

Facultad de Tecnología de la Construcción

"DISEÑO GEOMÉTRICO Y ESTRUCTURA DE PAVIMENTO ARTICULADO UTILIZANDO EL MÉTODO DE LA AASHTO - 93, DEL TRAMO ACEITUNO -EL SAUCE EN EL MUNICIPIO DE EL SAUCE, DEPARTAMENTO DE LEÓN"

Trabajo Monográfico para optar al título de Ingeniero Civil

Elaborado por: Tutor:

Br. Lesmairi Valeria Estrada Moreno Carnet: 2018-0216N Br. Luis Enrique Carrasco Morales Carnet: 2018-0260N Br. Madel de la Fe Martínez Benavidez Carnet: 2018-0212N

Ing. Eddy Wilfredo Montalván Lanzas

CARTA DE APROBACION DE TEMA

CARTA DEL TUTOR

TABLA DE CONTENIDO

CAPÍTULO I GENERALIDADES

1.1	Intr	oducción	. 1
1.1	I.1.	Localización del Tramo	. 2
1.2 A	Antec	edentes	. 4
1.3	Jus	stificación	. 5
1.4	Ob	jetivos	. 6
1.4	1 .1	Objetivo General	. 6
1.4	1.2	Objetivos Específicos	. 6
CAPÍT	ULO	II ESTUDIO TOPOGRÁFICO	
2.1	Ge	neralidades	. 7
2.2	Lev	/antamiento Topográfico	. 7
2.2	2.1	Planimetría	. 8
2.2	2.2	Altimetría	. 8
2.3	Ca	racterísticas de la Topografía	13
2.4	Eva	aluación del Levantamiento Topográfico	13
CAPÍT	ULO	III ESTUDIO DE TRÁNSITO	
3.1	Intr	oducción	16
3.2	Info	ormación Base	17
3.2	2.1Ti	pos de tránsito	17
3.2	2.2	Tipos de vehículos	18
3.3	Est	ación de Conteo Vehicular	19
3.4	Da	tos de campo	20
3.5	Afc	oro vehicular	20
261	میرام/	oon do tránsito	၁၁

	3.6.	1 Vo	olúmenes de tránsito promedio	. 23
	3.6.	2	Determinación del Tránsito Promedio Diario Semanal (TPDS)	. 23
	3.6.	3	Cálculo del Tránsito Promedio Diario Anual (TPDA)	. 25
	3.6.	4	Tasas de Crecimiento	. 31
	3.6.	5	Tránsito de Diseño	. 33
	3.6.	6	Ejes equivalentes (ESAL)	. 36
CAI	PÍTU	ILO	IV ESTUDIO DE SUELO	
4.	.1	Ger	neralidades	. 40
4.	.2	Met	odología	. 40
4.	.3	Aná	llisis granulométrico de los sondeos manuales	. 42
4.	.4	Lím	ites de Atterberg	. 44
4.	.5	Estr	ratigrafía de los suelos	. 47
4.	.6	Res	sultados del estudio de suelos del banco de materiales	. 51
4.	.7	Aná	llisis del banco de material	. 51
4.	.8	CBF	R de Diseño	. 53
	4.8.	1	Identificación de la subrasante	. 54
CAI	PÍTU	ILO	V DISEÑO DE ESTRUCTURA DE PAVIMENTO	
5.	.1	Intro	oducción	. 57
5.	.2	Mét	odo AASHTO – 93	. 57
5.	.3	Var	iables de Diseño	. 58
	5.3.	1	Periodo de Diseño	. 58
	5.3.	2	ESAL	. 58
	5.3.	3	Confiabilidad	. 58
	5.3.	4	Desviación Estándar	. 59
	5.3.	5	Índice de Serviciabilidad	. 59

5.3.6	Módulo de Resiliencia de la Subrasante	60
5.3.7	Coeficiente de drenaje	61
5.3.8	Coeficientes Estructurales de Capa	63
5.2.1	Módulo de Resiliencia de la base y subbase	64
5.2.2	Número Estructural	65
5.3 Cá	lculo de espesores	.71
5.3.1	Espesores de Carpeta de rodamiento	.71
5.3.2	Espesor de base	.71
5.3.3	Cálculo de espesor de subbase	. 72
5.3.4	Consolidación de espesores	. 73
CAPÍTULO	O VI DISEÑO GEOMÉTRICO	
6.1 Ge	eneralidades	75
6.2 Co	ondiciones del Tramo	.75
6.3 Cla	asificación de la Carretera	.76
6.4 Ve	locidad de Diseño	.76
6.5 Ve	hículo de Diseño	.76
6.6 Ca	racterísticas de la sección transversal	.79
6.6.1	Carril	. 79
6.6.2	Hombros y espaldones	. 79
6.7 Ali	neamiento Horizontal	. 80
6.7.1	Radio Mínimo	. 80
6.7.2 F	Peralte	80
6.7.3	Grado de Curvatura	. 81
6.7.4	Bombeo Normal	82
6.7.5	Sobreancho de Curvas	. 83

6.7.6	Curvas Horizontales Simples	84
6.8 Ali	neamiento Vertical	90
6.8.1	Pendientes de Control para el Diseño	90
6.8.2	Curvas Verticales	90
6.2.1	Tasas de Curvatura K	92
6.2.2	Resumen de Criterio	93
CONCLUS	SIONES Y RECOMENDACIONES	
7.1 Co	onclusiones	95
7.2 Reco	omendaciones	97
7.3 Biblio	ografía	98
ANEXOS.		1

ÍNDICE DE TABLAS

Tabla 1 Coordenadas cartográficas del levantamiento	/
Tabla 2 Banco de Nivel	10
Tabla 3 Pendientes del terreno	12
Tabla 4 Clasificación de los terrenos en función de las pendientes naturales.	12
Tabla 5 Evaluación del Levantamiento Topográfico (Parte 1)	14
Tabla 6 Evaluación del Levantamiento Topográfico (Parte 2)	15
Tabla 7 Aforo Vehicular del tramo en estudio, Aceituno – El Sauce	22
Tabla 8 Tránsito Promedio Diurno Semanal (TPDS)	24
Tabla 9 Vector Geográfico del sector	26
Tabla 10 Factores de Expansión de TPDA Primer Cuatrimestre (Enero – Abr	il) 28
Tabla 11 Tránsito Promedio Diario Anual (Aceituno – El Sauce), 2023	28
Tabla 12 Porcentaje Vehicular de Estaciones de Mayor Cobertura	30
Tabla 13 TPDA histórico, tasa de crecimiento poblacional y PIB	32
Tabla 14 Período de Diseño según el tipo de carretera	34
Tabla 15 Factor de Crecimiento	35
Tabla 16 Factor de Distribución por Carril	35
Tabla 17 Tránsito de Diseño (Tramo Aceituno – El Sauce)	36
Tabla 18 Factor ESAL obtenido por interpolación	38
Tabla 19 ESAL de diseño (Tramo Aceituno – El Sauce)	39
Tabla 20 Ensayos de suelo de acuerdo a las normas AASHTO	41
Tabla 21 Referencias de sondeos manuales del tramo en estudio (Ba	anda
Derecha)	42
Tabla 22 Aberturas de Tamices	42
Tabla 23 Análisis granulométrico para cada sondeo manual del tramo Aceitu	ıno –
El Sauce	43
Tabla 24 Límites de Consistencia	46
Tabla 25 Estudio de Suelo del Banco de Material	51
Tabla 26 Especificaciones de los materiales para base y sub base granular	52
Tabla 27 Evaluación del Banco de Material Sebastián Arroliga	52
Tabla 28 Especificaciones de terraplén y subrasante	53

Tabla 29 Percentil de Diseño para Subrasante	54
Tabla 30 CBR de Subrasante	55
Tabla 31 Selección de CBR de Diseño para Subrasante	55
Tabla 32 Niveles de Confiabilidad	59
Tabla 33 Desviación Estándar	59
Tabla 34 Valores de Serviciabilidad	60
Tabla 35 Capacidad de Drenaje para Remover la Humedad	62
Tabla 36 Coeficiente de Drenaje	62
Tabla 37 Datos para la determinación de SN ₃	66
Tabla 38 Datos para la determinación de SN ₂	66
Tabla 39 Datos para la determinación de SN ₁	67
Tabla 40 Espesores mínimos de carpeta asfáltica y base granular	72
Tabla 41 Consolidación de espesores de pavimento	73
Tabla 42 Elementos de diseño geométrico de las carreteras regionales	77
Tabla 43 Dimensiones de los vehículos de diseño (metros)	78
Tabla 44 Tasas de peralte (e)	81
Tabla 45 Peraltes Máximos del Tramo Aceituno-El Sauce	81
Tabla 46 Valores de Bombeo Normal	82
Tabla 47 Sobre anchos, banda izquierda del Tramo Aceituno - El Sauce	84
Tabla 48 Sobre anchos, banda derecha del Tramo Aceituno - El Sauce	84
Tabla 49 Curvas horizontales del Tramo Aceituno - El Sauce	89
Tabla 50 Pendiente máxima para carreteras colectoras rurales	90
Tabla 51 Curvas verticales del Diseño Geométrico del tramo Aceituno - El Sa	uce
	93
Tabla 52 Resumen de Criterio	94
Tabla 53 Levantamiento de detalles (Parte 1)	l
Tabla 54 Levantamiento de detalles (Parte 2)	II
Tabla 55 Levantamiento de detalles (Parte 3)	. III
Tabla 56 Levantamiento de detalles (Parte 4)	.IV
Tabla 57 Levantamiento de detalles (Parte 5)	V
Tabla 58 Levantamiento de detalles (Parte 6)	.VI

Tabla 59 Levantamiento de detalles (Parte 7)VII
Tabla 60 Levantamiento de detalles (Parte 8)VIII
Tabla 61 Levantamiento de detalles (Parte 9)IX
Tabla 62 Levantamiento de detalles (Parte 10)X
Tabla 63 Levantamiento de detalles (Parte 11)XI
Tabla 64 Clasificación de las carreterasXXI
Tabla 65 Clasificación de los suelos por el método AASHTOXXII
Tabla 66 Radio y grado de curvatura recomendadosXXIII
Tabla 67 Control de diseño para curva vertical en cresta para distancia de
visibilidad de paradaXXIV
Tabla 68 Control de Diseño para Curva Vertical Cóncava o en ColumpioXXIV
Tabla 69 Aforo de tránsito (lunes)XXV
Tabla 70 Aforo de tránsito (martes)XXVI
Tabla 71 Aforo de tránsito (miércoles)XXVII
Tabla 72 Aforo de tránsito (jueves)XXVIII
Tabla 73 Aforo de tránsito (viernes)XXIX
Tabla 74 Aforo de tránsito (sábado)XXX
Tabla 75 Aforo de tránsito (domingo)XXXI

ÍNDICE DE ILUSTRACIONES

ilustración i Macro Localización del tramo en estudio. Municipio de El	Sauce,
Departamento de León	2
Ilustración 2 Micro Localización del Tramo en Estudio. Tramo Aceituno – E	l Sauce,
Departamento de León	3
Ilustración 3 Perfil del terreno EST. 17+800 – 19+800	9
Ilustración 4 Mapa satelital de la ubicación de los BM	10
Ilustración 5 Poligonal Abierta del Tramo Aceituno - El Sauce	11
Ilustración 6 Curvas del nivel del tramo en estudio	13
Ilustración 7 Foto satelital del tramo en estudio, Aceituno – El Sauce	20
Ilustración 8 Espesores mínimos de estructuras de pavimento	41
Ilustración 9 Perfil Estratigráfico de los sondeos manuales realizados en e	el tramo.
	50
Ilustración 10 Coeficientes estructurales de capas asfálticas relacionad	dos con
varios ensayos	63
Ilustración 11 Coeficiente de capa base granular	64
Ilustración 12 Coeficientes estructurales de capa subbase granular	65
Ilustración 13 Números Estructurales por capa	67
Ilustración 14 Determinación de SN₃ (Subbase)	68
Ilustración 15 Determinación de SN ₂ (Base)	
Ilustración 16 Determinación de SN ₁ (Carpeta de rodamiento)	
Ilustración 17 Espesores de la Estructura de Pavimento	74
Ilustración 18 Vehículo de Diseño (WB - 15)	78
Ilustración 19 Sección transversal del tramo en estudio, Aceituno – El Sau	
Ilustración 20 Sobreancho de curvas	83
Ilustración 21 Elementos geométricos de curvas horizontales	85
Ilustración 22 Condiciones actuales del tramo Aceituno – El Sauce, EST.	18+000
	l
Ilustración 23 Sondeo Manual	XXXII
Ilustración 24 Realización del Aforo Vehicular	XXXIII

Ilustración 25 Reafirmación de los puntos obtenidos en el Levantamiento	
TopográficoXXXIV	
Ilustración 26 Análisis de los Límites de Resistencia para pruebasXXXV	
Ilustración 27 Secado en muestra de granulometríaXXXVI	
Ilustración 28 Exportación de punto del tramo en estudioXXXVII	
Ilustración 29 Creación de la superficieXXXVII	
Ilustración 30 Editar curvas de nivelXXXVII	
Ilustración 31 Pendientes del tramo en estudioXXXVIII	
Ilustración 32 Creación de curvas horizontalesXXXVIII	
Ilustración 33 Agregando la velocidad de diseñoXXXVIII	
llustración 34 Creación de minuta para planta – perfil (1)XXXIX	
llustración 35 Creación de minutas para planta – perfil (2)XXXIX	
Ilustración 36 Elaboración de plano en PdfXL	

ÍNDICE DE GRÁFICOS

Gratico	1 Comportamiento vehicular por dia (veh/dia)	21
Gráfico	2 Porcentaje de Clasificación Vehicular del TPDS	24
Gráfico	3 Porcentaje de la Clasificación Vehicular del TPDA	29
Gráfico	4 Curva granulométrica para SM – 1 (0 – 0.28 m)	44
Gráfico	5 CBR de Diseño de Subrasante	56
Gráfico	6 Curva granulométrica para SM - 1 (0.28 - 0.45 m)	XII
Gráfico	7 Curva granulométrica para SM - 1 (0.45 - 0.70 m)	XII
Gráfico	8 Curva granulométrica para SM - 1 (0.70 - 1.50 m)	XIII
Gráfico	9 Curva granulométrica para SM – 2 (0 – 0.20 m)	XIII
Gráfico	10 Curva granulométrica para SM – 2 (0.20 – 0.47 m)	XIV
Gráfico	11 Curva granulométrica para SM – 2 (0.47 – 0.75 m)	XIV
Gráfico	12 Curva granulométrica para SM – 2 (0.75 – 1.00 m)	XV
Gráfico	13 Curva granulométrica para SM – 2 (1.00 – 1.50 m)	XV
Gráfico	14 Curva granulométrica para SM – 3 (0 – 0.20 m)	XVI
Gráfico	15 Curva granulométrica para SM – 3 (0.20 – 0.45 m)	XVI
Gráfico	16 Curva granulométrica para SM – 3 (0.45 – 1.00 m)	XVII
Gráfico	17 Curva granulométrica para SM – 3 (1.00 – 1.50 m)	XVII
Gráfico	18 Curva granulométrica para SM - 4 (0 - 0.20 m)	XVIII
Gráfico	19 Curva granulométrica para SM - 4 (0.20 - 0.64 m)	XVIII
Gráfico	20 Curva granulométrica para SM - 4 (0.64 - 1.50 m)	XIX
Gráfico	21 Curva granulométrica SM - 5 (0 - 0.37 m)	XIX
Gráfico	22 Curva granulométrica para SM - 5 (0.37 - 0.74 m)	XX
Gráfico	23 Curva granulométrica para SM - 5 (0.74 - 1.18 m)	XX
Gráfico	24 Curva granulométrica para SM - 5 (1.18 - 1.50 m)	XXI

AGRADECIMIENTO

Primeramente, a **Dios**, fuente de sabiduría y amor infinito, le agradecemos por iluminar nuestro sendero y por concedernos la fuerza para superar obstáculos. Por su amor incondicional, que nos ha sostenido en los momentos más difíciles y nos ha inspirado a trabajar juntos por un propósito común.

A la **Virgen de Guadalupe**, madre celestial y protectora de todos nosotros, agradecemos su presencia maternal en nuestras vidas. Su manto sagrado nos ha cubierto de bendiciones y nos ha dado la confianza para enfrentar cualquier desafío.

A **nuestros padres**, por el sacrificio y esfuerzo que han sido la base fundamental para brindarnos un crecimiento académico y un futuro tanto personal como profesional. No hay palabras suficientes para expresar nuestro agradecimiento a ellos, ya que su apoyo ha sido la piedra angular de nuestros logros y cada paso que damos es un reflejo del amor y la confianza que nos han brindado.

A nuestro tutor, **Ing. Eddy Montalván** y a nuestro asesor, **Ing. Oliver Rivera,** por el constante apoyo y el cariño brindado a cada uno de nosotros. Por los conocimientos compartidos, la paciencia, dedicación y consejos que fueron parte importante y fundamental en las columnas de nuestra vida profesional. Gracias por ser guías ejemplares y por inspirarnos a ser mejores personas cada día.

También, queremos extender nuestros agradecimientos a todas aquellas/os personas que nos han apoyado durante este camino. Cada uno ha sido parte esencial de nuestro viaje, por esto agradecemos a: Arq. Axel Corrales, Ing. Kenia Toruño, Topógrafo Derick Sevilla, Ing. Roger Gránera, Técnico Sammy Jaime e Ing. Kevin Sánchez.

Que **Dios** y la **Virgen de Guadalupe** les bendiga siempre por su generosidad y bondad. Nuestros logros también son suyos y estamos agradecidos por compartir este camino con personas tan increíbles como ustedes.

Br. Lesmairi Valeria Estrada Moreno

Br. Madel de la Fe Martínez Benavidez.

Br. Luis Enrique Carrasco Morales

DEDICATORIA

"Todos nuestros sueños se pueden volver realidad si tenemos el coraje de perseguirlos. Piensa, cree, sueña y atrévete." - Walt Disney

Quiero dedicar este trabajo monográfico primeramente a **Dios Todopoderoso**, por ser mi luz principal durante este camino. Por la vida, la salud, la fuerza, la sabiduría y el entendimiento que me otorgó a lo largo de mi vida hasta este momento. A la **Santísima Madre, la Virgen de Guadalupe**, quien ha sido mi interceptora ante su hijo y me ha brindado amor bajo su manto santo.

A mis padres, Vicente Edman Estrada Castro y Lesbia María Moreno Irías, por ser mis pilares principales en la vida y mis ángeles protectores que han estado día con día a mi lado celebrando cada triunfo de mi vida. Por el amor, la comprensión, el esfuerzo, las oraciones y la motivación que me han brindado a lo largo de los años. Por ser incondicionales y estar en los momentos buenos y malos a mi lado. Por ser mis salvadores y mi inspiración a ser alguien mejor cada día. Por ser mis consejeros, confiar en mí y regalarme los valores que me han hecho luchar hasta el final. Ante todo, este logro es para ellos.

A mi hermano, **Edman Daniel Estrada Moreno**, quien ha sido mi inspiración para lograr cada meta con el fin de ser un ejemplo para su vida. Por su amor y amistad, por ayudarme con su cariño y creer en mí. Esto también es para él.

Por último, este trabajo va dedicado a mi persona, Lesmairi Valeria Estrada Moreno, para la pequeña niña que soñaba con algún día llevar el título de ingeniera, para la joven que en momentos creía no poder más y aun así nunca se rindió y para la mujer que contará con la experiencia de años llenos de arduo trabajo. Porque estoy orgullosa de cada faceta y etapa de mi vida, incluso de aquellas que aún no se presentan, porque pese a los tropiezos pude salir adelante y nunca me di por vencida. Este trabajo es el resultado del esfuerzo y dedicación impuesto en este camino. Es el resultado del amor, la paciencia, la inspiración y el deseo de cumplir este sueño al igual que otros muchos. Y, porque estoy segura que este solo es el comienzo de un nuevo camino rumbo a un mejor futuro.

DEDICATORIA

La presente tesis va dedicada con mucho amor y aprecio para mis padres, **Zaira Morales** y **Luis Carrasco**, por siempre incitarme sus valores los cuales han sido un puntal muy importante en mi para llegar aquí, enseñarme a ser tolerante, paciente y nunca rendirme.

A mis **abuelos**, que siempre me apoyaron en todo lo que me gustaba desde una edad temprana.

A mi querida hermana, **Alicia Estefanía Carrasco**, por apoyarme incondicionalmente en todos mis trabajos y proyectos llegando a pasar mucho tiempo sin descansar solo por ayudarme.

A toda **mi familia**, que supieron brindarme todo el apoyo moral en los momentos que más necesité y han desarrollado en mi un espíritu noble lleno de esperanza.

Mil gracias a mis **amigos** y **amigas**, que me han dado el tiempo para ayudarme y siempre salir adelante y levantarme incluso en los momentos más tristes y me han regalado una hermosa amistad desde aquel amigo y aquella amiga que vienen desde secundaria hasta aquellos que llegaron después.

Pero principal le doy gracias a **Dios** por hacer que se involucren en esta digna profesión como lo es la ingeniería civil.

DEDICATORIA

A **Dios**, mi fe y creencia en su infinito amor y guía han sido mi luz en los momentos más oscuros y mi fortaleza cuando enfrentaba dificultades. A ti, **Virgencita de Guadalupe**, madre celestial y protectora, por ser mi refugio en las tormentas y por escuchar mis oraciones con amor maternal. Tu intercesión ha sido un bálsamo para mi corazón.

San Judas Tadeo, apóstol de las causas difíciles y desesperadas, a ti te reconozco por tu intercesión en los momentos de angustia y por darme la esperanza de que hay luz al final del túnel.

A mis padres: **Bayardo Martínez** y **Jaribel Benavidez** cuyo amor, apoyo incondicional, sus sacrificios y esfuerzos, los consejos sabios han sido la base la cual construyo mi camino académico y personal, sus oraciones han sido fundamental para alcanzar mis metas y aspiraciones sin ustedes este logro no sería posible. A través de su ejemplo, aprendí los valores fundamentales que me han guiado en la búsqueda de la excelencia y la integridad. Esta tesis, al igual que todos mis logros, lleva el sello de su amor y dedicación.

A mi mamita: **Rosa Centeno** fuente inagotable de amor, por brindarme su apoyo y cariño incondicional pilar fundamental en mi vida para alcanzar este logro. Sin duda tus oraciones ha sido el puente entre mis esfuerzos y los resultados obtenidos.

A mi hermana: **Iris Martínez** y Mi prima: **Rosa Angelica** por compartir conmigo este recorrido su apoyo ha sido mi motor para superar cualquier obstáculo.

Finalmente, a toda mi familia y amistades, quienes han estado conmigo en las alegrías y tristezas, en los triunfos y desafíos, por su apoyo incondicional, por los buenos concejos, por sus oraciones y sus palabras de ánimo. Cada uno de ustedes ha dejado una marca imborrable en mi camino y en mi formación como persona.

Esta tesis es el resultado de años de dedicación y aprendizaje, pero también es el fruto del amor y el apoyo que he recibido de cada uno de ustedes. Que esta dedicatoria sea una pequeña muestra de mi agradecimiento eterno. Que la vida nos siga bendiciendo con amor, salud y felicidad.

RESUMEN EJECUTIVO

El presente estudio denominado "DISEÑO GEOMETRICO Y ESTRUCTURA DE PAVIMENTO ARTICULADO UTILIZANDO EL MÉTODO DE LA AASHTO – 93, DEL TRAMO ACEITUNO –EL SAUCE EN EL MUNICIPIO DE EL SAUCE, DEPARTAMENTO DE LEÓN", presenta la información básica y los criterios necesarios para el diseño de la estructura de pavimento con adoquín aplicando el método AASHTO-93, esto determinado en los 7 capítulos que se presentan a continuación.

CAPÍTULO I GENERALIDADES

Se aborda las generalidades del proyecto como la ubicación, una breve introducción, antecedentes del lugar, la justificación de la importancia del diseño de los 2.0 kilómetros de pavimento Articulado y objetivos planteados para conseguir con éxito su diseño final.

CAPÍTULO II ESTUDIO TOPOGRÁFICO

En este capítulo se determina la posición relativa de los puntos sobresalientes localizados sobre la superficie de la tierra, los cuales permitirán obtener una representación gráfica que proporcione las principales características del relieve, mediante un plano topográfico.

CAPÍTULO III ESTUDIO DE TRÁNSITO

En este Capítulo se presenta el estudio y análisis del tránsito, necesario para determinar el número de ESAL" S describe la recopilación de datos, conteo de vehículos, clasificación del tipo de vehículo de acuerdo con la disposición de sus ejes, procesamiento de la información, tasas de crecimiento, período de diseño, proyección del tránsito, factor de crecimiento.

CAPÍTULO IV ESTUDIO DE SUELO

Aquí se presenta la información sobre el estudio de suelo facilitado por el Ministerio de Transporte Infraestructura (MTI) en el tramo a adoquinar; donde se analizaron las diferentes pruebas realizadas, para la determinación de su utilidad

en la vía como base, subbase y sub-Rasante que soportarán las cargas a las que serán sometidas, inducidas por la cantidad de ejes equivalentes de diseño, el análisis granulométrico y su respectiva clasificación.

CAPITULO V DISEÑO DE PAVIMENTO


Se calculó los espesores de cada capa que forman el pavimento, para lo cual se utilizaron los parámetros de diseño como son: Ejes equivalentes de diseño (ESAL's), confiabilidad (R), Serviciabilidad (Po, Pt), desviación estándar (So), de igual manera el CBR de diseño el cual sirvió de base para obtener el módulo de resiliencia así mismo el valor de los coeficientes estructurales y el valor de los números estructurales.

CAPÍTULO VI DISEÑO GEOMÉTRICO

Este comprende el diseño geométrico en donde se dibujó el alineamiento horizontal el que consiste en diseñar geométricamente las curvas horizontales, verticales, peralte y sobreancho en base a las normas establecidas en el Manual de Diseño Geométrico para la Región Centroamericana (SIECA, 2011), teniendo en cuenta todas las limitantes encontradas en el campo y auxiliado con una herramienta muy importante en este momento el programa Autodesk Civil 3D 2024. Se definieron parámetros tal como; Radio Mínimo, distancia entre ejes, coeficiente de fricción longitudinal, Grado de curvatura máximo, pendiente transversal (%), distancia de visibilidad de parada (DVA); en función de la velocidad de diseño.

CONCLUSIONES Y RECOMENDACIONES

Las conclusiones sintetizan los resultados obtenidos de los estudios realizados para el diseño del tramo Aceituno – El Sauce. Las recomendaciones deberán ser tomadas en cuenta para la futura construcción del tramo en mención y a la vez para el desarrollo de otros diseños similares.

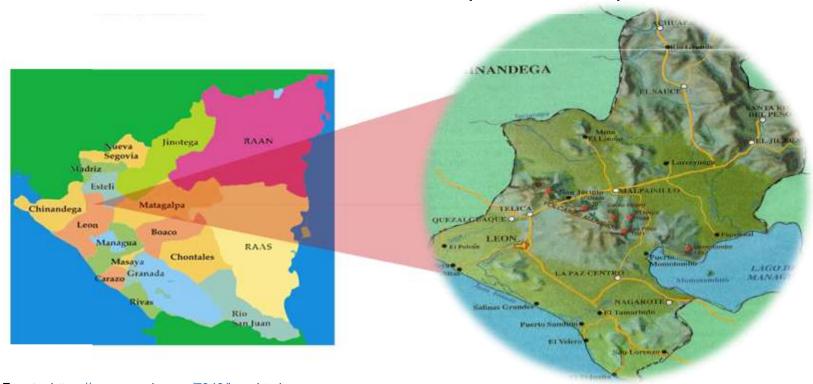
1.1 Introducción

En Nicaragua, así como en la mayor parte del mundo, las carretas continúan siendo una vía de comunicación mayormente utilizados tanto en el transporte de pasajeros como para bienes y mercancías. Son de primordial importancia para el desarrollo económico y social del país, puesto que, a través de ellas circulan gran parte de la producción desde los distintos sectores que contribuyen al producto interno bruto del país, a la generación de empleo y a las exportaciones.

El tramo de la carretera Aceituno se encuentra localizado en el municipio del Sauce, departamento de León, mismo que inicia en las coordenadas 13°02′22″ N y 86°28′15″ O y finalizando en las coordenadas 13°01′20″ N y 86°28′13″ O. Constando con un número poblacional de 587 habitantes según datos del Instituto Nacional de Información de Desarrollo (INIDE).

Las condiciones del tramo en tiempo de invierno, son de difícil acceso para los pobladores debido a las características del suelo, ya que viajan constantemente al departamento de Estelí a hacer sus compras y ventas al mercado, lo cual para esto requiere que esta carretera se encuentre en un buen estado.

El diseño geométrico con estructura de pavimento articulado, surge como una necesidad para mejorar las condiciones de la red vial y proporcionar el desarrollo económico en la zona rural y urbana de los pobladores aledaños al tramo, proveyéndoles de una estructura vial para poder tener mayores facilidades de acceso.


Se realizará el diseño geométrico de la carretera tomando en cuenta la norma SIECA 2011 mediante el uso del software Civil 3D. Para que dicho diseño se pueda realizar también es necesario efectuar estudios de tránsito para determinar la cantidad de ejes equivalentes, la determinación de las propiedades físicas y mecánicas del suelo y proponer una estructura de pavimento articulado capaz de soportar las disposiciones de carga del tramo.

1.1.1. Localización del Tramo

❖ Macro Localización

El proyecto en estudio es perteneciente al departamento de León, con precisión al municipio de El Sauce, el cual se encuentra ubicado en las coordenadas iniciales 13°02′22" N y 86°28′15" O y coordenadas finales 13°01′20" N y 86°28′13" O. (Ver Ilustración 1).

Ilustración 1 Macro Localización del tramo en estudio. Municipio de El Sauce, Departamento de León

Fuente: https://mapas.owje.com/7343/leon.html

❖ Micro Localización

La zona donde se encuentra localizado el tramo en estudio para el diseño geométrico del tramo, está ubicado en la comunidad del Aceituno, municipio del El Sauce en el Departamento de León. Al ser este tramo el fin del proyecto en el municipio del El Sauce, se encuentra ubicado a 137 km de la capital del país, Managua y a 88.70 de la cabecera departamental León.

Ilustración 2 Micro Localización del Tramo en Estudio. Tramo Aceituno – El Sauce, Departamento de León

Fuente: https://www.google.com/maps?ll=13.03791,-86.47446&z=14&t=h

1.2 Antecedentes

En el año 1,972, se llevó a cabo la apertura de la vía de transporte de la carretera que conecta el municipio del Sauce con el departamento de Estelí que cuenta con una distancia de 40 km y fue ejecutado por el Gobierno de esa época. (Corrales, 2022)

En el año 2007, debido a un conflicto por el futuro del proyecto las obras de reconstrucción se vieron suspendidas durante varias semanas. Luego, la reparación del tramo de carretera que conecta Estelí con el Municipio del Sauce, León, fue reanudada por trabajadores contratados por el Instituto de Desarrollo Rural (IDR) quienes iniciaron las labores de mejoramiento de esa vía un 23 de junio del mismo año, estas obras incluían la reparación de 23 km del camino; además, de construcciones de cunetas, alcantarillas y recubrimientos con balastro, beneficiando así a más de 10,000 pobladores de la localidad del Sauce, Achuapa, Limay y Estelí. (Prensa, 2007)

Actualmente, las condiciones de la vía de transporte son de difícil acceso sobre todo en la época de invierno ya que, hacen presencia las inundaciones y las vertientes de agua, dañando así todo el acceso hacia la carretera. El tramo no cuenta con cunetas y el drenaje menor se encuentra en un estado regular, no existe un bombeo adecuado lo cual provoca que no exista una apta seguridad vial y drenaje apropio; además, no cuenta con una señalización vial que garantice una buena operación en el tránsito diario. Esto perjudica a su vez, a las personas que diariamente realizan viajes ya sean comerciales o turísticos, porque las condiciones de la carretera interfieren desde su tiempo de viaje hasta la facilidad de poder movilizarse hacia sus diferentes destinos en el país. (Ver Anexos, llustración 22, pág. l)

Por las razones antes expuestas, el Gobierno en turno junto con el Ministerio de Transporte e Infraestructura, darán inicio a la construcción de la carretera Sauce – Aceituno – Estelí, entre los departamentos de Estelí – León. Lo cual mejorará la calidad de vida de más de 150,000 pobladores y tendrá una longitud de 40 km de adoquinado el cual incluirá la reconstrucción de 12 puentes.

1.3 Justificación

Actualmente, debido a las condiciones climatológicas este tramo de carretera se ve afectado en la seguridad vial y la movilización de un punto a otro. Es por esto que, para que una determinada zona avance en su desarrollo económico es necesario que la misma cuente con un sistema de comunicación establecido por medios de sus vías de acceso, cumpliendo con las especificaciones técnicas y la demanda de la población.

Un diseño geométrico vial con todos los parámetros de la SIECA, permitirá minimizar los riegos mejorando las condiciones para beneficios de los pobladores y el país en general.

Con la implementación del rodamiento de adoquinado se favorecerá el desarrollo económico de la zona y generará fuentes de trabajo a la población durante la ejecución de este proyecto.

Los beneficiarios directos son las personas que viven en el municipio y sus comunidades aledañas que trabajan en las actividades agrícolas y ganaderas; así también, las personas que se dedican al comercio, ya que tendrán facilidad de transportación de sus productos y proyectos a nivel nacional y una mejor calidad de vida para su futuro. De igual manera, se beneficiará a todas aquellas personas que podrán tener un fácil desplazamiento por el tramo.

Con el proyecto de diseño geométrico del tramo de 2 km en el casco urbano del municipio de El Sauce se dará solución a los problemas que afectan a los habitantes del lugar; ya que, tener vías de circulación vehicular bien diseñadas y en buenas condiciones aporta a la seguridad de los usuarios y aumenta el valor adquisitivo de los terrenos y propiedades aledañas al tramo.

Una vez que esta obra llegue a su fin, se podrá proponer a su vez nuevos pequeños proyectos ya sean de negocio comercial, salud, educativos o de interés atractivo a las personas.

1.4 Objetivos

1.4.1 Objetivo General

Realizar el diseño geométrico y estructura de pavimento articulado utilizando el Método de la AASHTO – 93, del tramo Aceituno – El Sauce en el municipio del Sauce, departamento de León.

1.4.2 Objetivos Específicos

- Procesar los datos del estudio topográfico proporcionado por el Ministerio de Transporte e Infraestructura (MTI), para la determinación del relieve y características topográficas del tramo en estudio, haciendo uso del software Civil 3D 2023.
- ❖ Realizar el estudio de tránsito para la determinación del Tránsito Promedio Diario Anual (TPDA) y los Ejes Equivalentes (ESALS) para el período de diseño, aplicando los principios y mecánicas esenciales para el diseño de estructuras de pavimento mediante el Método AASHTO – 93.
- Efectuar el estudio de suelo para la determinación de las propiedades físicas y mecánicas esenciales para el diseño de estructuras de pavimento aplicando las Normas AASHTO.
- ❖ Determinar los espesores de la estructura de pavimento articulado mediante el Método AASHTO – 93.
- ❖ Diseñar geométricamente el tramo Aceituno Sauce aplicando la normativa del Manual para el Diseño Geométrico de Carretera SIECA (2011) mediante el Software Civil 3D, para la elaboración de planos del tramo en estudio.

CAPÍTULO II ESTUDIO **TOPOGRÁFICO**

2.1 Generalidades

Se define la Topografía (del griego: topos, lugar y graphein, describir) como la ciencia que trata de los principios y métodos empleados para determinar las posiciones relativas de los puntos de la superficie terrestre, por medio de medidas, y usando los tres elementos del espacio. Estos elementos pueden ser: dos distancias y una elevación, o una distancia, una dirección y una elevación. (Marquez, pág. 1)

En este capítulo se mostrará los resultados del levantamiento topográfico realizado en el tramo Aceituno - El Sauce, el cual fue proporcionado por el Ministerio de Transporte e Infraestructura (MTI), para la determinación del relieve y características topográficas del tramo.

2.2 Levantamiento Topográfico

Los levantamientos topográficos se realizan para localizar objetos y medir el relieve, los accidentes del terreno o las variaciones tridimensionales de la superficie terrestre. Proporcionan información detallada sobre las elevaciones y la ubicación de elementos naturales (edificios, caminos, corrientes, etc.), de tal forma que es posible dibujar la información completa en planos topográficos. (McCormac, 2013, pág. 241)

El levantamiento topográfico fue realizado con una Estación total modelo Sokkia Cx105 la cual se inició en la estación 17+800 y finalizando en la estación 19+800. Con coordenadas UTM WGS84 las cuales se muestran a continuación en la Tabla 1.

Tabla 1 Coordenadas cartográficas del levantamiento

	Coordenadas Cartográficas			
Estaciones	(UTM84-Zona 16P)			
	Este (X) (m)	Norte (Y) (m)	Elev. (Z) (m)	
17+800	557205.48	1441399.92	530	
19+800	556624.20	1442192.63	479	

Fuente: Elaboración Propia

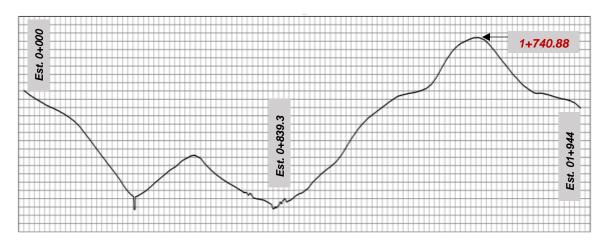
2.2.1 Planimetría

Se llama planimetría al conjunto de los trabajos para tomar en el campo los datos geométricos necesarios que permitan una figura semejante a la del terreno, proyectada sobre un plano horizontal" (Márquez, 2003, pág. 9).

Alineamiento Horizontal

En el alineamiento horizontal, se levantaron las secciones transversales a cada 10 m, generando una nube de puntos a lo largo del tramo, conformado por tres lecturas en la banda derecha, banda izquierda y centro. (Ver Anexos, Tabla 53 – 63, pág. I – XI)

2.2.2 Altimetría


Recibe el nombre de nivelación o altimetría el conjunto de los trabajos que suministran los elementos para conocer las alturas y forma del terreno en sentido vertical. Todas las alturas de un trabajo de topografía, están referidas a un plano común de referencia. Este plano llamado de comparación es una superficie plana imaginaria, cuyos puntos se asumen con una elevación o altura de cero. (Márquez, 2003, pág. 245)

❖ Perfil Longitudinal

Es la proyección del eje real de la vía sobre una superficie vertical paralela a la misma, debido a este paralelismo, dicha proyección mostrara la longitud real del eje de la vía, denominado también rasante, aquí se detallan los alineamientos verticales, su gradiente longitudinal, así como las curvas verticales con sus parámetros más importante y cotas de respectivas. (Marquez, 1994)

A manera de ejemplo, se presenta el perfil longitudinal del tramo Aceituno - El Sauce, el cual se procesa mediante el software civil 3D con los datos proporcionado por el Ministerio de Transporte e Infraestructura (MTI). (Ver Ilustración 3, pág. 9)

Ilustración 3 Perfil del terreno EST. 17+800 – 19+800

Fuente: Elaboración propia

Establecimiento de BM

"Objeto natural o artificial relativamente permanente, que tiene un punto fijo marcado, cuya elevación arriba o abajo de un plano de referencia adoptado se conoce o se supone". (Wolf & Ghilani, 2016, pág. 74)

Para la ubicación de los Bancos de Nivel, se tomó en consideración la metodología planteada en el Manual para la Revisión de Estudios Topográficos del Ministerio de Transporte e Infraestructura (MTI), la cual cita lo siguiente:

En el proyecto se instalarán puntos en toda la trayectoria del camino, que estarán ubicados a distancias promedio uno de otro conforme se establece en los términos de referencia, y que cuenten con Inter visibilidad uno con otro, de acuerdo a la experiencia, se recomienda que la distancia promedio sea de 250 mts. (Pág. 28)

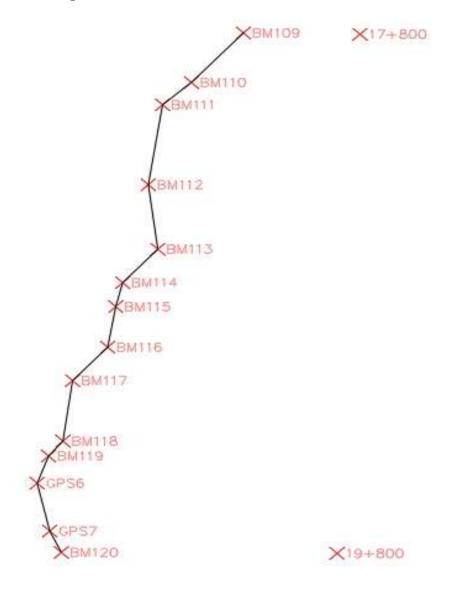
En la Tabla 2 (pág. 10), se muestras los Bancos de Nivel colocados para formar la línea base del Tramo Aceituno – El Sauce. Además, en la Ilustración 4 (pág. 10), se muestra el Mapa Satelital de los BMs.

Tabla 2 Banco de Nivel

Puntos	Norte m	Este m	Elevación	Descripción
1	1441786	557488	558.414	BM109
2	1441596	557320.5	547.286	BM110
3	1441511	557228	537.205	BM111
4	1441204	557182.2	538.068	BM112
5	1440956	557212.7	529.256	BM113
6	1440828	557099.8	528.638	BM114
7	1440736	557077.6	533.97	BM115
8	1440581	557051.8	547.021	BM116
9	1440452	556938.9	553.613	BM117
10	1440220	556907.9	565.743	BM118
11	1440163	556861.7	566.879	BM119
12	1440059	556825.2	559.435	GPS6
13	1439875	556865.6	552.185	GPS7
14	1439793	556902.9	549.634	BM120

Fuente: Ministerio de Transporte e Infraestructura (MTI)

Ilustración 4 Mapa satelital de la ubicación de los BM


Fuente: https://www.google.com/maps/@13.03143,-86.47316,3357m

❖ Poligonal Abierta

"En una poligonal abierta los ángulos se pueden levantar a la derecha o a la izquierda, pero se recomienda que todo el levantamiento se realice en un mismo sentido". (Morales, 2015, pág. 89)

Se importaron los puntos proporcionados por el Ministerio de Transporte e Infraestructura al software Civil 3D 2023, con lo cual se construyó la poligonal base. (Ver lustración 5)

Ilustración 5 Poligonal Abierta del Tramo Aceituno - El Sauce

Fuente: Elaboración propia

Pendiente

"La pendiente (llamada también porcentaje de inclinación), es el ascenso o descenso vertical en pies por cada 100 pies, o en metros por cada 100 m". (Wolf & Ghilani, 2016, pág. 120)

Para la determinación de la pendiente del terreno natural del tramo en estudio, se importaron los datos del levantamiento topográfico proporcionado por el Ministerio de Transporte e Infraestructura, en el software Civil 3D y se creó el perfil longitudinal, mismo que se etiquetó con cada una de las pendientes, seleccionando aquellas que más predominaban, para tomarla como pendiente del terreno natural.

Además, el software proporciona datos de las pendientes por área, las cuales se muestran en la Tabla 3.

Tabla 3 Pendientes del terreno

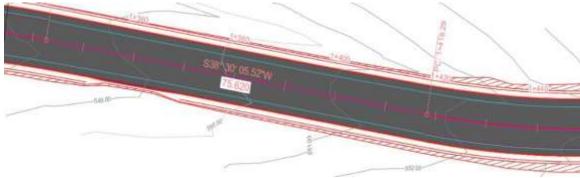
Tabla de Pendientes							
Número	Pendiente Mínima	Pendiente Máxima	Color	Área			
1	0.00%	5.00%		19060.56			
2	5.10%	15.00%		65329.90			
3	15.10%	30.00%		28929.07			

Fuente: Elaboración propia.

La topografía del tramo el Aceituno – El Sauce, considerando a la SIECA (2011), que muestra clasificación del tipo de terreno de acuerdo a las pendientes, se clasifica como un terreno tipo ondulado, ya que las pendientes máximas se encuentran en el rango entre 5-15 %. (Ver Tabla 4, en base a la Tabla 3)

Tabla 4 Clasificación de los terrenos en función de las pendientes naturales

Tipo de Terreno	Rango de Pendientes P (%)
Llano o plano	P ≤5
Ondulado	5 <p 15<="" th="" ≤=""></p>
Montañoso	15 <p 30<="" td="" ≤=""></p>


Fuente: Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras, SIECA (2011), Capítulo 3, pág. 116.

Curvas de nivel

"Una curva de nivel, es una línea que une puntos de igual elevación. En los mapas, las curvas de nivel representan la localización planimétrica de las trazas de las superficies de nivel para diferentes elevaciones". (Wolf & Ghilani, 2016, pág. 509)

Como ejemplo de las curvas de nivel generadas en el software civil 3D, se muestra la ilustración 6, lo que permite tener una mejor caracterización del comportamiento del terreno del tramo.

Fuente: Elaboración propia

2.3 Características de la Topografía

La topografía del tramo Aceituno — El Sauce, es ondulado debido a las pendientes predominantes a lo largo del tramo que se encuentran entre 5-15 %.

Actualmente, las condiciones de la vía de transporte son de difícil acceso sobre todo en la época de invierno ya que, hacen presencia las inundaciones y las vertientes de agua, dañando así todo el acceso hacia la carretera. El tramo no cuenta con cunetas y el drenaje menor se encuentra en un estado regular, no existe un bombeo adecuado lo cual provoca que no exista una apta seguridad vial y drenaje apropio.

2.4 Evaluación del Levantamiento Topográfico

Se muestra la evaluación del estudio topográfico proporcionado, tomando como referencia los criterios establecidos por el Manual de Revisión de Estudios Topográficos del Ministerio de Transporte e Infraestructura. (Ver Tablas 5,6, pág. 14 - 15)

Tabla 5 Evaluación del Levantamiento Topográfico (Parte 1)

Tipo de Estudio y elementos de	Satisface	OBS.					
Revisión							
Trabajos Topográficos control de gabinete							
Determinación de Coordenadas del Proceso de Georreferenciación	Si						
Transferimiento de datos crudos de campo en archivo.	Si						
Determinación de Coordenadas Geodésicas.	Si						
Se determinó Factor de Escala.	Si						
Control-Cálculo del Proceso de Levantamiento - Medición deCircuitos de Poligonal Línea Base.	Si						
Se transfirieron datos de campo de Poligonales de la EstaciónTotal a PC para archivos "txt"	Si						
Verificación de datos de archivos "txt" con datos de Libretas decampo de cada circuito de Poligonal.	Si						
Se obtuvieron los datos verdaderos correspondientes a las distancias y acimut de cada lado de la poligonal de cada circuito de Línea Base.	No	Se generaron datos en Civil 3D					
El seleccionamiento transversal del camino se realiza distanciando conforme lo establecido en los Términos de Referencia.							
El Seleccionamiento transversal del camino se realiza detallando toda la infraestructura existente dentro de la franja del camino establecida en los términos de referencia.	a Si						
Se está utilizando puntos auxiliares para la toma de puntos incomodos y se realizan controles de llegada en cada punto dela Línea Base en coordenadas y elevación.	Si						
El montaje de los datos del seccionamiento transversa se detalla en libreta topográfica de campo con los respectivos esquemas y números de códigos de cada detalle.	Si Si						
Durante el levantamiento del seccionamiento se detallan el eje del camino, orillas de borde, cunetas, cercas del derecho de vía y divisiones de propiedades, Nombres de Propietarios, arboles de grosor mayor a los 15 cm, taludes, sondeos de línea, postes del tendido eléctrico y telefónico y demás detalles existentes en la vía	Si						

Fuente: Manual de Revisión de Levantamientos Topográficos

Tabla 6 Evaluación del Levantamiento Topográfico (Parte 2)

Revisión de Planos Topográficos y Resultados del diseño de la Geometría de la Vía.							
Se generan los planos topográficos de la Planimetría.	No	Se entregó nube de puntos					
Revisión de la configuración topográfica de las curvas de nivela intervalos de 0.50 mts.	Si						
Revisión de la trayectoria geométrica de la vía.	Si						
Revisión del contenido de la información de sondeos de líneaubicados en la superficie de rodamiento.	Si						

Fuente: Manual de Revisión de Levantamientos Topográficos

ESTUDIO DE TRÁNSITO

3.1 Introducción

Acorde con (Mayor Reyes Spíndola & Cárdenas Grisales, 2018) La infraestructura del sistema vial es uno de los patrimonios más valiosos con qué cuenta cualquier país, por lo que su magnitud y calidad representa uno de los indica dores del grado de desarrollo del mismo En los últimos años, con el aumento cada vez mayor del parque vehicular, la circulación en las calles y carreteras se ha tornado más compleja, motivo por el cual, cobra gran importancia la realización de análisis operacionales más detallados de los sistemas viales, donde es precisamente la Ingeniería de Tránsito, aquella rama de la ingeniería, la llamada a tratar estos aspectos.

El estudio de tránsito provee información importante para el diseño geométrico y estructural de la carretera. Sin embargo, el peso de los vehículos influye de gran manera sobre la estructura de pavimento, por lo cual se debe tener en cuenta lo siguiente:

- El tipo de tránsito.
- La carga máxima por rueda.
- La intensidad media anual de lluvia.

En este capítulo, se muestran los resultados obtenidos en el estudio de tránsito realizado en el tramo Aceituno – El Sauce. El tránsito es una de las variables más importantes en el diseño de la estructura de pavimento y una de la que presenta mayores problemas para su estimación y ajuste a las exigencias futuras de una vía, Los Ingenieros de Tránsito han podido demostrar la conveniencia de emplear simultáneamente la vigilancia, la educación y la ingeniería en el logro de la meta de una circulación segura y eficiente.

3.2 Información Base

Para obtener la cantidad de vehículos que circulan en el tramo, se realizó un aforo vehicular durante una semana, con fecha comprendida del 6 al 12 de febrero de 2023, con un periodo de tiempo de doce horas diarias y por periodos de 60 minutos y su correspondiente clasificación ya que, el tramo en cuestión al momento de realizar el aforo estaba en construcción, se decidió realizar un conteo de 7 días y observar a mayor detalle el flujo vehicular, (6:00 am a 6:00 pm). Para la recopilación de datos del flujo vehicular, se implementó el formato de aforo presentado en el anuario estadístico del MTI 2020. (Ver Anexos Tablas 69 – 75, pág. XXV – XXXI)

En el aforo vehicular, se tomaron en cuenta los dos sentidos de la vía, teniendo como punto de inicio la Estación 17+800 del tramo en estudio, la estación más cercana, es la Estación de Conteo Sumario 4902, Aceituno – El Sauce, la cual tiene código NIC 49A y que a su vez pertenece a la Estación de Mayor Cobertura 1802 San Marcos – Masatepe.

3.2.1Tipos de tránsito

El tránsito se divide en tres categorías:

- Tránsito liviano: Cuando el número de vehículos comerciales por día fuera igual o inferior a 250, con un máximo de 20% de camiones, con carga por rueda igual a la máxima.
- Tránsito medio: Cuando el número de vehículos comerciales estuviere comprendido entre 250-750, con máximo de 20% de camiones, con cargas por rueda igual a la máxima.
- Tránsito pesado: Cuando el número de vehículos comerciales excediere de 750 o cuando hubiera más de 250 camiones por día, con carga por rueda igual a la máxima. (Zamora River, 2007)

3.2.2 Tipos de vehículos

Según el Ministerio de Transporte e Infraestructura (2008), los diferentes volúmenes de tránsito que se obtienen de las estaciones programadas durante el año y que clasifican los contadores de tránsito por automotores en ambos Sentidos de circulación se caracterizaran en:

- ❖ Motos: Incluye todos los tipos de motocicletas tales, como mini motos, cuadra ciclos y taxi motos, etc.
- Autos: Se consideran todos los tipos de automóviles de cuatro y dos puertas entre los que podemos mencionar, vehículos cope y station wagon.
- ❖ Jeeps: Se consideran todos los vehículos, conocidos como 44. En diferentes tipos de marcas, tales como Toyota, Land Rover, Jeep, etc.
- Camionetas: Son todos los tipos De camionetas que tienen tinas, incluyendo las que transportan pasajeros y aquellas que por su diseño están destinadas a trabajos de cargas.
- Microbús: Se consideran todos aquellos microbuses, que su capacidad es menor o igual a 4 pasajeros sentados.
- ❖ Bus: Se consideran todos los tipos De buses para el transporte de pasajeros con una capacidad mayor de 30 pasajeros sentados.
- ❖ Camión de carga: Son todos aquellos camiones tipo C2 (2 ejes) y C3 (3 ejes), con un peso mayor de 5 ton. También se incluyen las furgonetas de carga liviana. Se consideran todos aquellos vehículos, cuyo peso máximo es de 4 toneladas o menores a ellas.

3.3 Estación de Conteo Vehicular

Las estaciones de conteo, acorde a lo que se especifica en el Anuario de Aforos de Tránsito (2020), se dividen en los siguientes:

Estación de Conteo Sumaria (ECS)

Son las estaciones con volúmenes menores a 300 TPDA.

Estaciones de Corta Duración (ECD)

Se aplica a un conjunto de estaciones donde los flujos reportados son mayores a de 300 TPDA.

Estaciones de Mayor Cobertura (EMC)

Son las estaciones de conteos continuos los 365 días al año con conteos clasificados 24 horas por día, pero por el costo de la ejecución, el Ministerio divide el periodo en tres cuatrimestres, realizando conteos clasificados durante 3 tiempos por 7 días consecutivos cada uno las 24 horas, lográndose obtener el Tránsito Promedio Diario Anual (TPDA), que no es más que el promedio de los periodos. (Ministerio de Transporte e Infraestructura 2020, 2020)

El conteo vehicular, se llevó a cabo en la Estación 17+800, inicio del tramo Aceituno – El Sauce; mismo que inicia en las coordenadas: 13°02′22″ N y 86°28′15″ O dicha sección de la estación se seleccionó para realizar el aforo vehicular, ya que permite captar el 100% del tránsito que circula en los dos sentidos de la vía. El tramo en cuestión, tiene como punto final la Estación 19+800, referenciado en las coordenadas 13°01′20″ N y 86°28′13″ O. (Ver Ilustración 7, pág. 20)

Achuapa Aceituno
Río Grande

Ilustración 7 Foto satelital del tramo en estudio, Aceituno - El Sauce

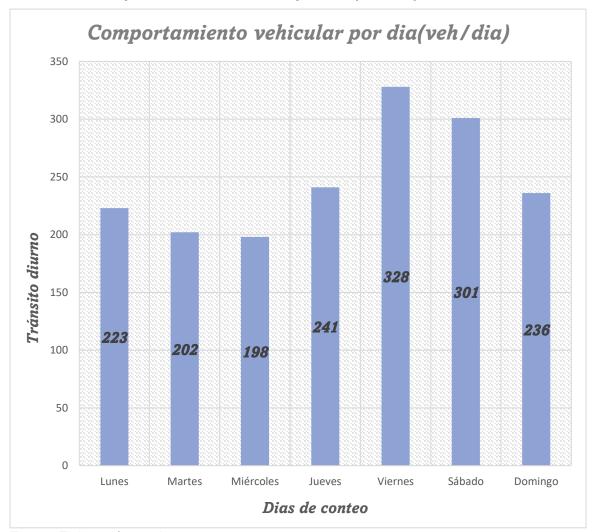
Fuente: Google Earth. doogle.com/web/@0,-0.4177,0a,22251752.77375655d,35y

El Sauce

El Sauce

3.4 Datos de campo

La información recopilada en el aforo vehicular, permite comprender el tránsito en el sector en estudio, esto mediante, la composición vehicular que circuló en la semana de conteo. (Ver Tabla 8, pág.19)


3.5 Aforo vehicular

Coronado Iturbide (2002), especifica que un aforo vehicular, es un censo que se efectúa para llevar el control de volúmenes de tránsito para una carretera determinada, con el propósito de evaluar la información recopilada para tener registros de un posible incremento o disminución del flujo vehicular en años futuros. (Coronado Inturbide & SIECA, 2002)

Con los datos recolectados en el aforo manual de observación directa, que se inició el lunes 6 de febrero del año 2023 y finalizó, el Domingo 12 de febrero del mismo año, se contabilizaron las cantidades de vehículos que transitaron en el tramo en estudio acorde a su clasificación vehicular en un periodo de 12 horas diarias de 6 am a 6 pm. (Ver Tabla 7, pág. 22)

El Gráfico 1, presenta el comportamiento del flujo vehicular en la semana de conteo, reflejando los días de mayor circulación en el tramo; el día viernes con 328 vehículos, siendo el día de mayor volumen vehicular presentado, seguido por, sábado y domingo, con un flujo vehicular de 301 y 236 respectivamente.

Gráfico 1 Comportamiento vehicular por día (veh/día)

Fuente: Elaboración propia

Tabla 7 Aforo Vehicular del tramo en estudio, Aceituno – El Sauce

			Vehículos de pasajeros				V	/ehícul	os de (carga		
Fecha	Dia	Moto	Auto	Jeeps	Cam	Bus	C2-LIV	C-2	C-3	C-4	T2S1/T2S2 /T3S1	Total de vehículos en (12 horas)
6/2/2023	Lunes	77	5	34	72	12	6	10	5	0	2	223
7/2/2023	Martes	69	12	18	65	12	9	9	8	0	0	202
8/2/2023	Miércoles	61	8	16	71	10	10	12	10	0	0	198
9/2/2023	Jueves	80	27	27	77	10	6	7	7	0	0	241
10/2/2023	Viernes	105	35	45	109	12	8	7	5	2	0	328
11/2/2023	Sábado	104	21	44	103	14	6	5	4	0	0	301
12/2/2023	Domingo	81	22	19	86	6	11	6	3	1	1	236
Total	/Veh	577	130	203	583	76	56	56	42	3	3	1729
То	tal		14	93.00		236.00						1729
Veh. /12h tip		33.37%	7.52%	11.74%	33.72%	4.40%	3.24%	3.24%	2.43%	0.17%	0.17%	100%
	86.35%				13.65%						100%	
		ı	% Vehícu	los Liviano	os			% Vehí	culo Pe	sado		

Fuente: Elaboración propia

3.6 Volumen de tránsito

Según (Mayor Reyes Spíndola & Cárdenas Grisales, 2018), se define como el número de vehículos que pasan por un punto o sección transversal dados, de un carril o de una calzada, durante un período de tiempo determinado.

Son expresados con respecto al tiempo, y de su conocimiento se hace posible el desarrollo de estimaciones de la calidad de servicio prestado a los usuarios. (Mayor Reyes Spíndola & Cárdenas Grisales, 2018, pág. 152)

3.6.1 Volúmenes de tránsito promedio

- ❖ Tránsito Promedio Diario: Se define como Tránsito Promedio Diario (TPD) al número total de vehículos que pasa durante un periodo de tiempo (días completos) igual o menor a un año y mayor que un día, divido entre el número de días del periodo.
- ❖ Tránsito Promedio Diario Anual (TPDA): El Tránsito Promedio Diario Anual (TPDA), se define como el volumen total de vehículos que pasan por un punto o sección de una carretera en un período de un 8 año, dividido entre los 365 días del mismo. (Mayor Reyes Spíndola & Cárdenas Grisales, 2018, páq. 183)

3.6.2 Determinación del Tránsito Promedio Diario Semanal (TPDS)

El Tránsito Promedio Diario Semanal (TPDS), se determinó realizando un promedio de los resultados obtenidos en el aforo vehicular, teniendo en cuenta los dos sentidos de la vía, los resultados se detallan en la Tabla 8 (pág. 24), reflejando un valor de 246 vehículos por día.

Tabla 8 Tránsito Promedio Diurno Semanal (TPDS)

			Vehí	culos d	le pasa	jeros	eros Vehículos de carga						
	Mot	Moto	Autos	Jeeps	Cam	Bus	C-2	C-2 liviano	C-3	C-4	T2S1/ T2S2	Total	
TPE	S 82		19	29	83	11	8	8	6	1	1	248.0	
Tot	al		21	13.00			35.00						
%	33.3 %	3	7.72%	11.79%	33.74%	4.47%	3.25%	3.25%	2.44%	0.00%	0.00%	100%	
		86.59%				13.41%						100%	
		% Vehículos Livianos				% Vehiculo Pesado							

Fuente: Elaboración Propia

Composición Vehicular

Al comprender los datos recolectados en el aforo vehicular, se define el valor de Tránsito Promedio Diario Semanal (TPDS) de 248 vehículos por día, que acorde a la clasificación vehicular, se divide de la siguiente manera: el 86.59% corresponde a vehículos livianos (motocicleta, automóvil, jeep, camioneta, mini bus), y el 13.41% a los vehículos pesados (bus, liviano de carga, C2, C3, C4, T2-S1), dicho resultado se muestra Ilustrado en el Grafico 2.

Gráfico 2 Porcentaje de Clasificación Vehicular del TPDS

Fuente: Elaboración propia

3.6.3 Cálculo del Tránsito Promedio Diario Anual (TPDA)

Se define el volumen de tránsito promedio diario (TPD), como el número total de vehículos que pasan durante un período dado (en días completos) igual o menor a un año y mayor que un día, dividido por el número de días del período para determinar el Tránsito Promedio Diario Anual actual o de año base (2023) se utiliza la información que publica el MTI año a año en el Anuario de Tránsito, siendo el del año 2020 el utilizado para la realización de este documento y cálculos respectivos. En donde el MTI utiliza una metodología de asociación de estaciones de conteos, las cuales son de cobertura nacional en diversos puntos de la red vial de Nicaragua. (Mayor Reyes Spíndola & Cárdenas Grisales, 2018, pág. 184)

Asociación de Estaciones

En esta metodología se identifican tres tipos de estaciones, las Estaciones de Mayor Cobertura (EMC) que se encuentran ubicadas sobre la red troncal de carreteras, las Estaciones de Corta Duración (ECD) ubicadas ya sea en caminos asfaltados o adoquinados con un flujo vehicular menor que la red troncal y las Estaciones de Conteo Sumarias (ECS) ubicadas en caminos revestidos con un flujo moderado.

Del método de asociación de estaciones se obtienen los factores de ajuste (factor día, factor semana y factor cuatrimestre) que son necesarios para convertir los volúmenes de tránsito contabilizados a valores de TPDA (tránsito promedio diario anual). (Ministerio de Transporte e Infraestructura 2020, 2020)

En la Tabla 9 (pág. 26), se presenta la clasificación que corresponde al vector geográfico, para el tramo en estudio Aceituno – El Sauce, que corresponde a un vector R2, expresando que se encuentra en la región Pacifico norte, ya que pertenece al departamento de León.

Tabla 9 Vector Geográfico del sector

Vector	Código	Nombre de la Región	Departamentos					
R1	PS	Pacífico Sur	Masaya, Granada, Carazo, Rivas					
R2	PN	Pacífico Norte	León, Chinandega, Managua					
R3	CN	Central Norte	Nueva Segovia, Madriz, Estelí, Jinotega, Matagalpa, Boaco, Chontales					
R4	AS Atlántic Sur		Región Autónoma del Caribe Sur (RACS). Río San Juan					
RS	AN	Atlántico Norte	Región Autónoma del Caribe Norte (RACN)					

Fuente: Anuario de Aforo de Tránsito, MTI 2020.

Para la obtención del Tránsito Promedio Diario Anual (TPDA), es necesario tener en cuenta el factor de expansión apropiado y el factor día correcto, dichos factores, deben ser identificados en el anuario estadístico del MTI (2020), teniendo en cuenta la estación de conteo más cercana al tramo en estudio, identificada como la ECS 4902 Aceituno – El Sauce siendo esta seleccionada, por ser la estación que además posee mayor similitud en el porcentaje de composición de vehículos pesados y livianos, con la del tramo en estudio.

En la Tabla 10 (pág. 28), se aprecian los factores implementados para realizar la expansión de TPDS a TPDA, en el que se selecciona los valores que corresponden al Conteo 1, ya que estos pertenecen al primer cuatrimestre del año los cuales dieron un 85.89% de vehículos livianos y 13.71% de vehiculó pesado y

87.85% de vehículos livianos y 12.27% de vehiculó pesado respectivamente ,

acorde a los registros del conteo realizado por el MTI, y el aforo vehicular en

estudio, se realizó en la segunda semana del mes de febrero, cumpliendo con el

periodo que lo rige. (Ministerio de Transporte e Infraestructura 2020, 2020)

Basado en lo que plantea el Anuario de Aforos de Tránsito del MTI (2020), el

Tránsito Promedio Diario Anual (TPDA), es calculado por la Ecuación 1, que se

define a continuación:

Donde:

TP(D): Es el tránsito promedio diurno, equivalente al Tránsito Promedio Diario

Semanal, cuando se afora la semana completa durante las 12 horas.

FE: Factor expansión

FD: Factor día

FS: Factor semana

FFS: Factor de fin de semana

La Tabla 11 (pág. 28), refleja el resultado obtenido de expansión del TPDS A

TPDA, esto al implementar la Ecuación 1, expresando un resultado de proyección

para cada tipo de vehículo, y a su vez, un valor general de TPDA de 326 vpd

(vehículos por día)

27

Tabla 10 Factores de Expansión de TPDA Primer Cuatrimestre (Enero – Abril)

Descrip.	Motos	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	Liv	C-2	C-3	T2S1/T2S 2/T3S1	T2S3/T2S 2/T3S3
Factor Dia	1.48	1.39	1.34	1.29	1.39	1.21	1.38	1.25	1.25	1.18	1.00	1.18
Factor Semana	0.96	1.07	1.08	1.04	0.98	0.97	0.97	0.93	0.89	0.90	1.00	0.92
Factor fin de Semana	1.11	0.86	0.84	0.91	1.06	1.09	1.10	1.25	1.47	1.36	1.00	1.29
Factor Expansión a TPDA	0.98	0.94	1.02	0.97	0.96	0.99	0.96	0.98	0.84	0.69	1.00	0.82

Fuente: Anuario de Aforo de Tránsito, MTI 2020

Tabla 11 Tránsito Promedio Diario Anual (Aceituno – El Sauce), 2023

		Vehiculos de pasajeros							,	Vehiculo	s de ca	rga		
	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-2 liviano	C-3	C-4	T2S1/ T2S 2/T3S1	T2S3/T2S 2/T3S3	Total
TPDS	82	19	29	83	0	0	11	8	8	6	0	0	0	246.0
Factor Ajustes	1.48	1.39	1.34	1.29	1.39	1.21	1.38	1.25	1.00	1.18	1.18	1.00	1.00	
Factor Expansión	0.98	0.94	1.02	0.97	0.96	0.99	0.96	0.98	1.00	0.84	0.69	1.00	1.29	
TPDA	118.93	24.83	39.64	103.86	0.00	0.00	14.57	9.80	8.00	5.95	0.00	0.00	0.00	
Total			287.2	25	•					38.32	•			326.0
%	36.48%	7.62%	12.16%	31.86%	0.00%	0.00%	4.47%	3.01%	2.45%	1.82%	0.00%	0.00%	0.00%	100%
	88.11%						11.75%							100%
		% V	'ehiculos	Livianos	;				% Ve	ehiculo F	Pesado			

Fuente: Elaboración propia

Composición Vehicular del TPDA

A partir de los resultados obtenidos de la expansión de TPDS a TPDA, se determina la composición vehicular de forma porcentual, la que se conforma de la siguiente manera: de los 326 vpd, el 88.1% correspondiente a los vehículos livianos (motos, autos, jeep, camionetas, mini bus) y el 11.75%, se expresa en los vehículos pesados (bus, liviano de carga, C2, C3), observe Gráfico 3.

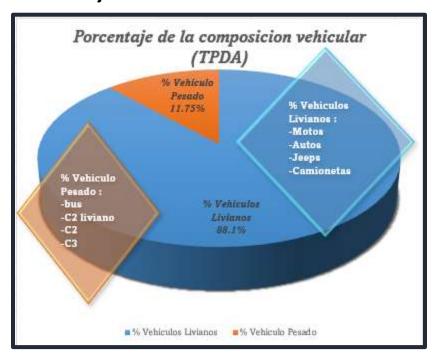


Gráfico 3 Porcentaje de la Clasificación Vehicular del TPDA

Fuente: Elaboración propia

Los porcentajes de vehículos livianos y pesados del TPDA para el tramo de Aceituno – El Sauce; 88.1% y 11.75% respectivamente, en comparación con los valores de la Estación de Mayor Cobertura 1802, San Marcos Masatepe, existe una leve variación, ya que los valores que la caracterizan son 90.6% para los vehículos livianos y 9.3% para los vehículos pesados. (Ver Tabla 12, pág. 30)

Tabla 12 Porcentaje Vehicular de Estaciones de Mayor Cobertura

N.º	Est.	Nombre del Tramo	TPDA	Total, Pesados	Tx-Sx y Cx-Rx	% de Livianos	% de Pesados	% Tx-Sx y Cx- Rx Vehículos de Carga
1	101B	Zona Franca - La Garita	24.523	5.291	956	78.3%	21.6%	18.1%
2	1205	Emp. Chichigalpa - Rotonda Chinandega	10.585	2.614	934	75.0%	24.7%	35.70%
3	200	Entrada al INCAE - El Crucero	9.403	1.183	283	87.3%	12.6%	23.90%
4	1802	San Marcos - Masatepe	9.392	830	69	91.1%	8.8%	8.30%
5	401	Masaya - Granada	8.882	1.074	69	87.8%	12.1%	6.40%
6	107	Sébaco - Emp. San Isidro	7.877	1.797	463	77.0%	22.8%	25.8%
7	300	Sébaco - Quebrada Honda	6.270	1.459	200	76.5%	23.3%	13.70%
8	2803	Nagarote - La Paz Centro	6.058	2.227	1106	62.8%	36.8%	49.70%
9	2404	Chinandega - Corinto	5.471	1.754	1.110	67.7%	32.1%	63.30%
10	2400	Chinandega (Rotonda) - Rancheria	4.019	686	166	81.1%	17.1%	24.20%
11	700	Emp. San Francisco - Tecolostote	2.024	638	96	68.3%	31.5%	15.0%

Fuente: Anuario de Aforo de Tránsito, MTI 2020

3.6.4 Tasas de Crecimiento

Acorde a lo que especifica el Anuario de Aforos de Tránsito del MTI (2020), las tasas de crecimiento, se implementan con el propósito de considerar datos estadísticos de conteos previos. Es un proceso investigativo, que involucra los diferentes volúmenes de tránsito (TPDA), y su comportamiento, para así, no presentar ninguna distorsión por factores locales, al momento de realizar una proyección para un diseño de pavimento. (Ministerio de Transporte e Infraestructura 2020, 2020)

Determinación de la Tasa de Crecimiento

Las tasas de crecimiento varían acorde a los indicadores que se toman en cuenta, por ende, las variables a considerar son la que se describen a continuación; el Producto Interno Bruto (PIB), considerado por ser un factor socioeconómico, el crecimiento poblacional, y los registros históricos de conteos vehiculares, cabe destacar, que se toman los valores de la estación más cercana al tramo en estudio (Aceituno – El Sauce), la cual es, la Estación de Corta Duración 4902, Aceituno – El Sauce, dicho registro histórico, se presenta en la versión del anuario estadístico del MTI (2020). (Ministerio de Transporte e Infraestructura 2020, 2020)

Con los registros históricos publicados por el Ministerio de Transporte e Infraestructura (MTI) y el Banco Central de Nicaragua (BCN), se definen los valores de las variables a considerar para cada una de los años. (Ver Tabla 13, pág. 32)

Tabla 13 TPDA histórico, tasa de crecimiento poblacional y PIB

AÑO	TPDA ECS 1802	TC TPDA	PIB	РОВ	TC PIB	тс ров
2002	22					
2004	53	55%				
2006			118,837.7	5,522.6		
2007			124,870.3	5,595.5	5.08%	1.32%
2008	80	11%	129,160.5	5,668.9	3.44%	1.31%
2009			124,907.7	5,742.3	-3.29%	1.30%
2010			130,416.3	5,815.5	4.41%	1.27%
2011	76	-2%	138,654.2	5,996.6	6.32%	3.11%
2012			147,661.4	6,071.0	6.50%	1.24%
2013			154,936.8	6,134.3	4.93%	1.04%
2014			162,351.3	6,198.2	4.79%	1.04%
2015			170,131.6	6,262.7	4.79%	1.04%
2016			177,894.9	6,327.9	4.56%	1.04%
2017			186,133.6	6,393.8	4.63%	1.04%
2018			179,873.3	6,460.4	-3.36%	1.04%
2019	153	9.14%	173,074.5	6,527.7	-3.78%	1.04%
2020	112	-27%	169,977.3	6,595.7	-1.79%	1.04%
2021			187,560.9	6,664.4	10.34%	1.04%
2022			196,432.6	6,733.9	4.73%	1.04%
	Promedio	9.14%		Promedio	4.92%	1.25%

Fuente: Elaboración propia

❖ Tasa de Crecimiento Vehicular

Las tasas de crecimiento anual para las variables se definieron mediante correlaciones, resultando valores de 9.14% para el TPDA de la ECS 4902 Aceituno – El Sauce, para el PIB un valor de 4.92% y el crecimiento poblacional de 1.25%.

Para la selección de la tasa de crecimiento vehicular, se realizó un promedio de las tasas que corresponde al PIB y crecimiento poblacional, ya que la tasa del TPDA de la ECS 4902, no es tomada en cuenta, por ser un valor demasiado alto

con respecto a la del PIB, que es el que rige a nuestro país, demostrando el cálculo a continuación: (Ministerio de Transporte e Infraestructura 2020, 2020)

$$TC = \frac{{}^{TC_{PIB} + TC_{POB}}}{n}$$
 $TC = \frac{4,92\% + 1,25\%}{2}$
 $TC = 3,09\%$

La tasa de crecimiento vehicular a implementar en el tramo en estudio, es de 3.09%.

3.6.5 Tránsito de Diseño

Acorde con Montejo Fonseca (2002), el Tránsito de Diseño (TD), es una proyección que se realiza para el periodo de diseño, dicha proyección, se efectúa con una serie de datos históricos de tránsito, obteniendo así, un tránsito futuro, para ello, se debe tomar en cuenta la Ecuación 3.

Ec - 3 Tomada de Cal y Mayor (2019)

Donde:

TPDA: Tránsito Promedio Diario Anual.

FC: Factor de Crecimiento.

FD: Factor Dirección.

FC: Factor Carril.

Período de Diseño

El periodo de diseño, es el tiempo para el cual se diseña un pavimento en función de la proyección de tránsito, y el tiempo que se considere apropiado para que las condiciones del entorne se comiencen a alterar desproporcionadamente. (Coronado Inturbide & SIECA, 2002)

El periodo de diseño, se recomienda acorde al tipo de carretera, para ello, observe la Tabla 14 (pág. 34), en la que se parecía diferentes tipos de carreteras con su periodo de diseño recomendado; para el tramo Aceituno – El Sauce, por ser una colectora rural (seleccionado por estar en la zona rural del municipio de El Sauce, y por tener un TPDA de 246 vpd, acorde a lo que especifica la SIECA (2002), se propone un periodo de diseño de 15 años.

Tabla 14 Período de Diseño según el tipo de carretera

Tipo de Carretera	Período de Diseño				
Autopista Regional	20 - 40 años				
Troncales sub-urbanas	15 - 30 años				
Troncales Rurales					
Colectoras Suburbanas	4000 = ~ = =				
Colectoras Rurales	10 - 20 años				

Fuente: Manual Centroamericano para Diseño de Pavimento, SIECA 2002. Capítulo 7, pág., 3.

Factor de Crecimiento

Especifica que es uno de los factores involucrados en la expansión del TPDA al tránsito proyectado es el periodo de diseño, a su vez, involucra la tasa de crecimiento vehicular; para obtener el factor de crecimiento, se implementa la Ecuación 4.

$$fc = \left(\frac{(1+i)^n - 1}{i}\right)$$

Ec - 4. Tomado de SIECA (2002)

Donde:

FC: Factor de Crecimiento

i: Tasa de crecimiento vehicular

n: Periodo de diseño

El factor de crecimiento que se emplea, está en función a la tasa de crecimiento vehicular. (Ver Tabla 15)

Tabla 15 Factor de Crecimiento

Tasa de crecimiento	3.09%
Factor de crecimiento	27.10708505

Fuente: Elaboración propia

Factor de Distribución por Dirección

Especifican que el factor de distribución por dirección, es el factor del total del flujo vehicular; en la mayoría de los casos el valor es de 0.50, haciendo énfasis, que la mitad de vehículos va en una dirección y la otra mitad en otra dirección, esto para una vía de dos carriles, por lo que dicho valor, se implementará en el tramo en estudio. (Coronado Inturbide & SIECA, 2002)

* Factor de Distribución por Carril

El factor distribución por carril, corresponde al carril de diseño, el cual es el que recibe el mayor número de ESAL´s. El tramo en estudio, presenta dos carriles en la vía, por lo que cualquiera puede representar el carril de diseño, ya que ambos canalizan forzosamente el tránsito por dirección. En la Tabla 16, se presenta el factor de distribución por carril, esto considerando las cantidades de carriles en una sola dirección, seleccionando así, el factor de distribución por carril para el tramo Aceituno – El Sauce con un valor de 1. (AASHTO 93, 2001)

Tabla 16 Factor de Distribución por Carril

Número de carriles en una sola dirección	FC
1	1
2	0.80 - 1.00
3	0.60 - 0.80
4	0.50 - 0.75

Fuente: Guía para el Diseño de Estructuras de Pavimento, ASSHTO 93. Pág. 58.

Con los diferentes factores definidos, se calcula el Tránsito de Diseño (TD) para el carril correspondiente, aplicando la ecuación 3 en la Tabla 17 (pág. 36), se

presentan los resultados obtenidos, brindando un valor de 1,216,973, vehículos para el periodo de diseño de 15 años.

Tabla 17 Tránsito de Diseño (Tramo Aceituno – El Sauce)

Tipo de vehiculo	TPDA (2023)	FC	FD	FC'	TD
Moto	82	27.10709	0.5	1	405,657.5
Auto	19	27.10709	0.5	1	93,993.82
Jeep	29	27.10709	0.5	1	143,464.2
Camioneta	83	27.10709	0.5	1	410,604.6
Bus	11	27.10709	0.5	1	54,417.47
Liv C2	8	27.10709	0.5	1	39,576.34
C2	8	27.10709	0.5	1	39,576.34
C3	6	27.10709	0.5	1	29,682.26
Total	246	27.10709	0.5	1	1,216,973

Fuente: Elaboración propia

3.6.6 Ejes equivalentes (ESAL)

Los pavimentos se diseñan en función del efecto del daño que produce el paso de un eje con una carga y para que resistan un determinado número de cargas aplicadas durante su vida útil. Un tránsito mixto está compuesto de vehículos de diferente peso y número de ejes y que para efectos de cálculo se les transforma en un número de ejes equivalentes de 80 KN o 18 Kips, por lo que se le denominará "Equivalent Simple Axial Load" o ESAL (ejes equivalentes). (Coronado Inturbide & SIECA, 2002)

❖ Número Estructural Asumible

El Número Estructural (SN), se considera como un número abstracto, que tiene la finalidad de expresar la resistencia estructural de un pavimento. Para calcular el ESAL (denominado también W18, y significa la cantidad de repeticiones esperadas de un eje de carga equivalente de 18 Kips), se debe considerar un valor de Número Estructural (SN) en función de la importancia de la vía, por lo que se asume un valor de SN igual a 3.

❖ Factor de Equivalencia (FESAL)

El Factor de Equivalencia fue determinado por estudios de pruebas de la AASHTO, en los que sometieron muestras de pavimentos a diferentes configuraciones de ejes y cargas, con el objetivo de analizar el daño que se ocasionó a la estructura. Para definir el factor que se implementa, se debe tener en cuenta el peso del eje de cada tipo de vehículo, que varía en dependencia del tipo de eje (sencillo, doble), y el valor del SN que se asume según el nivel de importancia de la vía.

Para definir el FESAL por cada peso de los ejes, se interpolaron ciertos valores que no se definen en los estudios realizados por la AASHTO, aplicando la Ecuación 5.

$$Y = \frac{(X - X_1)Y_2 + (X_2 - X)Y_1}{(X_2 - X_1)}$$

Ec - 5. Tomada de Spiegel & Stephens (2009)

En la Tabla 18 (pág. 38), se definen los factores de equivalencia para los ejes que los pesos no estaban presentes en los resultados de las pruebas que obtuvo la AASHTO, esto mediante interpolación, para lo cual, se presenta un ejemplo del desarrollo a continuación:

Se abordan los datos que corresponden al automóvil, que tiene un peso en cada eje de 2.2 kip. En los estudios de la AASHTO, se presentan pesos de los ejes a partir de 2 kip hasta 50 kip, defiendo los pesos en números pares en el rango descrito, por lo que, el FESAL para un eje es de:

$$Y = \frac{(2.2 \text{ kip} - 2 \text{ kip})0.002 + (4 \text{ kip} - 2.2 \text{ kip})0.0002}{(4 \text{ kip} - 2 \text{ kip})}$$
$$Y = \frac{0.0004 + 0.00036}{2}$$
$$Y = 0.00038$$

Ec - 6. Tomada Spiegel y Stephen, pág. 134

El Factor ESAL (FESAL) de 0.00038, corresponde a uno de los dos ejes que posee un automóvil. (AASHTO 93, 2001)

Tabla 18 Factor ESAL obtenido por interpolación

Xo	Yo	X (PESO)	Y (Factor de Daño)		
2	0.0002	2.2	0.00038		
4	0.002	2.2			
4	0.002	4.4	0.0038		
6	0.011	4.4			
8	0.036	8.8	0.0576		
10	0.09	0.0	0.0576		
10	0.09	11	0.1395		
12	0.189	1 1	0.1395		
16	0.613	17.6	0.9226		
18	1	17.0	0.9220		
36	1.38	36.3	1.4325		
38	1.73	30.3	1.4323		

Fuente: Elaboración propia

❖ ESAL de diseño

Con los factores definidos para cada eje, se calcula el valor del ESAL según su clasificación vehicular, implementando la Ecuación 7.

$$ESAL(W18) = TD * FESAL$$

Ec - 7. Tomada de SIECA (2002)

Donde:

ESAL: Equivalent Simple Axial Load (Ejes Equivalentes)

TD: Tránsito de Diseño

FESAL: Factor de Equivalencia

En la Tabla 19 (pág. 39), se presenta el ESAL total de 321,348 psi, obtenido para el tramo Aceituno – El Sauce, los valores representan las repeticiones equivalentes a 18 Kips, siendo esto acumulado en un periodo de diseño de 15

años. Las motocicletas no se tomaron en cuenta, debido a que no ejercen una carga considerable al pavimento. (SIECA , 2011)

Tabla 19 ESAL de diseño (Tramo Aceituno – El Sauce)

Vehiculo	Tránsito de Diseño	Peso por eje (kip)	Tipo de eje	FESAL	W18 (ESAL de Diseño)	ESAL Total por vehiculo	
Automovil	939,93.82	2.2	Simple	0.00038	35.71765	71.43530123	
Automovii	909,90.02	2.2	Simple	0.00038	35.71765	71.4000120	
Jeep	143,464.2	2.2	Simple	0.00038	54.51641	109.0328282	
Jeep	143,404.2	2.2	Simple	0.00038	54.51641	109.0326262	
Camioneta	410,604.6	2.2	Simple	0.00038	156.02974	1,716.327106	
Camioneta		4.4	Simple	0.0038	1,560.297	1,710.327100	
Bus	544,17.47	11	Simple	0.1395	7,591.238	125 472 2006	
Du5		22	Simple	2.35	127,881.1	135,472.2996	
Liviano de	395,76.34	8.8	Simple	0.0576	2,279.597	20 702 72256	
Carga		17.6	Simple	0.9226	36,513.14	38,792.73256	
Ca	395,76.34	11	Simple	0.1395	5,520.900	00 505 20002	
C2		22	Simple	2.35	93,004.41	98,525.30882	
02	296,82.26	11	Simple	0.1395	4,140.675	46 660 F0079	
C3		0.3	Doble	1.4325	42,519.84	46,660.50978	
					TOTAL	321,348	

Fuente: Elaboración propia

CAPÍTULO IV ESTUDIO DE SUELO

4.1 Generalidades

Los estudios de suelos, son de vital importancia para el diseño de una vía, de estos dependen muchos de los parámetros que se necesitan para la realización del diseño de estructuras de pavimento.

Citando a Das (2015) se define que, la ingeniería geotécnica es la rama de la ingeniería civil que enfoca su estudio en las propiedades mecánicas e hidráulicas de suelos y rocas, tanto en superficie como en subsuelo, incluyendo la aplicación de los principios de la mecánica de suelos y mecánica de rocas en el diseño de los cimientos, estructuras de contención y las estructuras de tierra.

En este capítulo, se muestran los resultados obtenidos del estudio de suelos realizados en el tramo Aceituno – El Sauce en el municipio del Sauce, departamento de León, los cuales se efectuaron a partir de sondeos manuales realizados a lo largo del tramo a cada 500 m.

4.2 Metodología

El estudio de suelos, se efectuó mediante sondeos manuales de 1.5 m de profundidad ubicados a cada 500 m a lo largo del tramo, recolectando las muestras de cada uno de los estratos encontrados para luego proceder a analizarlos en el laboratorio.

Se examinaron los resultados obtenidos del estudio de suelos del banco de material, los cuales deben adecuarse a las reglas establecidas en la norma NIC - 2019.

En la Tabla 20, pág. 41, se muestra cada uno de los ensayos realizados en base a las normas AASHTO.

El proceso de clasificación de los suelos se realizó por medio del método AASHTO que es el que se sugiere para proyectos viales.

Con respecto a la estratigrafía se define la subrasante de la carretera; de igual manera, es vital tomar en cuenta lo establecido por la norma NIC – 2019, la cual

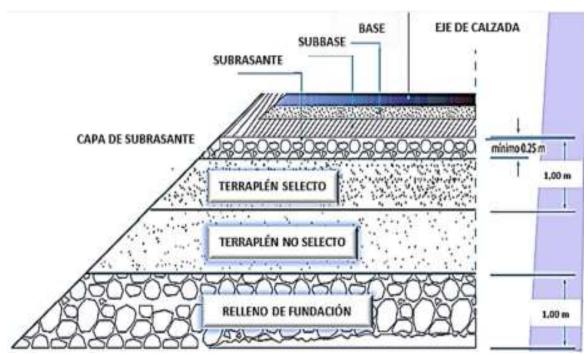

establece que el mínimo necesario es de 25 cm, según se muestra en la Ilustración 8.

Tabla 20 Ensayos de suelo de acuerdo a las normas AASHTO

Ensayo	Norma
Granulometría	AASHTO T 27 - 88
Límite Líquido	AASHTO T89
Índice de plasticidad	AASHTO T 90
Pesos unitarios	AASHTO T 19
CBR	AASHTO T 180
Humedad Natural	ASTM D - 2216

Fuente: Elaboración propia

Ilustración 8 Espesores mínimos de estructuras de pavimento

Fuente: Normas NIC - 2019

Los sondeos manuales que se realizaron a lo largo del tramo de la banda derecha, se encuentran ubicados en las estaciones que se muestran a continuación en la Tabla 21. pág. 42.

Tabla 21 Referencias de sondeos manuales del tramo en estudio (Banda Derecha)

Sondeo (Nº)	Referencia		
Sm – 1	17+800		
Sm – 2	18+300		
Sm – 3	18+800		
Sm – 4	19+300		
Sm – 5	19+800		

Fuente: Elaboración propia

4.3 Análisis granulométrico de los sondeos manuales

Según (Crespo Villalaz, 2004), el análisis granulométrico se refiere a la determinación de la cantidad en por ciento de los diversos tamaños de las partículas que constituyen el suelo. (Pág. 46)

Tomando como referencia lo establecido en la norma AASHTO T 27-88, se analizaron una a una las muestras de suelos de los sondeos, partiendo de los diferentes estratos encontrados.

Se adaptó el método mecánico para tamizar, haciendo uso de la abertura de tamices presentados en Das (2015), los cuales se muestran en la Tabla 22.

Tabla 22 Aberturas de Tamices

Tamiz núm.	Abertura (mm)
2"	76.2
1 1/2"	38.1
1"	25.4
3/4"	19.05
1/2"	12.7
3/8"	9.525
No 4	4.75
No 10	2
No 40	0.425
No 200	0.075

Fuente: Das (2015)

Los resultados obtenidos en el análisis granulométrico para cada uno de los sondeos manuales son los que se pueden apreciar en la Tabla 23.

Tabla 23 Análisis granulométrico para cada sondeo manual del tramo Aceituno – El Sauce

Sondeo	Muestra	Profundidad	% pasa por el tamiz									
N⁰	N⁰	(m)	2"	1 1/2"	1"	3/4"	1/2"	3/8"	N° 4	N° 10	N° 40	N° 200
S1	1	0 - 28	100	80	70	66	58	56	52	44	38	32
	2	28 - 45	100	98	88	82	76	72	65	59	45	39
	3	45 - 70	100	100	100	100	98	97	73	53	38	35
	4	70 - 150	100	100	100	98	95	93	77	67	55	49
S2	1	0 - 20	100	79	71	66	59	56	52	49	39	32
	2	20 - 47	100	100	98	97	96	96	92	77	49	43
	2	47 - 75	100	100	100	96	93	91	86	81	53	47
	3	75 - 100	100	100	100	100	100	96	91	80	73	68
	4	100 - 150	100	100	100	100	100	100	100	94	71	66
S3	1	0 - 20	100	63	46	40	34	30	25	22	15	10
	2	20 - 45	100	100	91	90	86	85	80	72	50	42
	2	45 - 100	100	100	91	90	86	85	80	72	50	42
	3	100 - 150	100	100	96	93	89	87	84	79	69	64
S4	1	0 - 20	100	67	59	51	45	41	32	23	12	6
	2	20 - 64	100	100	100	94	84	79	65	55	42	34
	3	64 - 150	100	100	89	76	67	57	49	43	39	35
S5	1	0 - 37	100	90	77	70	56	49	40	34	24	20
	2	37 - 74	100	100	100	96	93	91	86	78	72	66
	2	74 - 118	100	100	100	97	93	91	88	84	80	76
	2	118 - 150	100	100	100	100	100	100	93	87	81	77

Fuente: Elaboración propia

Además, se muestran las curvas granulométricas de cada uno de los análisis realizados de los distintos sondeos manuales del tramo en estudio. (Ver Gráfico 4 para SM – 1; (Ver Anexos, Gráficos 6 – 24, pág. XII – XXI, para sondeos manuales restantes)

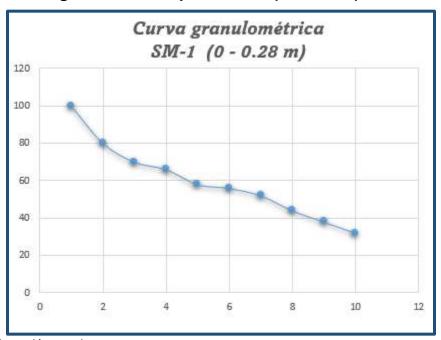


Gráfico 4 Curva granulométrica para SM – 1 (0 – 0.28 m)

Fuente: Elaboración propia

4.4 Límites de Atterberg

Cuando un suelo arcilloso se mezcla con una cantidad excesiva de agua, puede fluir como un semilíquido. Si el suelo se seca gradualmente, se comportará como un material plástico, semisólido o sólido, dependiendo de su contenido de humedad. De manera similar, el contenido de humedad, en porcentaje, en el que el suelo cambia de un estado plástico a uno semisólido y de un estado semisólido a uno sólido se definen como límites plásticos (LP) y límites de contracción (LC), respectivamente. (Das, 2012, pág. 15)

❖ Límite Líquido

Según (Crespo Villalaz, 2004), el límite líquido se define como el contenido de humedad expresado en por ciento con respecto al peso seco de la muestra, con

el cual el suelo cambia el estado líquido al plástico. Conforme a esta definición, los suelos plásticos tienen en el límite líquido una resistencia muy pequeña al esfuerzo de corte, pero definida en donde según Atterberg es de 25 g/cm². Por ende, la cohesión de un suelo en el límite líquido es prácticamente nula.

$$LL = \frac{P_h - P_s}{P_s} \times 100 = \frac{P_w}{P_s} \times 100 \, \text{Ec} - 8. \, \text{Tomado de Crespo Villalaz (2004)}$$

Donde:

LL: Límite líquido en %

Ph: Peso de la muestra húmeda en gramos

Ps: Peso de la muestra seca en gramos

Pw: Contenido de agua en la muestra en gramos

Límite Plástico

Según (Crespo Villalaz, 2004), el límite plástico se define como el contenido de humedad, expresado en por ciento con respecto al peso seco de la muestra secada al horno, para el cual los suelos cohesivos pasan de un estado semisólido a un estado plástico.

$$LP = \frac{P_h - P_s}{P_s} \times 100 = \frac{P_w}{P_s} \times 100$$
 Ec - 9. Tomado de Crespo Villalaz (2004)

Índice de Plasticidad

Das (2015) define el índice de plasticidad como la diferencia numérica entre el límite líquido y el límite plástico y es el límite inferior del escenario plástico del suelo. Este depende de la cantidad de arcilla que el suelo posea.

$$PI = LL - PL$$
 Ec - 10. Tomado de Das (2015)

❖ Índice de Liquidez

A la vez, el índice de liquidez, es definido por Crespo Villalaz (2004):

En los suelos plásticos, el índice de liquidez es indicativo de la historia de los esfuerzos a que se ha sometido el suelo. Si el valor del índice de liquidez (LI) es

cercano a cero, se considera el suelo pre consolidado, y si este es cercano a uno es considerado como normalmente consolidado.

$$I_{L}=rac{\omega_{n}-LP}{IP}$$
 Ec - 11. Tomada de crespo Villalaz (2004)

En los sondeos manuales que se analizaron del tramo en estudio, se realizaron los ensayos de límite líquido y límite plástico, posteriormente se determinó el índice de plasticidad, que son utilizados para la clasificación del suelo.

Para la determinación del límite líquido se tomaron en cuenta las normas AASHTO T89 y para el límite de plástico las normas AASHTO T90. Para cada análisis, los resultados obtenidos se muestran en la Tabla 24.

Tabla 24 Límites de Consistencia

Sondeo Nº	Muestra Nº	Profundidad (m)	Límite Líquido	Límite Plástico	Índice de Plasticidad
S1	1	0 – 28	49.82%	43.92%	5.90%
	2	28 – 45	34.80%	16.10%	18.70%
	3	45 – 70	32.30%	23.80%	8.50%
	4	70 – 150	30.24%	16.74%	13.50%
S2	1	0 – 20	42.78%	36.28%	6.50%
	2	20 – 47	32.56%	18.16%	14.40%
	2	47 – 75	35.40%	21.10%	14.30%
	3	75 – 100	44.91%	27.41%	17.50%
	4	100 – 150	53.10%	32.20%	20.90%
S3	1	0 – 20	NP	NP	NP
	2	20 – 45	45.20%	37.60%	7.60%
	2	45 – 100	45.19%	37.59%	7.60%
	3	100 – 150	50.70%	37.30%	13.40%
S4	1	0 – 20	NP	NP	NP
	2	20 – 64	NP	NP	NP
	3	64 – 150	66.30%	53.60%	12.70%
S5	1	0 – 37	NP	NP	NP
	2	37 – 74	51.08%	34.18%	16.90%
	2	74 – 118	55.91%	40.31%	15.60%
	2	118 – 150	66.19%	52.69%	13.50%

Fuente: Elaboración propia

4.5 Estratigrafía de los suelos

Para la clasificación de los suelos, se hizo uso del Método AASHTO debido a que

este es el de uso frecuente en los proyectos viales.

El sistema de clasificación de los suelos de la AASHTO presentado por Das (2012)

representa que:

Se pueden clasificar según ocho grupos principales, A - 1 a A - 8, con base

en su distribución granulométrica, límite líquido e índice de plasticidad. Los

suelos listados en los grupos A - 4, A - 5, A - 6 y A - 7 son materiales de

grano fino. La turba, el fango y otros suelos altamente orgánicos se

clasifican en el grupo A - 8 y se identifican mediante la inspección visual.

(Ver Anexos, Tabla 65, pág. XXII)

Para la evaluación cualitativa de la conveniencia de un suelo como material de

capa subrasante de un camino, también se desarrolló un número al que se le

refiere como índice de grupo (IG). Se dice que entre mayor sea el valor del índice

de grupo, más deficiente será el desempeño del suelo como capa subrasante.

Se puede obtener el índice de grupo mediante la siguiente ecuación:

$$IG = (F_{200} - 35)[0.2 + 0.005(LL - 40)] + 0.01(F_{200} - 15)(IP - 10)$$

Donde:

F200: Porcentaje que pasa la malla núm. 200, expresando como un número entero.

LL: Límite líquido

IP: Índice de plasticidad

Al calcular el índice de grupo para un suelo que pertenece al grupo A-2-6 o al A-

2-7, solo se utiliza la ecuación parcial del índice de grupo que se relaciona con el

índice de plasticidad:

$$IG = 0.01(F_{200} - 15)(IP - 10)$$
 Ec - 13 Tomado de Das (2012)

47

A continuación, se muestras los resultados que se obtuvieron del análisis de cada muestra de suelo de los sondeos manuales, detallando así, cada característica correspondiente de su estratigrafía:

En el primer sondeo manual (Sm - 1), se apreciaron cuatros estratos en diferentes profundidades, las cuales cuentan con las siguientes especificaciones:

- ❖ En la primera capa, a una profundidad de 0 0.28 m, encontramos un suelo de Grava Limosa, clasificado por la ASSTHO como un suelo A − 2 − 5. Se aprecia un límite líquido de 49.82% y un índice de plasticidad de 5.90%. Este suelo es considerado de excelente a bueno para uso de subrasante.
- ❖ En el segundo estrato, ubicado a una profundidad de 0.28 0.45 m, podemos apreciar un suelo clasificado como A 6, que corresponde a Grava arcillosa. Para este estrato, se determinó un índice de plasticidad con un valor de 18.7 % y un límite líquido de 34.8%. Según la clasificación ASSHTO, este suelo se considera de regular a malo para usarlo como subrasante.
- ❖ A una profundidad de 0.45 0.70 m, encontramos un suelo clasificado como Arena limosa que pertenece al grupo A 2 4. Presenta un límite líquido de 32.3% y un índice plástico de 8.5%. Es considerado de excelente a bueno para usarlo como subrasante.
- ❖ En el último estrato de 0.70 1.5 m, contamos nuevamente con un suelo de clasificación A 6, siendo una arena arcillosa. Su valor de límite líquido es de 30.24% y su valor de índice plasticidad es de 13.5%. Es considerado de regular a malo para uso de subrasante.

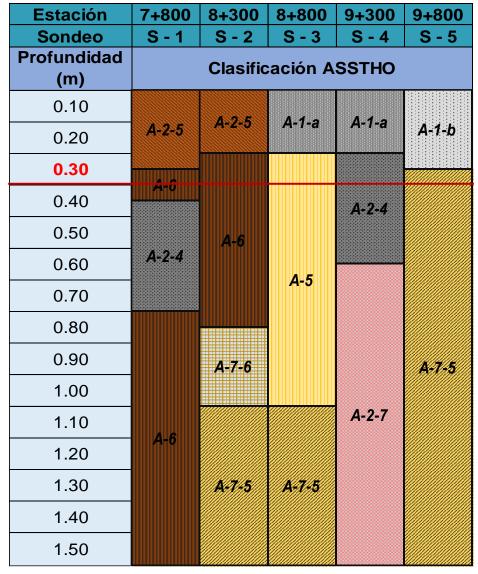
En el Sm – 2, apreciamos las siguientes características encontradas:

❖ En la profundidad de 0 – 0.20 m, se presenta un material granular, el cual se clasifica como un suelo A – 2 – 4, el cual es un suelo de grava limosa con baja plasticidad. Cualificado de excelente a bueno para uso de subrasante.

- ❖ En una profundidad de 0.20 a 0.75 m, se observa un suelo arenoso, clasificado como A − 6, de media plasticidad. Es considerado de regular a malo para ser usado como valor de subrasante.
- ❖ A una profundidad de 0.75 1.0 m, nos encontramos con un material fino, correspondiente a un suelo de clasificación A - 7 - 6, el cual es un suelo limoso de baja plasticidad. Este se considera de regular a malo para uso de subrasante.
- ❖ En el último estrato, a una profundidad de 1.0 1.5 m, se observa un material fino de clasificación A – 7 – 5, el cual es un suelo limoso. Cuenta con un límite líquido de 53.1% y un índice de plasticidad de 20.9%. Este también es considerado de regular a malo para usarlo como subrasante.

A continuación, observamos que en el tercer sondeo manual realizado (Sm - 3), se encuentran suelos considerados de regulares a malo para uso de subrasante. Dado que estos pertenecen, según la ASHTO, a las clasificaciones A - 5 y A - 7 - 5. Estos, son materiales finos, correspondientes a suelos limosos que cuentan con una baja plasticidad.

En el Sm - 4, se contemplan suelos clasificados como: A - 1 - a, A - 2 - 4 y A - 2 - 7; correspondientes a suelo de grava mal graduada y gravas limosas. Por ende, las dos primeras clasificaciones, se encuentran en el rango de excelente a bueno para su uso como subrasante y, en caso de la tercera clasificación, se considera de regular a malo para uso de subrasante.


Finalmente, en el quinto sondeo manual que se realizó (Sm – 5):

- ❖ A una profundidad de 0 0.37 m, un suelo de clasificación A 1 b, correspondiente a un suelo de grava limosa. Se considera de excelente a bueno para uso de subrasante.
- ❖ Y, a una profundidad de 0.37 1.5 m, se observó un suelo uniforme de clasificación A - 7 − 5, con materiales finos, considerado un suelo limoso de alta plasticidad. Con un límite líquido de 57.9%

medianamente. Este se encuentra en el rango de regular a malo para uso de subrasante.

En la llustración 9, podemos observar detalladamente la clasificación y distribución del perfil estratigráfico del suelo.

Ilustración 9 Perfil Estratigráfico de los sondeos manuales realizados en el tramo.

4.6 Resultados del estudio de suelos del banco de materiales

Para el estudio de suelo del banco de material, se analizó una fuente de material localizada en los terrenos del Sr. Sebastián Arroliga, ubicada en la estación 19+300 del tramo de carretera Aceituno – El Sauce.

En este banco se visualizaron suelos correspondientes al tipo A-2-4(0) según la clasificación de la AASHTO, los cuales son suelos de gravas limosas y son recomendables para ser usadas en la base y sub base de la estructura de pavimento.

El valor de su CBR es de 88%, con una densidad seca máxima de 1907 kg/m³ y su humedad optima de 13.5%; estos valores se pueden apreciar en la Tabla 25.

Tabla 25 Estudio de Suelo del Banco de Material

Clasificación ASSHTO			L.L L.P		I.P				
	A - 2 - 4	(0)			24.30%	20.	34%	3.9	96%
Proctor Modificado PVS			Humedad Óptima		na	С	BR		
	1907	kg/m³			13.50%			88	3%
			9	∕₀ pas	a por el tamiz				
2"	1 1/2"	1"	3/4"	1/2"	3/8"	Nº 4	Nº 10	Nº 40	Nº 200
100%	97%	80%	70%	60%	44%	29%	21%	12%	6%

Fuente: Elaboración propia

4.7 Análisis del banco de material

El banco de materia propuesto en la estructura de pavimento que serán utilizados como base y sub base de esta, deberán cumplir con las normas establecidas en la NIC 2019, las cuales se aprecian en la Tabla 26 (pág. 52)

Tabla 26 Especificaciones de los materiales para base y sub base granular

Límite líquido	AASHTO T89		25 máx.
Índice de plasticidad	AASHTO T 90	Sub base	6 máx.
ilidice de plasticidad	AASHTO 1 90	Base	0 máx.
CBR	AASHTO T 190		
95% Proctor modificado y 4 días	AASHTO T 180	Sub base	30% mín.
de saturación		Base	80% mín.

Fuente: Normas NIC – 2019 Sección 1003.8 (a y b, pág. 809)

A partir del análisis del banco de material se obtuvieron los resultados que se presentan a continuación en la Tabla 27, en los cuales podemos apreciar la comparación de los resultados finales con los requisitos que se deben cumplir según la norma NIC 2019.

Tabla 27 Evaluación del Banco de Material Sebastián Arroliga

Ensayo		Norma	Requisito	Valor obtenido	Condición
Límite líquido		AASHTO T 89	25 máx.	24.30%	Cumple
Índice de plasticidad		AASHTO T 90	6 máx.	3.96%	Cumple
CBR Base		AASHTO T 190	80% mín.	88%	Cumple
CBK	Sub base	AA31110 1 190	30% mín.	00 /0	Cumple

Fuente: Elaboración propia

De acuerdo a la norma NIC 2019 y los datos ya antes mostrados, se puede apreciar que este banco de material puede ser utilizado tanto como en la base como en la sub base de la estructura de pavimentos ya que, cumple con las normas establecidas.

Por ende, guiándonos por las propiedades de los materiales ubicados en el banco de material estudiado para el tramo y el cumplimiento de los requisitos establecidos de CBR, el cual el mínimo requerido es el 80% establecido por la norma NIC 2019, este banco de material es apto para utilizarse como base granular. Al igual, que cumple con el requisito necesario donde la norma establece un mínimo del 30% para ser utilizado como sub base y este cumple con el 88%.

4.8 CBR de Diseño

Según Crespo Villalaz (2004), tenemos que el CBR es un índice de resistencia al esfuerzo cortante en condiciones determinadas de compactación y humedad que, a su vez, evalúa la calidad del terreno ya sea para trazar una subrasante y delinear una sub base y base de pavimento.

Los valores analizados del CBR del tramo en estudio, deberán cumplir con lo plasmado en la norma NIC 2019, las cuales son apreciadas a detalle en la Tabla 28. El valor obtenido de CBR en el tramo, fue tomado a una profundidad de subrasante de 0.30 metros, debido a que el valor mínimo permitido por la norma NIC 2019 es de 0.25 metros (Ver Ilustración 8, pág. 41).

Tabla 28 Especificaciones de terraplén y subrasante

Ensayo	Norma	Terraplén Valor requerido	Subrasante Valor requerido
Límite Líquido	AASHTO T 89	40 máx.	30 máx.
Índice de Plasticidad	AASHTO T 90	25 máx.	10 máx.
CBR al 95% Proctor Modificado y 4 días de saturación	AASHTO T 190	5% mín.	15% mín.

Fuente: Normas NIC – 2019

Para realizar la determinación del CBR de Diseño, se debe seguir la siguiente metodología:

- a. Examinar todos los valores que se encuentran debajo de la línea de la subrasante para así, emplearlos en el diseño del CBR.
- b. Ordenar los valores de manera ascendente, determinando la continuidad de cada uno de ellos. Así mismo, el porcentaje de valores que sean iguales o mayores de cada uno.
- c. Por último, se realiza un gráfico que simbolice los valores de CBR contra los porcentajes calculados y con la curva que se obtenga, se determinará el CBR con el percentil que sea correspondiente, dependiendo del número de ejes equivalente en el carril de diseño.

4.8.1 Identificación de la subrasante

Actualmente, el espesor de la carpeta de rodamiento que corresponde a terracería, es aproximadamente de 0.30 metros en la mayoría de los estacionamientos. Por ende, la profundidad a la que la subrasante es estudiada contiene el valor antes mencionado.

Según los sondeos manuales realizaron con anterioridad, los suelos que se pueden apreciar corresponden a los tipos: A - 5, A - 6, A - 1 - a, A - 1 - b, A - 2 - 4, A - 2 - 5, A - 2 - 7, A - 7 - 5 y A - 7 - 6. Estos suelos son clasificados como gravas, gravas limosas y arcillosas, arenas finas, limos y arcillas. Y a su vez, según lo establecido en la AASHTO, la mitad de estos suelos son considerados de excelentes a buenos para usar en la subrasante y la otra mitad, de regular a malos para el uso de la misma.

Es de vital importancia obtener el valor de CBR de la subrasante ya que, de esta dependerá la determinación de otros parámetros de diseño de la estructura de pavimentos como el Módulo de Resiliencia (MR).

Para obtener el valor del percentil en la determinación del CBR de Diseño de la subrasante, nos podemos guiar de la siguiente Tabla 29.

Tabla 29 Percentil de Diseño para Subrasante

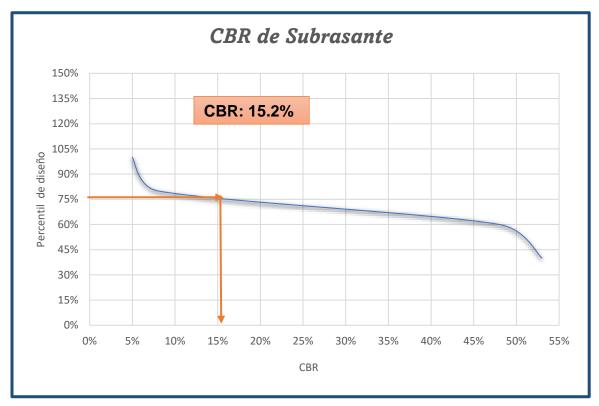
Nivel de Tránsito	Valor de percentil para diseño de subrasante
10 ⁴ o menos	60
Entre 10 ⁴ y 10 ⁶	75
10 ⁶ o más	87.5

Fuente: Asphalt Institute's Thickness Design Manual (MS-1)

Basándonos en la Tabla 30 (pág. 55), donde se muestran los valores de CBR acumulados para la determinación del CBR de diseño de la subrasante, en la Tabla 31 (pág. 55) donde se realiza la selección de CBR de diseño y sabiendo que el ESAL de diseño es de 321,348 psi (Ver Tabla 19, pág. 39), del cual se toma un 75% como valor del percentil del porcentaje de los valores mayores o iguales, y el

CBR del tramo actual que fue interceptado en la curva del Gráfico 5, pág. 56, se obtiene como valor de CBR de diseño de la subrasante un total de 15.2%.

Tabla 30 CBR de Subrasante


Sondeo	Nº de muestra	Sondeo	Clasificación	CBR
	1	0 - 28	A - 2 – 5	22.00%
S1	2	28 - 45	A – 6	5.00%
31	3	45 - 70	A - 2 – 4	50.00%
	4	70 - 150	A – 6	7.00%
	1	0 - 20	A - 2 – 5	22.00%
	2	20 - 47	A – 6	5.00%
S2	2	47 - 75	A – 6	5.00%
	3	75 - 100	A - 7 – 6	3.00%
	4	100 - 150	A - 7 – 5	3.00%
	1	0 - 20	A - 1 – a	5.00%
S3	2	20 - 45	A – 5	8.00%
33	2	45 - 100	A – 5	8.00%
	3	100 - 150	A - 7 -5	3.00%
	1	0 - 20	A - 1 – a	55.00%
S4	2	20 - 64	A - 2 – 4	53.00%
	3	64 - 150	A - 2 – 7	20.00%
	1	0 - 37	A - 1 – b	48.00%
95	2	37 - 74	A - 7 – 5	2.00%
S5	2	74 - 118	A - 7 – 5	2.00%
	2	118 - 150	A - 7 – 5	2.00%

Fuente: Elaboración propia

Tabla 31 Selección de CBR de Diseño para Subrasante

Clasificación AASHTO	CBR	Frecuencia	Cantidades mayores o iguales	%
A - 6	5%	2	5	100%
A-5	8.00%	1	4	80%
A - 1 - b	48%	1	3	60%
A - 2 - 4	53%	1	2	40%
TOTAL		5		

Gráfico 5 CBR de Diseño de Subrasante

Fuente: Elaboración propia

El valor de CBR de la subrasante de 15.2 %, cumple con el mínimo recomendado por la Norma NIC-2019, el cual acorde a la Tabla 28 (Ver pág. 53), el valor mínimo es de 15%.

CAPÍTULO V DISEÑO DE ESTRUCTURA DE PAVIMENTO

5.1 Introducción

Para diseño de estructuras de pavimento flexible, se presenta un modelo o

ecuación a través de la cual se obtiene el parámetro llamado número estructural

(SN) cuyo valor además de ser un indicativo del espesor total requerido del

pavimento, es función del tránsito y la confiabilidad entre otros.

Para la obtención del SN, generalmente se usan ábacos en los cuales las escalas

no corresponden debido a que han sido reproducidos o fotocopiados muchas

veces a tamaños de acuerdo a la necesidad de cada usuario, lo que conlleva a la

obtención de valores con desviaciones importantes. (AASHTO 93, 2001)

5.2 Método AASHTO - 93

La metodología AASHTO-93 para diseño de pavimentos asfalticos emplea un

modelo o ecuación a través de la cual se obtiene el parámetro denominado

número estructural (SN) el cual es fundamental para la determinación de los

espesores de las capas que conforman el pavimento las cuales son la capa

asfáltica, la capa de base y la capa de subbase.

 $Log(W) = ZR.So + 9,36.Log(SN + 1) - 0.20 + \frac{Log(\frac{\Delta PSI}{4.2 - 1.5})}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2,32.Log(MR) - 8.07$

Ec - 14 Tomado de SIECA (2002)

Donde:

W: Número estimado de ejes equivalentes de 8.2 toneladas en el período de

diseño.

ZR: Desviación estándar normal

So: Error estándar combinado de la predicción del tránsito y de la predicción del

comportamiento estructural

ΔPSI: Diferencia entre índice de servicio inicial y final

MR: Módulo resiliente (en libras/pulgada2)

SN: Número estructural

57

5.3 Variables de Diseño

Las propiedades de la subrasante, características de los materiales, importancia del tránsito, factores de medio ambiente y otro tipo de variables, son las que intervienen en el diseño de estructuras de pavimento (AASHTO 93, 2001)

5.3.1 Periodo de Diseño

Es el tiempo total para el cual se diseña un pavimento en función de la proyección del tránsito y el tiempo que se considere apropiado para que las condiciones del entorno se comiencen a alterar desproporcionadamente. se tiene el porcentaje de la tasa anual de crecimiento vehicular, que se usará y el período de diseño de la estructura de pavimento (Coronado Inturbide & SIECA, 2002)

Los periodos de diseño recomendados son los que se muestran en la Tabla 14, pág. 34. En base al tipo de carretera del tramo en estudio, correspondiente a una colectora rural, se selecciona un valor de periodo de diseño de 15 años.

5.3.2 **ESAL**

Se refiere al deterioro que produce cada vehículo en un pavimento, éste corresponde al número de ejes equivalentes llamado también "eje estándar", el cual tiene un peso de 8.2 ton. (18,000 libras) y se presentará en el carril de diseño. Se considera que el "eje estándar" tiene un factor de daño F = 1. (Coronado Inturbide & SIECA, 2002)

Basándonos en el estudio de tránsito desarrollado en el Capítulo III, concluimos que el valor del ESAL es de 321,348 psi. (Ver Tabla 19, pág. 39)

5.3.3 Confiabilidad

Este valor se refiere al grado de seguridad o veracidad de que el diseño de la estructura de un pavimento, puede llegar al fin de su período de diseño en buenas condiciones. (Coronado Inturbide & SIECA, 2002)

De acuerdo a los parámetros establecidos por la AASHTO, el valor que toma este parámetro es función de la importancia de la vía, de acuerdo a la Tabla 32. (pág. 59)

Tabla 32 Niveles de Confiabilidad

Clasificación	Nivel de Confiabilidad Recomendado		
	Urbana	Rural	
Autopistas interestatales y otras	85 - 99,9	80 - 99,9	
Arterias colectoras	80 - 99	75 - 95	
Colectoras de Tránsito	80 - 95	75 - 95	
Carreteras locales	50 - 80	50 - 80	

Fuente: Diseño de Pavimentos, AASHTO 93, 2001. Pág. 137

El valor de confiabilidad R seleccionado, de acuerdo al tipo de carretera R= 80 %, se busca el valor de deviación normal estándar (ZR) en dependencia de la confiabilidad.

5.3.4 Desviación Estándar

Este parámetro se define como Error estándar combinado de la predicción del tránsito y de la predicción del comportamiento estructural. El rango de valores que toma este parámetro esta entre 0.40 y 0.45 (AASHTO 93, 2001)

Para el caso en estudio, se tomará un valor de 0.40 ya que se encuentra en el intervalo de los valores requeridos para pavimentos flexibles. Los valores sugeridos se muestran en la Tabla 33.

Tabla 33 Desviación Estándar

Condición	So
Pavimentos flexibles	0.4 - 0.5
Construcción nueva	0.35 – 0.4
Sobre – capas	0.5

Fuente: Manual Centroamericano para Diseño de Pavimentos, SIECA (2002)

5.3.5 Índice de Serviciabilidad

La Serviciabilidad se define como la capacidad que tiene un pavimento para servir a la clase de tránsito que lo va a utilizar. Teóricamente este se define como el índice de Serviciabilidad inicial menos la Serviciabilidad final. Un valor de 5 para la Serviciabilidad inicial indica un pavimento en condiciones totalmente perfectas lo cual es imposible de encontrar en la práctica, y un valor de 0 para una Serviciabilidad final indica un pavimento totalmente destruido.

La inicial (Po), es función directa del diseño de la estructura de pavimento y de la calidad con que se construye la carretera, la final o terminal (Pt) va en función de la categoría del camino y se adopta en base a esto y al criterio del diseñador. Los valores de Serviciabilidad se muestran en la Tabla 34. (Coronado Inturbide & SIECA, 2002)

Tabla 34 Valores de Serviciabilidad

Serviciabilidad inicial	Pavimentos rígidos	Pavimentos flexibles.
Ро	4.5	4.2
Serviciabilidad final Pt	Caminos principales	Caminos de tránsito menor
	2.5	2

Fuente: Manual Centroamericano para Diseño de Pavimentos, SIECA (2002)

El valor de la pérdida por Serviciabilidad determinado por la Ecuación 15:

$$\Delta PSI = Po - Pt$$

Ec - 15 Tomado de SIECA (2002)

Seleccionando como valor de Po= 4.2 y Pt= 2 entonces la pérdida por Serviciabilidad es:

$$\Delta PSI = 4.2 - 2$$

$$\Delta PSI = 2.2$$

5.3.6 Módulo de Resiliencia de la Subrasante

Es la variable que se usa para caracterizar las propiedades de los suelos, está en función de la subrasante para cuantificar la capacidad de soporte de los pavimentos flexibles, la guía de diseño establece la correlación para determinar el MR usando el CBR. (AASHTO 93, 2001)

Las ecuaciones de correlación recomendadas son las siguientes:

Para materiales de subrasante con CBR igual o menor a 10 %

$$Mr = 1500 * CBR$$
 Ecuación 16 Tomado (Montejo Fonseca,2002)

Para materiales de subrasante con valores de CBR mayores a 10%, se deberán emplear otras formas de correlación:

$$Mr = 4.326 * In(CBR) + 241 Ec - 17 Tomado (Montejo Fonseca,2002)$$

En el Capítulo Estudio de Suelos (Capítulo IV), se determinó el CBR promedio de la línea principal del tramo de carretera, de acuerdo al Gráfico 5, pág. 52, resultando un valor de 15.2 %.

Utilizado la Ecuación 17, se calcula el módulo de resiliencia para la subrasante, debido a que es la más próxima, obteniendo como resultado lo siguiente:

$$Mr = 4326 * In(CBR) + 241$$

 $Mr = 4326 * In(15.2) + 241$
 $Mr = 12,013.324 Psi$

5.3.7 Coeficiente de drenaje

Uno de los aspectos fundamentales a considerarse dentro del diseño de pavimento es el drenaje de agua en los pavimentos. Ya que, si este no recibe el análisis necesario, el exceso de agua en combinación con el incremento de los volúmenes de tránsito y las cargas podrían ocasionar un adelanto de los daños a la estructura de pavimento.

Para esto, según la AASHTO 93 se recomiendan algunos coeficientes de drenajes que son usados para los cálculos en la estimación de los espesores de diseño, los cuales se observan en la Tabla 35, pág. 62.

La calidad del drenaje es expresada en la fórmula del número estructural, puesto que se considera una buena capacidad para drenar el agua de la vía en cada una de las capas que conforman la estructura de pavimento, el valor del coeficiente de drenaje a utilizar en este diseño es mi = 1.00 (Ver Tabla 35)

El coeficiente de drenaje, es un factor determinante en el comportamiento de la estructura del pavimento en su vida útil, así también en el diseño del mismo (Ver Tabla 36). (AASHTO 93, 2001)

Tabla 35 Capacidad de Drenaje para Remover la Humedad

Capacidad del drenaje para remover la humedad						
Calidad del	Agua	Aguas removidas en:				
drenaje	50% de saturación 85% de saturación					
Excelente	2 horas	2 horas				
Bueno	1 día	2 - 5 horas				
Regular	1 semana	5 - 10 horas				
Pobre	1 mes	De 10 - 15 horas				
Malo	No drena	Mayor de 15 horas				

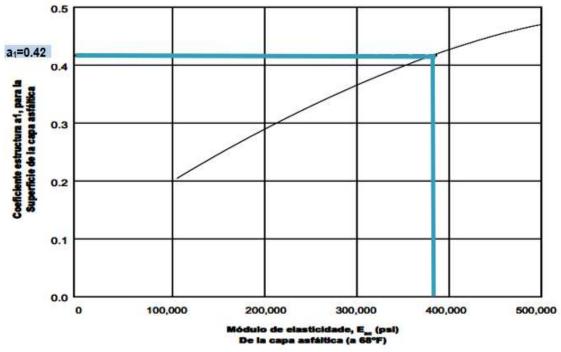
Fuente: Guía de Diseño para Estructuras de Pavimento, AASHTO 93

Tabla 36 Coeficiente de Drenaje

Calidad del drenaje	P= o/o del tiempo que el pavimento está expuesto a niveles de saturación.					
dicilaje	< 1%	1% - 5%	5% - 25%	> 25%		
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	12		
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1		
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	80		
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	06		
Muy Pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	04		

Fuente: Guía de Diseño para Estructura de Pavimento, AASHTO 93, 2001

5.3.8 Coeficientes Estructurales de Capa


Una vez definidos los parámetros y sus valores numéricos, se procederá a realizar el diseño de una estructura de pavimento flexible a través del método AASHTO-93, con el fin de comprender el funcionamiento de la herramienta y determinar cómo se ingresan los datos de entrada además de interpretar los resultados obtenidos.

El método asigna a cada capa del pavimento un coeficiente (an), los cuales son requeridos para el diseño estructural normal de los pavimentos flexibles. Estos coeficientes permiten convertir los espesores reales a números estructurales (AASHTO 93, 2001)

El valor de a1 corresponde al coeficiente de la estructura de pavimento, a2 corresponde el valor de la base y a3 al valor de la subbase.

Posteriormente, hacemos uso del nomograma que se muestra en la Ilustración 10, dando como resultado un $a_1 = 0.42$.

Ilustración 10 Coeficientes estructurales de capas asfálticas relacionados con varios ensayos

Fuente: Guía de Diseño para Estructura de Pavimento, AASHTO 93, 2001

Para la determinación del valor del Coeficiente de Capa base a_2 , interpolamos el CBR del banco de material correspondiente a 88%, obteniendo un valor de a_2 = 0.135. (Ver Ilustración 11, pág. 64)

El valor de a_3 , es el coeficiente de la capa subbase, de igual manera se interpola con el CBR del banco de material, que tiene un valor del 88%, generando un valor de $a_3 = 0.135$, tal como se observa en la Ilustración 12, pág. 65.

5.2.1 Módulo de Resiliencia de la base y subbase

El módulo de resiliencia a utilizar en la base y en la subbase de la estructura de pavimento, se determina a través del uso de los nomogramas mostrados en la llustración 11 e llustración 12 (pág.65). De acuerdo a los ensayos de CBR realizados al material granular de subbase que se empleará en la construcción de esta vía, se obtuvo un valor de CBR de 88%.

Con respecto a dicha interpolación el resultado del módulo de resiliencia para la base es de 29.5 Ksi y para la subbase corresponde a 19.5 Ksi.

0.20 $a_2 = 0.135$ 80 50 bs 8 70 0.12 3 Modulo - 1,000 30 60 0.10 20 50 0.08 10 40 0.06 30 5 25

Ilustración 11 Coeficiente de capa base granular

Fuente: Guía de Diseño para Estructura de Pavimento, AASHTO 93, 2001

0.18 - 0.18 - 0.14 - 0.16 - 0.12 - 0.10 - 0.12 - 0.10 - 0.

Ilustración 12 Coeficientes estructurales de capa subbase granular

Fuente: Guía de Diseño para Estructura de Pavimento, AASHTO 93, 2001

5.2.2 Número Estructural

Para la determinación del coeficiente de aporte estructural de la mezcla asfáltica, necesitamos conocer el módulo de la mezcla y así poder determinar dicho coeficiente. (AASHTO 93, 2001)

Es un número abstracto que expresa la resistencia estructural de un pavimento requerido. Para calcular el ESAL o W18, se debe de asumir un valor inicial de SN. Asumido por la Ecuación 17:

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

Ec - 18. Tomado (AASHTO 93,2001)

Donde:

a1, 2,3: Coeficientes estructurales de capa.

D1, 2,3: Espesores de capa.

m1, 2,3: Coeficientes de drenaje de capas.

Para la determinación del número estructural de la subrasante SN₃, se toman los datos mostrados en la Tabla 37 y mediante la interpolación en el nomograma mostrado en la Ilustración 14, pág. 68.

Tabla 37 Datos para la determinación de SN₃

Periodo de Diseño	15 años		
ESAL (W18)	321,348 psi		
Confiabilidad (R)	80%		
Servicial	oilidad		
Servicialidad Inicial (Po)	4.2		
Servicialidad Final (Pt)	2		
PSI	2.2		
Desviaciones Estándar (So)	0.4		
CBR Promedio	15.2		
Módulo de Resiliencia (Mr)	19,500 psi		
	19.5 Ksi		

Fuente: Elaboración Propia

Para la determinación del número estructural de la subrasante SN₂, se toman los datos mostrados en la Tabla 38 y mediante la interpolación en el nomograma mostrado en la Ilustración 15, pág. 69.

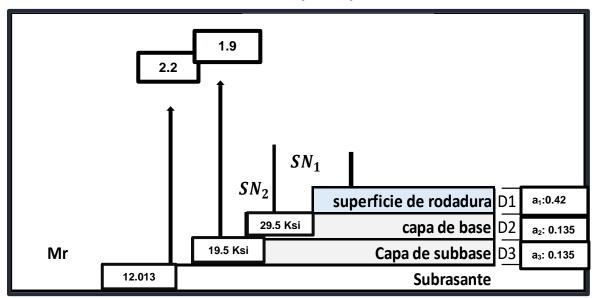
Tabla 38 Datos para la determinación de SN₂

Período de Diseño	15 años		
ESAL (W18)	321,348 Psi		
Confiabilidad (R)	80%		
Serviciak	pilidad		
Servicialidad Inicial (Po)	4.2		
Servicialidad Final (Pt)	2		
PSI	2.2		
Desviaciones Estándar (So)	0.4		
CBR Promedio	88		
Módulo de Resiliencia (Mr)	29,500 psi		
	29.5 Ksi		

Fuente: Elaboración propia

Para la determinación del número estructural de la subrasante SN₁, se toman los datos mostrados en la Tabla 49 y mediante la interpolación en el nomograma mostrado en la Ilustración 16, pág. 70.

Tabla 39 Datos para la determinación de SN₁


Período de Diseño	15 años	
ESAL (W18)	321,348 Psi	
Confiabilidad (R)	80%	
Servicial	pilidad	
Servicialidad Inicial (Po)	42	
Servicialidad Final (Pt)	2	
PSI	2.2	
Desviaciones Estándar (So)	0.4	
CBR Promedio	88	
Módulo de Resiliencia (Mr)	12013.32 psi	
	12.013 Ksi	

Fuente: Elaboración propia

Estos valores son indispensables para la determinación de los espesores de capa de la estructura de pavimento

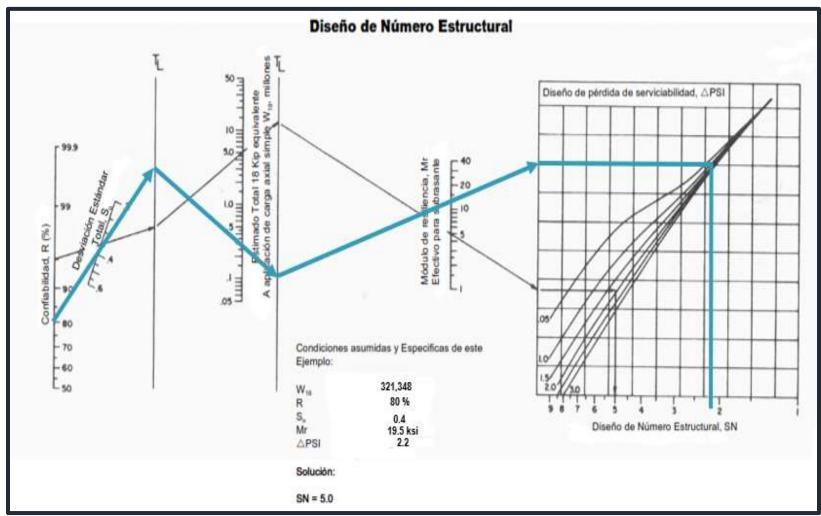

La Ilustración 13, se muestra un consolidado de los valores correspondientes para los números estructurales para cada una de las capas de la estructura de pavimento.

Ilustración 13 Números Estructurales por capa

Fuente: Manual Centroamericano para Diseño de Pavimento, SIECA (2002)

Ilustración 14 Determinación de SN₃ (Subbase)

Ilustración 15 Determinación de SN₂ (Base)

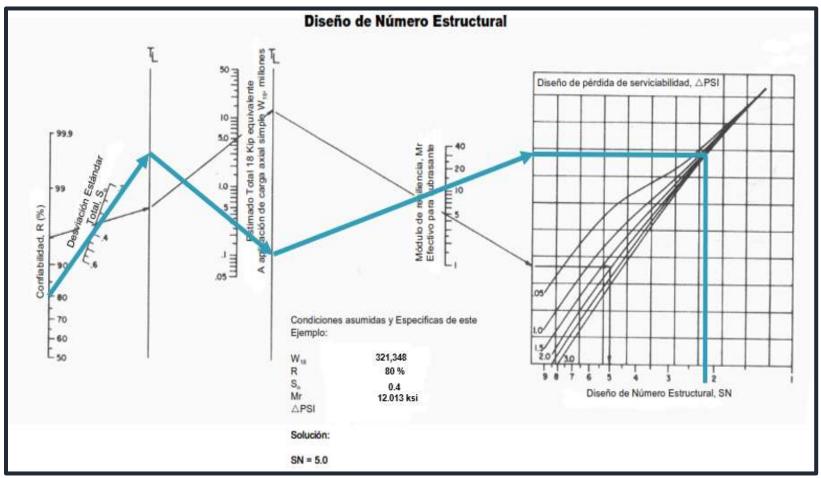
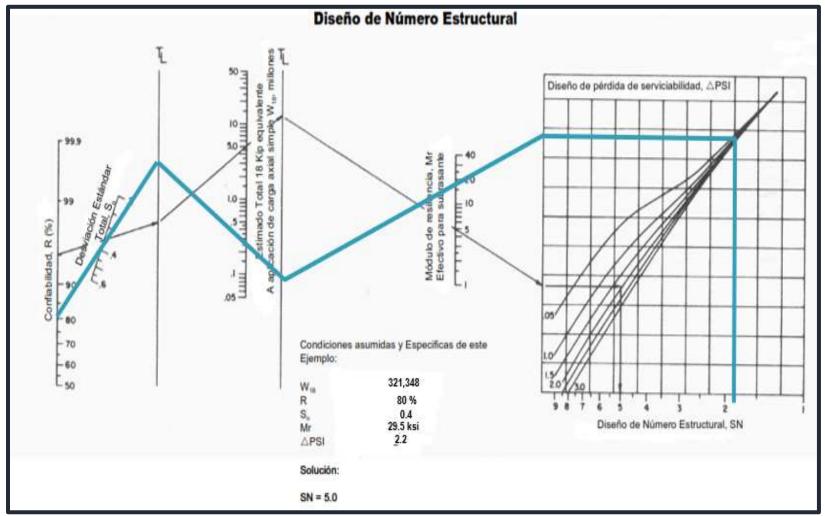



Ilustración 16 Determinación de SN₁ (Carpeta de rodamiento)

5.3 Cálculo de espesores

Contando con las variables de diseño ya determinadas en las secciones anteriores, se procede al cálculo de los espesores de la estructura de pavimento, tomando en consideración cada una de las fórmulas propuestas en la guía de pavimentos (Coronado Inturbide & SIECA, 2002)

5.3.1 Espesores de Carpeta de rodamiento

La estructura de pavimento es articulada, por lo tanto, la carpeta de rodamiento será de adoquín de 4 pulgadas. El valor de a1 es igual 0.42. (Ver ilustración 10, pág. 63)

Se recalcula el valor de SN1, aplicando la Ecuación 21:

$$SN1 *= D1 * a1$$

Ecuación 19 Tomada de SIECA (2002)

$$SN1 = (4) * (0.42)$$

$$SN1 = 1.68$$

5.3.2 Espesor de base

El valor del número estructural SN2 = 1.87 determinado con el uso del ábaco y comprobado con el uso del software. El valor de $a_2 = 0.135$ y $m_2 = 1$, se procede a la aplicación de la Ecuación 18, demostrando el resultado a continuación:

$$D_2 = \frac{SN_2 - SN_1}{a_2 * m_2}$$

Ecuación 20 Tomada de SIECA (2002)

$$D_2 = \frac{1.9 - 1.68}{(0.135) * 1}$$

$$D_2=1.62\sim 2$$

"No cumple con espesor mínimo, usar 4 pulg." (Ver Tabla 40)

Tabla 40 Espesores mínimos de carpeta asfáltica y base granular

	Espesor mínimo (pulgadas)		
Número de ESAL´s	Concreto Asfáltico	Base Granular	
Menos de 50,000	1	4	
50,000 - 150,000	2	4	
150,000 - 500,000	2.6	4	
500,000 - 2,000,000	3	6	
2,000,000 - 7,000,000	3.6	6	
Más de 7,000,000	4	6	

Fuente: Guía de Diseño para Estructura de Pavimento, AASHTO 93, 2001.

Se vuelve a calcular el valor de SN2*, aplicando la Ecuación 19, se obtiene un resultado de SN2*= 0.54, demostrándose a continuación:

$$SN2 *= a2 * D2 * m2$$
 Ecuación 21 Tomada de SIECA (2002)
 $SN2 = (0.135) * (4 pulg) * (1)$
 $SN2 = 0.54$

En base a la Tabla 40 (pág. 73), de acuerdo al ESAL de diseño del tramo correspondiente a 321,348 psi (Ver Tabla 19, pág. 39), el valor mínimo de la base granular para el tramo en estudio es de 4 pulgadas, ya que el ESAL se encuentra en el rango de 150,000 – 500,000 Psi.

5.3.3 Cálculo de espesor de subbase

Para determinar el espesor de la subbase, se toma en consideración los valores del SN_1^* y SN_2^* calculados anteriormente, así como el valor del coeficiente de capa $a_3 = 0.135$ y el coeficiente de drenaje $m_3 = 1$.

El cálculo se determina aplicando la siguiente Ecuación 20:

$$D_3 = {SN_3 - (SN_2 + SN_1) \over a_3 * m_3}$$
 Ecuación 22 Tomada de SIECA (2002)
$$D_3 = {2.2 - (0.54 + 1.68) \over (0.135) * 1}$$

$$D_3 = -0.0148 ~pulg$$

Dado que es un valor negativo no se necesita subbase para la estructura de pavimento articulado.

Al ser el valor un dato negativo, tomaremos en consideración como valor para SN Requerido el mismo valor de SN_3 , el cual es $SN_3 = 2.2$.

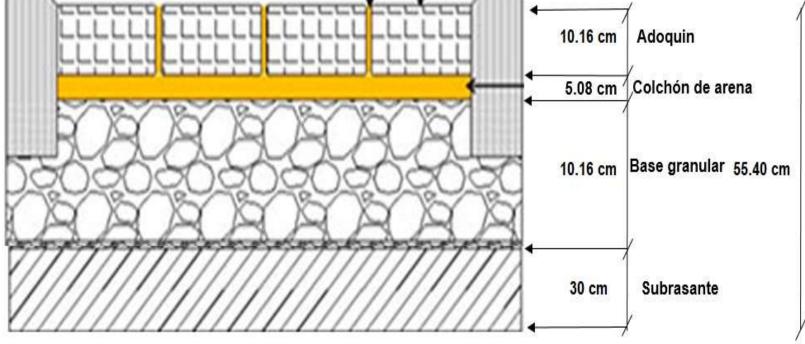
La verificación de que el proceso esté correcto se encuentra realizando la sumatoria de los SN corregidos, comparando con el SN requerido, tal como se muestra a continuación:

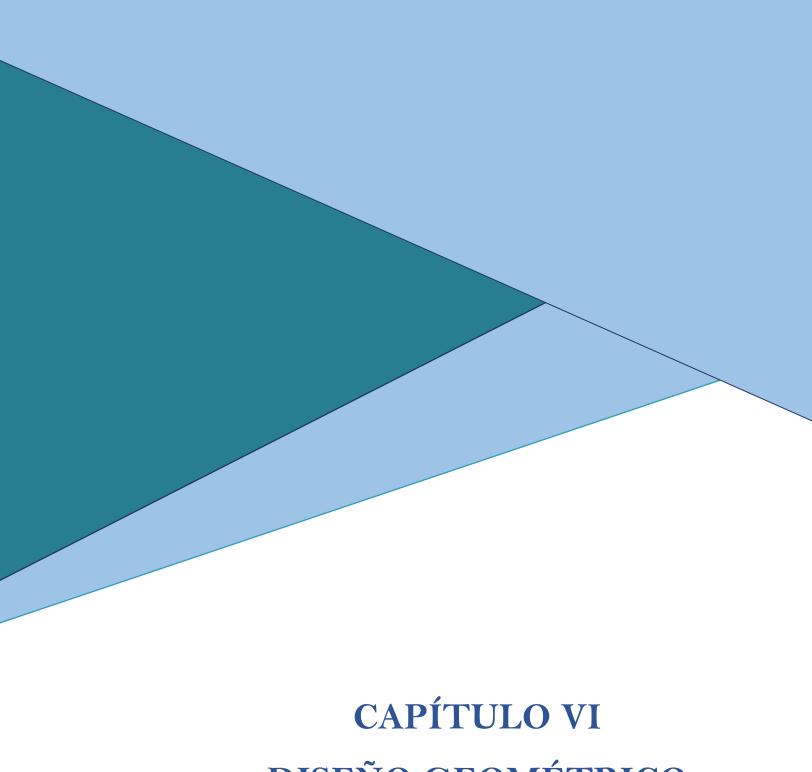
$$SN_1 + SN_2 + SN_3 \ge SN_{requerido}$$

 $1.68 + 0.54 + \ge 2.2$
 $2.22 \ge 2.20$ Cumple

5.3.4 Consolidación de espesores

Después de haber realizado los cálculos correspondientes al diseño de espesores de la estructura de pavimento del tramo Aceituno – El Sauce, los resultados obtenidos se muestran en la Tabla 41.


Tabla 41 Consolidación de espesores de pavimento


	Espesor mínimo (pulgadas)			
Сара	Pulgadas	Centímetros		
Adoquín	4	10.16		
Colchón de arena	2	5.08		
Base Granular	4	10.16		
Espesor Total	10	25.40		

Fuente: Elaboración propia

En la llustración 17, pág. 74, se muestra la sección transversal con sus espesores de forma gráfica.

Ilustración 17 Espesores de la Estructura de Pavimento

DISEÑO GEOMÉTRICO

6.1 Generalidades

En este capítulo se encontrará el diseño geométrico del tramo Aceituno-El Sauce, el cual permite que la vía quede geométricamente definida por el trazado de su eje en planta y en perfil y por el trazado de su sección transversal. La finalidad del diseño geométrico es proporcionar una carretera segura, funcional y eficiente para los usuarios, teniendo en cuenta factores como la topografía del terreno, el tránsito futuro, la velocidad de diseño y los estándares de seguridad establecidos.

El diseño geométrico de una carrera está compuesto por tres elementos bidimensionales que se ejecutan de manera individual, pero dependen unos de otros, y que al unirlos finalmente se obtiene un elemento tridimensional que corresponde a la vía propiamente, estos tres elementos son:

- Alineamiento Horizontal
- Alineamiento Vertical
- Sección Transversal

El Diseño geométrico, se ha realizado mediante el software Civil 3D 2024, aplicando en todo momento la norma SIECA 2011. (Ver Anexos Ilustración 28 – 36, pág. XXXVII – XL)

6.2 Condiciones del Tramo

Es evidente que el tramo Aceituno-El Sauce presenta deficiencias significativas en cuanto al diseño geométrico de la carretera. Estas deficiencias pueden tener un impacto negativo en la seguridad, comodidad y eficiencia del tránsito vehicular, lo que puede poner en riesgo la vida de los usuarios y dificultar la movilidad en la zona.

Con el proyecto de diseño geométrico del tramo de 2 km en el casco urbano del municipio de El Sauce se dará solución a los problemas que afectan a los habitantes del lugar; ya que, tener vías de circulación vehicular bien diseñadas y en buenas condiciones aporta a la seguridad de los usuarios y aumenta el valor adquisitivo de los terrenos y propiedades aledañas al tramo.

6.3 Clasificación de la Carretera

Las carreteras se clasifican en diferentes categorías en función de su uso, diseño, características y función dentro de la red vial. La clasificación establecida por la SIECA 2011 en la Tabla 64 (Ver anexos, pág. XXI) con un TPDA de 326 veh/día como una colectora rural. Las carreteras colectoras rurales son aquellas que conectan áreas menos pobladas y comunidades rurales con carreteras principales o de mayor capacidad. Suelen tener un tránsito moderado en comparación con las carreteras principales y tienen un propósito de acceso y servicio local.

6.4 Velocidad de Diseño

La velocidad de diseño, también conocida como velocidad directriz, es la máxima velocidad que, en condiciones de seguridad, puede ser mantenida en una determinada sección de una carretera, cuando las condiciones son tan favorables como para hacer prevalecer las características del diseño utilizado. (SIECA, 2011, págs. 2-13, Cap. II)

Tomando como referencia la Tabla 42, pág. 77, el valor de la velocidad de diseño para la carretera tipo colectora rural con un terreno Ondulado es de 60 km/h. Sin embargo, se propone una velocidad de 50 km/h, para ajustar el diseño a la topografía actual y por la falta de espacio para generar curvas horizontales mayores radios de curvatura.

6.5 Vehículo de Diseño

Los vehículos de diseño son los vehículos automotores predominantes y de mayores exigencias en el tránsito que se desplaza por las carreteras regionales, por lo que, al tipificar las dimensiones, pesos y características de operación de cada uno de ellos, se brinda al diseñador los controles y elementos a los que se deben ajustar los diseños para posibilitar y facilitar su circulación irrestricta. (Pág. 2-1 Capítulo II).

En el tramo de carretera Aceituno - El Sauce se ha seleccionado un WB - 15 como el vehículo de diseño. (Ver Ilustración 18, pág. 78), el cual a su vez cuanta con sus dimensiones mostradas en la Tabla 43, pág.78.

Tabla 42 Elementos de diseño geométrico de las carreteras regionales

	Autopistas	Troncales		Colectoras		
No	Descripción	regionales	Suburbanas	Rurales	Suburbanas	Rurales
1	TPDA	>20,000	20,000-10,000	10,000-3,000	3,000-500	3,000-500
2	VHD	>2,000	2,000-1.000	1.500-450	300-50	450-75
3	FPH	0.92	0.92	0.95 – 0.91	0.92	0.85
4	Vehículo de Diseño	WB – 20	WB – 20	WB – 20	WB – 15	WB – 15
5	Tipo de Terreno	P O M	P O M	P O M	P O M	P O M
6	Velocidad de Diseño (kph)	110 90 70	90 80 70	80 70 60	70 60 50	70 60 50
7	No de Carriles	4 a 8	2 a 4	2 a 4	2	2
8	Ancho de carril (m)	3.6	3.6	3.3 – 3-6	3.3 - 3.6	3.3
9	Ancho de hombros / espaldones (m)	Int 1 – 1-5 Ext. 1.8-2.5	Int 1 – 1-5 Ext. 1.8-2.5	Int. 0.5-1.0 Ext. 1.2-1.8	Ext. 1.2– 1.5	Ext. 1.2– 1.5
10	Tipo de superficie de rodamiento	Pav.	Pav.	Pav.	Pav.	Pav - Grava
11	Dist. De Visibilidad de parada (m)	110- 245	110-170	85- 140	65- 110	65- 110
12	Dist. de Visibilidad adelantamiento (m)	480- 670	480 – 600	410-540	350 - 480	350 - 480
13	Radio mín. curva, peralte 6% (m)	195-560	195-335	135-250	90-195	90-195
14	Máximo Grado de Curva	5º53´ - 2º03´	5°53´ - 3°25´	8º29´ - 4º35´	12º44´-5º53´	12º44´-5º53´
15	Pendiente Longitudinal Max, porcentaje	6	8	8	10	10
16	Sobreelevación, porcentaje	10	10	10	10	10
17	Pendiente Transversal de Calzada, %	1.5 - 3	1.5 – 3	1.5 – 3	1.5 - 3	1.5 - 3
18	Pendiente de Hombros, porcentaje	2-5	2-5	2-5	2-5	2-5
19	Ancho de Puentes entre bordillos, metros	Variable	Variable	Variable	Variable	Variable
20	Carga de Diseño de Puentes (AASHTO)	HS 20-44+25%	HS 20-44+25%	HS 20-44+25%	HS20-44	HS20-44
21	Ancho de Derecho de vía, metros	80-90	40-50	40-50	20-30	20-30
22	Ancho de Mediana, metros	4-12	4-10	2-6	-	-
23	Nivel de Servicio, según el HCM	B-C	C-D	C-D	C-D	C-D
24	Tipo de Control de Acceso	Control Total	Control Parcial	Sin Control	Sin Control	Sin Control
25	CLASIFICACIÓN FUNCIONAL	AR-TS	AR-TS-TR	TR-CR	TS-CS	TR-CR

Fuente: Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras. SIECA (2004

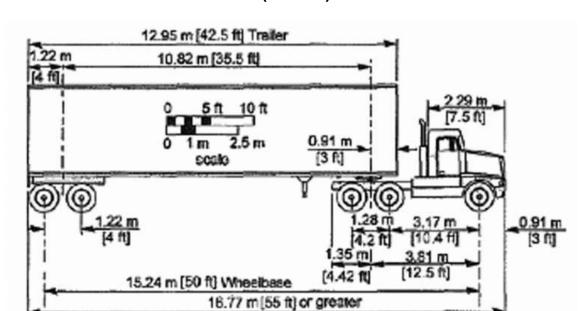


Ilustración 18 Vehículo de Diseño (WB - 15)

Fuente: Manual Centroamericano para el Diseño Geométrico de Carreteras, SIECA (2011). Pag.403

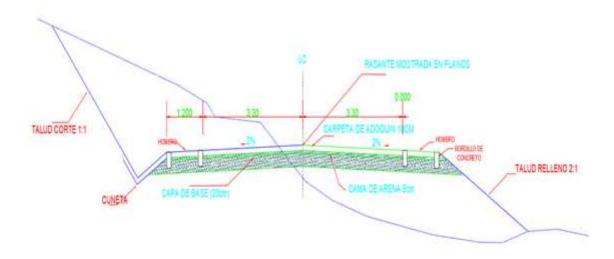
Tabla 43 Dimensiones de los vehículos de diseño (metros)

Descripción	Р	BUS	SU	WB-15	WB-19	WB-20
Altura	1.3	4.1	4.1	4.1	4.1	4.1
Ancho	2.1	2.6	2.6	2.6	2.6	2.6
Longitud	5.8	12.1	9.1 (9.2)	16.7 (16.8)	21	22.5
Voladizo delantero	0.9	2.1	1.2	0.9	1.2	1.2
Voladizo Trasero	1.5	2.4	1.8	0.6	0.9	0.9
Distancia entre ejes extremos WB1	3.4	7.6	6.1	6.1	6.1	6.1
Distancia entre ejes extremos WB2				9.1	12.8	14.3

6.6 Características de la sección transversal

6.6.1 Carril

El carril es la unidad de medida transversal, para la circulación de una sola fila de vehículos, siendo el ancho de la calzada o superficie de rodamiento, la sumatoria de los carriles, a la que también se hace referencia en la clasificación de las carreteras. (SIECA, 2011)


El ancho de carril a utilizar en el diseño es de 3.3 m usando la Tabla 43, pág. 78, por su clasificación como colectora rural, lo cual contara con 2 carriles para distribuir el tránsito vehicular en dos direcciones. (Ver Ilustración 20)

6.6.2 Hombros y espaldones

Los hombros o espaldones, que son las franjas de carretera ubicadas contiguo a los carriles de circulación y que, en conjunto con éstos, constituyen la corona o sección comprendida entre los bordes de los taludes. (SIECA, 2011)

Haciendo uso de la Tabla 43, pág. 78, los valores del ancho de Hombros se pueden asumir entre 1.20 - 1.5 m se toma como referencia el 1.20 m. (Ver Ilustración 19)

Ilustración 19 Sección transversal del tramo en estudio, Aceituno – El Sauce.

6.7 Alineamiento Horizontal

En la actualidad el diseño de carreteras, está orientado a la realización de diseños seguros y económicos, por lo que uno de los casos principales para lograr dicha meta, es adaptar curvas amplias, para que estas se adapten a la topografía del terreno, haciendo menos uso al uso de rectas, reduciendo costos.

6.7.1 Radio Mínimo

"El radio mínimo es un valor limitante de la curvatura para una velocidad de diseño dada, que se relaciona con el peralte máximo y la máxima fricción latera seleccionada para el diseño" (SIECA, 2011, pág. 87).

$$Rmim: \frac{V^2}{127(emax+fmax)}$$
 Ec - 23 Tomado de SIECA (2011).

Donde:

Rmín= Radio mínimo de la curva, m

emáx= Tasa de sobreelevación en fracción decimal V= Velocidad de diseño, KPH

fmáx= Factor de fricción lateral

$$Rmim: \frac{V^2}{127(emax + fmax)}$$

Rmim:
$$\frac{50^2}{127(0.08+0.19)}$$

$$Rmin = 72.90 m \approx 73 m$$

En la Tabla 66, (Ver Anexos, pág. XXIII), se muestra el radio de curvatura recomendado de acuerdo a la velocidad de diseño y al peralte seleccionado, obteniéndose un valor de 73 m.

6.7.2 Peralte

Las tasas máximas de peralte utilizables en las carreteras están controladas por varios factores: condiciones climáticas (frecuencia y cantidad de nieve y hielo); condiciones del terreno (plano o montañoso); tipo de zona (rural o urbana) y

frecuencia de vehículos que viajan lento y cuya operación puede ser afectada por tasas altas de peralte. Por la consideración conjunta de estos factores se concluye que no hay ninguna tasa única de peralte máxima universalmente aplicable y que debe usarse un rango de valores. (SIECA, 2011, pág. 83)

Tabla 44 Tasas de peralte (e)

Tasa de sobreelevación e en (%)	Tipo de área
10	Rural montañosa
8	Rural plana
6	Suburbana
4	Urbana

Fuente: Manual Centroamericano para el Diseño Geométrico de Carreteras, SIECA (2004)

En la Tabla 45 se muestran los peraltes máximos obtenidos en el Diseño Geométrico del tramo Aceituno-El Sauce, los cuales se calcularon en el software Civil 3D.

Tabla 45 Peraltes Máximos del Tramo Aceituno-El Sauce

Peraltes Máximos		
N de Curva	e %	
1	6	
2	4.6	
3	7.6	
4	6.6	
5	5.4	
6	6	
7	5	
8	5.4	
9	3.6	

Fuente: Elaboración Propia

6.7.3 Grado de Curvatura

"Es una forma de expresar la "agudeza" de una curva y se expresa, para la definición "arco" como el ángulo central subtendido por un "arco" de 20 metros" (SIECA, 2011, pág. 88)

$$D_{20}$$
: Ec - 24 Tomado de SIECA (2011)

En donde:

D₂₀: Grado de curvatura o ángulo en el centro de la curva, para un arco de 20 m

R: Radio de la curva, m

$$D_{20}:\frac{1145.9156}{R}$$

$$D_{20}:\frac{1145.9156}{73}$$

Al comparar estos datos con los propuestos en la Tabla 66 (Ver Anexos, pág. XXIII) concuerdan con los calculados anteriormente. En el caso del radio de curvatura de 73 m el grado de curvatura es de 15° 41′ 50′.

6.7.4 Bombeo Normal

Es la pendiente que se le da a la corona en las tangentes del alineamiento horizontal, con el objeto de facilitar el escurrimiento superficial del agua. Un bombeo apropiado será aquel que permita un drenaje correcto de la corona con la mínima pendiente. (SIECA, 2011, pág. 139)

En la Tabla 46, se muestran los valores del bombeo para los tipos de superficie de pavimento.

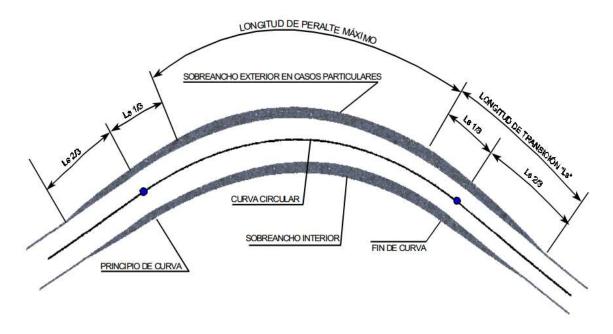
Tabla 46 Valores de Bombeo Normal

Tipo de Superficie	Rango de Pendiente Transversal
Alto	1.5 - 2.0
Bajo	2.0 - 6.0

Fuente: Manual Centroamericano para Diseño de Pavimento, SIECA (2011). Capítulo 4. Pág. 139

SIECA (2011) define los tipos de pavimento de la siguiente manera:

Los pavimentos de tipo alto son aquellos que mantienen superficies lisas y propiedades antideslizantes en todo tipo de clima, y que, sometidos a cargas de altos volúmenes de tránsito pesado, requierenpoco mantenimiento.


Los pavimentos de tipo bajo son los que están formados por superficies de terracería, sin tratar o tratadas mediante la inclusión de agregados pétreos. (Pág. 139).

En el tramo en estudio, el valor del bombeo es del 2%, tomando en consideración que el tipo de superficie es alta.

6.7.5 Sobreancho de Curvas

Los sobreanchos se diseñan siempre en las curvas horizontales de radios pequeños, combinados con carriles angostos, para facilitar las maniobras de los vehículos en forma eficiente, segura, cómoda y económica. Los sobreanchos sonnecesarios para acomodar la mayor curva que describe el eje trasero de un vehículo pesado y para compensar la dificultad que enfrenta el conductor al tratarde ubicarse en el centro de su carril de circulación. (SIECA, 2011) (Ver Ilustración 20).

Ilustración 20 Sobreancho de curvas

Fuente: Manual Centroamericano para el Diseño Geométrico de Carreteras, SIECA (2004). Cap4.pag.5

En la Tabla 47 y 48, se muestran los sobre anchos del tramo en estudio en dos sentidos banda izquierda y banda derecha, utilizando el software Civil 3D.

Tabla 47 Sobre anchos, banda izquierda del Tramo Aceituno - El Sauce

S	Sobre anchos de la banda izquierda							
N de curva	N de curva Valor del sobre ancho							
3	2.40 m							
5	1.00 m							
7	1.00 m							

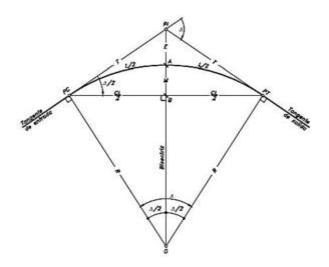
Fuente: Elaboración Propia

Tabla 48 Sobre anchos, banda derecha del Tramo Aceituno - El Sauce

Sobre anchos de la banda derecha						
N de curva Valor del sobre ancho						
1	1.20 m					
2	1.80 m					
4	1.60 m					
6	1.20 m					
8	1.00 m					
9	1.60 m					

Fuente: Elaboración Propia

6.7.6 Curvas Horizontales Simples


Reyes Pizarro (2013, pp. 11-12), define que una curva simple, es aquella que existen dos tangentes que están unidas entre sí por una solo curva circular, sus elementos característicos son:

- Grado de curvatura: Es el que permite a un vehículo recorrer conseguridad la curva.
- Radio de la curva: Es el radio que genera el diseño de la curvacircular.
- ❖ Ángulo central: Es el ángulo subtendido por la curva circular. Encurvas circulares simples es igual a la deflexión.

- ❖ Longitud de curva: Es la distancia o la longitud que posee el arco dela curva, que lo comprende entre PC y PT.
- ❖ Subtangente: Es la distancia que esta comprendía entre el PI y PC o PT, medida sobre la prolongación de las tangentes.
- Externa: Es la distancia mínima que se localiza entre los puntos Ply la curva.
- ❖ Deflexión: Es el ángulo entre la prolongación de la tangente PC y latangente en un punto cualquiera considerado.
- Cuerda: Es la recta comprendida entre dos puntos de la curva. Si seencuentra entre los puntos PC y PT, la resultante es llamada cuerdalarga.

La Ilustración 21, muestra los elementos geométricos de las curvas horizontales simples.

Ilustración 21 Elementos geométricos de curvas horizontales

Fuente: Diseño Geométrico de Carreteras, Cárdenas Grisales, 2013

El cálculo de los elementos geométricos de la curva a manera de ejemplo se muestra a continuación:

Tomando como ejemplo, la curva 1 del tramo, la cual se encuentra en la estación:

$$PC = 0 + 268.319$$

 $R: 180 m$
 $\Delta = 32^{\circ} 38' 40''$

Tangente

$$T: R*Ta\frac{\Delta}{2}$$
 $Ec-24$ Tomada de (Cárdenas Grisales, 2013)
$$T: (180 \ m)*Ta\frac{32^{\circ} \ 38' \ 40''}{2}$$

T: 51.711 m

❖ Cuerda Larga

$$Cl: 2R * Sen \frac{\Delta}{2}$$

Ec - 25 Tomada de (Cárdenas Grisales, 2013)

$$Cl: 2(180 m) * Sen \frac{32° 38′ 40''}{2}$$

Cl: 102.56 m

❖ Externa

$$E: R * \left(\frac{1}{COS^{\Delta}/2} - 1\right)$$

Ec – 26 Tomada de (Cárdenas Grisales, 2013)

$$E: (180 m) * (\frac{1}{\cos 32^{\circ} 38' 40'/2} - 1)$$

E: 7.25 *m*

Ordenada Medida

$$M: R\left(1-COS\frac{\Delta}{2}\right)$$

Ec - 27 Tomada de (Cárdenas Grisales, 2013)

$$M: 180 \ m \ (1 - COS - \frac{32^{\circ} \ 38' \ 40''}{2})$$
 $M: 7.25$

Grado de Curvatura

$$G^{\circ}c: 2*sen^{-1}*\frac{C}{2R}$$
 $Ec-28$ Tomada de (Cárdenas Grisales, 2013)

c = 5 m por que el radio es menor de 50 m

$$G^{\circ}c : 2 * sen^{-1} * \frac{5}{2 * 18}$$

 $G^{\circ}c : 15^{\circ} 58' 1'$

Longitud de Curvatura

$$Lc: \frac{\pi * R * \Delta}{180}$$

Ec – 29 Tomada de (Cárdenas Grisales, 2013)

$$Lc: \frac{\pi * 18 * 32^{\circ} 38' 40''}{180}$$

 $LC: : 7.56 \text{ m}$

Estación PT

$$PT: PC + LC$$

Ec - 29 Tomada de (Cárdenas Grisales, 2013)

$$PT: 0 + 268.31 + 7.56$$

$$PT: 0 + 370$$

Estación PI

$$PI: PC + T$$

Ec - 30 Tomada de (Cárdenas Grisales, 2013)

$$PI: 0 + 370 + 0 + 278.28$$

$$PI: 0 + 321.03$$

Deflexión por Metro

$$\delta: \frac{G^{\circ}c}{2*5}$$

Ec - 31 Tomada de (Cárdenas Grisales, 2013)

$$\delta: \frac{15^{\circ}58"1'}{2*5}$$

Deflexión por Cuerda

En la Tabla 49 en la pág. 89, se muestran las curvas horizontales del Diseño Geométrico del Tramo Aceituno - El Sauce, las cuales se obtuvieron del software Civil 3D.

Tabla 49 Curvas horizontales del Tramo Aceituno - El Sauce

	Curvas Horizontales												
N de Curvas	Dirección	Deflexión	Radio	Tangente	L	LC	E	M	PC	PI	РТ	PI NORTE	PI ESTE
C1	S26°27'27.49"W	32°38'40"	180	52.711	102.56	7.56	7.25	7.25	0+268.32	0+321.03	0+370	1441513.138	557233.956
C2	S05° 29' 14.37"W	9°29'46"	300	24.92	49.72	1.03	1.03	1.03	0+500.01	0+524.93	0+549.73	1441309.666	557197.2157
СЗ	S19° 11' 36.92"W	19°56'38"	100	17.58	34.81	1.53	1.51	1.51	0+875.31	0+892.89	0+910.12	1440939.738	557204.9221
C4	S26° 46' 24.03 W	28°50'55"	150	38.58	75.53	4.88	4.73	4.73	1+010.15	1+048.73	1+085.67	1440820.638	557100.6661
C5	S25° 25' 31.03"W	26°09'09"	220	51.1	100.42	5.86	5.7	5.7	1+242.25	1+293.35	1+342.67	1440580.077	557047.9995
C6	522° 53' 10.15"W	31°13' 51"	180	50.31	98.11	6.9	6.64	6.64	1+418.29	1+468.60	1+516.40	1440441.536	556937.7931
C7	S17° 15' 33.75"W	19°58' 38"	250	44.03	87.17	3.85	3.79	3.79	1+627.03	1+671.06	1+714.19	1440238.221	556911.8533
C8	S03° 39' 26.44"W	47°10' 53"	220	96.07	181.16	20.06	18.39	18.39	1+789.04	1+885.11	1+970.20	1440047.122	556813.4394
C9	S01° 02' 08.28"E	3°32' 59"	400	12.39	24.78	0.19	0.19	0.19	0+681.06	0+681.06	0+705.84	144141.039	557195.04

6.8 Alineamiento Vertical

Al proyectar sobre un plano vertical las distintas elevaciones del eje de la carretera, se obtiene el alineamiento vertical o perfil del eje de la carretera. En este alineamiento se representan tanto el perfil del terreno natural como el perfil terminado del eje de la carretera, al cual se le llama rasante, o el perfil del eje terminado de la terracería, también conocido como subrasante. (SIECA, 2011)

6.8.1 Pendientes de Control para el Diseño

Las pendientes de las carreteras ya construidas tienen una influencia relevante en la operación de los vehículos que operan por ellas. En automóviles, las pendientes de subida de hasta 5% no tienen influencia apreciable en la velocidad, cuando se compara con la correspondiente en terreno plano. Cuando sube la pendiente, la velocidad decrece progresivamente y en las pendientes de bajada la velocidad tiene un pequeño aumento. En consecuencia, las restricciones a estas velocidades son impuestas por condiciones de seguridad y comodidad. (SIECA, 2011)

El tramo en estudio posee un terreno ondulado, por lo tanto, la Tabla 50 del manual SIECA se define que la pendiente máxima para una carretera colectora rural con una velocidad de diseño de 50 km/h es de 9%.

Tabla 50 Pendiente máxima para carreteras colectoras rurales

Tipo de	Máxima pendiente (%) Velocidad de Diseño Especificada, KPH								
terreno	30	40	50	60	70	80	90	100	
Plano	7	7	7	7	7	6	6	5	
Lomerío	10	10	9	8	8	7	7	6	
Montañoso	12	11	10	10	10	9	9	8	

Fuente: Manual Centroamericano para el Diseño Geométrico de Carreteras, SIECA (2011), Capítulo 3. Pág. 119

6.8.2 Curvas Verticales

SIECA (2004) las curvas verticales deben contribuir a la estética del trazado, ser confortables en su operación y facilitar las operaciones de drenaje de la carretera. Para ello, las curvas verticales se clasifican en:

- Curvas verticales en cresta: Estas curvas se diseñan en consideración a la más amplia distancia de visibilidad para la velocidad de diseño.
- Curvas verticales en columpio: Dichas curvas se diseñan en relación a la distancia que alcanza a iluminar los faros del vehículo de diseño. (pag.156)

A Continuación, se muestra un ejemplo de una curva vertical, los datos son los siguientes:

- **Est PIV:** 1+740.88
- **Cota PIV:** 567.92 m
- Pendiente de entrada: 8.49%
- Pendiente de salida: -6.62%
- Comprobación de LCV

$$Lmin = Kmin * a$$

$$Lmin: 7(-6.62\% - 8.49\%) = 105.77 m$$

$$LVC = K * a = 10.592(-6.62\% - 8.49\%) = 160 m$$

$$LCV \ge LCVmin$$

Cálculo de Estación PCV

$$EST \ PCV : EST \ PIV - \frac{LCV}{2}$$
$$EST \ PCV : 1 + 740.88 - \frac{160}{2}$$

Cálculo de la Estación PTV

$$EST \ PTV: EST \ PIV + \frac{LCV}{2}$$
$$EST \ PTV: 1 + 740.88 + \frac{160}{2}$$
$$EST \ PTV: 1 + 820$$

Determinación de la cota PCV

$$COTA\ PCV: COTA\ PIV - m\ \frac{LCV}{2}$$

$$COTA \ PCV$$
: 567.92 - (0.0849) $\frac{160}{2}$

Determinación de la cota PTV

COTA PTV: COTA PIV -
$$n \frac{LCV}{2}$$

COTA PTV: 567.92 - (-0.0662) $\frac{160}{2}$

COTA PTV: 562.628

❖ Determinar las cotas a lo largo de las tangentes considerando que los estacionamientos son a cada 20 m.

$$Cota\ 1 = 561.129 + (0.0849)\ (20) = 562.827$$
 $Cota\ 2 = 561.129 + (0.0849)\ (40) = 564.525$
 $Cota\ 3 = 561.129 + (0.0849)\ (60) = 566.223$
 $Cota\ 4 = 561.129 + (0.0849)\ (80) = 567.921$
 $Cota\ 5 = 561.129 + (0.0849)\ (100) = 569.619$
 $Cota\ 6 = 561.129 + (0.0849)\ (120) = 541.317$
 $Cota\ 7 = 561.129 + (-0.0662)\ (20) = 559.805$
 $Cota\ 8 = 561.129 + (-0.0662)\ (40) = 558.481$
 $Cota\ 9 = 561.129 + (-0.0662)\ (60) = 557.157$
 $Cota\ 10 = 561.129 + (-0.0662)\ (80) = 555.833$
 $Cota\ 9 = 561.129 + (-0.0662)\ (100) = 554.509$
 $Cota\ 10 = 561.129 + (-0.0662)\ (120) = 553.185$

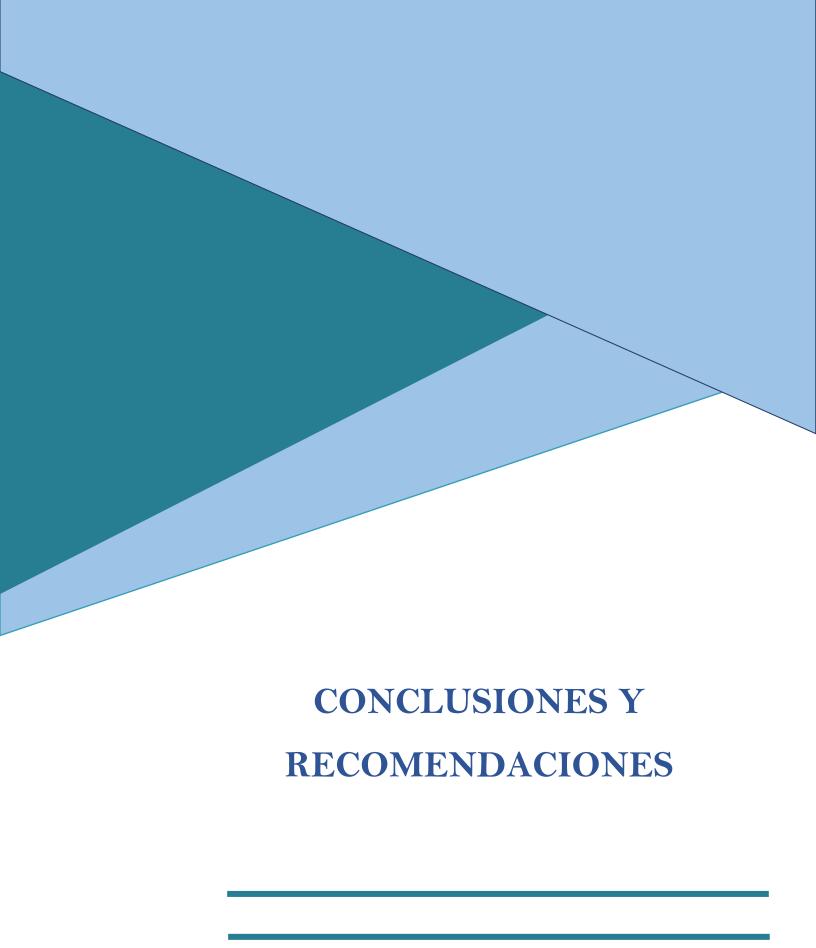
6.2.1 Tasas de Curvatura K

El valor de la tasa de curvatura, tomando en consideración las velocidades de diseño, en el caso de las curvas en cresta, la velocidad de diseño es de 50 km/h, para lo cual el valor de K es de 7, tomando como referencia a la Tabla 67 (Ver Anexos, pág. XXIV) Para las curvas en columpio, el valor de la tasa de curvatura K es de 13, considerando la velocidad de diseño de 50 km/h. Dicho valor se toma a partir de la Tabla 68 (Ver Anexos, pág. XXIV)

En la Tabla 51 en la pág. 93 se encuentra las curvas verticales del Diseño Geométrico del Tramo en estudio, las cuales se obtuvieron a través del software Civil 3D.

Tabla 51 Curvas verticales del Diseño Geométrico del tramo Aceituno - El Sauce

	Curva Verticales									
No de Curva	Est PCV	Elev. PCV	Est. PIV	Elev. PIV	Est. PTV	Elev. PTV	Valor de K	Long. Cv	Pendien te	Tipo de Curva
1	0+104.3 6	550.494	0+144.3	549.11	0+184.3 6	545.97	18.345	80	1.08%	Columpio
2	0+323.2 3	535.103	0+376.3	530.94	0+429.5 5	530.94	13.58	106.52	-7.83%	Columpio
3	0+465.7	530.491	0+502.7	530.94	0+529.7	533.04	13	73.96	5.69%	Columpio
4	0+598.7	536.42	0+658.7	539.82	0+718.7	536.03	10	120	-6.31%	Cresta
5	0+779.3	532.2	0+839.3	528.42	0+899.3	528.047	21.127	120	-0.63%	Columpio
6	0+984.3	527.51	1+054.3	527.09	1+224.3	532.4	16.99	140	7.61%	Columpio
7	1+274.4	543.837	1+354.4	549.33	1+434.4	551.291	27.072	160	1.70%	Columpio
8	1+492.7 4 1+660.8	552.283	1+572.7	553.65	1+652.7 9 1+820.8	560.438	23.572	160	8.49%	Columpio
9	1+800.8 8 1+844.0	561.129	1+740.8	527.92	8 2+004.0	562.628	10.592	160	-6.62%	Cresta
10	6	558.44	1+944.0	554.48	6	553.09	27.89	120	-2.31%	Columpio


Fuente: Elaboración propia

6.2.2 Resumen de Criterio

Podemos observar en la Tabla 52 (pág. 94), el resumen de cada uno de los criterios que fueron utilizados para el diseño geométrico del tramo Aceituno – El Sauce.

Tabla 52 Resumen de Criterio

Descripción/Parámetro	Forma	Unidad	Valores
Clasificación Funcional		Colectora Rura	l Ondulado
Velocidad de Diseño	Vd.	KPH	50
Vehículo de Diseño	Veh.	Tipo	WB -15
Radio de curvatura Mínimo	R	m	73
Grado de Curvatura	Gc	G. Min.Seg.	15°14'
Número de carriles de Rodamiento	Nc	Unid.	2
Ancho de Carril	Ac	m	3.3
Ancho total de Rodamiento	AR	m	6.6
Ancho de Hombros	Hm	m	1.2
Ancho de Corona	Ac	m	9
Bombeo Normal	В	%	2
Bombeo de Hombros	Hm%	%	4
Peralte o sobreelevación	emáx.	%	8
Pendiente Máx.	Pend%	%	9
Sobreancho	Sa	m	2.5
Curvas verticales Cresta	DVP	M	7
Curvas verticales Columpio	DVA	M	13
Superficie carpeta de Rodamiento	Srod.	Tipo	Adoquín

7.1 Conclusiones

Se concluye el trabajo monográfico habiendo realizado el diseño estructural y geométrico de pavimento articulado del tramo Aceituno - El Sauce ubicado en el municipio de El Sauce, departamento de León.

- 1. Al evaluar el levantamiento topográfico se analizaron los datos necesarios para la elaboración del diseño geométrico y se determinó por las pendientes encontrada que el tipo de terreno es ondulado. El levantamiento Topográfico cumple los criterios establecidos por el Manual de Revisión del MTI, dicho estudio posee el levantamiento de detalles, establecimiento de BM, lo cual ha permitido caracterizar planimétrica y altimétricamente el terreno del tramo.
- 2. En el estudio de tránsito se realizó un aforo vehicular durante una semana, de 6 am a 6 pm. Ubicados en la estación 17+800, se logra consolidar que el TPDS es de 248 vehículos por día, tomando como referencia el porcentaje de composición vehicular obtenido en el aforo, se seleccionó la Estación de Corta Duración 4902 (Aceituno El Sauce), la cual pertenece a la Estación de Conteo Sumario (San Marcos Masatepe), permitiendo seleccionar los factores de ajustes para obtener un TPDA de 326 vehículos/día, y haciendo uso de recursos tales como registros históricos de producto interno bruto, tránsito promedio diario anual y el censo poblacional (TPDA, PIB), se obtuvo una tasa de crecimiento de 3.09 % con la cual se proyectó el tránsito de diseño, generando un ESAL de 321.348 psi con un periodo de diseño de 15 años.
- 3. En el Estudio Geotécnico se realizaron un total de 5 sondeos manuales con profundidades máximas de 1.50 metros. Actualmente, el espesor de la carpeta de rodamiento que corresponde a terracería, es aproximadamente de 0.30 metros en la mayoría de los estacionamientos. Según los sondeos manuales realizados con anterioridad, los suelos que se pueden apreciar corresponden a los tipos: A 5, A 6, A 1 a, A 1 b, A 2- 4, A 2-5, A 2-7, A 7-5 y A 7 6. Estos suelos son clasificados como gravas, limosas y arcillosas, arenas finas, limos y arcillas. Y a su vez, según lo establecido

en la AASHTO, la mitad de estos suelos son considerados de excelentes a buenos para usar en la subrasante y la otra mitad, de regular a malos para el uso de la misma. Sé analizó una fuente de material localizada en los terrenos del Sr. Sebastián Arroliga, ubicada en la estación 19+300 del tramo de carretera Aceituno – El Sauce. En este banco se visualizaron suelos correspondientes al tipo A-2-4(0) según la clasificación de la AASHTO, los cuales son suelos de gravas limosas y son recomendados por la Norma NIC - 2019 para ser usadas en la base y sub base de la estructura de pavimento. El valor de su CBR es de 88%, con una densidad seca máxima de 1907 kg/m3 y su humedad optima de 13.5%.

- 4. En el diseño de la estructura de pavimento, se utilizó el método AASTHO 93. Los coeficientes de capa obtenidos fueron los valores siguientes: Un a1= 0.42 este coeficiente estructural ya está definido para la capa de rodamiento (Adoquín) según la AASHTO y un a2= 0.135 el que se obtuvo haciendo uso del nomograma en función del Módulo Resiliente para base granular. De acuerdo a los resultados del estudio de pavimento los espesores obtenidos son: Adoquín 4 pulg, Base 4 pulg y el colchón de arena 2 pulg.
- 5. Tomando en cuenta los puntos recolectados de la sección, se realizó con ayuda del software Civil 3D, el alineamiento horizontal, el perfil longitudinal y sus secciones transversales, basándose en los parámetros de diseño de la norma SIECA 2011 y AASHTO 93. Se determinaron los siguientes datos, Velocidad de Diseño = 50 km/hrs. Radio de curvatura mínimo= 73 m; Peralte e Diseño =8%; Grado de curvatura máxima = 15°14′50".

Además, de diseñaron 9 curvas horizontales simples y 10 curvas verticales, de las cuales 2 son en cresta y 8 en columpio.

7.2 Recomendaciones

Dado el estudio realizado a través del proceso de este trabajo monográfico, damos a conocer algunas recomendaciones para obtener un diseño que sea apto a las condiciones antes expuestas del tramo en estudio.

- Realizar los aforos vehiculares del tramo Aceituno El Sauce de manera constante, para así llevar un mejor control del flujo vehicular y su comportamiento analizado dentro del estudio de tránsito, para el período de diseño de la carretera.
- 2. Disponer de un ciclo de control de daños de la carretera que se puedan causar por el aumento vehicular, el aumento o disminución de los volúmenes de tránsito, sus cargas y comportamientos que puedan afectar directamente el futuro y la vida útil de la estructura de pavimento.
- Acatar los parámetros establecidos dentro del diseño en los materiales de construcción a implementar y sus espesores calculados para avalar el funcionamiento del tramo en estudio de manera exitosa.
- 4. Comprobar que el material del banco esté libre de sustancias mortíferas que puedan ser pauta a un descenso en el diseño, a modo de que estos, contribuyan a formar una capa de base idónea.
- 5. Respetar los parámetros mínimos de la capa base y realizar la compactación cumpliendo con el mínimo del Proctor Estándar, el cual es del 95%.
- 6. Realizar una compactación del 100% con el material a explotar propuesto en la clasificación de suelo para la capa base (banco de material).
- 7. Evitar la contaminación, daño o cualquier impacto negativo de las áreas verdes o estructuras que se encuentre alrededor del proyecto durante su ejecución.
- 8. Se recomienda que durante el proceso de ejecución de la obra se cumpla con una adecuada supervisión tanto del control severo de la calidad de los materiales, así como del proceso de construcción a realizar en el proyecto.

7.3 Bibliografía

- AASHTO 93. (2001). *Diseño de Pavimentos Método AASHTO 1993.* Washington: Instituto Nacional de Carreteras de los Estados Unidos.
- Coronado Inturbide, J., & SIECA. (2002). *Manual Centroamericano para diseño de pavimentos*. Guatemala: SIECA.
- Crespo Villalaz, C. (2004). *Mecánica de suelos y cimentaciones*. México: Editorial Limusa, S.A. de C.V.
- Das, B. M. (2012). Fundamentos de Ingeniería de Cimentaciones. México : Cengage Learning Editores, S.A. de C.V.
- Marquez, G. (1994). Curso Basico de Topografia. Mexico.
- Márquez, G. F. (2003). Curso Basico de Topografía (primera edicion ed.). Mexico D.F.00310: Pax Mexico, libreria carlos cesarman S,A. Recuperado el 14 de octubre de 2022
- Mayor Reyes Spíndola, R., & Cárdenas Grisales, J. (2018). *ngeniería de tránsito.* Fundamentos y aplicaciones. México: Alfaomega Grupo Editor, S.A.
- McCormac, J. (2013). *Topografia* (primera edicion ed.). mexico: Limusa Wiley. Recuperado el 14 de Octubre de 2022
- Ministerio de Transporte e Infraestructura 2020, M. (2020). *Anuario de Aforos de Tránsito*. Managua.
- Morales, W. R. (2015). Topografia General. Managua.
- MTI . (08 de Agosto de 2008). Sistema de Información y Documentación en Transporte. Obtenido de CLASIFICACION VEHICULAR: https://sjnavarro.files.wordpress.com/2008/08/clasificacion-mti-y-tablas.pdf
- SIECA . (2011). Manual centroamericano de normas de diseño geométrico de carreteras . Guatemala : SIECA .
- SIECA, 2. (2002). SIECA 2002. Panama.

Wolf , P. R., & Ghilani, C. D. (2016). Topografía . México, D.F. : Alfaomega .

Zamora River, M. (2007). *Manual para la Revisión de Estudios de Tránsito.*Managua: Ministerio de Transporte eInfraestructura.

Ilustración 22 Condiciones actuales del tramo Aceituno – El Sauce, EST.

Tabla 53 Levantamiento de detalles (Parte 1)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
8498	1439838.765	556883.415	551.813	CABEZAL
8499	1439838.994	556883.705	551.861	CABEZAL
8500	1439837.021	556884.742	551.76	CABEZAL
8501	1439836.898	556884.355	551.679	CABEZAL
8502	1439837.151	556884.196	551.579	ALETON
8503	1439837.531	556884.005	551.549	ALETON
8504	1439836.402	556883.799	550.98	ALETON
8505	1439836.227	556884.014	551.122	ALETON
8506	1439838.305	556882.547	550.971	ALETON
8507	1439838.746	556882.411	550.879	ALETON
8508	1439838.686	556883.334	551.537	ALETON
8509	1439838.351	556883.369	551.427	ALETON

Tabla 54 Levantamiento de detalles (Parte 2)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
8510	1439838.3	556883.57	551.412	ALETON
8511	1439844.7	556889.316	551.796	CABEZAL
8512	1439844.9	556889.589	551.803	CABEZAL
8513	1439846.6	556888.74	551.82	CABEZAL
8514	1439846.5	556888.486	551.838	CABEZAL
8515	1439838.3	556883.615	550.437	CORTINA
8516	1439838.3	556882.657	550.437	CORTINA
8517	1439836.5	556883.741	550.443	CORTINA
8518	1439837.5	556883.958	550.454	CORTINA
8519	1439837.9	556883.742	550.441	INVERSALIDA
8521	1439846.5	556888.897	551.609	TRAGANTE
8522	1439846.9	556889.927	551.47	TRAGANTE
8523	1439846.6	556890.031	551.47	TRAGANTE
8524	1439845.8	556890.43	551.443	TRAGANTE
8525	1439845.7	556890.493	551.442	TRAGANTE
8526	1439845.3	556889.524	551.447	TRAGANTE
8527	1439845.1	556889.572	551.558	TRAGANTE
8528	1439845.4	556889.47	550.793	TRAGANTE
8529	1439846.3	556889.033	550.794	TRAGANTE
8530	1439846.6	556889.901	550.792	TRAGANTE
8531	1439845.8	556890.347	550.785	TRAGANTE
8532	1439845.8	556889.277	550.736	INVERENTRADA
8533	1439845.2	556880.503	551.77	TN
8534	1439850.7	556878.054	551.897	TN
8535	1439855.7	556875.933	551.922	TN
8536	1439845.5	556888.759	551.83	TN
8537	1439838.3	556884.717	551.724	TN
8538	1439850.4	556885.384	551.831	TN
8539	1439855.5	556883.021	551.97	TN
8540	1439860.7	556880.894	552.129	TN
8541	1439832.2	556886.828	551.425	TN
8542	1439827.1	556889.269	551.311	TN
8543	1439822.2	556891.589	551.159	TN
8544	1439825.3	556897.546	551.393	TN
8545	1439829.6	556895.466	551.53	TN
8546	1439835.8	556893.073	551.65	TN

Tabla 55 Levantamiento de detalles (Parte 3)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
8547	1439841.2	556890.651	551.78	TN
8548	1439861	556881.776	551.862	EJECORRIENTE
8549	1439855.5	556884.09	551.703	EJECORRIENTE
8550	1439850.3	556886.534	551.513	EJECORRIENTE
8551	1439846.8	556889.285	551.331	EJECORRIENTE
8552	1439839.6	556877.022	549.81	TN
8553	1439835.5	556879.363	549.248	EJECORRIENTE
8554	1439834.7	556879.678	549.484	TN
8555	1439834.4	556879.793	550.196	TN
8556	1439835.9	556879.253	549.336	TN
8557	1439845.6	556873.881	549.172	TN
8558	1439836.5	556879.248	549.939	TN
8559	1439830.5	556882.171	549.443	TN
8560	1439827.1	556882.684	549.309	TN
8561	1439837.3	556867.74	546.348	TN
8562	1439843.2	556864.76	546.37	TN
8563	1439833.4	556871.816	545.844	EJECORRIENTE
8564	1439823	556883.249	548.477	TN
8565	1439833.3	556872.002	546.019	TN
8566	1439820.9	556877.958	546.263	TN
8567	1439834.4	556870.345	546.584	TN
8568	1439825.4	556877.986	547.067	TN
8569	1439834	556871.481	546.003	TN
8570	1439851.2	556889.883	553.763	TN
8571	1439842.5	556892.986	553.994	TN
8572	1439847.5	556891.244	552.875	TN
8573	1439859.8	556885.815	553.635	TN
8574	1439850.2	556895.009	557.272	TN
36797	1441400.2	557223.198	525.634	LC
36798	1441396.7	557221.817	525.912	H-RIO
36799	1441404.8	557224.512	525.923	H-RIO
36800	1441393.4	557220.947	526.341	TN
36801	1441412.5	557225.604	526.6	TN
36802	1441423.1	557226.775	527.508	TN
36803	1441432.8	557228.849	529.451	TN
36804	1441446.2	557231.889	531.191	TN

Tabla 56 Levantamiento de detalles (Parte 4)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
36805	1441387.2	557219.652	526.625	TN
36806	1441381.2	557217.633	526.927	TN
36807	1441374.4	557215.469	527.718	TN
36808	1441368.9	557213.77	528.112	TN
36809	1441395.4	557229.158	525.571	N-FONDO-RIO
36810	1441393.4	557228.394	525.847	H-RIO
36811	1441367.7	557218.51	528.31	TN
36812	1441399.1	557230.913	526	H-RIO
36813	1441373	557220.51	527.864	TN
36814	1441378.2	557222.556	527.021	TN
36815	1441383.4	557224.616	526.714	TN
36816	1441389.2	557227.012	526.524	TN
36817	1441406.2	557234.411	526.873	TN
36818	1441413.6	557236.433	527.469	TN
36819	1441421.2	557239.42	528.11	TN
36820	1441389.9	557251.892	527.793	TN
36821	1441382.4	557248.448	526.853	TN
36822	1441395.5	557254.345	527.709	TN
36823	1441386.1	557250.735	527.593	TN
36824	1441399.9	557255.819	527.943	TN
36825	1441378	557246.259	526.267	LC
36826	1441405.2	557257.844	528.888	TN
36827	1441371.8	557243.238	527.253	TN
36828	1441366.9	557241.246	527.935	TN
36829	1441360.9	557237.935	527.833	TN
36830	1441409.4	557259.348	528.839	TN
36831	1441351.8	557234.49	529.434	TN
36832	1441370.3	557267.048	526.715	LC
36833	1441365.2	557266.013	527.344	H-RIO
36834	1441363.3	557265.572	528.789	BORDE
36835	1441375.1	557269.275	527.49	H-RIO
36836	1441357.9	557263.421	529.229	TN
36837	1441351.8	557261.224	529.977	TN
36838	1441346.7	557259.366	529.909	TN
36839	1441379.7	557269.725	528.009	BORDE
36840	1441386.2	557271.169	528.099	TN

Tabla 57 Levantamiento de detalles (Parte 5)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
36841	1441340.8	557257.339	530.092	TN
36842	1441390.7	557273.381	528.115	TN
36843	1441336	557277.759	531.172	TN
36844	1441341.3	557277.796	531.092	TN
36845	1441394	557274.74	528.302	TN
36846	1441346.4	557278.376	531.285	TN
36847	1441351.6	557279.611	530.401	TN
36848	1441355.6	557280.538	529.442	TN
36849	1441398.4	557276.999	528.704	TN
36850	1441360.3	557282.021	528.401	TN
36851	1441363.5	557282.662	527.689	H-RIO
36852	1441367.2	557284.414	527.637	TN
36853	1441370.1	557285.087	527.568	LC
36854	1441374.6	557286.327	527.561	H-RIO
36855	1441377.6	557286.785	528.31	BORDE
36856	1441381.9	557288.832	528.481	TN
36857	1441387.9	557291.705	528.678	TN
36858	1441394.1	557294.691	529.888	TN
36859	1441398.7	557296.493	530.393	TN
36860	1441378.1	557307.654	527.713	LC
36861	1441374	557310.021	528.515	H-RIO
36862	1441385.5	557305.135	528.553	H-RIO
36863	1441368.7	557311.779	529.466	TN
36864	1441390.6	557303.785	529.419	TN
36865	1441396.9	557300.381	530.175	TN
36866	1441364.4	557313.465	531.054	TN
36867	1441404.5	557298.447	531.549	TN
36868	1441358.4	557314.355	532.116	TN
36869	1441413.3	557295.623	531.597	TN
36870	1441353.1	557315.744	532.383	TN
36871	1441347.7	557316.634	532.679	TN
36872	1441357.8	557339.022	533.457	TN
36873	1441364.1	557336.89	533.131	TN
36874	1441370.3	557335.176	532.794	TN
36875	1441374	557333.948	531.159	TN
36876	1441415.6	557321.726	532.878	TN

Tabla 58 Levantamiento de detalles (Parte 6)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
36877	1441408.6	557324.094	532.643	TN
36878	1441378.8	557332.051	529.647	TN
36879	1441401.6	557326.583	531.622	TN
36880	1441383.3	557330.808	528.987	H-RIO
36881	1441386.5	557330.062	528.171	LC
36882	1441389.6	557329.326	528.523	H-RIO
36883	1441397.2	557327.468	530.185	TN
36884	1441393.1	557328.472	529.298	TN
36885	1441394.1	557349.176	528.858	LC
36886	1441391.7	557349.964	529.168	H-RIO
36887	1441400.4	557347.125	530.422	H-RIO
36888	1441388.1	557350.682	532.009	BORDE
36889	1441404.2	557345.888	532.684	BORDE
36890	1441410.8	557344.76	533.897	TN
36891	1441385.5	557352.597	532.506	TN
36892	1441381.3	557355.635	534.078	TN
36893	1441418.5	557343.553	534.03	TN
36894	1441374.6	557360.002	534.886	TN
36895	1441399.8	557372.368	530.232	LC
36896	1441404.1	557371.462	530.93	H-RIO
36897	1441407.8	557369.592	533.864	BORDE
36898	1441394.4	557374.987	531.089	H-RIO
36899	1441413.9	557367.262	534.739	TN
36900	1441419.1	557364.956	535.205	TN
36901	1441425.3	557364.035	535.703	TN
36902	1441433.6	557360.933	536.622	TN
36903	1441392.9	557375.157	532.336	BORDE
36904	1441385.1	557381.454	534.371	TN
36905	1441378.3	557385.547	535.232	TN
36906	1441432.6	557381.498	538.585	TN
36907	1441429	557383.484	536.556	TN
36908	1441425.3	557384.975	535.218	TN
36909	1441421.9	557386.459	533.514	BORDE
36910	1441397.8	557395.238	534.512	CASA
36911	1441393.3	557391.54	534.668	CASA
36912	1441403	557393.927	534.07	TN

Tabla 59 Levantamiento de detalles (Parte 7)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
36913	1441407.2	557391.745	533.464	TN
36914	1441409.9	557391.026	532.399	BORDE
36915	1441411.1	557389.627	531.236	H-RIO
36916	1441413.1	557388.806	531.393	LC
36917	1441417.9	557387.622	531.932	H-RIO
36918	1441423.2	557407.846	533.451	LC
36919	1441420.5	557408.736	533.713	H-RIO
36920	1441427.6	557405.301	533.872	H-RIO
36921	1441431.7	557403.398	534.461	TN
36922	1441437.1	557400.962	537.308	TN
36923	1441438.7	557399.36	539.302	TN
36924	1441412.5	557411.159	534.277	TN
36925	1441407.8	557413.299	534.694	TN
36926	1441425.9	557427.178	533.706	LC
36927	1441428.7	557426.373	533.903	H-RIO
36928	1441431.1	557425.272	535.374	BORDE
36929	1441438.4	557426.751	535.53	TN
36930	1441443.6	557424.916	535.49	TN
36931	1441450.2	557424.189	535.628	TN
36932	1441410.7	557426.494	534.974	TN
36933	1441402.5	557427.614	535.483	TN
36934	1441410.5	557398.821	534.086	CORAL-NOENTRAR
36935	1441397.2	557406.231	534.962	CORAL-NOENTRAR
36936	1441414.5	557417.68	534.738	CORAL-NOENTRAR
36937	1441399.2	557433.479	535.941	CORAL-NOENTRAR
36938	1441398.2	557439.825	536.341	CASA-PROPIEDA-PR
36939	1441409.9	557439.484	535.163	CASA-PROPIEDA-PR
36940	1441410.8	557203.606	525.013	LC
36941	1441408.5	557203.32	525.203	H-RIO
36942	1441406.1	557203.663	526.395	BORDE
36943	1441414.8	557204.248	525.37	H-RIO
36944	1441418.3	557204.968	526.013	BORDE
36945	1441422	557205.644	526.287	TN
36946	1441428.4	557206.993	527.148	TN
36947	1441402.6	557202.466	526.364	TN
36948	1441434.4	557207.882	527.851	TN

Tabla 60 Levantamiento de detalles (Parte 8)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
36949	1441395.6	557201.738	526.362	TN
36950	1441390.2	557200.895	526.643	TN
36951	1441384.2	557199.943	526.834	TN
36952	1441396.7	557206.222	527.563	PTLF
36953	1441378.6	557198.84	527.182	TN
36954	1441438.7	557197.713	527.587	TN
36955	1441432	557197.324	527.01	TN
36956	1441427.2	557196.438	526.428	TN
36957	1441422.9	557196.115	526.246	TN
36958	1441419.4	557195.404	525.264	H-RIO
36959	1441413.6	557194.695	525.162	LC
36960	1441410.9	557194.26	525.287	H-RIO
36961	1441408.4	557193.814	525.801	BORDE
36962	1441404.5	557193.42	525.804	TN
36963	1441397.6	557192.307	525.99	TN
36964	1441390.3	557191.03	525.908	TN
36965	1441385.3	557189.875	526.283	TN
36966	1441379.5	557187.809	527.232	TN
36967	1441419.4	557179.202	523.619	LC
36968	1441412.5	557177.272	524.052	H-RIO
36969	1441409.5	557176.211	525.126	BORDE
36970	1441404.1	557175.191	525.406	TN
36971	1441424.8	557180.325	525.001	H-RIO
36972	1441398.9	557174.395	525.799	TN
36973	1441431.1	557181.073	527.058	TN
36974	1441389.3	557173.095	527.411	TN
36975	1441434.8	557184.236	527.373	TN
36976	1441440.8	557185.772	527.943	TN
36977	1441445.8	557188.251	528.281	TN
36978	1441459.3	557171.901	528.975	TN
36979	1441454	557170.489	528.292	TN
36980	1441449.1	557169.277	527.677	TN
36981	1441444.2	557167.328	527.115	TN
36982	1441440	557165.95	525.989	BORDE
36983	1441471.7	557154.763	529.821	TN
36984	1441466.3	557154.203	529.601	TN

Tabla 61 Levantamiento de detalles (Parte 9)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
36985	1441451.1	557151.859	527.425	BORDE
36986	1441461.2	557153.302	529.789	BORDE
36987	1441444.2	557151.498	522.173	TN
36988	1441433.1	557153.317	516.273	H-RIO
36989	1441429.9	557153.934	516.491	LC
36990	1441426	557154.846	516.94	H-RIO
36991	1441432.5	557162.784	518.081	H-RIO
36992	1441429.2	557162.061	517.424	LC
36993	1441422.2	557161.084	518.493	H-RIO
36994	1441418	557159.87	526.732	BORDE
36995	1441407.3	557159.734	527.239	TN
36996	1441399.2	557160.925	526.909	TN
36997	1441392.8	557158.883	525.563	TN
36998	1441406	557140.813	517.335	BORDE
36999	1441400.6	557142.826	518.924	TN
37000	1441393.5	557145.925	520.408	TN
37001	1441388.5	557148.131	520.965	TN
37002	1441410.4	557138.399	514.26	H-RIO
37003	1441412.9	557135.496	513.835	LC
37004	1441415.5	557131.491	514.659	H-RIO
37005	1441418.6	557127.547	515.639	TN
37006	1441423.8	557125.316	518.167	TN
37007	1441428.3	557124.046	520.164	TN
37008	1441433.6	557123.17	523.28	TN
37009	1441381.4	557131.632	519.434	TN
37010	1441384.1	557129.402	518.273	TN
37011	1441387.6	557126.375	516.185	TN
37012	1441389.3	557125.866	515.629	TN
37013	1441390.5	557124.384	514.242	H-RIO
37014	1441395.1	557121.043	513.291	TN
37015	1441398.3	557118.862	513.04	LC
37016	1441400.6	557116.866	513.742	H-RIO
37017	1441423.7	557108.062	519.329	TN
37018	1441419.5	557110.098	518.282	TN
37019	1441414.7	557111.784	516.97	TN
37020	1441409.5	557114.067	515.876	TN

Tabla 62 Levantamiento de detalles (Parte 10)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
37021	1441406.1	557115.865	514.605	TN
37022	1441389.4	557102.821	512.4	LC
37023	1441392.6	557101.828	512.971	H-RIO
37024	1441385.4	557103.713	513.058	H-RIO
37025	1441397	557101.85	513.91	TN
37026	1441376.4	557106.035	514.408	TN
37027	1441401.2	557100.278	514.115	TN
37028	1441371.9	557106.119	516.425	TN
37029	1441366.9	557105.96	518.501	TN
37030	1441411.1	557098.761	515.917	TN
37031	1441416.5	557100.672	516.268	TN
37032	1441423.5	557100.833	517.317	TN
37033	1441367.7	557080.53	516.607	TN
37034	1441373.7	557083.159	514.211	TN
37035	1441378.5	557084.024	513.601	TN
37036	1441383.1	557084.321	512.624	H-RIO
37037	1441387.5	557084.655	512.031	LC
37038	1441392.5	557084.757	512.249	H-RIO
37039	1441399.6	557084.882	512.577	TN
37040	1441406.6	557084.99	512.605	TN
37041	1441413.4	557084.887	512.24	TN
37042	1441393	557062.239	516.028	TN
37043	1441396.3	557066.05	515.638	TN
37044	1441399	557070.162	515.503	TN
37045	1441401.2	557071.906	515.208	BORDE
37046	1441405.4	557076.065	511.517	H-RIO
37047	1441409.7	557077.864	511.076	LC
37048	1441416.7	557077.846	511.151	H-RIO
37049	1441423.2	557076.294	511.289	TN
37050	1441427.5	557077.197	511.659	TN
37051	1441417.1	557056.01	518.29	TN
37052	1441426.9	557061.655	510.106	LC
37053	1441429.2	557062.901	510.193	H-RIO
37054	1441432.9	557064.576	510.892	TN
37055	1441436.5	557067.593	512.094	TN
37056	1441410.4	557212.175	527.757	ASIENT-VIGA

Tabla 63 Levantamiento de detalles (Parte 11)

Punto	Norte (m)	Este (m)	Elevación (m)	Observación
37057	1441409.7	557215.637	527.765	ASIENT-VIGA
37058	1441404.2	557214.704	527.747	ASIENT-VIGA
37059	1441404.8	557211.264	527.742	ASIENT-VIGA
37060	1441404.9	557210.326	528.424	ESTRIVO-SALD
37061	1441404.6	557210.451	528.438	ESTRIVO-SALD
37062	1441404	557215.763	528.442	ESTRIVO-SALD
37063	1441403.6	557215.527	528.415	ESTRIVO-SALD
37064	1441410.6	557211.214	528.444	ESTRIVO-ENTD
37065	1441410.9	557211.375	528.442	ESTRIVO-ENTD
37066	1441409.6	557216.647	528.448	ESTRIVO-ENTD
37067	1441410.1	557216.585	528.47	ESTRIVO-ENTD
37068	1441405	557210.343	525.674	ESTRIVO-SALD
37069	1441410.5	557211.184	525.179	ESTRIVO-ENTD
37070	1441413.9	557208.278	525.651	ALETON
37071	1441414.2	557208.683	526.466	ALETON
37072	1441414	557208.548	527.047	ALETON
37073	1441413.9	557208.324	527.069	ALETON
37074	1441403.1	557207.672	527.499	ALETON
37075	1441402.9	557207.699	527.267	ALETON
37076	1441410.7	557211.142	528.454	ALETON
37077	1441411	557211.336	528.454	ALETON
37078	1441404.8	557210.141	528.418	ALETON
37079	1441404.5	557210.288	528.425	ALETON
37080	1441410.1	557216.603	528.482	ALETON
37081	1441409.7	557216.71	528.462	ALETON
37082	1441403.8	557215.919	528.394	ALETON
37083	1441404	557215.658	528.427	ALETON
37084	1441404	557215.72	528.427	ESTRIB-SAL
37085	1441409.6	557216.669	528.452	ESTRIB-ENTD
37086	1441411.4	557219.438	527.51	ALETON
37087	1441411.7	557219.319	527.643	ALETON
37088	1441404	557215.853	525.575	ESTRIB-SALD
37089	1441409.5	557216.591	525.637	ESTRIB-ENTD
37090	1441410.1	557216.642	528.486	ESTRIB-ENTD
37091	1441403.5	557215.516	528.428	ESTRIB-SALD
37092	1441400.4	557218.466	527.039	ALETON

Gráfico 6 Curva granulométrica para SM - 1 (0.28 - 0.45 m)

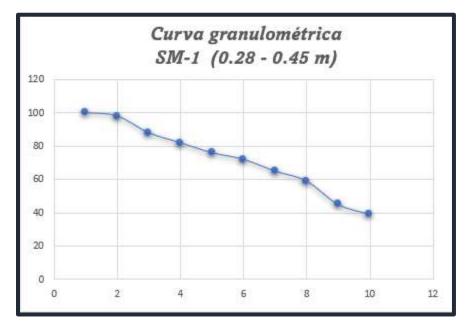


Gráfico 7 Curva granulométrica para SM - 1 (0.45 - 0.70 m)

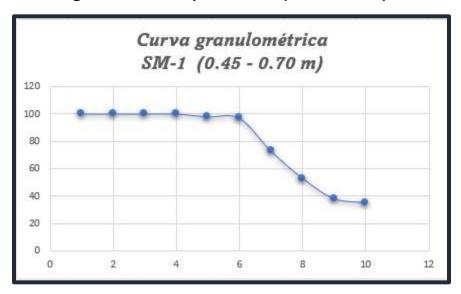


Gráfico 8 Curva granulométrica para SM – 1 (0.70 – 1.50 m)

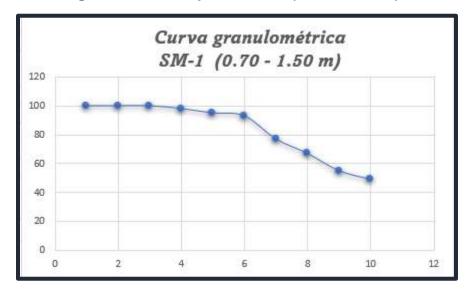


Gráfico 9 Curva granulométrica para SM – 2 (0 – 0.20 m)

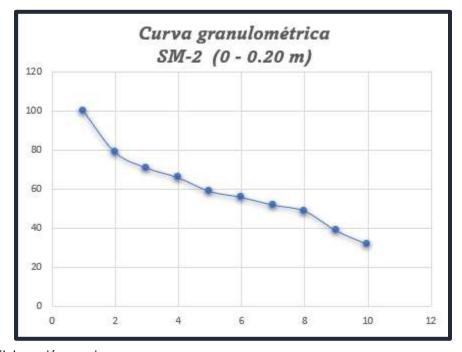


Gráfico 10 Curva granulométrica para SM – 2 (0.20 – 0.47 m)

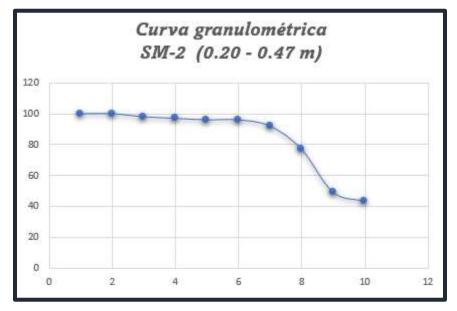


Gráfico 11 Curva granulométrica para SM – 2 (0.47 – 0.75 m)

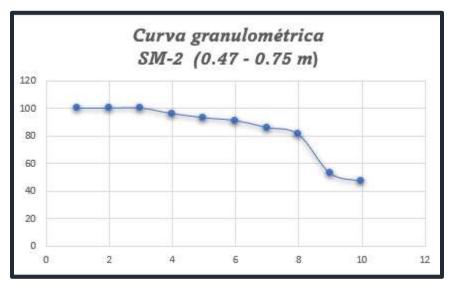


Gráfico 12 Curva granulométrica para SM – 2 (0.75 – 1.00 m)

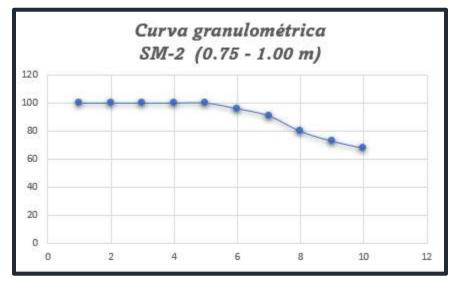


Gráfico 13 Curva granulométrica para SM – 2 (1.00 – 1.50 m)

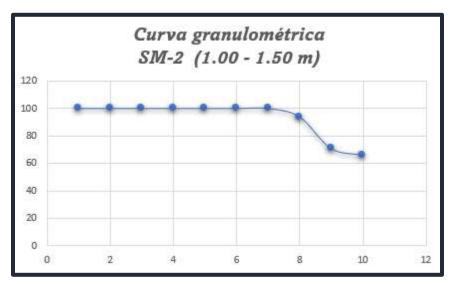


Gráfico 14 Curva granulométrica para SM – 3 (0 – 0.20 m)

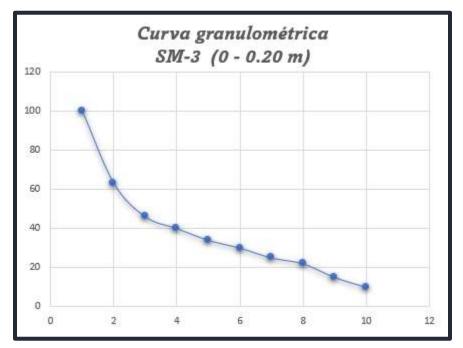


Gráfico 15 Curva granulométrica para SM – 3 (0.20 – 0.45 m)

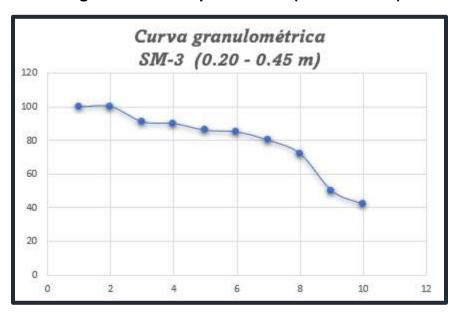


Gráfico 16 Curva granulométrica para SM – 3 (0.45 – 1.00 m)

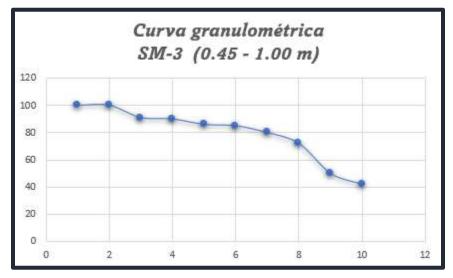


Gráfico 17 Curva granulométrica para SM – 3 (1.00 – 1.50 m)

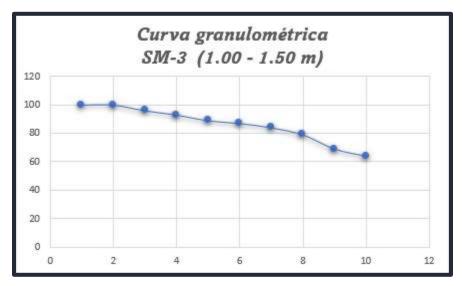


Gráfico 18 Curva granulométrica para SM - 4 (0 - 0.20 m)

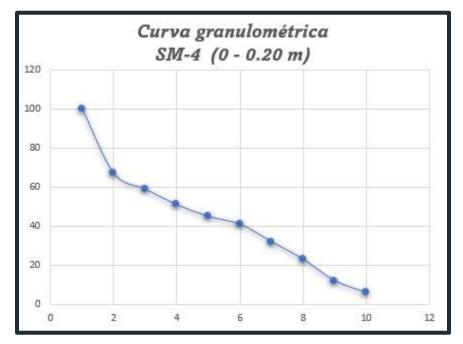


Gráfico 19 Curva granulométrica para SM - 4 (0.20 - 0.64 m)

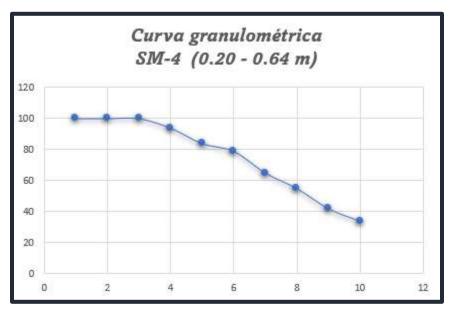


Gráfico 20 Curva granulométrica para SM - 4 (0.64 - 1.50 m)

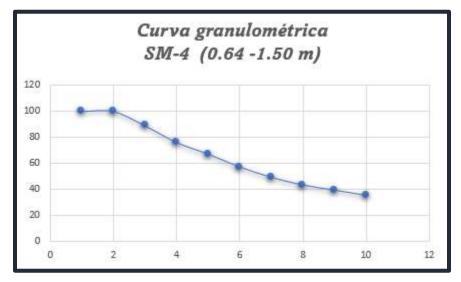


Gráfico 21 Curva granulométrica SM - 5 (0 - 0.37 m)

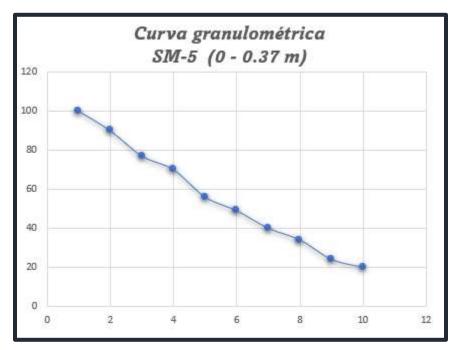


Gráfico 22 Curva granulométrica para SM - 5 (0.37 - 0.74 m)

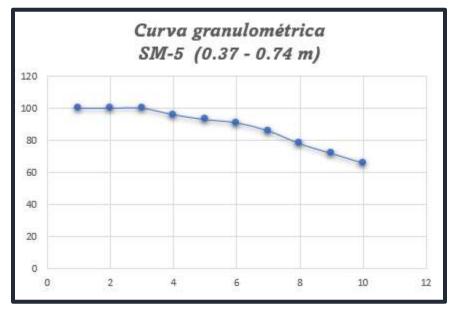


Gráfico 23 Curva granulométrica para SM - 5 (0.74 - 1.18 m)

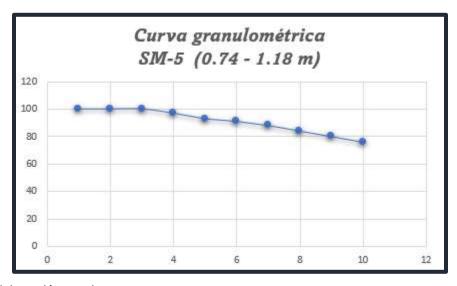


Gráfico 24 Curva granulométrica para SM - 5 (1.18 - 1.50 m)

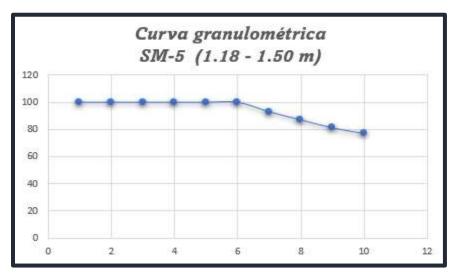


Tabla 64 Clasificación de las carreteras

Función	Clase de carretera	Nom.	TPD	N° de Carriles
	Autopista	AA	>20,000	6-8
Arterial Principal	Arterial Rural	AR	10,000- 20,000	4-6
'	Arterial Urbana	AU	10,000- 20,000	4-6
	Arterial Menor Rural	AMR	3,000-10,000	2
Arterial Menor	Arterial Menor Urbana	AMU	3,000-10,000	2
Colector	Colector Mayor Rural	CMR	10,000- 20,000	4-6
Mayor	Colector Mayor Urbano	CMU	10,000- 20,000	4-6
Colector Menor	Colector Menor Rural	CR	500 – 3,000	2
Wichor	Colector Menor Urbano	CU	500 – 3,000	2
	Local Rural	LR	100-500	2
Local	Local Urbano	LU	100-500	2
Local	Rural	R	<100	1-2

Fuente: Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras, SIECA (2011) Capitulo1.pag.33

Tabla 65 Clasificación de los suelos por el método AASHTO

Olasifis asi'n mananal	Materi	ales granulare	s (35% o men	os del total de	e la muestra pa	asada por el n	úmero 200)
Clasificación general	Α	-1			A	-2	
Grupo de Clasificación	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7
		Análisis	de tamiz (% p	asa)			
No 10	50 máx.						
No 40	30 máx.	50 máx.	51 mín.				
No 200	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.
	Ca	racterísticas d	le la fracción (40.	que pasó No			
Límite Líquido				40 máx.	41 mín.	40 máx.	41 mín.
Índice de plasticidad	6 máx.		NP	10 máx.	10 máx.	11 mín.	11 mín.
Tipos comunes de materialessignificativos constituyentes		de roca, grava ena.	Arena fina		Limo o grava a	rcillosa y arena	a
Clasificación general de lasubrasante			E	ccelente a bue	no		
Clasificación general	Materi	ales granulare	s (35% o men	os del total de	e la muestra pa	asada por el n	
		-4	A	-5	_	6	A-7
Grupo de Clasificación			ζ	3	^	-0	A-7-5 y A-7-6
		Análisis	de tamiz (% p	asa)			
No 10							
No 40							
No 200		mín.	36 r		36 r	mín.	36 mín.
	Ca	racterísticas d	le la fracción (40.	que pasó No			
Límite Líquido	40 ı	máx.	41 r	nín.	40 r	máx.	41 mín.
Índice de plasticidad	10 ו	máx.	10 r	náx.	11 ו	mín.	11 mín.
Tipos comunes de materialessignificativos constituyentes		Suelos	limosos		S	Suelos arcilloso	os
Clasificación general de lasubrasante				Regular a malo)		

Tabla 66 Radio y grado de curvatura recomendados

Velocidad de	Factor de	Peralte m	áximo= 4%	Grado de	Peralte ma	áximo= 6%	Grado de
Diseño (KPH)	Fricción Máxima	Rac	lio (m)	Curvatura		adio (m)	Curvatura
		Calculado	Recomendado		Calculado	Recomendado	
20	0.35	8.1	8	143°14′	7.7	8	143°14'
30	0.28	22.1	22	52°05'	20.8	21	54°34'
40	0.23	46.7	47	24°23'	43.4	43	26°39'
50	0.19	85.6	86	13°19'	78.7	79	14°30'
60	0.17	135	135	08°29'	123.2	123	09°19'
70	0.15	203.1	203	05°39'	183.7	184	06°14'
80	0.14	280	280	04°06'	252	252	04°33'
90	0.13	375.2	375	03°03'	335.7	336	03°25'
100	0.12	492.1	492	02°20'	437.4	437	02°37'
110	0.11				560.4	560	02°03'
120	0.09				755.9	756	01°31'
Velocidad de	Factor de	Peralte m	áximo= 8%	Grado de	Peralte ma	ximo= 10%	Grado de
Velocidad de Diseño (KPH)	Factor de Fricción Máxima		áximo= 8% lio (m)	Grado de Curvatura	R	adio	Grado de Curvatura
	Fricción				R		
	Fricción	Rac	lio (m)		R	adio (m)	
Diseño (KPH)	Fricción Máxima	Rac Calculado	lio (m)	Curvatura	Calculado	adio (m) Recomendado	Curvatura
Diseño (KPH) 20	Fricción Máxima 0.35	Calculado 7.3	Recomendado	Curvatura 163°42'	Calculado	adio (m) Recomendado	Curvatura 163°42'
20 30	0.35 0.28	Calculado 7.3 19.7	Recomendado 7 20	163°42' 57°18'	Calculado 7 18.6	adio (m) Recomendado 7 19	163°42' 60°19'
20 30 40	0.35 0.28 0.23	Calculado 7.3 19.7 40.6	Recomendado 7 20 41	163°42' 57°18' 27°57'	Calculado 7 18.6 38.2	Recomendado 7 19 38	163°42' 60°19' 30°09'
20 30 40 50	0.35 0.28 0.23 0.19	7.3 19.7 40.6 72.9	Recomendado 7 20 41 73	163°42' 57°18' 27°57' 15°42'	Calculado 7 18.6 38.2 67.9	7 19 38 68	163°42' 60°19' 30°09' 16°51'
20 30 40 50 60	0.35 0.28 0.23 0.19 0.17	Calculado 7.3 19.7 40.6 72.9 113.4	Recomendado 7 20 41 73 113	163°42' 57°18' 27°57' 15°42' 10°08'	Calculado 7 18.6 38.2 67.9 105	7 19 38 68 105	163°42' 60°19' 30°09' 16°51' 10°55'
20 30 40 50 60 70	0.35 0.28 0.23 0.19 0.17	7.3 19.7 40.6 72.9 113.4 167.8	Recomendado 7 20 41 73 113	163°42' 57°18' 27°57' 15°42' 10°08' 06°49'	7 18.6 38.2 67.9 105	7 19 38 68 105	163°42' 60°19' 30°09' 16°51' 10°55' 07°26'
20 30 40 50 60 70 80	0.35 0.28 0.23 0.19 0.17 0.15 0.14	Calculado 7.3 19.7 40.6 72.9 113.4 167.8 229.1	Recomendado 7 20 41 73 113 168 229	163°42' 57°18' 27°57' 15°42' 10°08' 06°49' 05°00'	Calculado 7 18.6 38.2 67.9 105 154.3 210	adio (m) Recomendado 7 19 38 68 105 154 210	163°42' 60°19' 30°09' 16°51' 10°55' 07°26' 05°27'
20 30 40 50 60 70 80 90	0.35 0.28 0.23 0.19 0.17 0.15 0.14 0.13	7.3 19.7 40.6 72.9 113.4 167.8 229.1 303.7	Recomendado 7 20 41 73 113 168 229 304	163°42' 57°18' 27°57' 15°42' 10°08' 06°49' 05°00' 03°46'	Calculado 7 18.6 38.2 67.9 105 154.3 210 277.3	adio (m) Recomendado 7 19 38 68 105 154 210 277	163°42' 60°19' 30°09' 16°51' 10°55' 07°26' 05°27' 04°08'

Fuente: Fuente: Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras, SIECA (2011) Capítulo 3.

Tabla 67 Control de diseño para curva vertical en cresta para distancia de visibilidad de parada

Velocidad de	Distancia de visibilidad de	Tasa de Curvat	ura vertical K
Diseño KPH	parada (m)	Calculada	Para Diseño
20	20	0.6	1
30	35	1.9	2
40	50	3.8	4
50	65	6.4	7
60	85	11	11
70	105	16.8	17
80	130	25.7	26
90	160	38.9	39
100	185	52	52
110	220	73.6	74
120	250	95	95

Fuente Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras, SIECA (2011) Capítulo 3. Pág. 125

Tabla 68 Control de Diseño para Curva Vertical Cóncava o en Columpio

Velocidad de	Distancia de	Tasa de Curvatura	a vertical K
Diseño KPH	visibilidad de parada (m)	Calculada	Para Diseño
20	20	2.1	3
30	35	5.1	6
40	50	8.5	9
50	65	12.2	13
60	85	17.3	18
70	105	22.6	23
80	130	29.4	30
90	160	37.6	38
100	185	44.6	45
110	220	54.4	55
120	250	62.8	63

Fuente Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras, SIECA (2011) Capítulo 3. Pág. 125

Tabla 69 Aforo de tránsito (lunes)

	TRAMO:					ACEIT	UNO-EL SAL	JCE				EST:				17+	800	
	DIA:						LUNES					FECHA				6/2/2	2023	
					V	ehículos	de pasajeros	\$				Vehícu	los de d	carga				
НО	RA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	0	10	1	0	12	0	1	3	1	0	0	0	0	0	0		
07:00:00	08:00:00	1	13	2	1	5	0	0	1	0	0	1	0	0	0	0		
08:00:00	09:00:00	0	8	0	2	10	0	0	1	3	1	0	0	0	0	0		
09:00:00	10:00:00	2	5	1	0	4	2	2	0	0	0	1	0	0	0	0		
10:00:00	11:00:00	0	4	0	3	11	0	0	1	1	2	0	0	0	0	0		
11:00:00	12:00:00	1	5	0	1	6	1	1	0	2	1	0	0	0	0	0		
12:00:00	13:00:00	0	6	5	0	7	0	1	0	0	0	0	0	0	0	0		
13:00:00	14:00:00	1	5	1	0	6	0	0	1	2	2	2	1	0	0	0		
14:00:00	15:00:00	0	6	2	2	6	1	0	3	0	0	1	0	0	0	0		
15:00:00	16:00:00	0	5	0	3	3	0	0	1	0	0	0	0	0	0	0		
16:00:00	17:00:00	1	6	3	1	4	0	0	1	0	1	0	0	0	0	0		
17:00:00	18:00:00	3	4	2	2	7	0	1	0	1	0	0	1	0	0	0		
Volumen d		9	77	17	15	81	4	6	12	10	7	5	2	0	0	0	0	245

Tabla 70 Aforo de tránsito (martes)

	Tramo:					Acei	tuno-El Sau	ce								17+800		
	Dia:						Martes									7/2/2023		
					V	ehículos	de pasajero	s					Vehículos d	le carga				
но	DRA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	1	5	0	1	4	1	2	3	3	1	0	0	0	0	0		
07:00:00	08:00:00	2	8	1	0	4	0	1	1	0	0	2	0	0	0	0		
08:00:00	09:00:00	0	6	0	2	6	0	0	1	0	0	0	0	0	0	0		
09:00:00	10:00:00	1	5	2	0	6	3	3	0	0	0	0	0	0	0	0		
10:00:00	11:00:00	0	5	1	2	5	0	0	1	0	0	2	0	0	0	0		
11:00:00	12:00:00	2	6	2	2	6	0	0	0	3	1	0	0	0	0	0		
12:00:00	13:00:00	3	8	1	3	4	0	1	0	0	0	1	0	0	0	0		
13:00:00	14:00:00	0	4	0	2	3	2	2	1	2	0	0	0	0	0	0		
14:00:00	15:00:00	0	6	1	0	4	1	0	3	0	2	0	0	0	0	0		
15:00:00	16:00:00	0	4	3	1	5	0	0	1	0	2	1	0	0	0	0		
16:00:00	17:00:00	1	5	0	2	4	2	1	1	0	1	0	0	0	0	0		
17:00:00	18:00:00	1	7	1	3	8	0	1	0	1	1	0	0	0	0	0		
	de 12 horas rnas	11	69	12	18	59	9	11	12	9	8	6	0	0	0	0	0	224

Tabla 71 Aforo de tránsito (miércoles)

	Tramo:					Acei	tuno-El Saud	ce								17+800		
	Dia:						Miércoles									8/2/2023		
					V	ehículos	de pasajero	S					Vehículos d	le carga				
НС	DRA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	0	12	3	1	9	0	1	3	0	2	1	0	0	0	0		
07:00:00	08:00:00	3	5	2	0	4	1	2	1	2	0	1	0	0	0	0		
08:00:00	09:00:00	0	3	0	2	6	2	1	1	1	1	0	0	0	0	0		
09:00:00	10:00:00	2	4	3	0	7	1	0	0	0	1	2	0	0	0	0		
10:00:00	11:00:00	1	1	0	2	3	0	1	0	0	2	1	0	0	0	0		
11:00:00	12:00:00	0	5	0	3	5	0	2	0	2	2	0	0	0	0	0		
12:00:00	13:00:00	3	6	1	1	4	0	0	0	1	0	2	0	0	0	0		
13:00:00	14:00:00	0	5	2	2	3	1	1	1	2	1	0	0	0	0	0		
14:00:00	15:00:00	1	4	1	0	5	0	1	3	1	0	2	0	0	0	0		
15:00:00	16:00:00	0	5	0	1	5	1	1	1	0	1	0	0	0	0	0		
16:00:00	17:00:00	1	6	0	2	4	2	2	0	2	1	0	0	0	0	0		
17:00:00	18:00:00	0	5	1	2	8	2	1	0	1	3	0	0	0	0	0		
	de 12 horas rnas	11	61	13	16	63	10	13	10	12	14	9	0	0	0	0	0	232

Tabla 72 Aforo de tránsito (jueves)

	Tramo:					Acei	tuno-El Saud	ce								17+800		
	Dia:						Jueves									9/2/2023		
					V	ehículos	de pasajero	s					Vehículos d	e carga				
НС	DRA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	2	7	2	2	5	2	2	3	0	1	1	0	0	0	0		
07:00:00	08:00:00	1	6	1	1	6	1	1	0	1	0	1	0	0	0	0		
08:00:00	09:00:00	1	4	1	1	5	0	0	1	0	1	0	0	0	0	0		
09:00:00	10:00:00	0	6	2	3	4	0	1	0	0	1	2	0	0	0	0		
10:00:00	11:00:00	1	5	1	3	1	2	2	1	0	0	1	0	0	0	0		
11:00:00	12:00:00	1	8	0	2	7	1	1	0	1	1	0	0	0	0	0		
12:00:00	13:00:00	2	6	2	0	5	0	0	0	1	1	2	0	0	0	0		
13:00:00	14:00:00	1	7	1	1	4	0	2	1	1	1	0	0	0	0	0		
14:00:00	15:00:00	2	4	2	1	6	1	1	2	1	0	2	0	0	0	0		
15:00:00	16:00:00	1	4	0	2	5	2	1	1	0	1	0	0	0	0	0		
16:00:00	17:00:00	1	6	2	2	5	1	3	1	1	0	0	0	0	0	0		
17:00:00	18:00:00	2	7	1	1	8	2	1	0	1	0	0	0	0	0	0		
	de 12 horas rnas	15	70	15	19	61	12	15	10	7	7	9	0	0	0	0	0	240

Tabla 73 Aforo de tránsito (viernes)

	Tramo:					Acei	tuno-El Sau	ce								17+800		
	Dia:						Viernes									10/2/2023		
					V	ehículos	de pasajero	S					Vehículos d	le carga				
но)RA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	0	4	1	3	6	1	0	3	2	2	0	0	0	0	0		
07:00:00	08:00:00	2	3	0	2	2	0	0	1	0	1	1	0	0	0	0		
08:00:00	09:00:00	0	6	0	0	6	1	2	1	1	0	0	0	0	0	0		
09:00:00	10:00:00	1	4	1	2	6	0	0	0	0	0	1	0	0	0	0		
10:00:00	11:00:00	0	6	2	1	4	1	1	1	1	1	1	0	0	0	0		
11:00:00	12:00:00	0	5	1	1	6	1	1	0	2	2	0	0	0	0	0		
12:00:00	13:00:00	3	6	0	0	8	0	0	0	0	1	1	0	0	0	0		
13:00:00	14:00:00	0	7	0	1	4	2	2	1	0	2	0	0	0	0	0		
14:00:00	15:00:00	0	6	1	1	6	0	1	3	1	1	2	0	0	0	0		
15:00:00	16:00:00	1	4	1	2	3	1	1	1	0	1	0	0	0	0	0		
16:00:00	17:00:00	0	6	3	2	7	1	2	1	2	0	0	0	0	0	0		
17:00:00	18:00:00	1	10	3	0	14	1	1	0	3	2	0	0	0	0	0		
	de 12 horas rnas	8	67	13	15	72	9	11	12	12	13	6	0	0	0	0	0	238

Tabla 74 Aforo de tránsito (sábado)

	Tramo:					Acei	tuno-El Saud	се								17+800		
	Dia:						Sábado									11/2/2023		
					Ve	ehículos	de pasajero	S					Vehículos d	e carga				
НС	DRA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	1	7	2	2	6	0	1	4	3	1	0	0	0	0	0		
07:00:00	08:00:00	0	14	1	2	5	0	1	1	1	0	1	0	0	0	0		
08:00:00	09:00:00	0	3	1	0	4	2	1	1	0	1	0	0	0	0	0		
09:00:00	10:00:00	0	4	0	3	6	0	1	0	1	2	1	0	0	0	0		
10:00:00	11:00:00	0	6	0	0	7	1	0	1	0	0	1	0	0	0	0		
11:00:00	12:00:00	0	5	1	1	4	0	3	0	1	1	0	0	0	0	0		
12:00:00	13:00:00	1	6	1	1	6	0	1	0	1	0	2	0	0	0	0		
13:00:00	14:00:00	0	3	1	0	6	1	0	1	2	1	0	0	0	0	0		
14:00:00	15:00:00	0	5	0	0	7	0	0	3	2	0	1	0	0	0	0		
15:00:00	16:00:00	1	8	1	1	4	0	1	1	1	2	0	0	0	0	0		
16:00:00	17:00:00	0	6	2	0	7	1	2	1	2	0	1	0	0	0	0		
17:00:00	18:00:00	2	12	1	1	10	1	2	1	1	1	0	0	0	0	0		
	de 12 horas rnas	5	79	11	11	72	6	13	14	15	9	7	0	0	0	0	0	242

Tabla 75 Aforo de tránsito (domingo)

	Tramo:					Acei	tuno-El Saud	ce								17+800		
	Dia:						Domingo									12/2/2023		
					Ve	ehículos	de pasajero	S					Vehículos d	e carga				
НО	ORA	Bici	Moto	Autos	Jeeps	Cam	Mc bus	Mn bus	Bus	C-2	C-3	C-4	T2S1	T2S2	T3S1	T3S2	Otros	Vol.
06:00:00	07:00:00	0	5	0	1	2	1	2	0	2	0	1	0	0	0	0		
07:00:00	08:00:00	0	6	0	0	4	0	0	1	1	0	0	0	0	0	0		
08:00:00	09:00:00	0	3	2	1	6	1	0	1	0	3	1	0	0	0	0		
09:00:00	10:00:00	0	5	0	2	5	0	1	0	1	2	0	0	0	0	0		
10:00:00	11:00:00	0	4	1	1	4	1	0	1	0	0	0	0	0	0	0		
11:00:00	12:00:00	0	5	0	0	5	0	2	0	1	1	0	0	0	0	0		
12:00:00	13:00:00	1	3	0	0	6	2	1	0	1	0	1	0	0	0	0		
13:00:00	14:00:00	0	5	2	1	3	1	0	0	3	1	0	0	0	0	0		
14:00:00	15:00:00	0	3	0	2	6	0	1	2	2	0	1	0	0	0	0		
15:00:00	16:00:00	1	2	1	1	5	1	1	0	1	2	0	0	0	0	0		
16:00:00	17:00:00	0	4	1	0	4	1	2	1	2	0	1	0	0	0	0		
17:00:00	18:00:00	1	6	1	0	5	1	1	0	1	1	0	0	0	0	0		
	de 12 horas rnas	3	51	8	9	55	9	11	6	15	10	5	0	0	0	0	0	182

Ilustración 23 Sondeo Manual

Ilustración 24 Realización del Aforo Vehicular

Ilustración 25 Reafirmación de los puntos obtenidos en el Levantamiento Topográfico

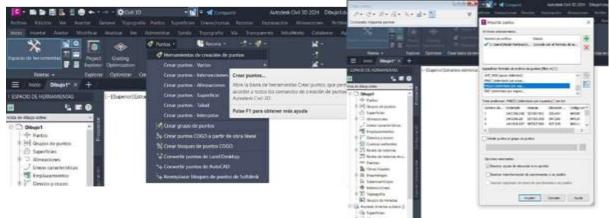
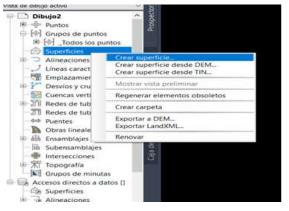
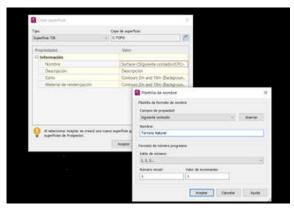
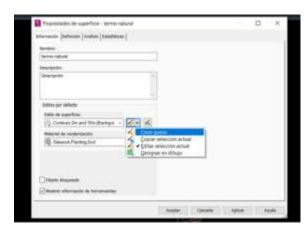

Ilustración 26 Análisis de los Límites de Resistencia para pruebas

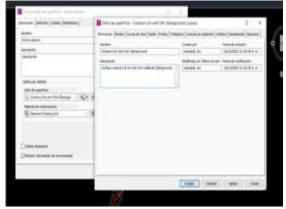
Ilustración 27 Secado en muestra de granulometría




Ilustración 28 Exportación de punto del tramo en estudio

Fuente: Elaboración propia


Ilustración 29 Creación de la superficie



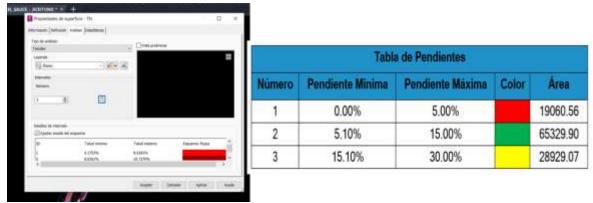

Fuente: Elaboración propia

Ilustración 30 Editar curvas de nivel

Ilustración 31 Pendientes del tramo en estudio

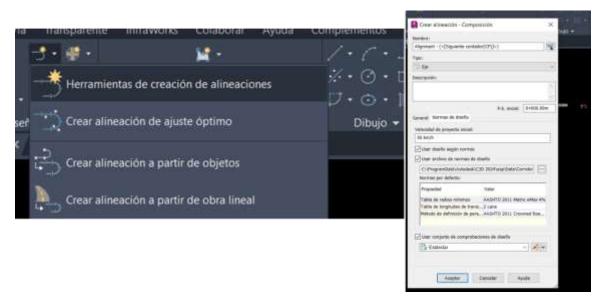
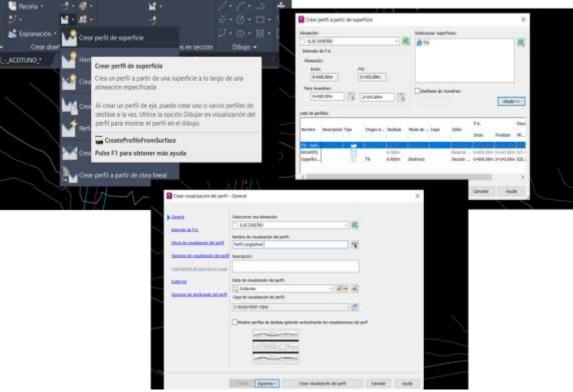

Fuente: Elaboración propia

Ilustración 32 Creación de curvas horizontales



Fuente: Elaboración propia

Ilustración 33 Agregando la velocidad de diseño

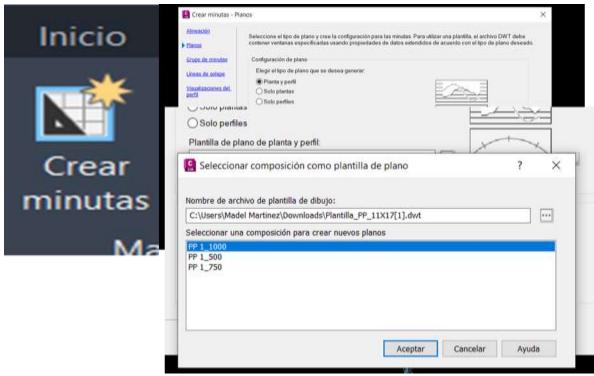
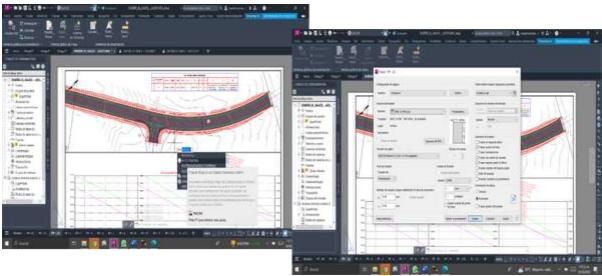


Ilustración 34 Creación de minuta para planta – perfil (1)



Fuente: Elaboración propia

Ilustración 35 Creación de minutas para planta – perfil (2)

Ilustración 36 Elaboración de plano en Pdf

