

Área de Conocimiento de Ingeniería y Afines

Rediseño del Sistema Eléctrico del restaurante las delicias ubicado en el Municipio de Jinotega.

Trabajo Monográfico para optar al título de Ingeniero Eléctrico

Elaborado por	Tutor:					
Br. Oscar Octavio Rodríguez Montenegro Carnet: 2006-23999	Msc. Jhader Exequiel Zuniga Guillen					

19 de febrero de 2024 Managua, Nicaragua

Índice general

Índice general	1
Índice de tablas	5
Índice de figuras	6
Introducción.	7
Antecedentes.	8
Justificación.	9
Objetivos.	10
Objetivo general:	10
Objetivos específicos:	10
5. Marco de referencia.	11
5.1 Electricidad.	11
5.2 Instalación eléctrica.	11
5.2.1 Clasificación de instalaciones eléctricas.	11
5.2.2 Código y normas	12
5.2.3 Potencia demandada por una instalación.	12
5.2.4 Demanda máxima y carga instalada.	13
5.3 Los elementos que constituyen una instalación eléctrica	13
5.3.1 Iluminación interior.	13
5.3.1.1 Calculo iluminación interior	14
5.3.1.2 Determinación del coeficiente de utilización	14
5.3.1.3 Calculo de numero de iluminarias	15
5.3.1.4 Determinación del acomodo de las luminarias	15
5.3.2 Cálculo de iluminación exterior	16
5.3.2.1 Método punto por punto para alumbrado de exteriores	16
5.3.2 Climatización	17
5.3.2.1 Factores a tener en cuenta en el sistema de climatización	17
5.3.2.2 Cargas sensibles y latentes	17
5.3.2.3 Calculo de cargas	18

	5.3.3 Calibre del conductor eléctrico.	18
	5.3.3.1 Capacidad de corriente	18
	5.3.3.2 Caída de tensión	
	5.3.4 Factor de relleno	20
	5.3.5 Balanceo de paneles	21
	5.3.6 Calculo para interruptor termomagnético	
	5.3.7 Electrodo de puesta a tierra	
	5.3.7.1 Calculo de electrodo de puesta a tierra	
	5.3.7.2 Conductores de puesta a tierra	
	5.3.8 Transformador	
	5.3.8.1 Determinar la carga del transformador	24
	5.3.8.2 Determinar el fusible del transformador	
	6. Hipótesis y variables	24
	7. Diseño metodológico	25
	7.1 Tipo de investigación	25
	7.2 Área de estudio	25
	7.3 Fuente de información	25
	7.4 Técnica de recolección y análisis de información	26
	8. Resultados	31
	8.1 Memoria descriptiva y Características del diseño	31
	8.2 Diseño de iluminación	31
	8.3 Levantamiento del plano en AutoCAD	32
	8.4 Normativas eléctricas de iluminación consultadas para la toma de criterios de	
diseño		33
	8.5 Iluminaciones interiores	34
	8.5.1 Dimensionado	34
	8.5.2 Procedimiento de cálculo	35
	8.5.3 Coeficiente de reflexión del ambiente	35
	8.5.4 Factor de mantenimiento (Fm)	36
	8.5.5 Flujo Luminoso (Φ) total necesario para el Local	37

8.5.6 Factores de ponderación por categoría de ambientes	. 37
8.5.7 Luxes requeridos según el ambiente	. 38
8.5.8 NIVEL DE ILUMINACIÓN (E)	. 39
8.5.9 Cálculo de luminarias Requeridas	. 40
8.6 Disposición o emplazamiento de Luminarias	. 40
Disposición a lo ancho	. 40
8.6.1 Disposición a lo largo	. 40
8.6.2 Resumen de cálculo para un ambiente característico	. 41
8.6.3 Iluminaciones exteriores	. 42
8.6.4 Nivel de iluminación y de iluminancia	. 42
8.6.5 Uniformidad de luminancia y de iluminación	. 43
8.6.6 Localización de las luminarias	. 43
8.6.7 Interdistancia entre luminarias	. 43
8.8 Relación D/H	. 43
8.8.1 Curvas isocandelas	. 44
8.8.2 Elección de los puntos de cálculos	. 44
8.8.3 Determinación de los valores de iluminación	. 44
8.8.4 Evaluación de la iluminación media (Em)	. 45
8.8.5 Calculo para luminaria característica	. 46
8.8.6 Procedimiento de diseño	. 46
8.8.7 Cálculo de la iluminancia media	. 51
8.8.8 Criterios de calidad	. 51
Coeficiente de uniformidad media (U0)	. 51
8.9 Cálculo de Conductor para Circuito de Alumbrado Exterior	. 51
8.9.1 Consideraciones técnicas	. 52
8.9.2 Formulas a utilizar mediante el método de caída de tensión nodal	. 52
8.9.3 Memoria de cálculo	. 53
8.9.4 Diseño de alumbrado exterior en AutoCAD	. 54
8.10 Desarrollo de los cálculos sistema climatización	. 59
8.10.1 Sala para visitantes	. 59

	8.10.2 Pared del lado norte.	59
	8.10.3 Pared del lado sur	59
	8.10.4 Pared del lado este.	59
	8.10.5 Pared del lado oeste.	60
	8.10.6 Carga por conducción	60
	8.10.7 Estructuras exteriores.	60
	8.10.8 Conducción a través de la pared del lado sur.	60
	8.10.9 Emitancia de superficies de construcción	60
	8.10.10 Conducción a través de ventanas.	61
	8.11 Conducción a través de la puerta principal.	61
	8,11,1 Conducción pared del lado este.	62
	8.11.2 Conducción a través de la pared del lado oeste.	62
	8.11.3 Conducción a través del techo	63
	8.11.4 Emitancia de superficies de construcción	63
	8.11.5 Zona tipo B.	65
	8.11.6 Carga por luces.	66
	8.11.7 Carga por equipos.	66
	8.11.8 Análisis de los resultados de la carga térmica para la selección del sistema	de
aire ac	ondicionado	67
	8.11.9 Capacidad de refrigeración	69
	9 Conclusiones	70
	11 Bibliografía	71

Índice de tablas

Tabla 1 ampacidad permisibles de conductores aislados	19
Tabla 2 Calibre mínimo de conductores de puesta a tierra. (NFPA., 2017).	23
Tabla 3 para levantamiento de censo de carga.	26
Tabla 4 de memoria de cálculo de iluminación	27
Tabla 5 para la memoria de cálculo de los conductores eléctricos	28
Tabla 6 para la memoria de cálculo de las protecciones eléctricas	29
Tabla 7 de balanceo de tableros de distribución.	30
Tabla 8 Descripción del ambiente	34
Tabla 9.1 Iluminación interior	34
Tabla 9.2 Coeficiente de colores	36
Tabla 10 Factor de mantenimiento	36
Tabla 11 Factores de ponderación por categoría	38
Tabla 12 Nivel de iluminación	39
Tabla 13 Resumen de cálculos	41
Tabla 14 Memoria de cálculo eléctrico para alumbrado	55
Tabla 15 Memoria de cálculo eléctrico Iluminación exterior	56
Tabla 16 Potencia consumida	56

Índice de figuras

Figura 1 Plano actual en auto cad	32
Figura 2 Plano de conexiones actualizado	33
Figura 3 Memoria de fórmulas para cálculos	52
figura 4 Memoria de calculo	53
Figura 5 Memoria de puntos circuitos conectado	53
Figura 6 Diseño alumbrado exterior en autocad	54
Figura 7 Plano 3D de alumbrado	54
Figura 8 Vista 3D iluminación exterior	55
Figura 9 Vista elevación vista iluminación	57
Figura 10 Vista frontal Iluminación	57
Figura 11 Distribución componente iluminación	58
Figura 12 Distribución circuitos alambrados	58

Introducción.

La mayoría de los accidentes por electrización se dan en el medio laboral y en el hogar, tienen como origen fallas en las instalaciones, fallas en el aislamiento, materiales de mala calidad o actuaciones incorrectas de los usuarios. La forma de evitarlo será actuando sobre el origen que ocasiona los mismos, es decir lograr que las instalaciones estén en adecuadas condiciones de seguridad y que los técnicos actúen de forma segura en referencia a los riesgos que se lleguen a dar. En el presente protocolo se trabajara bajo las siguientes normativas: CIEN (Código de instalaciones eléctricas de Nicaragua), NEC (National Electrical Code), IEC (Electrical installations for Buildings) y IEEE (Instituto de ingeniería eléctrica y electrónica).

El presente proyecto nace de la necesidad de restaurante las delicias de solucionar problemas de origen energético en sus instalaciones, ya que el edificio donde actualmente esta el restaurante era una vivienda de uso habitacional a la cual no se realizó ninguna modificación en su sistema eléctrico para albergar todo el equipamiento que requería el restaurante

Se pretende realizar el rediseño del sistema eléctrico del restaurante las delicias ubicado en el municipio de Jinotega, para cuando se ejecuten las obras del restaurante el restaurante tenga una guía de descripciones y pauta a seguir, las cuales serán de riguroso cumplimiento. Teniendo en cuenta siempre que la instalación se realizará con los materiales y equipos que ofrezcan una mayor eficiencia y calidad n ele sistema eléctrico.

Además de los reglamentos normativos, se utilizarán programas informáticos para facilitar el desarrollo y complejidad del mismo: Con AUTOCAD se realizará el plano para las medidas para el cálculo de la iluminación y del cableado que se utilizara, de igual manera para la realización del diagrama unifilar, etc.; Con los programas EXCEL y DIALUX se realizaran los cálculos de iluminación y cálculo de caídas de tensión para la realización de un proyecto completo.

Antecedentes.

Actualmente existen diversos proyectos referentes a el diseño de sistemas eléctricos en baja tensión. Para sustentar el presente proyecto se han seleccionado 3 proyectos que abordan y describen el paso a paso del diseño de sistemas eléctricos en baja tensión, a continuación, se describen:

Laura Rodríguez, en la tesis "PROYECTO ELECTRICO DE UN RESTAURANTE "Describe el cálculo y diseño de los elementos que componen la instalación eléctrica, la climatización y el centro de transformación para el óptimo funcionamiento de un restaurante.

Gripdia Hernández y Kener Sánchez en su tesis "DISEÑO ELECTRICO EN BAJA TENSION DE HOTEL CON SEGUIMIENTO EN MICROSOFT PROYECT" Recopila las bases conceptuales y de cálculo para el diseño eléctrico e ilustra con un caso ejemplo los pasos a seguir de una obra eléctrica utilizando MICROSOFT PROYECT.

Manuel Mazón en la tesis de máster "PROYECTO DE INSTALCION ELECTRICA PARA HOSTAL CON RESTAURANTE Y PUB" Específica las características y condiciones legales, técnicas y de seguridad de las instalaciones eléctricas de una instalación destinada a Hostal con restaurante y PUB. Para obtener la correspondiente autorización.

Justificación.

El presente proyecto presente la oportunidad de dar solución al problema de origen energético que actualmente presenta el restaurante las delicias ubicado en el municipio de Jinotega, ya que el edificio donde actualmente esta ubicado el restaurante era una vivienda de origen habitacional y sus propietarios decidieron transformarlo en un restaurante sin realizar cambios en el sistema eléctrico.

El consumo excesivo de los equipos conectados al sistema eléctrico para uso y funcionamiento del restaurante y la falta de mantenimiento han generado desencadenado una serie de accidentes tales como cortocircuitos, equipos de con tarjeta quemada, luces que parpadean, aire acondicionado funcionando de manera parcial, recalentamiento de conductores.

Por lo antes mencionado se requiere proponer un rediseño del sistema eléctrico del restaurante las delicias que cumpla con las normativas vigentes y requerimientos energéticos del restaurante

Objetivos.

Objetivo general:

Proponer el diseño del sistema eléctrico del restaurante las delicias ubicado en el municipio de Jinotega.

Objetivos específicos:

- Efectuar diagnóstico del sistema eléctrico actual del restaurante las delicias ubicado en el municipio de Jinotega.
- Proponer un diseño del sistema eléctrico de acuerdo a normativas CIEN, NEC, IEEE y características de los equipos a utilizar en el restaurante.

5. Marco de referencia.

5.1 Electricidad.

La electricidad es un conjunto de fenómenos físicos referentes a los efectos producidos por las cargas eléctricas tanto en reposo como en movimiento. Fue Benjamín Franklin quien denominó a los dos tipos de cargas, *positiva* y *negativa*; dedujo que cuando una carga se produce, siempre otra de magnitud idéntica, pero de carga opuesta se crearía. La electricidad puede definirse como el movimiento de cargas eléctricas llamadas electrones. Los átomos de la materia contienen electrones, que son partículas con cargas negativas. Los electrones se mueven alrededor del núcleo de su átomo, el cual contiene partículas cargadas positivamente llamadas protones. Normalmente las cargas positivas y las negativas se encuentran en equilibrio en la materia. Cuando los electrones se mueven de su posición normal en los átomos, se observan efectos eléctricos (Grupo CONDUMEX, 2008)

5.2 Instalación eléctrica.

Se llama instalación eléctrica al conjunto de elementos que permiten transportar y distribuir la energía eléctrica desde el punto de suministro hasta los equipos que la utilizan. Entre estos elementos se incluye: tableros, interruptores, transformadores, bancos de capacitores, dispositivos sensores, dispositivos de control local o remoto, cables, conexiones, contactos, canalizaciones y soportes. (Campero, 1995)

5.2.1 Clasificación de instalaciones eléctricas.

Según (Campero, 1995) las instalaciones eléctricas se clasifican de diferentes formas:

- Nivel de voltaje: De acuerdo con el nivel de voltaje se puede tener los siguientes tipos de instalación:
- > nstalación no peligrosa: Cuando su voltaje es igual o menor que 12 voltios.

- Instalación de baja tensión: Cuando el voltaje respecto a tierra no excede 750 voltios.
- ➤ Instalación de media tensión: Aunque no existen límites precisos, podría considerarse un rango entre 1000 y 15000 voltios.
- Lugar de instalación:
- Instalaciones normales que pueden ser interiores o exteriores.
- Se consideran instalaciones especiales aquellas que se encuentran en áreas con ambientes peligrosos, excesivamente húmedos o con gran cantidad de polvo no combustible.

5.2.2 Código y normas

CIEN (Código de instalaciones eléctricas de Nicaragua).

NEC (National Electrical Code).

IEC (Electrical installations for Buildings).

IEEE (Instituto de ingeniería eléctrica y electrónica)

5.2.3 Potencia demandada por una instalación.

Es la base para el desarrollo de un proyecto de instalaciones eléctricas. Con las potencias de mandadas de cada carga se obtiene una aproximación del comportamiento de la carga total conectada al sistema, tomando en cuenta factores que consideran el uso simultaneo de cada carga y la diversidad de su utilización. (Borjas, 2017).

5.2.4 Demanda máxima y carga instalada.

En una instalación eléctrica la demanda máxima en un instante de tiempo es equivalente a la máxima coincidencia de cargas operando simultáneamente. La carga instalada corresponde a la suma de los valores nominales de consumo de todas las cargas conectadas. En base a este dato se dimensiona los valores nominales de los equipos de protección y los calibres de acometidas o alimentadores. Este valor viene reflejado generalmente en kilovoltios-amperes. (Borjas, 2017).

5.3 Los elementos que constituyen una instalación eléctrica.

Una instalación eléctrica está conformada por diversos accesorios, dispositivos, estructuras, conductores y canalizadores, los cuales juntos proveen de electricidad una carga.

5.3.1 Iluminación interior.

Se pueden definir dos niveles en la iluminación de interiores: local y general. El primero se refiere a las necesidades de luz para tareas específicas que se desarrollan en diferentes puntos del espacio a iluminar. El nivel general corresponde a la iluminación en todas las demás áreas.

Además de definir el nivel de iluminación general se requiere cuidar la colocación de las luminarias de tal forma que se reduzca el deslumbramiento directo o reflejado, o las sombras indeseables. Una vez escogidas las luminarias que se van a utilizar y determinado el nivel de iluminación requerido podría calcularse el número de luminarias necesarias para producir tal iluminación. (Campero, 1995).

5.3.1.1 Calculo iluminación interior

Según (Campero, 1995) el cálculo por método de los lúmenes se utiliza únicamente para el cálculo de alumbrado en interiores y está basado en la definición de lux, que es igual a un lumen por metro cuadrado. Con la información del fabricante sobre la emisión luminosa inicial de cada lámpara, la cantidad instalada y el área de la zona considerada (en metros cuadrados) puede obtenerse el número de lúmenes por metro cuadrado o luxes:

$$E = \frac{\varphi_e}{S} = \frac{Lumenes\ emitidos}{Area\ en\ m^2}$$

5.3.1.2 Determinación del coeficiente de utilización

El coeficiente de utilización es el cociente de los lúmenes que llegan al plano de trabajo. Este factor toma en cuenta la eficacia y la distribución de la luminaria, su altura de montaje, las dimensiones del local y las reflectancias de las paredes, techo y suelo. Su fórmula empleada es:

$$RCL = \frac{5H(Ancho + Largo)}{Ancho * Largo}$$

Donde

H= Altura de la cavidad.

(Campero, 1995).

5.3.1.3 Calculo de numero de iluminarias

$$N = \frac{E * S}{\emptyset * l * CU * FPT}$$

Donde:

N=Número de luminarias o unidades de alumbrado.

E=Iluminación requerida.

S=Superficie.

Ø =Flujo luminoso por lámpara.

l =Número de lámparas por luminaria.

(Campero, 1995).

5.3.1.4 Determinación del acomodo de las luminarias

Según (Campero, 1995) La colocación de las luminarias depende de la arquitectura general, de las dimensiones del edificio, del tipo de luminaria y de la ubicación de las tomas de energía existentes.

La Fórmula utilizada es:

$$E_e = \frac{N_e * l * \emptyset * CU * FTP}{S}$$

donde:

 E_e =Iluminación resultante según nueva especificación.

 N_e =Número de luminarias de la nueva especificación.

5.3.2 Cálculo de iluminación exterior

5.3.2.1 Método punto por punto para alumbrado de exteriores

Para (Campero, 1995) El método punto por punto (o alguna variante de éste) es indispensable para el cálculo de alumbrado de exteriores; además resulta muy útil para entender el proceso de cálculo de cualquier alumbrado.

Para la aplicación de este método se requiere de la curva fotométrica, que caracteriza a las fuentes de luz. Esta curva proporciona, en forma de gráfica o tabla, la información relativa a la distribución de la luz producida por la unidad de alumbrado o luminaria. En luminarias que tienen una distribución simétrica con respecto al eje vertical que pasa por ellas (consideradas como un punto), resulta suficiente la información de un plano vertical que pase por ese eje, donde se indique la intensidad de luz (en candelas) para haces con diferentes ángulos de apertura (con respecto al eje). En la figura No. 1 Se presenta una figura de la Curva isocandela en plano vertical de una luminaria con distribución luminosa simétrica con respecto al eje vertical. de una luminaria con distribución luminosa simétrica con respecto al eje vertical. (Campero, 1995).

La fórmula empleada en este método es:

$$E_v = \frac{I * sen \theta}{D^2}$$

Donde:

I = Intensidad luminosa.

D= Distancia a Iluminar.

(Campero, 1995).

5.3.2 Climatización

El cálculo de cargas térmicas es el estudio que se lleva a cabo por profesionales para reconocer las necesidades de climatización de un espacio, independientemente de la finalidad del mismo, es decir, ya sea para el uso familiar, comercial o industrial. (Carrier, 1980).

5.3.2.1 Factores a tener en cuenta en el sistema de climatización

Ubicación del edificio exacta: así como sus características (dimensiones, altura del techo, pared, etcétera). En definitiva, los factores arquitectónicos que podríamos obtener de los planos del sitio.

Orientación del edificio: condiciones exteriores (en función del verano-invierno, condiciones climatológicas y ambientales); condiciones interiores (en función del uso que se le otorgue al local o vivienda).

Área total de vidrio expuesto al exterior: así como su tipología y los marcos utilizados; también es importante conocer otro tipo de materiales constructivos presentes en techo, tabiquería, piso y aquellas superficies en contacto con el exterior. Promedio de personas que podrían encontrarse en este espacio o área.

5.3.2.2 Cargas sensibles y latentes

Para (Carrier, 1980) Las cargas sensibles son:

- Transmisión a través de cerramientos opacos
- Transmisión a través de cerramientos traslúcidos
- Radiación solar
- Ventilación / infiltración de aire
- Ocupación del local
- Iluminación
- Maquinaria

Para (Carrier, 1980) Las cargas latentes son:

• Ventilación / infiltración de aire

5.3.2.3 Calculo de cargas

Según (Carrier, 1980) Las cargas por transmisión a través de cerramientos opacos

La carga térmica por transmisión se calcula como sigue:

$$Q = U.A.DTE$$

Siendo:

Q: carga térmica por transmisión (W)

U: transmitancia térmica del muro (W/m² °C)

A: superficie del muro expuesta a la diferencia de temperaturas (m²)

5.3.3 Calibre del conductor eléctrico

5.3.3.1 Capacidad de corriente

La tabla No. 1, contine la información de la tabla 310.16 del NEC. Donde aparece las ampacidades permisibles en conductores aislados para tensiones nominales de 0 a 2000 voltios y 60°C a 90°C. No más de tres conductores portadores de corriente en una canalización, cables o enterrado directamente.

CALIBRE	Contract Contract		PERATURA NOMINAL DEL				SECCION			
5-3-0-0-0-0-0	60, C	75° C	90° C	60, C	75° C	90, C				
AWG/ Kemil	TIPOS TW*, UF* RHW*, THHW*, THW*, THWW*, XHHW*, USE*, ZW*		TIPOS TBS, SA, SIS, FEP*, FEPB*, MI, RHH*, RHW- 2, THHN*, THHW*, THW-2*, THWN-2*, USE-2, XHH, XHHW*, XHHW-2, ZW-2	TIPOS TW*, UF* THW*, THW*, THW*, THW*, XHHW*, USE*		TIPOS TBS, SA, SIS, THHN*, THHW*, THW-2, THWN-2, RHH*, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	AWG/ Kemi			
		COL	BRE	ALUMINIO O ALUMINIO RECUBIERTO DE COBRE						
18	4000	1000	14	-040	1011	(9888.0)				
16	1911	1901	18		****	1001	2016			
14	20*	20*	25*	4144						
12	25*	25*	30*	20*	20*	25*	12			
10	30	35*	40*	25	30*	35*	10			
8	40	50	55	30	40	45	8			
6	55	65	75	40	50	60	6			
4	70	85	95	55	65	75	4			
3	85	100	110	65	75	85	3			
2	95	115	130	75	90	100	2			
1	110	130	150	85	100	115	1			
1/0	125	150	170	100	120	135	1/0			
2/0	145	175	195	115	135	150	2/0			
3.40	165	200	225	130	155	175	3/0			
4/0	195	230	260	150	180	205	4/0			
250	215	255	290	170	205	230	250			
300	240	285	320	190	230	255	300			
350	260	310	350	210	250	280	350			
400	280	335	380	225	270	305	400			
500	320	380	430	260	310	350	500			
600	355	420	475	285	340	385	600			
700	385	460	520	310	375	420	700			
750	400	475	535	320	385	435	750			
800	410	490	555	330	395	450	800			
900	435	520	585	355	425	480	900			
1000	455	545	615	375	445	500	1000			
1250	495	590	665	405	485	545	1250			
1500	520	625	705	435	520	585	1500			
1750	545	650	735	455	545	615	1750			
2000	560	665	750	470	560	630	2000			
FACTORES DE COR	RECCION		1							
TEMPERATURA AMBIENTE EN °C	PARA		MBIENTE DISTINTA DE 30 ° IENTE POR EL CORRESPON							
21-25	1.08	1.05	1 1.04	1.08	1.05	1,04				
26-30	1.00	1.00	1.00	1.00	1.00	1.00				
31-35	0.91	0.94	0.96	0.91	0.94	0.96				
36-40	0.82	0,88	0,91	0,82	0.88	0,91				
41-45	0.71	0.82	0,87	0,71	0.82	0.87				
46-50	0.58	0.75	0.82	0,58	0,75	0.82				
51-55	0.41	0.67	0.76	0,41	0,67	0,76				
56-60	****	0,58	0.71	****	0,58	0,71				
61-70	****	0,33	0,58	****	0,33	0,58				
			0.41			0.41				

Tabla 1 ampacidad permisibles de conductores aislados

Para tensiones nominales de 0 a 2000 voltios y 60°C a 90°C. No más de tres conductores portadores de corriente en una canalización, cables o enterrado directamente. (NFPA., 2017)

5.3.3.2 Caída de tensión

Para (Campero, 1995) Se le llama caída de voltaje a la diferencia que existe entre el voltaje aplicado al extremo alimentador de una instalación y el obtenido en cualquier otro punto de esta. Para su caculo se utilizará la siguiente formula:

$$S = \rho \frac{(L)(I)}{(e)(V)} * 100$$

donde:

S =Area o sección transversal (conductora) del alimentador en mm2.

 ρ = Resistividad específica (volumétrica) del material conductor en ohms * mm2 /m

I = Corriente de carga en Amperes.

L = Longitud del alimentador en metros.

e = Caída de voltaje permitida en por ciento.

V = Voltaje aplicado en Volts (normalmente el voltaje nominal).

Según (NFPA., 2017) establece, en la sección 215.2 (A)(3) NOTA N°2 "Los conductores de circuitos alimentadores tal como están definidos en el artículo 100, tendrán un calibre que evite una caída de tensión superior al 3% en la salida más lejana para cargas de fuerza, calefacción, iluminación o cualquier combinación de estas cargas y donde la caída de tensión máxima en ambos circuitos alimentadores y ramales hasta la salida más lejana no supere el 5%, proveerán una eficiencia de funcionamiento razonable".

5.3.4 Factor de relleno

Para (NFPA., 2017) cuando en una tubería Conduit solo circula un conductor puede abarcar un 53% del diámetro de la tubería, si circulan dos conductores pueden abarcar un 31% del diámetro de las tuberías y para más de dos conductores tiene que abarcar como máximo un 40% del diámetro de la tubería.

5.3.5 Balanceo de paneles

Para (Campero, 1995) normalmente para áreas habitacionales se usan circuitos de 20^a como máximo; en industrias se pueden usar circuitos con cargas múltiples hasta 50^a. Las salidas para usos especiales deben tener su propia alimentación y protección. Es posible que, aunque algunos circuitos queden con muy poca carga convenga tenerlos alimentados por separado (por ejemplo, dos focos de alumbrado en una torre lejana).

De este modo se van decidiendo grupos de carga que constituyen los circuitos del tablero. Después es recomendable establecer un sistema para asignarles un lugar físico en el tablero.

Si se trata de un tablero monofásico se pueden asignar números al azar. Para el caso de tableros bifásicos, se divide la carga en dos, de tal manera que con la combinación de los circuitos se obtenga una diferencia mínima entre las cargas conectadas a cada fase.

Para los tableros trifásicos es común dividir la carga total entre tres para conocer el valor exacto de equilibrio. Después se hacen 3 grupos cuyos circuitos puedan combinarse para que las sumatorias respectivas sean lo más cercano al valor de equilibrio. El desbalanceo entre las 3 fases debe ser menor a 5%, y se calcula con la siguiente relación:

$$\frac{S_M - S_m}{S_p} * 100 < 5\%$$
 En donde:

 S_M = Voltamperes de la fase más cargada.

 S_m =Voltamperes de la fase menos cargada.

 S_p = Voltamperes de la fase promedio (carga total entre tres).

5.3.6 Calculo para interruptor termomagnético

Ecuación para cargas resistivas:

$$I_p = I_n * 1.25$$

Ecuación para cargas capacitivas:

$$I_p = I_n * 2$$
 Donde:

 I_p = Corriente de protección.

 I_n = Corriente nominal.

5.3.7 Electrodo de puesta a tierra

Según (CNNE, 1995) una o más partes conductoras (generalmente varillas, tubos o placas) enterradas en el suelo con el propósito de hacer contacto eléctrico firme con la masa de la tierra del lugar.

5.3.7.1 Calculo de electrodo de puesta a tierra

Para (Campero, 1995) la ecuación para el cálculo del electrodo de puesta a tierra mediante la resistencia a tierra es:

$$R = \frac{\rho}{2\pi * L} (\ln \frac{4L}{a} - 1)$$
 Donde:

R =Resistencia a tierra en ohms (O).

 ρ = Resistividad específica del suelo en ohms x cm (O· cm).

a = Radio de la varilla.

L= longitud de la varilla.

5.3.7.2 Conductores de puesta a tierra

El (NFPA., 2017) en su artículo 250.122 se establecen los calibres mínimos de los conductores de puesta a tierra de equipos y canalizaciones en circuitos ramales. En la tabla 2 se muestra los valores antes mencionados.

Valor nominal o ajuste de dispositivos	Calibre (AWG o Kcmil)					
automáticos contra sobrecorriente en circuitos antes del equipo, conduit, etc., sin exceder de (Amperios):	Cobre	Aluminio o aluminio recubierto de cobre				
15	14	12				
20	12	10				
30	10	8				
40	10	8				
60	10	8				
100	8	6				
200	6	4				
300	4	2				
400	3	1				
500	2	1/0				
600	1	2/0				
800	1/0	3/0				
1,000	2/0	4/0				
1,200	3/0	250				
1,600	4/0	350				
2,000	250	400				
2,500	350	600				
3,000	400	600				
4,000	500	800				
5,000	700	1,200				
6,000	800	1,200				

Nota: Cuando sea necesario cumplir con la sección 250.4 (A) (5) o (B) (4), el conductor de puesta a tierra del equipo debe ser dimensionado con un calibre mayor que el dado en esta Tabla.

* Véanse las restricciones de instalación en la sección 250.120.

Tabla 2 Calibre mínimo de conductores de puesta a tierra. (NFPA., 2017).

5.3.8 Transformador

El transformador eléctrico es un equipo que se utiliza para cambiar el voltaje de suministro al voltaje requerido. En instalaciones grandes (o complejas) pueden necesitarse varios niveles de voltajes, lo que se logra instalando varios transformadores (normalmente agrupados en subestaciones). Por otra parte, pueden existir instalaciones cuyo voltaje sea el mismo que tiene la acometida y por lo tanto no requieran de transformador. (Campero, 1995).

5.3.8.1 Determinar la carga del transformador

Para (Campero, 1995) La eficiencia del transformador está en función de la carga que tiene conectada (curva característica de eficiencia). Si un transformador está permanentemente conectado a la red, habrá un consumo permanente de energía equivalente a sus pérdidas en vacío (especificadas por el fabricante). Para el calculo del transformador se utilizará la fórmula de la potencia aparente;

$$S = \left[\frac{Voltaje*Corriente}{1000} \right]$$
 Donde:

S = Potencia aparente

5.3.8.2 Determinar el fusible del transformador

Para (Campero, 1995) Funciona de protección del transformador cuando ocurre una mayor demanda de corriente debido a sobrecargas.

Para calcular el fusible se utiliza la siguiente ecuación:

Corriente con la red de media tensión =
$$\frac{Potencia\ aparente}{Voltaje\ de\ la\ red}$$

6. Hipótesis y variables

La utilización de tecnologías y medidas de ahorro de energía en el diseño del sistema eléctrico de un restaurante contribuye a la sostenibilidad y al cuidado del medio ambiente.

- Pertinencia de la información.
- Funcionalidad de la información.
- Adecuación de la información.
- Parámetros técnicos de interés (voltaje, corriente, normas de construcción eléctricas).

7. Diseño metodológico

El diseño metodológico de una investigación se refiere al conjunto de técnicas y procedimientos específicos que se consideran apropiados para la recopilación y análisis de la información necesaria para alcanzar los objetivos de la investigación. En el caso de este proyecto los procedimientos y técnicas específicas seleccionadas son las siguientes:

7.1 Tipo de investigación

El enfoque de esta investigación es descriptivo, ya el instrumento de recolección comprende de variables cualitativas (revisión de documentos y bibliografía) que permitirán la obtención de información de una manera más completa y precisa.

7.2 Área de estudio

Área de diseño de sistemas eléctricos.

7.3 Fuente de información

Se utilizará fuentes secundarias de información, para la obtención de información que ya se encuentra elaborada por diferentes investigadores, de las cuales se tomarán los datos útiles para el desarrollo de nuestra investigación. La revisión bibliografía se centrará en las siguientes áreas:

- Diseño de sistemas eléctricos en baja tensión.
- Normativas de instalaciones eléctricas.
- Cálculo de climatización.

7.4 Técnica de recolección y análisis de información

Para determinar la carga total demandada del restaurante las delicias ubicado en el municipio de Jinotega, se realizará un censo de carga mediante la recolección de información de cada uno de los aparatos que serán utilizados en el restaurante. El censo de carga se realizará por medio de la siguiente tabla:

Ubicación	cantidad	Voltaje	Corriente	Potencia	Potencia	Horas	Demanda al
		(V)	(4)	(14/)	T.	uso	día
			(A)	(W)	(\A/\		(KWH)
					(W)		(KWH)
TOTAL							

Tabla 3 para levantamiento de censo de carga.

Para el cálculo y selección del alumbrado se realizan por medio de los conceptos y formulas expresadas en el libro de instalaciones eléctricas: conceptos básicos y diseño. Las fórmulas a utilizar serán las siguientes:

Cálculo de iluminación interior:

$$E = \frac{\varphi_e}{S} = \frac{Lumenes\ emitidos}{Area\ en\ m^2}$$

Cálculo del coeficiente de utilización:

$$RCL = \frac{5H(Ancho + Largo)}{Ancho * Largo}$$

Cálculo de numero de luminarias:

$$N = \frac{E * S}{\emptyset * l * CU * FPT}$$

Cálculo del acomodo de luminarias:

$$E_e = \frac{N_e * l * \emptyset * CU * FTP}{S}$$

Para realizar el cálculo de iluminación exterior se utiliza el método punto por punto en el cual se emplea la figura No.1.

La fórmula para utilizar es:

$$E_v = \frac{I * sen \theta}{D^2}$$

Para la memoria de cálculo de iluminación, se realizará una tabla en donde se plasmarán los parámetros más importantes para el cálculo de las luminarias y el resultado de los cálculos.

				С	ENSO DE CARGA DEL RESTAURA	ANTE				
UBICACIÓN	A (O)	USO ENERGETICO	CANTIDAD	MARCA	MODELO	DESCRIPCION	MAGNITUDES ELECTR VOLTAJE(V) CORRIENTE(A) POTENCIA		DES ELECTRICAS	
UBICACION	Area (m2)	USO ENERGETICO	CANTIDAD	MARCA	MODELO	DESCRIPCION	VOLTAJE(V)	CORRIENTE(A)	POTENCIA(W)	POT.TOTAL (KW
		lluminación	10	PHILIPS	T8 PLUS	Lamparas fluorecentes T8	120	2.666	32	0.32
		Balastro	5	PHILIPS	RESIDENCIAL	Balastro electronico 2X32 W T8	120	2.125	51	0.255
		Eq.ofimático	2	DELL	Optiplex 3020	Computadora escritorio	120	12.76	510	0.51
Caia	11.4	Eq.ofimático	2	TRIPPLITE	AVR750U	Bateria UPS	115	7.82	900	0.9
Caja	11.4	Eq.ofimático	2	DELL	Optiplex 3020	Procesador	120	4.2	168	0.168
		Eq.ofimático	1	TOSHIBA	e-studio 2822 AM	Impresora	120	12.5	1500	1.5
		Climatización	3	CONFORT STAR	CPP060DC(0)-DU*	Unidad condensadora	240	52.5	4200	12.6
		Climatización	3	CONFORT STAR	FPA-60DU(54kbtu)	Aire acondicionado	240	6	480	1.44
		lluminación	8	PHILIPS	T12 PRO SYLVANIA	Lampara fluorecente T12	120	4	60	0.48
		Balastro	4	PHILIPS	T12 compatible con slimlane t8	Balastro electronico 2X60 W t8	120	2.73	82	0.328
	14.4	Electrodoméstico	1	OSTER	M261-13	Batidora manual	120	5.42	325	0.325
Café y resposteria #1		Electrodoméstico	1	BFC	Delux automatico	Cafetera	220	22.6	4700	4.7
		Eq.ofimático	1	TRIPPLITE	AVR750U	UPS	115	3.91	450	0.45
		Eq.ofimático	1	DELL	Optiplex 3020	Computadora escritorio	120	6.38	255	0.255
		Eq.ofimático	1	DELL	Optiplex 3020	Procesador	120	2.1	84	0.084
		Climatizacion	5	CONFORT STAR	FPA-48DU*	Aire acondicionado	240	10	480	2.4
		Climatización	5	CONFORT STAR	CPP048DC(0)-DU*	Unidad condensadora	240	65	3120	15.6
		lluminación	8	PHILIPS	T12 PRO SYLVANIA	Lampara fluorecente T12	120	4	60	0.48
0-11		Balastro	4	PHILIPS	T12 compatible con slimlane T8	Balastro electronico 2X60 W T8	120	2.73	82	0.328
Café y resposteria #2		Electrodoméstico	1	BFC	Delux automatico	cafetera	220	22.6	4700	4.7
		Eq.ofimático	1	TRIPPLITE	AVR750U	Bateria UPS	115	3.91	900	0.9
		Eq.ofimático	1	DELL	Optiplex 3020	Computadora escritorio	120	6.38	255	0.255
		Eq.ofimático	1	DELL	Optiplex 3020	Procesador	120	2.1	84	0.084
		lluminación	40	PHILIPS	T8 PLUS	Lamparas fluorecentes T8	120	8.33	25	1
		Balastro	20	PHILIPS	CENTIUM	Balastro electronico 2X25 W T8	120	8.5	51	1.02
0	407.00	Electrodoméstico	1	SAMSUNG	UN43TU7000P	Tv 43"	120	2.17	130	0.13
Comedor compartido	167.86	Electrodoméstico	1	SONY	BDV-E2102	Teatro en casa	120	8.33	1000	1
		Climatización	5	CONFORT STAR	CPP036DC(0)-DU*	Unidad condensadora	240	65	3120	15.6
		Climatización	5	CONFORT STAR	FPA-36DU*	Aire acondicionado	240	10	480	2.4

Tabla 4 de memoria de cálculo de iluminación.

Se realizará el cálculo de climatización a partir de las cargas térmicas de transmisión por cerramientos opacos.

La fórmula utilizada es la siguiente:

$$Q = U.A.DTE$$

Para la selección de conductores se tomará en cuenta la caída de tensión y el amperaje que circulará por dicho conductor de esta misma manera se realiza para el cálculo de las acometidas.

Formula de caída de tensión:

$$S = \rho \frac{(L)(I)}{(e)(V)} * 100$$

Para expresar los datos obtenidos para el cálculo de los conductores se empleará la siguiente tabla;

	Calculo de Caidas de Tensión Panel #1											
N° de CKTO	Descripción	Ubicación	Conductor	Tipo de Ckto	Tipo de ducto	Tension (v)	Longitud (m)	Calibre (AWG)	Sección (mm2)	Potencia(w)	Voltaje Final	Caída de Tensión (e%)
9	1 Toma de uso particular para impresora	Caja	THHN	Monofásico	PVC	120	6.96	12	3.31	1500	118.956	0.87
11	2 Tomas corriente de uso partícular para Equipo Ofimatico	Caja	THHN	Monofásico	PVC	120	5.46	10	5.26	1578	119.46	0.45
13_15	1 Toma de uso particular para Cafetera	Cafe y reposteria #1	THHN	Monofásico	PVC	220	13.3	10	5.26	4700	217.844	0.98
21	1 Toma de uso particular para equipo ofimatico	Cafe y reposteria #1	THHN	Monofásico	PVC	120	9.13	12	3.31	789	119.28	0.6
10_12	1 Toma de uso particular para Cafetera	Cafe y reposteria #2	THHN	Monofasico	PVC	220	22.55	10	5.26	4700	216.348	1.66
14	1 Toma de uso particular para equipo ofimatico	Cafe y reposteria #2	THHN	Monofásico	PVC	120	18.22	12	3.31	789	118.56	1.2
16	1 Tomas corriente de uso partícular para Equipo Ofimatico	Bar #1	THHN	Monofásico	PVC	120	31.75	12	3.31	789	117.48	2.1
17_19	Alimentacion del Sub panel #1	Panel Gen. #1 al Sub Panel #1	THHN	Monofásico	PVC	220	41.95	4/0	107.2	30766.4	217.82	0.99
18_20	Alimentacion del Sub panel #3	Panel Gen. #1 al Sub Panel #3	THHN	Monofásico	PVC	220	3.44	12	3.31	574.2	219.89	0.05

Tabla 5 para la memoria de cálculo de los conductores eléctricos.

Para las protecciones de los circuitos derivados de los tableros se utiliza la siguiente formula: Ecuación para cargas resistivas:

$$I_p = I_n * 1.25$$

Ecuación para cargas capacitivas:

$$I_p = I_n * 2$$

Para expresar la memoria de cálculo de los dispositivos de protección se utilizará la siguiente tabla:

CIRCUITOS DERIVADOS DE ALUMBRADO										
PANELES	AREAS	CARGAS	CANTIDAD	CONSUMO(A)						
	Coio	Lámpara	10	4.791						
	Caja	Balastro	5	4.791						
	Café y Repostería 1 y 2	Lámpara	16	13.46						
	Cale y Reposteria 1 y 2	Balastro	8	13.40						
	Comedor Compartido Sección-1	Lámpara	24	10.1						
	Cornedor Compartido Seccion-1	Balastro	12	10.1						
Donal general #1, 20 conceins	Zona de Juegos	Lámpara	12	5.75						
Panel general #1, 30 espacios monofasico 120/240V, 400	zona de Juegos	Balastro	6	5.75						
A(EATON)	Comedor Compartido Sección-2	Lámpara	18	7.57						
A(LATON)	Cornedor Compartido Seccion-2	Balastro	9	1.31						
	Bar y Restaurante 1 y 2	Lámpara	16	7.2						
	bai y Nestaurante i y 2	Balastro	8	1.2						
	S.F	Lámpara	8	3.83						
	5.г	Balastro	4	3.03						
	S.M	Lámpara	8	3.36						
	S.IVI	Balastro	4	3.30						
	Oficina	Lámpara	12	10.10						
	Olicina	Balastro	6	10.10						
	Vestidor	Lámpara	12	5.75						
	vestidoi	Balastro	6	5.75						
Sub-Panel de distribucion #1, 30	Comedor Restaurante	Lámpara	20	8.41						
espacios monofáAsico 120/240,	Comedor Residurante	Balastro	10	0.41						
250 A (EATON)	Alexander D. P. Litter Communication	Lámpara	8	0.00						
ZOUR (LATON)	Almacen de Bebidas y Secos	Balastro	4	3.83						
	North and for the Country of	Lámpara	8	0.00						
	lluminación de Área de Congelación	Balastro	4	3.36						
	lluminación de Cocina	Lámpara	16	13.46						
	iluminación de Cocina	Balastro	8	13.40						
Sub-Panel de distribucion #3, 2		Iluminación	4							
espacios monofáAsico 120/240, 50 A (EATON)	lluminación de Estacionamiento	Balastro	2	5.28						

Tabla 6 para la memoria de cálculo de las protecciones eléctricas.

Para realizar el balance de carga en los tableros se empleará la siguiente formula:

$$\frac{S_M - S_m}{S_p} * 100 < 5\%$$

Para presentar el balanceo de los paneles de distribución se utilizara la siguiente tabla;

PANEL P-G1	TABLERO DE DISTRIBUCIÓN EATON																													
NÚMERO DE FASES:		2					500 MCM	THHN				TAJE			120/240				A	NEGRO	FASE A	BALANCE DE CARGA 1	TOTAL INSTANTANEA							
NÚMERO DE HILOS:		4		NEU			500 MCM	THHN				E LAS BARRAS			400		CÓDIGO DE COLORES		В	ROJO	FASEB									
NÚMERO DE POLOS:		30		TIE			500 MCM	THHN			INTERRUPTO	R PRINCIPAL				400							FASE A	FASEB						
UBICACIÓN					Caja				AMPE			0	AMPE		POTE	NCIA TOTAL E	N KW	62,23092		62 22002		62 22002		62 22002		N	BLANCO	NEUTRO	260.19	258.401
OBJETIVOS:									FAS	SES	88	88	FAS	ES						PE	VERDE	TIERAA	CLUTTER	HAMMER						
DESCRIPCIÓN DEL CIRCUITO	CONDUIT o	CALIBRE CONDUCTOR	TIPO	TIPO	BREAKER	Amp	N° CKTO#	KW 49,17972	A 208.52	B 201.311	OR DEL DUCTOR	OR DEL DUCTOR	A 51.67	B 57.09	KW 13.0512	N° CKTO#	TIPO	BREAKER			TIPO CALIBRE CONDUCTOR		DESCRIPCIÓN	DEL CIRCUITO						
lluminación Comedor Compartido Sección-1	PVC. 1/2*	12	THHN	CHF115	1	15	1	1.212	10.1				7.57		0.9084	2	CHF115	1	15	THHN	12	PVC. 1/2*	lluminación Comedor							
Iluminación de Área de Caja	PVC. 1/2*	12	THHN	CHF115	1	15	3	0.57492		4.791				13.46	1.6152	4	CHF115	1	20	THHN	12	PVC. 1/2*	lluminación de Café y Repostería 1 y 2							
lluminación de Bar 1 y 2	PVC. 1/2*	10	THHN	CHF115	1	15	5	0.864	7.2				3.83		0.4596	6	CHF115	1	15	THHN	12	PVC. 1/2*	lluminación de S.F							
lluminación de Zona de Juegos	PVC. 1/2*	12	THHN	CHF115	1	15	7	0.69		5.75				3.36	0.4032	8	CHF115	1	15	THHN	12	PVC. 1/2*	lluminación de S.M							
1 Toma de uso particular para impresora-Caja	PVC. 1/2"	12	THHN	CHF130	1	30	9	1.5	12.5				22.6		2.712	10	CHF150	2	50	THHN	10	PVC. 1/2*	1 Toma de uso particular para Cafetera- Café y Reposteria 2							
2 Tomas corriente de uso particular para Equipo Ofimatico-Caja	PVC. 1/2*	10	THHN	CHF130	1	30	11	2.9736		24.78				22.6	2.712	12	CHF150	2	50	THHN	10	PVC. 1/2*	1 Toma de uso particular para Cafetera- Café y Repostería 2							
1 Toma de uso particular para Cafetera-Café y Reposteria 1	PVC. 1/2*	10	THHN	CHF250	2	50	13	2.712	22.6				12.39		1.4868	14	CHF115	1	15	THHN	12	PVC. 1/2*	1 Toma de uso particular para equipo ofimático-Café y Reposteria 2							
1 Toma de uso particular para Cafetera-Café y Repostería 1	PVC. 1/2*	10	THHN	CHF250	2	50	15	2.712		22.6				12.39	1.4868	16	CHF115	1	15	THHN	12	PVC. 1/2*	1 Toma de uso par ofimático							
SUB-PANEL#1 FASE R	PVC. 1-1/2*	3/0.	THHN	CH2150	2	150	17	17.2476	143.73				5.28		0.6336	18	CHF215	2	15	THHN	12	PVC. 1/2*	SUB-PANEL	#3 FASE R						
SUB-PANEL#1 FASE S	PVC. 1-1/2*	3/0.	THHN	CH2150	2	150	19	17.2068		143.39				5.28	0.6336	20	CHF215	2	15	THHN	12	PVC. 1/2*	SUB-PANEL #3 FASE S							
Toma de uso particular para equipo ofimático-Café y Repostería 1	PVC. 1/2*	12	THHN	CHF115	1	15	21	1.4868	12.39							22							Espacio de Reserva							
Espacio de Reserva							23									24							Espacio de Reserva							
Espacio de Reserva							25									26							Espacio di	e Reserva						
Espacio de Reserva							27									28							Espacio de Reserva							
Espacio de Reserva							29									30							Espacio de	e Reserva						

Tabla 7 de balanceo de tableros de distribución.

Para la selección de tuberías se realizará por medio del factor de relleno el cual menciona que cuando en una tubería Conduit solo circula un conductor puede abarcar un 53% del diámetro de la tubería, si circulan dos conductores pueden abarcar un 31% del diámetro de las tuberías y para más de dos conductores tiene que abarcar como máximo un 40% del diámetro de la tubería.

Para la selección del transformador se utiliza la siguiente formula:

$$S = \left[\frac{Voltaje * Corriente}{1000} \right]$$

Determinar el fusible del transformador mediante esta fórmula:

Corriente con la red de media tensión =
$$\frac{Potencia\ aparente}{Voltaje\ de\ la\ red}$$

8. Resultados

8.1 Memoria descriptiva y Características del diseño

El presente proyecto nace de la necesidad de restaurante las delicias de solucionar problemas de origen energético en sus instalaciones, ya que el edificio donde actualmente esta el restaurante era una vivienda de uso habitacional a la cual no se realizó ninguna modificación en su sistema eléctrico para albergar todo el equipamiento que requería el restaurante

Se pretende realizar el rediseño del sistema eléctrico del restaurante las delicias ubicado en el municipio de Jinotega, para cuando se ejecuten las obras del restaurante el restaurante tenga una guía de descripciones y pauta a seguir, las cuales serán de riguroso cumplimiento. Teniendo en cuenta siempre que la instalación se realizará con los materiales y equipos que ofrezcan una mayor eficiencia y calidad n ele sistema eléctrico. El restaurante consta de una sola planta y tiene 3 salas para capacitaciones, 4 oficinas generales, 1 comedor, 1 sala para proyectos, 1 bodega, 2 servicios higiénicos, y 1 área de parqueo.

8.2 Diseño de iluminación

La iluminación es aspecto crucial en cualquier edificio comercial, ya que puede afectar la productividad, el bienestar de los trabajadores, la seguridad y el consumo energético. Los cálculos luminotécnicos son herramientas importantes para diseñar y optimizar la iluminación en edificios comerciales, con el objetivo de proporcionar niveles adecuados de iluminación en diferentes áreas, reducir el consumo de energía y cumplir con las normativas y estándares de iluminación

Los objetivos de los cálculos luminotécnicos para edificios comerciales pueden variar según el tipo de edificio, su uso y la normativa local.

- → Garantizar niveles adecuados de iluminación en todas las áreas del edificio teniendo en cuenta factores como la actividad realizada, tipo de espacio y edad de los ocupantes
- → Optimizar el consumo de energía y reducir los costos de iluminación mediante el uso de tecnologías y diseños eficientes
- → Cumplir con las normativas y estándares de iluminación, seguridad y eficiencia energética
- → Crear un ambiente agradable y seguro para los colaboradores
- → Asegurar que la iluminación no cause fatiga visual, deslumbramiento, contrastes excesivos, así como que no afecte negativamente la calidad del aire interior, la acústica o el diseño arquitectónico del edificio

8.3 Levantamiento del plano en AutoCAD



Figura 1 Plano actual en auto cad

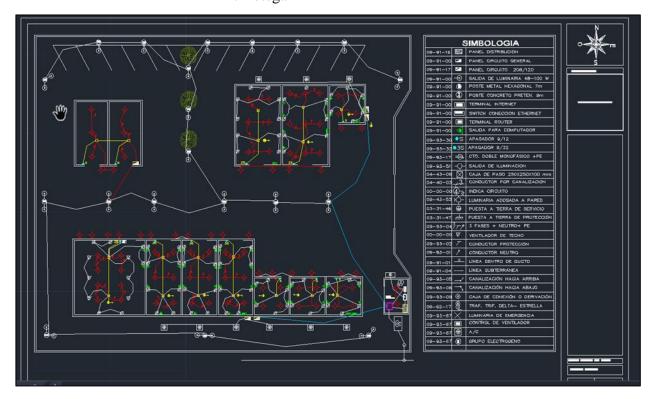


Figura 2 Plano de conexiones actualizado

8.4 Normativas eléctricas de iluminación consultadas para la toma de criterios de diseño

- ✓ ANSI/IESNA RP-8-00 (2000) American National Standard Practice for Roadway Lighting
- ✓ Proyecto Tipo de Distribución Disnorte-Dissur
- √ Código de Instalaciones Eléctricas de Nicaragua (CIEN)

8.5 Iluminaciones interiores

8.5.1 Dimensionado

Los cálculos fueron realizados mediante hoja de cálculo Excel para facilitar el proceso de cálculo para cada ambiente

N°	Descripción del Ambiente	Luxes requeridos					
		(recomendación por normativa)					
01	Sala De Conferencia 1	500					
02	Sala De Conferencia 2	500					
03	Sala De Conferencia 3	500					
04	Comedor	200					
05	Bodega	300					
06	Oficinas	500					
07	Proyectos	500					
80	Baños 1	100					

Tabla 8 Descripción del ambiente

	Iluminación interior											
Íte	características	Φluminl	Tipo de	Consum	onsum Tensió							
m		(m)	Iuminaria	o w	n V							
1	RC461B LED34S/940 SRD W30L120 VPC IA4PIP	4000	Montaje Adosable	30	2M40	1						
2	SP342P PSD L1500 1 x60S/930 MLO	6000	Montaje suspendido	61	240	1						
3	DN140B WIA-E D216 1 xLED20S/840 WR	2200	Montaje adosable	21	240	1						

Tabla 9.1 Iluminación interior

8.5.2 Procedimiento de cálculo

Cálculo del coeficiente de utilización (Cu) Relación de cavidad de Local o coeficiente de índice local (RLC o K)

$$RCL = \frac{5H(b+a)}{(b*a)}$$
 Ecuación 1

$$K = \frac{b*a}{h(a+b)}$$
 Ecuación 2 Donde:

- > H: altura de la cavidad del local (diferencia entre altura del local y el plano de trabajo)
- > a: ancho de local
- > b: largo de local

8.5.3 Coeficiente de reflexión del ambiente

Estos valores se estiman mediante tabla según el tipo de acabados en el local, de los cuales está clasificada por: acabados claros, medios, y bajos

COEFICIENTE DE REFLEXIÓN DE DIVERSOS COLORES									
Superficie	Clase	Color	Coeficiente de Reflexión						
Pintada	Muy Clara	BLANCO	0.81						
		MARFIL	0.79						
		CREMA	0.74						
		VERDE	0.63						
Pintada	Bastante Clara	AZUL	0.58						
		GRIS	0.58						
		CAFÉ	0.48						

Pintada	Clara	ROBLE CLARO	0.32	
		GRIS 2	0.26	
		NATURAL	0.25	

Tabla 9.2 Coeficiente de colores

Posterior el valor se determina a partir de tabla de factor de utilización proporcionada por el fabricante según sea el tipo de luminaria escogida para el diseño. Los parámetros a utilizar son: Índice de cavidad de local y Factor reflexión

8.5.4 Factor de mantenimiento (Fm)

Es coeficiente que indica el grado de suciedad que se puede acumular en el ambiente se pueden diferenciar en ambientes muy limpio con un periodo de mantenimiento en intervalo de hasta 3 años y ambientes muy sucios que requieren periodos más cortos de mantenimiento para evitar el bajo niveles de luminosidad debido a la suciedad

	A bio to	Alconos	Limmiana	Ensuciamiento (F _E		
	Ambiente	Alcance	Limpieza	IP≤65	IP>65	
I	Poco polucionado (Particulado <80 μg/m³)	No existen actividades generadoras de polvo o humos en la cercanía. Tráfico ligero, áreas residenciales o rurales	Cada 36 meses	0,91	0,95	
II	Medianamente polucionado (Particulado 80-150 µg/m3)	Existen actividades generadoras de polvo o humos en la cercanía. Tráfico pesado, limitado a áreas residenciales e industrias ligeras.	Cada 24 meses	0,89	0,93	
II I	Muy polucionado (Particulado 150-400µg/m3)	Existen actividades generadoras de nubes de polvo o humos en la cercanía. Áreas industriales.	Cada 12 meses	0,87	0,91	
V	Excesivamente polucionados (Particulado > 400 µg/m3)	Como la categoría anterior, pero las instalaciones están envueltas en humo y polvo. Áreas altamente industriales.	Entre 3 y 6 meses	0,85	0,90	

Tabla 10 Factor de mantenimiento

8.5.5 Flujo Luminoso (Φ) total necesario para el Local

$$\Phi t = \frac{E*S}{Cu*Fm}$$
 Ecuación 3 Donde:

> E: luxes requeridos según sea el ambiente a diseñar

> S: superficie del ambiente a diseñar

> Cu: coeficiente de Utilización

> Fm: factor de mantenimiento

8.5.6 Factores de ponderación por categoría de ambientes

Estos factores están relacionados a dar un valor de peso a rangos de criterios de selección al momento de diseñar ambientes de iluminación y está directamente relacionado con los niveles de luxes necesarios normados.

FACTORES DE PONDERACIÓN PARA CATEG	ORÍAS " A "H	IASTA	\ "C '					
Características del Recinto y Ocupantes	Factor		de					
	Ponderació	n						
	-1	0		1				
Edad de los Ocupantes (años)	< 40	40	55	> 55				
Grado de reflexión de la superficie del	> 70	30	70	< 30				
Recinto (%)								
FACTORES DE PONDERACIÓN PARA CATEGORÍAS " D "HASTA "H "								
Características de la Tarea y el Trabajador	Factor		de					
	Ponderació	n						
	-1	0		1				
Edad de los Trabajadores (años)	< 40	40	55	> 55				

Rediseño del sistema eléctrico del restaurante las delicias ubicado en el municipio de Jinotega

Velocidad y/o Precisión del Trabajador.	No	Importan		Crític
	Importante	te		0
Grado de reflexión sobre la superficie en que	> 70	30	70	< 30
se realiza				
la tarea (%)				

Tabla 11 Factores de ponderación por categoría

8.5.7 Luxes requeridos según el ambiente

Es un factor de recomendación de niveles mínimos y máximos para iluminancia según el ambiente , la selección del mismo está en dependencia de las características técnicas que se tomen al momento de diseñar, es decir que está en función del tipo de categoría asignada al ambiente así como la edad de los que van a estar realizando una determinada actividad: en esencia nos permite dar peso al momento de tomar decisión que niveles son los más óptimos para la debida ergonomicidad y eficiencia de operación.

Tipo de Actividad	Categor	llumi	inació	n
	ía	(Lux)	
Espacios públicos con alrededores oscuros	А	20	30	50
Simple orientación para visitas de cortas temporadas	В	50	75	100
Recintos de trabajo donde las tareas visuales son	С	100	150	200
realizadas ocasionalmente.				
Realización de tareas visuales de gran contraste	D	200	300	500
O de gran tamaño.				
Realización de tareas visuales de contraste medio	Е	500	750	1000
O tamaño pequeño.				
Realización de tareas visuales de bajo	F	100	150	2000
contraste		0	0	
O tamaño muy pequeño.				
Realización de tareas visuales de bajo	G	200	300	5000
contraste o		0	0	
tamaño muy pequeño, a través de un periodo prolongado.				
Realización de tareas visuales muy prolongadas y exactas.	Н	500 0	750 0	1000

Tabla 12 Nivel de iluminación

8.5.9 Cálculo de luminarias Requeridas

$$N = \frac{\Phi t}{n * \Phi l}$$
 Ecuación 4 Donde:

> N: cantidad de luminarias

Φt: flujo total de lúmenes requeridos

> n: número de Lámparas por luminarias

> Φl: flujo lumínico por lámpara

8.6 Disposición o emplazamiento de Luminarias

Disposición a lo ancho

$$Na = \sqrt{\frac{N}{b} * a}$$
 Ecuación 5

8.6.1 Disposición a lo largo

$$Nb = Na(\frac{b}{a})$$
 Ecuación 6 Donde:

> N: cantidad de luminarias

> Na: cantidad de luminarias a lo ancho

> Nb: cantidad de luminarias a lo largo

> a: ancho

▶ b: largo

8.6.2 Resumen de cálculo para un ambiente característico

	Resumen de calculo										
Local		Sala de conferencia									
Datos											
Largo	9.5		Piso	20%		Consum	30w				
(b):	0 m					О					
Ancho	4.7		Pared	50%		Lúmene	400				
(a):	0 m				Característi	s	0				
Altura	2.6	Coeficiente	Techo	80%	cas de la	#	8				
(h):	0 m	s			luminaria	Iuminari					
		característi				as					
Altura	0.7	cos	Tipo	Empotra		#	8				
del	5 m		de	do		lámpara					
Plano de			Monta			s					
trabajo			je								
Luxes	50		Fact.	0.8		#	1				
requerid	0		Mant.			lámpara					
os						s por					
						Iuminari					
						а					

Tabla 13 Resumen de cálculos

8.6.3 Iluminaciones exteriores

Instalaciones de alumbrado exterior

Toda fuente luminosa, por reflexión directa o indirecta sobre la calzada, genera una mancha brillante cuyo aspecto depende de ciertos factores:

- → Naturaleza del pavimento de la vía (claro u oscuro)
- → Estado físico del pavimento (rugoso, pulido, seco, mojado)
- → La forma como la luminaria reparte el flujo luminoso
- → Altura de ubicación distancia con relación al observador
- → Naturaleza e intensidad de la fuente luminosa

Por tanto, las técnicas de iluminación consisten en coordinar los diferentes factores que están bajo su dependencia y poder lograr una luminancia uniforme. Por ejemplo: para niveles bajo de iluminación y de luminancia generalmente usadas en alumbrado públicos, la percepción de obstáculos se hace generalmente por efecto silueta de tal manera que el objeto se contrasta en silueta negra sobre el fondo del pavimento iluminado

8.6.4 Nivel de iluminación y de iluminancia

Esto solo da una indicación de la cantidad de luz incidente sobre la calzada de la vía , El nivel de iluminancia debe ser suficiente para permitir al vehículo ver fácilmente el obstáculo situado sobre la vía de tal forma que la iluminancia es de interés para vías de circulación vehicular donde se circula a gran velocidad. En consecuencia, la iluminancia no es un factor de peso cuando se trata de vías secundarias donde está dedicada a peatones debido a que la visión debido al efecto silueta se hace menos que por iluminación directa debido a esto, la iluminación tanto para calzadas y sus alrededores debe ser suficiente para crear un ambiente luminoso elevado.

8.6.5 Uniformidad de luminancia y de iluminación

Es importante que la repartición de las luminarias sea suficientemente uniforme

8.6.6 Localización de las luminarias

✓ Altura de luminarias:

Se define como la altura del centro geométrico de la luminaria por encima del nivel de la calzada. en la práctica las características fotométricas requeridas, las condiciones de mantenimiento, facilidades de operación, en general se recomienda que para alumbrado de carreteras y calles sea entre 7 y 12 metros, para alumbrado de luminarias suspendidas en centro de vía sea como mínimo 8 metros. En ciertos casos se recurren a luminarias potentes colocadas a mayor altura (12 a 15 metros) esto para reducir el número de postes. Sin embargo, se requiere mantenimiento especial; para iluminación donde se utilizan faroles verticales se recomienda altura de 3 a 6 metros

8.6.7 Interdistancia entre luminarias

La Interdistancia entre luminarias "D" es la distancia comprendida entre dos luminarias sucesivas medidas según el eje de la vía, este intervalo está condicionado por la altura "H" adoptada

8.8 Relación D/H

La relación entre la distancia y la altura de la luminaria, es primordial para la uniformidad de la iluminación cuanto más pequeña es esta relación mayor será la uniformidad de la iluminación

Tipos de disposiciones : Unilateral, Bilateral en oposición, Bilateral alternada , Central sencilla, Central doble, Axial

8.8.1 Curvas isocandelas

Indica los puntos en el plano de la vía que tienen igual nivel de iluminación, es una serie de curvas trazadas sobre un dibujo realizado a una escala propia. Estas curvas convencionalmente se han trazado considerando a la luminaria instalada a un metro del suelo y 1000 lúmenes. Por tanto, se tiene que referir a las dimensiones características de la instalación a dicha altura.

8.8.2 Elección de los puntos de cálculos

Por medio de las curvas isolux o también la curvas isocandelas es posible determinar el valor de la iluminación en cualquier punto de la calzada. Pero, por razones prácticas conviene considerar cierto número de estos por ejemplo se establece 9 puntos característicos que corresponde a un área repetitiva (parte de la calzada los cuales dichos puntos se repiten a los fines de alumbrados)

Por simetría el área repetitiva está constituida por la mitad de la separación (d/2), es decir los valores se repiten a derecha e izquierda del soporte o mástil. Sin embargo, algunos puntos caen sobre el borde de la calzada, estos son los más significativos para el grado de uniformidad de la iluminación (U=Emin/Emax), incluso entre ellos se encuentran los valores máximos y mínimos de iluminación.

8.8.3 Determinación de los valores de iluminación

Las curvas isolux trazan para una instalación ficticia, altura de suspensión de 1 metro sobre el suelo, un flujo luminoso de 1000 lm. Cabe resaltar que el ángulo no ha sido modificado tanto para una instalación real como para la ficticia

La fórmula general que determina la iluminación horizontal en un punto cualquiera ya sea para "h" ficticia o para "h" real es:

$$Eh = \frac{Ia * cos^3 a}{h^2}$$
 Ecuación 7

$$\bullet \quad E_{1m} = \frac{Ia*\cos^3 a}{1^2}$$

Haciendo relación tendremos:

$$Eh * h^2 = Iacos^3 a = E_{1m} 1^2$$
; entonces $E_{1m} = Eh * h^2$ se

Se puede deducir que: la iluminación Eh por la altura efectiva "h" en un punto cualquiera o el valor de iluminación media real se puede derivar de los valores de iluminación E1m representado en las curvas isolux

$$E_m = \frac{E_{1m}}{h^2}$$
 Ecuación 8

En consecuencia, como los valores correspondientes a E1m es determinado en función de un flujo Φ equivalente de 1000 lm entonces si el flujo emitido por la lámpara es Φ L; el valor Eh se tendrá que referir a Φ L/1000 lm, la formula nos quedaría:

$$E_{real} = \frac{E_{1m}*\Phi L}{1000h^2}$$
 Ecuación 9

8.8.4 Evaluación de la iluminación media (Em)

Se obtiene como media aritmética de los valores de iluminación en los 9 puntos

$$Em = \frac{E1+E2+E3+E4+E5+E6+E7+E8+E9}{9}$$
 Ecuación 10

Si tomamos en cuenta la sumatoria de las superficies unitarias repetitivas S. la iluminación media del área repetitiva se deduce de la relación $Em=\Phi/S$, donde Φ es flujo proyectado sobre la superficie S, por tanto: $\Phi1=E1*S1$; $\Phi2=E2*S2.....$ etc.

Basado en la subdivisión de los 9 puntos resulta que la superficie correspondiente a los puntos 1-3-7-9 tienen un área que es la mitad de la de los puntos 2-4-6-8 y un cuarto de la central dentro de la cual se ha colocado el punto 5, entonces si consideramos las áreas por separado tendremos:

$$Em = \frac{E1S1 + E2S2 + E3S3 + E4S4 + E5S5 + E6S6 + E7S7 + E8S8 + E9S9}{S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9}$$

Si tomamos en cuenta la superficie de cada subdivisión tenemos que:

S2=2S1; S3=S1; S4=2S1; S5=4S1.... sucesivamente logrando simplificar la relación por lo cual tendremos:

$$Em = \frac{E1 + 2E2 + E3 + 2E4 + 4E5 + 2E6 + E7 + 2E8 + E9}{16}$$

8.8.5 Calculo para luminaria característica

- → Criterios de diseño
- Requerimientos de iluminación: 20 lux
- Longitud de calzada: 37 m
- > Ancho de calzada: 3 m
- > Finalidad de diseño: parqueo y uso peatonal
- Información de la luminaria a utilizar:
 - ✓ Código: Phillips BGP-291T25 1XLED70-4S/830 DM10
 - √ Tipo: plana
 - ✓ L.O.R: 0.86

8.8.6 Procedimiento de diseño

- Cálculo de iluminación para cada punto mediante diagrama polar
- ✓ Determinación del Angulo α de foco para cada punto

Tendremos:

$$\alpha = tan^{-1}(\frac{di}{h})$$
 Ecuación 11

$$\alpha_1 = tan^{-1} \left(\frac{3}{7}\right) = 23.19^{\circ}$$

$$\alpha_2 = tan^{-1} \left(\frac{1.5}{7} \right) = 12.10^{\circ}$$

$$\alpha_3 = 0^{\circ}$$

$$\alpha_4 = tan^{-1} \left(\frac{3.35}{7} \right) = 25.6^{\circ}$$

$$\alpha_5 = tan^{-1} \left(\frac{2.12}{7} \right) = 16.84^{\circ}$$

$$\alpha_6 = tan^{-1} \left(\frac{1.5}{7} \right) = 12.1^{\circ}$$

$$\alpha_7 = tan^{-1} \left(\frac{4.24}{7} \right) = 31.20^{\circ}$$

$$\alpha_8 = tan^{-1} \left(\frac{3.35}{7} \right) = 26.6^{\circ}$$

$$\alpha_9 = tan^{-1} \left(\frac{3.35}{7} \right) = 23.19^{\circ}$$

Cálculo de la iluminancia relativa y real a través del diagrama polar de flujo lumínico proporcionado por el fabricante para la luminaria establecida

Ir = valores del grafico en cd/1000lm

$$I_{real} = \Phi_{luminaria} * Ir ; Cd$$
 Ecuación 12

$$Eh = \frac{Ia * cos^3 a}{h^2}; lux$$

Para el punto 1 tendremos: α=23.19°; C=90.

Ir =260 Cd/1000lm

$$I_{real} = 6020 * 260 \frac{Cd}{1000lm} = 1562.2 \ Cd$$

$$E_1 = \frac{1562.2 * cos^3 23.19^{\circ}}{7^2} = 24.81 \ lux$$

Para el punto 2 tendremos: α=12.1°; C=90.

Ir =250 Cd/1000lm

$$I_{real} = 6020 * 250 \frac{Cd}{1000lm} = 1505 \ Cd$$

$$E_2 = \frac{1505 * \cos^3 12.1^{\circ}}{7^2} = 28.71 \ lux$$

Para el punto 3 tendremos: α = 0°; C=0°

Ir = 215 Cd/1000 Im

$$I_{real} = 6020 * 215 \frac{Cd}{1000lm} = 1294.3 \ Cd$$

$$E_3 = \frac{1294.3 * cos^30^{\circ}}{7^2} = 28.71 \ lux$$

Para el punto 4 a este punto le corresponde la curva 63.4° pero no se dispone, tendremos que interpolar a partir de los valores de las curvas $C = 0^{\circ}$ y $C = 90^{\circ}$ para una $\alpha = 25.6^{\circ}$ tendremos:

$$I_{\alpha} = I_0 + (I_{90} - I_0) * \frac{\alpha - 90}{90 - 0}$$
 Ecuación 13

C=0°=225 Cd/1000lm; C=90°=265 Cd/1000lm

$$I_{26} = 225 + (265 - 225) * \frac{63.4 - 90}{90 - 0} = 213 \frac{Cd}{1000} lm$$

$$I_{real} = 6020 * 213 \frac{Cd}{1000lm} = 1282.26 \ Cd$$

$$E_4 = \frac{1282.26 * cos^3 25.6^{\circ}}{7^2} = 19.19 \ lux$$

Para el punto 5 a este punto le corresponde la curva 45° pero no se dispone, tendremos que interpolar a partir de los valores de las curvas $C = 0^{\circ}$ y $C = 90^{\circ}$ para una $\alpha = 16.84^{\circ}$ tendremos:

Utilizando la formula anterior

C=0°=225 Cd/1000lm; C=90°=275 Cd/1000lm

$$I_{45} = 225 + (275 - 225) * \frac{45 - 90}{90 - 0} = 200 \frac{Cd}{1000} lm$$

$$I_{real} = 6020 * 200 \frac{Cd}{1000lm} = 1204 \ Cd$$

$$E_5 = \frac{1204 * cos^3 16.84^{\circ}}{7^2} = 21.54 \ lux$$

Punto 6 tendremos: $\alpha = 12.1^{\circ}$; $C = 0^{\circ}$.

Ir =225 Cd/1000lm

$$I_{real} = 6020 * 225 \frac{Cd}{1000lm} = 1354.5 \ Cd$$

$$E_6 = \frac{1354.5 * cos^3 12.1^{\circ}}{7^2} = 25.84 \ lux$$

Para el punto 7 a este punto le corresponde la curva 45° pero no se dispone, tendremos que interpolar a partir de los valores de las curvas $C = 0^{\circ}$ y $C = 90^{\circ}$ para una $\alpha = 31.20^{\circ}$ tendremos:

C=0°=285 Cd/1000lm; C=90°=245 Cd/1000lm

$$I_{45} = 245 + (285 - 245) * \frac{45 - 90}{90 - 0} = 225 \frac{Cd}{1000} lm$$

$$I_{real} = 6020 * 225 \frac{Cd}{1000lm} = 1354.3 \ Cd$$

$$E_7 = \frac{1354.3 * \cos^3 31.20^\circ}{7^2} = 17.3 \ lux$$

Para el punto 8 a este punto le corresponde la curva 26.6° pero no se dispone, tendremos que interpolar a partir de los valores de las curvas $C = 0^{\circ}$ y $C = 90^{\circ}$ para una $\alpha = 25.6^{\circ}$ tendremos:

C=0°=225 Cd/1000lm; C=90°=275 Cd/1000lm

$$I_{27} = 225 + (275 - 225) * \frac{26.6 - 90}{90 - 0} = 189.8 \frac{Cd}{1000} lm$$

$$I_{real} = 6020 * 189.8 \frac{Cd}{1000lm} = 1142.6 Cd$$

$$E_8 = \frac{1142.6 * \cos^3 25.6^{\circ}}{7^2} = 17.10 \ lux$$

Para el punto 9 tendremos: α = 23.19°; C=0° Ir = 215 Cd/1000lm

$$I_{real} = 6020 * 215 \frac{Cd}{1000lm} = 1294.3 \ Cd$$

$$E_9 = \frac{1294.3 * \cos^3 23.19^\circ}{7^2} = 20.51 \ lux$$

8.8.7 Cálculo de la iluminancia media

$$Em = \frac{E1 + 2E2 + E3 + 2E4 + 4E5 + 2E6 + E7 + 2E8 + E9}{16}$$

$$E_{m} = \frac{24.81 + 2 * 28.71 + 28.71 + 2 * 19.19 + 4 * 21.54 + 2 * 25.84 + 17.3 + 2 * 17.10 + 20.51}{16}$$

$$= 22.44 lux$$

8.8.8 Criterios de calidad

Coeficiente de uniformidad media (U0)

$$U_0 = \frac{E_{min}}{E_m} = \frac{17.10}{22.44} = 0.76 \, P. \, U$$

✓ Coeficiente de uniformidad mínima (UL) (*medido a lo largo de la línea central)

$$U_L = \frac{E_{min}}{E_{max}} = \frac{17.10}{28.71} = 0.60 \ P. U$$

8.9 Cálculo de Conductor para Circuito de Alumbrado Exterior

Para determinar las dimensiones de los conductores realizaremos el cálculo eléctrico bajo el método por caída de tensión nodal.

Este método consiste en descomponer todo el circuito mediante tramos de distancias establecidas en el diseño, para poder determinar las caídas de tensión y corroborar si el calibre del conductor asumido cumple con los criterios normativos que establece que se permite 5% de caída de tensión en todo el circuito es decir se debe cumplir que se debe proporcionar una tensión de al menos un 95% de tensión que proporciona la fuente y que los elementos operen en los rangos óptimos establecido por el fabricante, esto para evitar daño prematuro en el equipo.

8.9.1 Consideraciones técnicas

- ✓ Es un circuito monofásico
- ✓ Conductores activos serán de cobre, unipolares y aislados
- ✓ El conductor neutro será de igual calibre que el conductor fase
- ✓ conductor de conexión a tierra será de calibre inferior al de fase
- ✓ La canalización será en ducto PVC y en los puntos de empalme se instalará en caja de conexiones para intemperie

8.9.2 Formulas a utilizar mediante el método de caída de tensión nodal

MEMORIA DE FORMULAS PARA EL CALCULO DE PARAMETROS
$$1-P=N_{lum}*P_{lum} \quad 4-\text{ VR}=V_{fuent}-V_{tr}$$

$$2-\text{ I}=\frac{P_t}{V*Fp} \qquad 5-\text{ %R}=1-\frac{V_{tr}-V_R}{V_{tr}}*100$$

$$3-\text{ e}=2*Z_c*I_t*I$$

Figura 3 Memoria de fórmulas para cálculos

8.9.3 Memoria de cálculo

M	IEMORIA DE CA	LCULO ELECT	RICO PARA	ALUMBRADO	EXTERIOR			
	MET	ODO POR CAI	DA DE TENS	ION NODAL				
UNIDAD	TRAMO 0	TRAMO 1	TRAMO 2	TRAMO6	TRAMO7	TRAMO 3	TRAMO 4	TRAM O 5
Carga Ramal [A]	10	l1	12	12.1	12.2	13	I3.1	13.2
Longitud de Ramal [L]	L0	L1	L2	L2.1	L2.2	L3	L3.1	L3.2
Tension Inicial [V]	Vfuent	VR1	VR2	VR2.1	VR2.2	VR3	VR3.1	VR3.2
Caida de Tension [V]	e0	e1	e2	e2.1	e2.2	e3	e3.1	e3.2
Tension Final [V]	VR0	VR1	VR2	VR2.1	VR2.2	VR3	VR3.1	VR3.2
Regulacion de Tension [%]	%R0	%R1	%R2	%R2.1	%R2.2	%R3	%R3.1	%R3.2
	TENSION DE							
POTENCIA DE LUMINARIA	OPERACIÓN	CANTIDAD	Pp	Fp				
48		19	912					
100	208	12	1200	0.9				
TOTAL	1		2112					
101712			2112					
					Tension	Caida de	Tension	Regulacio
		I	Z	Carga Ramal	Inicial	Tension	Final	de Tensio
Unidad	L [m]	Cal.conductor	[ohm/Km]	[A]	[V]	[V]	[V]	[%]
TRAMO 0		AWG-10	3.94		208	2.66707692	205.332923	98.72
TRAMO 1		AWG-10	3.94		205.332923	0.88829268	204.44463	
TRAMO 2		AWG-10	3.94		204.44463	0.85652096		
TRAMO 6		AWG-12	6.56		203.588109	0.68740098		
TRAMO 7		AWG-12	6.56		202.900708	0.60351358		
TRAMO 3		AWG-10	3.94		204.44463	0.71262544		
TRAMO 4		AWG-12	6.56		203.732005	0.42932217	203.302683	
TRAMO 5		AWG-12	6.56		203.302683	0.28681919		
TRAMIC 5	20	AVVG-12	0.50	1.05306094	203.302003	0.20001919	203.015064	97.0

figura 4 Memoria de calculo

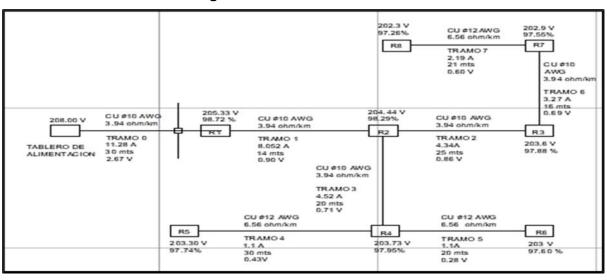


Figura 5 Memoria de puntos circuitos conectado

8.9.4 Diseño de alumbrado exterior en AutoCAD

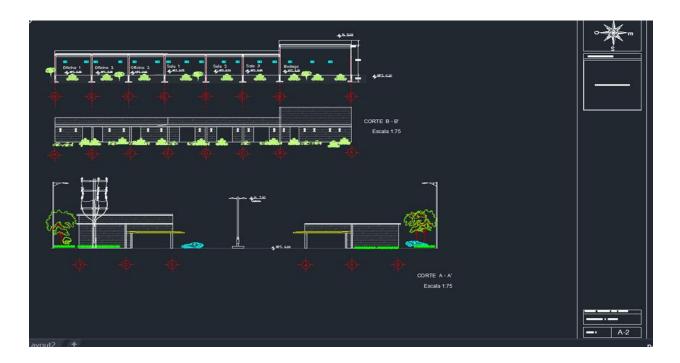


Figura 6 Diseño alumbrado exterior en autocad

Figura 7 Plano 3D de alumbrado



Figura 8 Vista 3D iluminación exterior

MEMORIA DE CALCULO ELECTRICO PARA ALUMBRADO EXTERIOR								
METODO POR CAIDA DE TENSION NODAL								
UNIDAD	TRA	TRA	TRA	TRA	TRA	TRA	TRA	TRA
	MO 0	MO 1	MO 2	MO 6	MO 7	MO 3	MO 4	MO 5
Carga Ramal [A]	10	I1	12	12.1	12.2	13	I3.1	13.2
Longitud de	LO	L1	L2	L2.1	L2.2	L3	L3.1	L3.2
Ramal [L]								
Tension Inicial	Vfuen	VR1	VR2	VR2.1	VR2.2	VR3	VR3.1	VR3.2
[V]	t							
Caida de	e0	e1	e2	e2.1	e2.2	e3	e3.1	e3.2
Tension [V]								
Tension Final [V]	VR0	VR1	VR2	VR2.1	VR2.2	VR3	VR3.1	VR3.2
Regulacion de	%R0	%R1	%R2	%R2.	%R2.	%R3	%R3.	%R3.
Tension [%]				1	2		1	2

Tabla 14 Memoria de cálculo eléctrico para alumbrado

Rediseño del sistema eléctrico del restaurante las delicias ubicado en el municipio de Jinotega

Unida	L	Cal.cond	Z	Carga	Tensio	Caida	Tensio	Regula
d	[uctor	[ohm/	Ramal	n Inicial	de	n Final	cion de
	m		Km]	[A]	[V]	Tensio	[V]	Tension
]					n [V]		[%]
TRAM	3	AWG-10	3.94	11.2820	208	2.66707	205.332	98.72%
0 0	0			513		692	923	
TRAM	1	AWG-10	3.94	8.05196	205.332	0.88829	204.444	98.29%
0 1	4			414	923	268	63	
TRAM	2	AWG-10	3.94	4.34782	204.444	0.85652	203.588	97.88%
O 2	5			213	63	096	109	
TRAM	1	AWG-12	6.56	3.27458	203.588	0.68740	202.900	97.55%
O 6	6			548	109	098	708	
TRAM	2	AWG-12	6.56	2.19045	202.900	0.60351	202.297	97.26%
07	1			29	708	358	195	
TRAM	2	AWG-10	3.94	4.52173	204.444	0.71262	203.732	97.95%
O 3	0			502	63	544	005	
TRAM	3	AWG-12	6.56	1.09075	203.732	0.42932	203.302	97.74%
O 4	0			755	005	217	683	
TRAM	2	AWG-12	6.56	1.09306	203.302	0.28681	203.015	97.60%
O 5	0			094	683	919	864	

Tabla 15 Memoria de cálculo eléctrico lluminación exterior

POTENCIA DE LUMINARIA	TENSION DE	CANTIDAD	Рр	Fp
	OPERACIÓN			
48	208	19	912	0.9
100		12	1200	
TOTAL			2112	

Tabla 16 Potencia consumida

Figura 9 Vista elevación vista iluminación

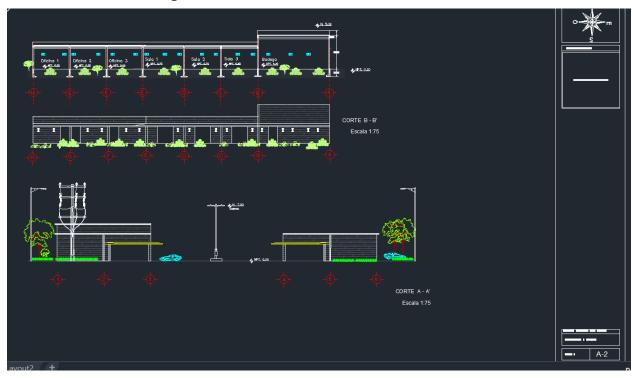


Figura 10 Vista frontal Iluminación

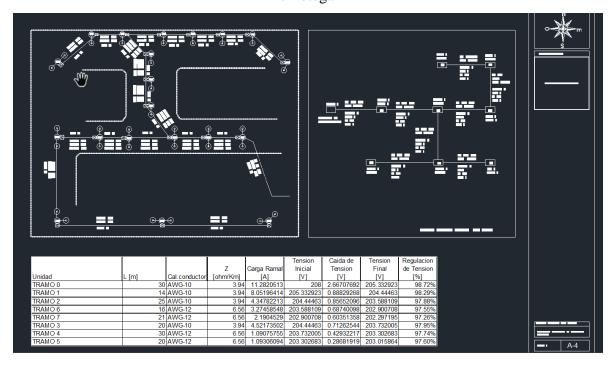


Figura 11 Distribución componente iluminación

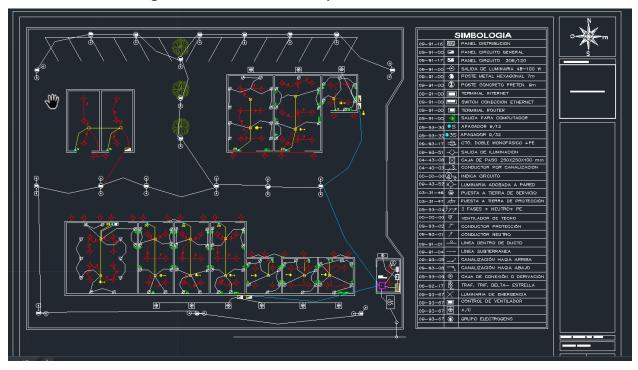


Figura 12 Distribución circuitos alambrados

8.10 Desarrollo de los cálculos sistema climatización

8.10.1 Sala para visitantes.

8.10.2 Pared del lado norte.

En bloque de concreto hueco de 200mm más una capa de repello en cemento con arena de 25mm, y con un área de 18m², no expuesta al ambiente.

8.10.3 Pared del lado sur.

Expuesta al ambiente; en ladrillo compacto de 200mm con acabado en cemento con arena de 50mm, tiene el área de 26,5m².

Tiene dos ventanas, la mitad superior de las ventanas está diseñada en vidrio sencillo de 3,2mm con marcos en madera y la otra mitad es en madera de 16mm.

La puerta principal es en vidrio sencillo de 3,2 mm fijo con marcos en metal, sin puente térmico. Con un área de 5,6m².

Sobre la puerta principal tiene un tramo de pared en vidrio de 3,2mm con metal y su área es de 2m².

8.10.4 Pared del lado este.

Pegada a la pared de la bodega no acondicionada, en ladrillo compacto de 300mm, y piedra coralina unida con cemento y arena al ladrillo. Con un área de 23,7m² en contacto con aire exterior en reposo y 6,4m² expuestos al aire exterior en movimiento.

8.10.5 Pared del lado oeste.

En ladrillo compacto de 300mm, y piedra coralina unida con cemento y arena al ladrillo. Tiene el área de 31,6m2, y da con el edificio no acondicionado.

8.10.6 Carga por conducción

- 8.10.7 Estructuras exteriores.
- 8.10.8 Conducción a través de la pared del lado sur.

Pared en ladrillo compacto de 200mm. Con repello de cemento y arena de 25mm.

$$K_{ladrillo} = 0.727 \text{ W} / \text{m} ^{\circ}\text{K}$$

$$K_{repello} = 0,415 \text{ W} / \text{m} ^{\circ}\text{K}$$

8.10.9 Emitancia de superficies de construcción

$$= 0.9 h_i = 8.29 W / m^2 K$$

$$h_0 = 22.7 \text{ W} / \text{m}^2 \text{ °K}$$

$$U = 1 / (1 / 8,29 + 0,025 / 0,415 + 0,20 / 0,727 + 1 / 22,7) = 2,6 W/m2 °K$$

Tipo de pared = 4

$$A = 26.5 \text{m}^2 \text{ q} = U \times A \times (CLTD) \text{ q} = 2.6 \text{ W} / \text{m}^2$$

$$K \times 26.5 \text{m}^2 \times 16 \text{ }^{\circ}\text{K} = 1102.4 \text{ W}$$

8.10.10 Conducción a través de ventanas.

Ventana de vidrio sencillo de 3,2mm, fijo con marco en madera.

$$U = 5.55 \text{ W} / \text{m}^2 \text{ °K}$$

$$CLTD = 7 \, ^{\circ}K$$

A = 1,96
$$m^2$$
 q = U × A × (CLTD) q = 5.55 W / m^2 °K × 1,96 m^2 × 7 °K = 76,2 W Ventana en madera de 16mm.

$$K_{\text{madera}} = 0,166 \text{ W} / \text{m} ^{\circ}\text{K}$$

$$U = 1 / (1 / 8,29 + 0,016 / 0,166 + 1 / 22,7) = 3,83 \text{ W} / \text{m}^2 \text{ }^{\circ}\text{K}$$

Tipo de pared = 6

$$A = 1,96m^2 q = 3,83 \text{ W} / m^2 \text{ °K} \times 1,96m^2 \times 13$$

$$^{\circ}$$
K = 97,6 W

Tiene dos ventanas.

$$q = 2 \times (76.2 \text{ W} + 97.6 \text{ W}) = 347.5 \text{ W}$$

8.11 Conducción a través de la puerta principal.

$$U = 7,24W / m^2 \, ^{\circ}K$$

$$A = 5.6m^2$$

CLTD =
$$7 \, ^{\circ}$$
K q = $7,24 \, \text{W} / \text{m}^2 \, ^{\circ}$ K × $5,6 \, \text{m}^2 \times 7 \, ^{\circ}$ K = $283,3 \, \text{W}$

8,11,1 Conducción pared del lado este.

Cargas de particiones. $q = U \times A \times (t_b - t_{rc})$ $t_b =$ Temperatura en el espacio adyacente. $t_{rc} =$ Temperatura interior de diseño en el espacio, se considera constante. La pared es en ladrillo común de 200mm, más una capa de piedra coralina de 200mm, unida al ladrillo con cemento y arena.

$$K_{piedra} = 1,436 \text{ W} / \text{m} ^{\circ}\text{K}$$

$$\label{eq:U} \begin{split} U &= 1 \ / \ (1 \ / \ 8,29 \ + \ 0,20 \ / \ 1,436 \ + \ 0,20 \ / \ 0,727 \ + \ 1 \ / \ 22,7) = 1,7 \ W \ / \ m^2 \ ^\circ K \ t_b \\ &= 35 \ ^\circ K \ t_{rc} = 24 \ ^\circ K \ A = 23,7 m^2 \ q = 1,7 \ W \ / \ m^2 \ ^\circ K \ \times 23,7 m^2 \ \times \ (35 \ ^\circ K \ - \ 24 \ ^\circ K) \\ &= 443,2 \ W \end{split}$$

Conducción a través de la pared que tiene contacto con el aire en movimiento por el lado este. A = $6.4m^2$ q = U × A × (CLTD)

$$U = 2.6W / m^2 ^{\circ} K$$

Tipo de pared = 4 CLTD =
$$26 \, ^{\circ}$$
K q = $2,6 \, \text{W}$ / $m^2 \, ^{\circ}$ K × $6,4 \, \text{m}^2$ × $26 \, ^{\circ}$ K = $432,6 \, \text{W}$

8.11.2 Conducción a través de la pared del lado oeste.

Carga de particiones. $q = U \times A \times (t_b - t_{rc}) A = 31,6m^2 q = 1,7 W / m^2 °K \times 31,6m^2 \times (35°K - 24°K) = 590.9 W Conducción a través de la pared del lado norte.$

Carga de particiones.
$$q = U \times A \times (t_b - t_{rc}) U = 2.6W/ m^2 ^{\circ}K t_b = 35 ^{\circ}K t_{rc} = 24 ^{\circ}K A = 6.2m^2 q = 2.6 W / m^2 ^{\circ}K \times 6.2m^2 \times (35 ^{\circ}K - 24 ^{\circ}K) = 177.3 W$$

8.11.3 Conducción a través del techo

Teja de arcilla de 10mm, placa de concreto de 55mm, base en madera de 19mm y una capa aislante de 4mm.

$$K_{\text{madera}} = 0,166 \text{ W} / \text{m} ^{\circ}\text{K}$$

$$K_{arcilla} = 1,28 \text{ W} / \text{m} ^{\circ}\text{K}$$

$$K_{aislante} = 0,043 \text{ W} / \text{m} ^{\circ} \text{K}$$

$$K_{concreto} = 1.8 \text{ W} / \text{m} ^{\circ}\text{K}$$

8.11.4 Emitancia de superficies de construcción

$$= 0.9 h_i = 9.09 W / m^2 K$$

$$h_0 = 22.7 \text{ W} / \text{m}^2 \text{ °K}$$

$$A = 69,5m^2$$

$$U = 1/(1/7.5 + 0.01/1.28 + 0.055/1.8 + 0.004/0.043 + 0.019/0.166 + 1/22.7)$$

$$U = 2.4W / m^2 ^{\circ} K$$

Tipo de pared = 3

$$CLTD = 37 \, ^{\circ}K$$

Corrección del CLTD de acuerdo con los datos del diseño.

CLTD_{Corregido} = CLTD +
$$(25.5 - t_r)$$
 + $(t_m - 29.4)$ CLTD = CLTD de la tabla t_r = Temperatura interior de diseño t_m = Temperatura exterior máxima – (variación diaria de temperatura) / 2 t_r = 24°C t_m = 35 – (35 – 24) / 2 =

$$29.5^{\circ}C t_{m} = 29.5^{\circ}C$$

$$CLTD_{Corregido} = 37^{\circ}K + (25.5 - 24) + (29.5 - 29.4)$$

$$U \times A \times (CLTD)_{Corregido}$$

$$q = 2.4 \text{ W} / \text{m}^2 \text{ °K} \times 69.5 \text{m}^2 \times 38.6 \text{ °K} = 6.348.5 \text{ W}$$

Carga por radiación solar a través de vidrios.

$$q = A \times (SC) \times (SCL)$$

SC = Coeficiente de sombra.

SCL = Factor de carga solar con sombra interior o sin sombra

$$SC = 0.3$$

Zona tipo B.

$$SCL = 249 W/m^2$$

A = $11,2m^2$ 2 2 q = $11,2m \times 0,3 \times 249$ W / m = 839,6 W Carga térmica por infiltración. qinfiltración = V × Dt ×Cp × R

V = Volumen de aire infiltrado.

D_t = Diferencia de temperaturas entre la temperatura interior de confort.

 C_p = Calor especifico del aire.

R = Número de renovaciones de aire / horas.

$$V = (26.5m^2 \times 2.4m) + (52.9m^2 \times 4.4m) = 296.4m^3$$

$$D_t = (35 - 24)^{\circ}K = 11^{\circ}K$$

 $C_p = 0.33$ W / m³ °K R = 3 x 2 puertas = 6 ren / hr $q_{infiltración} = 296.4$ m³ x 11°K x0,33 W / m³ °K x 6 ren / hr = 6.455,6 W Cargas internas.

Cargas internas por personas. Carga interna sensible por persona. $q_{ensible}$ = $Nx (SHG_P) x CLF$

N = 20 personas en el espacio

SHG_P = Ganancia de calor sensible por persona.

CLF = Factor de carga, basado en las horas de ocupación.

Este se selecciona por el tipo de zona, el periodo de ocupación y el número de horas después de entrar en el espacio.

 $SHG_P = 75 W$

Oficina con trabajo moderadamente.

8.11.5 Zona tipo B.

CLF = 1. Equipo trabaja 18 horas continuas $q_{ensible}$ = 20 × 75 W ×1 = 1.500 W

Carga interna latente por persona.

 $qlatente = N \times (LHGP)$

N = 20 personas en el espacio.

LHGp = Ganancia de calor latente por persona. LHGp = 55 W

 $q_{latente} = 20 \times 55 \text{ W} = 1100 \text{ W}$

8.11.6 Carga por luces.

$$q_{el} = W \times F_{ul} \times F_{sa} \times (CLF)$$

W = Capacidad total de iluminación, Watt (se toma de planos eléctricos o datos de placa de las luces).

F_{ul} = Factor de uso de luces.

 $F_{sa} = Factor$

especial de iluminación.

CLF = Factor de carga, por hora de ocupación.

 $F_{ul} = 1$. Luces permanecen encendidas $F_{sa} = 1,2$.

Luces fluorescentes. CLF = 0,98

$$W = 24 \text{ lámparas} \times 24 \text{ W} = 432 \text{ W} \text{ q}_{el} = 432 \text{ W} \times 1 \times 1,2 \times 1 = 518,4 \text{ W}$$

8.11.7 Carga por equipos.

2 ventiladores de techo: 372 W 5 computadores de:

85 W c / u q_{Equipos} = 85 W

$$+ 372 W + (5 \times 85) W = 882 W$$

Conducción a través del piso.

Ladrillo comercial normal de 100mm y placa de concreto de alta densidad de 200mm.

 $K_{ladrillo} = 0,727 \text{ W} / \text{m} ^{\circ} \text{K}$

K_{concreto} = 1,038 W / m °K

U = 1 / (1 / 8,29 + 0,10 / 1,038 + 0,20 / 0,727 + 1 / 22,7) = 1,9 W / m² °KTemperatura del suelo a 0,5m de la superficie 27.5°C, a las 14 horas.

$$q = U \times A \times (t_b - t_{rc}) A= 52.9 m^2 q = 1.9 W / m^2 K \times 52.9 m^2 \times (35 K - 24 K)$$

= 1105.6 W

El cálculo de la carga térmica para el resto de los recintos del hotel está resumido en la tabla

8.11.8 Análisis de los resultados de la carga térmica para la selección del sistema de aire acondicionado

Los recintos del hotel en los que se genera la mayor cantidad de carga térmica son:

La sala para visitantes con el 28,2%, le sigue la sala de espera y comedor con un 12,6%, el tercer lugar es la recepción con el 6,5% y el 52,7% restante es generada en las 13 habitaciones que posee el hotel.

La carga térmica generada en la planta 1 es de 49.718,8 W. representa el 63,6% del total de la carga térmica.

La habitación donde se produce la mayor generación de carga térmica es el número

05, ubicada en la planta 1; con 4076,5 W y representa el 5,2% de la carga térmica total.

La habitación en la que menos se genera carga térmica es el número 08 en la planta 2, con 2927 W que representan el 3,7% del total de la carga térmica.

Las habitaciones de la planta 1 generan en promedio un 9,5% más de carga térmica que las habitaciones de la planta 2.

Uno de los argumentos que influye al momento de tomar una decisión sobre el sistema de aire acondicionado que debe instalarse en un determinado lugar, es conocer con certeza la carga térmica que ahí se genera.

El sistema de aire acondicionado que se escoja para ser instalado en el hotel casa villa colonial debe tener la capacidad para producir una carga de refrigeración que logre remover del interior los 78.225,1 W de carga térmica que ahí se generan. La capacidad de refrigeración de los sistemas de aire acondicionado viene dada en BTU / horas o por Toneladas de refrigeración.

La conversión de unidades de la carga térmica es necesaria efectuarla para referenciar el sistema de aire acondicionado a seleccionar. Carga térmica calculada 78.225,1 W = 266.911,9 BTU/horas

Capacidad de refrigeración 266.911,9 BTU/horas = 22,3 Toneladas En el comercio de los sistemas de aires acondicionados encontramos una variedad de productos de todos los tipos y de marcas reconocidas, las cuales invierten muchísimo dinero en tecnología de punta para ofrecerle al cliente calidad y confort.

Por las características que presenta el hotel y la carga térmica calculada, el sistema de aire acondicionado que mejor se ajusta son tres equipos de línea comercial / industrial, sistema de refrigeración variable. Nombre equipo: Marca Características: Sistema de aire acondicionado con flujo variable de refrigerante, larga longitud de tubería y control individual de zonas de ahorro de energía.

Compuesto por una unidad condensadora y múltiples unidades evaporadoras.

8.11.9 Capacidad de refrigeración.

En el comercio los hay con las siguientes capacidades de refrigeración: 80.000BTU/hr , 100.000BTU/hr y 120.000BTU/hr.

La capacidad de refrigeración de los tres equipos es de 120.000BTU/hr, 100.000BTU/hr y 80.000BTU/hr. La carga de refrigeración de los equipos se instalara así: Para la planta 1. Se instalaran los equipos de capacidad de 120.000BTU/hr y 80.000BTU/hr, y el equipo de capacidad de 100.000BTU/hr en la planta 2. El hotel tendrá una carga de refrigeración disponible de 300.000BTU/hr, con un 12,4% por encima de lo requerido.

9 Conclusiones

- Se realizo levantamiento de la información referente al sistema de iluminación se encontraron hallazgos tanto en el sistema de iluminación interior como exterior, correspondiente al la información de campo obtenida se procedió a realizar los cálculos correspondientes tomando n cuenta los criterios, se calculo u selecciono el tipo de iluminación adecuado para cada ambiente de esta manera se logro corregir la deficiencia que presentaba el sistema eléctrico del restaurante las delicias.
- Correspondiente a la información inicial se procedido a realizar la visita al lugar para cumplir con la etapa de diagnostico para el componente climatización se observó que el sistema de climatización se encontraba desfasado y sobredimensionado, se procedido a realizar la corrección de cálculos tomando n cuenta los criterios para este tipo d sistemas, se presentaron los cálculos y resultados en tablas resumen para de esta manera apreciar la información suministrada.
- Se presentaron planos de las diferentes vistas para ambos componentes en los cuales se puede apreciar la propuesta de diseño en la etapa de ejecución, se recomienda utilizar la distribución recomendada en esta propuesta ya que es la que se genero de los calculo y simulación realizada.

11 Bibliografía

- Borjas, V. (2017). Diseño de sistemas electricos para la estacion ayacucho de la linea 1 del metro de los teques. Caracas.
- Campero, N. B. (1995). Libro de instalaciones eléctricas: Conceptos basicos y diseños. Mexico: ALFAOMEGA GRUPO EDITOR, S.A. de C.V.
- Carrier. (1980). Manual de aire acondicionado. Barcelona: Talleres Gráficos Iberoamericanos, S.A.
- CNNE. (1995). Codigo de instalaciones electricas de Nicaragua. Managua.
- Grupo CONDUMEX. (2008). Manual técnico de instalaciones eléctricas en baja tensión. Mexico.
- Maldonado., G. R. (2001). Instalaciones Electricas II. Bolivia.
- NFPA. (2017). National electrical code. EEUU.
- Nuñez, O. N. (2018). Propuesta de diseño de una instalación eléctrica con base a la NOM-001-SEDE-2012 de un condominio de interés medio para la zona sur de la ciudad de mexico. Mexico.