62%	33.33%	11.11%	100.00%		

Figura 10 - Acarreo de agua

Tabla 9 Acarreo del agua

Acarreo de agua						
Hombre Mujer Niños Total						
14 33 16 63						
22.22% 52.38% 25.40% 100.00%						

Acarreo de agua

120.00%

100.00%

80.00%

60.00%

22.22%

25.40%

20.00%

0.00%

4 Hombre Mujer Niños Total

Figura 11 - Acarreo de agua

4.3.4 Calidad del agua de consumo actual

El 47.60% de la población de la comunidad Puertas de Paris expresó que el agua que actualmente consume es buena, el 39.70% que es regular y el 12.70% que el agua es de mala calidad; respecto a las características físicas del agua, el 20.63% expresó que el agua que consumen tiene mal sabor, el 9.5% que tiene mal olor, 15.87% que tiene mal color y el 54.00% expresó que el agua no presenta ni mal sabor, mal olor, ni mal color (Tabla 10, 11 y figura 12, 13).

El 100% de la población de la comunidad Puertas de Paris según el levantamiento de información a través de encuestas socioeconómicas expresaron que les gustaría tener el servicio de agua potable en sus hogares y manifestaron que estaban dispuestos a pagar por el servicio de agua.

Tabla 10 Calidad del agua

Calidad del agua					
Buena Regular Mala Total					
30	25	8	63		

47.60%	39.7%	12.7%	100.00%
T1.0070	33.1 /0	12.7 /0	100.0070

Fuente: Encuesta socioeconómica realizada en la comunidad Puertas de Paris

Figura 12 Calidad del agua

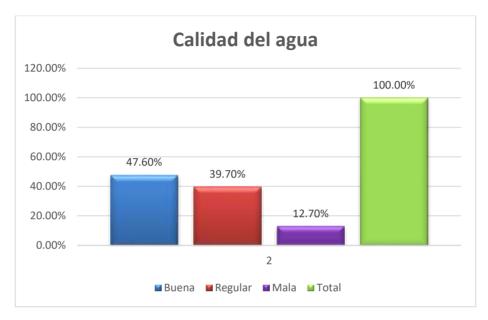


Tabla 11 Características físicas del agua

Características físicas del agua					
Mal sabor Mal olor Mal Color Ninguna Total					
6	13	10	34	63	
9.50% 20.63% 15.87% 54.00% 100.00%					

Fuente: Encuesta socioeconómica realizada en la comunidad Puertas de Paris

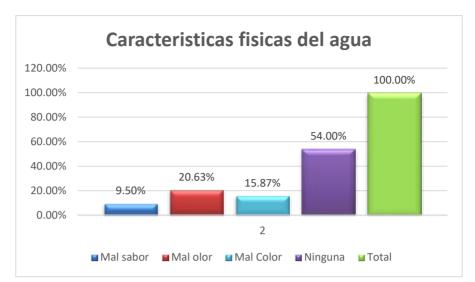


Figura 13 Características físicas del agua

4.3.5 Disposición de excretas

El 76.20% de la población poseen letrina, pero el 54.17% de estas se encuentran en mal estado, el 25.00% en estado regular, el 20.83% en buen estado y el 23.80% de la población total no posee letrinas (tabla 12, 13 y figura 14, 15).

Tabla 12 Situación del saneamiento básico8

Situación de saneamiento (Letrinas)				
Tienen letrinas Porcentaje Cantidad				
Sí	76.20%	48		
No	23.80%	15		
Total	100%	63		

Fuente: Encuesta socioeconómica realizada en la comunidad Puertas de Paris

Tabla 13 Estado de las letrinas

Figura 14 Situación

Estado de Letrinas				
Buena	20.83%	10		
Regular	25.00%	12		
Mala	54.17%	26		

de letrinas

Figura 15 Estado de letrinas

4.3.6 Educación

En cuanto al nivel académico de la comunidad cuentan con un 49.80% de la población con conocimientos de primaria, un 16.05% tienen estudios secundarios,

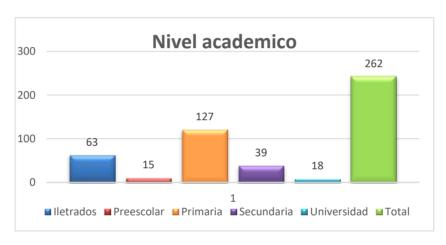

un 3.71% con estudios universitarios y un 25.92% son iletrados, teniendo en cuenta que un 4.53% se encuentra en preescolar (tabla 14 y figura 16).

Tabla 14 Nivel académico

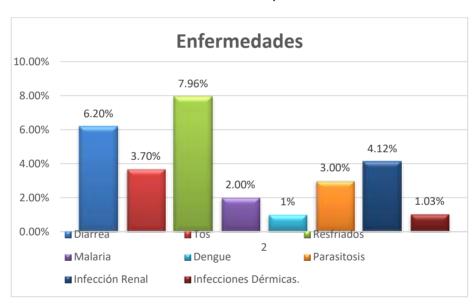
	Nivel acad	émico				
Comunidad	Iletrados	Preescolar	Primaria	Secundaria	Universidad	Total
Puertas de Paris	63	15	127	39	18	262

Fuente: Censo familiar realizado en enero 2019.

Figura 16 Nivel académico

4.3.7 Organización comunitaria

En la comunidad existe el concejo de Liderazgo Sandinista (CLS) formado por 8 miembros, el comité de agua potable y saneamiento (CAPS) existen organizaciones comunitarias. (Tabla 15 y figura 17).


Tabla 15 Enfermedades en la población de la comunidad Puertas de Paris8

Enfermedades	N⁰ de casos	Porcentaje
Diarrea	15	6.20%

Tos	9	3.70%
Resfriados	19	7.96%
Malaria	5	2.00%
Dengue	3	1%
Parasitosis	7	3.00%
Infección Renal	16	4.12%
Infecciones Dérmicas.	4	1.03%

Fuente: Encuesta socioeconómica realizada en la comunidad Puertas de Paris

Figura 17 Gráfico de las enfermedades en la población Puertas de Paris

De los 262 habitantes de la comunidad Puertas de Paris el 39.69% padecen algún tipo de enfermedad y el 60.31% manifestaron que no padecen ningún tipo de enfermedad.

4.3.8 Situación Ocupacional

La actividad económica predominante de la zona son las labores agrícolas, cultivando, Frijoles, maíz, trigo, sandia, cebolla y ayote. También se dedican en

un segundo orden a la crianza del ganado vacuno para subsistencia y en menor grado al comercio (Tabla 16 y figura 18).

Tabla 16 actividades económicas de la población Puertas de Paris

Actividades económicas de la comunidad puertas de Paris			
Actividades	Cantidad	Porcentaje	
Agricultura	181	69%	
Ganadería	34	13%	
Comercio	29	11%	
Otros	18	7%	

Figura 18 Actividades económicas de la comunidad Puertas de Paris

4.3.9 Ingreso mensual por familia

De acuerdo a resultados en análisis de censo y encuesta socioeconómica indica que el ingreso promedio mensual por familia es de C\$ 2000.00 córdobas, además de esto el 100% de la población de la comunidad está de acuerdo en pagar el consumo mensual de la vivienda, siempre y cuando exista micro medición.

4.3.10 Servicios básicos

Energía eléctrica: del total de la población de Puertas de Paris, solamente el 80%, cuenta con servicio de energía eléctrica domiciliar a cargo de la Empresa DISSUR, y el 20%, no cuenta con el servicio de energía eléctrica.

Telecomunicaciones: No cuenta con el servicio público de telefonía fija, y la comunicación celular (Movistar y claro) es muy deficiente, dado que solo existe señal en los puntos más altos de la comunidad.

4.4 Estudios básicos

4.4.1 Aforo

El tipo de fuente gestionada por la comunidad y seleccionada por el equipo técnico es un pozo perforado, el cual se encuentra en las coordenadas UTM: 699637.195; 1341570.984 a una altura de 331 msnm, según la población es la única fuente disponible ya que tiene el caudal suficiente para abastecer a la población de la comunidad Puertas de Paris.

TECNOBOMBAS realizó la prueba de bombeo en la que recomiendan explotar el pozo con un caudal de 35 gpm. Ver anexo III-1. Informe de prueba de bombeo

4.4.2 Calidad de agua

Los resultados de calidad de agua se presentan en tabla 17

Tabla 17 Resultados analíticos Físico – Químicos

N	Dorámetros	Unidades	Pozo Perforado Puertas de París	Normas CAPRE
No	lo Parámetros Uni		Concentración Obtenida	Límite de Máximo Admisible
Resultados analíticos Físico – Químicos				
1	Ph	Unidad	7.59	6.5 a 8.5
2	Turbiedad	NTU	0.033	5
3	Color verdadero	UC	<1.00	15
4	Nitratos	mg/l	6.99	50
5	Nitritos	mg/l	<0.009	0.1
6	Cloruros	mg/l	49.20	250
7	Hierro Total	mg/l	0.023	0.3
8	Dureza total	mg/l	275.44	400
9	Calcio	mg/l	60.31	100
10	Magnesio	mg/l	30.37	50
11	Flúor	mg/l	0.305	0.7
12	Sodio	mg/l	18.0	200
13	Potasio	mg/l	0.39	10
14	Amonio	mg/l	0.09	0.5
15	Arsénico	mg/l	<0.007	0.01
16	Mercurio		<0.001	0.001
17	Cianuro		<0.02	0.05
18	Coliforme Total	(NMP/100 ml)	>1.6x10 ⁵	
19	Coliforme Fecal	(NMP/100 ml)	>1.6x10 ⁵	
20	E.Coli	(NMP/100 ml)	>1.6x10 ²	

Fuente: Laboratorios Ambiental de la Universidad Nacional de Ingeniería (UNI)

Clave: <rd = menor del rango de detección <ld = menor del límite de detección Los exámenes se realizaron en el Laboratorios Ambiental de la Universidad Nacional de Ingeniería (UNI)

- El agua analizada del pozo perforado de la Comunidad Puertas de Paris

4.5 Estudios topográficos

Se realizó un levantamiento topográfico, en el cual se utilizó una estación total Leica TS06 con su respectivo bastan prisma, brújula y una cinta métrica para medir la altura de la estación, se levantó la línea de conducción (impulsión), el sitio propuesto para el tanque de almacenamiento, viviendas del proyecto y red de distribución.

Según el levantamiento topográfico, se determinó que el proyecto atiende al 100% de la población de la comunidad Puertas de Paris 63 viviendas 2 capillas y una escuela.

4.6 Proyección de población y consumo

Por medio del método de progresión geométrica (Pn = Po (1+r)ⁿ) se estimó que dentro de 20 años existirán un total de 429 habitantes en condiciones normales de crecimiento. Se estableció una tasa de crecimiento poblacional anual del 2.5% dado a que la tasa de crecimiento poblacional en el municipio del municipio de San Pedro de Lóvago es de 1% según el INIDE.

Tabla 18 Datos para la proyección de la población y consumo

Da	Datos para la proyección de la población y consumo			
1	Tasa de crecimiento (r) = 2,5 %			
2	Dotación = 80 lppd Nueva Norma			
3	Población inicial (Po) Puertas de Paris= 262 habitantes.			
4	Pérdidas = 15%			
9	Período de diseño = 20 años. (n)			

4.6.1 Proyección de la población

Se calcula la población a servir durante la vida útil del proyecto en este caso 20 años, mediante el método geométrico.

$$P_n = 262 * (1 + 0.025)^{20}$$

$$P_n = 431 habitantes$$

4.6.2 Variaciones de Consumo

✓ Dotación

Para Sistemas de abastecimiento de agua potable, por medio de conexiones domiciliares, se asignó un caudal de 80 lppd.

√ Consumo domestico

$$CD(2043) = Pob * Dotacion = 34480 l/día$$

$$CD(2043) = 0.398 l/s$$

✓ Consumo Institucional (C_{ins})

En la zona de estudio no existen industrias ni centros de comercio representativos por lo que, para el diseño solamente se consideró el consumo institucional, el cual se establece como el 7% del consumo doméstico según la NTON 009 07-19, por lo que:

$$C_{inst} = 7\% CD$$

$$C_{inst} = 7\% \ 0.3991 \ l/s$$

$$C_{inst} = 0.028$$

✓ Consumo promedio diario

El consumo promedio diario (CPD), se calculó sumando el consumo doméstico y el consumo institucional, en este caso se obtiene lo siguiente:

$$CPD = CD + C_{inst}$$

$$CPD = 0.3991 \ l/s + 0.028 l/s$$

$$CPD = 0.425 \ l/_{S}$$

✓ Pérdidas (Pf)

Las pérdidas por fugas volumétricas se calcularon en base a lo establecido en la normativa vigente, donde:

$$Pf = 15 \% CPD$$

 $Pf = 15 \% 0.4270$
 $Pf = 0.064 \frac{l}{s}$

✓ Consumo de máximo día (CMD)

$$CMD = (1.5 * CPD) + Pf$$

$$CMD = (1.5 * 0.425 l/s) + 0.0640 l/s$$

$$CMD = 0.702 l/s$$

✓ Consumo de máxima hora.

$$CMH = (2.5 * CPD) + hf$$

$$CMH = (2.5 * 0.425 \frac{l}{s}) + 0.0640 \frac{l}{s}$$

$$CMH = 1.13 \frac{l}{s}$$

Tabla 19 Proyección de población y dotación

N	AÑO	Proyección de Población	Dotación
---	-----	----------------------------	----------

0	2023	262	80
5	2028	296	80
10	2033	335	80
15	2038	379	80
20	2043	429	80

Tabla 20 – Consumos de agua

CD Dot*Hab (I/s)	Consumo Institucional 7% x CPD (I/s)	CPD Consumo Promedio Diario (I/s)	Pérdidas por Fugas (I/s) 15% CPD	Consumo Máximo Día (CMD)	Consumo Máximo Hora (CMD)
				l/s	l/s
0,243	0,017	0,260	0,039	0,428	0,688
0,274	0,019	0,294	0,044	0,485	0,778
0,311	0,022	0,332	0,050	0,548	0,881
0,351	0,025	0,376	0,056	0,620	0,996
0,398	0,028	0,425	0,064	0,702	1,127

4.7 Componente del sistema de agua potable

Para solventar la necesidad de abastecimiento de agua en la comunidad Puertas de Paris se analizó un mini acueducto por bombeo eléctrico, ya que cerca de la comunidad no existen ojos de agua a una elevación adecuada para el abastecimiento de agua por gravedad. Se bombeará de una fuente subterránea (pozo perforado) hacia el tanque de almacenamiento ubicado en la parte más alta del sitio en estudio que cuenta con una elevación de 326 msnm y luego será distribuida por gravedad a la población con el objetivo de aprovechar la energía

gravitacional, por medio de la red de distribución y conexiones domiciliares a cada vivienda, para conducir el agua del tanque de almacenamiento a la población.

El proyecto consiste de los siguientes componentes.

- Obra de captación
- Línea de conducción
- Tanque de almacenamiento
- Clorador CTI 8
- Red de distribución
- Conexiones domiciliares

La obra de tratamiento químico en este caso es necesaria porque debe de transformar la calidad bacteriológica del agua a valores mínimos admisibles.

4.7.1 Fuente de abastecimiento

La fuente de abastecimiento de agua ubicada en la comunidad de Puertas de Paris, propiedad comunal, consiste en un pozo perforado que está situado a 1,546.2 metros del sitio donde se ubicó el tanque de almacenamiento, a una altura aproximada de 394 msnm en el sitio más alto de la comunidad (Tabla 21)

Se ha considerado esta fuente fundamentalmente porque de acuerdo a los cálculos primarios, suministra agua en cantidad suficiente para abastecer la demanda de la población durante el período de diseño considerado (20 años).

Para la caracterización de la fuente, se consideraron los siguientes criterios: caudal, elevación topográfica, calidad del agua y disponibilidad legal. La fuente de Puertas de Paris ofrece un caudal de explotación de 2.2 l/s (35 Gpm) según la prueba de bombeo

Tabla 21 Fuente de abastecimiento

Pozo Puertas de Paris					
Pozo	Coordena	adas UTM	Elevación (msnm)	Caudal (l/s)	
Puertas de Paris	699637.195	1341570.984	331	2.2	

De acuerdo a la proyección de consumos mostrada, la demanda de agua de la población futura a 20 años será de 0.702 l/s equivalente a 11.13 gpm, caudal que corresponde a la demanda de máximo día. Se concluye que la fuente estudiada tiene capacidad para satisfacer la demanda actual y futura de la población de la comunidad de Puertas de Paris, el caudal de la fuente es de 2.2 l/s. mayor que demanda la población al final del período de diseño y permite una cobertura del 100% de las viviendas mediante 67 conexiones domiciliares.

4.7.2 Estación de bombeo

Para los cálculos del diseño hidráulico se consideró el sistema FUENTE-TANQUE-RED

En tabla 22 se establecen las condiciones para el cálculo del equipo de bombeo.

Tabla 22 Datos para el diseño de bomba

Datos para el diseño de la bomba				
Caudal de diseño (Qd)	0.0007 m ³ /s			
Coeficiente de Hazen Williams (C)	PVC = 150; H ⁰ . G ⁰ . =100			
Eficiencia de la bomba (η)	70 %			
Factor de mayoración (FM)	1.20			
Profundidad de ubicación de la bomba en el pozo (NB)	52 m			
Diferencia de nivel entre el tanque y el pozo (Z)	63 m			
Altura de rebose del tanque (h)	2.0 m			
Longitud de descarga (L)	1546.2 m			
Tiempo de bombeo (tb)	16 horas			

4.7.3 Sistema operativo FUENTE-TANQUE

✓ Diámetro de la tubería de impulsión.

Para la selección de los diámetros de tubería, se calcula por medio del método de Bresse, detallado a continuación.

$$D = 0.9 Q^{0.45}$$

$$D = 0.9 * 0.0007^{0.45} = 0.03424 m = 1.35$$

$$D_{Descarga\ comercial} = 0.038 m \approx 11/2$$

La velocidad según Normas, deberá ser menor a 1.5 m/s y mayor a 0.6 m/s.

$$V_{Descarga} = \left(\frac{4*Q}{\pi*D^2}\right)$$

$$V_{Descarga} = \left(\frac{4*0.0007}{\pi*0.038^2}\right)$$

$$V_{Descarga} = 0.619 \ m/_S > 0.6 \ m/_S \ OK$$

✓ Perdidas en sarta

Se calculó la pérdida de carga por accesorios en la sarta (valores K en tabla 23), el procedimiento se muestra a continuación:

Tabla 23 perdidas en accesorios

ACCESORIO	K	Cantidades	K (Total)
Tee de línea 1 ½"	1,5	1	1,5
Tee a través de la salida lateral 1 1/2"	1,8	1	1,8
Unión Dresser 2"	0,3	1	0,3
Medidor	3	1	3
Válvula de No Retorno 1 ½"	2,5	1	2,5
Válvula de compuerta abierta 1 ½"	0,2	1	0,2
Codo de 90º radio medio	0,6	1	0,6
Codo 45° 1 ½"	0,4	2	0,8
		∑ K total	10,7

$$h_L = K_{total} \frac{V^2}{2g}$$

$$h_L = 10.7 * \frac{0.614^2}{2 * 9.81}$$

$$h_L = 0.21 \, m$$

✓ Pérdidas en la línea conducción.

Los siguientes cálculos se realizaron para el análisis del sistema operativo

Para el cálculo de las pérdidas en la conducción para la descarga de la bomba se aplicó la formula exponencial de Hazen – Williams, ampliamente utilizada, donde se despeja la gradiente hidráulica.

$$h_f = \frac{10.679 * L * Q^{1.85}}{C^{1.85} * D^{4.87}}$$

$$h_f = \frac{10.67 * 1546.2 * 0.0007^{1.852}}{150^{1.852} * 0.0381^{4.87}}$$

$$h_f = 18.34 m$$

✓ Carga total dinámica.

El cálculo de la carga total dinámica (CTD) se realizó con las pérdidas en la impulsión, la descarga, conducción y la diferencia geométrica entre la succión de la bomba y el tanque de almacenamiento.

$$NB = 46.00 m$$

$$LCB = NB + 20' = 46 + 6.1 = 52.1 m$$

Perdidas por fricción en impulsión

$$h_f = \frac{10.679 * 52.1 * 0.0007^{1.85}}{150^{1.85} * 0.0381^{4.87}}$$

$$h_f = 1.29 m$$

Se verifica que las pérdidas por fricción en la impulsión sean $h_f < 5\% \, LCB = 2.905 \, m$

$$1.29 m < 2.905 m$$
 OK

Carga total dinámica

$$CTD = Z + hf + h_L + hr + NB$$

 $CTD = 63 + 18.34 + 0.21 + 2.0 + 52.1$
 $CTD = 135.65 m = 445.05 pies$

✓ Potencia teórica

Según lo establecido en la normativa vigente la vida útil de un equipo de bombeo es de 10 años, por lo tanto, se calcularon dos potencias teóricas, la primera potencia teórica corresponde al equipo de bombeo que funcionara los primeros diez años y la segunda potencia teórica para el equipo de bombeo que entrara en funcionamientos en los últimos diez años del periodo de diseño.

$$P = \frac{CTD * Q}{3960 * \mathcal{E}_{B*\epsilon m}} * FM$$

$$P_{2033} = \frac{423 * 8.69}{3960 * 0.70} * 1.20 = 1.32 HP$$

$$P_{2043} = \frac{445.05 * 11.13}{3960 * 0.70} * 1.20 = 2.14 HP$$

✓ Selección de equipo de bombeo comercial

Se realizó la selección de dos bombas con una curva de rendimiento de los catálogos de bombas sumergibles Franklin Electric tomando en cuenta la carga dinámica total, caudal en GPM.

Figura 19 - Curva característica del equipo de bombeo a instalar en los primeros diez años del periodo de diseño

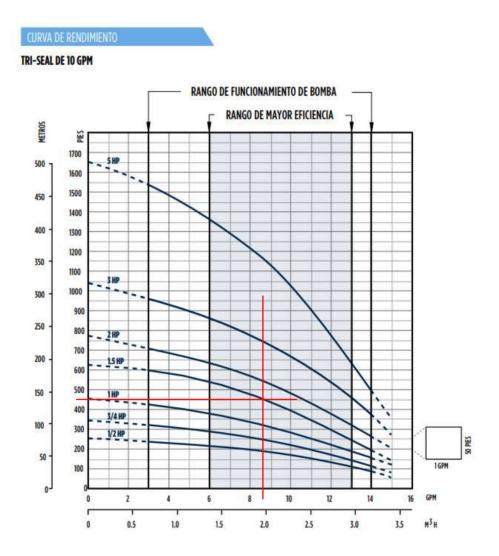
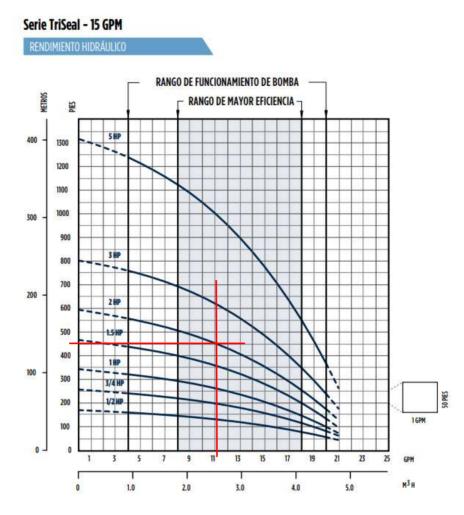



Figura 20 - Curva característica del equipo de bombeo a instalar en los últimos diez años del periodo de diseño

El pozo será equipado, con una bomba sumergible de 1.5 HP de potencia, de 15 etapas modelo 10FA15 para los primeros 10 años y con una bomba sumergible de 2 HP de potencia, de 14 etapas modelo 15FA2 para los últimos diez años del periodo de diseño ambas de la marca Franklin electric, que conducirá el agua hasta el tanque de almacenamiento de 13000 litros el cual se encuentra a una distancia de 1546.2 m.

Tabla 24 Tabla resumen de resultados del equipo de bombeo

Descripción	Unidades	Resultado
Diámetro interno de la tubería	Pulgadas	1 ½"
Nivel de bombeo (NB)	Metros	46
Pérdidas fricción en la descarga (hf _{desc.})	Metros	18.08
Carga total dinámica (CTD)	Pies	443.50
Eficiencia de la bomba (teórica)	%	70%
Potencia del primer equipo (teórica)	HP	2.14
Potencia del primer equipo (instalar)	HP	2
Potencia del segundo equipo (teórica)	HP	1.32
Potencia del segundo equipo (instalar)	HP	1.5

√ Golpe de ariete

En el diseño se analizó la sobrepresión a la que estar expuesta la tubería de 1 ½" SDR 21 del fabricante DURMAN bajo la Norma ASTM D 2241, dicha sobre presión es causada por el fenómeno conocido como golpe de ariete, a continuación, se presenta el procedimiento de cálculos:

• Coeficiente representativo de la elasticidad del material

se realizó el cálculo del coeficiente K que depende de la elasticidad del material a instalar en la línea de conducción con la ecuación:

$$K=\frac{10^{10}}{\varepsilon}$$

$$K = \frac{10^{10}}{3x10^8} = 33.33$$

• Celeridad de la onda de presión

$$C = \frac{9900}{\sqrt{48.3 + k\frac{\emptyset}{e}}}$$

$$C = \frac{9900}{\sqrt{48.3 + 33.33 \frac{0.038}{0.00243}}}$$

$C = 414.82 \ ^{m}/_{S}$

• Tiempo de parada

Para este cálculo fue necesaria la fórmula de Mendiluce, teniendo un coeficiente empírico "C" de 1 para una pendiente hidráulica de 0.072 y un valor "K" de 1 para una longitud de 1546.2 m, aplicando la ecuación el resultado es:

$$T = C + \frac{KLV}{gH_m}$$

$$T = 1 + \frac{1 * 1546.2 * 0.619}{9.81 * 83.17}$$

$$T = 2.17 s$$

• Tiempo del recorrido de la onda de presión

El tiempo de recorrido de la onda de presión se calculó mediante el procedimiento que se presenta a continuación:

$$t_c = \frac{2L}{a}$$

$$t_c = \frac{2 * 1546.2}{414.82}$$

$$t_c = 7.45 s$$

Al comparar el tiempo que le lleva a una onda de presión recorrer un ciclo completo con respecto al tiempo de parada de parada del se puede deducir que

$$2.17 s < 7.45 s$$
; cierre rapido

Longitud critica

Se determinó la longitud crítica con el siguiente procedimiento:

$$L_c = \frac{aT}{2}$$

$$L_c = \frac{414.82 * 2.17}{2}$$

$$L_c = 442.97 m$$

Al comparar la longitud de la impulsión con respecto a longitud critica se puede deducir que

$$1546.2 \, m > 442.97$$
; impulsion larga

• Sobrepresión por golpe de ariete

Una vez definido el tipo de impulsión y cierre se calculó la sobre presión a la que estará sometida la línea de impulsión al momento de una para abrupta del equipo de bombeo y presentarse el golpe de ariete, se utilizó la ecuación de Allievi dado que la impulsión es larga y el cierre es rápido, el procedimiento se muestra a continuación:

$$\Delta H = \frac{a * v}{g}$$

$$\Delta H = \frac{414.82 * 0.619}{9.81}$$

$$\Delta H = 26.18 m$$

Sobrepresión total de la impulsión

La sobre presión total a la que estaría sometida la impulsión se calculó sumando

la diferencia geométrica entre la impulsión y el tanque de almacenamiento y la

sobre presión producida por el golpe de ariete, el procedimiento se muestra a

continuación:

 $H_{total} = H_a + \Delta H$

 $H_{total} = 63 + 26.18$

 $H_{total} = 89.18$

Longitud de máxima sobre presión

Se calculó la distribución de las presiones máximas a lo largo de la longitud de la

tubería aplicando el siguiente procedimiento:

 $L_{MSP} = L_{imp} - L_c$

 $L_{MSP} = 1456.2 - 442.97$

 $L_{MSP}=1013.23\,m$

Con el resultado obtenido se observa que en 1095.05 m de la línea de impulsión

se establecería una sobre presión de al momento de presentarse el fenómeno

transitorio del golpe de ariete

✓ Clase de tubería

Para determinar la clase de tubería se calculó el golpe de ariete y la presión

máxima que estaría sometida:

Pmáx = Carga estática de la descarga + sobrepresión.

Condición: Pmáx < Ptubería

 $1lb/plq^2 = 2.30719 pies$

67

El tubo SDR26 soporta 160 lbs/plg²

Ptubería = $(160 lbs/ plg^2 * 2.307 pies/lbs/plg^2 * 0.3048 m/pies) = 112.51 m$

 $Pm\acute{a}x = 63+19.14 \text{ m} = 82.14 \text{ m} < 112.51 \text{m} \text{ OK}$

Por lo tanto, la tubería puede ser de Φ=1 ½" PVC, clase 160 (SDR26).

4.7.4 Tanque de almacenamiento

Basado en los índices de consumo, las dimensiones internas del tanque de almacenamiento se han calculado de acuerdo al 35% del CPD con una capacidad de 12.86 m³ por lo que se optó utilizar una capacidad de 13 M³ (3435.92 Gal) (Tabla 25).

Tabla 25 dimensionamiento del tanque de almacenamiento

AÑO	Almacenamiento					
ANO	m3/dia	Galones				
2023	7,85	2074				
2028	8,88	2346				
2033	10,05	2655				
2038	11,37	3004				
2043	12,86	3398				

A partir de los perfiles altimétricos se seleccionó un sitio adecuado geológica y topográficamente, para garantizar que el sistema cubra con el servicio a toda la comunidad.

El sitio donde se construirá dicho tanque presenta buenas condiciones de drenaje.

El tanque tendrá las siguientes características:

• Tipo de sección: cuadrado.

- Las dimensiones internas: 2.55 m de largo x 2.55 m de ancho x 2 m de altura de rebose,
- Tipo de material: Mampostería concreto ciclópeo.

Para garantizar la buena operación y mantenimiento del tanque se consideraron todas las obras complementarias como: válvulas en las tuberías de entrada y salida, boca de acceso con tapa metálica, peldaños de acceso, respiradero, tubería de rebose y limpieza, cajas de válvula y válvula de flotador.

4.8 Red de distribución

La Red de Distribución es circuito abierto y tiene una longitud de 4978.6 metros compuesta por tubería PVC SDR - 26.de 1 1/2".

4.8.1 Caudal concentrado en los nodos

El consumo de máxima hora al año 2043 es de 1.132 l/s el cual se distribuyó en forma lineal en todos los nodos de la red de distribución (tabla 26).

Tabla 26 Cálculo de concentración de caudales por nodo

Nodos	Longitud de carga por nodo (m)	Q/Nodo (Its/seg)
N6-N7	500	0,12
N7-N8	500	0,12
N8-N9	500	0,12
N9-N10	465,8	0,11
N10-N11	298,2	0,07
N6-N12	44,71	0,01
N12-N13	382,22	0,09
N13-N14	403,87	0,09
N14-N15	413	0,10
N13-N16	500	0,12
N16-N17	500	0,12
N17-N18	372	0,09
Longitud total	4879,8	1,13

4.8.1.1 Análisis hidráulico de la red

Para determinar la capacidad hidráulica de la red de distribución se realizaron análisis hidráulico en base al tanque de almacenamiento, se consideró el esquema FUENTE- TANQUE- RED, presentan resultados satisfactorios para obtener la mejor alternativa tanto hidráulica como económicamente.

Figura 21 Red de distribución de Puertas de París

✓ Sistema de operación Fuente -Tanque, Tanque-Red

Los resultados que se presentan en Tabla 27 y 28 y figura 21 son los modelados para la condición Consumo de máxima hora, desde el tanque.

Hacia el tanque:0.7 l/s.

Desde el tanque hacia la red 1.08 l/s.

Figura 22 Presiones y velocidades

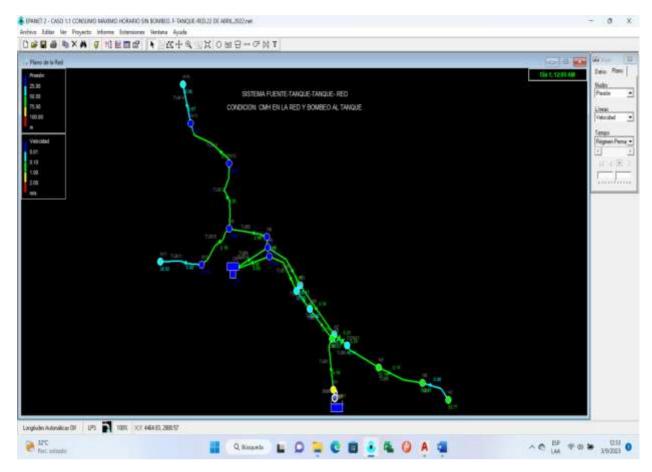


Tabla 27 Velocidades en las tuberías, Sistema F-T Línea de Conducción

III Tabla de Red - Líneas				
ID Línea	Longitud m	Diámetro mm	Caudal LPS	Velocidad m/s
Tubería TUB15	500	38	0.38	0.34
Tubería TUB13	372	38	0.08	0.07
Tubería TUB14	500	38	-0.49	0.43
Tubería TUB6	98.7	38	-1.08	0.95
Tubería TUB7	44.71	38	0.57	0.50
Tubería TUB8	382.22	38	0.56	0.49
Tubería TUB11	500	38	0.30	0.26
Tubería TUB12	500	38	0.19	0.17
Tubería TUB9	403.87	38	0.18	0.16
Tubería TUB10	413	38	0.09	0.08
Tubería TUB17	465.8	38	0.17	0.15
Tubería TUB18	298.30	38	0.06	0.06
Tubería TUB16	500	38	0.27	0.24
Tubería TUB1	447.50	38	0.67	0.59
Tubería TUB2	752.827	38	0.67	0.59
Tuharia THR3	1/12/12	30	0.67	0.59

Tabla 28 Presiones en los nodos red de distribución sistema T-R

CONDIC	ON: CMH EN LA RE	D Y BOMBEO	AL TANQUE .	
Tabla de Red - Nudos				
ID Nudo	Cota m	Demanda Base LPS	Altura m	Presión m
Conexión N6	380	0.021417	394.24	14.24
Conexión N14	363	0.1085	391.17	28.17
Conexión N15	340.5	0.1085	389.24	48.74
Conexión N1	331	0	413.37	82.37
Conexión N7	384.5	0.00970207	393.88	9.38
Conexión N8	375.25	0.08294174	390.91	15.66
Conexión N9	369.5	0.08763979	390.54	21.04
Conexión N10	351.5	0.089621	390.43	38.93
Conexión N11	375.75	0.1085	389.70	13.95
Conexión N12	366.5	0.1085	389.17	22.67
Conexión N13	359	0.080724	389.09	30.09
Conexión N16	336	0.1085	388.19	52.19
Conexión N17	335	0.1010786	387.81	52.81
Conexión N18	334	0.0647311	387.77	53.77
Conexión CONX1	340.5	0	389,24	48.74
Conexión N2	340.50	0	408.53	68.03

Tabla 29 Presiones en los Nodos. Sistema T-R

Tabla de Red - Nudos				
ID Nudo	Cota m	Demanda Base LPS	Altura m	Presión m
Conexión N8	375.25	0.08294174	390.91	15.66
Conexión N9	369.5	0.08763979	390.54	21.04
Conexión N10	351.5	0.089621	390.43	38.93
Conexión N11	375.75	0.1085	389.70	13.95
Conexión N12	366.5	0.1085	389.17	22.67
Conexión N13	359	0.080724	389.09	30.09
Conexión N16	336	0.1085	388.19	52.19
Conexión N17	335	0.1010786	387.81	52.81
Conexión N18	334	0.0647311	387.77	53.77
Conexión CONX1	340.5	0	389.24	48.74
Conexión N2	340.50	0	408.53	68.03
Conexión N3	367.50	0	400.40	32.90
Conexión N4	363	0	398.86	35.86
Conexión N5	380	0	397.63	17.63
Embalse EMB1	331	No Disponible	331.00	0.00
Depósito DEP1	395.85	No Disponible	396.85	1.00

Según los resultados de la modelación de EPANET para la condición más crítica de consumo (CMH) en la red, las presiones en la red se encuentran por debajo de la presión máxima permisible por el INAA (NTON 09002 – 99, numeral 4.3), que es de 56.66 < 60 metros y la mínima se da en el nodo 8 de 11.37 m >5.00 m.

En cuanto a las velocidades en la mayoría de los tramos son menores a 0.4 m/s, solo se cumple en los tramos 3, 4 8 y 9 y en la línea de conducción, por lo que en los puntos más bajos se colocarán válvulas de limpieza para cumplir con el mantenimiento que sea necesario.

Tabla de Red - Nudos						
	Cota	Demanda Base	Altura	Presión		
ID Nudo	m	LPS	m	m		
Conexión N15	340.5	0.1085	389.24	48.74		
Conexión N1	331	0	413.37	82.37		
Conexión N16	336	0.1085	388.19	52.19		
Conexión N17	335	0.1010786	387.81	52.81		
Conexión N18	334	0.0647311	387.77	53.77		
Conexión CONX1	340.5	0	389.24	48.74		
Embalse EMB1	331	No Disponible	331	0		

Con este análisis dan como resultados las presiones mayores en todos los nodos siendo la máxima en el nodo 7 de 49.50 m < 50.00 m y las velocidades de 0.55 m/s en toda la línea de la fuente al tanque y la sumatoria de pérdidas de ésta, es lo que tiene que vencer la bomba.

Después de haber analizado hidráulicamente, se hace constar que el sistema operativo FUENTE-TANQUE, TANQUE-RED es el más económico debido a que tiene menor tiempo de bombeo la longitud, técnicamente presenta mejores resultados, además que su funcionamiento la carga es estable, ya que solo dependerá de la altura del tanque y se recomendada para la comunidad de Puertas de París.

4.8.1.2 Velocidades en la red de distribución1

Según la simulación hidráulica realizada en EPANET, las velocidades obtenidas son bajas de acuerdo a los rangos de velocidades en tubería, que según norma NTON 09-001-99, debe ser (mínima = 0.4 m/s y máxima = 2 m/s), esto se debe a que la población que atiende el proyecto es pequeña.

En los casos de velocidades inferiores a la mínima recomendada se ubicaron válvulas de aire en las partes más altas de la red y en las partes más bajas de la red se ubicarán válvulas de limpieza con el objetivo de eliminar los sedimentos.

Según los análisis anteriores la red propuesta (tabla 30)

Tabla 30 Tubería de red de distribución

Tubo PVC SDR-26	Longitud (m)	Número de tubos
11/2"	4946.7033	836

4.8.1.3 Conexiones Domiciliares

La distribución del agua a las viviendas será por medio de conexiones domiciliares de patio, en cada una de las 63 viviendas, 2 iglesias una escuela y un centro de salud, con sus respectivos medidores, para alcanzar una cobertura del 100% de la población.

Para definir el nivel de servicio por conexiones domiciliares de patio, se ha tomado en cuenta el índice de consumo promedio diario total es de 0.40 l/s, el caudal producido por la fuente seleccionada que es de 2.2 l/s, la configuración de la comunidad, criterios técnicos y normas de diseño.

4.8.2 Tratamiento químico del agua (desinfección)

Los exámenes se realizaron en el Laboratorio Ambiental de la Universidad Nacional de Ingeniería (UNI).

El día 13 de abril del año 2016, se realizó el muestreo de agua para el examen de calidad de agua físico, químico, bacteriológico y arsénico. Según referencia de Laboratorio Ambiental de la Universidad Nacional de Ingeniería (UNI) y según los resultados de los análisis de agua, esta es apta para consumo humano.

Para potabilizar el agua se requiere de un sistema de desinfección continuo mediante el uso de hipoclorito de sodio, a través clorador (CTI – 8), el cual es de fácil manejo, poco riesgo técnico-económico y de un reducido costo para la operación y el mantenimiento.

El CTI 8 es de bajo costo, de mantenimiento mínimo y no usa electricidad. El aparato subministra una dosis de cloro constante, lo cual elimina parásitos y bacterias eliminando enfermedades como el cólera y la hepatitis.

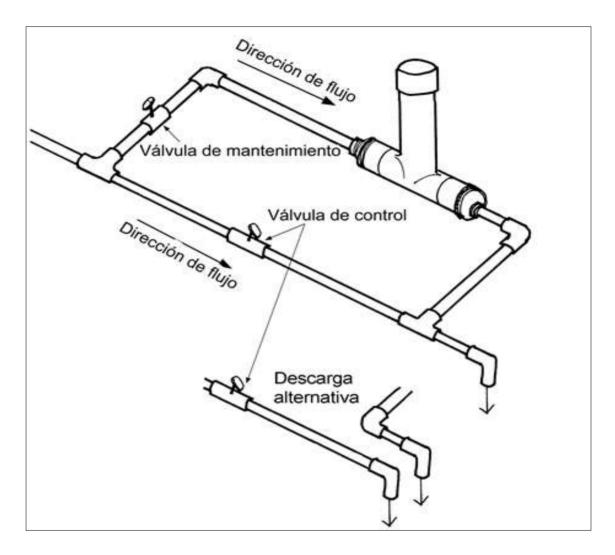

Las partes que integran un clorador CTI - 8, por medio de tabletas son las siguientes:

Tabla 31 Materiales para fabricar el clorador CTI - 8

Articulo	Cantidad
Tee PVC de 4"x 4"	2
Tubo PVC de 4"	0.54 metros
Acoples PVC de 4"	2 unidades
Tapon PVC de 4"	1 unidad
Tubo PVC de 3"	0.4318 metros
Valvula pvc	
Tabla PVC de ¼"	0.12 metros cuadrado
Pegamento PVC	1/8 de Galón
Tornillos (para metal) de acero inoxidable, # 4 x ½"	11

Fuente: Manual de Operación y Mantenimiento. El Clorador CTI - 8

Figura 23 Esquema de un clorador CTI - 8

Fuente: Manual de Operación y Mantenimiento. El Clorador CTI – 8

Para calcular la cantidad necesaria, se utiliza la formula siguiente: con un flujo de 5 galones por minuto, y la demanda de cloro es 1mg/l litro.

A continuación, se presenta la cantidad de tabletas de cloro de 140 gramos a usarse en todo el período de diseño:

Tabla 32 Consumo de cloro

1 Tableta	140	grs	Igual	140000	mgs
Año	CPDT (Gl/día)	Pastillas por día	Pastillas por semana	Pastillas por mes	Pastillas por año
2023	6755	0.18	1.28	5.48	66.67
2024	6924	0.19	1.31	5.62	68.33
2025	7097	0.19	1.34	5.76	70.04
2026	7275	0.20	1.38	5.90	71.79
2027	7457	0.20	1.41	6.05	73.59
2028	7643	0.21	1.45	6.20	75.43
2029	7834	0.21	1.48	6.35	77.31
2030	8030	0.22	1.52	6.51	79.25
2031	8231	0.22	1.56	6.68	81.23
2032	8437	0.23	1.60	6.84	83.26
2033	8647	0.23	1.64	7.01	85.34
2034	8864	0.24	1.68	7.19	87.47
2035	9085	0.25	1.72	7.37	89.66
2036	9312	0.25	1.76	7.55	91.90
2037	9545	0.26	1.81	7.74	94.20
2038	9784	0.26	1.85	7.94	96.55
2039	10028	0.27	1.90	8.13	98.97
2040	10279	0.28	1.95	8.34	101.44
2041	10536	0.28	1.99	8.55	103.98
2042	10799	0.29	2.04	8.76	106.58
2043	11069	0.30	2.10	8.98	109.24

4.9 Sistema de saneamiento

4.9.1 Selección del sistema de saneamiento

Para elegir la solución adecuada, se hizo uso de la matriz de selección siguiente que se presenta en tabla 33.

Tabla 33 Matriz de selección de Saneamiento

Soluciones Secas	Condición de cumplimiento (Si/No)	Soluciones Húmedas	Condición de Cumplimiento (Si/No)
Las viviendas o comunidad no cuentan con un suministro de agua suficiente y permanente	SI	Las viviendas cuentan o contarán con suministro de agua suficiente y permanente	NO
Los suelos investigados exhiben tasas de infiltración efectivas nulas o menores que 10 Lts/m²/dia	SI	Los suelos investigados exhiben tasas de infiltración efectivas iguales o mayores que 10 Lts/m²/dia	NO
Las fuentes de agua (pozos excavados, perforados o corrientes de agua superficial) se encuentran a distancias mayores que 20 m del punto de localización final de la letrina	SI	Las fuentes de agua (pozos excavados, perforados o corrientes de agua superficial) se encuentran a distancias mayores que 20 m del punto de localización final del pozo séptico	SI
El terreno donde se construirá la letrina está libre de riesgo de inundaciones, derrumbes o	SI	El terreno donde se construirá la letrina está libre de riesgo de inundaciones, derrumbes o	SI

Soluciones Secas	Condición de cumplimiento (Si/No)	Soluciones Húmedas	Condición de Cumplimiento (Si/No)
anegamiento periódico		anegamiento periódico	
La vivienda cuenta con suficiente espacio para garantizar una separación mínima con relación a la vivienda de no menos de 5 m	SI	El nivel freático (NF) se encuentra a una profundidad mayor o igual que 9 m	NO
Las soluciones de arrastre hidráulico no resultan viables técnica ni económicamente.	SI	Las familias beneficiadas aportan el ambiente necesario para la instalación de los aparatos sanitarios (inodoro + lavamanos) preferiblemente dentro de la vivienda	NO
		Las familias ya cuentan con lavanderos, duchas o están dispuestos a proporcionarlos.	NO

Según la tabla anterior se eligió una solución de saneamiento de Letrinas secas mejoradas. Dentro de esta alternativa existen 6 opciones de las cuales se selecciona del tipo de infraestructura de saneamiento corresponde a **Letrina Semi elevada** debido a las siguientes razones:

- La comunidad de Puertas de parís, es una población dispersa, el nivel de servicio adoptado para el servicio de agua potable es a través de conexiones de patio.
- 2) El nivel freático en el invierno es de aproximadamente de 2 m y según el menú de soluciones tecnológicas de saneamiento del Nuevo FISE las letrinas semi elevadas se construirán cuando el nivel freático en invierno es muy somero (1.00 m) o los resultados de las pruebas de laboratorio indican que los suelos investigados en estado natural son limo-arcillosos.
- 3) La tasa de infiltración obtenida luego de realizar cinco pruebas de infiltración en la comunidad, es de 7.22 litros / metro cuadrado/día (Anexo IV), siendo esta tasa indicativo de terrenos plásticos con baja permeabilidad, aspecto que afecta el funcionamiento de sistemas de arrastre hidráulico.

Con base en lo anterior se elige la opción de Letrina Sencilla Semielevada (LS-3) + Lavamanos

4.9.1.1 Lavamanos con pozo de absorción

Elemento complementario al sistema sanitario para que se practique una mejor higiene y se tenga mayor efectividad en la salud de las familias beneficiadas, consta de un lavadero de concreto con sus accesorios y pozo de absorción que se coloca en un lugar del tránsito entre el servicio higienice y la vivienda para dar efectividad a su uso.

En conclusión, se diseñó un sistema sanitario que ofreciera seguridad para preservar la salud de los habitantes de la comunidad Puertas de París, el cual consiste en letrinas semi-elevada banco y plancha fibra de vidrio y lavaderos con su respectivo pozo de absorción estas dimensiones se detallan en los planos.

4.10 Costo total del proyecto

El costo del proyecto es de (C\$ 3,525,061.81.), (ver anexo Nº 4) incluyendo los componentes de agua potable, saneamiento, capacitación y visibilidad del proyecto. (Ver Anexo VI)

Costos de administración, operación y mantenimiento11

Los costos de administración incluyen compra de papelería, salario de operador de equipo, salario de cobrador, salario de fontanero, viáticos, fotocopias, y telefonía. Los costos de operación incluyen pago de energía eléctrica, compra de cloro, análisis de agua. Los costos de mantenimiento incluyen desinfección, limpieza del tanque, reparación en la red de distribución, reparación en el tanque de almacenamiento, mantenimiento de sarta y válvulas, mantenimiento de equipo de bombeo, reposición de equipo de bombeo cada 5 años, reposición de equipo de cloración cada 2 años y reemplazo de medidores 10 cada año.

Tabla 34 Costos de administración, operación y mantenimiento

Costos de Administración Operación Y Mantenimiento										
Año	Costos de Administración en C\$	Costos de Operación en C\$	Costos de Mantenimiento en C\$	Costo Anual en C\$	Costo en C\$ m³	Tarifa por vivienda en C\$				
2022	76,156	21,869.33	36,300	134,325.77	50.48	177.68				
2023	76,156	22,085.16	36,300	134,541.60	49.33	173.62				
2024	76,156	22,306.39	36,300	134,762.83	48.21	169.67				
2025	76,156	22,533.15	36,300	134,989.59	47.11	165.81				
2026	76,156	22,765.58	36,300	135,222.02	46.04	162.04				
2027	76,156	23,003.81	36,300	135,460.25	45.00	158.37				
2028	76,156	23,248.01	36,300	135,704.45	43.98	154.79				

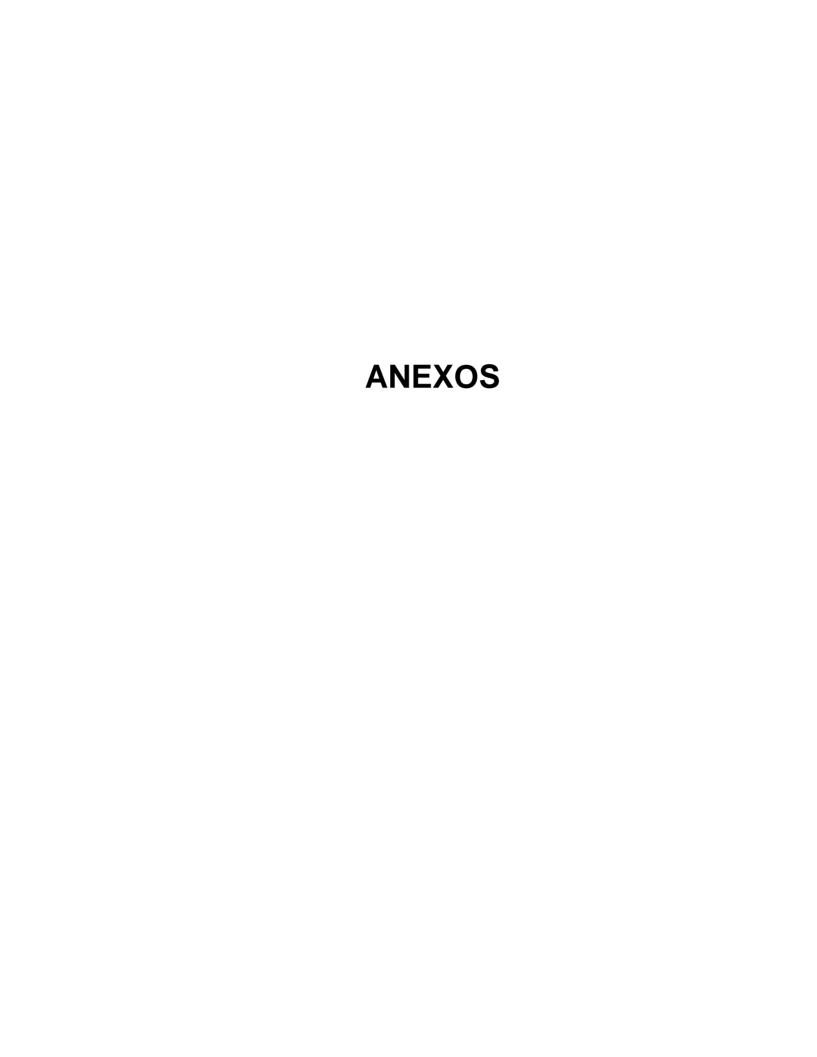
Costos de Administración Operación Y Mantenimiento								
Año	Costos de Administración en C\$	Costos de Operación en C\$	Costos de Mantenimiento en C\$	Costo Anual en C\$	Costo en C\$ m ³	Tarifa por vivienda en C\$		
2029	76,156	23,498.30	36,300	135,954.74	42.98	151.29		
2030	76,156	23,754.86	36,300	136,211.30	42.01	147.88		
2031	76,156	24,017.83	36,300	136,474.27	41.07	144.55		
2032	76,156	24,287.37	36,300	136,743.81	40.15	141.30		
2033	76,156	24,563.66	36,300	137,020.10	39.25	138.13		
2034	76,156	24,846.85	36,300	137,303.29	38.37	135.04		
2035	76,156	25,137.11	36,300	137,593.55	37.51	132.03		
2036	76,156	25,434.64	36,300	137,891.08	36.68	129.09		
2037	76,156	25,739.60	36,300	138,196.04	35.86	126.22		
2038	76,156	26,052.19	36,300	138,508.63	35.07	123.42		
2039	76,156	26,372.60	36,300	138,829.04	34.29	120.68		
2040	76,156	26,701.01	36,300	139,157.45	33.53	118.02		
2041	76,156	27,037.63	36,300	139,494.07	32.79	115.42		
2042	76,156	27,376.28	36,300	139,832.72	32.09	112.93		

V CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- Los resultados del estudio socioeconómico reflejan que la población tiene la capacidad de pago por el servicio de agua potable y que el 100% de los habitantes de la comunidad les gustaría tener el servicio de agua potable.
- 2. La topografía del sitio del proyecto es ondulada con fuertes pendientes.
- 3. La fuente de agua a explotar es un pozo perforado en la comunidad Puertas de Paris ubicado en las coordenadas UTM: 578355.81; 1443181.86; con una elevación de 394 msnm, con un caudal de 2.2 l/s. El agua de este pozo es apta para consumo humano y abastece al 100% de la población de la comunidad.
- 4. Al realizar la evaluación de emplazamiento para valorar las características del lugar donde se construirá el sistema de captación y el tanque de almacenamiento, el histograma resultante nos indicó que es poco peligroso y hay una "baja peligrosidad ambiental" ya que se obtuvo un valor de 2.2 en la Escala proporcionada por SISGA-FISE para realizar evaluaciones de emplazamiento.
- 5. En la red de distribución se analizó utilizando el software EPANET, resultando que en la distribución se usaran tuberías de 2". En algunos tramos de la red se encontraron velocidades inferiores a las permisibles, en este caso se propone utilizar válvulas de aire y vacío en las partes más altas y en las partes más bajas de la red utilizar válvulas de limpieza, con respecto a la presión se construirán dos pilas rompe presión para bajar las presiones.
- 6. Los planos contienen las obras a construir en el proyecto.

5.2 Recomendaciones


- Se recomienda la ejecución del proyecto, considerando que cumple con los criterios de viabilidad económica, técnica, social, ambiental y de sostenibilidad.
- 2. Realizar prueba de bombeo de 24 horas para conocer su rendimiento, el cual no deberá ser menor de la demanda de máximo día para el año **2042**.
- Extraer muestras de agua para realizar pruebas bacteriológicas y físico químicas para determinar la calidad, la cual deberá estar de acuerdo a las normas de calidad del agua editadas por CAPRE.
- 4. Eliminar los focos de contaminación en un radio mínimo de 30 metros.
- 5. Obtener los documentos de legalidad de los terrenos seleccionados para la construcción del tanque de almacenamiento y captación de la fuente subterránea; así como servidumbre de pase y para las pilas rompe carga.
- Impulsar campañas de reforestación en el área de captación (micro cuenca) a fin de garantizar el abastecimiento de agua potable de la población durante el período de diseño.
- 7. Realizar labores de limpieza y desinfección en el tanque de almacenamiento cada seis meses.
- 8. El Consejo de **CAPS** conformado, debe siempre asegurar el local adecuado para la realización de los talleres de capacitación.
- Gestionar apoyo institucional con la finalidad de fortalecer el funcionamiento de los CAPS para garantizar una capacitación continua de sus miembros en la parte administrativa, operación y mantenimiento del sistema.

10. Asegurar los insumos necesarios para el mantenimiento preventivo y correctivo, para garantizar un stock de repuestos que no sean posibles fabricar o comprar localmente.

VI Bibliografía

- 1. Alcaldia de San Pedro de Lovago. (2012). Caracterizaciones.
- 2. AMANCO. (s.f.). Manual técnico para tuberías plásticas. 73.
- Aparicio Mijares, F. J. (1992). Fundamentos de hidrología de superficie.
 Mexico: LIMUSA.
- 4. Associación catalana d' enginyeria sense fronteres. (Abril de 2005). Tecnología para el desarrollo humano y acceso a los servicios básicos. Recuperado el 9 de Abril de 2016, de http://www.uclm.es/profesorado/igarrido/tecnocooperacion/modulo_4_ISF vdef.pdf.
- CORASCO. (2008). Manual para la revisión de estudios topográficos.
 Managua: CORASCO.
- Elena, B. A. (1999). Apuntes de ingeniería sanitaria I. Managua: Dpto. de hidráulica - FTC - UNI - RUPAP.
- FISE. (Junio de 2007). Manual de administracion del ciclo del proyecto –
 MACPM. Recuperado el 2 de Junio de 2012, de http://www.fise.gob.ni/images/capitulo_ii_preinversion.pdf
- 8. INAA (NTON 09 001-99). (1998). Norma técnica obligatoria nicaragüense para el abastecimiento de agua potable en la zona rural.
- 9. INAA (NTON 09 003-99). Junio 2000). Norma técnicas para el diseño de abastecimiento y potabilización del agua.
- 10.INIDE. (11 de Junio de 1995-2005). Recuperado el 26 de mayo de 2012, de http://www.inide.gob.ni/censos2005/Monografias/León.pdf
- 11. Instituto Nicaragüense de acueductos y alcantarillados (INAA). (1989). Manual de operación y mantenimiento rural (NTON 09 003-99). Managua.
- 12. Instituto nicaragüense de acueductos y alcantarillados (INAA). (1989). Normas técnicas para el diseño de abastecimiento y potabilización del agua (NTON 09 03-99). Managua.
- 13. López, M. (sf). Diseño de sistema de abastecimiento de agua potable.

- 14. McCormac, J. (2007). Topografía. Mexico: LIMUSA, S.A.
- 15. Nassir, S. C., & Reinaldo, S. C. (2008). Preparación y evaluación de proyectos (Quinta ed.). Bogotá: McGraw-Hill Interamericana.
- 16. Opazo, F. U., & Jenkins, D. (1998). Manual de tratamiento de aguas. Mexico: LIMUSA, S.A.
- 17. SNIP. (2005). Guía de preinversión para proyectos de agua potable rural. Managua.
- 18. Torres, I. S. (1982). Hidrogeología (Vol. Hidrogeología). (I. S. Torres, Ed.) La Habana: Pueblo y educación.
- 19. Wikipedia. (sf). Topografía. Recuperado el 15 de Agosto de 2011, de http://es.wikipedia.org/wiki/Topograf%C3%ADa

ANEXO I-1

FORMATO DE ENCUESTAS

Formato de encuesta socioeconómica de agua y saneamiento.

Departamento:				Municipio:									
Comunidad:												Fec	ha:
Quien	•	es				Resp	ons	ab	le		(del	Hogar
Padre	Madre			Otı	O _								
Nombre		(de						la				persona
Encuestada:													
Tipo						de							Proyecto:
personales: (inic	ciar con re	espo	ons	sab	le	del ho	ogar))					Datos
Nombres y	Paren-	Se	Эх	E	dad	L k							
Apellidos	tesco											Nivel de	
'						6 a		а		-	más	escolari	
		M	F	5		15	25		35		36	dad	ción

г	1	ı	i i	i	1	1	1	1

I. Condiciones de la vivienda (Preg. 2, 3, 4, marcar con X una o más repuestas)
1. La vivienda es: a) Propia b) Prestada c) Alquilada
2. Las paredes son: a) Bloque b) Ladrillo c) Madera d) Otros
3. El piso es: a) Madera b) Tierra c) Ladrillo d) Otros
4. El techo es: a) Zinc b) Tejac) Madera d) Palma e) Otros
5. Cuantas divisiones tiene la vivienda: a) Tresb) Dos c) No tiene
6. Resumen del estado de la vivienda: a) Buenab) Regular c) Mala
II. Situación económica de la familia
 Cuantas Personas del hogar trabajan? Dentro de la Comunidad: H MTotal Fuera de la comunidad: H M Total Cuál es el ingreso económico del mes, en este Hogar? C\$ El último pago de energía eléctrica, realizado en el hogar? En que trabajan las personas del hogar?
a) Ganadería b) Agricultura c) JornalerosOtrosCual?
7. Que cultivos realizan?
a) Arroz b) Frijoles c) Maíz d) Otros 8. Tienen Ganado?
Si No Cuanto: a) Vacuno b) Equino c) Caprino

9. Tienen animales Domésticos?
Si No Cuantos: a) Cerdos b) Gallinas
10.Los animales domésticos están?
a) Encerrados b) Amarrados c) Sueltos
11.Los animales domésticos se abastecen de agua en?
a) El Río b) Quebrada c) Pozo
III. Saneamiento e higiene ambiental de la vivienda (observar, verificar)
1. Tienen Letrina?
Si b) Regular c] Mala(verificar) No
Estaría dispuesto/a en construir su letrina Sí No
2. Quienes usan la Letrina?
a) Adultos b) Niños/as c) Otros familiares
3. La letrina está construida en suelo?
a) Rocoso b) Arenoso c) Arcilloso
4. Que hacen con las aguas servidas de la casa?
a) La riegan b) La dejan correr c) Tienen zanja de drenaje d) Tiene filtro para drenaje

5. Existen charcas en el patio?	
a) Si(pasar # 19) b) No	
6. Como eliminan las charcas?	
a) Drenandob) Aterrando c) Otros	
IV. Recursos y servicios de agua	
1. Cuentan con servicio de agua?	
a) Si Cual: b) No Como sabastecen: c) Cuanto pagan de agua mes?	
2. Quién busca o acarrea el agua?	
a) La mujer b) El hombre c) Los niños/as d) Otro	ວຣ
3. Cuantos viajes realizan diario para buscar el agua que utiliza ?	ì٢
4. En qué almacena el agua?	
a) Barriles b) Bidones c) Pilas	
5. Los recipientes en que se almacena el agua los mantienen:	
a) Tapados b) Destapados c) Como(verificar))
6. La calidad del agua que consumen en el hogar, la considera:	
a) Buena b) Regular c) Mala	

7. Qué condiciones tiene el agua que consumen (se puede marcar varias situaciones)
a) Tiene mal sabor b) Tiene mal olor c) Tiene mal color
V. Programa de agua potable y saneamiento rural (pasr)
 Conoce el Programa de Agua Potable y Saneamiento Rural del FISE? a) Si b)_No c) Poco Que sabe? Le gustaría tener Servicio de Agua Potable en su hogar?
a) Si b) No c) Porque
3. Cuanto estaría dispuesto/a en pagar por este servicio? (marcar una)
a) C\$ 20 a 35 b) C\$ 36 a 50 c) C\$ 51 a más
d) No estaría dispuesto/a Porque? VI. Organización comunitaria:
1. Los miembros de este hogar pertenecen a alguna organización?
Si Que tipo? a)
Productiva b)Social c)Religiosa d)Otra No Porque?
2. Cuantos miembros del hogar participan en la organización comunitaria?
a) Hombres b) Mujeres c) Total
3. ¿Las personas de este hogar participarían de forma organizada, en la construcción de un proyecto de agua potable y saneamiento para su

comunidad?	a)	Si	b)	No	c)
Porque					

VII. Situación de salud en la vivienda

Enfermedades padecidas por los miembros del hogar durante el pasado año (cuantos).

Enfermedades	-5	6 a15	16 a 25	más 26	Observaciones
Diarrea					
Tos					
Resfriados					
Malaria					
Dengue					
Parasitosis					
Infección renal					
Tifoidea					
Hepatitis					
Infecciones dérmicas					

1. Están vacunados los niños y niñas?
Si b) No Por qué?
2. Las personas que habitan en esta vivienda practican hábitos de higiene como: Lavado de manos
a)Si b) No c) Porque?
Hacen buen uso del Agua
a) Si b) No c) Por qué?
Hacen buen uso de la letrina
a) Si b) No c) Por qué?
3. Cuantos niños y niñas nacieron y/o fallecieron en este hogar, durante el año pasado?
Vivos/as: NiñasNiños Total
Fallecidos/as: Niñas Niños Total
Nombre del Encuestador(a) Nombre del Supervisor(a)
ANEXO II
ESTUDIO HIDROGEOLÓGICO
Anexo II. Estudio hidrogeológico

Estudio hidrogeológico para proyectos de agua potable y saneamiento.

Comunidad Puertas de París, municipio de San Pedro de Lóvago

Departamento: Chontales, Nicaragua.

1. INTRODUCCIÓN.

El municipio de San Pedro de Lóvago, en donde se pretende desarrollar este

proyecto es un municipio altamente intervenido en donde la cobertura vegetal que

predomina es bosque ralo latifoliado en las áreas donde afloran fuentes hídricas

también son áreas de pasto maíz y frijol, los bosques son escasos y por

consiguiente es inminente la necesidad de tomar medidas ambientales que

permitan reorientar el uso del suelo sobre todo en donde se encuentran las obras

de toma, para mantener los niveles de aqua encontrados y posteriormente incidir

para que se puedan enriquecer los mantos acuíferos existentes o las fuentes

superficiales, según sea el caso.

En los últimos años se ha incrementado la demanda de agua debido al desarrollo

poblacional y a su vez se ha incrementado los escases del recurso hídrico debido

al cambio de uso de suelo, al cambio climático, la deforestación y el mal manejo

y explotación de los afluentes. Los estudios de agua en la zona de San Pedro de

Lóvago existen, pero estos son escasos, obsoletos por el paso del tiempo a la

fecha o muy generalizados.

2. OBJETIVO Y ALCANCES DEL ESTUDIO.

2.1. Objetivos generales.

Realizar un estudio de pre factibilidad hidrológica e hidrogeológica, para identificar

fuentes superficiales o subterráneas que permiten el abastecimiento de agua de

consumo humano para la Comunidad puertas de París.

2.2 Objetivos específicos.

- Sugerir alternativas de fuentes para la captación de agua en base a las características hidrológicas y necesidades de la comunidad.
- Evaluar los parámetros necesarios de la micro cuenca para fines del proyecto determinando, el caudal del sistema para el abastecimiento satisfactorio por medio de pozos.
- Identificar el estado actual de las fuentes de agua en estudio.

2.3.- Alcances.

- Identificar por medio del estudio hidrogeológico las fuentes superficiales o subterráneas que puedan ser alternativas de abastecimiento a la comunidad cumpliendo con las normas de abastecimiento de agua de consumo humano para zonas rurales.
- Recopilar información existente sobre las características sociales, geológicas e hidrológicas propias del municipio.
- Analizar y georreferenciar las fuentes identificadas y definir la potencialidad para el abastecimiento a la comunidad.

3. METODOLOGIA DEL ESTUDIO.

3.1. Primera etapa (Gabinete).

En el proceso de formulación se efectuó una recopilación de datos y estudios realizados anteriormente en las comunidades y las fuentes en cuestión llevados a cabo por la comuna, considerando la información hidrológica y amenazas naturales existentes en el lugar.

Se realizaron visitas de campo, observando detalladamente los puntos a interpretar de mayor relevancia en el estado de la pendiente intermedia de la microcuenca o cárcava de drenaje pluvial, también de las fuentes existentes relacionadas y así plasmar las conclusiones y recomendaciones.

3.2. Segunda etapa (Campo).

En la visita a la fuente en la que se encuentra el sistema actual y en las propuestas por las comunidades, pasa a evaluarse el entorno de la micro cuenca tomándose en cuenta las siguientes características: observaciones al terreno y periferias de pozos existentes medición de niveles estáticos y profundidad de pozos existentes, georeferenciacion, observación de las condiciones reales para la ocurrencia de amenazas naturales, entrevistas con lugareños sobre el comportamiento del agua en los pozos y la regularidad del periodo lluvioso.

4. GENERALIDADES

Ubicación

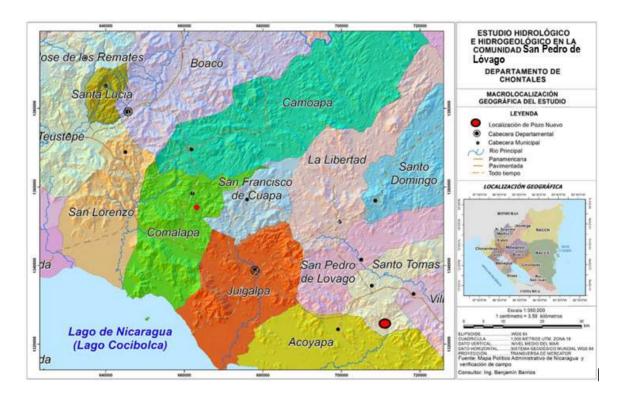
El Municipio de San Pedro de Lóvago se encuentra ubicado a 181 kms. de Managua, capital de la República de Nicaragua y a 53 kilómetros de la ciudad de Juigalpa, cabecera departamental de Chontales.

Extensión territorial

El municipio de San Pedro de Lóvago tiene 467 **km²**, , se encuentra localizada en las coordenadas. Latitud: 12.1366 Longitud: -85.1686, a una altitud de 326 metros sobre el nivel del mar.

Limites

San pedro de Lóvago limita al norte, con los municipios de la Libertad y Santo Domingo al sur con municipios de Santo Tomas y Acoyapa, al este con el municipio de Santo Tomas y al oeste con el municipio de Juigalpa.


Población

La población actual de la comunidad Puertas de Paris es de 243 habitantes, a la fecha de acuerdo a datos levantados casa a casa en noviembre de 2018 en que

se detalla los siguientes datos, correspondiente a 104 mujeres y 139 hombres, equivalente a 63 familias.

Clima

El clima que se manifiesta en la comunidad es tropical húmedo, al igual que todo el municipio de San Pedro de Lóvago. Este clima se caracteriza por presentar un régimen de lluvias entre los 1500 y 2000 mm anuales, con una temperatura media anual de 26°C con un máximo de 34°C en el mes de abril y un mínimo de 23°C en los meses de noviembre a enero. La humedad relativa media anual es aproximadamente de 66.8%, siendo las humedades relativas más bajas se registran en el mes de abril con 43% y las más altas en el mes de octubre con 88%.

Mapa N° 1 Macro localización del municipio de San Pedro de Lóvago

5. CARACTERIZACIÓN CLIMÁTICA

En cumplimiento de los objetivos propuesto en el presente trabajo, se logró realizar y describir el comportamiento de las principales variables climáticas del área de estudio. Para lo cual se ha seleccionado la estación principal meteorológica ubicada en municipio de Juigalpa debido a que una estación principal y que contiene de forma confiable y segura estos parámetros.

Esta selección de la estación se hace por su condición que es una Estación Hidrometeorológica Principal (HMP) y su ubicación condiciona el comportamiento de las variables de precipitación, temperatura y humedad relativa, así como el aspecto orográfico de la zona.

Considerando este criterio de cercanía, área de influencia y factor orográfico se recopilo información obteniendo registros de datos comprendido de 1971 hasta 2011 de los promedios mensuales y anuales de los parámetros de precipitación, temperatura y humedad relativa con período de 40 años de registros.

CLIMA

Para la Clasificación Climática, se utilizó las Modificaciones del Sistema de Köppen hecha por la MSc. Enriqueta García, consultora proyecto FINNIDA /OMM/CRRH/INETER-Dirección de Meteorología, 1994.

De acuerdo a la clasificación de Köppen^{iv} el clima predominante en la zona en estudio es de Clima Caliente y Sub-húmedo con lluvia en el periodo seco (AW1).

Este clima predomina en toda la Región del Pacífico y en mayor parte en la Región Norte. Se característica en una marcada estación seca durante seis meses, desde noviembre hasta abril y un período lluvioso que inicia en mayo y finaliza en octubre, ver mapa de clasificación climática predominante en el sitio de estudio.

PRECIPITACIÓN

De acuerdo al comportamiento de la precipitación en Nicaragua² se tiene un comportamiento que disminuye de Este a Oeste y su distribución media anual es variada, con rangos comprendidos mínimos que varias desde los 800 mm que se registran en los valles intramontanos en el Norte del país, hasta más de 5000 mm en el Sureste del país.

La distribución de la precipitación interanual presenta importantes variaciones espaciales y temporales que son el resultado de complejas interacciones entre la circulación general de la atmósfera, los sistemas meteorológicos, la orografía, la orientación y forma de las costas, así como las influencias de los flujos de humedad provenientes del Mar Caribe y el Océano Pacífico.

De acuerdo al registro de datos existentes del historial de la estación, se seleccionó el período comprendido de 1971 – 2011, significando una estadística confiable y acorde para este tipo de trabajo.

Para la determinación de las características climáticas del área de estudio, se utilizó la información generada por la estación meteorológica Tipo HMP ubicada en Rivas, por ser esta estación principal y ser representativa al área geográfica de estudio.

Estación	Coordenadas		Elevación	Código	Tipo	
	Lat. N	Long. E	(msnm)	3		
Juigalpa	12° 06' 00"	85° 22' 00"	90	69034	НМР	

Cuadro Nro. 1 Estación Meteorológica Juigalpa

HMP Estación Hidrometeorológica Principal

Tomando como referencia el registro de la estación se obtuvo un valor de la precipitación media anual **1,205.4** mm de las cuales 1,098 mm se acumulan de mayo a octubre significando esto el 91.09 % y 107.4 mm entre noviembre y abril representa el 8.91 % del total de la precipitación media anual.

Haciendo un análisis de los datos de la precipitación media anual, se identifica un primer subperíodo comprendido de mayo y julio en donde se acumulan 486.0 mm, determinándose un segundo subperíodo de agosto – octubre con 612.1 mm, evidenciando que en estos meses se concentra el período lluvioso, septiembre – octubre cuenta con los mayores acumulados de lluvia en la zona.

En el período lluvioso, septiembre es el que registra el mayor acumulado de lluvia, siendo este de 353.94 mm, seguido de octubre que registra un acumulado medio de 270.78 mm.

Los registros medios anuales de precipitación registrada en las estaciones meteorológicas que influyen en la subcuenca se muestran en el cuadro No. 2.

² Dirección General de Meteorología

٧°	Estació n	Ene	Feb	Mar	Abr	May	Jun	Jul	Agost	Sept	Oct	Nov	Dic	TOTAL
1	Juigalpa	9.5	4.3	2.7	11.5	150.4	201.5	134	165.2	230.8	216	64.6	14.8	1,205.40

Cuadro No. 2 "Precipitación Media Mensual"

Del resultado en cuadro no. 1 "Precipitación Media Mensual" se expresa que el periodo de mayo a febrero, se logra acumular un promedio de 1,191.2 mm, que corresponden al 98.82 % del total anual; mientras que en el primer y segundo subperíodo lluvioso (mayo-septiembre y octubre – febrero), se logra acumular un promedio de 882 y 309.2 milímetros, representando porcentajes aproximados de 73.17 y 25.65 %. En el período seco de marzo a abril se acumulan 14.2 mm representando el 1.18 % del total promedio anual.

El comportamiento de la precipitación media anual se muestra en el gráfico No. 1 en el mismo se caracteriza el régimen de precipitación obtenido del registro de la estación meteorológica que se muestran en cuadro No. 1 y que fue considerada para determinar la precipitación media anual.

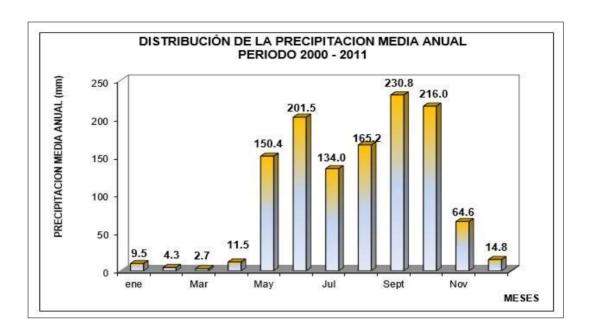


Gráfico Nro. 1 Precipitación Media Anual

EMPERATURA MEDIA

En referencia al vector que caracteriza el régimen térmico de un área determinada se expresa que la temperatura es inversamente proporcional con la altitud, es decir,

que a mayor altitud existe una menor temperatura. El comportamiento de la temperatura media anual para el sitio de estudio corresponde a los 26.5 °C.

La marcha media anual muestra que dentro de la región se puede observar contrastes significativos, provocados por efectos del relieve y otras condiciones locales.

Así mismo se determinaron rangos de temperaturas mínimos y máximos absolutas que oscilan entre rangos que predominan de mínimo de 20.5 °C a máximo de 38.4 °C.

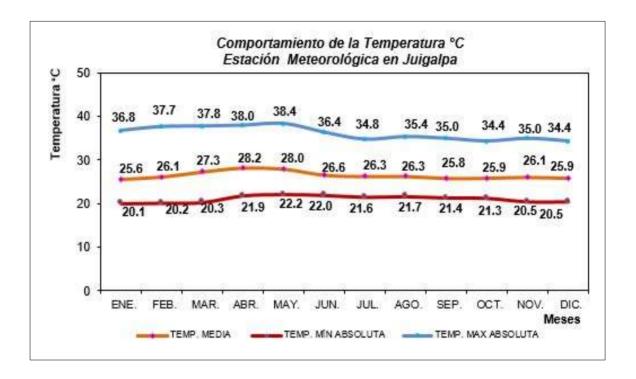


Gráfico Nro. 2 Comportamiento de la Temperatura Anual

De acuerdo al registro se identifican los valores medios mensuales de temperaturas más elevadas se registran en los meses de Abril y Mayo, precisamente a finales del período seco con valores de 38.0 y 38.4 °C respectivamente. Los valores de las temperaturas medias más bajas, ocurren entre noviembre y diciembre, con magnitudes que oscilan entre 25.0 °C.

La gráfica nº 2 "Comportamiento de la Temperatura" se muestran las tendencias medias mensuales, máximas y mínimas, tomando como referencia la

estación principal de ubicada en el municipio de Juigalpa con código 69034 de INETER. En esa gráfica se muestra las tendencias medias mensuales, mínimas y máximas absolutas.

HUMEDAD RELATIVA

Así mismo se ha determinado la Humedad Relativa Media anual para el área de estudio es de 77 %, los valores mínimos de la humedad relativa media en las diferentes localidades dentro tienen lugar en el mes de marzo y abril con 68 %.

En el gráfico nº 3 se muestra claramente el comportamiento de la marcha anual de la humedad relativa media, en los cuales se observa que los valores máximos mensuales se registran en los meses de septiembre y octubre, tales valores oscilan entre el 84 % respectivamente.

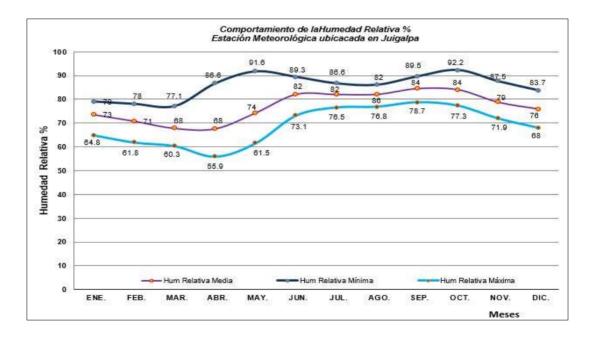


Grafico N° 3 Humedad Relativa Media Anual

6. CARACTERISTICA LITOESTRATIGRAFICA DEL MEDIO HIDROGEOLOGICO

Geomorfología regional

El municipio de San Pedro de Lóvago, en su mayoría está representada por un relieve montañoso muy variado y en menor grado por mesetas inclinadas y cúpulas aisladas. Sin embargo, existen valles o planicies intramontañas que completan las características geomorfológicas de la Región Central.

Generalmente, las subcuencas que son el drenaje del municipio, pertenecen a la sub cuenca del río Mayales, presenta dos tipos de geomorfología: uno con relieves abruptos correspondiente al complejo montañoso de la cordillera Amerrisque, cerros y colinas formando mesetas en ocasiones aisladas y dimensiones menores formando valles Intermontanos.

La subcuenca del río Mayales se ubica en la Región Central enmarcada dentro de la provincia geomorfológica de Las Tierras Altas del Interior, en esta se aprecian valles Intermontanos sedimentarios y una muy baja costa lacustre en la desembocadura al lago Cocibolca.

Tierras altas del interior

Topográficamente son las partes de la zona más elevada del territorio nacional, con un relieve montañoso y accidentado que varía de 500-2000 msnm, Las características topográficas predominantes son cordilleras, mesas, serranías, lomas alineadas, cuestas, colinas aisladas y terrenos montañosos quebrados, con pendientes que oscilan de 10 a 85% o más.

En general, el relieve dominante es severamente accidentado, como resultado de un sistema de fracturas complejas y densas. La geomorfología de las Tierras Altas del Interior, se extienden desde el borde nor-occidental de la Depresión Nicaragüense hasta la Llanura Atlántica o Caribe.

Pertenece a la Provincia Ignimbritica, Provincia Volcánica del Sur y Zona de Transición Montañosa Central. Este grupo de rocas comprende terrenos montañosos, con crestas macizas, elevadas, de grandes extensiones y con

fuertes y continúas pendientes, representando espesas acumulaciones de rocas volcánicas intermedias y brechas, asociadas con rocas intrusivas.

El área en el que se encuentra la comunidad Puertas de París pertenece a todas esas desigualdades

7. GEOLOGIA

Grupo Matagalpa (Tomm) Cuapa

La unidad infrayace en discordancia angular con el Grupo Coyol, las capas y bancos del Grupo Matagalpa se presentan bien estratificados y con espesores delgados siendo el rumbo general de 30° a 70° de noroeste a sureste y los buzamientos oscilan entre 2° a 15° hacia el suroeste. Este Grupo conforma una superficie de relieve tendido, pero disectado por numerosas fracturas y fallas entrecruzadas.

Su composición litológica está representada por lavas félsicas, breccias piro clásticas, andesitas basálticas, andesitas dacíticas, Ignimbritas, lahár У riolita bien tobas y fracturadas. sedimentos tobáceos depositados en aguas muy someras de tipo lacustre y fluvial.

A la secuencia se intercalan muy escasas lavas andesíticas afaniticas

Imagen N° 1 Rocas del grupo Matagalpa

de color rojo oscuro, en la parte superior de la secuencia, se presentan tobas soldadas (Ignimbritas) de los tipos andesiticos y dacíticos de color

Rosado.

Rocas intrusivas. La mayoría de las rocas del grupo provienen de erupciones continentales e intercaladas con sedimento lacustre fluvial. El grupo se encuentra altamente fallado y fracturado, la mayoría de estas fracturas se encuentran cementadas.

Geología Estructural

La geología estructural del área de estudio está representada por sistemas de estructuras lineales (fallas y fracturas), constituyendo los principales elementos Tectónicos del área.

El Tectonismo en Nicaragua está relacionado con las fuerzas orogenéticas que han actuado en épocas Cretácicos-Terciarias. Estas fuerzas y otras posteriores son las responsables de la formación de estas estructuras, manifestándose principalmente por la amplia distribución de las fracturas de las rocas del área. Estas estructuras fueron observadas en las rocas de consistencias rígidas y competentes (lavas volcánicas), interpretadas como resultados de débiles esfuerzos de compresión, de bloques fallados, de deformaciones durante la deposición de la lava, y de intrusiones ígneas.

Las estructuras fueron originadas por esfuerzos de tensión, posteriormente afectadas por ligeros esfuerzos de compresión, que se presentan en las rocas por medio de las fracturas y dislocaciones.

En el cuadrante geológico el sistema de fallas con rumbo NW-SE, está representado por una menor densidad de trazos, que cruzan el área de estudio una de las estructuras de mayor elevación dentro del área, se asocian con la prolongación de la cordillera Amerrisque.

La mayoría de las estructuras que afectan la geomorfología de la zona tienen rumbo Noreste Suroeste, son la de mayor presencia y se encuentran afectando la fisonomía estructural de la cordillera Amerrisque.

8. HIDROGEOLOGIA

Las rocas volcánicas Terciarias (grupo Coyol y Matagalpa), con predominio en las tierras altas del interior no han desarrollado acuíferos continuos de gran extensión debido a sus condiciones hidrodinámicas adversas, solamente pueden ser aprovechados los acuíferos locales desarrollados en los sistemas de fisuras, grietas, diaclasas o bien en rocas porosas dentro de la secuencia volcánica. De estos pequeños acuíferos pueden obtenerse cantidades reducidas de agua para satisfacer a las pequeñas comunidades de esta región.

El relieve accidentado que presentan algunas rocas y la deforestación intensiva en algunas cuencas son factores que limitan la tasa de infiltración de aguas de lluvia; y por ende la formación de zonas acuíferas de cierta importancia:

Transmisibilidad

La transmisibilidad de los acuíferos varía entre 4 m²/día y 1390 m²/días (Fenzl, Norbert.1988) Los valores más altos corresponden a los aluviales y piroclastos cuaternarios que rellenan gran parte de la región del Pacífico y los valores menores a las rocas volcánicas sedimentarias y metamórficas, que afloran en el anticlinal de Rivas y en el norte del país en las **Tierras Altas del Interior**, en la llanura Atlántica, Y en la región metamórfica del norte del país.

Las capacidades especificas entre 0.4 y 400 m³/h/m y los valores del coeficiente de almacenamiento desde 2.9x10⁻⁶ hasta 0.35. Al igual que las transmisibilidades, los valores más altos corresponden a los aluviales y piroclastos cuaternarios y los valores menores a pozos perforados en rocas volcánicas y sedimentarias mesozoicas y terciarias que cubren gran parte de la franja costera del Pacífico, casi todas las Tierras Altas del Interior y la llanura Atlántica.

- 9. Características hidráulicas de las rocas dentro del área de estudio son:
- 1.- Rocas volcánicas con textura uniforme: Comprende las riolitas ignimbríticas e intrusivas, y lavas andesíticas. Estas rocas por lo general son de textura afanítica a fina y por consiguiente generalmente impermeable.

La zona sujeta a estudio solamente presenta una formación geológica a nivel regional, está dominada por rocas del periodo Terciario Olocenico, entre las que se destacan tobas en transición y bloques de basalto intemperizados en transición por efectos de exfoliación.

La hidráulica en este tipo de formaciones geológicas alteradas, presentan una permeabilidad secundaria por medio de fracturas, contacto y diaclasamiento.

10. HIDROLOGÍA

El municipio es atravesado en toda su extensión por el Río Mayales, el cual sigue un curso noroeste-sureste a través del municipio, aportando hacia el cauce, todos los tributarios de las micro cuencas de la sub cuenca, hasta ingresar en el vecino municipio de Juigalpa drenando sus aguas al lago Xolotlan. Todos los tributarios del rio Mayales algunos intermitentes otros aun con muy bajo caudal forman un drenaje del tipo dendrítico radial.

11. HIDROGEOLOGIA

Las rocas volcánicas Terciarias (grupo y Matagalpa), con predominio en las tierras altas del interior no han desarrollado acuíferos continuos de gran extensión debido a sus condiciones hidrodinámicas adversas, solamente pueden ser aprovechados los acuíferos locales desarrollados en los sistemas de fisuras, grietas, diaclasas o bien en rocas porosas dentro de la secuencia volcánica.

De estos pequeños acuíferos pueden obtenerse cantidades reducidas de agua para satisfacer a las pequeñas comunidades de esta región.

El relieve accidentado que presentan algunas rocas y la deforestación intensiva en algunas cuencas son factores que limitan la tasa de infiltración de aguas de lluvia; y por ende la formación de zonas acuíferas de cierta importancia:

La presencia de los suelos antiguos sepultados (Paleosuelo); y zonas de rocas meteorizadas (descompuestas) alternando con capas de rocas frescas a poco meteorizadas fracturadas, favorecen la formación de acuíferos colgados (perchados), que al ser cortados por las quebradas dan origen a los numerosos manantiales (ojos de agua) que brotan en las zonas altas del área a diferentes alturas topográficas que son utilizados por pequeñas comunidades dispersas en la región.

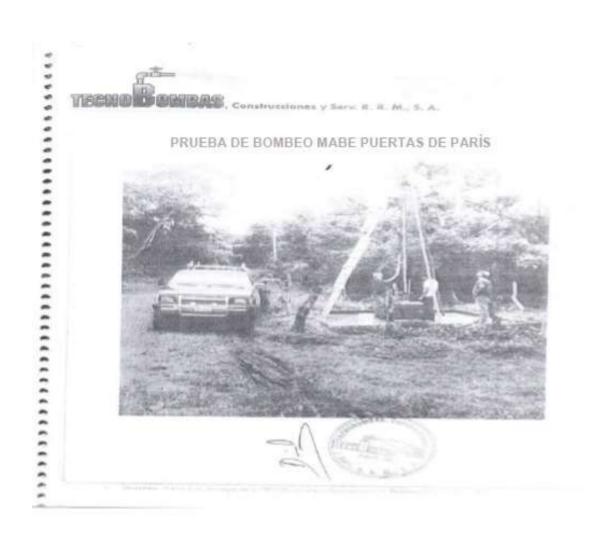
Transmisibilidad

La transmisibilidades de los acuíferos varían entre 4 m²/día y 1390 m²/días (Fenzl, Norbert.1988) Los valores más altos corresponden a los aluviales y piroclastos cuaternarios que rellenan gran parte de la región del Pacífico y los valores menores a las rocas volcánicas sedimentarias y metamórficas, que afloran en el anticlinal de Rivas; en las **Tierras Altas del Interior**, en la llanura Atlántica, Y en la región metamórfica del norte del país, muy común en el área donde se encuentran asentadas las comunidades del municipio de Macuelizo.

Capacidad Específica y coeficiente de almacenamiento

Las capacidades especificas entre 0.4 y 400 m³/h/m y los valores del coeficiente de almacenamiento desde 2.9x10⁻⁶ hasta 0.35. Al igual que las transmisibilidades, los valores más altos corresponden a los aluviales y piroclastos cuaternarios y los valores menores a pozos perforados en rocas volcánicas y **sedimentarias mesozoicas** y terciarias que cubren gran parte de la franja costera del Pacífico, casi todas las **Tierras Altas del Interior** y la llanura Atlántica.

Diferentes características hidráulicas de las rocas en el área de estudio:


Rocas volcánicas con textura uniforme (Tmc): Comprende las riolitas ignimbríticas e intrusivas, y lavas andesíticas. Estas rocas por lo general son de textura afanítica a fina, y por consiguiente generalmente impermeable.

Las rocas pertenecientes a la formación geológica de Matagalpa (Tomm) se presentan muy foliadas y finamente diaclasadas y con finas estructuras. Presenta un suelo superficial poco profundo. Se considera una roca de una conductividad hidráulica relativamente baja. En todo caso, en la región esta unidad representa un volumen importante de roca, no obstante, aflora en un área medianamente poblada, donde sus habitantes consumen agua de pozos excavados dentro acuíferos pobres superficiales, formados por pequeñas fracturas y la zona meteorizada de ésta roca.

ANEXO III.

PRUEBA DE BOMBEO Y CALIDAD DEL AGUA

Anexo III-1. Informe de prueba de bombeo

* Perforante de Passa

· Sumariatros y bratalocion de Equipo de Bombeo

* Pruebas du Barries e Pezos Artesiones

* Construcción de Sistemias de Agua Patable

· Summafree de Acestarias y Maistanimente de Posinas

PROYECTO "PRUEBA DE BOMBEO MABE PUERTAS DE PARÍS"

PUERTAS DE PARÍS

INTRODUCCION

El 28 de Septiembre del 2013 La Alcaldia, sin pedro l'ovado contrato los servicios de Tecno hombos. Construcciones y Servicios R.R.M. SA para la ejecución de pruetas de bombeo en la comunidad de El Espiral ubicada a en el municipio de Esteli. El objetivo es evaluar la capacidad de producción del pres, con el propósito de la ejecución de un mini acuaducto por bombeo eléctrico para mejorar las condiciones de vida de los integrantes de la comunidad.

Se inicia el 28 de septiembre del 2013 levantando los datos de campo que a continuación se detallan:

DATOS DEL POZO

> Profundidad total del pozo 36.58 (metros)
> Diámetro del encamisado 6º PVC-506-26 (
> Nivel estático del agua 0.79 (metros)
> Equipo de perforación Maquina rotativa
> Tiempo de perforación aproximadamente 3 años.

METODOLOGIA

Se ejecuta prueba de bombeo del tipo continua un escalón, la cual consiste en bombeo a destarga libre con un caudal de 70 gpm durante un periodo de seis horas sin interrumpir. Los datos que se registran sen el Descenso vs el Tiempo.

Al finalizar el último y único escalón inmediatamente que se detiene el bombeo se toma el tiempo de recuperación del pozo, posteriormente se procesan los datos obtenidos en un software especial para interpretación de pruebas de bombeo denominado PUMPING TEST, que nos calcula la transmisividad (1), coeficiente de almacenamiento (5), para el cálculo del coeficiente de permesbilidad (K) usamos la siguiente fórmula K= T/b; donde T es la transmisividad (m2/dia) y b es el espesor saturado del pezo (metros), además se calcula la capacidad especifica CE (gpm/m) con la formula CE=Q/s donde Q, es el caudal de bombeo (gpm); s es la variación de descenso en cada escalón (metros).

Construcciones y Serv. R. R. M., S. A.

EQUIPO UTILIZADO

El equipo a utilizado es una bomba sumergible de 50-70 gan acoplada a motor siécorico de 5hp/230v/60hz con 30 m de columna de 1 ½" ha cadula-40, planta eléctrica de 10 kva y sonda eléctrica para medición de niveles, tripode, tecio de 3 toneladas.

Elaborado por: Tecno bombas, Construcciones y Servicios R.R.M. S.A.

*Performentioners

· Service of the second of the second bearing

Frankis de Tarebro e Popas Artania ang
 Genetraciatàs da Testerror de Ague Potatiko

 Automotros de Associación y Momentos acto da Posicione. Construcciones y Serv. R. R. M., S. A.

TRABAJO DE CAMPO

El proceso de la pruebe se deuxerollo en trecatapes, la presens una pruebe presentar durante but werennes care of objection the entireur by productable also prote y on give separal of reload del pools se establica le segunda, lecontarviurno de datos de carrigio Descenso es licerços seguncontrato y especificaciones tecnicas, y la tersara atiapa de galancte en el sual se processa (us dates obtendos os el campo y nedacción del informe final.

inspermes le provito pretentar o sum Q+ 30 Y 60 gam obteniende un descorso de 8.02 m para un refrajardonto de 7,25m duranto 30 minutos. Comidinando los resultados, seleccionamos un solo casalel de tratajo dobitamente notoricacios per la saponesche para sol ejecutor la priette continua sin internimpir.

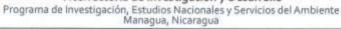
PRIMER Q1-78 GPM

The state of
00 IDD NH
35 t30 (s/s
\$ hors:
7007
Chr 30 gpri
16.23 m
7.13 m

MESULTADOS

El poco estaba limpio libre de sedimentos. Durante el desarrollo de la praeto se tumoren les municipal de agua para ser envisión al interatorio, en docde se la presticação análida folco. guárnico completo, así como rretistos presidos il resultados de tabunatorio adjuntos!

Al finalizar la procisa se processe a readir al tiempo de recupiaración del poto duranto 10 minutos, trempo en el cual el puso se recuporó un rivel cuciónio hanta los \$.31 m.


ACIUNTO CURVAS DE COMPORTAMIENTO Y PARAMETROS HICHURICOS DEL POUD RESULTADIO DE LOS DATOS DE CAMPO

	Potrolomiceto erabatimienta: total	***
*	Coeficients de permeabilitad	7.33 m
*	Transmistabled	0-3.27 m/sis
*	Coeficiente de atracamenteros	T=40 m²/dis
7	Copecidad específica	S= 0.0004
٠	Cressidad especifica	(03) CE 9 gan/m

Según los resultados obtenidos se recomiendo austotor el pozo con un caudal \overline{u} = 35 GPM. Realizar destaferación total de astro

Universidad Nacional de Ingeniería Vicerrectoría de Investigación y Desarrollo

LABORATORIOS AMBIENTALES

	CE	RTIFICAD	O DE ENS	AYOS			MP1604-0022
EMPRESA / PROYECTO / PERSONA DIRECCIÓN							TELEFONO
Oscar Gonz	ález	Hosp	ital Asunci	ón 1c.al	Norte 40vrs al	Este, Juigalpa	NR
ATENCIÓN			CARGO			EMAIL.	CELULAR
Oscar Gonza	ález Espinoza	7 1	Consultor ogonzale		ogonzalez:	9e@gmail.com	8498-8696
FEC	HAS DE PROCESAMIENTO DE MUESTRA EN EL	LABORATO	RIO	B. 22-08-09-0	DE EMISION DE	CADENA CUSTODIA	NUMERO DE
INGRESO	INICIO DE ANALISIS	FINAL DE			ANALISIS		MUESTRAS
03/04/2016	11/04/2016	11/0	04/2016 12/04/2016		2/04/2016	2368	Tres (3)
Fecha y Hora	de Muestreo	W-	03/04/2016 ; 03:00 pm				
Muestreado p	100		Oscar González				Rango o valor
Supervisor de	Muestreo en Campo		Oscar González				
Fuente			De la Curva, Pozo Perforado				
Tipo de mues	tra	Agua Subterránea				máximo permisble	
Observacions	s de Ubicación	NR.				permanie	
Coordenadas			NR NR				
Codificación PIENSA			LA -1604-0204				
METODO SM // EPA	ENSAYO REALIZADO: PARAMETRO	Unidad		VALOR DE CONCENTRACION PUNTO DE MUESTREO 3		Norma CAPRE*	
G.H	Arsénico	mg/l			0.007		0.01

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parâmetro de acuerdo a la Unided que se indica en la columna y línea respecti

<: menor al Limite de Detección que se especifica por parámetro. NE= No especificada en la Norma, NR= No Reporta. ND=No Detectado Metodos, Normas y/o Decreto empleados: SM = Standard Methodos, 21th.2005 EPA = Environmental Protection Agency

^{*} Norma regional de calidad del agua para consumo humano

G.H: Generador de Hidruros, Utilizando ARSENATOR

LABORATORIOS AMBIENTALES

EMPRESA / PROYECTO /		CERTIFICADO I	JE CHE	MICO		LA-I	MB-1709-0158
EMPHESA / PROTECTO /	PERSONA	DIRECCIÓN					TELEFONO
Oscar González		Hospital Asu	ınción	1 C. al Norte 40	vrs al Este,	Juigalpa	NR
ATENCIÓN			CARGO			MAIL	CELULAR
Oscar González	Espinoza	Consultor		Oscar Gonza	ilez Espino	oza	8854-4219
FECHAS DE	PROCESAMIENTO DE MUESTRA EN	EL LABORATORIO		FECHA DE EM	The state of the s	CADENA	NUMERO DE
INGRESO	INICIO DE ANALISIS	FINAL DE ANA	LISIS	CERTIFICADO DE	EANALISIS	CUSTODIA	MUESTRAS
03/04/2016	11/04/2016	11/04/201	6	12/04/20	16	2368	Tres(3)
Fecha y Hora de Muest	neo		03/04/2016; 3:00 pm				
Muestreado por				Oscar (Sonzález		
Supervisor de Muestre	o en Campo		Oscar González				
Fuente				De la curva	, Pozo Per	forado	
Tipo de muestra	CONTRACTOR OF THE PERSON	nic Cont.	Agua Subterránea				
Observaciones de Ubio	ación	A		CRI	NR		19
Coordenadas				TANK	NR		9
Codificación PIENSA			LA-1709-0706				
METODO	ENSAYO REALIZADO	Unidad		VALOR DE CONCENTRACION			
SM // EPA	PARAMETRO		10	PUNTO DE MUESTREO 1			
92218	Coliforme total	NMP/100ml		>1.6*10 ⁸			1
9221E	Coliforme fecal	NMP/100mi	>1.6°10°				
9221F	E.coll	NMP/100ml	1		4.5*102		

[|] SEZIF | E. CON | NMP/106m/ | 4,5*10²

LEYENDA DE REPORTE DE RESULTADOS: Se reporta por parâmetro de acuerdo a la Unidad que se indica en la columna y linea respectiva.

Los resultados reportados corresponden a los ensayos solicitados por el cliente

PhD. Leandro Pajamo Aguileja A lador Técnico Laboratorios Ambentales PHENSA-UNI ENSAond garantiza la confidencialidad e impercialidad del informe.

Telefax Dirección: (505) 2278-1462 • Teléfonos: Área Académica 2270-5613 y 8866-6702 (M); Atención al Cliente Laboratorios Tel.: 2270-1517 5847-6828-(C) y 8152-7314 (M); Coordinación de Laboratorios 8100-0421 (M) • e-mail: piensa@uni.edu.ni • Web: www.pi87ka1ufti.edu.ni

0006565

< menor al Límito de Detección que se especifica por parámetro, NE= No especificada en la Norma. NR= No Reporta, Neg= Negativo Melodos, Normas y/o Decreto empleados: SM = Standard Methodos, 21th.2005. EPA = Environmental Protection Agency.</p>

Universidad Nacional de Ingeniería Vicerrectoría de Investigación y Desarrollo Programa de Investigación, Estudios Nacionales y Servicios del Ambiente Managua, Nicaragua

LABORATORIOS AMBIENTALES

EMPRESA / PRO	VECTO / PERSONA	DIRECCIÓN	RECCIÓN					
Oscar Gonzá	r González Hospital Asunción 1c Norte, 40 vrs al Este						NR	
ATENCIÓN			CARGO		EM	AIL:	CELULAR	
Oscar Gonzá	lez		Consulto	r.	ogonzalez:	9e@gmail.	84988696	
FB	CHAS DE PROCESAMENTO DE MUESTRA	EN EL LABORATO	ORIO	FECHA DE	EMISION DE	CADENA	NUMERO DE	
INGRESO	INICIO DE ANALISIS	FINAL	DE ANALISIS	CERTIFICAD	O DE ANALISIS	CUSTODIA	MUESTRAS	
04/04/2016	06/04/2016	12/	04/2016	1000	4/2016	2368	Tres (3)	
Fecha y Hora	de Muestreo				6; 03:00 pm			
Muestreado pe				The second secon	González.		Rango o valo	
Supervisor de	Muestreo en Campo			30 0 0 0 0 0	González		máximo	
Fuente					erta de Paris		permisible	
Tipo de muest	A Liver and A Live				bterránea		. 0	
and the second second second second	s de Ubicación		P	The state of the s	ino a San Barto	lo .	recomendado	
Coordenadas	alles (A)				IR			
Codificación P	A POST CONTRACTOR CONT				04-0202			
METODO SM // EPA	ENSAYO REALIZADO PARAMETRO	Unidad	VALOR DE CONCENTRACION PUNTO DE MUESTREO 1				Norma CAPRE*	
Visual	Aspecto	NE	Claro			NE		
4500-B	Potencial de Hidrógeno	pH	7.59			6,5 - 8,5**		
2510-B	Conductividad Elèctrica	μS/cm	618.00			400**		
2130-B	Turbiedad	NTU		0.033			5	
2120-C	Color Verdadero	UC		< 1	1.00		15	
2320-B	Alcalinidad	mg/l		25	2.60		NE	
2320-B	Carbonatos	mg/l		< (0,10		NE	
2320-B	Bicarbonatos	mg/l		25	2.60		NE	
4500-B	Nitratos	mg/l		6.	99		50	
4500-B	Nitritos	mg/l			.009		0.1	
4500-D	Cloruros	mg/l			.20		250	
3500-B	Hierro Total	mg/l			023		0.3	
4500-D	Sulfatos	mg/l			62		250	
2340-C	Dureza totali	mg/l		27	5.44		400**	
2340-C	Dureza Calcica .	mg/l			0.48		NE	
3500-B	Calcio	mg/l	=	60	.31		100**	
3500-B	Magnesio	mg/l		30	.37		50	
3500-B	Manganeso	mg/l		< (0.02		0.5	
3500-X	Sodio	mg/l			.00		200	
3500-C	Potasio	mg/l		0.	39		10	
4500-D	Amonio	mg/l			.09		0.5	
4500-C	Fluor	ma/l		D.	0.305			

LEYENDA DE REPORTE DE RESULTADOS: Se reporte por parámetro de acuerdo a la Unidad que se indica en la columna y linea respectiva <: menor al Límite de Detección que se específica por parámetro. NE= No específicada en ja-Norma.</p> NR= No Reporta, PMS=Poca Materia en Suspensión. Metodos, Normas y/o Decreto empleados: SM = Standard Methodos, 21th 2005 EPA 556

* Norma regional de calidad del agua para consumo humano: ** Valor recom

Telefax Dirección: (505) 2278-1462 * Telefonos: Área Académica 2270-5613 y 8866-8702 (M); Atención al Ciiente Laboratorios 5847-6823 y 8152-7314 (M); Coordinación de Laboratorios 8100-0421 (M) * e-mail: piensa@uni.edu.ni * Web: www.piensa.uni.edu.ni 0003353

ANEXO IV.

PRUEBA DE INFILTRACION

IV. Informe de resultados de pruebas de Infiltración.

Pruebas de infiltración.

Viviendas No.	Infiltración F (m/día)
1	5.39
2	3.28
3	8.25
4	6.84
5	12.34
PROMEDIO	7.22 l/m2/dia

El tipo de infraestructura de saneamiento corresponde a Letrina Semi elevada debido a las siguientes razones:

- 4) La comunidad de Puertas de París, es una población dispersa, el nivel de servicio adoptado para el servicio de agua potable es a través de conexiones de patio.
- 5) El nivel freático en el invierno es de 2 m y según el menú de soluciones tecnológicas de saneamiento del Nuevo FISE las letrinas semi elevadas se construirán cuando el nivel freático en invierno es muy somero (1.00m) o

los resultados de las pruebas de laboratorio indican que los suelos investigados en estado natural son limo-arcillosos.

6) Se puede apreciar que la tasa de infiltración obtenida luego de realizar cinco pruebas de infiltración en la comunidad, es de 7.22 litros/metro cuadrado/día, siendo esta tasa indicativa de terrenos plásticos con baja permeabilidad, aspecto que afecta el funcionamiento de sistemas de arrastre hidráulico.

Por tanto, conociendo que la tasa de infiltración del suelo es pobre y utilizando la *Guía para la Toma de Decisiones del Menú de Soluciones Tecnológicas en Saneamiento, del* FISE, se tomó la decisión de elegir la opción de *Letrina Sencilla Semielevada (LS-3) + Lavamanos*

ANEXO VI.

Anexo VI-1. Costos de administración anual

1	2	3	4	5	6	7	8
---	---	---	---	---	---	---	---

			Lloroo do	Llowes de	Costos de Administración Anua		on Anual
No	AÑO	CPD (l/día)	Horas de Operación por día	Horas de Operación por Año	Papelería	Salario de Operador	Total de Administración
0	2022	17496	16	5840	6000	70156.44	76156.44
1	2023	17933	16	5840	6000	70156.44	76156.44
2	2024	18382	16	5840	6000	70156.44	76156.44
3	2025	18841	16	5840	6000	70156.44	76156.44
4	2026	19312	16	5840	6000	70156.44	76156.44
5	2027	19795	16	5840	6000	70156.44	76156.44
6	2028	20290	16	5840	6000	70156.44	76156.44
7	2029	20797	16	5840	6000	70156.44	76156.44
8	2030	21317	16	5840	6000	70156.44	76156.44
9	2031	21850	16	5840	6000	70156.44	76156.44
10	2032	22396	16	5840	6000	70156.44	76156.44
11	2033	22956	16	5840	6000	70156.44	76156.44
12	2034	23530	16	5840	6000	70156.44	76156.44
13	2035	24118	16	5840	6000	70156.44	76156.44
14	2036	24721	16	5840	6000	70156.44	76156.44
15	2037	25339	16	5840	6000	70156.44	76156.44
16	2038	25973	16	5840	6000	70156.44	76156.44
17	2039	26622	16	5840	6000	70156.44	76156.44
18	2040	27288	16	5840	6000	70156.44	76156.44
19	2041	27970	16	5840	6000	70156.44	76156.44
20	2042	28656	16	5840	6000	70156.44	76156.44

Columna # 2. Año de inicio y Finalización del Proyecto

Columna # 3. Galones por Día del año 0 al Año 20

Columna # 4. Horas de Operación por Día del Año 0 al Año 20

Columna # 5. Horas de Operación por Año

Columna # 6. Papelería y útiles de oficina C\$ 6000 Anual

Columna # 7. Salario de Operador C\$ 5846.37 Mensual

Columna # 8.Costo Total de Administración por Año

Anexo VI-2. Costos de operación anual

9	10	11	12	13	14
Costo de C	Operación Anua	al			
Costo de energía eléctrica	Volumen de Agua m³/Año	Hipoclori to de Calcio en tabletas	Costo de Hipoclori to de calcio	Análisi s de Agua	Total de Operación
9236.08	24189.5	172.7	8633.3	4000.0	21869.3
9236.08	24794.3	177.0	8849.1	4000.0	22085.2
9236.08	25414.1	181.4	9070.3	4000.0	22306.4
9236.08	26049.5	185.9	9297.1	4000.0	22533.1
9236.08	26700.7	190.6	9529.5	4000.0	22765.6
9236.08	27368.3	195.4	9767.7	4000.0	23003.8
9236.08	28052.5	200.2	10011.9	4000.0	23248.0
9236.08	28753.8	205.2	10262.2	4000.0	23498.3
9236.08	29472.6	210.4	10518.8	4000.0	23754.9
9236.08	30209.4	215.6	10781.8	4000.0	24017.8
9236.076 8	30964.7	221.0	11051.3	4000.0	24287.373 79
9236.08	31738.8	226.6	11327.6	4000.0	24563.7
9236.08	32532.2	232.2	11610.8	4000.0	24846.8
9236.08	33345.6	238.0	11901.0	4000.0	25137.1
9236.08	34179.2	244.0	12198.6	4000.0	25434.6
9236.08	35033.7	250.1	12503.5	4000.0	25739.6
9236.08	35909.5	256.3	12816.1	4000.0	26052.2
9236.08	36807.3	262.7	13136.5	4000.0	26372.6
9236.08	37727.4	269.3	13464.9	4000.0	26701.0
9236.08	38670.6	276.0	13801.6	4000.0	27037.6

9236.076 8	39619.468 68	282.8	14140.2	4000.0	27376.276 27
9236.076 8	40614.545 45	289.9	14495.3	4000.0	27731.419 44

Columna # 9. Costo de energía eléctrica, 0,746 * Hp * C\$ 2,12 * tiempo de bombeo

Columna # 10. Volumen de agua m³ por año

Columna # 11. Hipoclorito de sodio en (grs/día * 365 días)/1000 grs/Kgs

Columna # 12. Costo de hipoclorito de calcio C\$ 50 cada tableta

Columna # 13. Análisis de agua C\$ 2000 semestral

Columna # 14. Costo total de operación por año

Anexo VI-3. Costos de mantenimiento anual

15	16	17	18	19	20			
Costo de mantenimiento Anual								
Desinfecci ón y Limpieza del Tanque	Reparació n en La Red de Distribució n	Reparación de Tanque de Almacenam iento	Válvulas, Equipo de Cloración, Reemplazo de Medidores	Total de Manteni miento	Costo Total anual			
1200	3600	3000	28500	36300	1343 25.77			
1200	3600	3000	28500	36300	1345 41.60			
1200	3600	3000	28500	36300	1347 62.83			
1200	3600	3000	28500	36300	1349 89.59			
1200	3600	3000	28500	36300	1352 22.02			
1200	3600	3000	28500	36300	1354 60.25			
1200	3600	3000	28500	36300	1357 04.45			
1200	3600	3000	28500	36300	1359 54.74			

1200	3600	3000	28500	36300	1362 11.30
1200	3600	3000	28500	36300	1364 74.27
1200	3600	3000	28500	36300	1367 43.81
1200	3600	3000	28500	36300	1370 20.10
1200	3600	3000	28500	36300	1373 03.29
1200	3600	3000	28500	36300	1375 93.55
1200	3600	3000	28500	36300	1378 91.08
1200	3600	3000	28500	36300	1381 96.04
1200	3600	3000	28500	36300	1385 08.63
1200	3600	3000	28500	36300	1388 29.04
1200	3600	3000	28500	36300	1391 57.45
1200	3600	3000	28500	36300	1394 94.07
1200	3600	3000	28500	36300	1398 32.72
1200	3600	3000	28500	36300	1401 87.86

Columna # 15. Desinfección y Limpieza del Tanque C\$ 1200 anual

Columna # 16, Reparación de la Red de Distribución C\$ 3600 anual

Columna # 17. Reparación del Tanque de almacenamiento C\$ 3000 anual

Columna # 18. Mantenimiento de sarta y válvulas, C\$ 5000, Mantenimiento de equipo de bombeo C\$ 10000, Reposición de equipo de bombeo C\$ 5000 Reposición de Equipo de Cloración, C\$ 2500 y Reemplazo de Medidores10 cada año C\$ 6000, total anual C\$ 28500 Anual

Columna # 19. Costo Total de Administración, Operación y Mantenimiento Anual

Columna # 20. Costo Total de Administración, Operación y Mantenimiento Mensual

Anexo VI-4: Presupuesto del proyecto

	Departamento:	Leói	Tasa de ca	ımbio	33.7
	Municipio:		Pedro de l	₋óvago	
	Fecha:	_14 /	11_/ 2019_		
	Factor de Transporte	-	1.1938		
	Factor de Venta		1.133		
NO	DESCRIPCIÓN	U/M	CANTIDAD	P/UNIT	COSTE TOTAL C\$
310	PRELIMINARES				338,030.74
31001	LIMPIEZA INICIAL	M ²	8272.4	72.71445	200507.682
	LIMPIEZA INICIAL PARA PREDIO DE CAPTACIÓN	M ²	400	24.23815	9695.26047
	LIMPIEZA INICIAL PARA LÍNEA DE DISTRIBUCIÓN	M ²	7472.4	24.23815	181117.161
	LIMPIEZA INICIAL PARA PREDIO DE TANQUE	M ²	400	24.23815	9695.26047
31002	TRAZO Y NIVELACIÓN	ML	6524.8	17.59011	114771.936
93599	TRAZO DE EJE DE TUBERÍA DE AGUA POTABLE (INCLUYE ESTACAS DE MADERA)	ML	6524.8	17.59011	114771.936
_	RÓTULOS	C/U	1.00	22,751.13	22,751.13
04277	RÓTULO TIPO FISE DE 1,22M X 2,44M (ESTRUCTURA METÁLICA & ZINC LISO) CON BASE DE CONCRETO REF	C/U	1.00	22751.13	22751.1259
320	LÍNEA DE CONDUCCIÓN				608580.099
32001	EXCAVACIÓN PARA TUBERÍA	M ³	1700.82	127.9774	217666.586
92227	EXCAVACIÓN MANUAL EN TERRENO NATURAL PARA TUBERÍA	M ³	1700.82	127.9774	217666.586
32004	RELLENO Y COMPACTACIÓN MANUAL	M ³	1700.82	114.8307	195306.31
92226	RELLENO Y COMPACTACIÓN MANUAL PARA TUBERÍA DE CONDUCCIÓN	M ³	1700.82	114.8307	195306.31
32006	PRUEBA HIDROSTÁTICA	c/u	5	1761.002	8805.00819
93282	PRUEBA HIDROSTÁTICA (CON BOMBA MANUAL) EN TUBERÍA HASTA DIAM. = 4", L HASTA 300M PARA PROYECTO. A. P	c/u	5	1761.002	8805.00819
32008	TUBERÍA DE DIÁMETRO	ML	1546.2	76.5206	118316.153
	TUBERÍA DE PVC Diam = 1 1/4" (SDR-26) (NO INCL EXCAVACIÓN) (JUNTA CEMENTADA)	ML	1546.2	76.5206	118316.153
32003	INSTALACIÓN DE TUBEÍA		1546.2	42.4986	65711.3281
_	INSTALACIÓN DE TUBEÍA DE PVC Diam = 1 1/4" (SDR-26) (NO INCLUYE EXCAVACIÓN) (SOLO MANO DE OBRA)	ML	1546.2	42.4986	65711.3281
32508	OBRAS VARIAS		7	396.3876	2774.71348
03532	BLOQUE DE REACCIÓN DE CONCRETO DE 3000 PSI REF DE 0,50m C/ANCLAJE P/ACCESORIOS CON ANCLAJE DE VARILLA DE HIERRO	C/U	7	396.3876	2774.71348

330	LÍNEA DE DISTRIBUCIÓN DE DISTRIBUCIÓN				2366417.36
33001	EXCAVACIÓN PARA TUBERÍA	M ³	5476.46	127.9774	700863.321
92227	EXCAVACIÓN MANUAL EN TERRENO NATURAL PARA TUBERÍA DE DISTRIBUCIÓN	M ³	5476.46	127.9774	700863.321
33004	RELLENO Y COMPACTACIÓN MANUAL	M ³	5476.46	114.8307	628865.603
92226	RELLENO Y COMPACTACIÓN MANUAL PARA TUBERÍA	M ³	5476.46	114.8307	628865.603
	PRUEBA HIDROSTÁTICA	C/U	17	1761.002	29937.0278
93282	PRUEBA HIDROSTÁTICA (CON BOMBA MANUAL) EN TUBERÍA HASTA DIAM. = 4", L HASTA 300M PARA PROYECTO. A. P	C/U	17	1761.002	29937.0278
_					
	TUBERÍA DE 1 ^{1/2} " DE DIÁMETRO	ML ML	2952.97	139.9627	413305.784
96166	6 TUBERÍA DE PVC Diam =1 ^{1/2} " (SDR-26) NO INCLUYE EXCAVACIÓN) (JUNTA CEMENTADA)		2952.97	139.9627	413305.784
33010	TUBERÍA DE 2" DE DIÁMETRO	ML	2025.63	134.2326	271905.497
	TUBERÍA DE PVC Diam = 2" (SDR-26) (NO INCL	ML	2025.63	134.2326	271905.497
	EXCAVACIÓN)				
32003	INSTALACIÓN DE TUBERÍA		4978.6	84.99719	211583.507
93613	INSTALACIÓN DE TUBEÍA DE PVC Diam = 2" (SDR-26)	ML	2025.63	42.4986	86086.4297
	(SOLO MANO DE OBRA) (JUNTA CEMENTADA)				
96489	INSTALACIÓN DE TUBEÍA DE PVC Diam = 1 1/2" (SDR-26)	ML	2952.97	42.4986	125497.077
	(NO INCLUYE EXCAVACIÓN) (SOLO MANO DE OBRA)				
	VALVULAS Y ACCESORIOS	GLB	83	16,829.95	109956.62
02137	VALVULA DE PASE DE GAVETA DE BRONCE Diam = 1 ^{1/2} " CON PROTECTOR DE TUBO DE Ho. Go. INCLUYE	C/U	11	5453.492	5453.49163
	EXCAVACIÓN				
03549	VALVULA DE PASE DE GAVETA DE BRONCE Diam = 2"	C/U	4	2813.549	11254.1978
	CON PROTECTOR DE TUBO DE Ho. Go. INCLUYE EXC				
02136	VÁLVULA DE PASE DE GAVETA DE BRONCE Diam = 2 "	C/U	10	7462.309	74623.0902
	PARA LIMPIEZA				
96394	CODO LISO DE PVC Diám.=2", 45° (SCH 40) (ASTM D2466) JUNTA CEMENTADA	C/U	18	130.6428	2351.57082
94966	CODO LISO DE DVC Diám 2" 00° (SCH 40) (ASTM D2466)	C/U	2	144.0468	288.093691
94006	TEE LISA DE PVC Diám.=2" (SCH 40) (ASTM D2466) JUNTA	C/U	6	150.9105	905.462936
96984	TEE LISA DE PVC Diám.=1½" (SCH 40) (ASTM D2466) JUNTA CEMENTADA	C/U	1	92.90097	92.9009651
96060	TAPON HEMBRA LISO DE PVC Diám.=2"	C/U	8	58.1625	465.300004
93598	BLOQUE DE REACCIÓN DE CONCRETO C/ANCLAJE	C/U	35	396.3876	13873.5674
Face ::	P/ACCESORIOS DE TUBOS	0			
92849	BLOQUE DE REACCION DE CONCRETO PARA VALVULA DI	C/U	6	185.7074	1114.24431
		,			

335	TANQUE DE ALMACENAMIENTO				660417
33501	MOVIMIENTO DE TIERRA PARA TANQUE DE	M ³	122.9179	854.0377	30897.0733
	ALMACENAMIENTO				
95569	EXCAVACIÓN MANUAL EN T. NATURAL PROF = DE 0,00 a	M^3	35.29	237.9507	8397.2818
	1 m				
93398	EXPLOTACIÓN O CORTE (MANUAL) EN BANCO DE	M^3	27.21	163.5591	4450.44306
	PRÉSTAMO				
95502	ACARREO (CON CAMION VOLQUETE) DE MAT SELECTO	M ³	35.21294	337.6972	11891.3127
00002	A 9 KMS CARGA MANUAL ASINCLUYE DERCHO DE	M ⁴	00.21201	001.0012	1100110121
	EXPLOTACIÓN)	IVI			
ດວວວຣ	RELLENO Y COMPACTACIÓN MANUAL	M^3	25.205	114.8307	2894.30718
95453	ACARREO (CON CAMION VOLQUETE) DE PIEDRA BOLÓN	M ³	21	155.4156	3263.7286
	A 0,6 KM (NO INCL COSTO DE P.BOLÓN)				
	TANQUE DE ALMACENAMIENTO DE MAMPOSTERIA	GLB		28797.15	345466.842
93353	, , , , , , , , , , , , , , , , , , , ,	LBS	744.38	32.40541	24121.937
00050	1/2", # 4		440.00	00.40544	40405 7000
93353	, , , , , , , , , , , , , , , , , , , ,	LBS	413.69	32.40541	13405.7929
00050	3/8", # 3	LDC	005.5	20 40544	7004 4704
	HIERRO (EN VARILLAS) (GRADO 40) Diam = 1/4", # 2	LBS	235.5	32.40541	7631.4734
	CONCRETO DE 3000 PSI (MEZCLADO A MANO)	M ³	8.74	4882.193	42670.3656
92003	CONCRETO DE 2500 PSI (MEZCLADO A MANO) PARA	M ³	4.038	4455.077	17989.6015
	ANDEN Y CANAL SIN REF				
95484	CONCRETO CICLOPEO (CONSIDERANDO PIEDRA BOLÓN	M ³	21	2326.749	48861.7297
	DEL SITIO) NO INCL. CLASIFICACIÓN NI ACARREO DE P.				
	BOLÓN				
92282	FUNDIR CONCRETO EN CUALQUIER ELEMENTO	M^3	12.778	946.8028	12098.2459
02856	MURO DE CONCRETO CICLOPEO (CONS. COMPRA DE	M^3	21	3140.582	65952.2195
	PIEDRA BOLON) SECC. TRAPESOIDAL				
95522	TAPA DE ACERO (A-36) DE 0,70m X 0,70m, Esp = 1/8" CON	C/U	1	1525.352	1525.35203
	DOS CANDADOS MEDIANOS (INCLUYE PINTURA				
	ANTICORROSIVA)				
93149	CAJA DE REGISTRO DE LADRILLO CUARTERÓN DE 2" X6"	c/u	2	5171.286	10342.5725
	X12" DE 0,60 m x 0,60 m, H = 0,80 m				
94966	CODO DE PVC Diam = 2" X 90°	c/u	2	144.0468	288.093691
	CODO DE HIERRO GALVANIZADO DE 2"X90° EXTREMOS RO	C/U	3	338,5956	1015.78683
	CODO DE HIERRO GALVANIZADO DE 2"X45° EXTREMOS RO		4	354.8806	1419.52247
	CODO DE Ho. Go. DE 3" X 90°	C/U	2	795.3847	1590.76934
	TEE LISA DE PVC Diám.=2" (SCH 40) (ASTM D2466) JUNTA				
94006	CEMENTADA	C/U	2	150.9105	301.820979
02137	VALVULA DE PASE DE GAVETA DE BRONCE Diam = 2"	C/U	3	5453.492	16360.4749
	CON PROTECTOR DE TUBO DE Ho. Go. INCLUYE EXC				
92853	TUBERÍA DE Ho.Go. Diam = 2" (NO INCL. EXCAVACIÓN)	ML	12	651.1529	7813.83512
93873	TUBO PARA RESPIRADERO DE Ho.Go Diam = 3"	ML	6	1381.246	8287.47321
	IMPERMEABILIZACIÓN DE PAREDES DE TANQUE	M^2	42	659.8404	27713.2961
	CONCRETO CON SIKADUR-32T				
92387	FORMALETA PARA FONDO DE ENTREPISO	M^2	9	377.2419	3395.17742
	FORMALETA PARA FUNDACIONES	M ²	6.42	398.9274	2561.11372
	FORMALETA PARA MUROS	M ²	24	270.244	6485.85657
	NIVELETA DOBLE DE 1,50 m x 1,50 m	C/U		158.6982	
			4 		634.792851
	PIQUETEO TOTAL EN CONCRETO FRESCO	M ²	75	38.78104	2908.57814
92137	REPELLO Y FINO CORRIENTE	M ²	75	289.0897	21681.7296
	OFFICIAL PERMITTRAL TO	<u> </u>	40.4.1	4=64.5=-	
	-	GLB		1764.279	265151.106
92067	CERCO (A) DE ALAMBRE DE PÚAS CAL. 13, 7 HILADAS	ML	400.4	659.4563	264046.283
	C/POSTE DE CONCRETO PRETENSADO A CADA 2,50 m				
93056	PUERTA DE ALAMBRE DE PÚAS CAL. # 13 Y MADERA	C/U	1	1104.822	1104.82241
	BLANCA				

33507	OTRO TIOPO DE OBRAS		2	18901.98	18901.9799
96213	CLORADOR (DOSIFICADOR DE CLORO) PARA ENTREGA EN FORMA DE PASTILLA Diam = 1 1/2", Presión de trabajo	C/U	1	8178.008	8178.00847
_	= 10 - 40 PSI				
03547	CAJA DE CONCRETO DE 3000 PSI REF. +PARED DE LADRILLO CUARTERON DE Ancho=1.00m,Largo=1.00m(NO	C/U	1	10723.97	10723.9714
340	FUENTES DE TOMA				1122514.11
34001	OBRAS DE TOMA	GLB	2	12024.51	601541.923
40020	ANALISIS FÍSICO QUÍMICO (20 PARÁMETROS: Color, Olor, Sabor, Turbieda+CIANUROS Y GASES DISUELTOS:	C/U	1	7969.212	7969.21175
	NITROG. Y Comp). AMONIACO Y METÁNO) DE 1 (UNA) MUESTRA DE AGUA				
	ANÁLISIS BIOLÓGICOS-BACTERIOLÓGICO COMPLETO				
40021	(Bacterias coliformes fecales y totales Escherichia Coli) DE 1 (UNA) MUESTRA DE AGUA PARA AGUA POTABLE	C/U	1	4055.3	4055.29963
40089	ANÁLISIS QUÍMICO DEL AGUA (ARSÉNICO) DE 1 (UNA) MUESTRA DE AGUA PARA AGUA POTABLE	C/U	1	4483.414	4483.41386
40114	ANÁLISIS FÍSICO-QUÍMICO DE AGUA PLAGUISIDAS ORGANO-CLORADOS Y ORGANO-FOSFORADOS DE 1 (UNA) MUESTRA DE AGUA PARA AGUA POTABLE	C/U	1	28824.9	28824.9022
94646	PRUEBA DE BOMBEO (CON BOMBA C/MOTOR	HRS	12	1348.615	16183.3856
0.0.0	SUMERGIBLE) ESCALONADA	1110		1010.010	10100.0000
96059	PERFORACIÓN DE POZO CON MÁQUINA ROTATIVA (6"-8")	PIE	260	1441.911	374896.784
00000	EN TODO TIPO DE LITOLOGÍA				0. 100001
93766	SELLO SANITARIO CON MATERIAL BENTONITA (ARCILLA COLOIDAL)	PIE	20	4691.819	93836.3846
94665	TUBERÍA RANURADA DE PVC Diam = 4"(SCH-40)	PIE	80	141.2976	11303.8081
	INSTALADA EN POZO PERFORADO				
96060	TAPÓN HEMBBRA DE PVC Diam = 2"	C/U	1	58.1625	58.1625005
94309	TAPÓN HEMBBRA DE PVC Diam = 4"	C/U	1	212.7865	212.786486
95257	TUBERIA CIEGA DE PVC Diam = 4" (SCH-40) INSTALADA EN POZO CON MÁQUINA ROTATIVA	ML	54.86	954.3162	52353.7868
92341	TUBERIA DE PVC Diam = 2" (SDR-26)	ML	54.86	134.2326	7363.99815
0_0	(021(20)		000		
34002	ESTACIÓN DE BOMBEO		1	190314	201278.698
	BOMBA C/MOTOR SUMERGIBLE DE 1.5 HP,Q= 22	C/U	1	42889.76	42889.7602
	GPM(1.5 L/S), CTD= 115-150',1/60/230 VOLTIOS				
04273	SARTA DE TUBERÍA DE Ho, Go. + Ho, Fo. + VALVULAS Diam = 2" PARA ESTACIÓN DE BOMBEO	C/U	1	123792.3	123792.333
94977	VALVULA DE CHECK DE Ho. Fo. Diam = 2" EXTREMOS BRIDADOS	C/U	1	9300.403	9300.40313
92800	PANEL DE CONTROL DE BOMBA PARA MOTOR DE ARRANQUE DE 1,5 HP, 110/60/220 V	C/U	1	5501.289	5501.28935
92677	CABLE ELECTRICO DE COBRE PROTODURO TGP #3X12(600 VOLTIOS)	ML	50	223.7693	11188.4664
96444	ARRANCADOR MAGNÉTICO (A TENSIÓN COMPLETA)	C/U	1	8606.446	8606.44579
	CTD=57'				

24002	CACETA DE CONTROL	OL D	4	24000.00	440400 700
_	CASETA DE CONTROL	GLB	1	31626.26	
	NIVELETA DOBLE DE 1,50 m x 1,50 m	C/U	4	158.6982	634.792851
_	EXCAVACIÓN MANUAL EN TERRENO NATURAL	M ³	11.91	127.9774	1524.21129
93398	EXPLOTACIÓN O CORTE (MANUAL) EN BANCO DE PRÉTAMO	_M ³	15.41	163.5591	2520.4457
92226	RELLENO Y COMPACTACIÓN MANUAL	M ³	11.91	114.8307	1367.63335
94334	ACARREO (CON CARRETA DE BUEYES) DE	M ³	15.41	241.6674	3724.80468
	MAT.SELECTO A 1 KM (NO INCL. DERECHO				
	DEEXPLOTACION)				
93353	HIERRO (EN VARILLAS) CORRUGADO (GRADO 40) Diam = 3/8", # 3	LBS	619	32.40541	20058.9471
93353	HIERRO (EN VARILLAS) (GRADO 40) Diam = 1/4", # 2	LBS	230.55	32.40541	7471.06663
92009	CONCRETO SIN REFUERZO DE 3000 PSI (MEZCLADO A MANO)		0.91	4882.193	4442.79551
92009	CONCRETO REFORZADO DE 3000 PSI (MEZCLADO A MANO)	M ³	2.42115	4882.193	11820.5213
92113	MORTERO ARENA Y CEMENTO PROPORCIÓN 1:4	M ³	1.852947	4.968415	9.20621007
92091	PARED DE BLOQUE DE 6" X 8" X 16" SIN SISAR	M ²	17	650.1773	11053.0143
-	FORMALETA PARA FUNDACIONES	M ²	9.1544	398.9274	3651.94073
_	FORMALETA PARA VIGAS	M ²	9.17352	497.237	4561.4137
-	FORMALETA PARA COLUMNAS (AREA DE CONTACTO)	M ²	3	414.4188	1243.25647
	CUVIERTA DE TECHO DE LÁMINA ONDULADA DE ZINC	M ²	19.303	390.3565	7535.05165
92119	CAL. 26 SOBRE ESTRUCTURA METÁLICA	IVI	19.303	390.3565	7535.05165
93150	FASCIA DE PLYSEM LISO Espesor = 11 mm (APOYADA EN PERLINES Y MADERA ROJA)	M ²	2	727.2165	1454.43298
95178	FLASHING DE ZINC LISO CAL. 26 DESARROLLO = 0,60 m	ML	12.81	266.6597	3415.91075
92282	FUNDIR CONCRETO EN CUALQUIER ELEMENTO	M ³	3.33115	946.8028	3153.94208
92137	REPELLO Y FINO CORRIENTE	M ²	19.56	289.0897	5654.59507
	PIQUETEO TOTAL EN CONCRETO FRESCO	M ²	35.26	38.78104	1367.41954
	ACABADO FINO LLANETEADO EN LOSA DE CONCRETO	M ²	11.55	115.939	1339.09517
_	PUERTA DE MADERA (ROJA) SÓLIDA DE 1,0 m X 2,10 m	C/U	1	12677.36	12677.3587
30200	CON MARCO + BISAGRAS + CERRADURA + CELOCIA DE 0,2 M	0,0	ı ı	12077.00	12011.0001
04234	VENTANA ABATIBLE DE MADERA DE PINO Y LAM.	M ²	0.675	3986.821	2691.10405
01201	ACRILICA TRANSPARENTE Esp. 3 mm (INCL. BISAGRAS + PASADOR + PIN)	IVI	0.070	0000.021	2001.10400
34005	INSTALACIONES ELECTRICAS		223	81307.61	109027.96
93001		ML	30	478.2304	14346.9106
	ACOMETIDA CON TUBO DE EMT Diam = 1" CON CALAVERA DE EMT Diam = 1" (NO INCLUYE CONDUCTOR)				
92197	APAGADOR DOBLE DE 15 AMP/120V CON PLACA M. DE 2 HOYOS	C/U	1	292.2016	292.201598
92266	CAJA DE REGISTRO ELECTRICA DE EMT DE 4" X 4"	C/U	1	401.1211	401.121113
92267	CAJA DE REGISTRO ELECTRICA DE EMT DE 2" X 4"	C/U	1	276.5706	276.57056
92269	TUBO CONDUIT FLEXIBLE DE 1/2" FORRADO	ML	16	62.01423	992.227672
92270	ALAMBRE ELECTRICO DE COBRE FORRADO DE #12 AWG	ML	63	33.50911	2111.07385
92543	ALAMBRE ELECTRICO DE COBRE FORRADO DE #10 AWG	ML	27	52.77695	1424.97768
92535	BREAKER DE 2 x 50 AMPERIOS	ML	1	952.1759	952.175886
92558	BREAKER DE 1 x 20 AMPERIOS	C/U	1	506.7863	506.786332
92649	ALAMBRE ELECTRICO DE COBRE FORRADO Nº 14 AWG	ML	18	37.11007	667.981264
92506	LÁMPARA (O LUMINARIA) FLUORESCENTE DE 1 X20 WATTS CON 1 TUBO	C/U	2	776.0266	1552.05322
92803	ESTRUCTURA ELÉCTRICA VA5-1:RAMAL	C/U	1	6088.361	6088.36117
	PRIMARIO;14.4/24.9 KV				

92804	ESTRUCTURA ELÉCTRICA VA-5:REMATE	C/U	1	3028.2	3028.19991
_	SENCILLO;14.4/24.9 KV				
94084	ESTRUCTURA ELECTRICA G-105: MONTAJE DE TRANSFORMADOR MONOFÁSICO (NO INCL. TRANSF.)	C/U	1	16493.23	16493.2314
92802	TRANSFORMADOR DE 10 KVA, 14,4/24,9 KV, 120/240 KV (NO INCL. ESTRUCTURA) C/U	C/U	1	42400.32	42400.3172
93456	VARILLA POLO A TIERRA DE COBRE Diam = 5/8", L= CON 10m DE ALAMBRE ELÉCTRICO DE COBRE CABL. # 8 + 5	C/U	1	2237.085	2237.08505
95343	m DE TUBO CANALIZACION ELÉCTRICA CON TUBO DE IMC. Diam = 1/2" (INCL. BRIDAS)	ML	16	251.5568	4024.90947
93378	CANALIZACION ELECTRICA CON TUBO DE EMT DE 1"" (INCL. BRIDAS)	ML	6	304.7758	1828.65489
93687	TOMA CORRIENTE DOBLE POLARIZADO. DE 15 AMP/120V CON PLACA DE BAQUELITA.	C/U	1	127.5193	127.519321
9382O	ESTRUCTURA ELÉCTRICA D1-1:RETENIDA SENC.C/PERNO GUARDACABO Y ANCLA	C/U	1	4370.847	4370.84741
92650	ALAMBRE ELECTRICO DE COBRE THNH # 6 AWG	ML	30	95.43312	2862.99364
94209	ESTRUCTURA ELÉCTRICA M2-1 :POLO A TIERRA CON VARILLA DE 5/8" X 8 '	C/U	1	2515.046	2515.04633
94927	PARARRAYOS DE 18 KV	C/U	1	5733.702	5733.70238
94998	ESTRUCTURA ELÉCTRICA VA-1 SOPORTE SENCILLO ANGULO 0º A 5º, 14.4/24.9 KV	C/U	1	5212.912	5212.91216
95113	CALAVERA DE EMT Diam = 1", 3 x 10	C/U	1	501.9137	501.913679
95721	PANEL MONOFASICO 8 ESPACIOS 120/240V. BARRA DE 125 AMPERIOS	C/U	1	5523.593	5523.59332
	CERCAS PERIMETRALES Y PORTONES	GLB	1	1342.031	98535.8219
92066	CERCO (A) DE ALAMBRE DE PUAS CAL. 13, 7 HILADAS	ML	410.74	237.2085	97430.9995
93056	C/POSTE DE MADERA RUSTICA ACADA 2.50 m PUERTA DE MARCO DE MADERA BLANCA Y FORRO DE	C/U	1	1104.822	1104.82241
93030	ALAMBRE DE PUAS CAL. # 13½ (NO INCLUYE HERRAJES)	0,0		1104.022	1104.02241
350	CONEXIONES				237558.423
_	CONEXIONES INTRADOMICILIARES	ml	66	477.5553	31518.6488
	CONEXIÓN DOMICILIAR CON SILLETA LISA DE PVC DE	C/U	66	477.5553	31518.6488
90070	1 ^{1/2} " X 1/2" (SDR-13,5) PARA AGUA POTABLE (NO INCL MED) (NO INCL EXCAVACIÓN)	C/U	00	477.5555	31310.0400
96071	CONEXIÓN DOMICILIAR CON SILLETA LISA DE PVC DE 1 ^{1/2} " X 1/2" (SDR-13,5) PARA AGUA POTABLE (NO INCL	C/U	66	563.4011	37184.4713
	MED) (NO INCL EXCAVACIÓN)				
35009	MEDIDORES DE AGUA POTABLE	GLB	66	3121.815	206039.774
92978	MEDIDOR DOMICILIAR Diam = 1/2" DE AGUA POTABLE (CON CAJA DE CONCRETO Y TAPA Y ARO DE Ho. Fo.)	C/U	66	3121.815	206039.774
499	SISTEMA DE SANEAMIENTO				1316159.11
49928	LAVADEROS	C/U			199450.775
	LAVADERO SENCILLO DE CONCRETO REF.				
		l l	66	1950.023	128701.507
93801	Ancho=0.63m,Alto=0.63m (De 2 partes:1 fondo estriado y 1 pileta) DE FABRICACION NACIONAL(NO INCL. LLAVE DE CHORRO)	C/U	66	1930.023	120701.007
		C/U	66	359.1186	23701.8304

310	PRELIMINARES				150190.68
31001	LIMPIEZA INICIAL	M2	11752.92	4	47011.68
31002	TRAZO Y NIVELACIÓN	М	4978.6	15	74679
31005	RÓTULOS	C/U	1	28500	28500
320	LÍNEA DE CONDUCCIÓN Y DE IMPULSIÓN	М	927.22	514.82769	477358.535
32001	EXCAVACIÓN PARA TUBERÍA	M3	927.72	90	83494.8
32004	RELLENO Y COMPACTACIÓN MANUAL	M3	927.72	120	111326.4
32006	PRUEBA HIDROSTÁTICA	c/u	6	2500	15000
32008	TUBERÍA DE DIÁMETRO	М	1546.2	95	146889
32003	INSTALACIÓN DE TUBEÍA	М	1546.2	20.5	31697.1
32508	OBRAS VARIAS	C/U	0	0	88951.235
330	RED DE DISTRIBUCIÓN	М	2988	373.24859	1115266.8
33001	EXCAVACIÓN PARA TUBERÍA	M3	2988	90	145216.8
33004	RELLENO Y COMPACTACIÓN MANUAL	M3	2988	120	358560
33007	PRUEBA HIDROSTÁTICA	C/U	17	2500	42500
33008	TUBEÍA DE 2" DE DIÁMETRO	М	4980	95	473100
33009	TUBERÍA DE 3" DE DIÁMETRO	М		#¡DIV/0!	0
33010	TUBERÍA DE 4" DE DIÁMETRO	М		#¡DIV/0!	0
32003	INSTALACIÓN DE TUBERÍA	М		16	79680
33025	VALVULAS Y ACCESORIOS	GBL	1	16210	16210
335	TANQUE DE ALMACENAMIENTO	GBL	1	316837.25	316837.2492
	MOVIMIENTO DE TIERRA PARA TANQUE DE	CDI	1	22454	22454
33501	ALMACENAMIENTO	GBL	I I	23454	23454
	TANQUE DE ALMACENAMIENTO DE	GLB	1	267040.25	267040 2402
33502	MAMPOSTERIA	GLB	I I	267949.25	267949.2492
33507	OTRO TIOPO DE OBRAS	GLB	1	3984	3984
340	FUENTES DE TOMA	C/U	1	666840.34	666840.3402
34001	OBRAS DE TOMA	GLB	1	147518.43	147518.43
34002	ESTACIÓN DE BOMBEO	GLB	1	188043.69	188043.69
34001	OBRAS DE CAPTACIÓN	GLB	1	14738.452	14738.4515
34008	CERCAS PERIMETRALES Y PORTONES	GLB	1	23633.643	23633.6434
34010	FILTRO LENTO	GLB	1	13495.252	13495.25222
34003	CASETA DE CONTROL	GLB	1	93877.323	93877.32313
34005	INSTALACIONES ELECTRICAS	GLB	1	83398.69	83398.69
34008	CERCAS PERIMETRALES Y PORTONES	GLB	1	102134.86	102134.86
350	CONEXIONES	C/U	63	2967.25	186936.75
35006	PUESTOS PÚBLICOS	C/U	63	867.25	54636.75
35009	MEDIDORES DE AGUA POTABLE	GLB	63	2100	132300
355	OTRO TIPO DE OBRAS	GBL	1	4819.84	4819.84
70503	OTROS	GLB	1	58100	58100
	SUBTOTAL			C\$	2918250.194
	TOTAL DEL PROYECTO			C\$	3720437.743

ANEXO VII.

ESPECIFICACIONES TECNICAS

Anexo VII. Especificaciones técnicas de materiales y equipos

1 Especificaciones técnicas de materiales y equipos

a) Equipo de bombeo

El equipo de bombeo estará conformado por bomba y motor sumergible; siendo sus características de operación las siguientes:

Caudal (0.66l/s).

CTD (120metros).

Potencia del Motor 2.0 hp).

Los tazones deberán estar libres de ampollas, picaduras o cualquier otro defecto. Con la potencia del motor se debe cubrir todo el rango de operación de la bomba.

Se deberá especificar en la oferta los materiales de construcción de cada una de las partes componentes de la bomba. La misma deberá venir acompañada con la curva de operación.

Columna

La tubería de columna o de descarga con diámetros de 2" debe ser de hierro galvanizado. Esta debe suministrarse en tramos de 20 pies. Cada tubo debe traer roscas y camisas de unión en ambos extremos. Las roscas deben venir cubiertas por un protector plástico o metálico para evitar daños durante el transporte.

Cable de alimentación

El cable de alimentación del motor eléctrico sumergible debe ser propio para instalaciones que están en contacto directo con el agua. Cada conductor debe estar forrado con un aislamiento de hule.

Plato soporte de descarga

El soporte de descarga requerido es un plato de 12" de diámetro exterior y un espesor no menor de una pulgada, más un codo de 90 grados. Este debe tener la capacidad de soportar la carga estática y dinámica del equipo de bombeo.

2 Tubería

a) Excavación

Las excavaciones de zanja se efectuarán de acuerdo con la alineación, niveles y dimensiones indicadas en los planos. El fondo de la zanja será conformando a mano, de tal manera que se obtenga un apoyo uniforme y continuo para la superficie inferior del tubo sobre un suelo firme y uniformemente planos entre las depresiones excavadas para acomodar las campanas o juntas.

El ancho de zanjas no será mayor que el diámetro nominal de la tubería más 0.45 metros, ni menor de 0.60 metros. Se requiere una cubierta de 1.1 metro sobre el tubo, salvo que sea necesario evitar obstáculos en cuyo caso se excavará a la profundidad indicada en los planos o lo que indique el supervisor.

Si en el fondo de la zanja se encontrasen materiales inestables, basura o materiales orgánicos, que en opinión del supervisor deban ser removidos, se excavará y se removerán dichos materiales hasta la profundidad que ordene el supervisor.

Los materiales inaceptables como apoyo de la tubería serán removidos y sustituidos por material granular que serán apisonados en capas que no excedan 15 centímetros hasta un nivel que corresponda a ¼ del diámetro interior del tubo.

Cuando la excavación sea en roca o piedra cantera se removerá hasta una profundidad de 15 centímetros bajo la superficie inferior del tubo. Después la zanja se rellenará hasta la subrasante con material granular de la manera descrita anteriormente.

3 Instalación de tubería y accesorios

Los tubos se colocarán de conformidad con la alineación y de acuerdo a lo indicado en los planos o designados por el supervisor, quien podrá ordenar cambios en alineación y nivel de la tubería, cuando lo considere necesario.

La instalación de la tubería se efectuará con herramientas y equipos apropiados para este fin. La instalación de tuberías y accesorios de PVC será de acuerdo con especificaciones recomendadas por el fabricante.

Salvo que se indique lo contrario en los planos, el tendido de tubería en curvas se hará flexionando la tubería en las juntas. La deflexión máxima de cada junta no deberá exceder la recomendada por el fabricante.

4 Instalación de válvulas y accesorios

Se instalarán las válvulas de compuerta conforme a los sitios indicados en los planos. Estas deberán instalarse sobre bases de concreto con varillas de anclaje de acuerdo con los detalles indicados en los planos. Toda válvula deberá instalarse de tal manera que la tuerca para operar la válvula quede en una posición vertical. Las tapas de los tubos de protección de válvulas se instalarán a ras con la superficie del terreno; las cuales serán construidas en el sitio con la proporción 1:4 una de cemento y cuatro de arena con varillas de ¼ de pulgadas.

5 Encofrado y arriostramiento

Cuando se consideren necesarias las zanjas y otras excavaciones, deberán ser encofradas y arriostradas a fin de prevenir cualquier movimiento de tierra, evitar a los tubos cualquier daño y proteger a los trabajadores en la zanja.

6 Remoción de agua

Se utilizará bomba o cualquier otro equipo necesario para remover el agua de las zanjas antes de colocar materiales en ella misma. El constructor deberá disponer del agua, de tal forma que no ocasione daño a la propiedad o inconveniencia al público.

7 Relleno y compactación

Salvo que el ingeniero indique lo contrario, las zanjas no se rellenarán hasta que la tubería sea sometida a una prueba hidrostática.

Solamente materiales seleccionados provenientes de las excavaciones deben usarse para relleno a los costados y hasta 30 centímetros sobre la parte superior de la tubería. El relleno será colocado y apisonado en capas que no excedan 10 centímetros. Si los materiales de la excavación no se consideran apropiados para relleno, en opinión del supervisor, el constructor obtendrá por su cuenta en otro sitio, los materiales requeridos.

El relleno de zanja en carreteras y calles debe ser desde 30 centímetros sobre el tubo hasta la rasante, se hará con material de la excavación colocado y apisonado en capas de 0.15 metros. No se permitirán piedras en el relleno alrededor del tubo y piedras de más de 0.10 metros, serán excluidas de todo relleno, lo mismo que madera, basura y materia orgánica.

8 Colocación y disposición de materiales excavados

Materiales extraídos de la zanja serán colocados y dispuestos de tal manera que no obstruyan indebidamente el tráfico de vehículos y peatones en las calles, aceras y entradas a casas.

El ingeniero podrá levantar el relleno sobre zanja hasta una altura de 0.20 m. sobre el nivel del terreno natural con el material de relleno sobrante. Si sobra aún después de éste algún material o éste a juicio del Ingeniero no fuera adecuado para material, estos deberán ser removidos del sitio de la obra a un lugar adecuado, señalado por el ingeniero a cargo de la obra.

9 Prueba hidrostática

Después de instalar el tubo y antes de rellenar la zanja, el contratista someterá a prueba, secciones de tubería que no exceda 300 metros de longitud salvo que el supervisor oriente probar secciones más largas. En casos especiales aprobado por el supervisor, la tubería debe probarse a una presión hidrostática de no menor de 160 libras por pulgada cuadrada y se mantendrá esta presión durante no menos de una hora. El constructor instalará los bloques de empuje temporales, tapones, y todo aparato necesario para el ensayo.

Se requiere que todo aire sea expulsado del tubo antes de elevar la presión de prueba, aquí estipulado y con este fin se instalarán llaves maestras donde el supervisor lo considere necesario.

Los tubos y accesorios serán revisados cuidadosamente durante el ensayo a presión y los que se encuentren rajados o dañados serán removidos y reemplazados.

Toda junta será revisada durante la prueba y donde se manifieste filtración o derrame, El contratista reparará las juntas hasta que éstas queden impermeables.

La pérdida de agua de los tubos no debe exceder los siguientes límites por cada 100 juntas.

Pérdida de agua en la tubería

Diámetro de tubería (pulgadas)	Máximas fugas permisibles (galones/hora/100 juntas)
2 y menos	0.8
3	1.2
6	2.3
6	2.3

10 Desinfección

Después del ensayo de la tubería se procederá a la desinfección la cual se efectuará llenando la tubería con agua e introduciendo una solución de cloro residual después de 24 horas. El contratista deberá suministrar todo aparato, equipo y cloro necesario, para efectuar la desinfección de la tubería, además de los tubos y equipos que sean necesarios para remover el agua durante el baldeo de la tubería.

11 Bloques de reacción

Los bloques de reacción de concreto deben colocarse en los sitios designado en los planos en accesorios como tee, codos, reductores, tapones, etc. Todo bloque de reacción se colocará contra tierra firme y las dimensiones de éstos deberán estar de acuerdo con lo indicado en los planos.

12 Restauración de la superficie

El contratista deberá restaurar a su condición original, toda superficie removida por él, durante la ejecución de la obra.

13 Cruce de cauce

Cruces de alcantarillas y cauces se harán en los sitios indicados en los planos y de conformidad con los detalles en ellos indicados.

14 Instalación de conexiones domiciliares

El Ingeniero a cargo de la obra señalará la ubicación exacta de cada una de las conexiones a construir.

a) Excavación

El trazado de las conexiones será a 90 grado respecto a la tubería de alimentación de la conexión. Los costados de la zanja deberán ser verticales y el fondo conformado a mano de tal manera que se obtenga un apoyo uniforme, continuo en toda su longitud; el ancho de la zanja no deberá exceder de 0.60 metros.

b) Instalación de tubería

La perforación de tubería de servicio de agua potable se hará en un costado del tubo en un ángulo de 90 grados respecto al eje vertical. Antes de colocar la silleta o abrazadera, el tubo debe limpiarse con un cepillo hasta dejar la superficie uniforme y lisa donde se ajuste completamente al accesorio. Las tuercas de la abrazadera deben apretarse uniformemente y los suficiente para proveer una conexión hermética, pero que no llegue a ocasionar ruptura a la tubería. Después de efectuada la perforación, al agujero debe introducirse un punzón para remover las virutas de material que pueda haber quedado. El detalle de la conexión domiciliar de agua potable aparece en planos.

15 Caseta de controles eléctricos y cloración

Los alcances de los trabajos en las paredes de mampostería incluyen la preparación de superficies, la construcción de estructuras de concreto reforzado en las paredes indicadas en los planos: cerramientos de paredes de bloques, piqueteo de superficies de concreto, repello y fino.

- Materiales
- > Zinc calibre 26.
- Bloque.de 5x8x15"
- Cemento canal gris.
- Varilla corrugada No 3 y lisa No 2
- Otros

El cemento a ser utilizado en la fabricación del concreto mortero demandado por las unidades de mampostería y en los acabados, será Portland tipo I, debiendo cumplir con la especificación ASTM-C-150. Será suplido completamente fresco, en su empaque original y sin mostrar evidencias de endurecimiento.

Los agregados deben ser almacenados en forma ordenada, para que no se revuelvan, se ensucien o se mezclen con materias extrañas. Deben cumplir con las especificaciones ASTM C-33 designados para los agregados de concreto. El agregado grueso será piedra triturada o grava limpia, dura y libre de materia orgánica y de todo recubrimiento.

El agua a utilizarse en las mezclas deberá ser de calidad potable, libre de toda sustancia aceitosa, salina, ácidos, álcalis o materiales orgánicos u otras sustancias que puedan ser nocivos para el concreto o el refuerzo

El acero de refuerzo deberá cumplir con las especificaciones ASTM-A-615 de grado 40, con límite de fluencia Fy = 40000 psi.

Antes de su colocación, el acero se limpiará de toda suciedad u óxido superficial. Las varillas se doblarán en frío, ajustándose a los detalles que aparecen en los planos.

16 Movimiento de tierra

El trabajo consiste en la preparación del sitio, nivelación, excavación y relleno. Se removerán del sitio de la obra todas las piedras y cualquier obstáculo que pueda interferir con los trabajos de construcción. El contratista tomará todas las medidas necesarias para no causar daño a terceros en la eliminación de los desechos provenientes de esta operación.

En las fundaciones excavar hasta las profundidades necesarias, nivelar y limpiar todo el material suelto.

Excavar el material inadecuado debajo de las estructuras según lo especifique el ingeniero y rellenar con material adecuado escogido del sitio, compactar y rellenar a un 90 % Proctor Standard en capas que no excedan 10 centímetros.

17 Construcción de tanque de concreto ciclópeo sobre suelo

Toda mención hecha en estas especificaciones o indicadas en los planos obliga al contratista a suplir en instalar cada artículo o material con el proceso o método indicado y suplir toda la mano de obra y equipos necesarios para la terminación de la obra.

a) Concreto reforzado.

El concreto tendrá una resistencia a la compresión a los 28 días de 3000 libras por pulgadas cuadrada.

Para todo concreto, la proporción de cemento, árido y agua necesaria para obtener la plasticidad y resistencia requerida, estará de acuerdo con las normas **613-54 del ACI**. No se permitirá cambios en las proporciones sin la aprobación del ingeniero.

b) Concreto ciclópeo.

Se empleará concreto ciclópeo que consistirá de un **60%** de concreto clase "C" (140 Kg/cm²) y un **40%** de piedra grande bruta por volumen sólido de la mezcla.

Se usará piedra que sea manejable por un hombre y deberá quedar rodeada por una capa de concreto de no menos 30 cm de concreto, y ninguna podrá quedar a menos de 60 cm. de cualquier superficie superior, ni menos de 20 cm de un coronamiento (Nic 80 / Sección 602.11.11).

Concreto clase "C", este concreto tendrá una resistencia característica mínima a la compresión de 140 Kg/cm² a los 28 días; proporción 1:3:4.

Las piedras bolón deberán ser de roca sólida, no se permitirán bolones de piedras calizas, terrones o material fácilmente disgregable.

La colocación de la piedra bolón se hará de manera que las juntas queden completamente llenas de mortero y no haya espacios vacíos obteniendo así la conformación monolítica de la piedra con el mortero, deberá colocarse la piedra con arte de manera que la apariencia de la pared de bolón presente un buen acabado.

c) Materiales

El cemento a emplearse en las mezclas de concreto será cemento Portland tipo I, sujeto a las especificaciones **ASTM C-150-69**. Deberá llegar al sitio en sus envases originales y enteros.

El agregado fino será arena natural de cauce o Motastepe, dura, limpia y libre de todo material vegetal, mica o detrito de conchas marinas; sujeta a las

especificaciones **ASSHTO-R92-93 y ASTM –C-33-92**. En caso de usarse arena de cauce de la zona, ésta deberá ser lavada para eliminar todo limo o tierra vegetal que contenga.

El agregado grueso será piedra triturada o grava limpia, dura, durable y libre de todo recubrimiento, sujeta a especificaciones **ASTM-C-33-6IT**.

El tamaño más grande permitido del agregado será un quinto (1/5) de la dimensión mínima de la formaleta de los elementos de concreto, o tres cuarto (3/4) del espaciamiento libre mínimo de refuerzo según lo recomendado por la norma ASTM C-33 y sus dimensiones máximas deberán cumplir con la sección 33 del reglamento.

El agua a emplear en la mezcla del concreto deberá ser limpia, libre de aceite, ácido o cantidades perjudiciales de material vegetal, álcalis y otras impurezas que puedan afectar la resistencia y propiedades físicas del concreto o refuerzo, deberá ser previamente aprobada por el Ingeniero.

El acero de refuerzo deberá cumplir la especificación **ASTM A-305** con un límite de fluencia de 40,000lbs por pulgadas cuadrada, de acuerdo a las especificaciones **ASTM A-615-68**, Grado 40. Todas las varillas deberán estar limpias y libres de escamas, trazas de oxidación avanzada, grasas y otras impurezas e imperfecciones que afecten sus propiedades físicas, resistencia o su adherencia al concreto.

d) Almacenamiento de materiales

El cemento se almacenará en bodegas secas, será sobre tarimas de madera en estibas de no más de 10 sacos. El cemento debe llegar al sitio de la construcción en sus envases originales y enteros. No se utiliza cemento dañado o ya endurecido.

Los áridos finos y gruesos se manejarán y almacenarán separadamente de manera tal que se evite la mezcla con materiales extraños.

Todas las varillas de acero de refuerzo se deberán proteger hasta el momento de usarse.

e) Colocación del acero de refuerzo

La limpieza, doblado, colocación y empalme de refuerzo se hará de acuerdo con las normas y recomendaciones 318-89 del ACI.

El acero de refuerzo se limpiará de toda suciedad y óxido no adherente. Las barras se doblarán en frío, ajustándolas a los planos y especificaciones del proyecto, sin errores mayores de un centímetro.

Los dobleces de las armaduras, salvo indicación especial en los planos, se harán con radios superiores a siete y medio (7.50) veces su diámetro.

Las barras se sujetarán a la formaleta con alambre o tacos de concreto y entre sí con ataduras de alambre de hierro dulce No.18, de modo que no puedan desplazarse durante la llena y que éste pueda envolverlos completamente.

No se dispondrá sin necesidad, el empalme de varillas no señaladas en los planos sin autorización del ingeniero.

f) Dosificación y mezcla

Las dosificaciones de cemento, agregados y agua utilizados deberán ser aprobados por el Ingeniero. Se harán basándose en pruebas de clasificación y contenido de humedad de los materiales, asentamiento de la mezcla de concreto y resistencia del concreto, comprobada por pruebas de resistencia a la comprensión ejecutadas en cilindros de este material, la cantidad de cilindros será de 4 cilindros por cada llena o lo que decida el ingeniero.

Estas pruebas deberán ser realizadas por un laboratorio seleccionado de una terna de laboratorios de pruebas de reconocida competencia y pagadas por contratista. Informes certificados de las pruebas deberá ser presentado al Ingeniero, antes de proceder al vaciado de concreto. El contratista no podrá

cambiar abastecedores de materiales durante el curso del trabajo sin autorización del ingeniero y presentación de nuevas pruebas certificadas de laboratorio. Excepto cuando se especifique lo contrario, el concreto será mezclado en sitio.

La mezcla del concreto se ajustará a los requerimientos de las Normas 613-54 y 614-59 del ACI.

El método para determinar la cantidad correcta de agua y agregado para cada mezcla, debe ser de un tipo que permita controlar con exactitud la proporción de agua y cemento verificarla fácilmente en cualquier momento, el revenimiento de la mezcla no deberá ser mayor de 4" pulgadas y/o conforme el diseño del concreto sometido por el contratista y aprobado por el ingeniero.

g) Colocación del concreto

La colocación o vertida de todo el concreto se hará de acuerdo con las normas 318-89, 605-59 Y 614-59 del ACI y en la forma que aquí se modifica. El transporte y vertida del concreto se hará de modo que no se disgreguen sus elementos, volviendo a mezclar al menos con una vuelta de pala, las que acusen señales de segregación.

No se permitirá la colocación de mezclas que acusen un principio de fraguado, prohibiéndose la adición de agua o lechada durante la llena. Todo el concreto se colocará sobre superficies húmedas, libres de agua y nunca será lo suficiente como para causar el flujo y asentamientos del concreto en su lugar.

h) Curado del concreto

El contratista prestará cuidadosamente atención al curado apropiado de todo el concreto. Una vez desencofrado cualquier miembro actual, se mantendrá húmedo todo el día por un período de 7 días. En caso de la fundación masiva para el

tanque, se esparcirá una capa de arena en toda la superficie, la cual se mantendrá húmeda todo el día y teniendo el cuidado de humedecerla por las noches durante los sietedías del curado.

g) Excavación

El contratista replanteará el trabajo y será responsable de su marcación de acuerdo a las referencias de los planos, las cuales deberán ser mantenidas durante el progreso del trabajo.

El contratista establecerá un banco de nivel permanente que servirá de referencia para todos los niveles.

El contratista será responsable de la conservación de este banco de niveles y pagará el costo de su reposición si se pierde por su negligencia.

La excavación para el tanque se efectuará de acuerdo con las dimensiones indicadas en los planos. La excavación se extenderá a una distancia tal de las paredes que permita llevar a cabo las diferentes operaciones de construcción e inspección de la obra, el mejoramiento del suelo donde se construirá el tanque, será de acuerdo a lo recomendado por el laboratorio de suelo que efectúe los estudios.

Toda obstrucción, troncos y desperdicios en el área del movimiento de tierra serán removidos fuera del predio por el contratista. Si no se encontrara un subsuelo a la profundidad con un soporte adecuado, el contratista notificará inmediatamente al ingeniero. El contratista no procederá con el trabajo hasta que no se le den las instrucciones correspondientes y se hagan las mediciones para obtener el volumen adicional de excavación. El contratista mantendrá el área de excavación convenientemente drenada para no perturbar la estabilidad de las fundaciones y del suelo de soporte. El fondo de la excavación debe quedar a nivel, libre de material suelto y llevarse hasta los niveles indicados sin alterar el suelo a dichos niveles.

El contratista mantendrá en todo momento los pozos y zanjas de las cimentaciones libres de agua. Proveerá el bombeo necesario para mantener durante la construcción los espacios excavados libres de agua. En caso se encontrarán filtraciones y ojos de agua en la excavación, el ingeniero deberá ser notificado, y el contratista deberá proveer sin costo adicional desagüe.

Si por error del contratista se llevara la excavación más debajo de las líneas exactas del fondo de las fundaciones y de los pisos de hormigón sobre tierra, el contratista llenará el exceso con hormigón debajo de las paredes y cimientos y con grava debidamente compactada debajo de las losas, sin costo alguno para el contratista.

A fin de mantenerlas firmes y seguras, se apuntalarán y arriostrarán excavaciones en la forma requerida y aprobada por el Ingeniero. Se removerán los puntales a medida que la obra progrese, asegurándose esta medida hasta que los terraplenes estén completamente seguros de colapsos y desprendimientos.

h) Limpieza

Todo material sobrante resultado de la excavación del sitio, será removido del predio al costo del contratista. Asimismo, todos los desperdicios y escombros resultados de estos trabajos, se removerán del sito, el cual se entregará limpio y en condiciones aceptables.

18 partes a ser construidas de concreto

Todas las partes del tanque que fueren construidas de concreto, tales como fundaciones, losas, vigas, columnas, recubrimiento de losa de techo, etc., deberán ser construidas siguiendo invariablemente las alineaciones horizontales y verticales de los planos de detalle y cumpliendo la condición de que el concreto se coloque monolíticamente.

a) Curado del concreto

El contratista prestará cuidadosamente atención al curado apropiado de todo el concreto de las estructuras.

Todas las superficies expuestas, deberán mantenerse húmedas por un período de (7) días después que el concreto haya sido colocadas y desencofrado. Se evitarán causas externas (sobrecargas, vibraciones, etc.) que puedan provocar fisuras en el concreto sin fraguar o sin la resistencia adecuada.

Remoción de formaletas y obras falsas

La formaleta de la losa superior y columna central podrá ser removida parcialmente a los 21 días después de colada, quedando ciertos soportes a criterio del ingeniero para removerse a los 28 días. El proceso de remoción deberá hacerse de tal forma que no cause daño a la estructura o superficie.

b) Acabado de superficies expuestas

Cuando las formaletas sean removidas las superficies de concreto serán razonablemente lisas, libre de ratoneras, poros o protuberancias. Si estos defectos se presentan deberán ser reparados de la forma aprobada por el ingeniero sin costo adicional para el dueño.

c) Trabajos defectuosos

Cualquier trabajo defectuoso que se descubra después que las formaletas hayan sido removidas, deberá ser reparado de inmediato después que el ingeniero lo haya observado. Si las partes de concreto tuvieran abultamientos, irregularidades, o muestras excesivas ratoneras o marcas notorias del formaleteado cuyos defectos a criterio del ingeniero no puedan ser reparadas satisfactoriamente, entonces toda parte defectuosa será removida o reemplazada sin que ello represente costo adicional para el contratista por trabajos y materiales ocupados en la remoción defectuosa.

d) Pruebas

Una vez que el tanque esté totalmente terminado se ejecutará una prueba, ésta consiste esencialmente en una prueba de impermeabilidad la cual se hará de la forma siguiente: Se debe llenar el tanque hasta la altura del rebosadero durante un período de 48 horas, reponiendo continuamente el agua que sea consumida por la saturación de los materiales que forman las partes del tanque. A continuación, se dejará lleno el tanque por 72 horas más no debiendo rebajar el nivel del agua más de 9 centímetros. Cualquier fuga deberá ser revisada por el ingeniero y recomendar su reparación en la forma más adecuada sin que ello signifique costos extras para el contratista.

e) Acabado interno de paredes

En la parte interior de las paredes se aplicará un repello de 1.5 centímetros, con una proporción de una parte de cemento por tres partes de arena. Posterior al repello, se aplicará un fino tipo espejo de cemento con textura lisa. Se tendrá especial cuidado con el curado de estos acabados, evitando agrietamiento por la falta de humedad, posteriormente las paredes y fondo serán impermeabilizados con pinturas epoxica de dos componentes, tal a como se menciona en el artículo de "Pintura".

f) Escalera interior

Se deberá suministrar e instalar una escalera interior, construida con peldaños de acero galvanizado, 1/2 pulgada de diámetro. Los peldaños tendrán un ancho de 0.30 y de esparcimiento entre peldaños de 0.40 metros.

g) Boca de inspección

Se construirá una boca de inspección de acceso en la losa superior, dicha boca de inspección deberá construirse conforme a detalles mostrado en los planos constructivos.

h) Respiradero

El tanque deberá estar provisto de un respiradero de ventilación de conformidad al detalle de los planos constructivos.

i) Tubería de entrada, salida y limpieza

El tanque se proveerá de un tubo de entrada, salida y uno de limpieza cuya disposición y dimensiones deberán ajustarse a lo mostrado en los planos de detalles constructivos, estos accesorios deberán ser colocados al construirse las paredes de manera que se asegure un empotramiento perfecto que asegure impermeabilidad.

j) Rebosadero

El tanque deberá tener un rebosadero de conformidad al detalle y dimensiones que se indican en los planos.

k) Pintura

Se pintará la escalera interna del tanque de la manera siguiente: dos manos de pinturas epóxicas, las paredes internas y fondo del tanque se pintarán con dos manos de pintura epóxicas HI-SOLIDS CATALIZED EPOXY - SHERWIN WILLIAMS, C&M o según especificaciones AWWA D102-84 para tanques de agua potable.

ANEXO VIII.

PLANOS

	_		