

Área de Conocimiento de Ingeniería y Afines

Estudio del comportamiento de las cargas eléctricas del piso 3, 4, 5 y azotea del ala "A" del edificio Rigoberto López Pérez de la Universidad Nacional de Ingeniería

Trabajo Monográfico para optar al título de Ingeniero Eléctrico

Elaborado por:

Br. Michael Alejandro

Medina Mendoza.

Carnet: 2019-1094U

Br. Christopher Williams

Campos Hernández.

Carnet: 2019-0388U

Tutor:

Msc. Sandro Yohasner

Chavarría Condega.

21 de MARZO de 2024

Managua, Nicaragua

UNIVERSIDAD NACIONAL DE INGENIERIA RECINTO UNIVERSITARIO "PEDRO ARAUZ PALACION" ÁREA DE CONOCIMIENTO DE INGENIERÍA Y AFINES

Ing. Luis Chavarría
Director DACIA

A través de la presente hago constar que: el Br. Michael Alejandro Medina Mendoza con número de carnet 2019-1094U y el Br. Christopher Williams Campos Hernández con número de carnet 2019-0388U, estudiantes del programa de Ingeniería Electrica, han finalizado el proceso de Pre – defensa de su tesis monográfica que tiene como tema "ESTUDIO DEL COMPORTAMIENTO DE LAS CARGAS ELÉCTRICAS DEL PISO 3,4,5 Y AZOTEA DEL ALA "A" DEL EDIFICIO RIGOBERTO LÓPEZ PÉREZ DE LA UNIVERSIDAD NACIONAL DE INGENIERIA."

La tesis monográfica que se presenta ha sido revisada y corregida tomando en cuenta las observaciones de los miembros del jurado asignados por el Jefe de Programa Académico de Ingeniería Electrica

Por consiguiente, valoro que la misma cumple con los requisitos establecidos en la Normativa de Culminación de Estudios establecidos por la Universidad Nacional de Ingeniería y que está lista para ser entregada y sometida al proceso de **Defensa** instaurado por la institución.

Dado en la ciudad de Managua a los 20 días del mes de marzo del 2024

Atentamente,

Msc. Sandro Y. Chavarría Condega

TUTOR

Decanatura FEC

Universidad Nacional de Ingeniería Recinto Universitario "Simón Bolívar" Facultad de Electrotecnia y Computación **Decanatura** DF-09-2023-23

Managua, 20 de septiembre del 2023.

Bachilleres.

Michael Alejandro Medina Mendoza

2019-1094U.

Christopher Williams Campos Hernández

2019-0388U.

Egresado de la Carrera de Ingeniería Eléctrica.

Estimados Bachilleres:

El suscrito Decano de la Facultad de Electrotecnia y Computación, a través de la presente autoriza de manera formal la inscripción de la Monografía Titulada "Estudio del comportamiento de las cargar Eléctricas del piso 3,4,5 y azotea del ala "A" del Edificio Rigoberto López Pérez de la Universidad Nacional de Ingeniería". Para optar al Título de Ingeniero Eléctrica, para tal efecto se nombra como Tutor de la Monografía al Msc. Sandro Chavarría Condega.

Así mismo le solicito proceda a la **Inscripción de dicho Tema Monográfico** en secretaria Académica de la facultad, con la finalidad de darle control y seguimiento, de acuerdo a los reglamentos establecidos.

Se les recuerda que, según la normativa para los trabajos monográficos, a partir de la fecha de inscripción tiene 12 meses para defender dicho trabajo.

Sin más a que referirme y deseándoles mucho éxito en la culminación de esta etapa, me despido.

Msc. Augusto César Palacios Rodríguez
Decano UNI-FEC

C/c: Ing. María Lourdes Montes.
Ing. Napoleón Blanco Orozco.
Msc. Sandro Chavarría Condega.
Archivo.

Secretaria Académica. Jefe de Dpto. de Eléctrica. Tutor.

(C) Teléfono: (505) 2270 5126

Recinto Universitario Simón Bolíva Avenida Universitaria. Managua, Nicaragua. Apdo: 5595

augusto.palacios@fec.uni.edu.ni www.fec.uni.edu.ni Nombre Sayano (1817)
Facha. 25 09 2023
Hora. 44 200

Resumen

Para el presente estudio fueron contemplados objetivos que facilitaron el análisis de las fallas y eventos presentes en el edificio Rigoberto López Pérez (RLP), tales como apagones, flickers y disparo de protecciones (breakers). Dichos eventos y fallas fueron manifestados por personal de mantenimiento y personal administrativo del edificio.

Los resultados obtenidos reflejaron que los equipos con mayor demanda de potencia son los **equipos de climatización**. Los transformadores secos instalados en cada alerón de cada piso no se encuentran sobrecargados, siendo el transformador A-V con el mayor factor de utilización máxima del **57.2%**, con una carga instalada de **65.4692 kW**. Se identificó que la **línea L3 en CC4A** se encuentra sobrecargada, así como la línea **L1 en CC5A**.

Los parámetros eléctricos de calidad de energía se evaluaron utilizando un analizador de redes FLUKE modelo 435-II. Se logró registrar una alta incidencia de las siguientes perturbaciones eléctricas: Cambios rápidos detención (RVC), transitorios, interrupciones y huecos de tensión. Dichos incidentes son más frecuentes en los paneles de iluminación, debido a que no cuentan con supresores de picos y que se alimentan directamente de los transformadores de pedestal.

Adicionalmente, las cargas están expuestas a un sobre voltaje, especialmente las ubicadas en los paneles de iluminación de acuerdo a la norma ANSI C84.1 (2011), lo que puede estar provocando un daño prematuro en los equipos, especialmente en la iluminación del edificio.

Se identificaron equipos de aire acondicionado con voltaje nominal de 230/240V, por lo que estos están expuesto a un voltaje inferior de línea. De manera general se concluye que los problemas de calidad de energía identificados no son provocados por las cargas instaladas, sino que su origen proviene de fuentes externas.

Para evaluar el estado de las protecciones, se tomó en consideración los parámetros de diseño y dimensionamiento de los SPD (Surge Protection Devices) y los breakers principales. Se utilizó una cámara termográfica, con la cual se logró identificar la temperatura de los paneles y separarlas por categoría de severidad.

Los breakers principales se encuentran sobre dimensionados, en particular los ubicados en CC5A, PC5A y CC4A cuyo valor nominal supera al de las barras. Con respecto a los supresores de pico, se identificaron 3 en mal estado.

Las imágenes térmicas de los paneles nos reflejan que los sobrecalentamientos en bornes mayormente se deben a líneas muy cargadas; en otros casos se observaron secuencia de fases invertida y más de un conductor en borneras individuales.

ÍNDICE DE CONTENIDO

I.	Introducción	1
II.	Antecedentes	3
III.	Justificación	5
IV.	Objetivos	6
G	eneral:	6
Es	specíficos:	6
V.	Marco Teórico	7
5.	Comportamiento de cargas eléctricas	7
5.2	2. Beneficios de un estudio de cargas	8
5.3	3. Optimización del diseño de sistemas eléctricos	8
5.4	4. Mejora de la eficiencia energética	9
5.	5. Reducción de costos operativos:	9
5.0	6. Fundamentación Teórica	9
5.	7. Variables eléctricas	10
5.	7.1. Voltaje	10
5.	7.2. Corriente	10
5.	7.3. Potencia	10
5.	7.4. Potencia Activa	11
5.	7.5. Potencia Aparente	11
5.	7.6. Triángulo de potencia	12
5.	7.7. Factor de Potencia	13
5.	7.8. Frecuencia	13
5.8	8. Censo eléctrico:	13
5.9	9. Tipos de carga:	13
5.9	9.1. Cargas lineales	14
5.9	9.2. Cargas no lineales	14
5.	10. Balance de cargas	14
5.	11. Panel eléctrico	15
5.	12. Métodos de mediciones	15
5.	12.1. Mediciones directas:	16
5.	12.2. Mediciones indirectas:	16

5.13	3. (Calidad de energía	. 16		
5.14	4.	Tipos de perturbaciones eléctricas	. 16		
5.14	4.1.	Transitorios	. 17		
5.14	4.1.1.	Transitorio impulsivo	. 17		
5.14	4.1.2.	Transitorio oscilatorio	. 17		
5.14	4.2.	Variaciones de corta duración RMS	. 18		
5.14	4.2.1.	Interrupciones instantáneas, momentáneas y temporales	. 18		
5.14	4.2.2.	Sags o dips (huecos de tensión)	. 19		
5.14	4.2.3.	Swells	. 19		
5.14	4.3.	Variaciones de larga duración	. 20		
5.14	4.3.1.	Sobretensión	. 20		
5.14	4.3.2.	Subtensión	. 20		
5.14	4.3.3.	Interrupciones sostenidas	. 21		
5.14	4.3.4.	Desequilibrio de tensión	. 21		
5.14	4.4.	Distorsión de forma de onda	. 22		
5.14	4.4.1.	Compensación de CC	. 22		
5.14	4.4.2.	Armónicos	. 23		
5.14	4.4.3.	Distorsión armónica total (THD)	. 23		
5.14	4.4.4.	Interarmónicos	. 24		
5.14	4.4.5.	Muescas	. 24		
5.14	4.4.6.	Ruido	. 25		
5.14	4.5.	Fluctuaciones de tensión	. 26		
5.14	4.6.	Variaciones de frecuencia de energía	. 26		
5.18	5.	nstrumento de medición	. 27		
5.18	5.1.	Analizador de calidad de energía	. 27		
5.18	5.2.	Cámara termográfica	. 27		
VI.	Análi	sis y presentación de resultados	.29		
6.1.	Intro	ducción	.29		
6.2.	6.2. Resultados obtenidos del censo de cargas32				
6.3.	6.3. Mediciones de los parámetros de calidad de energía eléctrica34				
6.3.1.	6.3.1. Voltaje de línea a neutro RMS				
6.3.2. Corrientes de línea41					
6.3.3.	Pote	ncia	.44		

6.3.4.	Consumo de Energía48
6.3.5.	Frecuencia51
6.3.6.	Análisis de factor de Carga del transformador53
6.3.7.	Factor de potencia57
6.3.8.	Armónicos58
6.3.9.	Eventos64
6.4.	Resultados de la efectividad de las protecciones eléctricas instaladas69
6.4.1.	Panel CC5A
6.4.2.	Panel PC5A
6.4.3.	Panel PT5A82
VII.	Conclusiones y recomendaciones86
7.1.	Conclusiones86
7.1.	Recomendaciones88
VIII.	Bibliografía90

I. Introducción

La calidad de la energía eléctrica es un aspecto fundamental para garantizar el correcto funcionamiento de los sistemas eléctricos y electrónicos de cualquier edificio, ya sea residencial, comercial o industrial. En el caso específico del edificio RLP, se han presentado problemas de calidad de energía que han afectado su operatividad y seguridad.

El edificio cuenta con dos alas, cada una alimentada por su propio transformador. El ala "A" está alimentada por un transformador de 750 kVA, mientras que el ala "B" está alimentada por un transformador de 1000 kVA. Estos transformadores se alimentan de la red de media tensión de 13.2kV/7.2kV en el primario y 480V/277V en el secundario en conexión estrella. Además, se cuenta con transformadores de 75 kVA con conexión delta en el primario a 480V y estrella en el secundario a 120V/208V para cargas monofásicas y trifásicas de baja demanda.

La falta de un censo de cargas y planos actualizados del edificio RLP se ha traducido en una serie de problemas energéticos que afectan la operatividad de los dispositivos eléctricos y electrónicos del edificio. Entre los problemas reportados se encuentran flickers, apagones, caídas de voltaje, sobre calentamiento de los ascensores, protecciones que se disparan, protecciones quemadas, lámparas quemadas, y aires acondicionados dañados, entre otros.

Una posible explicación para estos problemas podría ser la sobrecarga de los transformadores debido a la incorporación de nuevas cargas que no se tuvieron en cuenta durante el diseño original del edificio. Los aires acondicionados, impresoras y otros equipos de ofimática en las oficinas del quinto piso, y los aires acondicionados en las aulas del cuarto piso, pueden estar consumiendo más energía de la que los transformadores pueden suministrar de manera segura.

Otro problema potencial es la generación de armónicos por parte de los equipos electrónicos del edificio. Los armónicos son ondas sinusoidales adicionales que se superponen a la onda sinusoidal fundamental de la señal eléctrica. Estos armónicos pueden distorsionar la forma de onda de la señal eléctrica y aumentar la corriente y la temperatura en los cables y los transformadores, lo que puede causar daño a los dispositivos eléctricos y electrónicos del edificio. La falta de un censo de cargas actualizado dificulta la identificación de las fuentes de armónicos y su impacto en la calidad de la energía eléctrica.

II. Antecedentes

Una auditoría energética es definida como "la verificación, monitoreo y análisis del uso de la energía incluyendo la sumisión de un reporte técnico que contenga las recomendaciones para el mejoramiento de la eficiencia energética con un análisis del costos y beneficios y un plan de acción para reducir el consumo de energía" (Magdum et al., 2017).

A nivel nacional se tienen registros de varios estudios monográficos relacionados con la calidad de la energía, uno de ellos es el realizado por los autores Arauz y Urbina (2021) en el que proponen como objetivo general crear una propuesta de balance de carga en los principales centros de transformación existentes en el RUSB, para ello realizaron un censo de cargas en ciertas áreas del RUSB para determinar dónde se encuentran los equipos de mayor consumo, sin embargo, en este estudio no se incluyó al edificio Rigoberto López Pérez.

Otra investigación de interés a nivel nacional es la de Acuña y Narváez (2022) en la que se proponen realizar una auditoría eléctrica en la red eléctrica principal de baja tensión de la Universidad Centroamericana, la cual la desarrollan en tres etapas: la primera es el recorrido por las instalaciones del recinto, levantamiento técnico y presentación de la información obtenida previo a las mediciones, la segunda la ejecución de las mediciones en los transformadores tomando en consideración normativas internacionales así como la Ley No. 272, para lo cual se utilizó una analizador de rede Fluke 435 II, y la tercera etapa

concluye en la presentación de un plan de mejoramiento eléctrico de la red principal de baja tensión que cumpla las normativas y leyes evaluadas.

Trujillano (2017) realizó una tesis de grado en la cual evalúa la calidad de la energía eléctrica del Hospital privado Juan Pablo II, ubicado en el departamento de Lambayeque, Perú, con el objetivo de solucionar problemas fluctuaciones de tensión, anomalías en la iluminación, armónicos, bajo factor de potencia y daños en ordenadores. Para ello se usó un analizador de redes MI 2892 Power Master con el fin de monitorear de manera constante los diversos parámetros eléctricos que se considera pueden estar deficientes, además de evaluar la tarifa más adecuada.

De igual manera, ya se ha trabajado en el desarrollo de metodologías de análisis y estudio de la calidad de la energía eléctrica a nivel nacional e internacional, los cuales se mencionarán a continuación:

Nicaragua y Rivera (2017) realizaron el tema llamado "Propuesta de Metodología Para el Análisis y Estudio de la Calidad de la Energía Eléctrica"

Perea y Vasquez (2020) realizaron el tema llamado "Metodología para realizar auditoría de energía eléctrica. Caso aplicativo: Edificio de educación superior"

Cervantes (2014) realizó el tema llamado "Metodología de medición de calidad de energía eléctrica en base a normas nacionales e internacionales para la Universidad de la Costa - CUC"

III. Justificación

Los objetivos propuestos en la tesis buscan mejorar la eficiencia energética y reducir costos en el edificio Rigoberto López Pérez a través de la realización de un análisis detallado del sistema eléctrico del edificio. Además, estos objetivos permitirán garantizar la seguridad de los usuarios al identificar y solucionar posibles problemas en la distribución, protección y control de la energía eléctrica.

El estudio del comportamiento de las cargas nos permitirá conocer la calidad de la energía eléctrica suministrada al edificio, identificando las fuentes de distorsión y fluctuaciones, lo cual es fundamental para garantizar el correcto funcionamiento de los equipos y la seguridad de los usuarios.

El censo eléctrico a realizar en los pisos 3, 4, 5 y azotea del edificio RLP permitirá conocer el consumo de energía de los usuarios y detectar posibles problemas o ineficiencias en el uso de la energía eléctrica. A partir de esta información, se podrán proponer soluciones específicas para reducir el consumo de energía y mejorar la eficiencia energética del edificio.

Los objetivos propuestos buscan mejorar la eficiencia energética, reducir costos y garantizar la seguridad de los usuarios del edificio Rigoberto López Pérez mediante la realización de un análisis detallado del sistema eléctrico del edificio y la implementación de soluciones específicas para mejorar su funcionamiento.

IV. Objetivos

General:

Estudiar el comportamiento de las cargas eléctricas de los pisos 3, 4, 5, y azotea del ala "A" del edificio Rigoberto López Pérez de la universidad Nacional de Ingeniería.

Específicos:

- Determinar el balance de carga de los paneles eléctricos de cada piso a través de la realización de un censo de carga y de las mediciones eléctricas para determinar los principales consumidores eléctricos.
- Estudiar el comportamiento de los parámetros eléctricos básicos de calidad de la energía incluyendo la THD y TDD generada por las cargas haciendo uso de un analizador de calidad de la energía.
- Evaluar los parámetros de diseño de las protecciones eléctricas principales de conformidad a las normas nacionales e internacionales.

V. Marco Teórico

La electricidad es un recurso indispensable que impulsa el funcionamiento de nuestras vidas y es esencial para el desarrollo socioeconómico. Según Laughton, (2013), la electricidad se ha convertido en el sistema nervioso central de la sociedad moderna. Esta sustentación resalta cómo la electricidad está presente en prácticamente todos los aspectos de nuestras vidas y su disponibilidad confiable es fundamental.

5.1. Comportamiento de cargas eléctricas.

El estudio del comportamiento de las cargas eléctricas es de vital importancia para comprender los fenómenos eléctricos y sus interacciones. Según Alexander y Sadiku, (2013), el comportamiento de las cargas eléctricas es la base fundamental de la electricidad y la electrónica. Ellos destacaron la importancia fundamental de comprender cómo las cargas eléctricas se comportan y cómo interactúan en los sistemas eléctricos.

Por otra parte, Oliver Heaviside, afirmó que el estudio de las cargas eléctricas y sus movimientos es la base de la teoría electromagnética (Heaviside, 1892). Aquí se destaca cómo el estudio del comportamiento de las cargas eléctricas es esencial para desarrollar una comprensión profunda de los fenómenos electromagnéticos y, por lo tanto, para avanzar en el campo de la ingeniería eléctrica.

El conocimiento del comportamiento de las cargas eléctricas también es crucial para garantizar la seguridad de los sistemas eléctricos. Según Blume,

(2002), comprender cómo las cargas eléctricas interactúan con los campos electromagnéticos es esencial para evitar daños en los equipos y peligros para las personas. Se destaca la importancia de estudiar y comprender cómo las cargas eléctricas se comportan en diferentes situaciones para reducir los riesgos y mantener un entorno eléctrico seguro.

5.2. Beneficios de un estudio de cargas

En cuanto a los beneficios, realizar un estudio del comportamiento de las cargas en una instalación eléctrica ofrece una serie de beneficios significativos. Estos beneficios incluyen la optimización del diseño de sistemas eléctricos, la mejora de la eficiencia energética, la reducción de costos operativos y la garantía de la seguridad y confiabilidad de la instalación.

5.3. Optimización del diseño de sistemas eléctricos

Un estudio detallado del comportamiento de las cargas permite diseñar sistemas eléctricos eficientes y adecuados a las necesidades específicas de la instalación. Según Rashid, (2011), experto en sistemas de energía eléctrica, "el conocimiento del comportamiento de las cargas eléctricas es crucial para dimensionar correctamente los conductores, transformadores y equipos de protección". Esta afirmación resalta cómo el estudio de las cargas ayuda a determinar los requisitos de capacidad y selección de componentes, optimizando así el diseño del sistema y en caso de nuestro estudio cerciorarnos de que esta selección haya sido correcta o si están funcionando de la manera adecuada.

5.4. Mejora de la eficiencia energética

Un estudio detallado del comportamiento de las cargas permite diseñar sistemas eléctricos eficientes y entender el comportamiento de las cargas, y permite identificar oportunidades para mejorar la eficiencia energética en la instalación. Según Ghosh y Capolino, (2013), el análisis del perfil de carga puede revelar patrones de consumo y posibles áreas de optimización energética. Es por esta razón que el estudio de las cargas ayuda a identificar cargas innecesarias o ineficientes y a implementar medidas de ahorro de energía.

5.5. Reducción de costos operativos:

Al comprender cómo se comportan las cargas eléctricas, es posible realizar una gestión más efectiva de la demanda de energía y evitar costos innecesarios. Según Karady y Holbert, (2012), destacados autores en el campo de sistemas de energía eléctrica, el conocimiento del comportamiento de las cargas permite planificar y controlar la demanda de energía para evitar cargos adicionales por consumo excesivo o demanda máxima. El estudio de las cargas puede ayudar a optimizar la facturación de energía y reducir los costos operativos.

5.6. Fundamentación Teórica

Toda investigación requiere de una base teórica para su desarrollo, en este acápite se exponen los diversos conceptos que serán abordados en el estudio del comportamiento de las cargas eléctricas en el edificio Rigoberto López Pérez de la Universidad Nacional de Ingeniería.

5.7. Variables eléctricas

5.7.1. Voltaje

La capacidad de una carga para realizar un trabajo se llama potencial. Cuando dos cargas no son iguales, debe haber entre ellas una diferencia de potencial, la unidad básica de la diferencia de potencial es el voltaje (V), este indica la capacidad de efectuar un trabajo para que lo electrones se muevan. Como se usa voltio como unidad de medida, la diferencia de potencial también se llama voltaje. (Milton, 1983, p. 5)

5.7.2. Corriente

El movimiento o flujo de electrones se denomina corriente. Para producirla los electrones deben moverse por efecto de una diferencia de potencial. la corriente se representa con el símbolo (*I*). la unidad básica para medir la corriente es el amperio (**A**). (Milton, 1983, p. 5)

5.7.3. Potencia

Potencia (P) es cierta cantidad de energía (W) utilizada en cierto tiempo (t) y expresada como sigue:

$$P=W/t$$

donde:

P = potencia en watts (W)

W = energía en Joules (J)

t = tiempo en segundos (s) (Floyd, 2007, p. 98)

5.7.4. Potencia Activa

La potencia activa, también conocida como potencia real, es la cantidad de energía eléctrica que se convierte en trabajo útil en un circuito o sistema eléctrico. Es la potencia que realmente realiza un trabajo útil, como la generación de calor, la iluminación, el movimiento mecánico, entre otros.

La potencia activa se mide en vatios (W) y se calcula multiplicando el valor eficaz de la corriente (I) por el valor eficaz de la tensión (V) y por el factor de potencia (FP).

En esta fórmula (P) es la potencia activa, (S) equivale a la potencia aparente y Cos (φ) es el coseno del ángulo formado por la potencia activa y la potencia aparente. (Boylestad, 2004, p. 852)

$$P = S * Cos (\phi)$$

5.7.5. Potencia Aparente

Al igual que la potencia activa y reactiva, la potencia aparente es el producto del voltaje y los valores de corriente. Debido al hecho de que es la suma de los dos componentes discutidos anteriormente, se llama potencia total. (Boylestad, 2004, p. 852)

$$S=U^*I$$

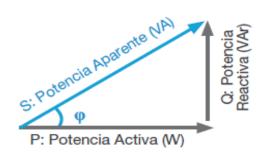
Donde:

S = Potencia aparente (VA);

U = Tensión de corriente eléctrica (V);

I = Intensidad de corriente eléctrica (A);

5.7.6. Triángulo de potencia


El triángulo de potencias, también conocido como triángulo de Watt, es una herramienta utilizada en la teoría de la electricidad para calcular la potencia eléctrica en un circuito de corriente alterna (AC) utilizando las propiedades trigonométricas de un triángulo rectángulo. (Boylestad, 2004, p. 857)

El triángulo está formado por tres lados: la potencia aparente (S), la potencia activa (P) y la potencia reactiva (Q).

- La potencia aparente es la potencia total entregada al circuito y se mide en voltamperios (VA).
- La potencia activa es la potencia efectivamente utilizada por el circuito y se mide en vatios (W).
- La potencia reactiva es la potencia que se pierde en el circuito debido a la resistencia y la reactancia y se mide en voltamperios reactivos (VAR)

Figura 1

Triángulo de potencia: Relación entre la potencia real, reactiva y aparente

5.7.7. Factor de Potencia

El factor de potencia (FP) es considerado como un indicador sobre el correcto aprovechamiento de la energía.

El factor de potencia puede tomar valores entre 0 y 1, donde 1 es el valor ideal e indica que toda la energía consumida por los aparatos ha sido transformada en trabajo, como luz, calor o movimiento mecánico.

5.7.8. Frecuencia

Frecuencia es la medida del número de veces que se repite un fenómeno por unidad de tiempo. En unidades del Sistema Internacional (SI), el resultado se mide en Hertzios (Hz), llamados así por el físico alemán, Heinrich Rudolf Hertz. 1 Hz significa un ciclo (u onda) por segundo. (Glosario: Frecuencia, 2023)

5.8. Censo eléctrico:

Carga instalada y consumo promedio de los equipos eléctricos instalados en el sitio donde se suministra la energía eléctrica. (INE, 2001).

5.9. Tipos de carga:

En los sistemas eléctricos de corriente alterna las cargas se pueden dividir en tres clases, las que no perjudica o perturban en la red del sistema en estado de operación, las que son afectadas por los problemas en la calidad del servicio y las que causan problemas en la calidad del servicio (Amador et al., 2021).

5.9.1. Cargas lineales

Una carga lineal es aquella que presenta una relación lineal entre la tensión y la corriente que consume, sin generar perturbaciones armónicas significativas en la red eléctrica. (IEEE Std Dictionary, s.f.).

5.9.2. Cargas no lineales

Una carga no lineal es aquella que no presenta una relación lineal entre la tensión y la corriente, pudiendo generar distorsiones armónicas en la forma de onda de corriente, lo que afecta la calidad del suministro eléctrico. (IEEE Std Dictionary, s.f.).

5.10. Balance de cargas

El balanceo de carga eléctrica es un proceso que consiste en distribuir la carga eléctrica de manera equilibrada entre diferentes circuitos eléctricos o dispositivos. Esto se hace para evitar sobrecargar un circuito o dispositivo en particular y minimizar el riesgo de fallos o daños en la instalación eléctrica. (hagamos, 2022)

Una correcta instalación del balanceo de carga en tiene varias ventajas, tales como:

 Evita fallos y daños en la instalación eléctrica: Al distribuir la carga eléctrica de manera equilibrada, se reduce el riesgo de fallos o daños en los circuitos y dispositivos eléctricos.

- Mejora la eficiencia energética: Al evitar la sobrecarga de un circuito o dispositivo en particular, se puede ahorrar energía y reducir los costos de energía.
- Mayor seguridad: Un balanceo de carga adecuado puede reducir el riesgo de accidentes eléctricos, como cortocircuitos o sobrecalentamientos.

5.11. Panel eléctrico

Los paneles se utilizan para distribuir electricidad de manera segura en todas las instalaciones comerciales e industriales. Un panel es un componente de un sistema de distribución eléctrica que divide una alimentación de energía eléctrica en circuitos derivados, al tiempo que proporciona un disyuntor o fusible de protección para cada circuito, en un gabinete común. Un panel sirve para proteger los circuitos derivados de sobrecargas y cortocircuitos (Eaton, 2017).

5.12. Métodos de mediciones

La medición eléctrica es el proceso de determinar valores cuantitativos relacionados con la electricidad, como corriente, voltaje, resistencia, potencia y energía. Se utiliza para evaluar y monitorear el funcionamiento de sistemas eléctricos, así como para realizar pruebas y mediciones en aplicaciones industriales, comerciales y de investigación.

La medición eléctrica puede clasificarse en dos categorías principales: medición directa e indirecta. (Metrología - Incertidumbre mediciones directas e indirectas, p.1, 2016, p. 1)

5.12.1. Mediciones directas:

La medida de la cota se obtiene en una única medición y con un instrumento de lectura directa.

5.12.2. Mediciones indirectas:

El valor de la magnitud que se desea medir se obtiene a partir de los valores de otras magnitudes, relacionados entre sí mediante una cierta función matemática.

5.13. Calidad de energía

Se entiende por calidad de la energía cuando la energía eléctrica es suministrada a los equipos y dispositivos con las características y condiciones adecuadas que les permita mantener su continuidad sin que se afecte su desempeño ni provoque fallas a sus componentes (Téllez, 2007).

La calidad de energía se enmarca dentro de una amplia variedad de fenómenos electromagnéticos que caracterizan la tensión y la corriente eléctrica, en un tiempo dado y en una ubicación dada en el sistema de potencia (IEEE 1159, 2019).

5.14. Tipos de perturbaciones eléctricas

Las perturbaciones en la calidad del suministro de energía eléctrica se enmarcan dentro de siete categorías, según la forma de la onda: transitorios, interrupciones, bajada de tensión, aumento de tensión (sobretensión), distorsión

de la forma de onda, fluctuaciones de tensión y variaciones de frecuencia (IEEE 1159, 2019).

5.14.1. Transitorios

Pertenece o se designa como un fenómeno que varía entre dos estados estables consecutivos durante un intervalo de tiempo que es corto en comparación con la escala de tiempo de interés. Un transitorio puede ser un impulso unidireccional de cualquier polaridad o una onda oscilatoria amortiguada con el primer pico en cualquiera de las dos polaridades.

En términos generales, los transitorios deben clasificarse en dos categorías, impulsivos y oscilatorios. Estos términos reflejan la forma de onda de un transitorio de corriente o voltaje (IEEE 1159 – 2019, p.15).

5.14.1.1. Transitorio impulsivo

Un transitorio impulsivo es un cambio repentino de frecuencia que no es de potencia desde la condición nominal de voltaje, corriente o ambos, que es unidireccional en polaridad (principalmente positiva o negativa). Los transitorios impulsivos normalmente se caracterizan por su valor máximo, subida y bajada o tiempos de duración. Estos fenómenos también deben describirse por su contenido espectral (IEEE 1159 – 2019, p.15).

5.14.1.2. Transitorio oscilatorio

Un transitorio oscilatorio es un cambio repentino de frecuencia que no es de potencia en la condición de estado estable de voltaje, corriente o ambos, que incluye valores de polaridad tanto positivos como negativos. Un transitorio oscilatorio consiste en un voltaje o corriente cuyo valor instantáneo cambia de polaridad rápidamente varias veces y normalmente decae dentro de un ciclo de frecuencia fundamental. La oscilación también se conoce como timbre y se describe por su magnitud, duración y contenido espectral (predominantemente la frecuencia que se puede usar para determinar el tiempo de subida) (IEEE 1159 – 2019, p.16).

5.14.2. Variaciones de corta duración RMS

Las variaciones de voltaje de corta duración generalmente son causadas por condiciones de falla: la activación de grandes cargas que requieren altas corrientes de arranque o conexiones sueltas intermitentes en el cableado de alimentación. Según la ubicación de la falla y las condiciones del sistema, la falla puede causar aumentos temporales de voltaje (swells), caídas de voltaje (sags) o una pérdida total de voltaje (interrupciones). La condición de falla puede estar cerca o lejos del punto de interés. En cualquier caso, el impacto en el voltaje durante la condición de falla real es una variación de corta duración (IEEE 1159 – 2019, p.20).

5.14.2.1. Interrupciones instantáneas, momentáneas y temporales

Se produce una interrupción cuando la tensión de alimentación o la corriente de carga disminuye a menos de 0,1 pu durante un período de tiempo que no supera 1 min. Las interrupciones pueden ser el resultado de fallas en el sistema de energía, fallas en los equipos y fallas en el control. Las interrupciones

se miden por su duración ya que la magnitud de la tensión es siempre inferior al 10% de la nominal. La duración de una interrupción debido a una falla en el sistema de servicios públicos está determinada por los dispositivos de protección de servicios públicos y el evento particular que está causando la falla. La duración de una interrupción debida a mal funcionamiento del equipo o conexiones sueltas puede ser irregular (IEEE 1159 – 2019, p.20).

5.14.2.2. Sags o dips (huecos de tensión)

Se refiere a una caída es una disminución en el voltaje rms entre 0,1 pu y 0,9 pu para duraciones de 0,5 ciclos a 1 min. Los valores típicos están entre 0,1 pu y 0,9 pu. La terminología utilizada para describir la magnitud de una caída de tensión suele ser confusa. Una "caída del 20%" a veces se refiere a una caída que da como resultado un voltaje de 0,8 pu o 0,2 pu. La terminología preferida cuando se describen variaciones rms es voltaje retenido o voltaje restante. Por lo tanto, en ausencia de orientación, se asume el voltaje restante a lo largo de esta práctica recomendada. Así como se acepta que una designación de voltaje no especificada significa voltaje de fase a fase, una magnitud de caída no especificada se referirá al voltaje restante (IEEE 1159 – 2019, p.21).

5.14.2.3. Swells

Por definición un Swells es un aumento en el voltaje RMS por encima de 1,1 pu para duraciones de 0,5 ciclos a 1 min. Las magnitudes típicas están entre 1,1 pu y 1,2 pu. La magnitud del oleaje también se describe por su voltaje restante y, por lo tanto, es mayor que 1,0 pu (IEEE 1159 – 2019, p.23).

5.14.3. Variaciones de larga duración

Las variaciones de larga duración abarcan desviaciones RMS en frecuencias de potencia durante más de 1 minuto. ANSI C84.1-2016 especifica las tolerancias de voltaje de estado estable esperadas en un sistema de energía.

Las variaciones de larga duración pueden ser sobretensiones o subtensiones, según la causa de la variación. Las sobretensiones y las bajas tensiones generalmente no son el resultado de fallas en el sistema. Son causados por variaciones de carga en el sistema y operaciones de conmutación del sistema. Estas variaciones se caracterizan por gráficos de voltaje RMS versus tiempo (IEEE 1159 – 2019, p.24).

5.14.3.1. Sobretensión

La sobretensión es un aumento RMS de la tensión de CA superior a 1.1 pu durante más de 1 min. Los valores típicos son de 1.1 pu a 1.2 pu. Las sobretensiones pueden ser el resultado de la conmutación de cargas (por ejemplo, desconectar una carga grande) o de variaciones en la compensación reactiva en el sistema (por ejemplo, conectar un banco de condensadores). Las capacidades o controles deficientes de regulación de voltaje del sistema pueden causar sobrevoltajes. Los ajustes incorrectos de las tomas en los transformadores también pueden provocar sobretensiones en el sistema (IEEE 1159 – 2019, p.24).

5.14.3.2. Subtensión

Una subtensión es una disminución de la tensión eficaz inferior a 0.9 pu durante más de 1 min. Los valores típicos están entre 0.8 pu y 0.9 pu. Las

subtensiones son el resultado de los eventos que son opuestos a los eventos que causan las sobretensiones. El encendido de una carga o el apagado de un banco de capacitores puede causar un bajo voltaje hasta que el equipo de regulación de voltaje en el sistema pueda regresar el voltaje dentro de las tolerancias. Los circuitos sobrecargados también pueden provocar subtensiones (IEEE 1159 – 2019, p.24).

5.14.3.3. Interrupciones sostenidas

La disminución de la tensión de alimentación a menos del 10% de la nominal durante un período de tiempo superior a 1 min se considera una interrupción sostenida. Las interrupciones de voltaje de más de 1 min a menudo son de naturaleza permanente y requieren una intervención manual para su restauración. Las interrupciones sostenidas son un fenómeno específico del sistema de energía (IEEE 1159 – 2019, p.24).

5.14.3.4. Desequilibrio de tensión

El desequilibrio de tensión en un sistema trifásico se define como la relación entre la magnitud del componente de secuencia negativa y la magnitud del componente de secuencia positiva, expresada como porcentaje. Esta definición se puede aplicar para voltaje o corriente. Normalmente, el desequilibrio de tensión de un servicio trifásico es inferior al 5%. El desequilibrio de corriente puede ser considerablemente mayor, especialmente cuando hay cargas monofásicas (IEEE 1159 – 2019, p.24).

5.14.4. Distorsión de forma de onda

La distorsión de forma de onda se define como una desviación de estado estable de una sinusoide de frecuencia de potencia ideal caracterizada principalmente por el contenido espectral de la desviación (IEEE 1159 – 2019, p.28).

Hay cinco tipos principales de distorsión de forma de onda de la siguiente manera:

- Compensación de CC
- Armónicos
- Interarmónicos
- Muescas
- Ruido

5.14.4.1. Compensación de CC

La presencia de una tensión o corriente de CC en un sistema de alimentación de CA se denomina compensación de CC. Este fenómeno puede ocurrir como resultado de una perturbación geomagnética o por el efecto de la rectificación de media onda (IEEE 1159 – 2019, p.28).

5.14.4.2. **Armónicos**

Los armónicos son voltajes o corrientes sinusoidales que tienen frecuencias que son múltiplos enteros de la frecuencia a la que está diseñado para operar el sistema de suministro (denominada frecuencia fundamental; generalmente 50 Hz o 60 Hz). Combinados con el voltaje o la corriente fundamental, los armónicos producen distorsión de la forma de onda. La distorsión armónica existe debido a las características no lineales de los dispositivos y cargas en el sistema de potencia (IEEE 1159 – 2019, p.29).

5.14.4.3. Distorsión armónica total (THD)

La relación de la raíz cuadrada media del contenido armónico, considerando los componentes armónicos hasta el orden 50 y excluyendo específicamente los interarmónicos, expresada como un porcentaje de la fundamental. Se podrán incluir componentes armónicos de orden superior a 50 cuando sea necesario.

La norma IEEE 1159-2019 establece los límites aceptables para la distorsión armónica en sistemas eléctricos. Según esta norma, el porcentaje de distorsión armónica permitida varía dependiendo del tipo de equipo o sistema que esté siendo evaluado. Para la mayoría de los dispositivos de consumo, se establece un límite máximo de distorsión armónica del 5% en el voltaje (Figura 2).

Sin embargo, para sistemas industriales y comerciales, donde la presencia de equipos electrónicos de mayor potencia y capacidad es más común, se permite

un nivel ligeramente mayor de distorsión armónica. En estos casos, la norma IEEE 519 – 2014 establece un límite máximo del 8% para la distorsión armónica total.

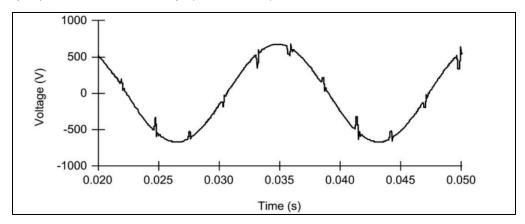
Figura 2

Configuraciones de umbral sugeridas para cargas de 120V según la IEEE – 1159 (Tabla 5)

Conducted phase voltage thresholds			
Sag	108 V rms	Minus 10% of nominal supply voltage.	
Swell	132 V rms	Plus 10% of nominal supply voltage.	
Transient	200 V peak	Approximately twice the nominal phase-neutral voltage.	
Noise	1.5 V	Approximately 1% of the nominal phase-neutral voltage.	
Harmonics	5% THD	Voltage distortion level at which loads can be affected.	
Frequency	± 0.1 Hz	_	
Phase imbalance	2%	Voltage imbalance greater than 2% can affect equipment. (Three-	
		phase induction motors should be derated when operated with	
		imbalanced voltages; see IEEE Std 141-1993 [B24].)	
Conducted phase to neutral voltage thresholds			
Swell	3.0 V rms	Typical level of interest for neutral and/or ground problems.	
Impulsive transient	20 V peak	Ten to twenty percent of phase-neutral voltage.	
Noise	1.5 V rms	Typical equipment susceptibility level.	

5.14.4.4. Interarmónicos

Se denominan como interarmónicos a los voltajes o corrientes que tienen componentes de frecuencia que no son múltiplos enteros de la frecuencia a la que está diseñado para operar el sistema de suministro (por ejemplo, 50 Hz, 60 Hz). Pueden aparecer como frecuencias discretas o como un espectro de banda ancha (IEEE 1159 – 2019, p.30).


5.14.4.5. Muescas

Las muescas o notching son perturbaciones de voltaje periódicas causadas por el funcionamiento normal de los dispositivos electrónicos de potencia cuando la corriente se conmuta de una fase a otra. La muesca de voltaje representa un caso especial que es periódico, pero tiene un contenido de frecuencia que es bastante alto. Por lo tanto, tiene atributos que podrían considerarse tanto

transitorios como distorsiones armónicas. Dado que la muesca ocurre continuamente (estado estable), se puede caracterizar a través del espectro armónico del voltaje afectado. Sin embargo, debido a los componentes de alta frecuencia asociados con las muescas, es posible que la caracterización de los mismos no sea posible con el equipo de medición de armónicos típico (IEEE 1159 – 2019, p.30).

Figura 3

Ejemplo de muesca de voltaje (IEEE – 1159)

5.14.4.6. Ruido

El ruido son señales eléctricas no deseadas con un contenido espectral de banda ancha típicamente inferior a 200 kHz superpuestas al voltaje o la corriente del sistema de potencia en los conductores de fase o señales eléctricas no deseadas que se encuentran en los conductores neutros o en las líneas de señal. Básicamente, el ruido consiste en cualquier distorsión no deseada de la señal de potencia que no se puede clasificar como distorsión armónica o transitorios. El ruido en los sistemas de potencia puede ser causado por dispositivos electrónicos

de potencia, circuitos de control, equipos de arco, cargas con rectificadores de estado sólido y fuentes de alimentación conmutadas. Los problemas de ruido a menudo se ven exacerbados por una conexión a tierra inadecuada.

El rango de frecuencia y el nivel de magnitud del ruido dependen de la fuente que produce el ruido y de las características del sistema. La magnitud típica del ruido es inferior al 1% de la magnitud del voltaje. El ruido perturba los dispositivos electrónicos como las microcomputadoras y los controladores programables. Los problemas causados por el ruido a menudo se pueden mitigar mediante el uso de filtros, transformadores de aislamiento y acondicionadores de línea (IEEE 1159 – 2019, p.32).

5.14.5. Fluctuaciones de tensión

Las fluctuaciones de voltaje son variaciones sistemáticas de voltaje o una serie de cambios de voltaje aleatorios, cuya magnitud normalmente no excede los rangos de voltaje especificados por ANSI C84.1-2016 de 0,95 pu a 1,05 pu. Tales fluctuaciones de voltaje pueden ser percibidas por humanos por cambios en la intensidad de iluminación de la lámpara (IEEE 1159 – 2019, p.32).

5.14.6. Variaciones de frecuencia de energía

Las variaciones de frecuencia de voltaje son la desviación de la frecuencia fundamental del sistema de potencia de su valor nominal especificado (por ejemplo, 50 Hz, 60 Hz). La frecuencia del sistema de potencia de estado estable está directamente relacionada con la velocidad de rotación de los generadores en el sistema. En cualquier instante, la frecuencia depende del equilibrio entre la

carga y la capacidad de generación disponible. Cuando cambia este equilibrio dinámico, se producen pequeños cambios en la frecuencia (IEEE 1159 – 2019, p.33).

5.15. Instrumento de medición

Los equipos de medición eléctrica son dispositivos utilizados para realizar mediciones precisas y de las diferentes magnitudes eléctricas presentes en un sistema eléctrico. Estos equipos permiten obtener datos y valores cuantitativos que son fundamentales para el análisis, monitoreo y control de la electricidad en diversos entornos, como instalaciones industriales, comerciales o residenciales.

5.15.1. Analizador de calidad de energía.

Un analizador de calidad de energía es un dispositivo utilizado para monitorear y analizar continuamente la red eléctrica, para registrar las perturbaciones eléctricas que pueden afectar la fiabilidad del suministro eléctrico o puede dañar los equipos conectados a la red eléctrica (Texas Instrument, s.f.). Además de perturbaciones eléctricas, los analizadores de calidad de energía son capaces de registrar datos de gran utilidad como frecuencia, voltaje, corriente, energía, potencia, armónicos entre otros.

5.15.2. Cámara termográfica

Una cámara termográfica es un dispositivo que registra la intensidad de la radiación en la zona infrarroja del espectro electromagnético y la convierte en una imagen visible (Flir, 2011). Estos dispositivos resultan ser fiables instrumentos a distancia capaces de analizar y visualizar la distribución de temperatura de

superficies completas de equipos eléctricos y cualquier maquinaria, estas pueden utilizarse para determinar dónde se necesita mantenimiento, puesto que las instalaciones eléctricas y mecánicas suelen calentarse antes de fallar. Al conocer los puntos calientes en una instalación con una cámara termográfica se puede llevar a cabo una medida preventiva, de manera que es posible evitar costosas averías o incendios.

En instalaciones de baja tensión, una cámara termográfica puede ayudar a examinar cuadros eléctricos y centros de control de motores con el fin de identificar conexiones sueltas, puntos calientes provocados por desequilibrios de carga, corrosión, entre otras (Flir, 2011).

VI. Análisis y presentación de resultados

6.1. Introducción

El edificio universitario "Rigoberto López Pérez" se encuentra ubicado en la Universidad Nacional de Ingeniería (UNI). Este fue aprobado por el consejo universitario en el año 2008, iniciando su construcción en el año 2010, financiado con fondos provenientes del 6% constitucional y crédito otorgado por el Banco de la Producción (BANPRO), diseñado y ejecutado por mano de obra nicaragüense.

La edificación cuenta con un área de 15 mil metros cuadrados y posee cinco plantas con capacidad de albergar a más de 7 mil personas, 60 aulas interactivas digitales, aulas virtuales, modernos laboratorios de cómputo, oficinas administrativas y salas de reuniones (Asamblea Nacional de Nicaragua, 2013).

Figura 4

Localización del edificio "Rigoberto López Pérez"

Este edificio se encuentra dividido en dos secciones iguales respecto al eje vertical, el ala "A" y el ala "B", esto se ilustra a continuación:

Figura 5

Ala "A" y Ala "B" del edificio. Los pisos objeto de estudio se encuentra marcado en rojo

El presente estudio se realizó en el A-III, A-IV, A-V y alerón A de la azotea. Se realizaron mediciones de todos los paneles ubicados en cada una de estas alas; las fechas, tiempo de duración, inicio y finalización de mediciones, así como la hora de conexión y desconexión se especifican en la **tabla 3**.

Figura 6

Panel principal CC5A, este es alimentado directamente del transformador seco de 75kVA

Figura 7

Transformador seco de 75kVA, conexión Δ/Y , con relación de transformación 480V/208Y/120V

Los datos que se desarrollarán a detalle corresponden a los obtenidos del panel principal **CC5A**, que a su vez corresponde con los datos del transformador de 75 kVA. Puesto que la cantidad de paneles encontrados es demasiado extensa (13 en total), sería inviable presentar el análisis detallado de cada uno de ellos, de esta manera se decidió resumir toda la información obtenida en cada uno de ellos en tablas, en donde se muestran solo los datos finales (Ver apéndices). Cabe mencionar que para obtener dichos datos finales se procedió con los mismos métodos que se presentarán a detalle.

6.2. Resultados obtenidos del censo de cargas

La carga instalada se refiere a la potencia máxima posible que puede demandar una instalación eléctrica, esta se obtiene cuando todos los dispositivos eléctricos que la componen se conectan al mismo tiempo (De Jarmy Villarreal, 2018).

Para levantar el censo de cargas de las áreas de interés, se utilizó el siguiente formato:

Figura 8

Formato utilizado para levantamiento de censo de cargas

	UNIVERSIDAD NACIONAL DE INGENIERÍA LEVANTAMIENTO CENSO DE CARGA EDIFICIO ROGOBERTO LÓPEZ PÉREZ												
Ubicación	Especificación	Uso energético	Qty	Tipo	Marca	Descripción	Volt	Amp	Vatios (W)	Hrs/mes	kWh/mes	kWh/día	Pot. (kW

Los equipos identificados en el censo de cargas se incluyeron en 6 categorías, en dependencia de las similitudes de su uso energético, estas son: Climatización, Equipos de clases, Equipos de cocina, Equipos de ofimática,

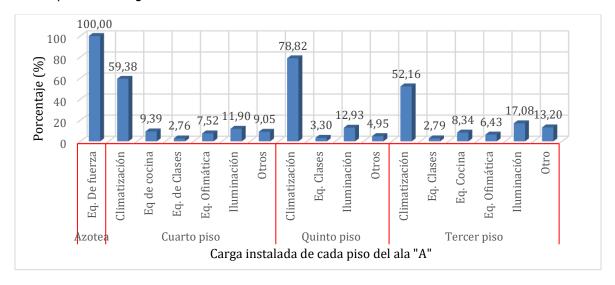
Iluminación, Equipos de fuerza y otro, estos se muestran a detalle en la siguiente tabla:

Tabla 1Tipo de equipos que componen cada categoría

Uso Energético	Descripción		
Climatización	Aires acondicionados, abanicos		
Eq. Clases	Proyectores, pantallas táctiles, etc.		
Eq. Cocina	Microondas, congeladores, cafeteras, etc.		
Eq. Ofimática	Computadoras, impresoras, etc.		
Iluminación	lluminación de aulas, pasillos, baños, etc.		
Equipos de fuerza	Motores		
Otro	Tomas de uso general		

Cada una de estas categorías representa un porcentaje diferente en cada piso, sin embargo, se observó que los equipos de climatización siempre se mantienen como los **mayores consumidores de energía eléctrica**. En la siguiente tabla se muestra la carga instalada que representa cada una de estas categorías en cada piso:

 Tabla 2


 Potencia instalada que corresponde a cada categoría. La carga instalada es la sumatoria

Uso Energético	Piso 3 (W)	Piso 4 (W)	Piso 5 (W)	Azotea (W)
Climatización	16,498	37,320	51,600	-
Eq. Clases	884	1,733	2,161.20	-
Eq. Cocina	2,638	5,900	-	-
Eq. Ofimática	2,034	4,727	-	-
Iluminación	5,402	7,476	8,468	-
Equipos de fuerza	-	-	-	19,200
Otro	4,176	5,690	3,240	-
Potencia total instalada	31,632	62,846	65,469	19,200

En cuanto al porcentaje que cada una de las categorías representa, esto se muestran en el siguiente gráfico de barras:

Figura 9

Gráfico de barra que muestra el porcentaje de la carga instalada que corresponde a cada piso y sus respectivas categorías

6.3. Mediciones de los parámetros de calidad de energía eléctrica

En cuanto el estudio de calidad de energía, se instaló un equipo analizador de redes marca FLUKE, modelo **435-II** en los distintos paneles de interés. Las mediciones se realizaron por una duración de aproximadamente 2 día por panel principal (**tabla 3**), y 1 día por sub panel y panel de iluminación. El calendario exacto de mediciones se muestra a continuación:

 Tabla 3

 Calendario de mediciones de los distintos paneles

Piso	Fecha de Inicio	Fecha de finalización	Panel	Conexión	Desconexión	Duración
	14/08/2023 (lunes)	16/08/2023 (miércoles)	CC3A	08:45:20 750mseg	15:16:50 750mseg	2d 16h 30m 55s
Tercero	16/08/2023 (miércoles)	17/08/2023 (jueves)	PC3A	15:52:50 942mseg	14:58:20 942mseg	1d 21h 32m 0s
Terc	17/08/2023 (jueves)	18/08/2023 (viernes)	PT3A	15:22:41 283mseg	14:10:41 283mseg	0d 22h 49m 0s
	26/08/2023 (sábado)	28/08/2023 (lunes)	PI3A	13:56:00 254mseg	10:23:00 254mseg	1d 18h 51m 30s
	21/08/2023 (lunes)	23/08/2023 (miércoles)	CC4A	08:53:20 685mseg	14:56:20 685mseg	2d 6h 3m 0s
Cuarto	23/08/2023 (miércoles)	25/08/2023 (viernes)	PC4A	15:27:32 555mseg	09:32:32 555mseg	1d 18h 5m 0s
Cuí	25/08/2023 (viernes)	26/08/2023 (sábado)	PT4A	09:54:36 525mseg	07:20:06 525mseg	0d 21h 25m 30s
	09/08/2023 (miércoles)	12/08/2023 (sábado)	PI4A	16:26:22 961mseg	10:12:22 961mseg	2d 17h 46m 0s
	04/08/2023 (viernes)	07/08/2023 (lunes)	CC5A	15:41:06 384mseg	08:12:01 384mseg	2d 16h 30m 55s
Quinto	12/08/2023 (sábado)	14/08/2023 (lunes)	PC5A	10:48:55 519mseg	08:20:55 519mseg	1d 21h 32m 0s
Qui	18/08/2023 (viernes)	19/08/2023 (sábado)	PT5A	14:31:38 23mseg	13:20:38 23mseg	0d 22h 49m 0s
	19/08/2023 (sábado)	21/08/2023 (lunes)	PI5A	13:36:48 372mseg	08:28:18 372mseg	1d 18h 51m 30s
Azotea	28/08/2023 (lunes)	30/08/2023 (miércoles)	P-AS	11:23:13 357mseg	10:40:10 357mseg	1d 23h 16min 58s

En total se realizaron 13 mediciones, debido a la gran cantidad de datos obtenidos, en el presente documento se detallará el análisis realizado **únicamente** en el panel CC5A, puesto que las mediciones en dicho lugar corresponden con las del transformador de 75 kVA del A-V. Las mediciones realizadas en los demás lugares se presentarán de manera resumida en tablas,

teniendo en cuenta que se realizó el mismo procedimiento para obtener los datos mostrados en dichas tablas.

Parametrización del analizador de calidad de energía

Configuración general del equipo:

Topología de la red eléctrica: 3Φ4 hilos estrella aterrizada

Voltaje Nominal:
 Frecuencia Nominal:
 Modo de Aplicación:
 Intervalo de Grabación:
 5 segundos

Modelos de sondas de corriente:
 Duración:
 1430 – FLEXI – TF – II
 2d 6h 31m 30s 0ms

Fecha de inicio: 04/08/2023 15:41:06 384mseg
 Fecha de fin: 07/08/2023 08:12:01 384mseg

6.3.1. Voltaje de línea a neutro RMS

El desbalance trifásico es el fenómeno en donde las tensiones y ángulos entre fases consecutivas no son iguales. El balance perfecto entre fases es inalcanzable, sin embargo, se puede realizar una aproximación dentro de rangos aceptables como el 3% dentro de instalaciones eléctricas industriales después del medidor en baja tensión o 5% en media tensión. A continuación, se detalla el comportamiento del voltaje de fase registrado en el transformador:

Figura 10

Voltaje de línea-neutro del transformador seco de 75 kVA que alimenta al panel principal CC5A

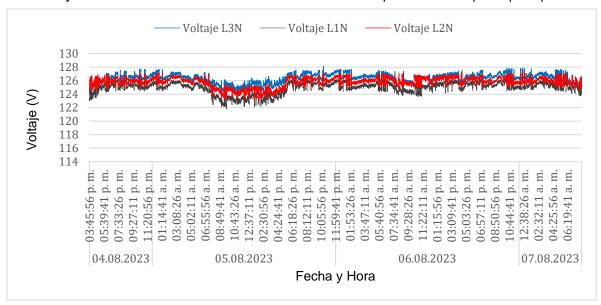


Figura 11

Voltaje de línea-neutro mínimo del transformador seco de 75 kVA (CC5A)

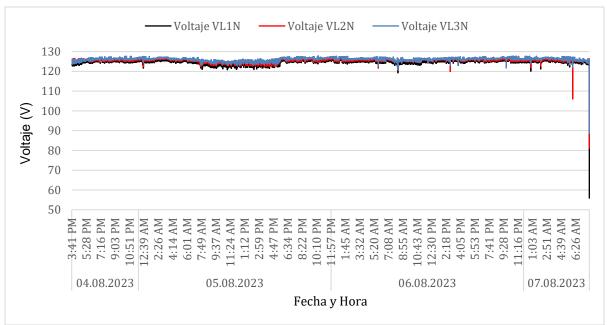


Tabla 4

Voltajes mínimos, promedio y máximos registrados

Nombre	Prom	Min	Max	Desbalance %	Desbalance máximo %
VL1N	124.89	55.86	126.62	0.58	
VL2N	125.71	81.2	127.30	0.0716	0.58%
VL3N	126.27	88.62	128.12	0.5174	

En la **tabla 4** se muestran los voltajes mínimos, máximos y promedios registrados en cada línea, de acuerdo a la norma **ANSI C84.1-2011**, el desbalance de voltaje para un sistema polifásico se calcula de la siguiente manera:

$$\%Desbalance = \frac{m\'{a}xima\ desviaci\'{o}n\ del\ voltaje\ promedio}{voltaje\ promedio}*100 \tag{1}$$

Aplicando esta última fórmula obtenemos los valores mostrados en la tabla
4. El voltaje promedio y desbalance del sistema trifásico es el siguiente:

$$V_{prom} = \frac{124.89V + 125.71V + 126.27V}{3} = 125.62V$$

El desbalance para cada una de las líneas se calcula a continuación:

$$\%L1N_d = \frac{|124.89 - 125.62|}{125.62} * 100 = 0.58 \%$$

$$\%L2N_d = \frac{|125.71 - 125.62|}{125.62} * 100 = 0.0716 \%$$

$$\%L3N_d = \frac{|126.27 - 125.62|}{125.62} * 100 = 0.5174 \%$$

La norma ANSI C84.1-2011 recomienda un desbalance máximo del 3%, adicionalmente para un sistema trifásico de 4 hilos de 208Y/120, el voltaje de utilización y servicio máximo permisible es de 218Y/126 (figura 12), por lo tanto, aunque el voltaje se encuentra dentro de los valores permitidos la mayor parte del tiempo, se considera que existe un sobre voltaje.

Dicho sobre voltaje no solo es identificado en los paneles alimentados por el transformador seco, sino también en los paneles de iluminación, que son alimentados por el transformador de pedestal de 750 kVA. Por lo tanto, el origen del sobre voltaje en los transformadores secos es el sobre voltaje que le entrega al devanado primario el transformador de pedestal.

Según la ficha técnica del fabricante (**PROLEC**), el transformador de pedestal trifásico cuenta con 4 taps, 2 posiciones de 2.5% arriba y 2 abajo de la tensión nominal (2-2.5%FCAN, 2-2.5%FCBN). El voltaje nominal de línea a línea es de 480V, sin embargo, se registran valores promedios de 495V a 500V (Ver paneles de iluminación en apéndices). Si se actúa sobre el tap FCAN en un factor de 2.5% se alcanzarían los siguientes valores:

$$480V * 0.025 = 12V$$

$$495V - 12V = 483V$$

Por lo tanto, se recomienda que se actúe sobre el tap **FCAN** del transformador de pedestal trifásico de 750 kVA en un factor de **2.5%** para corregir el sobre voltaje.

Figura 12

Tabla 1 de la ANSI C84.1-2011: Voltajes estándares nominales y rangos de voltaje de sistemas eléctricos

VOLTAGE CLASS	N	ominal Syste	m Voltage	Nominal Utilization		Voltage Range A (Note b)			Voltage Range B (Note b)		
* * * * * * * * * * * * * * * * * * * *		(Note	a)	(Note h)	Maximum	Minimum		Maximum	Minin	num	
	2-wire	3-wire	4-wire	2-wire 3-wire 4-wire	Utilization and Service Voltage (Note c)	Service Voltage	Utilization Voltage	Utilization and Service Voltage	Service Voltage	Utilization Voltage	
Low Voltage					Single-Phase Systems						
	120	120/240		115 115/230	126 126/252	114 114/228	108 108/216	127 127/254	110 110/220	104 104/208	
1					•	Three-Phase Systems	•	***			
		240 480 600	208Y/120 (Note d) 240/120 480Y/277	230/115 230 460Y/266 460 575	218Y/126 252/126 252 504Y/291 504 630	197Y/114 228/114 228 456Y/263 456 570	187Y/108 216/108 216 432Y/249 432 540	220Y/127 254/127 254 508Y/293 508 635	191Y/110 (Note 1) 220/110 220 440Y/254 440 550	180Y/104 (Note 1) 208/104 208 416Y/240 416 520	
		(Note e)		111	(Note e)			(Note e)	5		
Medium Voltage		2400 4160 4800 6900 13800 23000 34500	8320Y/4800 12000Y/6930 12470Y/7200 13200Y/7620 13800Y/7970 20780Y/12000 22860Y/13200 24940Y/14400 34500Y/19920		2520 4370/2520 4370 5040 7240 8730/15040 12600/17270 13090/17560 138691/8000 14490/18370 21820/112600 24000/113860 24150 261909/15120 362309/20920	2340 4050Y;2340 4050 4680 6730 8110Y;14680 11700Y;6760 12160Y;7720 12870Y;7730 13460Y;7770 13460 20260Y;11700 22290Y;12870 22430 24320Y;14040 33640Y;19420 33640	2160 3740Y(2160 3740 4320 6210 (Note f) 12420 (Note f)	2540 4400Y/2540 4400 5080 7260 8800Y/5080 12700Y/7330 13200Y/7620 13970Y/8070 14520Y/8380 14520 22000Y/12700 24200Y/13970 24340 26400Y/15240 36510	2280 3950Y/2280 3950 4560 6560 7900Y/4560 11400Y/6580 11850Y/6840 12504Y/7240 13110 19740Y/11400 21720Y/12540 21850 23690Y/13680 32780Y/18930	2080 3600 / / / 2080 3600 4160 5940 (Note f) 11880 (Note f)	
		46000 69000			Maximum Voltage (Note g) 48300 72500	Note 1: Many 220-volt utilization voltage woul Range B minimum vo	dnot be less than 1	87 volts. Caution sh	ould be exercised	in applying the	
High Voltage		115000 138000 161000 230000			121000 145000 169000 242000						
Extra-High Voltage		345000 400000 500000 765000			362000 420000 550000 800000						
Ultra-High Voltage		1100000			1200000						

Nota. El rango A establece los límites dentro de los cuales se debe mantener el voltaje de servicio y el de utilización, es decir, el que reciben los equipos. El rango B describe valores que se encuentran fuera del rango A, que pueden presentarse, pero deben estar limitados en extensión, duración y frecuencia. Medidas correctivas deben aplicarse cuando esto ocurre.

Respecto a las perturbaciones de voltaje, se observa una caída de voltaje en las 3 líneas el día **07/08/23** a las **06:07:16**, alcanzando un voltaje de 106.12V en la línea 2, 115.24V en L1 y 121.98V en L3 (figura 11). Comparando con las gráficas de corriente, y considerando la hora en que ocurrió dicha perturbación, podemos ver que no corresponde con un pico de corriente, por lo que se descarta que haya sido provocado por una carga.

La máxima caída de tensión en las 3 líneas se dio ese mismo día a las **08:12:01** (figura 11), los valores de voltaje alcanzados son los que se detallan en la tabla 4, debido a que no se observa una correspondencia de incremento de corriente en las líneas, dicha perturbación fue provocada por **factores externos** a las cargas instaladas en el A-V.

Un análisis más detallado de las perturbaciones en la onda sinusoidal de voltaje se muestra en la sección de **Eventos**.

6.3.2. Corrientes de línea

Un desbalance de cargas provoca consecuentemente un desbalance de corriente, este puede ser perjudicial para el transformador y puede disminuir su vida útil. Para analizar el perfil de desbalance al que está expuesto el transformador, es necesario observar el comportamiento de la corriente de línea a lo largo del tiempo. A continuación, se presenta la demanda de corriente registrada para cada una de las líneas y el neutro.

Figura 13

Corrientes de línea y neutro máximas registradas. La corriente de demanda máxima registrada es la mayor corriente consumida por los circuitos sin considerar los picos

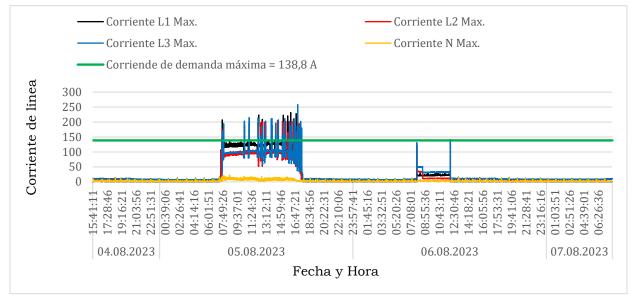


Tabla 5

Corrientes promedio y máximas registradas

Nombre	Demanda máxima ¹	Promedio	Máximo	Desbalance %	Desbalance Máximo %
AL1N	138.9	20.76	231.4	5.42	
AL2N	107.9	21.27	204.4	3.1	8.52
AL3N	113.5	23.82	258.1	8.52	
AN	20.5	2.67	21.8	N/A	

Podemos observar que la línea **L1** es la más cargada, seguida de la línea **L3** y por último **L2**. Esto provoca que exista un desbalance de cargas en el transformador, lo que aumenta las pérdidas por temperatura, que a su vez podría provocar un envejecimiento prematuro del transformador. Respecto el desbalance de corriente, se recomienda que este sea el mínimo posible.

¹ La corriente de demanda máxima es la corriente máxima sostenida registrada sin considerar los picos de corriente provocados por el arranque de grandes cargas como motores.

De acuerdo a Casaravilla y Echinope (2005), el desbalance máximo admisible de corriente compatible con la norma IEC 61000-2-2 debe ser del 40%. Sin embargo, otros autores como Hernández y Ulloa (2021), así como Munguía y Calero (2021) consideran que el máximo desbalance de corriente debe ser del 10%, esto de acuerdo a la IEC 61000-2-5. Se tomará como porcentaje máximo de desbalance para la corriente el 10% puesto que es un valor más restrictivo para identificar desbalances más pequeños.

También podemos apreciar de las gráficas de corriente que existen corrientes pico de valores elevados, estas pueden ser atribuidas al arranque de los compresores de los aires acondicionados, siendo la línea L2 la menos afectada por dichos picos de corriente.

Las fórmulas propuestas por la **ANSI C84.1** para el desbalance de tensión reformuladas para la corriente nos dan los siguientes valores:

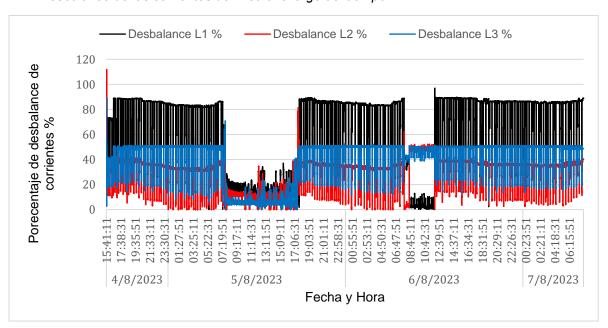
$$\%Desbalance = \frac{\text{máxima desviación de la corriente promedio}}{\text{corriente promedio}} * 100$$
 (2)

La corriente promedio y desbalance del sistema trifásico es el siguiente:

$$I_{prom} = \frac{20.76A + 21.27A + 23.82A}{3} = 21.95A$$

Aplicando esta última fórmula obtenemos los valores mostrados en la tabla 5:

$$%L1_d = \frac{|20.76 - 21.95|}{21.95} * 100 = 5.42 \%$$


$$%L2_d = \frac{|21.27 - 21.95|}{21.95} * 100 = 3.1 \%$$

$$%L3_d = \frac{|23.82 - 21.95|}{21.95} * 100 = 8.52 \%$$

Hay que notar que este es solamente un valor promedio, obtenido considerando las corrientes promedio calculadas totales. En periodos de mayor carga, el desbalance es mucho mayor (figura 14), por lo que se recomienda que se realice un balance de cargas en los paneles que alimenta este transformador.

Figura 14

Desbalance de las corrientes de línea a lo largo del tiempo

Nota: Las gráficas de desbalance se calcularon utilizando la ecuación 2, promediando cada uno de los valores de corriente registrados, y calculando el desbalance de cada línea para cada uno de estos.

6.3.3. Potencia

Como se observó en las gráficas de corriente, la línea más cargada es **L1**, la demanda máxima fue de 16.78 kW, con picos de potencia de hasta 27.18 kW.

En las líneas L2 y L3 podemos observar que existe un menor consumo, sin embargo, en las tres líneas se observan picos de potencia de manera frecuente, que posiblemente corresponden con el arranque de los **compresores de aires acondicionados**, puesto que los equipos de climatización representan el 79% de la carga instalada en este piso (figura 9).

La demanda máxima fue de **12.74 kW** en L2 y **13.42 kW** en L3, con picos de 23.26 kW y 26.08 kW registrados, respectivamente.

La demanda máxima total fue de **41.64 kW**, con picos máximos registrados de **63.36 kW**.

Tabla 6

Potencia promedio, máxima registrada y demanda máxima en kW

Nombre	Potencia Promedio Demanda ma (kW) (kW)		Potencia Máxima registrada (kW)	Desbalance %
L1N	2.4364	16.78	27.18	5.9
L2N	2.4498	12.74	23.26	5.38
L3N	2.8815	13.42	26.08	11.29
Ptot	7.7565	41.64	63.36	N/A

Las fórmulas propuestas por la **ANSI C84.1** para el desbalance de tensión reformuladas para la potencia activa nos dan los siguientes valores:

$$P_{prom} = \frac{2.4364 \, kW + 2.4498 \, kW + 2.8815 \, kW}{3} = 2.5892 \, kW$$

$$\% P_1 = \frac{|2.4364 - 2.5892| \, kW}{2.5892 \, kW} * 100 = 5.9 \, \%$$

$$\% P_2 = \frac{|2.4498 - 2.5892| \, kW}{2.5892 \, kW} * 100 = 5.38 \, \%$$

$$\%P_3 = \frac{|2.8815 - 2.5892| \, kW}{2.5892 \, kW} * 100 = 11.29 \,\%$$

Las curvas de potencia activa en kW para cada una de las tres líneas se muestran a continuación, las curvas de potencia activa y aparente totales se muestran en la sección de análisis del factor de carga del transformador:

Figura 15

Potencia activa en L1

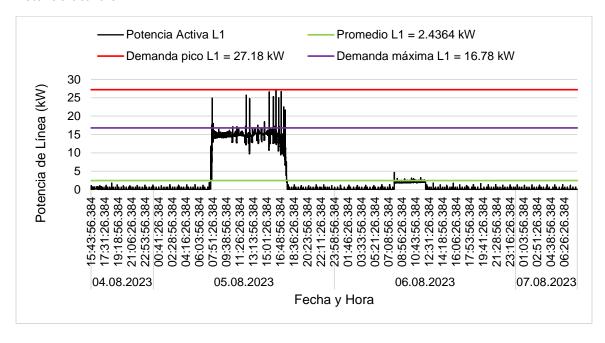


Figura 16

Potencia activa en L2

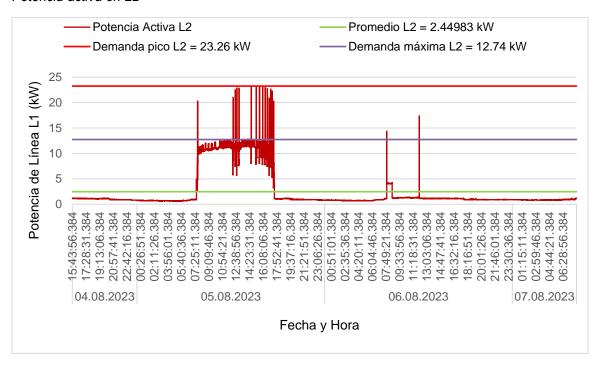
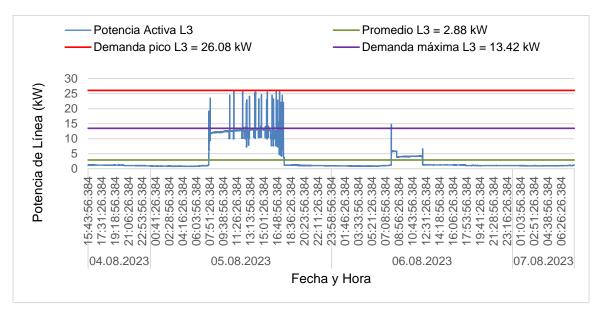



Figura 17

Potencia activa en L3

Los mismos cálculos realizados anteriormente para la potencia activa se muestran en la siguiente tabla para la potencia aparente.

 Tabla 7

 Potencia promedio, máxima registrada y demanda máxima en kVA

Nombre	Potencia Promedio (kVA)	Demanda máxima (kVA)	Potencia Máxima registrada (kVA)	Desbalance %
L1N	2.5615	17.06	28.26	6.42
L2N	2.6571	13.28	25.04	2.93
L3N	2.9934	13.44	31.64	9.36
Stot	8.5628	42.9	79.38	N/A

6.3.4. Consumo de Energía

En cuanto al consumo energético, las cargas se conectan principalmente los días sábados de **08:00 a.m. - 06:00 p.m.**, y los domingos de **08:00 a.m. - 12:00 p.m.**, para calcular el consumo promedio por mes, se tomó como referencia el consumo promedio de lunes-viernes y sábado-domingo:

Figura 18

Curva de energía registrada en kWh y kVARh del 4 al 7 de agosto

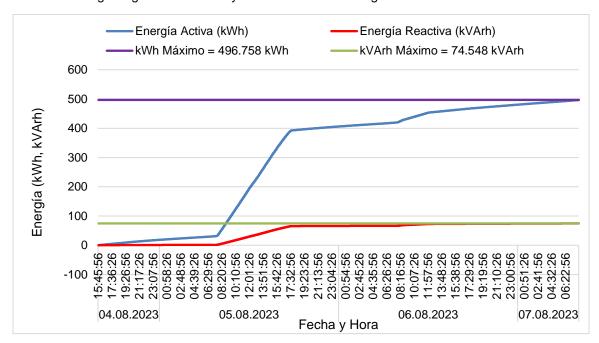
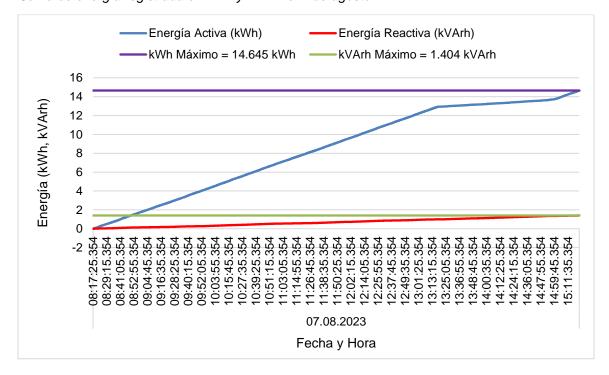
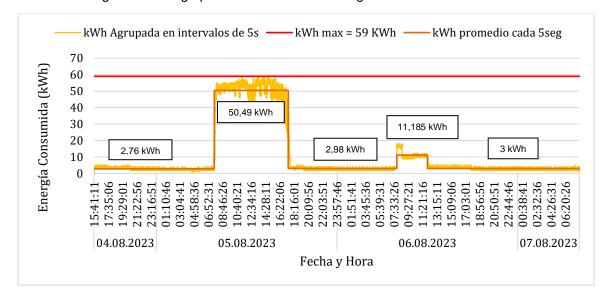



Figura 19

Curva de energía registrada en kWh y kVArh el 7 de agosto

El consumo de energía considerando solamente el fin de semana fue de 462.163 kWh, es decir durante 48 horas, dando un valor de 231.082 kWh/día.

La **figura 19**² nos muestra un consumo energético de **14.645 kWh** durante 7 horas, tomando esta medición como referencia, obtenemos que el consumo energético por día de lunes a viernes es de **50.2214 kWh/día**.


Tomando de referencia el mes de agostos (31 días), el consumo de energía por las cargas alimentadas por el transformador fue de 3,003.53 kWh/mes y 402.28 kVArh/mes.

Adicionalmente, en la **figura 20** se muestra la curva de energía en kWh del 4 al 7 de agosto, donde se indica la energía consumida cada 5 segundos, puesto que ese fue el intervalo de medición al cual se programó el analizador de calidad de energía. También se muestran 5 promedios en kWh, que indican el promedio de energía consumida en dichos intervalos, el valor de 50.49 kWh corresponde al día sábado (**08:00 a.m. – 06:00 p.m.**), y el valor de 11.85 kWh al día domingo (**08:00 a.m. – 12:00 p.m.**)

 $^{^{2}}$ La figura muestra una segunda medición que se realizó el día 07/08/2023 de 08:17:20 a.m.-15:21:40 p.m.

Figura 20

Curva de energía en kWh agrupada en intervalos de 5 segundos

6.3.5. Frecuencia

De acuerdo a la normativa de servicio eléctrico del Instituto Nicaragüense de Energía (INE) en el capítulo 8.1, la empresa de Distribución debe suministrar la energía eléctrica con una frecuencia de 60 ciclos con variaciones de +/- 0.5%. A continuación, se detalla el gráfico de frecuencia medido por el analizador Fluke 435-II:

Figura 21
Frecuencia de suministro del panel CC5A

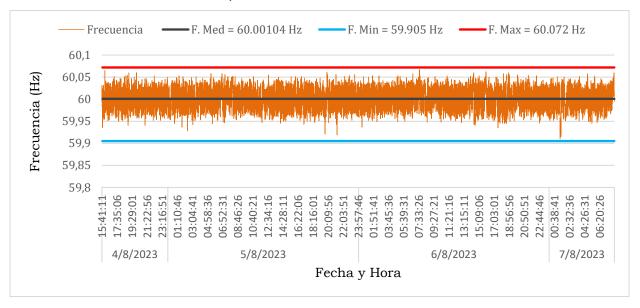


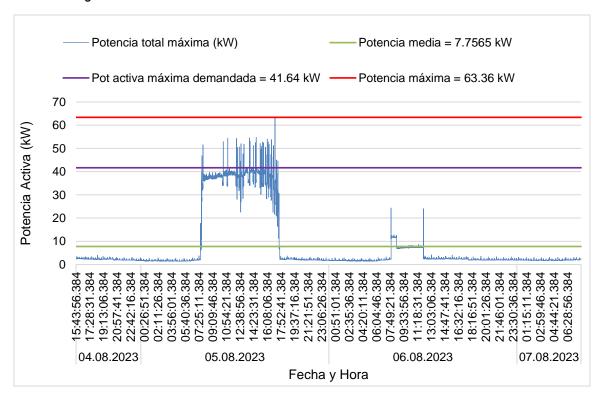
Tabla 8

Frecuencia promedio, mínima y máxima registrada en el transformador de 75 kVA

	Mínima	Promedio	Máxima	Desbalance %
Frecuencia (Hz)	59.905	60.00104	60.072	0.158

De manera que la variación máxima de frecuencia registrada fue la siguiente:

$$\Delta\% = \frac{60 - 59.905}{60} * 100 = 0.158 \%$$


De acuerdo a los valores obtenidos, vemos que no hay ningún tipo de problema, puesto que la frecuencia se encuentra dentro del \pm 0.5% estipulado por el **INE.**

6.3.6. Análisis de factor de Carga del transformador

Las curvas de carga permiten obtener información sobre en qué nivel de carga se encuentra una variable a lo largo del tiempo, o de la forma en que evoluciona una variable a lo largo de un periodo definido. A continuación, se presenta la curva de carga registrada en el transformador seco de 75 kVA:

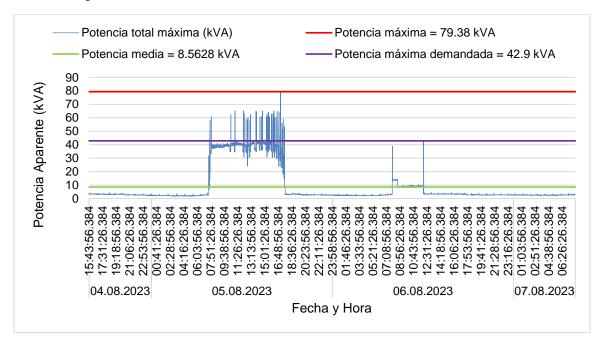
Figura 22

Perfil de carga total del transformador seco en kW

En las figuras **22** y **23**, se muestra la potencia demandada que el analizador de calidad de energía registró durante el tiempo de medición. Se muestra la curva de potencia en kW y kVA, así como la potencia media, demanda máxima (sin considerar picos de potencia) y potencia máxima registrada.

El factor de utilización es el cociente entre la demanda máxima y la potencia nominal del transformador, este valor indica qué tan cargado se encuentra el transformador con respecto a la potencia nominal.

Factor de utilización máxima:


$$f_{utilización} = \frac{42.9 \text{ kVA}}{75 \text{ kVA}} * 100 = 57.2\%$$

Factor de utilización media:

$$f_{utilización} = \frac{8.5628 \, kVA}{75 \, kVA} * 100 = 11.42\%$$

Figura 23

Perfil de carga total del transformador de 75 kVA

Máxima sobre carga producida por picos de potencia:

$$\frac{79.38 \, kVA}{75 \, kVA} * 100 = 105.84\%$$

$$f_{Carga} = \frac{Carga\ media}{Carga\ máxima\ en\ un\ período\ de\ tiempo\ dado} \tag{3}$$

$$f_{Demanda} = \frac{Carga\ m\'axima\ en\ un\ periodo\ de\ tiempo\ dado}{Carga\ m\'axima\ posible} \tag{4}$$

- El factor de utilización máxima es de 57.2% con 42.9 kVA y 41.64 kW con FP = 0.97.
- El factor de utilización media es de 11.42% con 8.5628 kVA y 7.7565 kW con FP = 0.91.
- ➤ El máximo porcentaje de carga por los picos de potencia registrado es de **105.84%**, con FP = 0.8.

El factor de carga se define como la relación entre la carga promedio durante un período dado y la demanda máxima (carga máxima) que se produce en ese período:

$$f_{Carga} = rac{Carga\ media}{Carga\ m\'axima\ en\ un\ per\'iodo\ de\ tiempo\ dado}$$

$$f_{Carga} = rac{8.5628\ kVA}{42.9\ kVA}*100 = {f 20}\%$$

> El factor de carga es del 20% con 42.9 kVA y 8.5628 kVA

El factor de demanda se define como la relación entre la demanda máxima en un periodo de tiempo entre la carga máxima posible (carga instalada):

$$f_{demanda} = \frac{41.64 \ kW}{56.0012^3 \ kW} * 100 = 74.36 \%$$

³ Carga instalada mostrada en la tabla 2 sin considerar la carga instalada correspondiente a la iluminación.

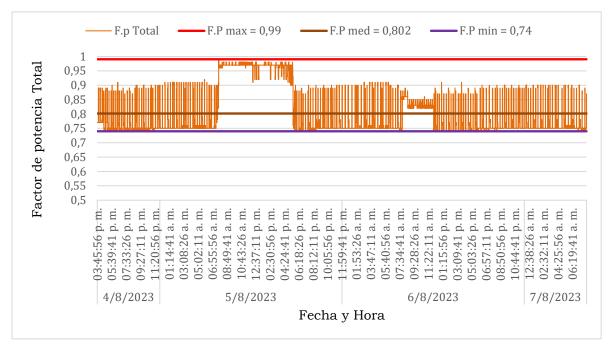
> El factor demanda fue del 74.36%

En relación a la eficiencia y cargabilidad del transformador seco encapsulado modelo Y48M28T75CU, de acuerdo a la ficha técnica proporcionada por el fabricante estos transformadores están diseñados para trabajar a plena carga en kVA de manera continua las 24 horas, los 375 días del año, con esperanza de vida normal de acuerdo a la ANSI C57.96.

La norma DOE – 2016 propone una serie de requisitos que deben ser cumplidos para transformadores de distribución secos de bajo y medio voltaje, esta establece que para transformadores secos ventilados el valor de eficiencia óptimo ocurre al 35% de la capacidad nominal a una temperatura de 75°C. De acuerdo a la guía de diseño del fabricante **DG009001EN** (2020), los transformadores trifásicos que cumplen con dicha norma presentan una mayor eficiencia entre 35% y 50% de la capacidad nominal, siendo dicha eficiencia menor entre el 75% y plena carga como se aprecia en la tabla 19.1-5 (Design Guide DG009001EN, 2020, p.9). Por lo tanto, se recomienda que para que el transformador trabaje de manera eficiente este debe operar entre el 35% y 50% de su capacidad nominal.

De manera equivalente la agencia estatal Bonneville Power Administration (2021), establece que la eficiencia de un transformador seco alcanza su pico entre el 35% y el 50% de la capacidad nominal (BPA, 2021, p.7). Cuando se encuentra cargado a menos del 30% de la carga nominal las pérdidas totales son dominadas por la componente de pérdidas en vacío. También se menciona que los

transformadores que operan con cargas promedio entre el 10 – 20% de la carga nominal con picos de carga menores al 50% pueden ser considerados "cargados ligeramente" y ofrecen buen ahorro energético basado en eficientes perdidas en vacío (BPA, 2021, p.8).

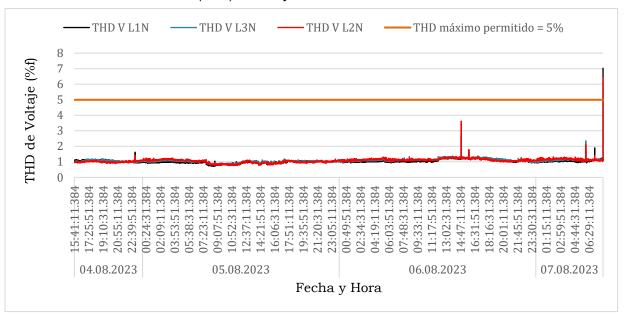

Por lo tanto, en periodos de máxima demanda el transformador se encuentra trabajando de manera eficiente (57.2%), sin embargo, la mayor parte del tiempo se encuentra a menos del 10% de su capacidad nominal si observamos el perfil de carga registrado en la figura 23. Esto ocasiona que la eficiencia sea baja debido a las pérdidas en vacío.

6.3.7. Factor de potencia

El factor de potencia mide el aprovechamiento de la energía por los equipos. Si este factor es menor de 0.90, la empresa distribuidora (Disnorte-Dissur) emitirá un recargo o multa por tener un bajo factor de potencia cuando la tarifa es del tipo binomial. Es importante mencionar que un bajo factor de potencia aumenta el consumo de energía global por pérdidas en el cableado y sobrecalentamiento de equipos. En la siguiente ilustración, se muestra el comportamiento del factor de potencia para el período de análisis:

Figura 24

Factor de potencia del transformador de 75 kVA de A-V


Basado en la figura 24, el factor de potencia total promedio fue de 0.802, con valores mínimos de 0.74. Sin embargo, hay que considerar el perfil de carga de este piso, debido a que solamente hay carga conectada los días sábados principalmente entre 08:00 a.m. y 06:00 p.m., y en menor medida los días domingos entre 08:00 a.m-12:00 p.m. En estos intervalos de tiempo, el factor de potencia se mantiene entre 0.85 y 1, especialmente los días sábados donde el consumo es el máximo, podemos ver que el factor de potencia es cercano a la **unidad**.

6.3.8. Armónicos

Los armónicos ya sea de corriente o voltaje son componentes múltiplos enteros de la frecuencia de la red (60 Hz), estos componentes se suman a la señal

fundamental y provocan que esta sea diferente a una señal sinusoidal pura. Las cargas no lineales tales como rectificadores, inversores, variadores de velocidad y equipos electrónicos en general absorben de la red corrientes periódicas no senoidales (Circuitor, s.f.). La **IEEE 1159 – 2019** establece en la **tabla 5** que el valor de THD de voltaje máximo sugerido para cargas que operen a un voltaje nominal de 120V (IEEE 1159 – 2019, p.61) es del **5%**, a continuación, se muestra el THD registrado para cada una de las líneas:

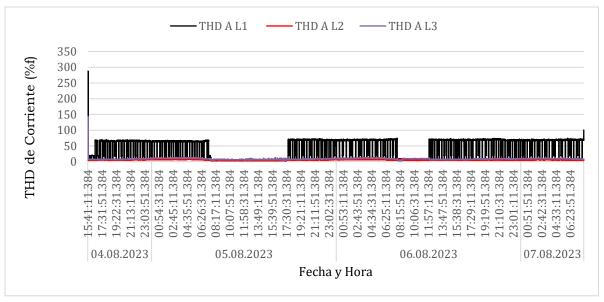
Nota: Se muestra el THD de voltaje máximo registrado a lo largo del tiempo en cada una de las líneas, así como el valor máximo recomendado de acuerdo a la IEEE 1159.

Se registraron valores máximos el día **07/08/2023** a las **08:12:01 a.m.**, como se muestra en la **tabla 9**, sin embargo, de acuerdo a la IEEE 519 – 2014, es posible la existencia de condiciones transitorias que puedan superar los límites

normados. De manera general, podemos afirmar que la THD de voltaje se encuentra dentro de los límites normados en la mayoría del tiempo.

Tabla 9

Valores máximos, promedio y mínimos de THD de voltaje y corriente registrados en el transformador


	THD V L1	THD V L2	THD V L3	Promedio	THD A L1	THD A L2	THD A L3	Promedio
Máximo	7.03	6.41	6.1	6.513	287.81	11.89	143	147.567
Promedio	1.032	1.073	1.073	1.059	44.08	5.19	8.56	19.275
Mínimo	0.73	0.77	0.82	0.773	2.21	2.04	2.31	2.187

A pesar de que los niveles de distorsión de corriente pueden ser caracterizados por la **THD**, este puede ser confuso puesto que la THD se mide como porcentaje de la señal fundamental, de manera que un alto nivel de distorsión puede no ser relevante cuando la magnitud del valor **rms** de corriente sea bajo, aunque su nivel relativo de armónicos sea muy alto (IEEE 1159 – 2019. P.29).

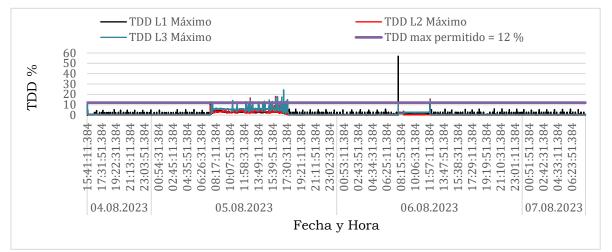
Lo anteriormente dicho puede observarse en la tabla 9, así como en la figura 26, en los periodos de menor demanda la THD alcanza valores demasiado altos, sin embargo, el consumo de corriente en dichos periodos es casi cero, de manera que este número no es tan significativo.

Figura 26

Distorsión armónica total (THD) de corriente. El porcentaje de distorsión es alto en periodos de baja demanda, y bajo en periodos de alta demanda

Un parámetro más significativo es la distorsión total demandada (*TDD* en inglés), que mide la distorsión armónica como porcentaje de la **corriente máxima demandada**, de manera que el THD y el TDD solo son iguales durante la demanda máxima. La relación entre estos es la siguiente:

$$TDD = \frac{THD*I_{fundamental}}{I_{m\'axima\ demandada}}$$
 (5)


Tabla 10

Valores máximos, promedio y mínimos registrados de TDD. Adicionalmente de calcula el percentil 99 para cada línea y neutro

TDD	Máximo	Promedio	Mínimo	Percentil 99
TDD L1	56.67	0.83	0.00	4.11
TDD L2	17.97	0.85	0.34	3.73
TDD L3	24.2648	1.5366	0.363	6.27

Figura 27

Distorsión demandada total (TDD) de corriente de línea y recomendado por la IEEE 519

Nota: A diferencia de la THD, en periodos de mayor demanda la TDD es alta, y en periodos de baja demanda es baja.

La **tabla 2** de la IEEE 519 – 2014 (P. 5) muestra el límite máximo que debe tener la TDD⁴ para sistemas con voltaje de 120 V a 69 kV, para ello toma en consideración la razón entre la corriente de corto circuito en el **PCC** y la corriente de máxima demanda. Esta tabla se muestra a continuación:

Figura 28

Tabla 2 de la IEEE 519 – 2014. Límites de distorsión de corriente para sistemas con voltaje de 120

V hasta 69 kV

Maximum harmonic current distortion in percent of $I_{ m L}$						
Individual harmonic order (odd harmonics) ^{a, b}						
$I_{ m SC}/I_{ m L}$	3 ≤ <i>h</i> <11	11≤ <i>h</i> < 17	17 ≤ <i>h</i> < 23	$23 \le h < 35$	$35 \le h \le 50$	TDD
< 20°	4.0	2.0	1.5	0.6	0.3	5.0
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0
> 1000	15.0	7.0	6.0	2.5	1.4	20.0

⁴ La IEEE 519 – 2014 establece los límites de armónicos **únicamente** medidos en el PCC (*Point of Common Coupling*), que es el punto de conexión entre el usuario y la red de distribución. Mediciones en otro punto de la instalación eléctrica pueden superar significativamente estos límites.

En donde la corriente de carga máxima es la corriente que corresponde a la demanda máxima tomada en el **PCC** durante los últimos 12 meses dividido entre 12⁵.

A continuación, calculamos la corriente de corto circuito en el secundario del transformador de 75 kVA (Eaton, 2014), tomando los datos de placa de este:

$$I_{Full\ load\ amps} = \frac{kVA*1000}{E_{L.L}*1,732}$$
 (6)
$$I_{Full\ load\ amps} = \frac{75*1000}{208*1.732} = 208 A$$

$$I_{S.C} = \left(I_{Full\ load\ amps}\right) * \left(\frac{100}{\% Z_{Transformador}}\right)$$

$$I_{S.C} = (208) * \left(\frac{100}{1.72}\right) = 12.093 \ kA$$

La corriente máxima demandada se toma de la **tabla 5**, donde se selecciona el valor de 138.8 A de L1, que además de ser el mayor nos proporciona un límite menor de TDD.

Tabla 11

Cálculo del límite de TDD para nuestro sistema

Corriente de carga máxima (I_L)	Corriente de corto circuito $(I_{S.C})$	$\frac{I_{S.C}}{I_L}$	TDD
138.8	12.093 <i>kA</i>	87.12 < 100	12

⁵ Debido a que no poseemos este dato, se usa la corriente máxima registrada durante la medición.

La norma IEEE 519 – 2014 establece que para mediciones de muy corta duración (**3s**), el percentil 99 diario debe de estar por debajo de 2 veces el valor calculado en la **tabla 11**.

Por lo tanto, la TDD de corriente se encuentra dentro de los límites establecidos por la norma (**tabla 10**). En el caso de la THD/TDD en el neutro no existen normativas que limiten su valor.

6.3.9. Eventos

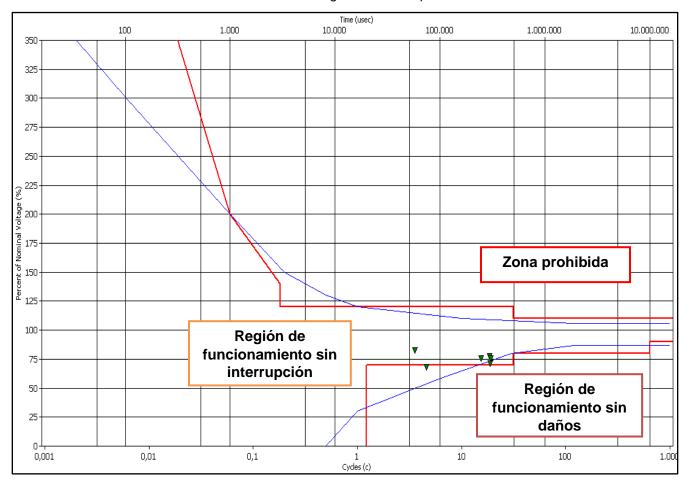
Un evento es un **fenómeno electromagnético** que da como resultado uno o más reportes del analizador de calidad de energía (IEEE 1159 – 2019, p.65). Los eventos que más se identificaron fueron *RVC*, o cambios rápidos de voltaje (*Rapid voltage change*), transitorios y huecos de tensión. Los RVC se definen como una variación del valor eficaz de una tensión entre dos niveles consecutivos mantenidos durante intervalos de tiempo definidos, pero no específicos. La tensión no tiene que superar el umbral del hueco de tensión y/o de sobretensiones, pues de lo contrario sería considerado como un hueco o una sobretensión temporal (UNE – EN 61000 – 4 – 30, 2004, p.34).

Por otro lado, los **transitorios** son variaciones de voltaje temporales no deseadas en un circuito eléctrico que va desde unos pocos milivoltios a varios miles, y que pueden durar microsegundos o incluso unos pocos milisegundos. Y por último, los **huecos** son caídas en el voltaje rms de entre 0.1 p.u y 0.9 p.u por duraciones que van desde 0.5 ciclos a 1 minuto.

Durante el periodo de medición se detectaron los siguientes eventos en los paneles CC5A, PT5A y PI5A:

 Tabla 12

 Eventos registrados por el analizador de calidad de energía


	PT:	5A			
Cantidad de eventos	Fecha	Tipo			
7	18/08/2023	Variaciones rápidas de voltaje			
7	Total				
	CC	5A			
Cantidad de eventos	Fecha	Tipo			
2	06/08/2023	Variaciones rápidas de voltaje			
3	07/08/2023	Variaciones rápidas de voltaje			
1	07/00/2023	Interrupción			
6		Total			
	PI5	SA .			
Cantidad de eventos	Fecha	Tipo			
2	19/08/2023	Transitorio			
26		Variaciones rápidas de voltaje			
3	20/08/2023	Transitorio			
3		Huecos			
3	21/08/2023	Variaciones rápidas de voltaje			
2		Transitorio			
39	·	Total			

Los RVC pueden ser provocados por el arranque de motores, conmutación de bancos de capacitores, la entrada o salida de grandes cargas, u operaciones de regulación de voltaje como el cambio del tap del transformador (IEEE 1453 – 2015, p.21). En nuestro caso, **no se observa una correspondencia** entre las variaciones de voltaje y las cargas, por tanto, las causas de estas son externas a las cargas.

Respecto a los huecos de tensión, normalmente estos están asociados a fallas en el sistema, pero también pueden ser causados por la conexión de grandes cargas o el arranque de grandes motores.

Figura 29

Curva ITIC/CBEMA: Huecos de tensión registrados en el panel PC4A

La curva ITIC y CBEMA definen regiones de voltaje de basados en el 100% del voltaje rms nominal y duración de tiempo. Los eventos de voltaje que caen es estas zonas definidas pueden normalmente ser tolerados por la mayoría de equipos electrónicos. Los eventos en la gráfica muestran una descripción general

de la aceptabilidad existente de voltaje. Estas curvas también definen regiones para eventos de estado estacionario y transitorios (LaFleur, 2016).

Esta puede dividirse en 3 regiones:

Región de funcionamiento sin daños:

Los eventos en esta región incluyen huecos e interrupciones de voltaje de mayor duración que aquellos especificados en la gráfica. Esta región también incluye voltajes de estado estacionario menores al 90% de voltajes nominal. Dentro de esta región no se espera que los equipos funcionen normalmente, pero no deberían ser dañados.

Región de funcionamiento sin interrupción:

Los eventos de tensión que se encuentran en esta zona no deberían provocar daños en la electrónica ni paradas de servicio de la instalación. Se considera zona segura, asegurando la continuidad de suministro sin incidencias en la electrónica instalada.

Zona prohibida:

Eventos en esta zona incluyen cualquier sobre tensión con mayor duración y magnitud especificados en la curva. Esta región también incluye voltajes nominales de estado estacionario mayores al 110 %. Equipos electrónicos conectados pueden ser dañados debido al voltaje en esta región.

Figura 30
Interrupción del suministro energético (07/08/2023)

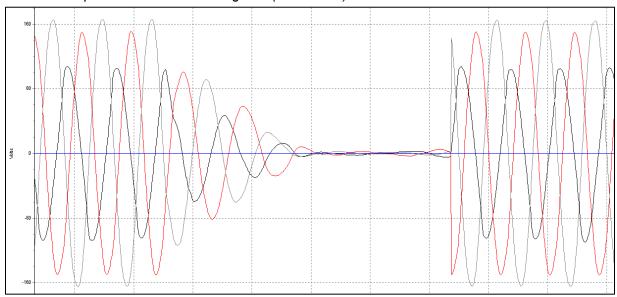


Figura 31

Captura de un transiente de voltaje registrado en PI3A

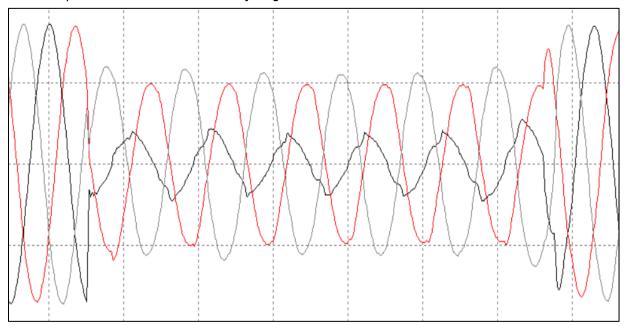
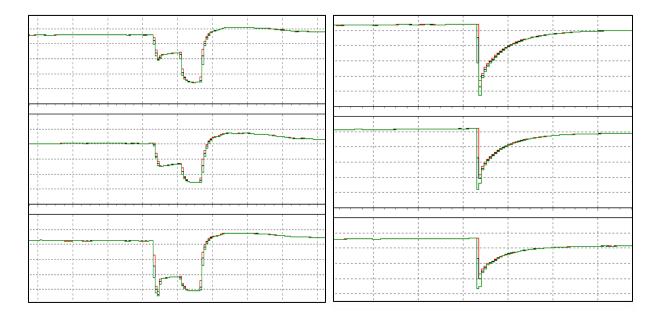



Figura 32

Cambio rápido de tensión. Se da una pequeña variación de voltaje durante milisegundos

6.4. Resultados de la efectividad de las protecciones eléctricas instaladas

Por último, se realizó una inspección de las características del panel y de las protecciones que este contiene. Durante esta se anotaron datos como la capacidad de los breakers, capacidad de las barras, calibre de conductores, estado de supresores de picos, cantidad de espacios ocupados, código de colores, secuencia de fase, entre otros. Adicionalmente de utilizó una cámara termográfica marca **Flir modelo E50** para identificar puntos calientes y sobrecalentamiento en los conductores.

Respecto al cálculo termográfico, para evaluar posibles malfuncionamientos o averías, se utiliza el criterio estipulado por la ANSI/NETA (International Electrical Testing Association) ATS-2017, en el cual se compara la

temperatura del objeto que queremos medir con la temperatura ambiente y la temperatura de otro punto de referencia que comparte características similares a nuestro punto de interés (Juan Palacios, s.f.).

A continuación, se muestra una tabla elaborada por la empresa Juan Palacios S.L. basada en la tabla 100.18 de la ANSI/NETA ATS-2017 que nos proporciona rangos de temperatura para clasificar la severidad de la diferencia de temperatura de un determinado objeto.

Tabla 13

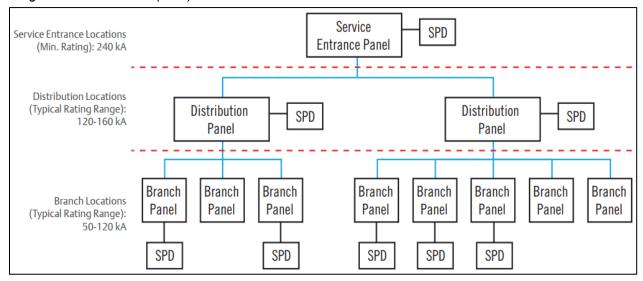
Clasificación de las fallas según las diferencias de temperatura

Nivel	Diferencia Temperaturas Puntos Similares DIF _{SIM} = T _{PC} - T _{REF}	Diferencia Temperatura Ambiente DIF _{AMB} = T _{PC} - T _{AMB}	Clasificación	Acción
1	1°C ≤ DIF _{SIM} < 4°C	1°C ≤ DIF _{AMB} < 11°C	Posible Deficiencia	Se requiere más información.
2	4°C ≤ DIF _{SIM} < 15°C	11°C ≤ DIF _{AMB} < 21°C	Probable Deficiencia	Reparar en la próxima parada disponible.
3	15°C ≤ DIF _{SIM}	21°C ≤ DIF _{AMB} < 40°C	Deficiencia	Reparar tan pronto como sea posible.
4	15°C ≤ DIF _{SIM}	40°C ≤ DIF _{AMB}	Deficiencia Mayor	REPARAR INMEDIATAMENTE

Las protecciones eléctricas que se encuentran instaladas son solamente de dos tipos: Supresores de pico (SPD) y termomagnéticos de 1 polo y 2 polos. Para evaluar los parámetros de diseño se tomará en cuenta el dimensionamiento de estas, la temperatura de funcionamiento y las recomendaciones de instalación del fabricante.

Para determinar el dimensionamiento e instalación adecuada de los supresores de pico, se utilizó el Boletín de instrucción (2016) proporcionado por

el fabricante (Schneider Electric), la guía de dimensionamiento de SPD de Emerson (2021) basada en la norma UL1449, así como la propia UL1449.


Figura 33

Placa de características de los SPD que se encuentran instalados

Para realizar dicho dimensionamiento se tienen que tener en consideración los siguientes parámetros de un SPD: Corriente de corto circuito (SCCR), máxima corriente de descarga (In), Corriente transitoria máxima por fase, máximo voltaje continuo de operación (MCOV) y tensión nominal de la red eléctrica. Adicionalmente, se tiene que tener en consideración en qué parte de la instalación eléctrica se instalará el SPD.

Figura 34
Surge Protection Device (SPD) instalados en cascada

En el presente caso de estudio, los SPD se encuentran instalados en un panel de distribución, por lo tanto, la corriente transitoria máxima por fase debe encontrarse entre 120 – 160 kA (figura 34). Una vez que se encuentra seleccionada la localidad de instalación, la **corriente transitoria máxima por fase** puede ser encontrada haciendo referencia a la corriente de barra del panel de distribución. La corriente de barra del panel CC5A es de 150A, por lo que se recomienda un valor de 100 kA (figura 35).

Figura 35

Tabla de recomendación para seleccionar la corriente transitoria máxima por fase

	Surge Rating "Per Phase" (L-N + LG) Recommended Protection					
Panel Size	(Better)	(Best)				
0 - 225 Amp	50 kA	100 kA				
400 - 600 Amp	100 kA	200 kA				
800 - 1200 Amp	100 kA	200 kA				
1600 - 2500 Amp	200 kA	300 kA				
3000 Amp and Above	300 kA	300 kA				

Nota. Valor de corriente en kA recomendado de acuerdo a las dimensiones del panel de distribución. Tomado de How to Properly Size Surge Protective Devices (p.2), por Emerson, 2021.

Aunque sobre dimensionar el valor de corriente transitoria máxima no garantiza obtener en la misma medida mejores resultados (Emerson, 2021), esto influye en la longevidad de los SPD y se obtienen beneficios que compensan la inversión inicial siempre que dicho sobredimensionamiento no sea excesivo.

Los SPD deben tener la misma tensión nominal de la red eléctrica donde se encuentran instalado. Se debe comparar la tensión de la placa de datos en el SPD con la tensión de la placa de datos del equipo de distribución eléctrica. La configuración del sistema de cualquier red de distribución eléctrica está basada rigurosamente en la configuración de los devanados secundarios del transformador que suministran a la carga (Schneider Electric, 2016). En el presente caso de estudio es 208Y/120V.

Figura 36

Voltaje nominal para diferentes modelos de SPD de Schneider Electric

Tensión de acometida	Corriente transitoria máxima por fase	Números de catálogo ¹
120/240 V, 1 fase, 3 hilos + tierra	120	TVS1IMA12_
	160	TVS1IMA16_
	240	TVS1IMA24_
	320	TVS1IMA32_
	480	TVS1IMA48_
	120	TVS2IMA12_
	160	TVS2IMA16_
208Y/120 V, 3 fases, 4 hilos + tierra (en estrella) ²	240	TVS2IMA24_
(en esticia) -	320	TVS2IMA32_
	480	TVS2IMA48_

Existen 5 tipos de SPD de acuerdo a la norma UL1449. Los SPD instalados se encuentran en el lado de la carga del panel de distribución, de acuerdo a la norma UL1449 (UL1449, 2009, p.6), en este punto de la instalación deben ser instalados SPD de **tipo 2**.

El **NEC** sección **285.7** establece que un SPD no debe ser instalado en lugares donde la corriente de corto circuito disponible exceda a la especificada en el SPD. La corriente de corto circuito en el punto donde se encuentran instalado se puede igualar a la corriente de corto circuito del transformador de 75 kVA, esto es 12.093 kA. Dicho valor es inferior a la corriente de corto circuito de los SPD que se encuentran instalados (200 kA).

En cuando a la corriente de descarga máxima, para un SPD de tipo 2 el máximo valor de acuerdo a la UL1449 disponible es de 20 kA (UL1449, 2009, p.78).

Por último, el voltaje máximo de operación continua adecuado (MCOV por sus siglas en inglés) debe coincidir con el voltaje de la red o ser mayor (ABB, 2017, p.7). En la figura 32 se observa el MCOV es de 150V para L – N y 300V para L – L, por lo que para un sistema 208Y/120V es correcto.

Por lo anteriormente expuesto, se concluye que los SPD se encuentran adecuadamente dimensionados de acuerdo a las recomendaciones del fabricante y la norma UL1449.

6.4.1. Panel CC5A

Tabla 14Resumen de característica del panel CC5A

			Panel CC5A					
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Su	Supresores de Pico		
120/208 V	150 A	30 (9 ocupados)	175 A (QDL32175)	3/0 Awg	I(n)	TVS2IM SPD Ty SCCR		
					kA	kA	100 101	
Observaciones	 Un (L: La val Ad Se col Se dir de Se 1 c El 	módulo s corriente d lor se ap icionalmen observa nectan con identificó u ecto a la sconocida. identificó u del breaker breaker pr	upresor de le demanda l proxima mu te, dicha líne más de un la barra. un breaker de canalizació un sobre cale principal.	n cablear en la pico se encumáxima en La cho a la ca se encuenta conductor e e 90 /3 ubicación, protege entamiento e a las barras.	lentra 1 fue corri tra so en la una	de 138 ente d obrecar s born s 8, 10, carga	al estado .8 A, este le barra. gada. eras que 12 que va trifásica e la línea	

Para dimensionar el breaker principal el NEC nos recomienda en el artículo 215.3 que la corriente nominal del breaker no debe ser menor a la sumatoria de la carga no continua más 125% de la carga continua.

Tanto los valores de carga continua como de carga no continua serán tomados como los promedios de las corrientes promedio y de demanda máxima mostrada en la **tabla 5**:

$$Carga No Continua = 120.1A$$

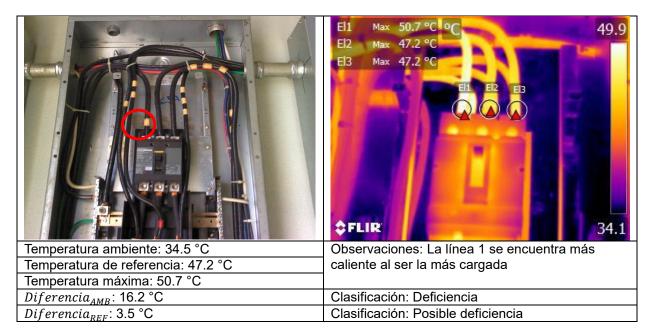
$$Carga\ Continua = 21.95A$$

Corriente nominal del main breaker = 1 * 120.1A + 1.25 * 21.95A = 147.54A

El valor comercial más cercano de corriente nominal para breaker es de 150A (NEC, 2017, Tabla 240.6(A)). Las dimensiones del conductor deben ser seleccionadas de acuerdo al artículo 215.2, que indica que la mínima corriente capaz de soportar no debe ser menor que la suma de la carga no continua más 125% de la carga continua. El conductor que se encuentra instalado es THHW 3/0 AWG, por lo tanto, de acuerdo a la **tabla 310.15(B) (16)** para una temperatura de 75°C este conductor está diseñado para soportar una corriente de hasta 200A, por lo que el cable se encuentra bien seleccionado.

En cuanto al breaker principal instalado, este es de 175A mientras que la corriente de barra del panel es de 150A, por lo que el breaker se encuentra sobre dimensionado tanto para la barra como para las cargas.

Figura 37
Supresores de pico. Módulo de L3 en mal estado


Figura 38

Panel CC5A. Más de un conductor por borne de barras

A continuación, se muestran los puntos calientes que se lograron identificar con la cámara termográfica Flir E50:

Tabla 15Puntos calientes – Panel PC5A

6.4.2. Panel PC5A

Tabla 16Resumen de características del sub panel PC5A

	Panel PC5A										
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador							
120/208 V	125 A	30 (22 ocupados)	150 A (JGM36150)	1/0 Awg							
Observaciones	este va Adiciona • Según e cable 1/	lor se aproxima almente, dicha lín el NEC 2023 (Tab	mucho a la de ea se encuentra la 310.16, p.187 nte nominal a 75), para un calibre de °C es de 150 A. El							

- La corriente máxima es de 125 A, este valor se aproxima mucho a la corriente de demanda máxima.
- Breaker de 30/2 conectado a los espacios 15, 17 no está cableado.
- La secuencia de fase se encuentra invertida (CBA).
- El breaker principal se encuentra sobredimensionado tanto para las cargas como para las barras.

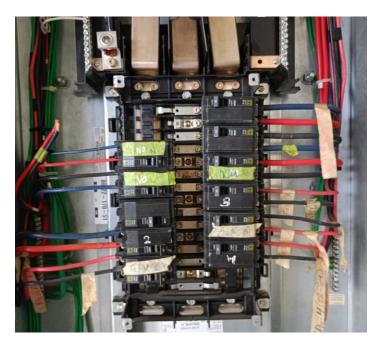
Para dimensionar el breaker principal el NEC nos recomienda en el artículo 210.20(A) que la corriente nominal del breaker no debe ser menor a la sumatoria de la carga no continua más 125% de la carga continua.

Tanto los valores de carga continua como de carga no continua serán tomados como los promedios de las corrientes promedio y de demanda máxima mostrada en la **tabla A1**, respectivamente:

$$Carga\ No\ Continua = 100.9A$$

$$Carga\ Continua = 16.05A$$

Corriente nominal del main breaker = 1 * 100.9A + 1.25 * 16.05A = 120.96A


El valor comercial más cercano de corriente nominal para breaker es de 125A (NEC, 2017, Tabla 240.6(A)). Las dimensiones del conductor deben ser seleccionadas de acuerdo al artículo 210.19(A), que indica que la mínima corriente capaz de soportar no debe ser menor que la suma de la carga no continua más 125% de la carga continua. El conductor que se encuentra instalado es THHW 1/0 AWG, por lo tanto, de acuerdo a la **tabla 310.15(B) (16)** para una temperatura de

75°C este conductor está diseñado para soportar una corriente de hasta 150A, por lo que el cable se encuentra bien seleccionado.

En cuanto al breaker principal instalado, este es de 150A mientras que la corriente de barra del panel es de 125A, por lo que el breaker se encuentra sobredimensionado tanto para la barra como para las cargas.

Figura 39

Sub panel PC5A. Los cables sueltos a la izquierda corresponden al breaker sin cablear ubicado en 15, 17

A continuación, se muestran los puntos calientes que se lograron identificar con la cámara termográfica Flir E50:

Tabla 17Puntos calientes – Panel PC5A

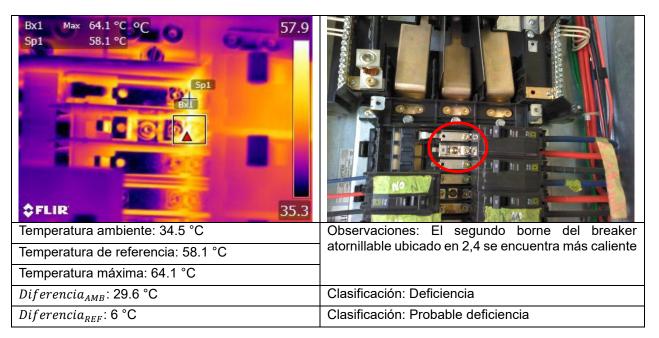
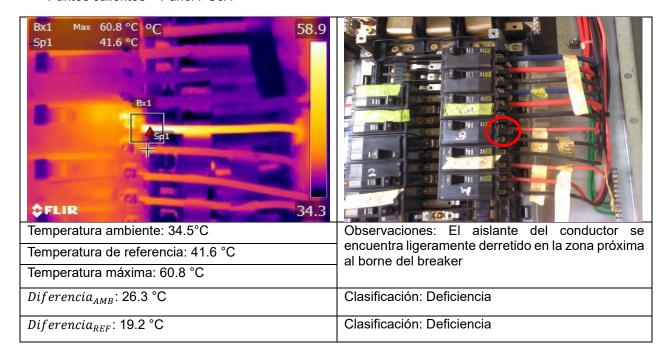



Tabla 18

Puntos calientes – Panel PC5A

6.4.3. Panel PT5A

Tabla 19Resumen de características del sub panel PT5A

	Panel PT5A										
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador							
120/208 V	90 A	42 (28 ocupados)	90 A (QBL32090)	4/0 Awg							
Observaciones	■ La secu ■ Se ider	uencia de fase se ntificó un punto ca	e de 26 A (tabla A2). e encuentra invertida aliente en el borne de do en el espacio 18.	,							

Para dimensionar el breaker principal el NEC nos recomienda en el artículo 210.20(A) que la corriente nominal del breaker no debe ser menor a la sumatoria de la carga no continua más 125% de la carga continua.

Tanto los valores de carga continua como de carga no continua serán tomados como los promedios de las corrientes promedio y de demanda máxima mostrada en la **tabla A2**, respectivamente:

$$Carga\ No\ Continua = 16.16A$$

$$Carga\ Continua = 2.769A$$

Corriente nominal del main breaker = 1 * 16.16A + 1.25 * 2.769A = 19.62A

El valor comercial más cercano de corriente nominal para breaker es de 20A~25A (NEC, 2017, Tabla 240.6(A)). En cuanto al breaker principal instalado,

este es de 90A, valor que coincide con la corriente nominal de las barras, pero que se encuentra sobredimensionado para las cargas.

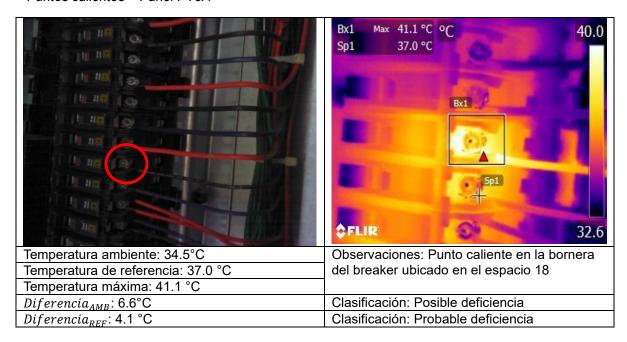
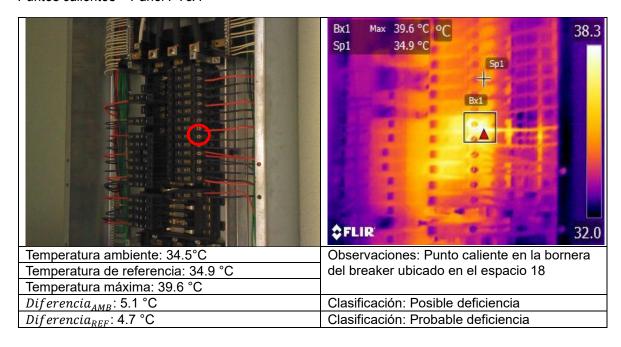

Las dimensiones del conductor deben ser seleccionadas de acuerdo al artículo 210.19(A), que indica que la mínima corriente capaz de soportar no debe ser menor que la suma de la carga no continua más 125% de la carga continua. El conductor que se encuentra instalado es THHW 4/0 AWG, por lo tanto, de acuerdo a la **tabla 310.15(B) (16)** para una temperatura de 75°C este conductor está diseñado para soportar una corriente de hasta 230A, por lo que se encuentra más que sobre dimensionado, sin embargo, no representa un problema debido a que las pérdidas por efecto joule son menores.

Figura 40
Sub panel PT5A



A continuación, se muestran los puntos calientes que se lograron identificar con la cámara termográfica Flir E50:

Tabla 20Puntos calientes – Panel PT5A

Tabla 21Puntos calientes – Panel PT5A

En relación a las imágenes termográficas, de acuerdo con los datos obtenidos en las tablas anteriores, se han logrado identificar algunos sobrecalentamientos que pueden ser producto principalmente de malos contactos entre conductores y breaker o entre breaker y barras. Si bien algunos pueden ser provocados por la operación regular bajo carga, es de especial interés el mal estado de los supresores de picos, así como la sobre carga de la línea 1 y el excesivo sobrecalentamiento en el PC5A, puesto que es posible observar el derretimiento del aislante en uno de los conductores (Ver conclusiones y recomendaciones).

Como se mencionó anteriormente, el mismo procedimiento se realizó en cada uno de los paneles evaluados, debido a la gran extensión que supondría mostrar toda la información con la misma cantidad de detalles, se realizó una tabla con toda la información recopilada a modo de resumen (Ver apéndices).

VII. Conclusiones y recomendaciones

7.1. Conclusiones

Se identificó una carga instalada de **179.1472 kW** y un consumo energético de **15,298.55 kWh/mes** y **2,341.2 kVArh/mes**, siendo el A-IV el mayor consumidor de energía con **6,824.46 kWh/mes** y **1,008.9 kVArh/mes** (Ver apéndices para detalles de distribución de carga instalada y consumo energético).

Se concluye que ninguno de los transformadores de 75kVA se encuentra sobrecargado, siendo el más cargado el transformador ubicado en el A-V con un factor de utilización máxima del **57.2%** (Ver apéndices).

En relación al desbalance de cargas, se identificó que la línea **L3** en CC4A se encuentra sobrecargada, así como la línea **L1** en CC5A.

En cuanto a los principales consumidores eléctricos, se identificó a los equipos de climatización como los principales consumidores, siendo su porcentaje de carga instalada de 52% en A-III, 59% en A-IV, y 79% en A-V (Ver apéndices para más detalle).

Se lograron registrar incidentes relacionados a problemas de calidad de energía, como alta incidencia de las siguientes perturbaciones eléctricas: Cambios rápidos detención (RVC), transitorios, interrupciones y huecos de tensión (Ver apéndices).

Dichos incidentes son más frecuentes en los paneles de iluminación, debido a que no cuentan con supresores de picos y que se alimentan directamente de los transformadores de pedestal.

Adicionalmente, las cargas pueden estar expuestas a un sobre voltaje, especialmente las ubicadas en los paneles de iluminación, puesto que para un sistema 480Y/277 el voltaje máximo de utilización recomendable es de 504Y/291 y 218Y/126 para un sistema 208Y/120 (ANSI C84.1, 2011), lo que puede estar provocando un daño prematuro en los equipos, especialmente en la iluminación del edificio.

Se identificaron algunos equipos de aire acondicionado con voltaje nominal de **230/240V**, por lo que estos están expuesto a un voltaje inferior de línea (Ver figura 12).

De esta manera, podemos concluir que los problemas de calidad de energía identificados no son provocados por las cargas instaladas, sino que su origen proviene de **fuentes externas.**

Respecto al cálculo y estado de las protecciones, se identificó que el dimensionamiento de los SPD es el correcto, sin embargo, se contabilizaron 3 de ellos en mal estado. En el caso de los breakers principales, todos se encuentran sobredimensionados, siendo de especial atención los ubicados en los paneles CC5A, PC5A y CC4A ya que su corriente nominal es superior a la corriente de barra del propio panel.

Las imágenes obtenidas con la cámara termográfica identificaron sobrecalentamiento en los bornes y conexiones de ciertos breakers, específicamente en los paneles CC4A en el breaker principal de la línea 3, PC4A

en los espacios 18, 20, CC5A en el breaker principal de la línea 1, PC5A en los espacios 2, 4, 14, 16, y PT5A en el espacio 18 (Ver apéndices para más detalle).

Además de ello, los siguientes paneles se encuentran con la secuencia de fase invertida: PC3A, PT3A, PC4A, PT4A, PC5A, PT5A, PI3A y PI5A.

7.1. Recomendaciones

Si bien el transformador ubicado en A – III se encuentra trabajando por debajo del 30% recomendado por el fabricante, no se recomienda realizar modificaciones en el sistema eléctrico ni cambiar el transformador debido a la posible incorporación de cargas en futuro, como equipos de aire acondicionado. Sin embargo, se recomienda realizar un balance de cargas en los paneles CC5A, PC5A, CC4A y PC4A.

Se identificaron algunos equipos de aire acondicionado con voltaje nominal de 230/240V, por lo que estos están expuesto a un voltaje inferior de línea a línea, por lo que se recomienda cambiar estos por equipos de aire acondicionado con voltaje nominal de 208V.

Se recomienda actuar sobre los tap **FCAN** del transformador de 750 kVA marca **PROLEC** para reducir los altos voltajes registrados. Ya que este cuenta con 2x + 2.5%, 2x – 2.5% (2-2.5%FCAN, 2-2.5%FCBN), se debe ajustar el voltaje en un factor de **2.5**%.

Respecto a la alta incidencia de perturbaciones eléctricas, se recomienda realizar futuras mediciones en el PCC (lado de baja tensión de los transformadores de **750 kVA** y **1000 kVA**), para determinar si el origen de los

eventos es por causas internas o externas a la instalación eléctrica. Es posible que el daño registrado de las lámparas sea por la gran cantidad de estos eventos que se registraron (RVC, huecos, transigentes), así como el alto voltaje al que están expuestas.

También se recomienda reemplazar los módulos supresores de picos en mal estado para reducir los cambios rápidos de voltaje (RVC) detectados e **instalar módulos supresores de picos** para todos los paneles de iluminación para reducir la incidencia de RVC y flickers (Ver apéndices). Adicionalmente, se recomienda corregir la secuencia de fase en los paneles antes mencionados.

En cuanto al sobredimensionamiento de los breakers principales, se recomienda cambiar los ubicados en los paneles CC5A, PC5A y CC4A por protecciones con valor nominal como máximo igual a la corriente nominal de las barras. Aunque los demás breakers principales se encuentran sobredimensionados, no representan problema debido a que cada carga particular cuenta con su propia protección. Adicionalmente se considera conveniente dejar un margen para la incorporación de cargas futuras.

Por último, se recomienda tomar medidas correctivas respecto a los sobrecalentamientos identificados por la cámara termográfica (Ver apéndices).

VIII. Bibliografía

- Instituto Nicaragüense de Energía [INE]. (2001). Normativa de Servicio Eléctrico https://www.ine.gob.ni/DGE/digesto/normativas/Normativa_servicio_electri co.pdf
- 2. Vallin, F., Fuentefria, S., & Silvio, H. (2018). *Análisis del factor de carga de un sistema eléctrico aislado con fuentes renovables de energía*. Ingeniería Energética, 39(1), 13–20. http://scielo.sld.cu/scielo.php?script.
- 3. International Electrotechnical Commission [IEC]. (2010). Safety requirements for electrical equipment for measurement, control, and laboratory use Part 1: General requirements (IEC 61010-1:2010)
- 4. Comisión Europea. (2023). *Glosario: Frecuencia*. ec.europa.eu. https://ec.europa.eu/health/scientific_committees/opinions_layman/es/cam pos-electromagneticos/glosario/def/frecuencia.htm
- 5. International Electrotechnical Commission [IEC]. (2019). Electrical safety in low voltage distribution systems up to 1 000 V AC and 1 500 V DC Equipment for testing, measuring or monitoring of protective measures Part 1: General requirements (IEC 61557-1:2019 RLV)
- 6. International Electrotechnical Commission [IEC]. (2018). Limits Limits for harmonic current emissions (equipment input current ≤ 16 A per phase) (IEC 61000-3-2)
- 7. Milton, G. (s.f.). Fundamentos de Electricidad. México DF: McGraw Hill.
- 8. Fluke. (2023). *Analizadores de calidad eléctrica y energía 434 / 435 de Fluke*. Fluke.com. https://www.fluke.com/es-mx/producto/comprobacion-electrica/calidad-electrica/434-435
- 9. Fluke. (s.f.). *Pinza amperimétrica de verdadero valor eficaz CAT III 1500 V 393 FC*. Fluke.com. https://www.fluke.com/es-es/producto/comprobacion-electrica/pinzas-amperimetricas/393-fc
- 10. P. S. Magdum, S. R. Lokhande, P. M. Maskar and I. D. Pharne. (2017). A case study: Energy audit at commercial and educational building. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 1360-1364, doi: 10.1109/ICPCSI.2017.8391933.
- 11. Arauz Amador, A. A y Urbina Narváez, E. A. (2021). *Propuesta de balance de carga en los paneles eléctricos principales por centro de transformación*

- del recinto Universitario Simón Bolívar de la Universidad Nacional de Ingeniería [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional de la UNI. http://ribuni.uni.edu.ni/4209/1/96095.PDF
- 12. Trujillano Caro, E. F. (2017). Evaluación de la calidad de la energía eléctrica y cálculo de la opción tarifaria adecuada para el Hospital privado Juan Pablo II ubicado en el distrito La Victorio de Chiclayo departamento de Lambayeque [Tesis de grado, Universidad Nacional "Pedro Ruiz Gallo"]. Repositorio Institucional de la UNPRG. https://repositorio.unprg.edu.pe/bitstream/handle/20.500.12893/1954/BC-TES-TMP-809.pdf?sequence=1&isAllowed=y
- 13. Acuña Selva, H. A y Narváez Ortiz, N. N. (2022). Auditoría eléctrica y calidad de energía en red eléctrica principal de baja tensión en el recinto universitario de la Universidad Centroamericana (UCA) [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional de la UNI http://ribuni.uni.edu.ni/4351/1/96460.pdf
- 14. Cervantes Roa, O. M. (2014). Metodología de medición de calidad de energía eléctrica en base a normas nacionales e internacionales para la Universidad de la Costa CUC [Tesis de grado, Universidad de la Costa]. Repositorio Institucional de la Universidad de la Costa. https://repositorio.cuc.edu.co/bitstream/handle/11323/900/Proyecto%20de%20grado%20%28final%29.pdf?sequence=1&isAllowed=y
- 15. Perea Vasquez, G y Vasquez Silva, J. O. (2020). *Metodología para realizar auditoría de energía eléctrica. Caso aplicativo: Edificio de educación superior* [Tesis de grado, Universidad de Piura]. Repositorio Institucional de la Universidad de Piura. https://pirhua.udep.edu.pe/bitstream/handle/11042/4791/IME_2023.pdf?sequence=1&isAllowed=y
- 16. Nicaragua Carballo, R. J y Rivera Ramírez, F. A. (2017). Propuesta de Metodología Para el Análisis y Estudio de la Calidad de la Energía Eléctrica. [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional de la UNI. http://ribuni.uni.edu.ni/1527/1/91216.pdf
- 17. Boylestad, R. L. (2004). *Introducción al análisis de circuitos*. (10ª Ed.) Pearson Education.

- 18. hagamos. (s.f.). ¿Qué es un balanceo de carga eléctrica y por qué es importante su correcta instalación en las cocinas industriales?. Hagamos.co https://hagamos.co/que-es-un-balanceo-de-carga-electrica/#:~:text=El%20balanceo%20de%20carga%20el%C3%A9ctrica,da%C3%B1os%20en%20la%20instalaci%C3%B3n%20el%C3%A9ctrica.
- 19. American National Standards Institute [ANSI]. (2016). American National Standard for Electric Power Systems and Equipment— Voltage Ratings (60 Hz) (C84.1-2016)
- 20. Institute of Electrical and Electronics Engineers [IEEE]. (2019). *IEEE Recommended Practice for Monitoring Electric Power Quality* (IEE std 1159-2019)
- 21. Institute of Electrical and Electronics Engineers [IEEE]. (2014). *IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems* (IEEE std 519-2014)
- 22. Institute of Electrical and Electronics Engineers [IEEE]. (2015). *IEEE Standard for Measurement and Limits of Voltage Fluctuations and Associated Light Flicker on AC Power Systems* (IEEE std 1453-2015)
- 23. International Electrotechnical Commission [IEC]. (2002). Testing and measurement techniques General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto (IEC std 61000-4-7 2002)
- 24. International Electrotechnical Commission [IEC]. (2003). Testing and measurement techniques Flickermeter Functional and design specifications (IEC 61000-4-15 2003)
- 25. International Electrotechnical Commission [IEC]. (2003). Testing and measurement techniques Power quality measurement methods (IEC 61000-4-30 2003)
- 26. Asociación Española de Normalización [UNE]. (2004). Guía general relativa a las medidas de armónicos e interarmónicos, así como a los aparatos de medida, aplicable a las redes de suministro y a los aparatos conectados a éstas (UNE-EN 61000-4-7 2004)

- 27. Asociación Española de Normalización [UNE]. (1999). *Técnicas de ensayo y medida. Sección 15: Medidor de flicker. Especificaciones funcionales y diseño* (UNE-EN 61000-4-15 1999)
- 28. Asociación Española de Normalización [UNE]. (2004). *Técnicas de ensayo* y de medida. Métodos de medida de la calidad de suministro (UNE-EN 61000-4-30 2004)
- 29. European Committee for Electrotechnical Standardization [CENELEC]. (2003). Voltage characteristics of electricity supplied by public distribution systems (EN 50160 2003)
- 30. Flir. (2011). *Guía de termografía para mantenimiento predictivo*. Centro de Formación de Infrarrojos (ITC)
- 31. Texas Instruments. (s.f.). *Power Quality Analyzer*. Products and reference designs. Recuperado de: https://www.ti.com/solution/power-quality-analyzer#:~:text=Power%20quality%20analyzers%20are%20used,equipment%20plugged%20into%20the%20grid.
- 32. Asamblea Nacional. (2013). *INAUGURAN EDIFICIO "RIGOBERTO LÓPEZ PÉREZ"*. Prensa Asamblea Nacional. Recuperado de: https://noticias.asamblea.gob.ni/inauguran-edificio-rigoberto-lopez-perez/
- 33. Circuitor. (15 de junio de 2022). Descubre cómo afecta un evento de tensión a tu instalación. Recuperado de: https://circutor.com/articulos/descubre-como-afecta-un-evento-detension-a-tu-instalacion/
- 34. LeFleur, W. (2016). CBEMA AND ITIC CURVES. Powermonitors. Recuperado de: https://cdn2.hubspot.net/hub/446633/file2240606432-pdf/White-Papers/WP108.pdf? https://cdn2.hubspot.net/hubspot.net/hub/446633/file2240606432-pdf/White-Papers/WP108.pdf <a href="https://cdn2.hubspot.net/hubspot.n
- 35. NFPA. (2023). National Electric Code (NFPA 70)
- 36. Juan Palacios S.L. (s.f.). Análisis termográfico: Herramienta de mantenimiento predictivo. Recuperado de: https://www.juanpalacios.es/wpcontent/uploads/2015/12/servicio-analisis-termográfico.pdf
- 37. ANSI/NETA. (2017). Acceptance Testing Specifications for Electrical Power Equipment and Systems. (ANSI/NETA ATS 2017)

- 38. Mungía Pereira, H. M y Calero Martínez, N. A. (2021). Estudio de Auditoria Eléctrica en el CASINO PRINCESS, Para el Uso Eficiente de la Energía Eléctrica. [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional de la UNI: https://ribuni.uni.edu.ni/4118/1/95929.pdf
- 39. Hernández Baltodano, D. J. y Ulloa García, O. F. (2021). Elaboración de Auditoria Eléctrica en la Industria San Francisco S.A para mejoramiento en la eficiencia eléctrica de sus equipos eléctricos. [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional de la UNI: https://ribuni.uni.edu.ni/3943/1/95599.pdf
- 40. Emerson. (2021). How to Properly Size Surge Protective Devices. White paper. Recuperado de: https://www.appleton.emerson.com/documents/white-paper-how-to-properly-size-surge-protective-devices-solahd-en-7635026.pdf
- 41. Schneider Electric. (2016). *Internal Modular Assembly (IMA) Surge Protective Device (SPD)*. Instruction Bulletin. Recuperado de: https://iportal2.schneider-electric.com/Contents/docs/8222-0050.PDF
- 42. Underwriters Laboratories. (2009). Surge Protective Devices. UL1449
- 43. ABB. (2017). Surge protective devices. UL Range

Apéndices

Apéndice A. Resumen de mediciones de paneles

Tabla A1. Resumen de mediciones realizadas en PC5A

Fecha de medición	12/08/2023 al 14/08/2023							
Tiempo de medición	1d 21h 32m 0s 0ms							
			Pron	Promedio		Máximo		
1. Voltaje	Mínimo						Desbala	ance (%)
1.1. VL1N	119.32		125	5.05	126.70			
1.2. VL2N	121.64		125	5.56	127	.02	0.	422
1.3. VL3N	118.70		126	5.10	127	7.78	0.4	+22
							М	ax.
2. Corriente	Demanda máxim	na	Prom	nedio	Máx	timo	Desbala	ance (%)
2.1. L1	123.4		18	.23	229	9.1		
2.2. L2	87.3		14	.29	19	1.4	13	.52
2.3. L3	92		15	.65	193	3.8		
2.4. N	0.1		0.179		0.3			
	Demar			Demanda Máxima Poten		Máxima	Desbalance	
3. Potencia (kW, kVA)	Potencia Promedio		(kW, kVA)		Registrada		máximo (%)	
, , ,	(kW, kVA)		, ,		(kW, kVA)		(kW, kVA)	
3.1. L1	2.05118	2.2508	14.9	15.28	26.9	28.02		
3.2. L2	1.662	1.7773	9.82	10.08	21.4	23.54		
3.3. L3	1.84443	1.95458	15.52	11.54	23.22	23.82	10.72	12.86
3.4. Total	5.74722	6.14677	36.24	38.22	49.74	64.2		
4. Consumo de energía			Consum	o por Mes				
4.1. kWh			1,229.339	kWh/mes				
4.2. kVArh			333.61 k	VArh/mes				
5. Máxima variación de								
frecuencia		0.205	% (Menor al 0.5	% normado p	or el INE)			
6. Factor de potencia								
promedio			0.2	21 ⁶				
7. Armónicos	THDV (% m	ıax)		THDI ⁷ (% m	ax)		TDD ⁸	
7.1. L1	1.51			15.24			N/A	
7.2. L2	1.44			20.19			N/A	
7.3. L3	1.44			19.22		N/A		

 ⁶ Este es un valor medio aritmético, con carga el FP se mantiene entre 0.85 y 0.96.
 ⁷ Valores máximos alcanzados con poca o ninguna carga, ver análisis realizado en CC5A.
 ⁸ La TDD no es calculada, puesto que el THDI no es lo suficientemente alto para indicar problemas (Ver CC5A).

Tabla A2. Resumen de mediciones realizadas en PT5A

Fecha de medición			18	/08/2023 al 19/	08/2023			
Tiempo de medición				0d 22h 49m 0s	oms			
			Pro	Promedio		Máximo		
1. Voltaje	Mínimo						Desbala	ance (%)
1.1. VL1N	119.03		1:	24.13	126	.65		
1.2. VL2N	119	.73	1:	24.82	127	.59	0.6	534
1.3. VL3N	120	.68	1:	24.44	127	.81	0.0	554
			Promedio		Máximo		Max.	
2. Corriente	Demanda n	náxima					Desbala	ance (%)
2.1. L1	25	5.4	;	3.49	2	6		
2.2. L2	1	4	2	2.073	17	.2	26.	038
2.3. L3	9.	.1	2	2.744	10	.8		
2.4. N	18	3.5	3	3.027	19.9			
			Demanda Máxima Potencia Máx		Máxima	Desba	alance	
3. Potencia (kW, kVA)	Potencia	Promedio	(kW, kVA)		Registrada		máximo (%)	
, , ,	(kW,	kVA)			(kW, kVA)		(kW, kVA)	
3.1. L1	0.4527	0.5102	3.080	3.12	3.14	3.19		
3.2. L2	0.2906	0.3264	1.590	1.64	2.06	2.130	29.74	27.98
3.3. L3	0.3035	0.3593	0.98	1.12	1.02	1.34		
3.4. Total	1.0173	1.2831	5.34	6.3	6	6.81		
4. Consumo de energía				Consumo por	Mes			
4.1. kWh				374.56 kWh/	mes			
4.2. kVArh				46.58 kVArh/	mes			
5. Máxima variación de frecuencia			0.123 % (Me	enor al 0.5% no	rmado por e	el INE)		
6. Factor de potencia promedio				0.67 ⁹				
7. Armónicos	THD	V (% max)		THDI (% ma	ax)		TDD ¹⁰	
7.1. L1		1.19		92.79			N/A	
7.2. L2		1.19		107.72			N/A	
7.3. L3		1.15		66.43			N/A	
7.4. N	;	327.67		327.67			N/A	

Este es un valor medio aritmético, con carga el FP se mantiene entre 0.85 y 0.9.
 La TDD no es calculada, puesto que la carga en el panel es baja la distorsión armónica no es significativa (Ver CC5A).

Tabla A3. Resumen de mediciones realizadas en PI5A

Fecha de medición		26/08/2023 al 28/08/2023								
Tiempo de medición	1d 20h 27m 0s									
			Promedio		Máximo		Max.			
1. Voltaje	Mínimo						Desbalance (%			
1.1. VL1N	255.09		288	.46	6 294.86					
1.2. VL2N	257.06		286	.72	291	.97	0.5	562		
1.3. VL3N	254	.85	289	.85	294	1.4	0.0	002		
			Prom	nedio	Máx	imo	Max.			
2. Corriente	Demanda	a máxima					Desbala	ance (%)		
2.1. L1	0	.2	0.2	95	0.	5				
2.2. L2	7	.7	1.1	76	7.	7				
2.3. L3	8	.1	0.9	52	8.:	2	63	.48		
2.4. N	7	.8	1.1	51	8.3	2				
	Potencia Promedio		Potencia Promedio Demanda Máxima		Máxima	Potencia	Máxima	Desba	alance	
3. Potencia (kW, kVA)			(kW, kVA)		(kW, kVA)		Regis	trada	máxin	no (%)
		,			(kW, kVA)		(kW, kVA)			
3.1. L1	0.026	0.082	0.02	0.06	0.03	0.14				
3.2. L2	0.296	0.34	2.13	2.18	2.14	2.19				
3.3. L3	0.237	0.28	2.3	2.35	2.31	2.39	86.04	64.63		
3.4. Total	0.546	0.814	4.44	5.55	4.47	5.61				
4. Consumo de energía			C	Consumo por	Mes					
4.1. kWh			;	392.64 kWh/r	nes					
4.2. kVArh			;	38.83 kVArh/r	mes					
5. Máxima variación de frecuencia		(0.158% (Mend	or al 0.5% nor	mado por e	INE)				
6. Análisis de carga				Porcentaje (%)					
6.1. Carga instalada				8.468 kW						
6.2. Factor de carga				12.29						
6.3. Factor de demanda				52.43						
7. Factor de potencia promedio				0.6 ¹¹						
8. Armónicos	THD	V (% max)		THDI (% ma	ax)	٦	ГDD ¹² р99			
8.1. L1		1.3		17.04			N/A			
8.2. L2		1.25		36.24			N/A			
8.3. L3		1.27		24.32			N/A			

Este es un valor medio aritmético, con carga el FP se mantiene entre 0.4 y 0.8.
 La TDD no es calculada, puesto que la carga en el panel es baja la distorsión armónica no es significativa (Ver CC5A).

Tabla A4. Resumen de mediciones realizadas en CC4A

Fecha de medición			21	1/08/202)23 al 23/0	8/2023			
Tiempo de medición	2d 6h 3m 0s								
			Pr	romedio	medio Máxim		Máximo Max.		
1. Voltaje	Mír	imo							ance (%)
1.1. VL1N	115	5.22	1	123.78		126.79			
1.2. VL2N	114	114.82		124.45		127.	15	0.4	108
1.3. VL3N	10	8.4	1	124.67		127.	86	0.	100
			Pr	romedio	0	Máxi	mo	Max.	
2. Corriente	Demanda	a máxima						Desbala	ance (%)
2.1. L1	68	3.5		22.83		152	.7		
2.2. L2	93	3.9	:	28.78		176	.8		
2.3. L3	10	8.1	;	36.25		208	.3	23	.78
2.4. N	20).9		6.44		71.	4		
						Potencia	Máxima	Desba	alance
	Potencia	Promedio	Demanda Máxima		na	Registrada		máxin	no (%)
3. Potencia (kW, kVA)	(kW,	kVA)	(k\	(kW, kVA)		(kW, ł	(VA)	(kW, kVA)	
3.1. L1	2.24	2.79	7.48		8.32	8.73	18.69		
3.2. L2	3.42	3.56	11.25		11.55	20.91	21.46	31.88	44.71
3.3. L3	4.20	4.47	13.13	'	13.29	23.97	25.22		
3.4. Total	9.80	11.29	29.76	(31.44	41.13	56.22		
4. Consumo de energía				Consu	sumo por N	Лes			
4.1. kWh				6,623.	3.12 kWh/r	nes			
4.2. kVArh				927.5	52 kVArh/n	nes			
5. Máxima variación de frecuencia			0.133% (Me	enor al (0.5% norr	nado por el	INE)		
6. Análisis de carga del trafo				Por	rcentaje (%	6)			
6.1. F. Utilización max					41.92				
6.2. F. Utilización media					15.06				
6.3. Máxima sobre carga					74.96				
6.4. Factor de carga					35.92				
6.5. Factor de demanda					53.75				
7. Factor de potencia promedio					0.87 ¹³				
8. Armónicos	THE	V (% max)		THE	IDI (% max	()	Т	DD ¹⁴ p99	
8.1. L1		1.56			102.52			3.645	
8.2. L2		1.9			76.21			4.061	
8.3. L3		1.7			91.27			5.573	

¹³ Este es un valor medio aritmético, con carga el FP se mantiene entre 0.87 y 0.99.
¹⁴ La TDD no es calculada, puesto que la carga en el panel es baja la distorsión armónica no es significativa (Ver CC5A).

Tabla A5. Resumen de mediciones realizadas en PC4A

Fecha de medición	23/08/2023 al 25/08/2023							
Tiempo de medición		1d 18h 5m 0s 0ms						
1. Voltaje	Mínimo	Pron	nedio	Máx	kimo	Max. Desbala	ance (%)	
1.1. VL1N	121.85	124	1.53	126.56				
1.2. VL2N	122.10		124	124.992		6.96		398
1.3. VL3N	122.77		125	.506	127	'.37	0.	390
	Demanda máxim	na					Max.	
2. Corriente			Pron	nedio	Máx	imo	Desbala	ance (%)
2.1. L1	51.5		8.	99	150	0.8		
2.2. L2	25.3		3.	46	133	3.7	74	1.20
2.3. L3	67		8.	03	172	2.6		
2.4. N	0.2 0.163			0.	.6			
3. Potencia (kW, kVA)	Potencia Promec (kW, kVA)	lio	Demanda (kW,			Potencia Máxima Registrada		alance mo (%) , kVA)
3.1. L1	0.814	1.109	5.47	6.33	6.19	18.43	(KVV,	, KVA)
3.2. L2	0.364	0.429	2.96	3.15	15.68	16.42		
3.3. L3	0.936	0.997	8.03	8.08	20.5	21.13	48.35	49.23
3.4. Total	2.101	2.848	15.24	18.33	29.4	49.20		
4. Consumo de energía			Consum	o por Mes				
4.1. kWh			1,326.15	kWh/mes				
4.2. kVArh			146.77 k	VArh/mes				
5. Máxima variación de frecuencia	0.180 % (Menor al 0.5% normado por el INE)							
6. Factor de potencia								
promedio	0.76 ¹⁵							
7. Armónicos	THDV (% max) THDI ¹⁶ (% max) TDD ¹⁷							
7.1. L1	1.18 130.73 N/A							
7.2. L2	1.33			88.89			N/A	
7.3. L3	1.25			37.95			N/A	

¹⁵ Este es un valor medio aritmético, con carga el FP se mantiene entre 0.85 y 0.96.
16 Valores máximos alcanzados con poca o ninguna carga, ver análisis realizado en CC4A.
17 La TDD no es calculada, puesto que el THDI no es lo suficientemente alto para indicar problemas (Ver CC5A).

Tabla A6. Resumen de mediciones realizadas en PT4A

Fecha de medición		25/08/2023 al 26/08/2023							
Tiempo de medición		0d 21h 25m 30s 0ms							
1. Voltaje	Mír	Mínimo		Prom	edio	Máx	imo	Max. Desbala	ance (%)
1.1. VL1N	12	2.2		124.	96	127.17			
1.2. VL2N	123	3.25		125.	54	127	.83	0.4	132
1.3. VL3N	122	2.78		126.	02	128	.25	0	102
2. Corriente	Demand	a máxima		Prom	edio	Máx	imo	Max.	
								Desbala	ance (%)
2.1. L1	2	,9		0.59	98	4.6	00		
2.2. L2	9	,2		2.29	95	13.9	900	74.	395
2.3. L3	13	3,3		2.98	33	38.5	500		
2.4. N	1	2		3.40	65	37.400			
		Promedio	De		Máxima	Potencia	Potencia Máxima		alance
3. Potencia (kW, kVA)	(kW,	kVA)		(kW, ł	(VA)	Regis			no (%)
		1				(kW,	kVA)	(kW,	kVA)
3.1. L1	0.052	0.075	0.3	30	0.350	0.360	0.560		
3.2. L2	0.248	0.286	1.1	20	1.140	1.690	1.740		
3.3. L3	0.300	0.373	1.5	90	1.630	4.380	4.750	73.778	69.420
3.4. Total	0.588	0.869	2.3	340	3.000	4.800	8.310		
4. Consumo de energía				С	onsumo por	Mes			
4.1. kWh				;	379.6 kWh/m	nes			
4.2. kVArh					8.3 kVArh/m	ies			
5. Máxima variación de frecuencia			0.08 %	(Meno	r al 0.5% nor	mado por el	INE)		
6. Factor de potencia promedio	0.63 ¹⁸								
7. Armónicos	THDV (% máx.) THDI (% máx.) TDD ¹⁹								
7.1. L1		1.26 183.14						N/A	
7.2. L2		1.45			162.25			N/A	
7.3. L3		1.29			95.72			N/A	

 ¹⁸ Este es un valor medio aritmético, con carga el FP se mantiene entre 0.85 y 0.9.
 19 La TDD no es calculada, puesto que la carga en el panel es baja la distorsión armónica no es significativa (Ver CC5A).

Tabla A7. Resumen de mediciones realizadas en PI4A

Fecha de medición	09/08/2023 al 12/08/2023							
Tiempo de medición	2d 17h 46m 0s 0ms							
1. Voltaje	Mínimo			medio	Máxi	imo	M	ax.
							Desbala	ance (%)
1.1. VL1N	277.38	29	0.73	294.	.48			
1.2. VL2N	278.76		28	289.25		.54	0	48
1.3. VL3N	269.56		29	2.06	295.	.74	0.	40
2. Corriente							M	ax.
	Demanda máxi	ma	Pro	medio	Máxi	imo	Desbala	ance (%)
2.1. L1	3.7		C	.59	8.8	5		
2.2. L2	4.4		C	.55	8.8	9		
2.3. L3	2		C	.47	4.	1	12	.42
2.4. N	2.4		C	.39	6.8	8		
3. Potencia (kW, kVA)	Potencia Prome	dio	Demanda N	1áxima	Potencia	Máxima	Desba	alance
	(kW, kVA)		(kW	, kVA)	Regist	trada	máxin	no (%)
					(kW,	VA)	(kW,	kVA)
3.1. L1	0.124	1.04	1.06	1.06	2.44			
3.2. L2	0.114	1.22	1.26	1.22	2.58			
3.3. L3	0.069	0.1295	0.562	0.58	0.58	1.18	32.58	15.14
3.4. Total	0.3	0.4522	2.34	2.52	2.34	4.68		
4. Consumo de energía			Consu	mo por Mes				
4.1. kWh			201.3	4 kWh/mes				
4.2. kVArh			81.38	kVArh/mes				
5. Máxima variación de								
frecuencia		0.12 9	% (Menor al 0	.5% normado j	por el INE)			
6. Análisis de carga			Porc	entaje (%)				
6.1. Carga instalada			8.	886 kW				
6.2. Factor de carga				12.82				
6.3. Factor de demanda				26.33				
7. Factor de potencia promedio	0.55 ²⁰							
8. Armónicos	THDV (% max) THDI (% max)						TDD ²¹	
8.1. L1	1.54	•		26.43			N/A	
8.2. L2	1.32			24.49			N/A	
8.3. L3	1.45			17.59			N/A	

Este es un valor medio aritmético, con carga el FP se mantiene entre 0.44 y 0.94.
 La TDD no es calculada, puesto que la carga en el panel es baja la distorsión armónica no es significativa.

Tabla A8. Resumen de mediciones realizadas en CC3A

Fecha de medición			14/08	8/2023 a	I 16/08/2023				
Tiempo de medición	14/08/2023 al 16/08/2023 2d 6h 31m 30s								
1. Voltaje		Máx	imo	Max.					
	Mír	nimo						Desba	lance (%)
1.1. VL1N	112	2.38		124.	44	126	5.7		
1.2. VL2N	115.04 125.37			127.26		0.515			
1.3. VL3N	98.24 125.44				127	'.8	"	.515	
	Demanda máxima						Max.		
2. Corriente				Prom	edio	Máx	imo	Desba	lance (%)
2.1. L1	39	9.6		16.6	67	137	' .6		
2.2. L2	53	3.5		16.2	24	153	3.5		
2.3. L3	68	3.3		26.	54	23	4	3:	3.93
2.4. N	14.6 3.1				15	.6			
3. Potencia (kW, kVA)	Potencia	Promedio	D	emanda	Máxima	Potencia	Máxima	Dest	palance
, ,	(kW,	kVA)		(kW, ł	(VA)	Regis	trada	máxi	mo (%)
	, .	,		, ,	,	(kW, I			, kVA)
3.1. L1	1.6	1.6 2.062 4.12 4.84				4.26	17		
3.2. L2	1.92	2.022	6	.44	6.68	18.36	18.9		
3.3. L3	2.98	3.29	8	3.2	8.44	19.18	28.2	37.67	33.95
3.4. Total	6.48	7.903	17	7.82	19.56	38.7	63.72		
4. Consumo de energía			С	onsumo	por Mes				
4.1. kWh			4	,382.73	kWh/mes				
4.2. kVArh			7	78.93 k\	/Arh/mes				
5. Máxima variación de									
frecuencia		0.153 9	% (Mend	or al 0.5%	% normado p	or el INE)			
6. Análisis de carga del trafo.				Porcent	aje (%)				
6.1. F. Utilización max				26.	08				
6.2. F. Utilización media				10.	56				
6.3. Máxima sobre carga				84.	96				
6.4. Factor de carga				40.	40				
6.5. Factor de demanda		67.97							
7. Factor de potencia		22							
promedio		0.6 ²²							
8. Armónicos	THDV (% max) THDI ²³ (% max) TDD ²⁴ p99						9		
8.1. L1		2			99.12			5.713	
8.2. L2		1.88			147.48			6.324	
8.3. L3		2.16			112.21			6.513	

Este es un valor medio aritmético, con carga el FP se mantiene entre 0.75 y 0.97.
 Valores máximos alcanzados con poca o ninguna carga, ver análisis realizado en CC3A.
 La TDD no es calculada, puesto que el THDI no es lo suficientemente alto para indicar problemas (Ver CC5A).

Tabla A9. Resumen de mediciones realizadas en PC3A

Fecha de medición	16/08/2023 al 17/08/2023								
Tiempo de medición		0d 23h 5m 30s 0ms							
1. Voltaje		Máx	imo	Max.					
	Mín	imo					Desbal	ance (%)	
1.1. VL1N	110	25	12	4.11	127	30			
1.2. VL2N		119.25 119.66			128				
1.3. VL3N		9.28		4.98 5.27	128		0.	539	
1.3. VESIN		a máxima	12	5.21	120	.93	Max.		
2. Corriente	Demand	a IIIaxiiiia	Dro	medio	Máx	imo		anaa (9/)	
							Desbai	ance (%)	
2.1. L1		3.2		.202	130				
2.2. L2		5.1		.97	137	-	4	0.3	
2.3. L3	57.9 17.72				154				
2.4. N	0	0.3 0.3				4			
3. Potencia (kW, kVA)	Potencia	Promedio	Demand	a Máxima	Potencia	Potencia Máxima		Desbalance	
	(kW,	kVA)	(kW	, kVA)	Regis	trada	máximo (%)		
					(kW,	kVA)	(kW	, kVA)	
3.1. L1	0.9967	1.3729	2.88	4	3.12	15.8			
3.2. L2	1.0141	1.1022	3.98	4.16	16.41	17.24			
3.3. L3	1.9711	2.1817	6.81	7	17.49	18.81	48.5	40.5	
3.4. Total	3.9634	5.0343	13.65	15.72	26.07	43.23			
4. Consumo de energía			Consum	o por Mes					
4.1. kWh			2,703.9	kWh/mes					
4.2. kVArh			589.94	«VArh/mes					
5. Máxima variación de									
frecuencia		0.135 %	% (Menor al 0.	5% normado p	or el INE)				
6. Factor de potencia	,								
promedio	0.53 ²⁵								
7. Armónicos	THDV (% max) THDI ²⁶ (% max) TDD ²⁷								
7.1. L1	1.29 20.26 N/A								
7.2. L2		1.25 50.89 N/A							
7.3. L3		1.24		25.18	_		N/A		

Este es un valor medio aritmético, con carga el FP se mantiene entre 0.8 y 0.88.
 Valores máximos alcanzados con poca o ninguna carga, ver análisis realizado en CC3A.
 La TDD no es calculada, puesto que el THDI no es lo suficientemente alto para indicar problemas (Ver CC5A).

Tabla A10. Resumen de mediciones realizadas en PT3A

Fecha de medición	17/08/2023 al 18/08/2023								
Tiempo de medición		0d 22h 48m 0s 0ms							
1. Voltaje	Mír	nimo	Prom	nedio	Máx	imo	Max.		
							Desbalance (%)		
1.1. VL1N	116	6.97	123	.98	126	126.65			
1.2. VL2N	104	1.11	124	.73	127	.23	0.4	454	
1.3. VL3N	11	1.88	124	.93	127	.23			
2. Corriente	Demand	a máxima	Prom	nedio	Máx	imo	Max.		
							Desbala	ance (%)	
2.1. L1	6	.9	1.5	52	7.4	10			
2.2. L2	8	.7	2.	54	9.6	60			
2.3. L3	!	9	2.0	03	9.5	50	2	25	
2.4. N	7	.2	2.	10	7.7	7.70			
	Potencia	Promedio	Demanda	Máxima	Potencia	Potencia Máxima		alance	
3. Potencia (kW, kVA)	(kW,	kVA)	(kW,	kVA)	Regis	Registrada		no (%)	
		(kW, kVA)		kVA)	(kW,	kVA)			
3.1. L1	0.164	0.187	0.820	0.84	0.86	0.89			
3.2. L2	0.287	0.3131	1.050	1.07	1.11	1.14	28.03	25.3	
3.3. L3	0.221	0.251	1.060	1.14	1.12	1.2			
3.4. Total	0.661	0.7957	2.340	2.46	2.4	2.52			
4. Consumo de energía			(Consumo por	Mes				
4.1. kWh				463.04 kWh/i	mes				
4.2. kVArh			7	.2116 kVArh	/mes				
5. Máxima variación de frecuencia			0.11% (Mend		mado por el	INE)			
6. Factor de potencia promedio	0.55 ²⁸								
7. Armónicos	THDV (% max) THDI (% max) TDD ²⁹								
7.1. L1	1.21 56.94 N/A						N/A		
7.2. L2		1.22		84.1			N/A		
7.3. L3		1.18		132.86			N/A		

Este es un valor medio aritmético, con carga el FP se mantiene entre 0.7 y 0.97.
 La TDD no es calculada, puesto que la carga en el panel es baja la distorsión armónica no es significativa (Ver CC5A).

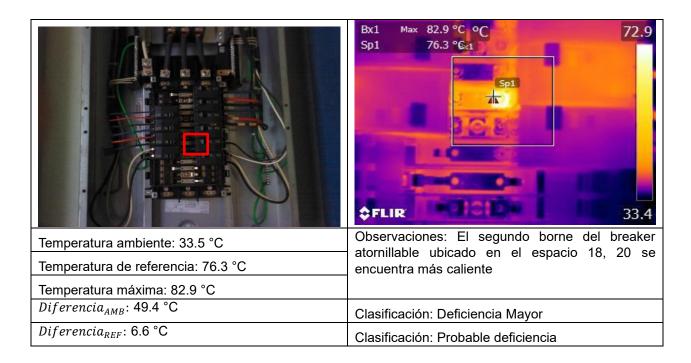
Tabla A11. Resumen de mediciones realizadas en PI3A

Fecha de medición	26/08/2023 al 28/08/2023								
Tiempo de medición	1d 20h 27m 0s 0ms								
1. Voltaje	Mínimo Promedio					Máxi	mo	Max. Desbala	ance (%)
1.1. VL1N 1.2. VL2N 1.3. VL3N	205.70 288.03 227.84 286.30 238.65 289.45				294 293 296	.66	0.	56	
2. Corriente	Demanda	a máxima		Prom	odio	Máxi	ima	Max.	nno (9/)
2.1. L1		.5		0.4				Desbala	ance (%)
2.1. L1 2.2. L2		.5 .4		-		5.: 5.:			
2.2. L2 2.3. L3	1.			0.3		12.		7	00
2.3. L3 2.4. N		.o 1		0.3		11.		/.	89
3. Potencia (kW, kVA)	Potencia (kW,	Promedio	De		Máxima	Potencia Regisi (kW, I	Máxima trada	máxin	alance no (%) kVA)
3.1. L1	0.059 0.1173 0.4 0.66				0.41	1.5			
3.2. L2	0.059 0.1173 0.4 0.66 0.0638 0.1084 1.18 1.24				1.26	1.45			
3.3. L3	0.0467					0.49	3.67	17.28	7.4
3.4. Total	0.162	0.3296	1.4	44	2.52	1.47	6.33		
4. Consumo de energía			Co	onsumo	por Mes				
4.1. kWh 4.2. kVArh					(Wh/mes /Arh/mes				
5. Máxima variación de frecuencia		0.192	2 (Menor :	al 0.5%	normado po	r el INE)			
6. Análisis de carga			F	Porcent	aie (%)				
6.1. Carga instalada				5.402					
6.2. Factor de carga				11.2					
6.3. Factor de demanda				26.6					
Factor de potencia promedio	0.4 ³⁰								
2. Armónicos	THDV (% max) THDI ³¹ (% max) TDD ³²								
2.1. L1	1.43 69.43 N/A								
2.2. L2		1.45 69.43 N/A 1.46 262.02 N/A							
2.3. L3		1.53			72.52			N/A	

 ³⁰ Este es un valor medio aritmético, con carga el FP se mantiene entre 0.4 y 0.74.
 31 Valores máximos alcanzados con poca o ninguna carga.
 32 La TDD no es calculada, puesto que la corriente no es lo suficientemente alto para indicar problemas.

Apéndice B. Observaciones en protecciones eléctricas

		P	anel CC3A				
Voltaje nominal	Corriente	Cantidad de	Breaker	Alimentador	Supr	esores d	le pico
	de barra	espacios	principal		_		
						VS2IMA	
120/208V	200 A	30	200 A	3/0 Awg	l(n)	SPD Type SCCR	C.T.M
120/200V	200 A	(9 ocupados)	(JGM36200)	3/0 Awg	1(11)	SCCK	C. 1.IVI
		(0 000,000)	(6 6 6 2 6 6)		20k A	200kA	160kA
Observaciones	de b corri	arra es superio ente que ocurre supresores de p	no se encontraror r a la corriente de n por periodos de ico se encuentran	emandada, sin corta duración.	conside		
			ico se encuentran se encuentra sobr			s cargas.	
Cálculo de breaker principal Y Conductor		ker principal seç mo Calibre de C	gún NEC: 80A onductor de Cobr	e: 4 AWG (75°C)		
Termografía	indic	ar una avería. rado cuando ha					
			anel PC3A				
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supr	esores d	le pico
120/208V	125 A	30	125 A	2 Awg	l(n)	SC	CR
		(10 ocupados)	(QBL32125)				
Observaciones	 Este sub panel se alimenta de un breaker de 90 A ubicado en 7, 9,11 de CC3/por lo que este actuaría como su breaker principal en caso de sobrecarga corto circuito. 						
	 La secuencia de fases se encuentra invertida. 						
	■ El br	eaker principal s	se encuentra sobr	redimensionado	para la	s cargas.	
Cálculo de breaker principal Y Conductor	 Breaker principal según NEC: 60A Mínimo Calibre de Conductor de Cobre: 6 AWG (75°C) 						


Termografía	diferencia problema • Por lo de para indi	a de temperatura a, pero de ser po emás, la diferen car una avería. o cuando hay ca	a no es lo sufi esible recome cia de tempe Esta puede	cientemente gra indamos balance ratura no es lo	nde par ear las d suficien	nás cargada. La a representar un cargas. Itemente grande de temperatura		
Valtaia naminal	Couriente de	Cantidad de		Alimontodos	Cum	and a mine		
Voltaje nominal	Corriente de barra	espacios	Breaker principal	Alimentador	Supr	esores de pico		
120/208V	90 A	42	90 A	4 Awg	l(n)	SCCR		
0,_00.		(32	(QBL3209		-(,			
		ocupados)	` 0)					
		entes de línea no se encuentra so			10), de r	nanera que este		
Observaciones	indicar fa	•	encuentra inv	vertida.		os que puedan		
Cálculo de	■ Breaker	orincipal según l	NEC: 20A					
breaker principal Y Conductor	Mínimo C	Calibre de Condu	uctor de Cobr	e: 14 AWG				
Termografía	indicar ι	•	ta puede de			ente grande para de temperatura		
		Pane	I PI3A					
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supr	esores de Pico		
277/480V	30 A	18 (12 ocupados)	30 A (HDM360 30)	8 Awg		No tiene		
Observaciones	 De manera general no se encontraron problemas en este panel, la corriente de barra es superior a la corriente demandada, sin considerar los picos de corriente que ocurren por periodos de corta duración. La secuencia de fase se encuentra invertida (CBA). El breaker principal se encuentra sobredimensionado para las cargas. 							
Cálculo de breaker principal Y Conductor		 Breaker principal según NEC: 20A Mínimo Calibre de Conductor de Cobre: 14 AWG (75°C) 						

		P	anel CC4A				
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supr	esores c	le pico
120/208V	200 A	30 (9 ocupados)	250 A (JGM3677	3/0 Awg	-	VS2IMA SPD Type	2
)		l(n)	SCCR	C.T.M
					20k A	200kA	160kA
Observaciones	 Se identi Se identi principal. Se obser recomier 	ficó que la secu- ificó un sobre d va que los supr nda remplazarlos er principal se e	encia de fase alentamiento esor de pico s por SPD de	máxima en L3 de se encuentra in en el borne de B (L2) y C (L3) de las mismas cara redimensionado	vertida e la líne están e acterísti	(CBA). ea 3 del n mal est cas.	tado, se
Cálculo de breaker principal Y Conductor		principal según l Calibre de Condo		e: 1/0 AWG (75°	°C)		
Termografía	■ Alta ter	nperatura en dados por el fab	los supreso ricante.	al ser la más car res de pico,		ando los	s 42°C
Valtaia maminal	Comionto do		anel PC4A	A 1:	C		la :::!aa
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supr	esores c	ie pico
120/208V	125 A	30 (20	100 A (QBL3210	2/0 Awg	l(n)	SC	CR
		ocupados)	` 0)				
Observaciones	 Según el la corrier Se obser Se identi ubicado el 	l NEC 2023 (Tab te máxima es d va que la secue ficó un punto ca en el espacio 20	ola 310.16, p. e 175 A. encia de fase : aliente en el b	máxima fue de	alibre do vertida (a del bro	CBA). eaker de	2 polos

Cálculo de breaker	Breaker principal según NEC: 70A								
principal Y Conductor	 Mínimo Calibre de Conductor de Cobre: 4 AWG (75°C) 								
Termografía	 El segundo borne del breaker atornillable ubicado en el espacio 18, 20 se encuentra más caliente (82.9°C). 								
		Pane	I PT4A						
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supresores de pico				
120/208V	90 A	(32 (QBL3209 ocupados) 0)							
	■ La corriente máxima fue de 38.5 A (tabla A6)								
	■ La secue	encia de fase se	encuentra in\	vertida (CBA).					
Observaciones	 Se identificó un punto caliente en el borne de salida del breaker de 1polo ubicado en el espacio 18. 								
	 El breaker principal se encuentra sobredimensionado para las cargas. 								
Cálculo de breaker	Breaker principal según NEC: 20A								
principal Y Conductor	 Mínimo (Calibre de Condu	ıctor de Cobr	e: 14 AWG (75°	C)				
Termografía	 Los punte 	os medidos mos	traban tempe	eraturas normale	es.				
			I PI4A						
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supresores de pico				
277/480V	30 A	18 (7 ocupados)	30)	8 Awg	No tiene				
	 De manera general no se encontraron problemas en este panel, la corriente de barra es superior a la corriente demandada, sin considerar los picos de corriente que ocurren por periodos de corta duración. 								
Observaciones	Secuencia de fase positiva (ABC).								
	El breaker principal se encuentra sobredimensionado para las cargas.								
Cálculo de breaker	Breaker principal según NEC: 20A								
principal Y Conductor	 Mínimo Calibre de Conductor de Cobre: 14 AWG (75°C) 								

Panel PI5A									
Voltaje nominal	Corriente de barra	Cantidad de espacios	Breaker principal	Alimentador	Supresores de pico				
277/480V	30 A	18 (7 ocupados)	30 A (HDM360 30)	8 Awg	No tiene				
Observaciones	 De manera general no se encontraron problemas en este panel, la corrier de barra es superior a la corriente demandada, sin considerar los picos corriente que ocurren por periodos de corta duración. La secuencia de fase se encuentra invertida (CBA). El breaker principal se encuentra sobredimensionado para las cargas. 								
Cálculo de breaker principal Y Conductor	 Breaker principal según NEC:20A Mínimo Calibre de Conductor de Cobre: 14 AWG (75°C) 								

Apéndice C. Puntos calientes panel PC4A

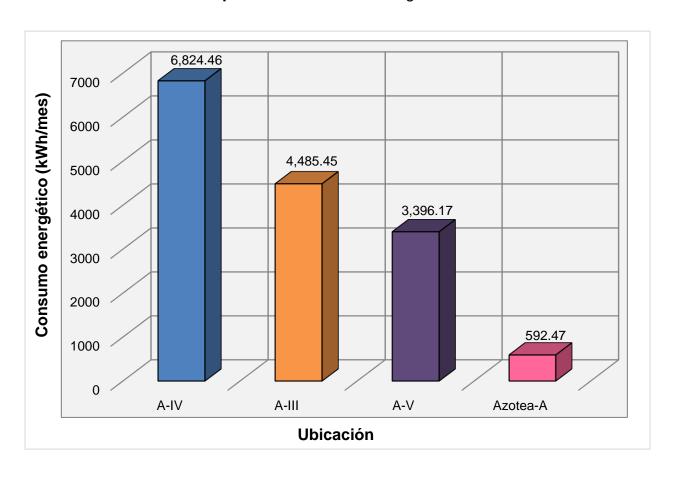
Apéndice D. Supresores en mal estado panel CC4A

Apéndice E. Carga instalada y consumo energético mensual

Ubicación	kWh/mes	kVArh/mes	Carga Instalada (kW)
A-III	4,485.45	841.51	31.632
A-IV	6,824.46	1,008.9	62.846
A-V	3,396.17	441.11	65.4692
Azotea-A	592.47	49.68	19.2

Apéndice F. Porcentaje de carga por categoría

Ubicación	Climatización	Eq. Ofimática	Eq. Cocina	Eq. Clases	Iluminación	Otros	Equipos de fuerza
A-III	52,00%	7,00%	8,00%	3,00%	17,00%	13,00%	0,00%
A-IV	59,00%	8,00%	9,00%	3,00%	12,00%	9,00%	0,00%
A-V	79,00%	0,00%	0,00%	3,00%	13,00%	5,00%	0,00%
Azotea	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	100,00%


Apéndice G. Estado de las protecciones (Termografía)

Ubicación	Espacio	Bornes	Causa
CC4A	Breaker principal	Línea 3	Desbalance de cargas; L3 se encuentra más cargada que las demás líneas.
PC4A	(22, 24)	24 (salida)	Mal contacto; se recomienda revisar los empalmes de los cables, y la conexión del breaker a las barras.
PT4A	(32, 34)	32 (entrada) 34 (salida)	La temperatura más elevada no correspondía a ninguna anomalía, el panel estaba trabajando en óptimas condiciones de temperatura.
Ubicación	Espacio	Bornes	Causa
CC5A	Breaker principal	Línea 1	Desbalance de cargas; L1 se encuentra más cargada que las demás líneas.
PC5A	(2, 4); (14, 16)	2 y 4 (entrada) 14 (salida)	Mal contacto; se recomienda revisar los empalmes de los cables, y la conexión de los breakers a las barras.
PT5A		18 (salida)	Mal contacto; se recomienda revisar los empalmes de los cables, así como la corriente demandada por la carga, para evaluar el cambio del cable por uno de mayor sección transversal.

Apéndice H. Transformadores

Transformador A – III				
Factor de utilización máxima	26.08%			
Factor de utilización media	10.56%			
Factor de carga	40.4%			
Factor de demanda	67.94%			
Máxima carga registrada	84.96%			
Transform	nador A – IV			
Factor de utilización máxima	41.92%			
Factor de utilización media	15.06%			
Factor de carga	35.92%			
Factor de demanda	53.75%			
Máxima carga registrada	74.96			
Transform	nador A – V			
Factor de utilización máxima	57.2%			
Factor de utilización media	11.42%			
Factor de carga	20%			
Factor de demanda	74.36%			
Máxima carga registrada	105.84%			

Apéndice I. Consumo energético mensual

Apéndice J. Eventos

	CC3A	
Cantidad de eventos	Fecha	Tipo
4	14/08/2023	Variaciones rápidas de tensión
2	15/08/2023	Variaciones rápidas de tensión
6		Total
•	PC3A	
Cantidad de eventos	Fecha	Tipo
1	17/08/2023	Variaciones rápidas de tensión
1		Total
	PT3A	
Cantidad de eventos	Fecha	Tipo
1	17/08/2023	Huecos
6	18/08/2023	Variaciones rápidas de tensión
7		Total
	PI3A	
Cantidad de eventos	Fecha	Tipo
9	26/08/2023	Variaciones rápidas de tensión
1		Transitorio
25		Variaciones rápidas de tensión
1	27/08/2023	Transitorio
3		Huecos
1	28/08/2023	Variaciones rápidas de tensión
4		Transitorio
44		Total
<u> </u>	CC4A	
Cantidad de eventos	Fecha	Tipo
9	21/08/2023	Variaciones rápidas de tensión
5	22/08/2023	Variaciones rápidas de tensión
1		Huecos
6	23/08/2023	Variaciones rápidas de tensión
1		Huecos
22		Total

Cantidad de eventos	Fecha	Tipo		
9	23/08/2023	Variaciones rápidas de tensión		
3	23/08/2023	Huecos		
6	24/08/2023	Variaciones rápidas de tensión		
3	24/08/2023	Huecos		
10	25/08/2023	Variaciones rápidas de tensión		
31		Total		
	PT4A			
Cantidad de	Fecha	Tipo		
eventos				
5	25/08/2023	Variaciones rápidas de tensión		
2	26/08/2023	Variaciones rápidas de tensión		
1		Huecos		
8	Total			
	PI4A			
Cantidad de	Fecha	Tipo		
eventos				
4	10/08/2023	Variaciones rápidas de tensión		
2	11/08/2023	Variaciones rápidas de tensión		
6	12/08/2023	Variaciones rápidas de tensión		
12		Total		
	PA – S			
Cantidad de	Fecha	Tipo		
eventos				
1	28/08/2023	Transitorio		
8	29/08/2023	Variaciones rápidas de tensión		
5		Huecos		
6	30/08/2023	Variaciones rápidas de tensión		
20		Total		

Apéndice K. Censo de cargas

Tabla K1. A – III

Ubicación	Cantidad	Tipo	Descripción	Voltaje	Vatios (W)
Portal Fundación UNO	2	Pedestal	Abanico	120	228
Portal Fundación UNO	2 de 6	Lámpara de 2 tubos	Tubo Fluorescente	277	64
Portal Fundación UNO	1	Multifuncional	Impresora	120	480
Portal Fundación UNO	1	N/A	Monitor	120	120
Portal Fundación UNO	1	N/A	Laptop	120	180
Portal Fundación UNO	2	Toma doble	Tomas Generales Crema	120	0
Portal Fundación UNO	1	N/A	Mini Refri	120	38
Portal Fundación UNO	1	N/A	Cafetera	120	1000
Portal Fundación UNO	1	N/A	Cafetera	120	700
Portal Fundación UNO	1	N/A	Router	12	24
Vice-Rectoría de proyectos académicos	1	Multifuncional	Impresora	120	720
Vice-Rectoría de proyectos académicos	1	N/A	Cafetera	120	900
Vice-Rectoría de proyectos académicos	1	N/A	Estabilizador de voltaje	120	450
Vice-Rectoría de proyectos académicos	1	Tipo Split 24000 BTU/H	Aire Acondicionado Und. Evap	208	130
Vice-Rectoría de proyectos académicos	1	Tipo Split 24000 BTU/H	Aire Acondicionado Und. Cond	208	2340
Vice-Rectoría de proyectos académicos	5	N/A	Laptop	120	60
Vice-Rectoría de	3	19/74	Tomas Generales	120	00
proyectos académicos	3	Toma doble	Crema	120	0
Vice-Rectoría de			Tomas uso esp.	400	400
proyectos académicos Vice-Rectoría de	2	Toma doble Lámpara de 2	Rojos	120	162
proyectos académicos	2 de 6	tubos	Tubo Fluorescente	277	64
Aula Usos Múltiples	39 de 39	Lámpara de 3 tubos	Tubo Fluorescente	277	1248
Auia 0505 Multiple5	39 de 39	เนมบร	Aire	211	1240
Aula Usos Múltiples	2	Tipo Split 60000 BTU/H	Acondicionado Und. Evap	220/230	12260
Aula Usos Múltiples	2	Tipo Split 60000 BTU/H	Aire Acondicionado Und. Cond	220/230	640
Aula Usos Múltiples	1	Soporte de pared	Proyector	120	288

-	T				
Aula Usos Múltiples	1	Soporte de techo	Repetidor de Wifi	120	20
Aula Usos Múltiples	8	Toma doble	Tomas Generales Crema	120	324
Aula Usos Múltiples	7	Toma doble	Tomas uso esp. Rojo	120	162
A-III-1	3	Pared	Abanicos	120	150
A-III-1	7	Toma doble	Tomas Generales	120	324
	,	Lámpara de 3	Tubos	120	324
A-III-1	18 de 27	tubos	Fluorescentes	277	576
A-III-2	3	Pared	Abanicos	120	150
A-III-2	7	Toma doble	Tomas Generales	120	324
		Lámpara de 3	Tubos		
A-III-2	8 de 27	tubos	Fluorescentes	277	256
A 111 O		Soporte de	Proyector de	400	000
A-III-2	1	pared	Pared	120	288
A-III-3	2	Pared	Abanicos	120	100
A-III-3	7	Toma doble	Tomas Generales	120	324
A-III-3	,	Lámpara de 3	Tubos	120	324
A-III-3	19 de 27	tubos	Fluorescentes	277	608
711110	10 00 21	Soporte de	Proyector de		
A-III-3	1	pared	Pared	120	288
		•			
A-III-4	4	Pared	Abanicos	120	200
A-III-4	7	Toma doble	Tomas Generales	120	324
A 111 A	45 1 07	Lámpara de 3	Tubos	077	400
A-III-4	15 de 27	tubos	Fluorescentes	277	480
A-III-5	3	Pared	Abanicos	120	150
A-III-5	7	Toma doble	Tomas Generales	120	324
A-III-5	17 de 27	Lámpara de 3 tubos	Tubos Fluorescentes	277	544
A-III-6	3	Pared	Abanicos	120	150
A-III-6	7	Toma doble	Tomas Generales	120	324
<u> </u>	,	Lámpara de 3	Tubos	120	J24
A-III-6	12 de 27	tubos	Fluorescentes	277	384
		lámparas de 2	Tubos		
Baño Hombres	2 de 4	tubos	Fluorescentes	277	64
		Ojos de buey		_	
Baño Hombres	2 de 2	und.	Ojos de buey	277	52
Baño Hombres	1	Toma doble	Toma GFCI	120	0
Baño Mujeres	4 de 6	lámparas de 2 tubos	Tubos Fluorescentes	277	128

		Ojos de buey			_
Baño Mujeres	1 de 2	und.	Ojos de buey	277	26
Baño Mujeres	1	Toma doble	Toma GFCI	120	0
	_	lámparas de 2	Tubos		
Baño Especial	2	tubos	Fluorescentes	277	64
Daão Fanasial	4	Towns dable	Toma OFOL	400	0
Baño Especial	1	Toma doble	Toma GFCI Tubos	120	0
Cuarto personal de limpieza	1	Lámpara de 1 tubo	Fluorescentes	277	32
Cuarto personal de	I	tubo	Tidorescentes	211	32
limpieza	1	Toma doble	Toma Crema	120	0
	· · · · · · · · · · · · · · · · · · ·	Lámpara de 2	Tubos		
Cuarto Alto Voltaje	2	tubos	fluorescentes	277	32
·			Toma Generales		
Cuarto Alto Voltaje	1	Toma doble	crema	120	0
		Dispensador			
		agua caliente			
Pasillos	1	y fría	Oasis	120	612
Daaillaa	0.4	Tama dabla	Tomas Generales	400	040
Pasillos	24	Toma doble	Crema Tomas Generales	120	810
Pasillos centro	4	Toma doble	Crema	120	162
rasillos certito	4	Toma doble	Ciellia	120	102
Pasillos centro	9	Doble	Ojos de buey	277	234
	<u>-</u>	Lámpara de 2	Tubos		
Pasillos baño	4	tubos	Fluorescentes	277	104
		Lámpara de 2	Tubos		
Pasillos ascensores	4	tubos	Fluorescentes	277	104
Pasillos escalera		Lámpara de 2	Tubos		
ascensores	8	tubos	Fluorescentes	277	208
	_	Lámpara de 2	Tubos		400
Pasillos escalera baño	5	tubos	Fluorescentes	277	130

Tabla K2. A – IV

Ubicación	Cantidad	Tipo	Descripción	Voltios	Vatios (W)
A-IV-6 (Asistencia administrativa)	1	N/A	Refrigerador	120	1200
A-IV-6 (Asistencia administrativa)	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Evap.	240	350
A-IV-6 (Asistencia administrativa)	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Cond	240	6130
A-IV-6 (Asistencia administrativa)	1	N/A	Cafetera	120	1000
A-IV-6 (Asistencia administrativa)	1	N/A	Microondas	120	1100
A-IV-6 (Asistencia administrativa)	1	N/A	Impresora	120	852
A-IV-6 (Asistencia administrativa)	1	N/A	CPU	120	65
A-IV-6 (Asistencia administrativa)	1	N/A	Monitor	120	96
A-IV-6 (Asistencia administrativa)	3	Toma doble	Tomacorriente doble de uso general	120	360
A-IV-6 (Asistencia administrativa)	8	Lámpara de 3 tubos 8 de 15	Tubos fluorescentes	277	256
A-IV-6 (Asistencia académica)	9	Lámpara de 3 tubos 9 de 12	Tubos fluorescentes	277	288
A-IV-6 (Asistencia académica)	1	N/A	CPU	120	65
A-IV-6 (Asistencia académica)	1	N/A	Monitor	120	80
A-IV-6 (Asistencia académica)	1	N/A	CPU	120	65
A-IV-6 (Asistencia académica)	1	N/A	Monitor	120	80
A-IV-6 (Asistencia académica)	1	N/A	Laptop	120	60
A-IV-6 (Asistencia académica)	1	N/A	Cargador	120	33
A-IV-6 (Asistencia académica)	1	N/A	Parlante	120	48
A-IV-6 (Asistencia académica)	1	N/A	Cafetera	120	1000
A-IV-6 (Asistencia académica)	1	N/A	Cafetera	120	1000
A-IV-6 (Asistencia académica)	1	N/A	Impresora	120	720
A-IV-6 (Asistencia académica)	1	N/A	CPU	120	65
A-IV-6 (Asistencia académica)	1	N/A	Monitor	120	80

A-IV-6 (Asistencia académica)	6	Toma doble	Tomacorriente doble de uso general	120	270
A-IV-5 - Portal de Matemática	26	Lámpara de 3 tubos 26 de 27	Tubos fluorescentes	277	832
A-IV-5 - Portal de Matemática	7	Toma doble	Tomacorriente doble de uso general	120	700
A-IV-4 - Portal de Matemática	27	Lámpara de 3 tubos	Tubos fluorescentes	120	864
A-IV-4 - Portal de Matemática	7	Toma doble	Tomacorriente doble de uso general	120	700
Aula Usos Múltiples	35	Lámpara de 3 tubos 35 de 39	Tubos fluorescentes	120	32
Aula Usos Múltiples	18	Toma doble	Tomacorriente doble de uso general	120	1800
Aula Usos Múltiples	1	N/A	Amplificador	120	90
Aula Usos Múltiples	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Evap	240	350
Aula Usos Múltiples	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Evap	240	6130
Aula Usos Múltiples	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Cond	240	350
Aula Usos Múltiples	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Cond	240	6130
Aula Usos Múltiples	1	N/A	Proyector techo	120	33
Aula Usos Múltiples	1	N/A	Protector de sobre voltaje	120	500
Baños Hombre	4	Lámpara doble	Ojo de buey	277	104
Baños Hombre	4	Lámpara doble	Tubos fluorescentes	277	128
Baños Hombre	0	Toma GFCI	Tomacorriente doble de uso general	120	0
Baños Mujer	2	Lámpara de 2 tubos 2 de 4	Ojo de buey	277	52
Baños Mujer	4	Lámpara de 2 tubos 4 de 6	Tubos fluorescentes	277	128
Baños Mujer	1	Toma doble	Tomacorriente doble de uso general	120	45

Baño especial	2	Lámpara de 2 tubos	Tubos fluorescentes	277	64
Baño especial	1	Toma doble	Tomacorriente doble de uso general	120	45
Cuarto de limpieza	1	Lámpara de 1 tubo	Tubos fluorescentes	277	40
Cuarto de limpieza	1	Toma doble	Tomacorriente doble de uso general	120	45
A-IV-1	27	Lámpara de 3 tubos	Tubos fluorescentes	277	864
A-IV-1	7	Toma doble	Tomacorriente doble de uso general	120	315
A-IV-1	1	Tipo Split 24000 BTU/H	Aire acondicionado Unid de Evap	240	130
A-IV-1	1	Tipo Split 24000 BTU/H	Aire acondicionado Unid de Cond	240	2340
A-IV-1	1	Soporte de pared	Proyector	120	33
A-IV-1	1	Soporte de pared	Unidad táctil	120	33
A-IV-2	27	Lámpara de 3 tubos	Tubos fluorescentes	277	864
A-IV-2	7	Toma doble	Tomacorriente doble de uso general	120	315
A-IV-2	1	Tipo Split 24000 BTU/H	Aire acondicionado Unid de Evap	240	130
A-IV-2	1	Tipo Split 24000 BTU/H	Aire acondicionado Unid de Cond	240	2340
A-IV-2	1	Soporte de pared	Proyector	120	33
A-IV-2	1	Soporte de pared	Unidad táctil	120	33
Bodega ascensor	1	Soporte de pared	Proyector	120	348
Bodega ascensor	1	N/A	Cafetera	120	600
Bodega ascensor	1	N/A	Microondas	120	1200
Bodega ascensor	1	N/A	Monitor	120	120
Bodega ascensor	1	N/A	CPU	120	180
Bodega ascensor	6	Lámpara de 2 tubos	Tubos fluorescentes	277	192

Bodega ascensor	4	Toma doble	Tomacorriente doble de uso general	120	180
Bodega ascensor	1	Pedestal	Ventilador	120	40
Pasillo Centro	16	Lámpara de 2 tubos 16 de 18	Ojo de buey	277	512
Pasillo Escalera baño	4	Lámpara de 1 tubo	Ojo de buey	277	168
Pasillo	10	Lámpara de 2 tubos 10 de 36	Ojo de buey	277	260
cuarto al quinto ascensor	18	Lámpara de 2 tubos	Ojo de buey	277	324
cuarto al quinto ascensor	8	Lámpara de 2 tubos 8 de 10	Tubos fluorescentes	277	256
A-IV-3	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Evap	240	320
A-IV-3	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Cond	240	6130
A-IV-3	1	Soporte de pared	proyector	120	348
A-IV-3	5	Lámpara de 3 tubos 5 de 27	Tubos fluorescentes	277	160
A-IV-3	7	Toma doble	Tomacorriente doble de uso general	120	315
A-IV-3	1	N/A	CPU	120	180
A-IV-3	1	N/A	Monitor	120	120
BCN UNI- Ascensor	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Evap	220	320
BCN UNI- Ascensor	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid de Cond	220	6130
BCN UNI- Ascensor	1	N/A	Laptop	120	240
BCN UNI- Ascensor	1	N/A	Impresora	120	660
BCN UNI- Ascensor	6	Toma doble	Tomacorriente doble de uso general	120	600
BCN UNI- Ascensor	3	Lámpara de 2 tubos 3 de 4	Tubos fluorescentes	120	96
Del 4 a 5	4	Lámpara de 1 tubo	Ojo de buey	227	168

Pasillo	12	Lámpara de 2 tubos 12 de 44	Ojo de buey	227	312
Pasillo centro	16	Lámpara de 2 tubos 16 de 18	Ojo de buey	227	512

Tabla K3. A – V

Ubicación	Cantidad	Tipo	Descripción	Voltios	Vatios (W)
Pasillo Centro	18	Lámpara de 2 tubos	Ojo de buey	277	576
Pasillo Escalera baño	4	Lámpara de 1 tubo	Ojo de buey	277	128
Pasillo	16 de 48	Lámpara de 2 tubos	Ojo de buey	277	416
Pasillo escalera azotea	5 de 8	Lámpara de 2 tubos	Tubos Fluorescentes	277	160
Aula Usos Múltiples	24 de 26	Lámpara de 2 tubos	Ojo de buey	277	432
Aula Usos Múltiples	18	Lámpara de 3 tubos	Tubos Fluorescentes	277	576
Aula Usos Múltiples	1	Soporte de pared	Proyector de pared	120	288
Aula Usos Múltiples	1	Soporte de pared	Unidad táctil	120	0
Aula Usos Múltiples	2	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	220/230	640
Aula Usos Múltiples	2	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	220/230	12260
Aula Usos Múltiples	1	N/A	Parlante	120	0
Aula Usos Múltiples	20	Tomacorriente doble	Tomacorriente general crema	120	648
A-V-1	25 de 27	Lámpara de 3 tubos	Tubos Fluorescentes	277	800
A-V-1	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	208	320
A-V-1	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	208	6130
A-V-1	1	N/A	Proyector	120	270
A-V-1	1	N/A	Parlante	120	90
A-V-1	7	Toma doble	Tomacorriente doble uso general	120	324
A-V-2	26 de 27	Lámpara de 3 tubos	Tubos Fluorescentes	277	832
A-V-2	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	220/230	320
A-V-2	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	220/230	6130
A-V-2	1	N/A	Proyector	120	270
A-V-2	1	N/A	Parlante	120	90
A-V-2	7	Toma doble	Tomacorriente doble de uso general	120	324
A-V-3	4	Lámpara de 2 tubos	Tubos Fluorescentes	277	128

A-V-3	27	Lámpara de 3 tubos	Tubos Fluorescentes	277	864
A-V-3	2	Lámpara doble	Ojo de buey	277	52
A-V-3	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	220/230	320
A-V-3	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	220/230	613
A-V-3	1	N/A	Parlante	120	0
A-V-3	9	Toma doble	Tomacorriente doble de uso general	120	324
A-V-3	1	Soporte de pared	Proyector	120	270
A-V-4	27	Lámpara de 3 tubos	Tubos Fluorescentes	277	864
A-V-4	7	N/A	Tomacorriente doble de uso general	120	324
A-V-4	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	220/230	320
A-V-4	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	220/230	613
A-V-4	1	Soporte de pared	Proyector	120	288
A-V-5	27	Lámpara de 3 tubos	Tubos Fluorescentes	277	864
A-V-5	7	Toma doble	Tomacorriente doble de uso general	120	324
A-V-5	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	220/230	320
A-V-5	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	220/230	613
A-V-5	1	N/A	Proyector	120	288
A-V-6	27	Lámpara de 3 tubos	Tubos Fluorescentes	277	864
A-V-6	7	Toma doble	Tomacorriente doble de uso general	120	324
A-V-6	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Evap	220/230	320
A-V-6	1	Tipo Split 60000 BTU/H	Aire acondicionado Unid Cond	220/230	613
A-V-6	1	Soporte de pared	Proyector	120	288
Cuarto de limpieza	1	Lámpara de 1 tubo	Tubos Fluorescentes	277	32
Cuarto de limpieza	1	Toma doble	Tomacorriente doble de uso general	120	162

Baño especial	1 de 2	Lámpara de 2 tubos	Tubos Fluorescentes	277	32
Baño especial	1	Toma doble	Tomacorriente doble de uso general	120	0
Baño Hombre	4	Lámpara de 2 tubos	Tubos Fluorescentes	277	128
Baño Hombre	4	Lámpara de 2 tubos	Ojo de buey	277	104
Baño Hombre	1	Toma doble	Tomacorriente doble de uso general	120	0
Baño mujer	6	Lámpara de 2 tubos	Tubos Fluorescentes	277	192
Baño mujer	4	Lámpara de 2 tubos	Ojo de buey	277	104
Baño mujer	0	Toma doble	Tomacorriente doble de uso general	120	0
Coordinación académica dirección de posgrado	4	Toma doble	Tomacorriente doble de uso general	120	162
Coordinación académica dirección de posgrado	2	N/A	router LAND	120	0
Coordinación académica dirección de posgrado	6	Lámpara de 2 tubos	Tubos Fluorescentes	277	192
Coordinación académica dirección de posgrado	1	N/A	Parlante	120	19.20
Oficina ascensor	5	Toma doble	Tomacorriente doble de uso general	120	324
Oficina ascensor	4	Lámpara de 2 tubos	Tubos Fluorescentes	277	128

Tabla K4. Azotea

Especificación	Cantidad	Tipo	Descripción	Voltaje	Vatios (W)
		•	Unidad de	_	, ,
Cuarto de máquinas	1	Split	condensación	208	2704
			Unidad de		
Cuarto de máquinas	1	Split	evaporación	208	79
Cuarto de máquinas	2	Motor Síncrono	Motor	380	19200
Cuarto de máquinas	2	Motor DC	Motor	110	770
		Lámparas	Lámpara de 2		
Cuarto de máquinas	8	Fluorescentes	tubos	277	256
Cuarto de máquinas	1	Toma doble	Toma general	120	0
			Toma general		
Cuarto de máquinas	1	Toma doble	trifásico	208	0
		Lámparas	Lámpara de 2		
Oficina	1	Fluorescentes	tubos	277	32
00.			- .	400	400
<u>Oficina</u>	2	Toma doble	Toma general	120	180
Foso de ascensor	8	Ojo de buey	Ojo de buey	120	800
Foso de ascensor	8	Toma doble	Toma general	120	0
		Lámparas	Lámpara de 2		
Bodega	8	Fluorescentes	tubos	277	256
Dadaga	4	Tomo doble	Tomo gonoral	120	
Bodega	1	Toma doble	Toma general	120	0
= ().	_	Lámparas	Lámpara de 2	077	00
Exterior	1	Fluorescentes	tubos	277	32

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Electrotecnia y Computación Managua, Nicaragua

SECRETARÍA DE FACULTAD

14021

F-8:CARTA DE FINALIZADO PLAN DE ASIGNATURA

El Suscrito Secretario de la **FACULTAD DE ELECTROTECNIA Y COMPUTACION** hace constar que:

MEDINA MENDOZA MICHAEL ALEJANDRO

Carné: 2019-1094U Turno: Diurno Plan de Asignatura: 2015 de conformidad con el Reglamento Académico vigente en la Universidad, ha aprobado todas las asignaturas correspondientes a la carrera de INGENIERÍA ELECTRICA, y solo tiene pendiente la realización de una de las formas de culminación de estudio.

Se extiende la presente **CARTA DE FINALIZADO PLAN DE ASIGNATURA**, a solicitud del interesado en la ciudad de Managua, a los veinte y cinco días del mes de julio del año dos mil veinte y tres.

Atentamente,

Msc. María Lourdes Montes López

Secretario de Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Electrotecnia y Computación Managua, Nicaragua

SECRETARÍA DE FACULTAD

14023

F-8: CARTA DE FINALIZADO PLAN DE ASIGNATURA

El Suscrito Secretario de la **FACULTAD DE ELECTROTECNIA Y COMPUTACION** hace constar que:

CAMPOS HERNÁNDEZ CHRISTOPHER WILLIAMS

Carné: 2019-0388U Turno: Diurno Plan de Asignatura: 2015 de conformidad con el Reglamento Académico vigente en la Universidad, ha aprobado todas las asignaturas correspondientes a la carrera de INGENIERÍA ELECTRICA, y solo tiene pendiente la realización de una de las formas de culminación de estudio.

Se extiende la presente **CARTA DE FINALIZADO PLAN DE ASIGNATURA**, a solicitud del interesado en la ciudad de Managua, a los veinte y cinco días del mes de julio del año dos mil veinte y tres.

Atentamente,

Msc. María Lourdes Montes López

Secretario de Facultad

UNIVERSIDAD NACIONAL DE INGENIERÍA ÁREA DEL CONOCIMIENTO DE INGENIERÍA Y AFINES SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2024

No. Recibo	OM		Re	ci	bd	-
------------	----	--	----	----	----	---

No. Inscripción **742**

NOMBRES Y APELLIDOS: Michael Alejandro Medina Mendoza

CARRERA: INGENIERÍA ELECTRICA

CARNET: 2019-1094U

TURNO:

PLAN DE ESTUDIO:

2015

SEMESTRE: PRIMER SEMESTRE 2024

FECHA: 12/03/2024

No.	ASIGNATURA		GRUPO	AULA	CRED.	F	R
1							
		ULTIMA LINEA					
			ACIONAL				
			PO NICADE NICAS				
			1 2 60 6	6			

F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.

USER_ONLINE

GRABADOR

FIRMA Y SELLO DEL FUNCIONARIO

FIRMA DEL

ESTUDIANTE

cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 14-mar.-2024

UNIVERSIDAD NACIONAL DE INGENIERÍA ÁREA DEL CONOCIMIENTO DE INGENIERÍA Y AFINES SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2024

No.	Rec	ibo							No. Inscrip	ción 50	8
NOMB	RES	Y APELLID	os: Christ	opher William	ns Campo	s Hernández	-				
CARR	ERA	: INGENIERÍA	A ELECTRICA	4		CA	RNET: 2019	0-0388U	TURNO	:	
PLAN	DE	ESTUDIO:	2015	SEME	ESTRE:	PRIMER SI	EMESTRE 20	24 FI	ECHA: 08	/03/2024	
No.			ASIG	NATURA			GRUPO	AULA	CRED.	F	R
1											
AND STATE OF THE PARTY OF THE PARTY OF			CONTROL OF SECURE AND THE SECURE AS A SECURE AS		ULTIN	MA LINEA				ALABET S AM A SAM SAMES S AN S A ME BARRESON COURS S AME AS ME A DECISION	MARKET AND A STOCKED IN AN OLD THE SE SE SECRETARISM.
							ACIONAL				
						(80)	ALICA DE NICA	1			
F:Frec	uencia	de Inscripciones de	e Asignatura R: Re	tiro de Asignatura	a.	ERS	A Page 1				
	·	USER_ONLINI	E		tela) IS SE	CRETARIA S	RENIER			
		GRABADOR		F	- 1	Y SELLO	EARLE N			A DEL	
01	21011	AL -ECTUDIANTE	OODIA EVD	EDIENTE	FUN	CIONARIO			ESTUI	ITMAIC	E

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 14-mar.-2024

cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.