

"Estudio Técnico-Económico para la implementación de equipos Modernos de soldadura y corte en taller de Electromecánica Especializada"

Trabajo Monográfico Para optar al Título de Ingeniero Eléctrico.

Elaborado Por: Tutor:

Br. Rafael Antonio Ponce Morales No. Carnet. 2011-37949 Br. Helder Josué de Jesús López Suazo No. Carnet. 2011-36995

Ing. Carlos Abraham Pérez Méndez

Julio de 2025 Managua, Nicaragua.

SECRETARIA DE ÁREA ACADÉMICA

F-8:CARTA DE FINALIZADO PLAN DE ASIGNATURA

El Suscrito Secretario del **ÁREA DEL CONOCIMIENTO DE INGENIERÍA Y AFINES** hace constar que:

PONCE MORALES RAFAEL ANTONIO

Carné: 2011-37494 Turno: Diurno Plan de Asignatura: 2015 de conformidad con el Reglamento Académico vigente en la Universidad, ha aprobado todas las asignaturas correspondientes a la carrera de INGENIERÍA ELECTRICA, en el año 2016 y solo tiene pendiente la realización de una de las formas de culminación de estudio.

Se extiende la presente **CARTA DE FINALIZADO PLAN DE ASIGNATURA**, a solicitud del interesado en la ciudad de Managua, a los cinco días del mes de diciembre del año dos mil veinte y cuatro.

Atentamente,

Msc. Augusto César Palacios Rodríguez SECRETARIO DE ÁREA ACADÉMICA

Teléfono: (505) 2251 8276

Recinto Universitario Pedro Aráuz Palacios Costado Sur de Villa Progreso. Managua, Nicaragua.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 05-dic.-2024

SECRETARIA DE ÁREA ACADÉMICA

F-8:CARTA DE FINALIZADO PLAN DE ASIGNATURA

El Suscrito Secretario del **ÁREA DEL CONOCIMIENTO DE** INGENIER**ÍA Y AFINES** hace constar que:

LÓPEZ SUAZO HELDER JOSUE DE JESÚS

Carné: 2011-36995 Turno: Diurno Plan de Asignatura: 97 de conformidad con el Reglamento Académico vigente en la Universidad, ha aprobado todas las asignaturas correspondientes a la carrera de INGENIERÍA ELECTRICA, en el año 2015 y solo tiene pendiente la realización de una de las formas de culminación de estudio.

Se extiende la presente **CARTA DE FINALIZADO PLAN DE ASIGNATURA**, a solicitud del interesado en la ciudad de Managua, a los cinco días del mes de diciembre del año dos mil veinte y cuatro.

Atentamente,

Msc. Augusto César Palacios Rodríguez SECRETARIO DE ÁREA ACADÉMICA

Teléfono: (505) 2251 8276

Recinto Universitario Pedro Aráuz Palacios Costado Sur de Villa Progreso. Managua, Nicaragua.

luis.chavarria@fti.uni.edu.ni www.uni.edu.ni

UNIVERSIDAD NACIONAL DE INGENIERÍA AREA DE CONOCIMIENTO INDUSTRIA Y PRODUCCIÓN SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2025

		0	0	-	0
No.	Recibo	y	9	9	9

No. Inscripción 740

NOMBRES Y APELLIDOS: Rafael Antonio Ponce Morales

CARRERA: INGENIERÍA ELECTRICA

CARNET: 2011-37494

TURNO:

PLAN DE ESTUDIO: 2015

SEMESTRE: PRIMER SEMESTRE 2025

FECHA: 19/02/2025

0.	ASIGNATURA		GRUPO	AULA	CRED.	F	R
1							
		— ULTIMA LINEA					
	6						
H							
		Acc					
		e aria Academ					
		S S S S S S S S S S S S S S S S S S S	V				
		9 2					
			X				

F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.

MROMERO

GRABADOR

FIRMA Y SELLO DEL

FUNCIONARIO

FIRMA DEL

ESTUDIANTE

cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 19-feb.-2025

UNIVERSIDAD NACIONAL DE INGENIERÍA AREA DE CONOCIMIENTO INDUSTRIA Y PRODUCCIÓN SECRETARIA ACADEMICA

HOJA DE MATRICULA AÑO ACADEMICO 2025

No. Recibo 9999

No. Inscripción 739

NOMBRES Y APELLIDOS: Helder Josue de Jesús López Suazo

CARRERA: INGENIERÍA ELECTRICA

CARNET: 2011-36995

TURNO:

PLAN DE ESTUDIO: 97

SEMESTRE: PRIMER SEMESTRE 2025

FECHA: 19/02/2025

No.	ASIGNATURA		GRUPO	AULA	CRED.	F	R
1							
		ULTIMA LINEA					
		kataria Acade					
		CA DE NICADE	1				
			AX			1	

F:Frecuencia de Inscripciones de Asignatura R: Retiro de Asignatura.

MROMERO

GRABADOR

FIRMA Y SELLO DEL

FUNCIONARIO

FIRMA DEL **ESTUDIANTE**

cc:ORIGINAL:ESTUDIANTE - COPIA:EXPEDIENTE.

IMPRESO POR SISTEMA DE REGISTRO ACADEMICO EL 19-feb.-2025

Managua, 18 de marzo de 2024

Bachilleres Rafael Antonio Ponce Morales Helder Josué de Jesús López Suazo

Estimados Bachilleres:

Es de mi agrado informarle que el PROTOCOLO de su tema monográfico, titulado. Estudio Técnico-Económico para la implementación de equipos Modernos de soldadura y corte en taller de electromecánica Especializada." para optar al título de Ingeniero Eléctrico, ha sido aprobado por esta Dirección.

Asimismo, les comunico estar totalmente de acuerdo, con el Ing. Carlos Abraham Pérez Méndez, como tutor.

La fecha límite, para que presenten concluido su documento final, debidamente revisado por el tutor guía será el 18 de septiembre de 2024.

Esperando puntualidad en la entrega de la Tesis, me despido.

Atentamente.1

MSc. Luis Alberto Chavarria Valverde CONA

Director

Área de Conocimiento de Ingenie

Afines

CC: Ing. Carlos Abraham Pérez Méndez

Archivo.

Teléfono: (505) 2251 8276

Recinto Universitario Pedro Aráuz Palacios Costado Sur de Villa Progreso. Managua, Nicaragua.

luis.chavarria@fti.uni.edu.ni www.uni.edu.ni

Managua, 18 de noviembre de 2024

Bachilleres Helder Josué de Jesús López Suazo Rafael Antonio Ponce Morales

Estimados Bres:

Por medio de la presente les comunico que esta Dirección autoriza prorroga de por 3 (tres) meses (18 de febrero 2025), para la entrega del trabajo monográfico Estudio Técnico-Económico para la implementación de equipos Modernos de soldadura y corte en taller de electromecánica Especializada, bajo la Tutoría del Ing. Carlos Abraham Pérez Méndez.

Sin otro particular, me despido.

Fraternalmente,

MSc. Luis Alberto Chavarria Valderde
Director
Área de Conocimiento de Ingeniería y Afines

Cc: Departamento Docente Ing. Eléctrica Archivo.-

Managua, 19 de febrero de 2024

Bachilleres Helder Josué de Jesús López Suazo Rafael Antonio Ponce Morales

Estimados Bres:

Por medio de la presente les comunico que esta Dirección autoriza **prorroga** de por 3 (tres) meses (19 de mayo 2025), para la entrega del trabajo monográfico "Estudio Técnico-Económico para la implementación de equipos Modernos de soldadura y corte en taller de electromecánica Especializada", bajo la Tutoría del Ing. Carlos Abraham Pérez Méndez.

Sin otro particular, me despido.

Fraternalmente.

MSc. Augusto César Palacios Rodríguez Director Área de Conocimiento Industria y Producción

Cc: MSc. Ing. Marlon Efrén Suarez Dávila - Jefe Departamento Mecánica y Eléctrica Archivo.-

Móvil: (505) 2251 8276

Recinto Universitario Pedro Aráuz Palacios Costado Sur de Villa Progreso. Managua, Nicaragua.

Msc. Augusto Palacios Rodríguez. Director Área de conocimiento Industria y Producción. Su Oficina

Estimado Msc. Palacios:

En mi calidad de tutor de la Tesis monográfico titulado ""Estudio Técnico-Económico para la implementación de equipos Modernos de soldadura y corte en taller de Electromecánica Especializada", desarrollada por los Bachilleres:

Br. Rafael Antonio Ponce Morales

Carnet. 2011-37949

Br. Helder Josué de Jesús López Suazo

Carnet. 2011-36995

Se encuentra lista para su defensa, habiéndose realizado en fecha 17 de junio de 2025 su predefensa.,

Solicito a Usted, se programe la misma, según calendario.

Sin otro particular y en espera de su atención a la presente le saludo.

Atentamente,

Ing. Carlos Abraham Pérez Méndez Tutor 85772777

C:

Msc. Ing. Marlon Efrén Suárez Dávila. Jefe Dpto.Mecánica- Eléctrica. Archivo

Electromecánica Especializada

Diseño, Construcción, Supervisión, Asesoría Técnica, Mantenimiento

A quien concierna

Reciban un cordial saludo, por este medio hago de su conocimiento que he autorizado el permiso solicitado por los bachilleres: Helder Josue de Jesús Lopez Suazo y Rafael Antonio Ponce Morales; para concluir las investigaciones basadas en el tema "Estudio Técnico-Económico para la implementación de equipos Modernos de soldadura y corte"; en el taller de mi representada Electromecánica Especializada; en apoyo a la culminación de sus carreras.

Extiendo el presente documento a solicitud de la parte interesada, para los fines que considere conveniente.

Dado en la ciudad de Managua, a los diez y ocho días del mes de febrero, veinte veinticinco.

Clifford Antony Foster Ced 001-140257-0005G

Gerente General Electromecánica Especializada **Dedicatoria**

Dedicamos este esfuerzo primeramente a Dios el cual nos permite vivir y

llevarla con arduo esfuerzo y esmero. Igualmente, a nuestras familias que el cual

son un pilar fundamental en todo recorrido y trayectoria que estamos labrando.

Durante años siempre ha sido una dedicación para profesionales con todos

los recursos necesarios para poder Diseñar, construir y finalizar un sistema

eléctrico.

Carrera el cual es muy amplia y con diversas características propias de

cada área dentro del ramo de la Electricidad. La cual este documento representa

la parte culminante como bachiller y dar el siguiente paso como un profesional.

Atentamente

Helder López

Dedicatoria

Primeramente, a dios por haberme permitido llegar hasta este punto

haberme dado salud, ser el manantial de vida y darme lo necesario para seguir

adelante día a día para lograr mis objetivos, además de su infinita bondad y amor.

A mi madre Damaris morales por haberme apoyado en todo momento, por

sus consejos, sus valores, por la motivación constante que me ha permitido ser

una persona de bien, pero más que nada, por su amor. A mi padre mariano Ponce

por los ejemplos de perseverancia y constancia que lo caracterizan y que me ha

infundado siempre, por el valor mostrado para salir adelante y por su amor. A mis

hermanos rosa y Ramón por ser el ejemplo de un apoyo incondicional y del cual

aprendí tanto en los aciertos como de momentos difíciles. A toda mi familia que

en todo momento están pendiente de mi avance profesional, así como personal

para lograr ser mi mejor versión.

Y a todos aquellos que ayudaron directa o indirectamente a realizar este

documento, a mi profesor por su gran apoyo y motivación para la culminación de

nuestros estudios profesionales, por su apoyo ofrecido en este trabajo, por

haberme transmitido los conocimientos obtenidos y haberme llevado pasó a paso

en el aprendizaje.

Atentamente

Rafael Ponce

Agradecimiento

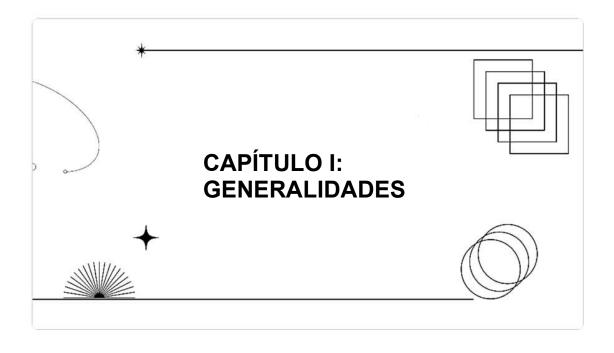
Agradezco al Dios por darnos el don de la vida para poder llegar ha este momento, sin el no seria posible todo que hemos vivido. A todos los maestro y personal que constituye la universidad nacional de ingeniería el cual a ellos somos conocedores de lo que hay en la vida diaria y nos ayudaron a especializarnos.

Agradecemos la oportunidad que nos dio el MSC. Augusto Palacio a ser nuestro mentor durante la carrera que estamos culminando y gracias a su forma de enseñar hemos llegado a ser prácticos y responsable con el riesgo por la naturaleza de la carrera. Al profesor Carlos Pérez por su ayuda incondicional durante este tiempo donde hemos ido preparando este documento y brindarnos su conocimiento.

Agradecemos Ing. Clifford Garcia propietario de la empresa Electromecanica especializada, que con su disposición logramos culminar este trabajo.

Resumen

En la investigación monográfica que realizamos, hicimos un levantamiento de los equipos existentes y del sistema eléctrico con su distribución de área de trabajos. Para ello se tomaron los datos más importante o básico de cualquier equipo. Potencia, voltaje, corriente y funcionalidad básica.


Con esto datos Obtenido y plasmados en plano se realizará una propuesta económica de remodelación del sistema eléctrico actual conservando los equipos y reemplazando los equipos. Tomando en cuenta las normas del CIEN (Código De Instalaciones Eléctricas De Nicaragua).

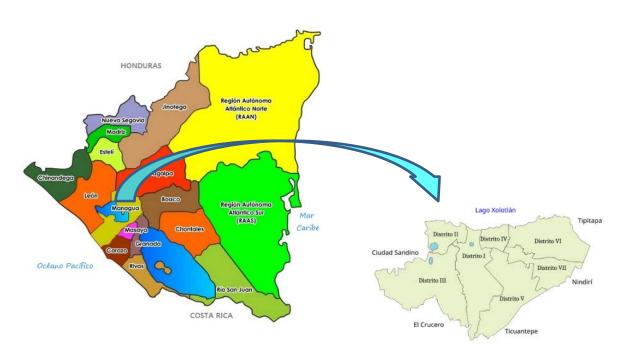
Una vez obtenido los diseños se realizará la comparación del valor monetario de realizar la construcción o es decir la ejecutar el diseño eléctrico para ambos escenarios. Esto con el fin de tener valores Reales de porque es mas recomendable realizar la propuesta de usar Tecnología inverte o herramienta de baterías.

INDICE

Generalidades

Introducción	1
Macro localización	2
Micro Localización	3
Objetivos	5
Justificación	6
Marco Teórico	
Levantamiento	8
Componentes eléctricos	12
Análisis y Presentación de Resultado	
Estudio Escenario 1	15
Catálogo de Equipo Nuevo	24
Diferencia de constructiva	28
Diferencia de consumo	30
Propuesta Escenario 2	30
Comparativa económica	38
Conclusión.	40
Bibliografía.	
Δηρικο	V

Introducción


En departamento Managua, actualmente actividades industriales existen varios talleres de esta rama industrial que datan de más de 40 años. Las actividades productivas en el caso de los talleres de metalurgia, son la elaboración de productos forjados con hierro y metales, tales como: estructuras metálicas para la industria, juegos mecánicos, tráiler. Los talleres de torno realizan el mecanizado para la construcción de piezas mecánicas de forma geométrica. Elaboran piezas para la industria y cualquier otra rama de consumo que lo necesite. Este proceso productivo mencionado anteriormente, de bienes y servicios el costo final de producción, están relacionados con sus inversiones y costos operativos.

En Nicaragua inciden estos factores de costos de producción, son los pagos de servicio básicos como son la energía eléctrica y el servicio de agua potable. En cualquier empresa o industria se presentan gastos, y costos, los cuales están directamente relacionados con el precio de venta y la utilidad de los bienes y servicios ofertados. En este tema monográfico se desarrollara los costos asociados a la reducción del consumo energético en un taller de metalurgia llamada empresa (Electromecánica especializada) ubicada en el barrio santa rosa departamento de managua, que contara con una nueva propuesta de actualización y modernización de equipos y herramientas de tecnología Inverter.

Su principio de funcionamiento está basado en lograr que los equipos industriales y electrodoméstico alcancen una mejor regulación del voltaje, corriente y la frecuencia del aparato, ahorrando entre el 20 y el 25 % y, en algunos casos, hasta el 40 o 50% de energía.

Figura 1

Macro localización de la empresa "Electromecánica Especializada", distrito
6, departamento de Managua, Nicaragua

Fuente:

https://www.socialhizo.com/images/mapas/mapas-america/mapa-de-nicaragua-division-politica-socialhizo.jpg

https://es.wikipedia.org/wiki/Distritos de Managua#/media/Archivo:Distritos de Managua.s

Figura 2

Micro localización de Empresa "Electromecánica Especializada"

Barrio Santa rosa, De pastelería norma 200mts al norte 50mts al Este, Departamento de managua.

Fuente Google Maps

https://maps.app.goo.gl/7TtsZiz7Hs8LBpdD6

Objetivos

Objetivo General

Realizar un estudio como Actualización y modernizar equipos eléctricos sin perder calidad y eficiencia en trabajos que realizados en Empresa Electromecánica Especializa en Managua.

Objetivos Específicos

- •Determinar las condiciones actuales de desempeño de los equipos y herramientas con que cuentan en el taller de Electromecánica Especializada.
- •Realizar el diseño eléctrico adecuadas para el uso de las diferentes tecnologías que se equipara el taller de Electromecánica.
- Demostrar a través de costos económico como incide la modernización de los equipos.

Justificación

El objetivo de esta investigación es demostrar la viabilidad técnicaeconómica de la sustitución de los equipos y herramientas tradicionales, por herramientas de tecnología Inverter, en la empresa ELECTROMECANICA ESPECIALIZADA, que presta servicios de metalurgia, evaluando los beneficios tanto de los costos asociados a la facturación de energía como de los costos de producción de bienes.

Uno de los grandes retos a nivel mundial es la reducción del consumo de energía, pero sin reducir la producción de bienes y servicios. El consumo energético en la industria, tiene un efecto negativo sobre el planeta, ya que es el responsable del 21% de las emisiones de gases nocivos del todo el planeta.

Un aspecto importante en las tarifas de Nicaragua según Distribuidora disnorte y disur indica que muchas empresas o talleres, poseen tarifas donde se cobra no sólo la energía consumida sino además la potencia demandada, y principalmente esta última tiene un alto costo en la facturación, así pues, la demanda de potencia o los kilovatios pueden representar un alto costo en la facturación mensual de un cliente.

En esta investigación monográfica beneficiará a la empresa ELECTROMECANICA EESPECIALIZADA y servirá como modelo para micro empresa existente y futuras se dediquen a la metalurgia. Con el fin que la aplicación de tecnología inverte reduzca el consumo Energético durante el tiempo de operacion y reducir el gasto inicial de las nuevas empresas.

1. Evaluación y levantamiento de equipos

En la ingeniería, en el ramo de diseño todo equipo componente tiene una vida útil el cual debe tomar las siguientes consideraciones:

Los equipos mecánicos rotativos: Bien diseñados que se adapten bien a las condiciones de trabajo y que han tenido una operación y un mantenimiento adecuado suelen alcanzar el final de su vida útil tras 15 años de servicio. El principal problema por el que los equipos mecánicos suelen quedar obsoletos son bien por el mal estado que pueden presentar por degradación no recuperable, por falta de repuestos (que es el caso más habitual) o por menor rendimiento que los equipos más actualizados.

Los equipos estáticos: Que no sufren grandes cambios de temperatura bien diseñados que se adapten bien a las condiciones de trabajo y que han tenido una operación y un mantenimiento adecuado suelen alcanzar el final de su vida útil tras 30 años de servicio. Su principal problema suele estar relacionado con la corrosión interna o externa.

Los que sufren grandes cambios de Temperatura (hornos, calderas o intercambiadores) bien diseñados que se adapten bien a las condiciones de trabajo y que han tenido una operación y un mantenimiento adecuado suelen alcanzar el final de su vida útil tras 15 años de servicio. Sus problemas suelen estar relacionados con el taponamiento de tubos, los pinchazos, la corrosión y en general, la degradación no recuperable.

Los equipos de servicio eléctrico: De media y baja tensión suelen alcanzar bien diseñados que se adapten bien a las condiciones de trabajo y que

han tenido una operación y un mantenimiento adecuado suelen alcanzar el final de su vida útil tras 30 años de servicio, a pesar de sufrir obsolescencia tecnológica.

Una vez clasificado los componentes eléctricos se debe realizar el diseño tomando en cuanta en este caso que será dos escenarios.

Datos de placa es una etiqueta o cartel duradero que se fija a la maquinaria, equipo o herramientas para proporcionar información esencial, como el fabricante, el modelo, el número de serie, la capacidad y otros detalles clave sobre un activo. **Potencia eléctrica** es un concepto fundamental en el campo de la electricidad.

En términos simples, se refiere a la cantidad de trabajo que se realiza en una unidad de tiempo. La unidad de medida de la potencia eléctrica es el vatio (W)

La potencia eléctrica (P) se calcula multiplicando la tensión (V) por la corriente (I).

Esto se puede expresar con la fórmula: P = V x I

La tensión, medida en voltios (V), es la diferencia de potencial eléctrico entre dos puntos en un circuito.

La corriente, medida en amperios (A), Es el "flujo" de electrones a través del circuito por una cantidad de tiempo.

La potencia eléctrica puede clasificarse en varios tipos, dependiendo de cómo se utiliza y se transfiere la energía en el sistema eléctrico.

Potencia activa

La potencia activa, también conocida como potencia real, es la energía que realmente se utiliza para realizar trabajo.

Esta es la potencia que enciende las luces, mueve los motores y alimenta los dispositivos electrónicos. Se mide en vatios (W) o en unidades más grandes como kilovatios (kW), megavatios (MW) o gigavatios (GW).

Potencia reactiva

La potencia reactiva es la energía que se almacena y luego se devuelve al sistema.

No realiza ningún trabajo útil, pero es esencial para el funcionamiento de ciertos tipos de equipos, como los motores y los transformadores. Se mide en voltiamperios reactivos (VAR).

Potencia aparente

La potencia aparente es la combinación de la potencia activa y la potencia reactiva.

Es la capacidad total de un sistema eléctrico para realizar trabajo y mantener la energía almacenada. Se mide en voltiamperios (VA).

Sistema Monofásico se refiere a un sistema de producción, distribución y consumo de energía eléctrica que utiliza una sola fase o corriente alterna. Esto significa que la electricidad es suministrada a través de una única vía.

Sistema trifásico es un sistema eléctrico donde la electricidad se distribuye a través de tres canales o vías principales que trabajan juntas. A diferencia del sistema monofásico que usa un solo canal, el trifásico divide la electricidad en tres partes que funcionan de manera simultánea pero desfasada. Esto significa que mientras una vía está en su punto máximo, las otras dos están en diferentes etapas, permitiendo una distribución más constante y equilibrada de la energía.

Factor de Relleno de Conductores es el porcentaje del área transversal disponible en una tubería (o conduit) que se puede ocupar con los conductores.

En el NEC Indica 40%. Ver Tabla 1 en Anexos.

Factor de demanda o Potencia que demanda en un momento dado, un aparato o máquina o un conjunto de aparatos de utilización, conectados a un circuito eléctrico. (La carga puede variar en el tiempo, dependiendo del tipo de servicio). Relación entre la demanda máxima de un sistema o parte de un sistema a la carga total

conectada de un sistema o a la parte del sistema bajo consideración.

En el NEC posee los parámetros a considerar ver tabla 2 en Anexos

Caída de tensión o Voltaje es la pérdida gradual de potencial eléctrico a medida que fluye corriente a través de un circuito. Se produce porque los componentes eléctricos, como resistencias, cables y conectores, impiden el flujo de electrones.

$$\begin{array}{l}
 1\emptyset \Rightarrow CV = 2xRxLxI \\
 3\emptyset \Rightarrow CV = \sqrt{3xRxLxI}
 \end{array}
 \begin{array}{l}
 \%CV = \frac{CV}{V}x100
 \end{array}$$

R= Resistividad del conductor según el NEC Ver Tabla 3 en Anexos

L= Longitud que recorre el conductor

I= Corriente Eléctrica

V= Voltaje Operación

CV= Caída de Voltaje

Conductor Eléctrico son aquellos materiales que permiten el paso de la electricidad con un nivel de resistencia muy reducido. Gracias a sus propiedades específicas, facilitan el movimiento y traslación de electrones a través de su superficie, favoreciendo la transmisión de electricidad. Normalmente, los metales como el cobre, el aluminio, la plata, el hierro o el oro son los mejores conductores, pero hay más materiales, además de los metálicos, que son capaces de favorecer la transmisión y conducción de electricidad.

Teniendo en cuenta el tipo de propiedades y características que reúnen los elementos considerados como conductores eléctricos. El NEC nos facilita una tabla con las ampacidades permisible con sus variantes tipos de conductores. Ver table 4 en Anexo

Componentes para la Distribución y Protecciones Eléctrica

Panel Eléctrico

Un panel eléctrico, a veces llamado caja de interruptores o caja de fusibles, actúa como un eje central que distribuye la electricidad desde la línea de servicio que llega a su hogar para alimentar todas las partes de la casa a través de circuitos y cableado.

Interruptores o Disyuntores

Los interruptores termomagnéticos son dispositivos cuya función es interrumpir la corriente eléctrica de un circuito cuando detecta valores mayores a ciertos límites. Estos son dimensionados de acuerdo al margen de seguridad que estable el NEC en tabla 3 anteriormente mencionada.

Sistema de Puesta a Tierra es la complementación de una instalación eléctrica, el cual, al reducir las pérdidas de energía en los sistemas eléctricos, contribuye a la eficiencia energética, ya que ayuda a estabilizar el potencial de tierra, a reducir las fluctuaciones de voltaje, así como a disipar las corrientes de falla o sobretensiones.

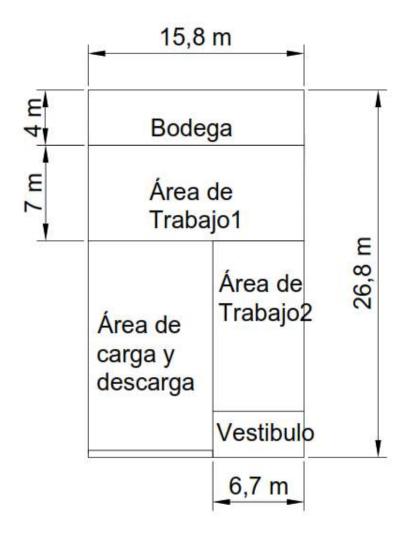
Estudio de Escenarios

- 1. Levantamiento
- a. Sistema eléctrico
- b. Equipos eléctricos
- 2. Catálogo de equipo al cual se modernizará.
- 3. Diferencia de consumo energético de los equipos
- 4. Presupuesto y diseño Eléctrico dándoles las condiciones a los nuevos equipos

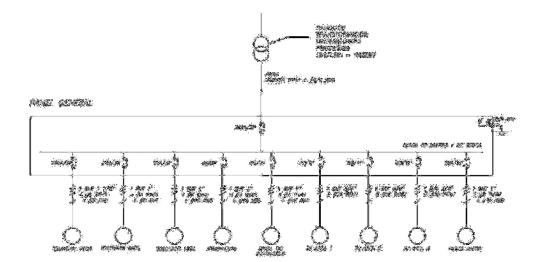
1. Levantamiento

a. Sistema Eléctrico

El sistema eléctrico como tal es Trifásico 120/208V alimentado con un transformador de 3x25kva


Dispone de 3 área de trabajo la carga mas fuerte es la soldadura, y luego las herramientas auxiliares, un área de pintura que tiene un sistema hidroneumático centralizado.

El sistema que sirve energía actualmente es con una acometida principal de 1 acometida de 350MCM para suplir las necesidades Generales del complejo.


Llega a un panel principal protegido con un breaker de 300amp que distribuye a las diferentes zonas de trabajo.

Plano Arquitectónico

Ubicación de Planta

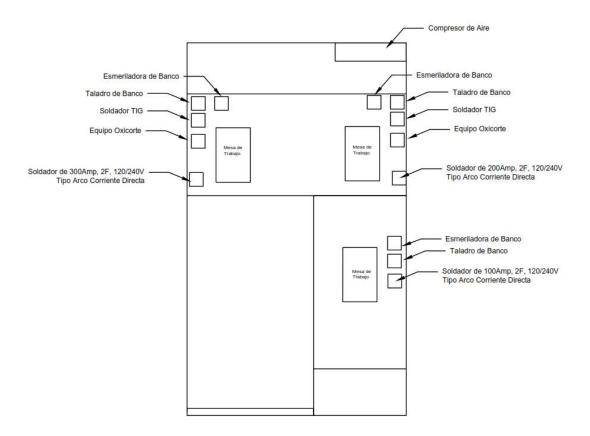
Diagrama Unifilar Actual

Memoria de equipos

MEN	IORIA DE	MEMORIA DE CALCULO SISTEMA ELECTRICO ACTUAL	SISTEMAE	LECTRICC	ACTU,	٩L				
		WATTS	WATTS				1		% UTILIZACIO	WATTS
DESCRIPCION DE LA CARGA	CANTIDAD	CANTIDAD UNITARIOS TOTALES VOLTAJE I-MAX FASE A FASE B	TOTALES	VOLTAJE	-MAX	FASE A	FASE B	FASE C N	Z	TOTALES
lluminacion de mesa de trabajo 1	2	2,000.00	4,000.00	208	15.88		15.88	15.88	0.70	2,800.00
Iluminacion de mesa de trabajo 2	2	2,000.00	4,000.00	208	15.88	15.88		15.88	0.70	2,800.00
Iluminacion de mesa de trabajo 3	2	2,000.00	4,000.00	208	15.88	15.88	15.88		0.70	2,800.00
Iluminacion area de Rampa, Garita y Entrada Principal	9	200.00	3,000.00	208	11.91		11.91	11.91	0.50	1,500.00
Soldador de 300A	1	25,000.00	25,000.00	208	99.25	99.25	99.25	99.25	0.75	18,750.00
Soldador de 200A	1	20,000.00	20,000.00 20,000.00	208	79.40	79.40	79.40	79.40	0.75	15,000.00
Soldador de 100A	1	15,000.00	15,000.00	208	208 59.55	59.52	59.52	59.55	0.75	11,250.00
Compresor Electrico de 200 LBS	1	7,500.00	7,500.00	208	29.78	29.78	29.78	29.78	0.50	3,750.00
Tomacorriente Uso General Area de Trabajo 1	2	1,800.00	3,600.00	120	30.00	30.00	30.00		0.50	1,800.00
Tomacorriente Uso General Area de Trabajo 2	2	1,800.00	3,600.00	120	30.00			30.00	0.50	1,800.00
Tomacorriente Uso General Area de Trabajo 3	2	1,800.00	3,600.00	120	30.00	30.00			0.50	1,800.00
Tomacorriente uso General Garita	4	400.00	1,600.00	120	13.33		13.33		0.50	800.00
Tomas de uso general Pasillos Sur; Este y Oeste	4	400.00	1,600.00	120	13.33			13.33	0.50	800.00
Tomacorriente Uso General Bodega	2	450.00	900.00	208	4.33		4.33	4.33	0.50	450.00
CARGA TOTAL			97,400.00			359.74	359.31	359.31	0.68	66,100.00

DIAGRAMA DE PANELES

PANEL P-G


IUB		HILOS 4 INTE												25/15/25/25	Sparson.						70000	27 - 01 00 00 00 0		
	ERIA _	ø3"EMT	M	ARC	Α _		EAT	ON			_	BA	RRA	DE P	UES	IA A	TIE	RRA	1xl	N°1/C	AW	G-THHN,		
N° DE ESPACIO	CONDUCTOR DE PUESTA A TIERRA DE EQUIPOS	DESCRIPCION DE LA CARGA	A	MPERIO	SCONE	UCTOR	UCTOR CALIBR			BREAKER	R	A B C	N	BREAKE	CANA	_	N CONE	DUCTOR E TIPO	A	AMPERI B	os c	DESCRIPCION DE LA CARGA	DE PLESTA A TIERRA DE	AESPA
I	EQUIPOS 12	TOMACORRIENTE DE USO GENERAL		3.00		THHN		EMT		20	~	H	1						31.71				EquiPos	SHACL
3	12	TOMACORRIENTE TALADRO			8.00	THHN	12	EMT	1/2"	20	~	Ш	$\parallel \wedge$	80	Į*	EMT	6	THHN		31.71	П	PANEL DE ILUMINACION	10	-
5	12	TOMACORRIENTE DE USO GENERAL			3.00	THHN	12	EMT	1/2*	20	~	₩.	$\downarrow \! \! $								31.71			Ι,
7											1	₩	#						99.25					8
9		sociologica anticomicali i		29.09					10.000		~	H	$\#_{\sim}$	100	1 1/2	EMT	2	THHN		99.25		TOMACORIENTE TRIFASICO, 208V	6	
,ii	10	PANEL GARITA			29.09	THHN	6	EMT	1/2*	50	_	₩.	\parallel								99.25			12
13											1	₩	#		T				79.4					14
15						- 1					1	 -	$\#_{\sim}$	80	r	EMT	4	THHN		79.4		TOMACORIENTE TRIFASICO, 2089	8	16
17											1	₩.	#^								79.4			18
19											1	₩	#						59.5					20
21											~	₩	#^	60	r	ЕМТ	8	THHN		59.5		TOMACORIENTE TRIFASICO, 208V	10	2
23											1	₩,	$\#_{\sim}$	-							59.5			24
25											1	₩	$\#_{\wedge}$											26
27											1	#	#^											28
29											1	Ш,	$\downarrow \downarrow _{\smallfrown}$	\vdash	T									30

PANEL GARITA

b. Equipos Eléctricos

Plano ubicación de Equipos

Compresor de Aire

Equipo trifásico, encargado de suministrar aire comprimido para el proceso de pintura, Limpieza de soldadura.

Taladro de Banco

Este equipo es monofásico, funciona para fijar piezas metálicas y realizar perforaciones.

Soldador TIG 100A

Este equipo se encarga de unir piezas metálicas de temple suave como acero inoxidable o chapa delgadas en hierro negro. Este tipo de soldadura se utiliza comúnmente para piezas que estan en contacto con alimentos.

Equipo de oxicorte

Este equipo se utiliza para cortar pieza metálica de alta chapa ya sea en hierro negro o galvanizada.

Soldador 300 Amp

Soldador Trifásico Tipo arco de 300amp, utilizado para soldar pieza entre 1 a 1 1/2 de pulgadas.

Soldador 200 Amp

Soldador Trifásico Tipo arco de 200amp, utilizado para soldar pieza superiores a ¾ a 1pulg de pulgadas.

Soldador 100AmP

Soldador Trifásico Tipo arco de 100amp, utilizado para soldar pieza superiores a chapa 16 a 1/2 pulg de pulgadas.

Sistema eléctrico de talleres Propuesta

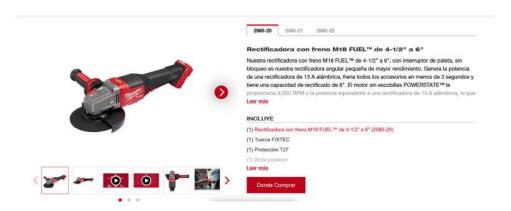
Conservando el diseño actual a nivel de distribución actual de equipos. Se realiza la propuesta de cambio de equipos y se diseña el sistema eléctrico Nuevo.

2. Catálogo de equipo al cual se modernizará.

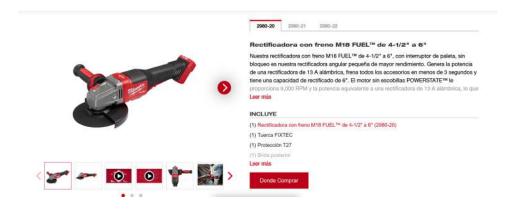
Soldadores

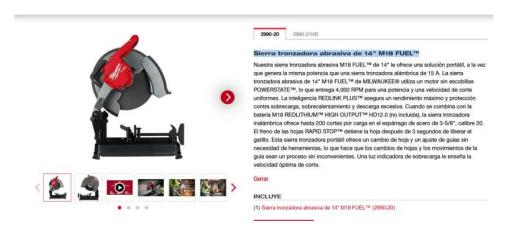
En sustitución del soldador 100A

En sustitución del soldador de 200amp



En Sustitución de soldador 300Amp

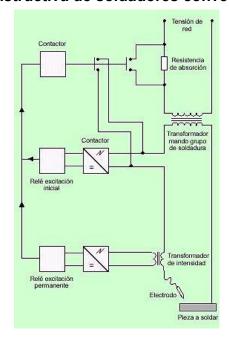

Taladros Eléctricos de Banco

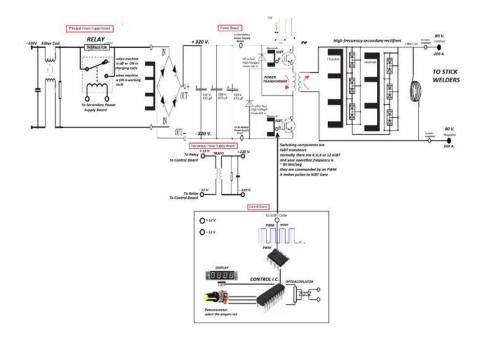

Esmeriladora de 4 ½

Esmeriladora de 7" a 9 pulgada

Cortadora de Banco con disco de 14pulg

Cargador de batería para los equipos milwakee




3. Diferencia de consumo energético de los equipos

Equipos			
Existente		Propuesto	
DESCRIPCION DE LA CARGA	WATTS UNITARIOS	DESCRIPCION DE LA CARGA	WATTS UNITARIOS
Soldador de 300A	25,000.00	Soldador de 300A	19,030.00
Soldador de 200A	20,000.00	Soldador de 200A	10,560.00
Soldador de 100A	15,000.00		6,820.00
Taladro eléctrico de Banco mandril 1/2	500.00	Taladro de Batería Banco mandril 1/2	500.00
Cortadora de Banco Eléctrico 14"	2,200.00	Cortadora de Banco 14'' Batería	500.00
Taladro Eléctrico mandril 1/2	500.00	Taladro de Batería mandril 1/2	500.00
Esmeriladora de corte eléctrico de 4 1/2	500.00	Esmeriladora de Batería corte de 4 1/2	500.00
Esmeriladora de corte eléctrico de 7''	1,800.00	Esmeriladora de Batería corte de 7''	500.00
Esmeriladora eléctrico de 7´´	700.00	Esmeriladora de Batería de 7"	500.00

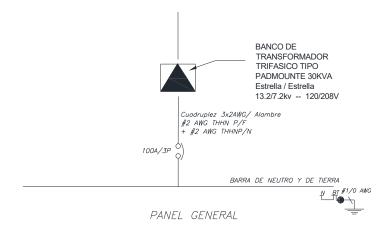
4. Diferencia constructiva de soldadores convencional y Inverter

Los Sistema de soldadore Convencional, esta basado en el control de la Corriente a la hora de formar el Arco de Soldadura, el cual controlado por la variación de la resistencia ubicada en la Salida del secundario del transformador de Fuerza y lograr la unión de las piezas de metal a soldar. Con esto se logra una diferencia de voltaje en el Transformador de fuerza que esto incide proporcionalmente en la corriente a como se declara en la Ley de Ohm.

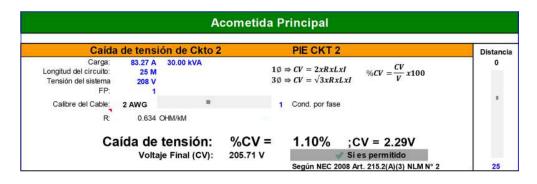
En los Soldadores con tecnología Inverte, El principio de trabajo es diferente ya que este esta pensando para ser mas compacto, con mayor protección para evitar el retorno de corrientes armónica y su principio de funcionamiento se basa en alterar la Frecuencia de salida con la que se genera el arco Eléctrico.

Estos soldadores Convierte la el Voltaje de Corriente Alterna a Voltaje de Corriente Directa para ajustar la amplitud de la corriente CC, que esto nuevamente es transformado a Corriente Alterna pero con un Frecuencia Mas Alta.

5. Presupuesto y diseño Eléctrico dándoles las condiciones a los nuevos equipos


Dimensionamiento de Transformador

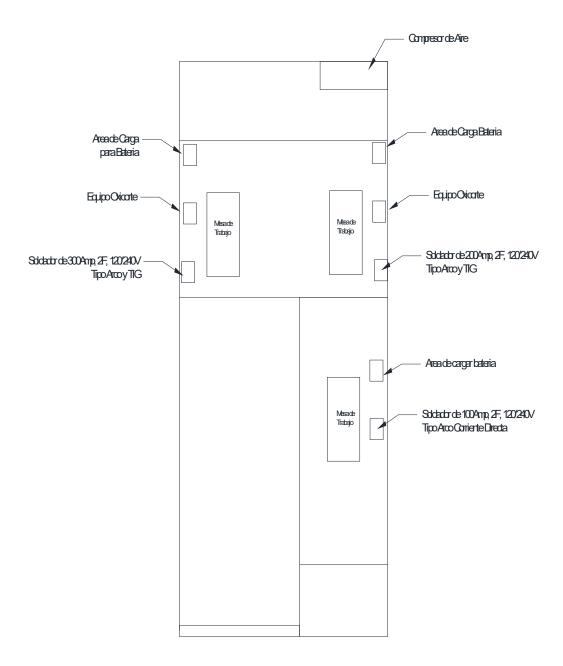
		Equipos a Instalar			Carga M	onofásica			Carga 1	Frifásica -	
Item	Cant	Descripción	Hilos	Vn (V)	In (A)	P (W)	Total (W)	Vn (V)	In (A)	P (W)	Total (W)
1	2	lluminacion de mesa de trabajo 1	2	120	1.25	150	300.00				0.00
2	2	lluminacion de mesa de trabajo 2	2	120	1.25	150	300.00				0.00
3	2	lluminacion de mesa de trabajo 3	2	120	1.25	150	300.00				0.00
4	6	lluminacion area de Rampa, Garita y Entrada Principal	2	120	0.83	100	600.00				0.00
5	1	Soldador de 300A	2	120			0.00	208	30.57	11000	11000.00
6	1	Soldador de 200A	2	120			0.00	208	29.35	10560	10560.00
7	1	Soldador de 100A	2	120			0.00	208	18.95	6820	6820.00
8	1	Compresor Electrico de 200 LBS	2	208	36.06	7500	7500.00				0.00
9	2	Tomacorriente Uso General Area de Trabajo 1	2	120	2.10	252	504.00				0.00
10	2	Tomacorriente Uso General Area de Trabajo 2	2	120	2.10	252	504.00				0.00
11	2	Tomacorriente Uso General Area de Trabajo 3	2	120	2.10	252	504.00				0.00
12	4	Tomacorriente uso General Garita	2	120	3.33	400	1600.00				0.00
13	4	Tomas de uso general Pasillos Sur; Este y Oeste	2	120	3.33	400	1600.00				0.00
14	4	Tomacorriente Uso General Bodega	2	120	1.67	200	800.00				0.00
		Potencia Total a Instalar		W Mond	ofásicos In	stalados	14512.00	W Trifa	ásicos Inst	alados	28380.00
				Fact	or de Dem	anda	0.70	Facto	or de Dem	anda	0.50
				W Mon	ofásicos N	1áximos	10158.40	W Trif	ásicos Má	iximos	14190.00
				Fa	ctor de Ca	rga	0.60	Fac	ctor de Ca	rga	0.60
				W Mon	ofásicos P	romedio	6095.04	W Trifa	ásicos Pro	medio	8514.00
				Fact	tor de Pote	encia	0.85	Fact	or de Pote	encia	0.85
				VA Mon	ofásicos P	romedio	7170.64	VA Trif	ásicos Pro	omedio	10016.47
				Potencia	del Trans	formado	21.48				
					Transforn	nador Trifa	sico comer	cial de 30K	VA		


Memoria de Calculo

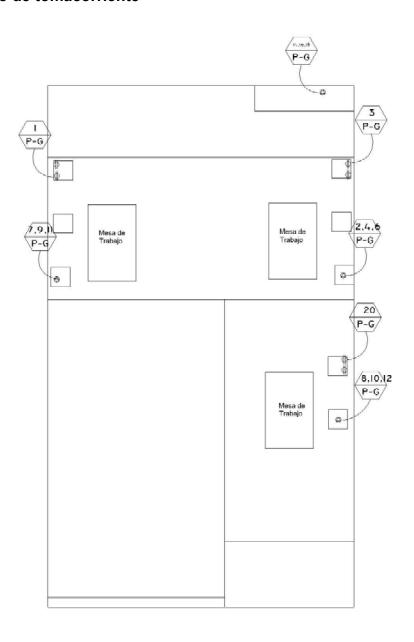
	PROYECT	PROYECTO: MODERNIZACION DE TALLERES ELECTROMECANICA ESPECIALIZADA	ACION DE TA	LLERES ELEC	CTROMECANIC	A ESPECIAL	IZADA				
		MEMORIA D	E CALCULO	SISTEMA ELE	MEMORIA DE CALCULO SISTEMA ELECTRICO A INSTALAR	TALAR					
				WATTS						%	WATTS
CIRCUITO	CIRCUITO DESCRIPCION DE LA CARGA	CANTIDAD	UNITARIOS	TOTALES	VOLTAJE	I-MAX	FASEA	FASE B	FASE C	UTILIZACION TOTALES	TOTALES
²	Iluminacion de mesa de trabajo 1	2	150.00	300.00	208	1.19		1.19	1.19	0.70	210.00
C-2	Iluminacion de mesa de trabajo 2	2	150.00	300.00	208	1.19	1.19		1.19	02'0	210.00
C-3	Iluminacion de mesa de trabajo 3	2	150.00	300.00	208	1.19	1.19	1.19		02'0	210.00
C-4	Iluminacion area de Rampa, Garita y Entrada Principal	9	100.00	00.009	208	2.38	2.38		2.38	09'0	300.00
C-5	Soldador de 300A	1	11,000.00	11,000.00	208	43.67	43.67	43.67	43.67	92'0	8,250.00
C-6	Soldador de 200A	1	10,560.00	10,560.00	208	41.92	41.92	41.92	41.92	92'0	7,920.00
C-7	Soldador de 100A	1	6,820.00	6,820.00	208	27.08	27.08	27.08	27.08	92'0	5,115.00
C-8	Compresor Electrico de 200 LBS	1	2,250.00	2,250.00	208	8.93	8.93	8.93	8.93	09'0	1,125.00
6-O	Tomacorriente Uso General Area de Trabajo 1	2	252.00	504.00	120	4.20	4.20			09'0	252.00
C-10	Tomacorriente Uso General Area de Trabajo 2	2	252.00	504.00	120	4.20		4.20		09'0	252.00
C-11	Tomacorriente Uso General Area de Trabajo 3	2	252.00	504.00	120	4.20	4.20			09'0	252.00
C-12	Tomacorriente uso General Garita	4	400.00	1,600.00	120	13.33		13.33		09'0	800.00
C-13	Tomas de uso general Pasillos Sur; Este y Oeste	4	400.00	1,600.00	120	13.33			13.33	09'0	800.00
C-14	Tomacorriente Uso General Bodega	4	200.00	800.00	120	6.67	6.67			0.50	400.00
	CARGA TOTAL MODULO			37,642.00			141.43	141.51	139.70	69'0	26,096.00

Diagrama unifilar Propuesto

Caída de Tensión de Acometida Principal


Dimensionamiento de Interruptor principal

MEMORIA D	DE CÁLCULO	PARA LA	A DETERM	INACIÓN E	EL INTER	RUPTOR
Total de Carga para el	Panel	*	•	•	30.00	kVA
Determinación de la c	orriente demandada to	tal :			TRIFÁSICA	
I = S/V√3				30,000.0 VA	208 V	83.27 A
Corriente Demandada				83.27 A		104.09 A
Según NEC 70 Art. y	240.6 (A) Capacidad	Nominal del Brea	cker		/ 3P	
Según NEC tabla 310.	16 Selección del Tama	año del Cond.	THWN-2 (1)	2 AWG	A 75 ℃	115 A
Calculo del Neutro				6.000.0 VA	100%	6,000.0 VA
Calculo de la corriente	del neutro			2,222.2		6,000.0 VA
Según NEC 70 Art. 31	0.16, Tabla 310.16 Se	lección del tamañ	io del cond.	6,000.0 VA	120 V	50.00 A
Conductor Neutro	(1) x 2 AWG	THWN-2 de Co	obre			
Dimensionamiento o	de la Tubería para la A	cometida del Par	nel PComercial	THWN-2	Área Total de	
Cantio	lad Calibre	Tipo	Área(in2)		cables(in²):	0.4632
1 Cal	ole 2 AWG	por fase	0.1158		Tubo Ø(in²):	1.316
1 Cat	ole 2 AWG	Neutro	0.1158	Desig. Métrico:	53 mm	Artículos 352 y 353 - Conduit rígido de PV
Según NEC capitulo	9, tabla 4:			Tamaño Comercial:	•	(PVC), Cédula 40 y Conduit HDPE
Artículos 352 y 35	3 - Conduit rígido de	PVC (PVC), Céd	dula 40 y Conduit		2	(HDPE), Mas de 2 cables 40%


Programacion de Paneles

PANEL P-G VOLTAJE 120/208 V CONDUCTORES DE ALIMENTACION 4xN"2 AWG-THHN NUMERO DE FASES 3 CAPACIDAD DE LAS BARRAS NUMERO DE HILOS 4 INTERRUPTOR PRINCIPAL 3X100AMP LINEAS VIVAS 3 NUMEROS DE ESPACIOS 30 TUBERIA p2"EMT MARCA EATON BARRA DE PUESTA A TIERRA 1xN°1/0 AWG-THHN, 2550 RIPOTON DE LA CARDA 40 P. 100 P. 201 P. TO FACIOUS ENTE DE BANKS I TO SECURE 1971 SUBSTILL 2 10 E44 145 E2 4 4.22 12 54" 141 25 TO ACOUNT SATE NO SHARE, NAS. 27.30 . 27.35 60,36301 EXIS 30 34 54 10 43.67 1.93 K 12 24-35 1 1977 15 LANGE OF BRIDGE OF THREE OF 2 12 63 ME EMP 18 PMA 4.83 19 TOTAL DEEP SYTE BATTE & 3 13.33 31 1Z D 24 12 TOTACORR LATE HIS SHIPE. Scottle 5.57 121 (347) (12) 25

Plano de ubicación de Equipos

Plano de tomacorriente

Presupuesto Sistema Eléctrico Solo Remodelación con Equipos

Actuales

	Proyecto: Sistema electrico de Taller Ele	ctro	mecai	nic	a Espe	cia	alizada		
	Formato de presentació	n de	ofert	a					
	•							Α	bril 8, 2025
Item	OBRAS ELECTROMECANICAS	Unit	cant		TOTALES			G	ran Total
		O LITE	Cuit	N	Tateriales	I	Ejecución	Ì	Tun Totul
1.00	Acomedidas								
1.1	Suministro e Instalación de acometida desde Banco Transformador a PANEL PG con canalizacion pwc 4, con (1 THHN 350MCM por Fase +1 THHN 350MCM para Neutro + 1 THHN 4/0 para Tierra)	ML	25.00	\$	9,027.53	\$	2,158.24	\$	11,185.77
1.20	Suministro e Instalación de acometida desde panel PG a Soldador 200 con canalizacion EMT 1, con (1 THHN 2 por Fase +1 THHN 2 para Neutro + 1 THHN8 para Tierra)	ML	31.00	\$	1,412.99	\$	418.37	\$	1,831.35
1.30	Suministro e Instalación de acometida desde panel PG a Soldador 300 con canalizacion EMT 1 1/2, con (1 THHN 2 por Fase +1 THHN 2 para Neutro + 1 THHN 4 para Tierra)	ML	31.00	\$	2,852.25	\$	625.34	\$	3,477.60
1.40	Suministro e Instalación de acometida desde panel PG a Soldador 100 con canalización EMT 1, con (1 THHN 6 por Fase +1 THHN 6 para Neutro + 1 THHN 10 para Tierra)	ML	56.00	\$	2,546.33	\$	771.26	\$	3,317.60
1.50	Suministro e Instalación de acometida desde panel PG a Panel Iluminacion con canalizacion EMT 1 1/2, con (1 THHN 6 por Fase +1 THHN 6 para Neutro + 1 THHN 10 para Tierra)	ML	15.00	\$	447.46	\$	142.96	\$	590.42
2.00	Tableros electricos								
2.10	Suministro e instalacion de PANEL PP - Panel trifasico 120/208v, con barra de 400amp, con main breaker de 3x300amp y derivado en 1 und 3x100, 2 und 3x80, 2 und de 3x60, 1 und de 3x40, 3 und de 3x30 1 supresor de pico de	Unid	1.00	\$	8,558.59	\$	995.85	\$	9,554.44
2.20	Suministro e instalacion de PANEL P1 – panel Trifasico 120/208v, con barra de 225 de 30 espacio con main brealer de 3x50, 2 und breaker 1x20, 3 und breaker 2x20	Unid	1.00	\$	1,356.12	\$	317.78	\$	1,673.90
3.00	Iluminacion Interior								
3.10	Instalacion de Luminarias	und	12.00	\$	2,377.00	\$	758.83	\$	3,135.83
3.20	Suministro e instalacion de Canalizacion EMT 1/2 y cableado con conductor THHN #12	ML	220.00	\$	3,431.60	\$	1,520.07	\$	4,951.67
4.00	Tomacorriente								
4.10	TOMACORRIENTE 120 VOLTIOS, 20 AMPERIOS, DOBLE, 3 HILOS TIPO INDUSTRIAL COLOR CREMA TIPO GFCI NEMA 5-20 R PLACA PLASTICA, ALTURA 1.20 M.	und	16.00	\$	272.80	\$	147.35	\$	420.15
4.20	TOMACORRIENTE 120/208 VOLTIOS, 60 AMPERIOS, DOBLE, 4 HILOS TIPO INDUSTRIAL LEGRAND 63AMP ALTURA 1.20 M.	und	4.00	\$	798.90	\$	245.58	\$	1,044.47
4.30	Suministro e instalacion de Canalizacion EMT 3/4 y cableado con conductor THHN #10 para Tomacorriente	ML	187.00	\$	6,045.55	\$	1,771.42	\$	7,816.96
	Desintalación de Paneles existentes y cableado								
5.10	Desintalación de Paneles existentes	GBL	1.00	\$	-	\$	504.00	\$	504.00
5.20	Desintalación de Cableado	GBL	1.00			\$	714.29	\$	714.29
	SUB	TOTA	LEN US\$	\$	39,127.12	\$	11,091.32	\$	50,218.44

Presupuesto Sistema Eléctrico Solo Remodelación con Equipos

Moderno

	Proyecto: Sistema electrico de Taller Ele	ctro	mecai	nic	a Espec	cia	lizada		
	Formato de presentació	n de	ofert	a					
								Ał	oril 8, 2025
Item	OBRAS ELECTROMECANICAS	Unit	cant		TOTALES	S E	N US\$	(ran Total
Item	ODRAS ELECTROMECAMICAS	Umt	Cant	M	lateriales	E	jecución	3	ran Totai
1.00	Acomedidas Principal de Taller								
1.10	Suministro e Instalación de acometida desde panel Banco de Transformado al panel P-G con canalizacion EMT 1 1/2, con (1 THHN 2 por Fase +1 THHN 2 para Neutro + 1 THHN 4 para Tierra)	ML	25.00	\$	2,333.45	\$	748.98	\$	3,082.43
2.00	Tableros electricos								
2.10	Suministro e instalacion de PANEL PG – panel Trifasico 120/208v, con barra de 225 de 30 espacio con main breaKer de 3x100, 6 und breaker 1x20, 2 und breaker 3x50, 2 und breaker 3x30, 4 und breaker 2x20	Unid	1.00	\$	1,447.42	\$	470.61	\$	1,918.03
3.00	Iluminacion Interior								
3.10	Suministro e instalacion de luminaria High bay 150w	und	12.00	\$	2,377.00	\$	1,123.78	\$	3,500.78
3.20	Suministro e instalacion de Canalizacion EMT 1/2 y cableado con conductor THHN #12	ML	125.00	\$	1,975.07	\$	1,302.33	\$	3,277.41
4.00	Tomacorriente								
4.10	TOMACORRIENTE 120 VOLTIOS, 20 AMPERIOS, DOBLE, 3 HILOS TIPO INDUSTRIAL COLOR CREMA TIPO GFCI NEMA 5-20 R PLACA PLASTICA, ALTURA 1.20 M.	und	18.00	\$	138.60	\$	245.49	\$	384.09
4.20	TOMACORRIENTE 120/208 VOLTIOS, 60 AMPERIOS, DOBLE, 4 HILOS TIPO INDUSTRIAL LEGRAND 63AMP ALTURA 1.20 M.	und	4.00	\$	798.90	\$	363.68	\$	1,162.58
4.30	Suministro e instalacion de Canalizacion EMT 3/4 y cableado con conductor THHN $\#10$ para Tomacorriente	ML	187.50	\$	3,722.67	\$	1,785.41	\$	5,508.08
	Desintalación de Paneles existentes y cableado								
5.10	Desintalación de Paneles existentes	GBL	1.00	\$	-	\$	504.00	\$	504.00
5.20	Desintalación de Cableado	GBL	1.00			\$	714.29	\$	714.29
	SUB	TOTA	L EN US\$	\$	12,793.11	\$	7,258.57	\$	20,051.67

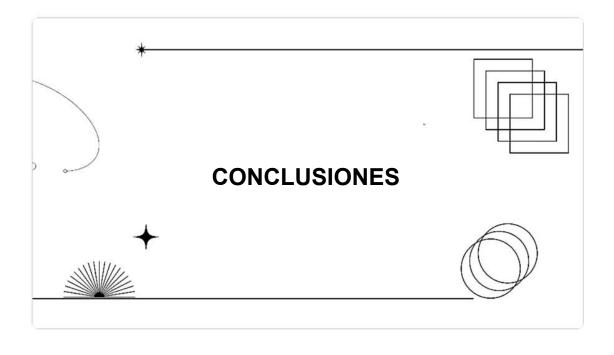
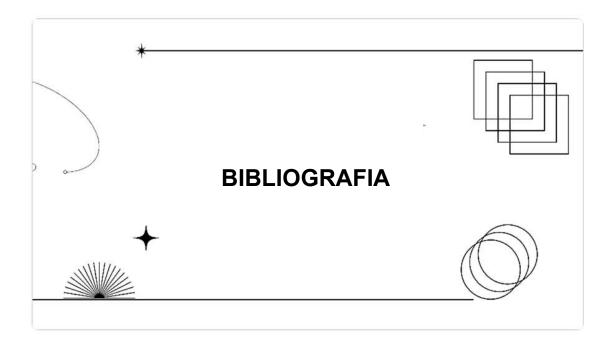

6. Comparativa de Presupuesto Propuesta y Cambio de instalaciones actuales.

Tabla comparativa de inversión

	Sistema	Electrico Nuevo	Sistem	a Electrico Con
	Conserv	ando equipos	equipo	s Nuevos
Costo del proyecto	\$	50,218.44	\$	20,051.67
Equipos nuevos			\$	90,219.00
	\$	50,218.44	\$	110,270.67

Tabla Comparativo de Consumo Mes

			a Electrico Con s Nuevos 26.5kw
Mes 100 Horas de Trabajo en			
Tarifa T5	\$	2,862.04	\$ 1,149.15
	\$	2,862.04	\$ 1,149.15
		Diferencia	\$ 1,712.89
	Equipos se p	agan en Años	4.39


CONCLUCIONES

El montar un sistema eléctrico y equipos nuevos tiene una inversión inicial alta que sostenidamente es compensado con el ahorro energético que monetariamente será saldado en un periodo aproximado de 5 años.

Es un sistema el cual puede tener versatilidad de multiuso en diferente áreas de trabajo y sobre todo garantizando la protección de la vida humana.

Recomendación

- Ten en cuenta el ciclo de trabajo de tu soldadora para evitar sobrecalentamientos y daños.
- Utiliza una máquina con la potencia adecuada para el tipo de material y espesor que vas a soldar.
- Limpia regularmente la máquina y sus componentes para asegurar su correcto funcionamiento y prolongar su vida útil.
- Asegúrate de utilizar el electrodo y el tipo de material de soldadura adecuados para el trabajo que vas a realizar.

BIBLIOGRAFIA

- Blastingnew. (Enero de 2020). Obtenido de https://es.blastingnews.com/tecnologia/2018/05/el-torno-maquinaconvencional-y-de-gran-utilidad-en-un-taller-industrial-002547315.html
- CASILLAS, A. L. (1998). "MÁQUINAS: CÁLCULOS DE TALLER.
 Madrid.
- 3. Economía Sustentable. (2020). Obtenido de https://economiasustentable.com/noticias/que-es-la-tecnologia-inverter-y- como-puede-hacerte-ahorrar-casi-el-50-de-la-energia
- FIDE. (2021). Obtenido de https://www.fide.org.mx/wpcontent/uploads/Revistas/REE_18_ALTA.PDF
- INE. (2000). Código de Instalaciones Eléctricas de Nicaragua.
 Managua.
- México, U. (s.f.). Economía. Obtenido de http://www.economia.unam.mx/secss/docs/tesisfe/GomezAM/cap2a.pd
 f

- Robelly, T. (2015). Obtenido de http://repositorio.unemi.edu.ec/bitstream/123456789/2587/1/AN%c3%8
 1LIS
 IS%20DE%20LOS%20CRITERIOS%20DE%20SELECCI%c3%93N%
 20Y%
 - 20SU%20INCIDENCIA%20EN%20LA%20DECISI%c3%93N
 %20DE%20AD QUIRIR%20UN.pdf
- 8. TV, H. (Marzo de 2020). Obtenido de https://herramientas.tv/herramientas-para-taller-metalurgico/
- 9. https://infraenlinea.com/maquina-de-soldar.html?srsltid=AfmBOopSDYIMGT9QnfsRTF8rPC3uufGpfYl6_hQ
 https://infraenlinea.com/maquina-de-soldar.html?srsltid=AfmBOopSDYIMGT9QnfsRTF8rPC3uufGpfYl6_hQ
 https://infraenlinea.com/maquina-de-soldar.html?srsltid=AfmBOopSDYIMGT9QnfsRTF8rPC3uufGpfYl6_hQ
 https://infraenlinea.com/maquina-de-soldar.html
 https://infraenlinea.com/maquina-de-soldar.h
- 11. https://www.mpofcinci.com/blog/the-complete-guide-to-data-plates/#:~:text=Una%20placa%20de%20datos%20es,detalles%20clave%20sobre%20un%20activo.

- 12. https://www.cursosaula21.com/que-es-la-potencia-electrica/
- 13. https://www.mipodo.com/blog/informacion/una-instalacion-monofasica-trifasica/#:~:text=Una%20instalaci%C3%B3n%20trif%C3%A1sica%20
 es%20un,de%20manera%20simult%C3%A1nea%20pero%20desfasa
 da.
- 15. https://www.roker.com.ar/productos-instrucciones/guia-sobre-los-interruptores-
 interruptores-
 <a href="mailtos-instrucciones/guia-sobre-los-interruptores-guia-sobre-los-int
- 16. https://www.ine.gob.ni/?page_id=127658

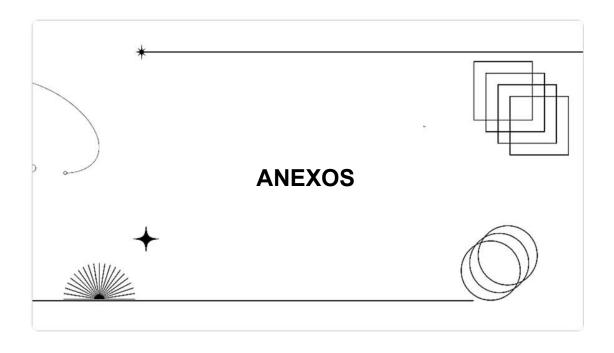


Tabla 1. Porcentajes de relleno de conductores para conduit o tuberías (%)

Número de conductores	1	2	más de 2
Todos los tipos	53	30	40

Tabla 2. Factor de Demanda

Table 220.110(2) Demand Factors for Receptacles Supplied by General-Purpose Branch Circuits in Category 3 and Category 4 Patient Care Spaces

Portion of Receptacle Load to Which Demand Factor Applies (Volt-Amperes)	Demand Factor (%)
First 10,000 or less	100%
Remainder over 10,000	50% JEFFREY STAPSON

Tabla 3 – Resistencia de los conductores de Cobre o Aluminio

					Con	ductores					Resistencia	en Coriente C	ontinua a 7	5° C (167° F)	
			Tr	e nzado			To	do			co	bre			
Calibre	Á	rea		Diá	me tro	Diá	metro	Á	rea	No recu	biertos	Recubi	iertos	Alum	inio
(AWG 0 kemil)	mm2	MILS Circular	Cantidad	mm	pulgada	mm	pulgada	mm2	pulg 2	ohm/ km	ohm/ kpies	ohm/ km	ohm/ kpies	ohm/ km	ohm/ kpies
18	0.823	1620	1	_	_	1.02	0.04	0.823	0.001	25.5	7.77	26.5	8.08	42	12.8
18	0.823	1620	7	0.39	0.015	1.16	0.046	1.06	0.002	26.1	7.95	27.7	8.45	42.8	13.1
16	1.31	2580	1	_	_	1.29	0.051	1.31	0.002	16	4.89	16.7	5.08	26.4	8.05
16	1.31	2580	7	0.49	0.019	1.46	0.058	1.68	0.003	16.4	4.99	17.3	5.29	26.9	8.21
14	2.08	4110	1	_	_	1.63	0.064	2.08	0.003	10.1	3.07	10.4	3.19	16.6	5.06
14	2.08	4110	7	0.62	0.024	1.85	0.073	2.68	0.004	10.3	3.14	10.7	3.26	16.9	5.17
12	3.31	6530	1	_	_	2.05	0.081	3.31	0.005	6.34	1.93	6.57	2.01	10.45	3.18
12	3.31	6530	7	0.78	0.03	2.32	0.092	4.25	0.006	6.5	1.98	6.73	2.05	10.69	3.25
10	5.261	10380	1	_	_	2.588	0.102	5.26	0.008	3.984	1.21	4.148	1.26	6.561	2
10	5.261	10380	7	0.98	0.038	2.95	0.116	6.76	0.011	4.07	1.24	4.226	1.29	6.679	2.04
8	8.367	16510	1	_	_	3.264	0.128	8.37	0.013	2.506	0.764	2.579	0.786	4.125	1.26
8	8.367	16510	7	1.23	0.049	3.71	0.146	10.76	0.017	2.551	0.778	2.653	0.809	4.204	1.28
6	13.3	26240	7	1.56	0.061	4.67	0.184	17.09	0.027	1.608	0.491	1.671	0.51	2.652	0.808
4	21.15	41740	7	1.96	0.077	5.89	0.232	27.19	0.042	1.01	0.308	1.053	0.321	1.666	0.508
3	26.67	52620	7	2.2	0.087	6.6	0.26	34.28	0.053	0.802	0.245	0.833	0.254	1.32	0.403
2	33.62	66360	7	2.47	0.097	7.42	0.292	43.23	0.067	0.634	0.194	0.661	0.201	1.045	0.319
1	42.41	83690	19	1.69	0.066	8.43	0.332	55.8	0.087	0.505	0.154	0.524	0.16	0.829	0.253
1/0	53.49	105600	19	1.89	0.074	9.45	0.372	70.41	0.109	0.399	0.122	0.415	0.127	0.66	0.201
2/0	67.43	133100	19	2.13	0.084	10.62	0.418	88.74	0.137	0.317	0.0967	0.329	0.101	0.523	0.159
3/0	85.01	167800	19	2.39	0.094	11.94	0.47	111.9	0.173	0.2512	0.0766	0.261	0.0797	0.413	0.126
4/0	107.2	211600	19	2.68	0.106	13.41	0.528	141.1	0.219	0.1996	0.0608	0.205	0.0626	0.328	0.1

Tabla 4 – Ampacidades de conductores

	-	ARTÍCULO	310 — CONDUCTORES P	ARA INSTALACION	ES EN GENERAL		
47.		-					
1 DT 1 310	(6.4	1.003			1 0 2000 1	CO. C. DO. C. (140. T	1040 F
						60°C a 90°C (140°F e), basados en una ter	
	30° C (86° F).	ortadores de cornente	en una cananzacion,	cable o tierra (en	terrados directamente	e), basados en una ter	nperatura
mbiente de	50 C (80 F).						
		Temper	atura nominal del conc	luctor [Vea la Tabl:	a 310.13(A)]		
	60° C (140° F)	75° C (167° F)	90° C (194° F)	60° C (140° F)	75° C (167° F)	90° C (194° F)	
	TIPOS TW, UF	TIPOS RHW, THHW, THWV, THWV, MHHW, USE, ZW	TIPOS TBS, SA, SIS, FEP, FEPB, MI, RIHI, RIHV-2, THEN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW. XHHW-2, ZW-2	TIPOS TW, UF	TIPOS RHW, THHW, THWN, THWN, XHHW, LSE	TIPOS TBS, SA, SIS, THEN, THEW, THW-2, THW-2, RIBL, RHW-2, USE-2, XIHI, XIHIW, XIHIW-2, ZW-2	
alibre AWGo kemil		COBRE		ALLMINI	O O ALUMINIO RECUBIERT	O DE COBRE	Calibre AW kemil
18	k—2	_	14	-	-	_	
16	-	-	18	-	-		$ \epsilon$
14	15	20	25		-		-
12	20	25	30	15	20	25	12**
10	30	35	40	25	30	35	10**
8	40	50	55	35	40	45	8
6	55	65	75	40	50	55	6
4	70	85	95	55	65	75	4
3	85	100	115	65	75	85	3
2	95	115	130	75	90	100	2
1	110	130	145	85	100	115	1
1/0	125	150	170	100	120	135	1/0
2/0	145	175	195	115	135	150	2/0
3/0	165	200	225	130	155	175	3/0
4/0	195	230	260	150	180	205	4/0

INSTITUTO NICARAGÜENSE DE ENERGÍA ENTE REGULADOR

TARIFAS ACTUALIZADAS A ENTRAR EN VIGENCIA EL 1 DE MAYO DE 2025 AUTORIZADAS PARA LAS DISTRIBUIDORAS DISNORTE Y DISSUR

BAJA TENSIÓN (120,240 y 480 V)					
		TARIFA		CARGO POR	
	APLICACIÓN	CÓDIGO	DESCRIPCIÓN	ENERGÍA (C\$/kWh)	POTENCIA (C\$/kW-mes)
RESIDENCIAL	Exclusivo para uso de casas de habitación urbanas y rurales	T-0	Primeros 25 kWh Siguientes 25 kWh Siguientes 50 kWh Siguientes 50 kWh Siguientes 350 kWh Siguientes 500 kWh Adicionales a 1000 kWh	2.4807 5.9337 6.2212 8.2693 8.3895 13.3253 15.1821	
GENERAL MENOR	Carga contratada hasta 25 kW para uso general (Establecimientos Comerciales, Oficinas Públicas y Privadas, Centros de Salud, Centros de Recreación, etc.)	T-1A	TARIFA MONOMIA 0-150 kWh > 150 kWh TARIFA BINOMIA SIN MEDICIÓN HO Todos los kWh kW de Demanda Máxima	5.5884 8.7228	ACIONAL 753.4249
GENERAL MAYOR	Carga contratada mayor de 25 kW para uso general (Establecimientos Comerciales, Oficinas Públicas y Privadas, Centros de Salud, Hospitales, etc.).	T-2	TARIFA BINOMIA SIN MEDICIÓN HO Todos los kWh	6.5386	
INDUSTRIAL MENOR	Carga contratada hasta 25 kW para uso industrial (Talleres, fábricas, etc).	T-3A	TARIFA MONOMIA Todos los kWh TARIFA BINOMIA SIN MEDICIÓN HO Todos los kWh	7.6184 DRARIA ESTA 5.3737	
INDUSTRIAL MEDIANA	Carga contratada mayor de 25 kW y hasta 200 kW para uso industrial (Talleres, Fábricas, etc.)	T-4	kW de Demanda Máxima TARIFA BINOMIA SIN MEDICIÓN HO Todos los kWh kW de Demanda Máxima	5.9247	715.7456 ACIONAL 706.2486
INDUSTRIAL MAYOR	Carga contratada mayor de 200 kW para uso Industrial (Talleres, Fábricas, etc)	T-5	TARIFA BINOMIA SIN MEDICIÓN HO Todos los kWh kW de Demanda Máxima	6.1176	673.8580
IRRIGACIÓN	Para irrigación de campos agrícolas	T-6	TARIFA MONOMIA Todos los kWh	6.6900	
		T-6A	TARIFA BINOMIA SIN MEDICIÓN HO Todos los kWh kW de Demanda Máxima	4.9115	570.5944
		T-6B	TARIFA BINOMIA CON MEDICIÓN E Verano Punta Invierno Punta Verano Fuera de Punta Invierno Fuera de Punta Verano Punta Invierno Punta Verano Fuera de Punta Invierno Fuera de Punta	6.4234 6.4234 4.7532 4.7532	1,080.1131 1,080.1131 0.0000 0.0000